
AL

10/23/2017 Kubernetes Documentation - Kubernetes

http://localhost:4000/docs/home/ 1/2

Kubernetes Documentation

Kubernetes documentation can help you set up Kubernetes, learn about the system, or get your

applications and workloads running on Kubernetes. To learn the basics of what Kubernetes is and

how it works, read “What is Kubernetes”.

Interactive Tutorial

The Kubernetes Basics interactive tutorial lets you try out Kubernetes right out of your web browser,

using a virtual terminal. Learn about the Kubernetes system and deploy, expose, scale, and upgrade

a containerized application in just a few minutes.

Installing/Setting Up Kubernetes

Picking the Right Solution can help you get a Kubernetes cluster up and running, either for local

development, or on your cloud provider of choice.

Concepts, Tasks, and Tutorials

The Kubernetes documentation contains a number of resources to help you understand and work

with Kubernetes.

Concepts provide a deep understanding of how Kubernetes works.

Tasks contain step-by-step instructions for common Kubernetes tasks.

Tutorials contain detailed walkthroughs of the Kubernetes work�ow.

API and Command References

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/
http://localhost:4000/docs/tutorials/kubernetes-basics/
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/concepts/
http://localhost:4000/docs/tasks/
http://localhost:4000/docs/tutorials/

10/23/2017 Kubernetes Documentation - Kubernetes

http://localhost:4000/docs/home/ 2/2

The Reference documentation provides complete information on the Kubernetes APIs and the

kubectl command-line interface.

Tools

The Tools page contains a list of native and third-party tools for Kubernetes.

Troubleshooting

The Troubleshooting page outlines some resources for troubleshooting and �nding help.

http://localhost:4000/docs/reference/
http://localhost:4000/docs/tools/
http://localhost:4000/docs/tasks/debug-application-cluster/troubleshooting

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/troubleshooting/ 1/3

Troubleshooting

Sometimes things go wrong. This guide is aimed at making them right. It has two sections:

Troubleshooting your application - Useful for users who are deploying code into Kubernetes and

wondering why it is not working.

Troubleshooting your cluster - Useful for cluster administrators and people whose Kubernetes

cluster is unhappy.

You should also check the known issues for the release you’re using.

Getting help

If your problem isn’t answered by any of the guides above, there are variety of ways for you to get

help from the Kubernetes team.

Questions

The documentation on this site has been structured to provide answers to a wide range of questions.

Concepts explain the Kubernetes architecture and how each component works, while Setup provides

practical instructions for getting started. Tasks show how to accomplish commonly used tasks, and

Tutorials are more comprehensive walkthroughs of real-world, industry-speci�c, or end-to-end

development scenarios. The Reference section provides detailed documentation on the Kubernetes

API and command-line interfaces (CLIs), such as kubectl .

You may also �nd the Stack Over�ow topics relevant:

Kubernetes

Google Container Engine - GKE

Help! My question isn’t covered! I need help now!

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/
http://localhost:4000/docs/tasks/debug-application-cluster/debug-cluster/
https://github.com/kubernetes/kubernetes/releases
http://localhost:4000/docs/concepts/
http://localhost:4000/docs/setup/
http://localhost:4000/docs/tasks/
http://localhost:4000/docs/tutorials/
http://localhost:4000/docs/reference/
http://localhost:4000/docs/api-reference/v1.8/
http://localhost:4000/docs/user-guide/kubectl-overview/
http://stackoverflow.com/questions/tagged/kubernetes
http://stackoverflow.com/questions/tagged/google-container-engine

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/troubleshooting/ 2/3

Stack Over�ow

Someone else from the community may have already asked a similar question or may be able to

help with your problem. The Kubernetes team will also monitor posts tagged Kubernetes. If there

aren’t any existing questions that help, please ask a new one!

Slack

The Kubernetes team hangs out on Slack in the #kubernetes-users channel. You can participate

in discussion with the Kubernetes team here. Slack requires registration, but the Kubernetes team is

open invitation to anyone to register here. Feel free to come and ask any and all questions.

Once registered, browse the growing list of channels for various subjects of interest. For example,

people new to Kubernetes may also want to join the #kubernetes-novice channel. As another

example, developers should join the #kubernetes-dev channel.

There are also many country speci�c/local language channels. Feel free to join these channels for

localized support and info:

France: #fr-users , #fr-events

Germany: #de-users , #de-events

Japan: #jp-users , #jp-events

Mailing List

The Kubernetes / Google Container Engine mailing list is kubernetes-users@googlegroups.com

Bugs and Feature requests

If you have what looks like a bug, or you would like to make a feature request, please use the Github

issue tracking system.

Before you �le an issue, please search existing issues to see if your issue is already covered.

If �ling a bug, please include detailed information about how to reproduce the problem, such as:

Kubernetes version: kubectl version

http://stackoverflow.com/questions/tagged/kubernetes
http://stackoverflow.com/questions/ask?tags=kubernetes
https://kubernetes.slack.com/
http://slack.kubernetes.io/
https://groups.google.com/forum/#!forum/kubernetes-users
https://github.com/kubernetes/kubernetes/issues

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/troubleshooting/ 3/3

Cloud provider, OS distro, network con�guration, and Docker version

Steps to reproduce the problem

10/23/2017 Creating a Documentation Pull Request - Kubernetes

http://localhost:4000/docs/home/contribute/create-pull-request/ 1/3

Creating a Documentation Pull Request

To contribute to the Kubernetes documentation, create a pull request against the

kubernetes/kubernetes.github.io repository. This page shows how to create a pull request.

Before you begin

1. Create a GitHub account.

2. Sign the Linux Foundation Contributor License Agreement.

Documentation will be published under the CC BY SA 4.0 license.

Creating a fork of the Kubernetes documentation
repository

1. Go to the kubernetes/kubernetes.github.io repository.

2. In the upper-right corner, click Fork. This creates a copy of the Kubernetes documentation

repository in your GitHub account. The copy is called a fork.

Making your changes

1. In your GitHub account, in your fork of the Kubernetes docs, create a new branch to use for your

contribution.

Before you begin
Creating a fork of the Kubernetes documentation repository
Making your changes
Submitting a pull request to the master branch (Current Release)
Submitting a pull request to the <vnext> branch (Upcoming Release)
What’s next

https://github.com/kubernetes/kubernetes.github.io
https://github.com/
https://identity.linuxfoundation.org/projects/cncf
https://git.k8s.io/kubernetes.github.io/LICENSE
https://github.com/kubernetes/kubernetes.github.io

10/23/2017 Creating a Documentation Pull Request - Kubernetes

http://localhost:4000/docs/home/contribute/create-pull-request/ 2/3

2. In your new branch, make your changes and commit them. If you want to write a new topic,

choose the page type that is the best �t for your content.

Submitting a pull request to the master branch (Current
Release)

If you want your change to be published in the released version Kubernetes docs, create a pull

request against the master branch of the Kubernetes documentation repository.

1. In your GitHub account, in your new branch, create a pull request against the master branch of

the kubernetes/kubernetes.github.io repository. This opens a page that shows the status of your

pull request.

2. Click Show all checks. Wait for the deploy/netlify check to complete. To the right of

deploy/netlify, click Details. This opens a staging site where you can verify that your changes

have rendered correctly.

3. During the next few days, check your pull request for reviewer comments. If needed, revise your

pull request by committing changes to your new branch in your fork.

Submitting a pull request to the <vnext> branch
(Upcoming Release)

If your documentation change should not be released until the next release of the Kubernetes

product, create a pull request against the <vnext> branch of the Kubernetes documentation

repository. The <vnext> branch has the form release-<version-number> , for example release-1.5.

1. In your GitHub account, in your new branch, create a pull request against the <vnext> branch of

the kubernetes/kubernetes.github.io repository. This opens a page that shows the status of your

pull request.

2. Click Show all checks. Wait for the deploy/netlify check to complete. To the right of

deploy/netlify, click Details. This opens a staging site where you can verify that your changes

have rendered correctly.

http://localhost:4000/docs/home/contribute/write-new-topic/
http://localhost:4000/docs/home/contribute/page-templates/

10/23/2017 Creating a Documentation Pull Request - Kubernetes

http://localhost:4000/docs/home/contribute/create-pull-request/ 3/3

3. During the next few days, check your pull request for reviewer comments. If needed, revise your

pull request by committing changes to your new branch in your fork.

The staging site for the upcoming Kubernetes release is here: http://kubernetes-io-vnext-

staging.netlify.com/. The staging site re�ects the current state of what’s been merged in the release

branch, or in other words, what the docs will look like for the next upcoming release. It’s

automatically updated as new PRs get merged.

What’s next

Learn about writing a new topic.

Learn about using page templates.

Learn about staging your changes.

http://kubernetes-io-vnext-staging.netlify.com/
http://localhost:4000/docs/home/contribute/write-new-topic
http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/home/contribute/stage-documentation-changes

10/23/2017 Writing a New Topic - Kubernetes

http://localhost:4000/docs/home/contribute/write-new-topic/ 1/5

Writing a New Topic

This page shows how to create a new topic for the Kubernetes docs.

Before you begin

Create a fork of the Kubernetes documentation repository as described in Creating a Documentation

Pull Request.

Choosing a page type

As you prepare to write a new topic, think about which of these page types is the best �t for your

content:

Task

A task page shows how to do a single thing. The idea is to give readers a sequence of steps that they can actually do
as they read the page. A task page can be short or long, provided it stays focused on one area. In a task page, it is OK
to blend brief explanations with the steps to be performed, but if you need to provide a lengthy explanation, you should
do that in a concept topic. Related task and concept topics should link to each other. For an example of a short task
page, see Con�gure a Pod to Use a Volume for Storage. For an example of a longer task page, see Con�gure Liveness
and Readiness Probes

Tutorial

A tutorial page shows how to accomplish a goal that ties together several Kubernetes features. A tutorial might
provide several sequences of steps that readers can actually do as they read the page. Or it might provide
explanations of related pieces of code. For example, a tutorial could provide a walkthrough of a code sample. A
tutorial can include brief explanations of the Kubernetes features that are being tied togeter, but should link to related
concept topics for deep explanations of individual features.

Concept A concept page explains some aspect of Kubernetes. For example, a concept page might describe the Kubernetes

Before you begin
Choosing a page type
Choosing a title and �lename
Adding the topic title to the front matter
Choosing a directory
Creating an entry in the table of contents
Including code from another �le
Showing how to create an API object from a con�guration �le
Adding images to a topic
What’s next

http://localhost:4000/docs/home/contribute/create-pull-request/
http://localhost:4000/docs/tasks/configure-pod-container/configure-volume-storage/
http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

10/23/2017 Writing a New Topic - Kubernetes

http://localhost:4000/docs/home/contribute/write-new-topic/ 2/5

Deployment object and explain the role it plays as an application is deployed, scaled, and updated. Typically, concept
pages don't include sequences of steps, but instead provide links to tasks or tutorials. For an example of a concept
topic, see Nodes.

Each page type has a template that you can use as you write your topic. Using templates helps

ensure consistency among topics of a given type.

Choosing a title and �lename

Choose a title that has the keywords you want search engines to �nd. Create a �lename that uses

the words in your title separated by hyphens. For example, the topic with title Using an HTTP Proxy to

Access the Kubernetes API has �lename http-proxy-access-api.md . You don’t need to put

“kubernetes” in the �lename, because “kubernetes” is already in the URL for the topic, for example:

Adding the topic title to the front matter

In your topic, put a title �eld in the front matter. The front matter is the YAML block that is

between the triple-dashed lines at the top of the page. Here’s an example:

Choosing a directory

Depending on your page type, put your new �le in a subdirectory of one of these:

/docs/tasks/

/docs/tutorials/

/docs/concepts/

 http://kubernetes.io/docs/tasks/access-kubernetes-api/http-proxy-access-api/

title: Using an HTTP Proxy to Access the Kubernetes API

http://localhost:4000/docs/concepts/architecture/nodes/
http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api/
https://jekyllrb.com/docs/frontmatter/

10/23/2017 Writing a New Topic - Kubernetes

http://localhost:4000/docs/home/contribute/write-new-topic/ 3/5

You can put your �le in an existing subdirectory, or you can create a new subdirectory.

Creating an entry in the table of contents

Depending page type, create an entry in one of these �les:

/_data/tasks.yaml

/_data/tutorials.yaml

/_data/concepts.yaml

Here’s an example of an entry in /_data/tasks.yaml:

Including code from another �le

To include a code �le in your topic, place the code �le in the Kubernetes documentation repository,

preferably in the same directory as your topic �le. In your topic �le, use the include tag:

where:

<LEXERVALUE> is the language in which the �le was written. This must be a value supported by

Rouge.

<RELATIVEPATH> is the path to the �le you’re including, relative to the current �le, for example,

gce-volume.yaml .

<PATHFROMROOT> is the path to the �le relative to root, for example,

docs/tutorials/stateful-application/gce-volume.yaml .

- docs/tasks/configure-pod-container/configure-volume-storage.md

{% include code.html language="<LEXERVALUE>" file="<RELATIVEPATH>" ghlink="/<PATHF

https://github.com/jneen/rouge/wiki/list-of-supported-languages-and-lexers

10/23/2017 Writing a New Topic - Kubernetes

http://localhost:4000/docs/home/contribute/write-new-topic/ 4/5

Here’s an example of using the include tag:

Showing how to create an API object from a
con�guration �le

If you need to show the reader how to create an API object based on a con�guration �le, place the

con�guration �le in the Kubernetes documentation repository, preferably in the same directory as

your topic �le.

In your topic, show this command:

where <PATHFROMROOT> is the path to the con�guration �le relative to root, for example,

docs/tutorials/stateful-application/gce-volume.yaml .

Here’s an example of a command that creates an API object from a con�guration �le:

For an example of a topic that uses this technique, see Running a Single-Instance Stateful

Application.

Adding images to a topic

Put image �les in the /images directory. The preferred image format is SVG.

What’s next

{% include code.html language="yaml" file="gce-volume.yaml" ghlink="/docs/tutorial

kubectl create -f https://k8s.io/<PATHFROMROOT>

kubectl create -f https://k8s.io/docs/tutorials/stateful-application/gce-volume.ya

http://localhost:4000/docs/tutorials/stateful-application/run-stateful-application/

10/23/2017 Writing a New Topic - Kubernetes

http://localhost:4000/docs/home/contribute/write-new-topic/ 5/5

Learn about using page templates.

Learn about staging your changes.

Learn about creating a pull request.

http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/home/contribute/stage-documentation-changes
http://localhost:4000/docs/home/contribute/create-pull-request/

10/23/2017 Staging Your Documentation Changes - Kubernetes

http://localhost:4000/docs/home/contribute/stage-documentation-changes/ 1/3

Staging Your Documentation Changes

This page shows how to stage content that you want to contribute to the Kubernetes

documentation.

Before you begin

Create a fork of the Kubernetes documentation repository as described in Creating a Documentation

Pull Request.

Staging a pull request

When you create a pull request, either against the master or <vnext> branch, your changes are

staged in a custom subdomain on Netlify so that you can see your changes in rendered form before

the pull request is merged.

1. In your GitHub account, in your new branch, submit a pull request to the

kubernetes/kubernetes.github.io repository. This opens a page that shows the status of your pull

request.

2. Scroll down to the list of automated checks. Click Show all checks. Wait for the deploy/netlify

check to complete. To the right of deploy/netlify, click Details. This opens a staging site where

you can see your changes.

Staging locally using Docker

Before you begin
Staging a pull request
Staging locally using Docker
Staging locally without Docker
What’s next

http://localhost:4000/docs/home/contribute/create-pull-request/

10/23/2017 Staging Your Documentation Changes - Kubernetes

http://localhost:4000/docs/home/contribute/stage-documentation-changes/ 2/3

You can use the k8sdocs Docker image to run a local staging server. If you’re interested, you can

view the Docker�le for this image.

1. Install Docker if you don’t already have it.

2. Clone your fork to your local development machine.

3. In the root of your cloned repository, enter this command to start a local web server:

This will run the following command:

4. View your staged content at http://localhost:4000 .

Staging locally without Docker

1. Install Ruby 2.2 or later.

2. Install RubyGems.

3. Verify that Ruby and RubyGems are installed:

4. Install the GitHub Pages package, which includes Jekyll:

5. Clone your fork to your local development machine.

6. In the root of your cloned repository, enter this command to start a local web server:

make stage

docker run -ti --rm -v "$PWD":/k8sdocs -p 4000:4000 gcr.io/google-samples/k8sdo

gem --version

gem install github-pages

https://git.k8s.io/kubernetes.github.io/staging-container/Dockerfile
https://www.ruby-lang.org/
https://rubygems.org/

10/23/2017 Staging Your Documentation Changes - Kubernetes

http://localhost:4000/docs/home/contribute/stage-documentation-changes/ 3/3

7. View your staged content at http://localhost:4000 .

Note: “If you do not want Jekyll to interfere with your other globally installed gems, you can

use bundler :

gem install bundler

bundle install

bundler exec jekyll serve

Regardless of whether you use bundler or not, your copy of the site will then be viewable at:

http://localhost:4000

What’s next

Learn about writing a new topic.

Learn about using page templates.

Learn about creating a pull request.

jekyll serve

http://localhost:4000/docs/home/contribute/write-new-topic/
http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/home/contribute/create-pull-request/

10/23/2017 Using Page Templates - Kubernetes

http://localhost:4000/docs/home/contribute/page-templates/ 1/6

Using Page Templates

These page templates are available for writers who would like to contribute new topics to the

Kubernetes docs:

Task

Tutorial

Concept

The page templates are in the _includes/templates directory of the kubernetes.github.io repository.

Task template

A task page shows how to do a single thing, typically by giving a short sequence of steps. Task

pages have minimal explanation, but often provide links to conceptual topics that provide related

background and knowledge.

To write a new task page, create a Markdown �le in a subdirectory of the /docs/tasks directory. In

your Markdown �le, provide values for these variables:

overview - required

prerequisites - required

steps - required

discussion - optional

whatsnext - optional

Then include templates/task.md like this:

...
{% include templates/task.md %}

https://git.k8s.io/kubernetes.github.io/_includes/templates
https://github.com/kubernetes/kubernetes.github.io

10/23/2017 Using Page Templates - Kubernetes

http://localhost:4000/docs/home/contribute/page-templates/ 2/6

In the steps section, use ## to start with a level-two heading. For subheadings, use ### and

as needed. Similarly, if you choose to have a discussion section, start the section with a

level-two heading.

Here's an example of a Markdown �le that uses the task template:

Here's an example of a published topic that uses the task template:

Using an HTTP Proxy to Access the Kubernetes API

Tutorial template

title: Configuring This Thing

{% capture overview %}
This page shows how to ...
{% endcapture %}

{% capture prerequisites %}
* Do this.
* Do this too.
{% endcapture %}

{% capture steps %}
Doing ...

1. Do this.
1. Do this next. Possibly read this [related explanation](...).
{% endcapture %}

{% capture discussion %}
Understanding ...

Here's an interesting thing to know about the steps you just did.
{% endcapture %}

{% capture whatsnext %}
* Learn more about [this](...).
* See this [related task](...).
{% endcapture %}

{% include templates/task.md %}

http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api

10/23/2017 Using Page Templates - Kubernetes

http://localhost:4000/docs/home/contribute/page-templates/ 3/6

A tutorial page shows how to accomplish a goal that is larger than a single task. Typically a tutorial

page has several sections, each of which has a sequence of steps. For example, a tutorial might

provide a walkthrough of a code sample that illustrates a certain feature of Kubernetes. Tutorials can

include surface-level explanations, but should link to related concept topics for deep explanations.

To write a new tutorial page, create a Markdown �le in a subdirectory of the /docs/tutorials directory.

In your Markdown �le, provide values for these variables:

overview - required

prerequisites - required

objectives - required

lessoncontent - required

cleanup - optional

whatsnext - optional

Then include templates/tutorial.md like this:

In the lessoncontent section, use ## to start with a level-two heading. For subheadings, use ###

and #### as needed.

Here's an example of a Markdown �le that uses the tutorial template:

...
{% include templates/tutorial.md %}

10/23/2017 Using Page Templates - Kubernetes

http://localhost:4000/docs/home/contribute/page-templates/ 4/6

Here's an example of a published topic that uses the tutorial template:

Running a Stateless Application Using a Deployment

title: Running a Thing

{% capture overview %}
This page shows how to ...
{% endcapture %}

{% capture prerequisites %}
* Do this.
* Do this too.
{% endcapture %}

{% capture objectives %}
* Learn this.
* Build this.
* Run this.
{% endcapture %}

{% capture lessoncontent %}
Building ...

1. Do this.
1. Do this next. Possibly read this [related explanation](...).

Running ...

1. Do this.
1. Do this next.

Understanding the code
Here's something interesting about the code you ran in the preceding steps.
{% endcapture %}

{% capture cleanup %}
* Delete this.
* Stop this.
{% endcapture %}

{% capture whatsnext %}
* Learn more about [this](...).
* See this [related tutorial](...).
{% endcapture %}

{% include templates/tutorial.md %}

http://localhost:4000/docs/tutorials/stateless-application/run-stateless-application-deployment/

10/23/2017 Using Page Templates - Kubernetes

http://localhost:4000/docs/home/contribute/page-templates/ 5/6

Concept template

A concept page explains some aspect of Kubernetes. For example, a concept page might describe

the Kubernetes Deployment object and explain the role it plays as an application is deployed, scaled,

and updated. Typically, concept pages don't include sequences of steps, but instead provide links to

tasks or tutorials.

To write a new concept page, create a Markdown �le in a subdirectory of the /docs/concepts

directory. In your Markdown �le, provide values for these variables:

overview - required

body - required

whatsnext - optional

Then include templates/concept.md like this:

In the body section, use ## to start with a level-two heading. For subheadings, use ### and ####

as needed.

Here's an example of a page that uses the concept template:

...
{% include templates/concept.md %}

10/23/2017 Using Page Templates - Kubernetes

http://localhost:4000/docs/home/contribute/page-templates/ 6/6

Here's an example of a published topic that uses the concept template:

Annotations

title: Understanding this Thing

{% capture overview %}
This page explains ...
{% endcapture %}

{% capture body %}
Understanding ...

Kubernetes provides ...

Using ...

To use ...
{% endcapture %}

{% capture whatsnext %}
* Learn more about [this](...).
* See this [related task](...).
{% endcapture %}

{% include templates/concept.md %}

http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/

10/23/2017 Reviewing Documentation Issues - Kubernetes

http://localhost:4000/docs/home/contribute/review-issues/ 1/4

Reviewing Documentation Issues

This page explains how documentation issues are reviewed and prioritized for the

kubernetes/kubernetes.github.io repository. The purpose is to provide a way to organize issues and

make it easier to contribute to Kubernetes documentation. The following should be used as the

standard way of prioritizing, labeling, and interacting with issues.

Categorizing issues

Issues should be sorted into different buckets of work using the following labels and de�nitions. If an

issue doesn’t have enough information to identify a problem that can be researched, reviewed, or

worked on (i.e. the issue doesn’t �t into any of the categories below) you should close the issue with

a comment explaining why it is being closed.

Needs Clari�cation

Issues that need more information from the original submitter to make them actionable. Issues

with this label that aren’t followed up within a week may be closed.

Categorizing issues
Needs Clari�cation
Actionable
Needs Tech Review
Needs Docs Review
Needs UX Review

Prioritizing Issues
P1
P2
P3

Handling special issue types
Duplicate issues
Dead link issues

What’s next

https://github.com/kubernetes/kubernetes.github.io

10/23/2017 Reviewing Documentation Issues - Kubernetes

http://localhost:4000/docs/home/contribute/review-issues/ 2/4

Actionable

Issues that can be worked on with current information (or may need a comment to explain what

needs to be done to make it more clear)

Allows contributors to have easy to �nd issues to work on

Needs Tech Review

Issues that need more information in order to be worked on (the proposed solution needs to be

proven, a subject matter expert needs to be involved, work needs to be done to understand the

problem/resolution and if the issue is still relevant)

Promotes transparency about level of work needed for the issue and that issue is in progress

Needs Docs Review

Issues that are suggestions for better processes or site improvements that require community

agreement to be implemented

Topics can be brought to SIG meetings as agenda items

Needs UX Review

Issues that are suggestions for improving the user interface of the site.

Fixing broken site elements.

Prioritizing Issues

The following labels and de�nitions should be used to prioritize issues. If you change the priority of

an issues, please comment on the issue with your reasoning for the change.

P1

10/23/2017 Reviewing Documentation Issues - Kubernetes

http://localhost:4000/docs/home/contribute/review-issues/ 3/4

Major content errors affecting more than 1 page

Broken code sample on a heavily tra�cked page

Errors on a “getting started” page

Well known or highly publicized customer pain points

Automation issues

P2

Default for all new issues

Broken code for sample that is not heavily used

Minor content issues in a heavily tra�cked page

Major content issues on a lower-tra�cked page

P3

Typos and broken anchor links

Handling special issue types

Duplicate issues

If a single problem has one or more issues open for it, the problem should be consolidated into a

single issue. You should decide which issue to keep open (or open a new issue), port over all relevant

information, link related issues, and close all the other issues that describe the same problem. Only

having a single issue to work on will help reduce confusion and avoid duplicating work on the same

problem.

Dead link issues

Depending on where the dead link is reported, different actions are required to resolve the issue.

Dead links in the API and Kubectl docs are automation issues and should be assigned a P1 until the

10/23/2017 Reviewing Documentation Issues - Kubernetes

http://localhost:4000/docs/home/contribute/review-issues/ 4/4

problem can be fully understood. All other dead links are issues that need to be manually �xed and

can be assigned a P3.

What’s next

Learn about writing a new topic.

Learn about using page templates.

Learn about staging your changes.

http://localhost:4000/docs/home/contribute/write-new-topic
http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/home/contribute/stage-documentation-changes

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 1/11

Documentation Style Guide

This page gives writing style guidelines for the Kubernetes documentation. These are guidelines, not

rules. Use your best judgment, and feel free to propose changes to this document in a pull request.

For additional information on creating new content for the Kubernetes docs, follow the instructions

on using page templates and creating a documentation pull request.

Documentation formatting standards
Use camel case for API objects
Use angle brackets for placeholders
Use bold for user interface elements
Use italics to de�ne or introduce new terms
Use code style for �lenames, directories, and paths

Inline code formatting
Use code style for inline code and commands
Use code style for object �eld names
Use normal style for string and integer �eld values

Code snippet formatting
Don’t include the command prompt
Separate commands from output

Callout Formatting
Note
Caution
Warning

Common Callout Issues
Style Does Not Apply
Multiple Lines
Ordered Lists

Content best practices
Use present tense
Use active voice
Use simple and direct language
Address the reader as “you”
Avoid Latin phrases

Patterns to avoid
Avoid using “we”

http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/home/contribute/create-pull-request/

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 2/11

Documentation formatting standards

Use camel case for API objects

When you refer to an API object, use the same uppercase and lowercase letters that are used in the

actual object name. Typically, the names of API objects use camel case.

Don’t split the API object name into separate words. For example, use PodTemplateList, not Pod

Template List.

Refer to API objects without saying “object,” unless omitting “object” leads to an awkward

construction.

Do Don't

The Pod has two Containers. The pod has two containers.

The Deployment is responsible for ... The Deployment object is responsible for ...

A PodList is a list of Pods. A Pod List is a list of pods.

The two ContainerPorts ... The two ContainerPort objects ...

The two ContainerStateTerminated objects ... The two ContainerStateTerminateds ...

Use angle brackets for placeholders

Use angle brackets for placeholders. Tell the reader what a placeholder represents.

1. Display information about a pod:

where <pod-name> is the name of one of your pods.

Avoid jargon and idioms
Avoid statements about the future
Avoid statements that will soon be out of date

What’s next

kubectl describe pod <pod-name>

https://en.wikipedia.org/wiki/Camel_case

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 3/11

Use bold for user interface elements

Do Don't

Click Fork. Click "Fork".

Select Other. Select 'Other'.

Use italics to de�ne or introduce new terms

Do Don't

A cluster is a set of nodes ... A "cluster" is a set of nodes ...

These components form the control plane. These components form the control plane.

Use code style for �lenames, directories, and paths

Do Don't

Open the envars.yaml �le. Open the envars.yaml �le.

Go to the /docs/tutorials directory. Go to the /docs/tutorials directory.

Open the /_data/concepts.yaml �le. Open the /_data/concepts.yaml �le.

Inline code formatting

Use code style for inline code and commands

For inline code in an HTML document, use the <code> tag. In a Markdown document, use the

backtick (`).

Do Don't

The kubectl run command creates a Deployment. The "kubectl run" command creates a Deployment.

For declarative management, use kubectl apply . For declarative management, use "kubectl apply".

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 4/11

Use code style for object �eld names

Do Don't

Set the value of the replicas �eld in the con�guration �le. Set the value of the "replicas" �eld in the con�guration �le.

The value of the exec �eld is an ExecAction object. The value of the "exec" �eld is an ExecAction object.

Use normal style for string and integer �eld values

For �eld values of type string or integer, use normal style without quotation marks.

Do Don't

Set the value of imagePullPolicy to Always. Set the value of imagePullPolicy to "Always".

Set the value of image to nginx:1.8. Set the value of image to nginx:1.8 .

Set the value of the replicas �eld to 2. Set the value of the replicas �eld to 2 .

Code snippet formatting

Don’t include the command prompt

Do Don't

kubectl get pods $ kubectl get pods

Separate commands from output

Verify that the pod is running on your chosen node:

The output is similar to this:

kubectl get pods --output=wide

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 5/11

Callout Formatting

Callouts help create different rhetorical appeal levels. Our documentation supports three different

callouts: Note: {: .note}, Caution: {: .caution}, and Warning: {: .warning}.

1. Start each callout with the appropriate pre�x.

2. Use the following syntax to apply a style:

The output is:

Note: The pre�x you choose is the same text for the tag.

Note

Use {: .note} to highlight a tip or a piece of information that may be helpful to know.

For example:

The output is:

Note: You can still use Markdown inside these callouts.

Caution

NAME READY STATUS RESTARTS AGE IP NODE
nginx 1/1 Running 0 13s 10.200.0.4 worker0

Note: The prefix you use is the same text you use in the tag.

{: .note} <!-- This tag must appear on a new line. -->

Note: You can _still_ use Markdown inside these callouts.
{: .note}

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 6/11

Use {: .caution} to call attention to an important piece of information to avoid pitfalls.

For example:

The output is:

Caution: The callout style only applies to the line directly above the tag.

Warning

Use {: .warning} to indicate danger or a piece of information that is crucial to follow.

For example:

The output is:

Warning: Beware.

Common Callout Issues

Style Does Not Apply

Callout tags must be on a new line to apply the style. Github’s Preview Changes feature further

obfuscates this fact by rendering the tag on the same line, but your code must match the following

syntax:

Caution: The callout style only applies to the line directly above the tag.
{: .caution}

Warning: Beware.
{: .warning}

Note: Your text goes here.
{: .note} <!-- This tag must appear on a new line. -->

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 7/11

Multiple Lines

Callouts automatically span multiple lines. However, you can use
 tags if you need to create

multiple lines.

For example:

The output is:

Note: This is my note. Use
 to create multiple lines.

You can still use Markdown to format text!

Typing multiple lines does not work. The callout style only applies to the line directly above the tag.

Note: This is my note.

I didn’t read the style guide.

Ordered Lists

Callouts will interrupt numbered lists unless you indent three spaces before the notice and the tag.

For example:

Note:" This is my note. Use `
` to create multiple lines.

 You
{: .note}

Note: This is my note.

I didn't read the style guide.
{: .note}

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 8/11

The output is:

1. Preheat oven to 350˚F

2. Prepare the batter, and pour into springform pan.

Note: Grease the pan for best results.

3. Bake for 20-25 minutes or until set.

Content best practices

This section contains suggested best practices for clear, concise, and consistent content.

Use present tense

Do Don't

This command starts a proxy. This command will start a proxy.

Exception: Use future or past tense if it is required to convey the correct meaning.

Use active voice

Do Don't

You can explore the API using a browser. The API can be explored using a browser.

The YAML �le speci�es the replica count. The replica count is speci�ed in the YAML �le.

1. Preheat oven to 350˚F

1. Prepare the batter, and pour into springform pan.

 Note: Grease the pan for best results.
 {: .note}

1. Bake for 20-25 minutes or until set.

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 9/11

Exception: Use passive voice if active voice leads to an awkward construction.

Use simple and direct language

Use simple and direct language. Avoid using unnecessary phrases, such as saying “please.”

Do Don't

To create a ReplicaSet, ... In order to create a ReplicaSet, ...

See the con�guration �le. Please see the con�guration �le.

View the Pods. With this next command, we'll view the Pods.

Address the reader as “you”

Do Don't

You can create a Deployment by ... We'll create a Deployment by ...

In the preceding output, you can see... In the preceding output, we can see ...

Avoid Latin phrases

Prefer English terms over Latin abbreviations.

Do Don't

For example, ... e.g., ...

That is, ... i.e., ...

Exception: Use “etc.” for et cetera.

Patterns to avoid

Avoid using “we”

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 10/11

Using “we” in a sentence can be confusing, because the reader might not know whether they’re part

of the “we” you’re describing.

Do Don't

Version 1.4 includes ... In version 1.4, we have added ...

Kubernetes provides a new feature for ... We provide a new feature ...

This page teaches you how to use pods. In this page, we are going to learn about pods.

Avoid jargon and idioms

Some readers speak English as a second language. Avoid jargon and idioms to help make their

understanding easier.

Do Don't

Internally, ... Under the hood, ...

Create a new cluster. Turn up a new cluster.

Avoid statements about the future

Avoid making promises or giving hints about the future. If you need to talk about an alpha feature,

put the text under a heading that identi�es it as alpha information.

Avoid statements that will soon be out of date

Avoid words like “currently” and “new.” A feature that is new today might not be considered new in a

few months.

Do Don't

In version 1.4, ... In the current version, ...

The Federation feature provides ... The new Federation feature provides ...

What’s next

Learn about writing a new topic.

http://localhost:4000/docs/home/contribute/write-new-topic/

10/23/2017 Documentation Style Guide - Kubernetes

http://localhost:4000/docs/home/contribute/style-guide/ 11/11

Learn about using page templates.

Learn about staging your changes

Learn about creating a pull request.

http://localhost:4000/docs/home/contribute/page-templates/
http://localhost:4000/docs/home/contribute/stage-documentation-changes/
http://localhost:4000/docs/home/contribute/create-pull-request/

10/23/2017 Setup - Kubernetes

http://localhost:4000/docs/setup/ 1/1

Setup

This section provides instructions for installing Kubernetes and setting up a Kubernetes cluster. For

an overview of the different options, see Picking the Right Solution.

http://localhost:4000/docs/setup/pick-right-solution/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 1/8

Picking the Right Solution

Kubernetes can run on various platforms: from your laptop, to VMs on a cloud provider, to rack of

bare metal servers. The effort required to set up a cluster varies from running a single command to

crafting your own customized cluster. Use this guide to choose a solution that �ts your needs.

If you just want to “kick the tires” on Kubernetes, use the local Docker-based solution using MiniKube.

When you are ready to scale up to more machines and higher availability, a hosted solution is the

easiest to create and maintain.

Turnkey cloud solutions require only a few commands to create and cover a wide range of cloud

providers.

If you already have a way to con�gure hosting resources, use kubeadm to easily bring up a cluster

with a single command per machine.

Custom solutions vary from step-by-step instructions to general advice for setting up a Kubernetes

cluster from scratch.

Local-machine Solutions

Minikube is the recommended method for creating a local, single-node Kubernetes cluster for

development and testing. Setup is completely automated and doesn’t require a cloud provider

Local-machine Solutions
Hosted Solutions
Turnkey Cloud Solutions
Custom Solutions

Universal
Cloud
On-Premises VMs
Bare Metal
Integrations

Table of Solutions
De�nition of columns

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/
http://localhost:4000/docs/getting-started-guides/minikube/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 2/8

account.

Ubuntu on LXD supports a nine-instance deployment on localhost.

IBM Cloud private-ce (Community Edition) can use VirtualBox on your machine to deploy

Kubernetes to one or more VMs for dev and test scenarios. Scales to full multi-node cluster. Free

version of the enterprise solution.

Hosted Solutions

Google Container Engine offers managed Kubernetes clusters.

Azure Container Service can easily deploy Kubernetes clusters.

Stackpoint.io provides Kubernetes infrastructure automation and management for multiple

public clouds.

AppsCode.com provides managed Kubernetes clusters for various public clouds, including AWS

and Google Cloud Platform.

KUBE2GO.io get started with highly available Kubernetes clusters on multiple public clouds

along with useful tools for development, debugging, monitoring.

Madcore.Ai is devops-focused CLI tool for deploying Kubernetes infrastructure in AWS. Master,

auto-scaling group nodes with spot-instances, ingress-ssl-lego, Heapster, and Grafana.

Platform9 offers managed Kubernetes on-premises or on any public cloud, and provides 24/7

health monitoring and alerting.

OpenShift Dedicated offers managed Kubernetes clusters powered by OpenShift.

OpenShift Online provides free hosted access for Kubernetes applications.

IBM Bluemix Container Service offers managed Kubernetes clusters with isolation choice,

operational tools, integrated security insight into images and containers, and integration with

Watson, IoT, and data.

Giant Swarm offers managed Kubernetes clusters in their own datacenter, on-premises, or on

public clouds.

Turnkey Cloud Solutions

http://localhost:4000/docs/getting-started-guides/ubuntu/local/
https://www.ibm.com/support/knowledgecenter/en/SSBS6K/product_welcome_cloud_private.html
https://cloud.google.com/container-engine
https://azure.microsoft.com/en-us/services/container-service/
https://stackpoint.io/
https://appscode.com/products/cloud-deployment/
https://kube2go.io/
https://madcore.ai/
https://platform9.com/products/kubernetes/
https://www.openshift.com/dedicated/
https://www.openshift.com/features/
https://console.ng.bluemix.net/docs/containers/container_index.html
https://giantswarm.io/product/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 3/8

These solutions allow you to create Kubernetes clusters on a range of Cloud IaaS providers with only

a few commands. These solutions are actively developed and have active community support.

Google Compute Engine (GCE)

AWS

Azure

Tectonic by CoreOS

CenturyLink Cloud

IBM Bluemix

Stackpoint.io

KUBE2GO.io

Madcore.Ai

Custom Solutions

Kubernetes can run on a wide range of Cloud providers and bare-metal environments, and with many

base operating systems.

If you can �nd a guide below that matches your needs, use it. It may be a little out of date, but it will

be easier than starting from scratch. If you do want to start from scratch, either because you have

special requirements, or just because you want to understand what is underneath a Kubernetes

cluster, try the Getting Started from Scratch guide.

If you are interested in supporting Kubernetes on a new platform, see Writing a Getting Started

Guide.

Universal

If you already have a way to con�gure hosting resources, use kubeadm to easily bring up a cluster

with a single command per machine.

http://localhost:4000/docs/getting-started-guides/gce/
http://localhost:4000/docs/getting-started-guides/aws/
http://localhost:4000/docs/getting-started-guides/azure/
https://coreos.com/tectonic
http://localhost:4000/docs/getting-started-guides/clc/
https://github.com/patrocinio/kubernetes-softlayer
http://localhost:4000/docs/getting-started-guides/stackpoint/
https://kube2go.io/
https://madcore.ai/
http://localhost:4000/docs/getting-started-guides/scratch/
https://git.k8s.io/community/contributors/devel/writing-a-getting-started-guide.md
http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 4/8

Cloud

These solutions are combinations of cloud providers and operating systems not covered by the

above solutions.

CoreOS on AWS or GCE

Kubernetes on Ubuntu

Kubespray

On-Premises VMs

Vagrant (uses CoreOS and �annel)

CloudStack (uses Ansible, CoreOS and �annel)

Vmware vSphere (uses Debian)

Vmware Photon Controller (uses Debian)

Vmware vSphere, OpenStack, or Bare Metal (uses Juju, Ubuntu and �annel)

Vmware (uses CoreOS and �annel)

CoreOS on libvirt (uses CoreOS)

oVirt

OpenStack Heat (uses CentOS and �annel)

Fedora (Multi Node) (uses Fedora and �annel)

Bare Metal

O�ine (no internet required. Uses CoreOS and Flannel)

Fedora via Ansible

Fedora (Single Node)

http://localhost:4000/docs/getting-started-guides/coreos/
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://localhost:4000/docs/getting-started-guides/kubespray/
http://localhost:4000/docs/getting-started-guides/coreos/
http://localhost:4000/docs/getting-started-guides/cloudstack/
http://localhost:4000/docs/getting-started-guides/vsphere/
http://localhost:4000/docs/getting-started-guides/photon-controller/
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://localhost:4000/docs/getting-started-guides/coreos/
http://localhost:4000/docs/getting-started-guides/libvirt-coreos/
http://localhost:4000/docs/getting-started-guides/ovirt/
http://localhost:4000/docs/getting-started-guides/openstack-heat/
http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/
http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/
http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/
http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 5/8

Fedora (Multi Node)

CentOS

Kubernetes on Ubuntu

CoreOS on AWS or GCE

Integrations

These solutions provide integration with third-party schedulers, resource managers, and/or lower

level platforms.

Kubernetes on Mesos

Instructions specify GCE, but are generic enough to be adapted to most existing Mesos

clusters

DCOS

Community Edition DCOS uses AWS

Enterprise Edition DCOS supports cloud hosting, on-premises VMs, and bare metal

Table of Solutions

Below is a table of all of the solutions listed above.

IaaS Provider Con�g.
Mgmt. OS Networking Docs Support Level

any any multi-support any CNI docs Project (SIG-cluster-lifecycle)

GKE GCE docs Commercial

Stackpoint.io multi-support multi-support docs Commercial

AppsCode.com Saltstack Debian multi-support docs Commercial

KUBE2GO.io multi-support multi-support docs Commercial

Madcore.Ai Jenkins
DSL Ubuntu �annel docs Community (@madcore-ai)

Platform9 multi-support multi-support docs Commercial

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/
http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://localhost:4000/docs/getting-started-guides/coreos/
http://localhost:4000/docs/getting-started-guides/mesos/
http://localhost:4000/docs/getting-started-guides/dcos/
http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/
https://git.k8s.io/community/sig-cluster-lifecycle
https://cloud.google.com/container-engine
https://stackpoint.io/
https://appscode.com/products/cloud-deployment/
https://kube2go.io/
https://madcore.ai/
https://github.com/madcore-ai
https://platform9.com/managed-kubernetes/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 6/8

IaaS Provider Con�g.
Mgmt. OS Networking Docs Support Level

Giant Swarm CoreOS �annel and/or
Calico docs Commercial

GCE Saltstack Debian GCE docs Project

Azure Container
Service Ubuntu Azure docs Commercial

Azure (IaaS) Ubuntu Azure docs Community (Microsoft)

Bare-metal Ansible Fedora �annel docs Project

Bare-metal custom Fedora none docs Project

Bare-metal custom Fedora �annel docs Community (@aveshagarwal)

libvirt custom Fedora �annel docs Community (@aveshagarwal)

KVM custom Fedora �annel docs Community (@aveshagarwal)

Mesos/Docker custom Ubuntu Docker docs Community (Kubernetes-Mesos Authors)

Mesos/GCE docs Community (Kubernetes-Mesos Authors)

DCOS Marathon CoreOS/Alpine custom docs Community (Kubernetes-Mesos Authors)

AWS CoreOS CoreOS �annel docs Community

GCE CoreOS CoreOS �annel docs Community (@pires)

Vagrant CoreOS CoreOS �annel docs Community (@pires, @AntonioMeireles)

Bare-metal
(O�ine) CoreOS CoreOS �annel docs Community (@jeffbean)

CloudStack Ansible CoreOS �annel docs Community (@sebgoa)

Vmware vSphere Saltstack Debian OVS docs Community (@imkin)

Vmware Photon Saltstack Debian OVS docs Community (@alainroy)

Bare-metal custom CentOS �annel docs Community (@coolsvap)

AWS Juju Ubuntu �annel docs Commercial and Community (@matt,
@chuck)

GCE Juju Ubuntu �annel docs Commercial and Community (@matt,
@chuck)

Bare Metal Juju Ubuntu �annel docs Commercial and Community (@matt,
@chuck)

Rackspace Juju Ubuntu �annel docs Commercial and Community (@matt,
@chuck)

Vmware vSphere Juju Ubuntu �annel docs Commercial and Community (@matt,
@chuck)

AWS Saltstack Debian AWS docs Community (@justinsb)

AWS kops Debian AWS docs Community (@justinsb)

https://docs.giantswarm.io/
http://localhost:4000/docs/getting-started-guides/gce/
https://azure.microsoft.com/en-us/services/container-service/
http://localhost:4000/docs/getting-started-guides/azure/
https://github.com/Azure/acs-engine
http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/
http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/
http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
http://localhost:4000/docs/getting-started-guides/mesos-docker/
https://github.com/mesosphere/kubernetes-mesos/blob/master/AUTHORS.md
http://localhost:4000/docs/getting-started-guides/mesos/
https://github.com/mesosphere/kubernetes-mesos/blob/master/AUTHORS.md
http://localhost:4000/docs/getting-started-guides/dcos/
https://github.com/mesosphere/kubernetes-mesos/blob/master/AUTHORS.md
http://localhost:4000/docs/getting-started-guides/aws/
http://localhost:4000/docs/getting-started-guides/coreos/
https://github.com/pires
http://localhost:4000/docs/getting-started-guides/coreos/
https://github.com/pires
https://github.com/AntonioMeireles
http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/
https://github.com/jeffbean
http://localhost:4000/docs/getting-started-guides/cloudstack/
https://github.com/sebgoa
http://localhost:4000/docs/getting-started-guides/vsphere/
https://github.com/imkin
http://localhost:4000/docs/getting-started-guides/photon-controller/
https://github.com/alainroy
http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/
https://github.com/coolsvap
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://www.ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://www.ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://www.ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://www.ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
http://www.ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-canonical-kubernetes
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/aws/
https://github.com/justinsb
https://github.com/kubernetes/kops/
https://github.com/justinsb

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 7/8

IaaS Provider Con�g.
Mgmt. OS Networking Docs Support Level

Bare-metal custom Ubuntu �annel docs Community (@resouer, @WIZARD-CXY)

libvirt/KVM CoreOS CoreOS libvirt/KVM docs Community (@lhuard1A)

oVirt docs Community (@simon3z)

OpenStack Heat Saltstack CentOS Neutron + �annel
hostgw docs Community

(@FujitsuEnablingSoftwareTechnologyGmbH)

any any any any docs Community (@erictune)

any any any any docs Commercial and Community

Note: The above table is ordered by version test/used in nodes, followed by support level.

De�nition of columns

IaaS Provider is the product or organization which provides the virtual or physical machines

(nodes) that Kubernetes runs on.

OS is the base operating system of the nodes.

Con�g. Mgmt. is the con�guration management system that helps install and maintain

Kubernetes on the nodes.

Networking is what implements the networking model. Those with networking type none may

not support more than a single node, or may support multiple VM nodes in a single physical

node.

Conformance indicates whether a cluster created with this con�guration has passed the

project’s conformance tests for supporting the API and base features of Kubernetes v1.0.0.

Support Levels

Project: Kubernetes committers regularly use this con�guration, so it usually works with the

latest release of Kubernetes.

Commercial: A commercial offering with its own support arrangements.

Community: Actively supported by community contributions. May not work with recent

releases of Kubernetes.

http://localhost:4000/docs/getting-started-guides/ubuntu/
https://github.com/resouer
https://github.com/WIZARD-CXY
http://localhost:4000/docs/getting-started-guides/libvirt-coreos/
https://github.com/lhuard1A
http://localhost:4000/docs/getting-started-guides/ovirt/
https://github.com/simon3z
http://localhost:4000/docs/getting-started-guides/openstack-heat/
https://github.com/FujitsuEnablingSoftwareTechnologyGmbH
http://localhost:4000/docs/getting-started-guides/scratch/
https://github.com/erictune
http://docs.projectcalico.org/v2.2/getting-started/kubernetes/installation/
http://localhost:4000/docs/concepts/cluster-administration/networking/

10/23/2017 Picking the Right Solution - Kubernetes

http://localhost:4000/docs/setup/pick-right-solution/ 8/8

Inactive: Not actively maintained. Not recommended for �rst-time Kubernetes users, and

may be removed.

Notes has other relevant information, such as the version of Kubernetes used.

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 1/11

Running Kubernetes Locally via Minikube

Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a single-node

Kubernetes cluster inside a VM on your laptop for users looking to try out Kubernetes or develop with

it day-to-day.

Minikube Features

Minikube Features
Installation
Quickstart

Using rkt container engine
Driver plugins
Reusing the Docker daemon

Managing your Cluster
Starting a Cluster

Specifying the Kubernetes version
Con�guring Kubernetes

Examples
Stopping a Cluster
Deleting a Cluster

Interacting With your Cluster
Kubectl
Dashboard
Services

Networking
Persistent Volumes
Mounted Host Folders
Private Container Registries
Add-ons
Using Minikube with an HTTP Proxy
Known Issues
Design
Additional Links:
Community

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 2/11

Minikube supports Kubernetes features such as:

DNS

NodePorts

Con�gMaps and Secrets

Dashboards

Container Runtime: Docker, and rkt

Enabling CNI (Container Network Interface)

Ingress

Installation

See Installing Minikube.

Quickstart

Here’s a brief demo of minikube usage. If you want to change the VM driver add the appropriate

--vm-driver=xxx �ag to minikube start . Minikube supports the following drivers:

virtualbox

vmwarefusion

kvm (driver installation)

xhyve (driver installation)

Note that the IP below is dynamic and can change. It can be retrieved with minikube ip .

https://github.com/coreos/rkt
http://localhost:4000/docs/tasks/tools/install-minikube/
https://git.k8s.io/minikube/docs/drivers.md#kvm-driver
https://git.k8s.io/minikube/docs/drivers.md#xhyve-driver

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 3/11

Using rkt container engine

To use rkt as the container runtime run:

This will use an alternative minikube ISO image containing both rkt, and Docker, and enable CNI

networking.

$ minikube start
Starting local Kubernetes cluster...
Running pre-create checks...
Creating machine...
Starting local Kubernetes cluster...

$ kubectl run hello-minikube --image=gcr.io/google_containers/echoserver:1.4 --por
deployment "hello-minikube" created
$ kubectl expose deployment hello-minikube --type=NodePort
service "hello-minikube" exposed

We have now launched an echoserver pod but we have to wait until the pod is up b
via the exposed service.
To check whether the pod is up and running we can use the following:
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
hello-minikube-3383150820-vctvh 1/1 ContainerCreating 0 3s
We can see that the pod is still being created from the ContainerCreating status
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
hello-minikube-3383150820-vctvh 1/1 Running 0 13s
We can see that the pod is now Running and we will now be able to curl it:
$ curl $(minikube service hello-minikube --url)
CLIENT VALUES:
client_address=192.168.99.1
command=GET
real path=/
...
$ minikube stop
Stopping local Kubernetes cluster...
Stopping "minikube"...

$ minikube start \
 --network-plugin=cni \
 --container-runtime=rkt \
 --iso-url=https://github.com/coreos/minikube-iso/releases/download/v0.0.5/mini

https://github.com/coreos/rkt

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 4/11

Driver plugins

See DRIVERS for details on supported drivers and how to install plugins, if required.

Reusing the Docker daemon

When using a single VM of Kubernetes, it’s really handy to reuse the minikube’s built-in Docker

daemon; as this means you don’t have to build a docker registry on your host machine and push the

image into it - you can just build inside the same docker daemon as minikube which speeds up local

experiments. Just make sure you tag your Docker image with something other than ‘latest’ and use

that tag while you pull the image. Otherwise, if you do not specify version of your image, it will be

assumed as :latest , with pull image policy of Always correspondingly, which may eventually

result in ErrImagePull as you may not have any versions of your Docker image out there in the

default docker registry (usually DockerHub) yet.

To be able to work with the docker daemon on your mac/linux host use the docker-env command in

your shell:

You should now be able to use docker on the command line on your host mac/linux machine talking

to the docker daemon inside the minikube VM:

On Centos 7, docker may report the following error:

The �x is to update /etc/syscon�g/docker to ensure that minikube’s environment changes are

respected:

eval $(minikube docker-env)

docker ps

Could not read CA certificate "/etc/docker/ca.pem": open /etc/docker/ca.pem: no su

https://git.k8s.io/minikube/docs/drivers.md

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 5/11

Remember to turn off the imagePullPolicy:Always, as otherwise Kubernetes won’t use images you

built locally.

Managing your Cluster

Starting a Cluster

The minikube start command can be used to start your cluster. This command creates and

con�gures a virtual machine that runs a single-node Kubernetes cluster. This command also

con�gures your kubectl installation to communicate with this cluster.

If you are behind a web proxy, you will need to pass this information in e.g. via

Unfortunately just setting the environment variables will not work.

Minikube will also create a “minikube” context, and set it to default in kubectl. To switch back to this

context later, run this command: kubectl config use-context minikube .

Specifying the Kubernetes version

Minikube supports running multiple different versions of Kubernetes. You can access a list of all

available versions via

You can specify the speci�c version of Kubernetes for Minikube to use by adding the

--kubernetes-version string to the minikube start command. For example, to run version

v1.7.3 , you would run the following:

< DOCKER_CERT_PATH=/etc/docker

> if [-z "${DOCKER_CERT_PATH}"]; then
> DOCKER_CERT_PATH=/etc/docker
> fi

https_proxy=<my proxy> minikube start --docker-env HTTP_PROXY=<my proxy> --docker-

minikube get-k8s-versions

http://localhost:4000/docs/user-guide/kubectl-overview/

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 6/11

Con�guring Kubernetes

Minikube has a “con�gurator” feature that allows users to con�gure the Kubernetes components

with arbitrary values. To use this feature, you can use the --extra-config �ag on the

minikube start command.

This �ag is repeated, so you can pass it several times with several different values to set multiple

options.

This �ag takes a string of the form component.key=value , where component is one of the strings

from the below list, key is a value on the con�guration struct and value is the value to set.

Valid keys can be found by examining the documentation for the Kubernetes componentconfigs for

each component. Here is the documentation for each supported con�guration:

kubelet

apiserver

proxy

controller-manager

etcd

scheduler

Examples

To change the MaxPods setting to 5 on the Kubelet, pass this �ag:

--extra-config=kubelet.MaxPods=5 .

This feature also supports nested structs. To change the LeaderElection.LeaderElect setting to

true on the scheduler, pass this �ag:

--extra-config=scheduler.LeaderElection.LeaderElect=true .

To set the AuthorizationMode on the apiserver to RBAC , you can use:

--extra-config=apiserver.AuthorizationMode=RBAC .

minikube start --kubernetes-version v1.7.3

https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeletConfiguration
https://godoc.org/k8s.io/kubernetes/cmd/kube-apiserver/app/options#APIServer
https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeProxyConfiguration
https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeControllerManagerConfiguration
https://godoc.org/github.com/coreos/etcd/etcdserver#ServerConfig
https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeSchedulerConfiguration

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 7/11

Stopping a Cluster

The minikube stop command can be used to stop your cluster. This command shuts down the

minikube virtual machine, but preserves all cluster state and data. Starting the cluster again will

restore it to it’s previous state.

Deleting a Cluster

The minikube delete command can be used to delete your cluster. This command shuts down

and deletes the minikube virtual machine. No data or state is preserved.

Interacting With your Cluster

Kubectl

The minikube start command creates a “kubectl context” called “minikube”. This context contains

the con�guration to communicate with your minikube cluster.

Minikube sets this context to default automatically, but if you need to switch back to it in the future,

run:

kubectl config use-context minikube ,

Or pass the context on each command like this: kubectl get pods --context=minikube .

Dashboard

To access the Kubernetes Dashboard, run this command in a shell after starting minikube to get the

address:

Services

To access a service exposed via a node port, run this command in a shell after starting minikube to

get the address:

minikube dashboard

http://localhost:4000/docs/user-guide/kubectl/v1.6/#-em-set-context-em-
http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 8/11

Networking

The minikube VM is exposed to the host system via a host-only IP address, that can be obtained with

the minikube ip command. Any services of type NodePort can be accessed over that IP address,

on the NodePort.

To determine the NodePort for your service, you can use a kubectl command like this:

kubectl get service $SERVICE --output='jsonpath="{.spec.ports[0].nodePort}"'

Persistent Volumes

Minikube supports PersistentVolumes of type hostPath . These PersistentVolumes are mapped to a

directory inside the minikube VM.

The Minikube VM boots into a tmpfs, so most directories will not be persisted across reboots (

minikube stop). However, Minikube is con�gured to persist �les stored under the following host

directories:

/data

/var/lib/localkube

/var/lib/docker

Here is an example PersistentVolume con�g to persist data in the /data directory:

minikube service [-n NAMESPACE] [--url] NAME

http://localhost:4000/docs/concepts/storage/persistent-volumes/

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 9/11

Mounted Host Folders

Some drivers will mount a host folder within the VM so that you can easily share �les between the

VM and host. These are not con�gurable at the moment and different for the driver and OS you are

using.

Note: Host folder sharing is not implemented in the KVM driver yet.

Driver OS HostFolder VM

VirtualBox Linux /home /hosthome

VirtualBox OSX /Users /Users

VirtualBox Windows C://Users /c/Users

VMWare Fusion OSX /Users /Users

Xhyve OSX /Users /Users

Private Container Registries

To access a private container registry, follow the steps on this page.

We recommend you use ImagePullSecrets , but if you would like to con�gure access on the

minikube VM you can place the .dockercfg in the /home/docker directory or the config.json in

the /home/docker/.docker directory.

Add-ons

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 5Gi
 hostPath:
 path: /data/pv0001/

http://localhost:4000/docs/concepts/containers/images/

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 10/11

In order to have minikube properly start/restart custom addons, place the addons you wish to be

launched with minikube in the ~/.minikube/addons directory. Addons in this folder will be moved

to the minikubeVM and launched each time minikube is started/restarted.

Using Minikube with an HTTP Proxy

Minikube creates a Virtual Machine that includes Kubernetes and a Docker daemon. When

Kubernetes attempts to schedule containers using Docker, the Docker daemon may require external

network access to pull containers.

If you are behind an HTTP proxy, you may need to supply Docker with the proxy settings. To do this,

pass the required environment variables as �ags during minikube start .

For example:

If your Virtual Machine address is 192.168.99.100, then chances are your proxy settings will prevent

kubectl from directly reaching it. To by-pass proxy con�guration for this IP address, you should

modify your no_proxy settings. You can do so with:

Known Issues

Features that require a Cloud Provider will not work in Minikube. These include:

LoadBalancers

Features that require multiple nodes. These include:

Advanced scheduling policies

$ minikube start --docker-env HTTP_PROXY=http://$YOURPROXY:PORT \
 --docker-env HTTPS_PROXY=https://$YOURPROXY:PORT

$ export no_proxy=$no_proxy,$(minikube ip)

10/23/2017 Running Kubernetes Locally via Minikube - Kubernetes

http://localhost:4000/docs/getting-started-guides/minikube/ 11/11

Design

Minikube uses libmachine for provisioning VMs, and localkube (originally written and donated to this

project by RedSpread) for running the cluster.

For more information about minikube, see the proposal.

Additional Links:

Goals and Non-Goals: For the goals and non-goals of the minikube project, please see our

roadmap.

Development Guide: See CONTRIBUTING.md for an overview of how to send pull requests.

Building Minikube: For instructions on how to build/test minikube from source, see the build

guide

Adding a New Dependency: For instructions on how to add a new dependency to minikube see

the adding dependencies guide

Adding a New Addon: For instruction on how to add a new addon for minikube see the adding

an addon guide

Updating Kubernetes: For instructions on how to update kubernetes see the updating

Kubernetes guide

Community

Contributions, questions, and comments are all welcomed and encouraged! minikube developers

hang out on Slack in the #minikube channel (get an invitation here). We also have the kubernetes-dev

Google Groups mailing list. If you are posting to the list please pre�x your subject with “minikube: “.

https://github.com/docker/machine/tree/master/libmachine
https://git.k8s.io/minikube/pkg/localkube
https://redspread.com/
https://git.k8s.io/community/contributors/design-proposals/cluster-lifecycle/local-cluster-ux.md
https://git.k8s.io/minikube/docs/contributors/roadmap.md
https://git.k8s.io/minikube/CONTRIBUTING.md
https://git.k8s.io/minikube/docs/contributors/build_guide.md
https://git.k8s.io/minikube/docs/contributors/adding_a_dependency.md
https://git.k8s.io/minikube/docs/contributors/adding_an_addon.md
https://git.k8s.io/minikube/docs/contributors/updating_kubernetes.md
https://kubernetes.slack.com/
http://slack.kubernetes.io/
https://groups.google.com/forum/#!forum/kubernetes-dev

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 1/14

Using kubeadm to Create a Cluster

This quickstart shows you how to easily install a Kubernetes cluster on machines running Ubuntu

16.04+, CentOS 7 or HypriotOS v1.0.1+. The installation uses a tool called kubeadm which is part of

Kubernetes. As of v1.6, kubeadm aims to create a secure cluster out of the box via mechanisms

such as RBAC.

This process works with local VMs, physical servers and/or cloud servers. It is simple enough that

you can easily integrate its use into your own automation (Terraform, Chef, Puppet, etc).

See the full kubeadm reference for information on all kubeadm command-line �ags and for advice

on automating kubeadm itself.

kubeadm assumes you have a set of machines (virtual or real) that are up and running. It is designed

to be part of a large provisioning system - or just for easy manual provisioning. kubeadm is a great

choice where you have your own infrastructure (e.g. bare metal), or where you have an existing

orchestration system (e.g. Puppet) that you have to integrate with.

If you are not constrained, there are other higher-level tools built to give you complete clusters:

On GCE, Google Container Engine gives you one-click Kubernetes clusters.

On AWS, kops makes cluster installation and management easy. kops supports building high

availability clusters (a feature that kubeadm is currently lacking but is building toward).

kubeadm Maturity

Aspect Maturity Level

Command line UX beta

Con�g �le alpha

Self-hosting alpha

kubeadm alpha commands alpha

Implementation beta

http://localhost:4000/docs/admin/kubeadm
https://cloud.google.com/container-engine/
https://github.com/kubernetes/kops

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 2/14

The experience for the command line is currently in beta and we are trying hard not to change

command line �ags and break that �ow. Other parts of the experience are still under active

development. The implementation may change slightly as the tool evolves to support even easier

upgrades and high availability (HA). Any commands under kubeadm alpha (not documented here)

are, of course, alpha.

Be sure to read the limitations. Speci�cally, con�guring cloud providers is di�cult.

Before you begin

1. One or more machines running Ubuntu 16.04+, CentOS 7 or HypriotOS v1.0.1+

2. 1GB or more of RAM per machine (any less will leave little room for your apps)

3. Full network connectivity between all machines in the cluster (public or private network is �ne)

Objectives

kubeadm Maturity
Before you begin
Objectives
Instructions

(1/4) Installing kubeadm on your hosts
(2/4) Initializing your master
(3/4) Installing a pod network

Master Isolation
(4/4) Joining your nodes
(Optional) Controlling your cluster from machines other than the master
(Optional) Proxying API Server to localhost
(Optional) Installing a sample application

Tear down
Upgrading
Explore other add-ons
What’s next
Feedback
Version skew policy
kubeadm is multi-platform
Limitations
Troubleshooting

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 3/14

Install a secure Kubernetes cluster on your machines

Install a pod network on the cluster so that application components (pods) can talk to each

other

Install a sample microservices application (a socks shop) on the cluster

Instructions

(1/4) Installing kubeadm on your hosts

See Installing kubeadm.

Note: If you already have kubeadm installed, you should do a

apt-get update && apt-get upgrade or yum update to get the latest version of kubeadm.

The kubelet is now restarting every few seconds, as it waits in a crashloop for kubeadm to tell it what

to do.

(2/4) Initializing your master

The master is the machine where the control plane components run, including etcd (the cluster

database) and the API server (which the kubectl CLI communicates with).

To initialize the master, pick one of the machines you previously installed kubeadm on, and run:

Note:

You need to choose a Pod Network Plugin in the next step. Depending on what third-party

provider you choose, you might have to set the --pod-network-cidr to something provider-

speci�c. The tabs below will contain a notice about what �ags on kubeadm init are required.

This will autodetect the network interface to advertise the master on as the interface with the

default gateway. If you want to use a different interface, specify

kubeadm init

http://localhost:4000/docs/setup/independent/install-kubeadm/

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 4/14

--apiserver-advertise-address=<ip-address> argument to kubeadm init .

Please refer to the kubeadm reference doc if you want to read more about the �ags kubeadm init

provides.

kubeadm init will �rst run a series of prechecks to ensure that the machine is ready to run

Kubernetes. It will expose warnings and exit on errors. It will then download and install the cluster

database and control plane components. This may take several minutes.

You can’t run kubeadm init twice without tearing down the cluster in between (unless you’re

upgrading from v1.6 to v1.7), see Tear Down.

The output should look like:

http://localhost:4000/docs/admin/kubeadm/
http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-7

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 5/14

[kubeadm] WARNING: kubeadm is in beta, please do not use it for production cluster
[init] Using Kubernetes version: v1.8.0
[init] Using Authorization modes: [Node RBAC]
[preflight] Running pre-flight checks
[kubeadm] WARNING: starting in 1.8, tokens expire after 24 hours by default (if yo
[certificates] Generated ca certificate and key.
[certificates] Generated apiserver certificate and key.
[certificates] apiserver serving cert is signed for DNS names [kubeadm-master kube
[certificates] Generated apiserver-kubelet-client certificate and key.
[certificates] Generated sa key and public key.
[certificates] Generated front-proxy-ca certificate and key.
[certificates] Generated front-proxy-client certificate and key.
[certificates] Valid certificates and keys now exist in "/etc/kubernetes/pki"
[kubeconfig] Wrote KubeConfig file to disk: "admin.conf"
[kubeconfig] Wrote KubeConfig file to disk: "kubelet.conf"
[kubeconfig] Wrote KubeConfig file to disk: "controller-manager.conf"
[kubeconfig] Wrote KubeConfig file to disk: "scheduler.conf"
[controlplane] Wrote Static Pod manifest for component kube-apiserver to "/etc/kub
[controlplane] Wrote Static Pod manifest for component kube-controller-manager to
[controlplane] Wrote Static Pod manifest for component kube-scheduler to "/etc/kub
[etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/man
[init] Waiting for the kubelet to boot up the control plane as Static Pods from di
[init] This often takes around a minute; or longer if the control plane images hav
[apiclient] All control plane components are healthy after 39.511972 seconds
[uploadconfig] Storing the configuration used in ConfigMap "kubeadm-config" in the
[markmaster] Will mark node master as master by adding a label and a taint
[markmaster] Master master tainted and labelled with key/value: node-role.kubernet
[bootstraptoken] Using token: <token>
[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs
[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automat
[bootstraptoken] Creating the "cluster-info" ConfigMap in the "kube-public" namesp
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run (as a regular user):

 mkdir -p $HOME/.kube
 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
 sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
 http://kubernetes.io/docs/admin/addons/

You can now join any number of machines by running the following on each node
as root:

 kubeadm join --token <token> <master-ip>:<master-port> --discovery-token-ca-cert

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 6/14

Make a record of the kubeadm join command that kubeadm init outputs. You will need this in a

moment.

The token is used for mutual authentication between the master and the joining nodes. The token

included here is secret, keep it safe — anyone with this token can add authenticated nodes to your

cluster. These tokens can be listed, created and deleted with the kubeadm token command. See the

reference guide.

(3/4) Installing a pod network

You must install a pod network add-on so that your pods can communicate with each other.

The network must be deployed before any applications. Also, kube-dns, a helper service, will not

start up before a network is installed. kubeadm only supports Container Network Interface (CNI)

based networks (and does not support kubenet).

Several projects provide Kubernetes pod networks using CNI, some of which also support Network

Policy. See the add-ons page for a complete list of available network add-ons.

New for Kubernetes 1.6: kubeadm 1.6 sets up a more secure cluster by default. As such it uses

RBAC to grant limited privileges to workloads running on the cluster. This includes networking

integrations. As such, ensure that you are using a network system that has been updated to run with

1.6 and RBAC.

You can install a pod network add-on with the following command:

NOTE: You can install only one pod network per cluster.

kubectl apply -f <add-on.yaml>

Please select one of the tabs to see installation instructions for the respective third-party Pod

Network Provider.

Choose one... Calico Canal Flannel Kube-router Romana

Weave Net

http://localhost:4000/docs/admin/kubeadm/#manage-tokens
http://localhost:4000/docs/concepts/services-networking/networkpolicies/
http://localhost:4000/docs/concepts/cluster-administration/addons/

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 7/14

Once a pod network has been installed, you can con�rm that it is working by checking that the kube-

dns pod is Running in the output of kubectl get pods --all-namespaces . And once the kube-dns

pod is up and running, you can continue by joining your nodes.

If your network is not working or kube-dns is not in the Running state, check out the troubleshooting

section below.

Master Isolation

By default, your cluster will not schedule pods on the master for security reasons. If you want to be

able to schedule pods on the master, e.g. for a single-machine Kubernetes cluster for development,

run:

With output looking something like:

This will remove the node-role.kubernetes.io/master taint from any nodes that have it,

including the master node, meaning that the scheduler will then be able to schedule pods

everywhere.

(4/4) Joining your nodes

The nodes are where your workloads (containers and pods, etc) run. To add new nodes to your

cluster do the following for each machine:

SSH to the machine

Become root (e.g. sudo su -)

Run the command that was output by kubeadm init . For example:

kubectl taint nodes --all node-role.kubernetes.io/master-

node "test-01" untainted
taint key="dedicated" and effect="" not found.
taint key="dedicated" and effect="" not found.

kubeadm join --token <token> <master-ip>:<master-port> --discovery-token-ca-ce

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 8/14

The output should look something like:

A few seconds later, you should notice this node in the output from kubectl get nodes when run

on the master.

(Optional) Controlling your cluster from machines other than the
master

In order to get a kubectl on some other computer (e.g. laptop) to talk to your cluster, you need to

copy the administrator kubecon�g �le from your master to your workstation like this:

Note: If you are using GCE, instances disable ssh access for root by default. If that’s the case you

can log in to the machine, copy the �le someplace that can be accessed and then use

gcloud compute copy-files .

(Optional) Proxying API Server to localhost

[kubeadm] WARNING: kubeadm is in beta, please do not use it for production cluster
[preflight] Running pre-flight checks
[discovery] Trying to connect to API Server "10.138.0.4:6443"
[discovery] Created cluster-info discovery client, requesting info from "https://1
[discovery] Requesting info from "https://10.138.0.4:6443" again to validate TLS a
[discovery] Cluster info signature and contents are valid and TLS certificate vali
[discovery] Successfully established connection with API Server "10.138.0.4:6443"
[bootstrap] Detected server version: v1.8.0
[bootstrap] The server supports the Certificates API (certificates.k8s.io/v1beta1)
[csr] Created API client to obtain unique certificate for this node, generating ke
[csr] Received signed certificate from the API server, generating KubeConfig...

Node join complete:
* Certificate signing request sent to master and response
 received.
* Kubelet informed of new secure connection details.

Run 'kubectl get nodes' on the master to see this machine join.

scp root@<master ip>:/etc/kubernetes/admin.conf .
kubectl --kubeconfig ./admin.conf get nodes

https://cloud.google.com/sdk/gcloud/reference/compute/copy-files

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 9/14

If you want to connect to the API Server from outside the cluster you can use kubectl proxy :

You can now access the API Server locally at http://localhost:8001/api/v1

(Optional) Installing a sample application

Now it is time to take your new cluster for a test drive. Sock Shop is a sample microservices

application that shows how to run and connect a set of services on Kubernetes. To learn more about

the sample microservices app, see the GitHub README.

Note that the Sock Shop demo only works on amd64 .

You can then �nd out the port that the NodePort feature of services allocated for the front-end

service by running:

Sample output:

It takes several minutes to download and start all the containers, watch the output of

kubectl get pods -n sock-shop to see when they’re all up and running.

Then go to the IP address of your cluster’s master node in your browser, and specify the given port.

So for example, http://<master_ip>:<port> . In the example above, this was 30001 , but it may

be a different port for you.

If there is a �rewall, make sure it exposes this port to the internet before you try to access it.

scp root@<master ip>:/etc/kubernetes/admin.conf .
kubectl --kubeconfig ./admin.conf proxy

kubectl create namespace sock-shop
kubectl apply -n sock-shop -f "https://github.com/microservices-demo/microservices

kubectl -n sock-shop get svc front-end

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
front-end 10.110.250.153 <nodes> 80:30001/TCP 59s

https://github.com/microservices-demo/microservices-demo
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 10/14

To uninstall the socks shop, run kubectl delete namespace sock-shop on the master.

Tear down

To undo what kubeadm did, you should �rst drain the node and make sure that the node is empty

before shutting it down.

Talking to the master with the appropriate credentials, run:

Then, on the node being removed, reset all kubeadm installed state:

If you wish to start over simply run kubeadm init or kubeadm join with the appropriate

arguments.

Upgrading

Instructions for upgrading kubeadm clusters are available for:

1.6 to 1.7 upgrades

1.7.x to 1.7.y upgrades

1.7 to 1.8 upgrades

1.8.x to 1.8.y upgrades

Explore other add-ons

See the list of add-ons to explore other add-ons, including tools for logging, monitoring, network

policy, visualization & control of your Kubernetes cluster.

kubectl drain <node name> --delete-local-data --force --ignore-daemonsets
kubectl delete node <node name>

kubeadm reset

http://localhost:4000/docs/user-guide/kubectl/v1.6/#drain
http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-7/
http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
http://localhost:4000/docs/concepts/cluster-administration/addons/

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 11/14

What’s next

Learn about kubeadm’s advanced usage on the advanced reference doc.

Learn more about Kubernetes concepts and kubectl .

Con�gure log rotation. You can use logrotate for that. When using Docker, you can specify log

rotation options for Docker daemon, for example

--log-driver=json-file --log-opt=max-size=10m --log-opt=max-file=5 . See Con�gure

and troubleshoot the Docker daemon for more details.

Feedback

kubeadm support Slack Channel: kubeadm

General SIG Cluster Lifecycle Development Slack Channel: sig-cluster-lifecycle

Mailing List: kubernetes-sig-cluster-lifecycle

GitHub Issues in the kubeadm repository

Version skew policy

The kubeadm CLI tool of version vX.Y may deploy clusters with a control plane of version vX.Y or vX.

(Y-1). kubeadm CLI vX.Y can also upgrade an existing kubeadm-created cluster of version vX.(Y-1).

Due to that we can’t see into the future, kubeadm CLI vX.Y may or may not be able to deploy vX.(Y+1)

clusters.

Example: kubeadm v1.8 can deploy both v1.7 and v1.8 clusters and upgrade v1.7 kubeadm-created

clusters to v1.8.

kubeadm is multi-platform

http://localhost:4000/docs/admin/kubeadm/
http://localhost:4000/docs/concepts/
http://localhost:4000/docs/user-guide/kubectl-overview/
https://docs.docker.com/engine/admin/
https://kubernetes.slack.com/messages/kubeadm/
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://groups.google.com/forum/#!forum/kubernetes-sig-cluster-lifecycle
https://github.com/kubernetes/kubeadm/issues

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 12/14

kubeadm deb/rpm packages and binaries are built for amd64, arm (32-bit), arm64, ppc64le, and

s390x following the multi-platform proposal.

Only some of the network providers offer solutions for all platforms. Please consult the list of

network providers above or the documentation from each provider to �gure out whether the provider

supports your chosen platform.

Limitations

Please note: kubeadm is a work in progress and these limitations will be addressed in due course.

1. The cluster created here has a single master, with a single etcd database running on it. This

means that if the master fails, your cluster loses its con�guration data and will need to be

recreated from scratch. Adding HA support (multiple etcd servers, multiple API servers, etc) to

kubeadm is still a work-in-progress.

Workaround: regularly back up etcd. The etcd data directory con�gured by kubeadm is at

/var/lib/etcd on the master.

Troubleshooting

You may have trouble in the con�guration if you see Pod statuses like RunContainerError ,

CrashLoopBackOff or Error .

1. There are Pods in the RunContainerError , CrashLoopBackOff or Error state. Right after

kubeadm init there should not be any such Pods. If there are Pods in such a state right after

kubeadm init , please open an issue in the kubeadm repo. kube-dns should be in the

Pending state until you have deployed the network solution. However, if you see Pods in the

RunContainerError , CrashLoopBackOff or Error state after deploying the network solution

and nothing happens to kube-dns , it’s very likely that the Pod Network solution that you

installed is somehow broken. You might have to grant it more RBAC privileges or use a newer

version. Please �le an issue in the Pod Network providers’ issue tracker and get the issue triaged

there.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multi-platform.md
https://coreos.com/etcd/docs/latest/admin_guide.html

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 13/14

2. The kube-dns Pod is stuck in the Pending state forever. This is expected and part of the

design. kubeadm is network provider-agnostic, so the admin should install the pod network

solution of choice. You have to install a Pod Network before kube-dns may deployed fully.

Hence the Pending state before the network is set up.

3. I tried to set HostPort on one workload, but it didn’t have any effect. The HostPort and

HostIP functionality is available depending on your Pod Network provider. Please contact the

author of the Pod Network solution to �nd out whether HostPort and HostIP functionality are

available.

If not, you may still use the NodePort feature of services or use HostNetwork=true .

4. Pods cannot access themselves via their Service IP. Many network add-ons do not yet enable

hairpin mode which allows pods to access themselves via their Service IP if they don’t know

about their podIP. This is an issue related to CNI. Please contact the providers of the network

add-on providers to get timely information about whether they support hairpin mode.

5. If you are using VirtualBox (directly or via Vagrant), you will need to ensure that hostname -i

returns a routable IP address (i.e. one on the second network interface, not the �rst one). By

default, it doesn’t do this and kubelet ends-up using �rst non-loopback network interface, which

is usually NATed. Workaround: Modify /etc/hosts , take a look at this Vagrantfile ubuntu-

vagrant�le for how this can be achieved.

6. The following error indicates a possible certi�cate mismatch.

Verify that the $HOME/.kube/config �le contains a valid certi�cate, and regenerate a certi�cate if

necessary. Another workaround is to overwrite the default kubeconfig for the “admin” user:

kubectl get po
Unable to connect to the server: x509: certificate signed by unknown authority (po

mv $HOME/.kube $HOME/.kube.bak
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

http://localhost:4000/docs/concepts/cluster-administration/addons/
http://localhost:4000/docs/concepts/services-networking/service/#type-nodeport
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/#a-pod-cannot-reach-itself-via-service-ip
https://github.com/containernetworking/cni/issues/476
https://github.com/errordeveloper/k8s-playground/blob/22dd39dfc06111235620e6c4404a96ae146f26fd/Vagrantfile#L11

10/23/2017 Using kubeadm to Create a Cluster - Kubernetes

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/ 14/14

1. If you are using CentOS and encounter di�culty while setting up the master node， verify that

your Docker cgroup driver matches the kubelet con�g:

If the Docker cgroup driver and the kubelet con�g don’t match, change the kubelet con�g to match

the Docker cgroup driver.

Update

To

Then restart kubelet:

The kubectl describe pod or kubectl logs commands can help you diagnose errors. For

example:

docker info |grep -i cgroup
cat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

KUBELET_CGROUP_ARGS=--cgroup-driver=systemd

KUBELET_CGROUP_ARGS=--cgroup-driver=cgroupfs

systemctl daemon-reload
systemctl restart kubelet

kubectl -n ${NAMESPACE} describe pod ${POD_NAME}

kubectl -n ${NAMESPACE} logs ${POD_NAME} -c ${CONTAINER_NAME}

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 1/27

Creating a Custom Cluster from Scratch

This guide is for people who want to craft a custom Kubernetes cluster. If you can �nd an existing

Getting Started Guide that meets your needs on this list, then we recommend using it, as you will be

able to bene�t from the experience of others. However, if you have speci�c IaaS, networking,

con�guration management, or operating system requirements not met by any of those guides, then

this guide will provide an outline of the steps you need to take. Note that it requires considerably

more effort than using one of the pre-de�ned guides.

This guide is also useful for those wanting to understand at a high level some of the steps that

existing cluster setup scripts are making.

Designing and Preparing
Learning
Cloud Provider
Nodes
Network

Network Connectivity
Network Policy

Cluster Naming
Software Binaries

Downloading and Extracting Kubernetes Binaries
Selecting Images

Security Models
Preparing Certs
Preparing Credentials

Con�guring and Installing Base Software on Nodes
Docker
rkt
kubelet
kube-proxy
Networking
Other
Using Con�guration Management

Bootstrapping the Cluster
etcd

http://localhost:4000/docs/getting-started-guides/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 2/27

Designing and Preparing

Learning

1. You should be familiar with using Kubernetes already. We suggest you set up a temporary

cluster by following one of the other Getting Started Guides. This will help you become familiar

with the CLI (kubectl) and concepts (pods, services, etc.) �rst.

2. You should have kubectl installed on your desktop. This will happen as a side effect of

completing one of the other Getting Started Guides. If not, follow the instructions here.

Cloud Provider

Kubernetes has the concept of a Cloud Provider, which is a module which provides an interface for

managing TCP Load Balancers, Nodes (Instances) and Networking Routes. The interface is de�ned

in pkg/cloudprovider/cloud.go . It is possible to create a custom cluster without implementing a

cloud provider (for example if using bare-metal), and not all parts of the interface need to be

implemented, depending on how �ags are set on various components.

Nodes

Apiserver, Controller Manager, and Scheduler
Apiserver pod template

Cloud Providers
Scheduler pod template
Controller Manager Template
Starting and Verifying Apiserver, Scheduler, and Controller Manager

Starting Cluster Services
Troubleshooting

Running validate-cluster
Inspect pods and services
Try Examples
Running the Conformance Test
Networking
Getting Help

Support Level

http://localhost:4000/docs/user-guide/kubectl/
http://localhost:4000/docs/user-guide/pods/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/tasks/kubectl/install/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 3/27

You can use virtual or physical machines.

While you can build a cluster with 1 machine, in order to run all the examples and tests you need

at least 4 nodes.

Many Getting-started-guides make a distinction between the master node and regular nodes.

This is not strictly necessary.

Nodes will need to run some version of Linux with the x86_64 architecture. It may be possible to

run on other OSes and Architectures, but this guide does not try to assist with that.

Apiserver and etcd together are �ne on a machine with 1 core and 1GB RAM for clusters with

10s of nodes. Larger or more active clusters may bene�t from more cores.

Other nodes can have any reasonable amount of memory and any number of cores. They need

not have identical con�gurations.

Network

Network Connectivity

Kubernetes has a distinctive networking model.

Kubernetes allocates an IP address to each pod. When creating a cluster, you need to allocate a

block of IPs for Kubernetes to use as Pod IPs. The simplest approach is to allocate a different block

of IPs to each node in the cluster as the node is added. A process in one pod should be able to

communicate with another pod using the IP of the second pod. This connectivity can be

accomplished in two ways:

Using an overlay network

An overlay network obscures the underlying network architecture from the pod network

through tra�c encapsulation (e.g. vxlan).

Encapsulation reduces performance, though exactly how much depends on your solution.

Without an overlay network

Con�gure the underlying network fabric (switches, routers, etc.) to be aware of pod IP

addresses.

http://localhost:4000/docs/admin/networking/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 4/27

This does not require the encapsulation provided by an overlay, and so can achieve better

performance.

Which method you choose depends on your environment and requirements. There are various ways

to implement one of the above options:

Use a network plugin which is called by Kubernetes

Kubernetes supports the CNI network plugin interface.

There are a number of solutions which provide plugins for Kubernetes (listed alphabetically):

Calico

Flannel

Open vSwitch (OVS)

Romana

Weave

More found here

You can also write your own.

Compile support directly into Kubernetes

This can be done by implementing the “Routes” interface of a Cloud Provider module.

The Google Compute Engine (GCE/) and AWS guides use this approach.

Con�gure the network external to Kubernetes

This can be done by manually running commands, or through a set of externally maintained

scripts.

You have to implement this yourself, but it can give you an extra degree of �exibility.

You will need to select an address range for the Pod IPs. Note that IPv6 is not yet supported for Pod

IPs.

Various approaches:

https://github.com/containernetworking/cni
http://docs.projectcalico.org/
https://github.com/coreos/flannel
http://openvswitch.org/
http://romana.io/
http://weave.works/
http://localhost:4000/docs/admin/networking#how-to-achieve-this/
http://localhost:4000/docs/getting-started-guides/gce/
http://localhost:4000/docs/getting-started-guides/aws/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 5/27

GCE: each project has its own 10.0.0.0/8 . Carve off a /16 for each Kubernetes cluster

from that space, which leaves room for several clusters. Each node gets a further

subdivision of this space.

AWS: use one VPC for whole organization, carve off a chunk for each cluster, or use different

VPC for different clusters.

Allocate one CIDR subnet for each node’s PodIPs, or a single large CIDR from which smaller

CIDRs are automatically allocated to each node.

You need max-pods-per-node * max-number-of-nodes IPs in total. A /24 per node supports

254 pods per machine and is a common choice. If IPs are scarce, a /26 (62 pods per

machine) or even a /27 (30 pods) may be su�cient.

e.g. use 10.10.0.0/16 as the range for the cluster, with up to 256 nodes using

10.10.0.0/24 through 10.10.255.0/24 , respectively.

Need to make these routable or connect with overlay.

Kubernetes also allocates an IP to each service. However, service IPs do not necessarily need to be

routable. The kube-proxy takes care of translating Service IPs to Pod IPs before tra�c leaves the

node. You do need to Allocate a block of IPs for services. Call this SERVICE_CLUSTER_IP_RANGE . For

example, you could set SERVICE_CLUSTER_IP_RANGE="10.0.0.0/16" , allowing 65534 distinct

services to be active at once. Note that you can grow the end of this range, but you cannot move it

without disrupting the services and pods that already use it.

Also, you need to pick a static IP for master node.

Call this MASTER_IP .

Open any �rewalls to allow access to the apiserver ports 80 and/or 443.

Enable ipv4 forwarding sysctl, net.ipv4.ip_forward = 1

Network Policy

Kubernetes enables the de�nition of �ne-grained network policy between Pods using the

NetworkPolicy resource.

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/services-networking/network-policies/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 6/27

Not all networking providers support the Kubernetes NetworkPolicy API, see Using Network Policy

for more information.

Cluster Naming

You should pick a name for your cluster. Pick a short name for each cluster which is unique from

future cluster names. This will be used in several ways:

by kubectl to distinguish between various clusters you have access to. You will probably want a

second one sometime later, such as for testing new Kubernetes releases, running in a different

region of the world, etc.

Kubernetes clusters can create cloud provider resources (e.g. AWS ELBs) and different clusters

need to distinguish which resources each created. Call this CLUSTER_NAME .

Software Binaries

You will need binaries for:

etcd

A container runner, one of:

docker

rkt

Kubernetes

kubelet

kube-proxy

kube-apiserver

kube-controller-manager

kube-scheduler

Downloading and Extracting Kubernetes Binaries

http://localhost:4000/docs/tasks/configure-pod-container/declare-network-policy/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 7/27

A Kubernetes binary release includes all the Kubernetes binaries as well as the supported release of

etcd. You can use a Kubernetes binary release (recommended) or build your Kubernetes binaries

following the instructions in the Developer Documentation. Only using a binary release is covered in

this guide.

Download the latest binary release and unzip it. Server binary tarballs are no longer included in the

Kubernetes �nal tarball, so you will need to locate and run

./kubernetes/cluster/get-kube-binaries.sh to download the client and server binaries. Then

locate ./kubernetes/server/kubernetes-server-linux-amd64.tar.gz and unzip that. Then,

within the second set of unzipped �les, locate ./kubernetes/server/bin , which contains all the

necessary binaries.

Selecting Images

You will run docker, kubelet, and kube-proxy outside of a container, the same way you would run any

system daemon, so you just need the bare binaries. For etcd, kube-apiserver, kube-controller-

manager, and kube-scheduler, we recommend that you run these as containers, so you need an

image to be built.

You have several choices for Kubernetes images:

Use images hosted on Google Container Registry (GCR):

e.g. gcr.io/google_containers/hyperkube:$TAG , where TAG is the latest release tag,

which can be found on the latest releases page.

Ensure $TAG is the same tag as the release tag you are using for kubelet and kube-proxy.

The hyperkube binary is an all in one binary

hyperkube kubelet ... runs the kubelet, hyperkube apiserver ... runs an

apiserver, etc.

Build your own images.

Useful if you are using a private registry.

The release contains �les such as ./kubernetes/server/bin/kube-apiserver.tar

which can be converted into docker images using a command like

docker load -i kube-apiserver.tar

https://git.k8s.io/community/contributors/devel/
https://github.com/kubernetes/kubernetes/releases/latest
https://github.com/kubernetes/kubernetes/releases/latest
https://releases.k8s.io/master/cmd/hyperkube

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 8/27

You can verify if the image is loaded successfully with the right repository and tag using

command like docker images

For etcd, you can:

Use images hosted on Google Container Registry (GCR), such as

gcr.io/google_containers/etcd:2.2.1

Use images hosted on Docker Hub or Quay.io, such as quay.io/coreos/etcd:v2.2.1

Use etcd binary included in your OS distro.

Build your own image

You can do: cd kubernetes/cluster/images/etcd; make

We recommend that you use the etcd version which is provided in the Kubernetes binary distribution.

The Kubernetes binaries in the release were tested extensively with this version of etcd and not with

any other version. The recommended version number can also be found as the value of TAG in

kubernetes/cluster/images/etcd/Makefile .

The remainder of the document assumes that the image identi�ers have been chosen and stored in

corresponding env vars. Examples (replace with latest tags and appropriate registry):

HYPERKUBE_IMAGE=gcr.io/google_containers/hyperkube:$TAG

ETCD_IMAGE=gcr.io/google_containers/etcd:$ETCD_VERSION

Security Models

There are two main options for security:

Access the apiserver using HTTP.

Use a �rewall for security.

This is easier to setup.

Access the apiserver using HTTPS

Use https with certs, and credentials for user.

https://hub.docker.com/search/?q=etcd
https://quay.io/repository/coreos/etcd

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 9/27

This is the recommended approach.

Con�guring certs can be tricky.

If following the HTTPS approach, you will need to prepare certs and credentials.

Preparing Certs

You need to prepare several certs:

The master needs a cert to act as an HTTPS server.

The kubelets optionally need certs to identify themselves as clients of the master, and when

serving its own API over HTTPS.

Unless you plan to have a real CA generate your certs, you will need to generate a root cert and use

that to sign the master, kubelet, and kubectl certs. How to do this is described in the authentication

documentation.

You will end up with the following �les (we will use these variables later on)

CA_CERT

put in on node where apiserver runs, in e.g. /srv/kubernetes/ca.crt .

MASTER_CERT

signed by CA_CERT

put in on node where apiserver runs, in e.g. /srv/kubernetes/server.crt

MASTER_KEY

put in on node where apiserver runs, in e.g. /srv/kubernetes/server.key

KUBELET_CERT

optional

KUBELET_KEY

optional

http://localhost:4000/docs/admin/authentication/#creating-certificates/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 10/27

Preparing Credentials

The admin user (and any users) need:

a token or a password to identify them.

tokens are just long alphanumeric strings, e.g. 32 chars. See

TOKEN=$(dd if=/dev/urandom bs=128 count=1 2>/dev/null | base64 | tr -d

"=+/" | dd bs=32 count=1 2>/dev/null)

Your tokens and passwords need to be stored in a �le for the apiserver to read. This guide uses

/var/lib/kube-apiserver/known_tokens.csv . The format for this �le is described in the

authentication documentation.

For distributing credentials to clients, the convention in Kubernetes is to put the credentials into a

kubecon�g �le.

The kubecon�g �le for the administrator can be created as follows:

If you have already used Kubernetes with a non-custom cluster (for example, used a Getting

Started Guide), you will already have a $HOME/.kube/config �le.

You need to add certs, keys, and the master IP to the kubecon�g �le:

If using the �rewall-only security option, set the apiserver this way:

kubectl config set-cluster $CLUSTER_NAME --server=http://$MASTER_IP --

insecure-skip-tls-verify=true

Otherwise, do this to set the apiserver ip, client certs, and user credentials.

kubectl config set-cluster $CLUSTER_NAME --certificate-

authority=$CA_CERT --embed-certs=true --server=https://$MASTER_IP

kubectl config set-credentials $USER --client-certificate=$CLI_CERT --

client-key=$CLI_KEY --embed-certs=true --token=$TOKEN

Set your cluster as the default cluster to use:

kubectl config set-context $CONTEXT_NAME --cluster=$CLUSTER_NAME --

user=$USER

http://localhost:4000/docs/admin/authentication/
http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 11/27

kubectl config use-context $CONTEXT_NAME

Next, make a kubecon�g �le for the kubelets and kube-proxy. There are a couple of options for how

many distinct �les to make:

1. Use the same credential as the admin - This is simplest to setup.

2. One token and kubecon�g �le for all kubelets, one for all kube-proxy, one for admin. - This

mirrors what is done on GCE today

3. Different credentials for every kubelet, etc. - We are working on this but all the pieces are not

ready yet.

You can make the �les by copying the $HOME/.kube/config , by following the code in

cluster/gce/configure-vm.sh or by using the following template:

Put the kubecon�g(s) on every node. The examples later in this guide assume that there are

kubecon�gs in /var/lib/kube-proxy/kubeconfig and /var/lib/kubelet/kubeconfig .

Con�guring and Installing Base Software on Nodes

This section discusses how to con�gure machines to be Kubernetes nodes.

You should run three daemons on every node:

apiVersion: v1
kind: Config
users:
- name: kubelet
 user:
 token: ${KUBELET_TOKEN}
clusters:
- name: local
 cluster:
 certificate-authority: /srv/kubernetes/ca.crt
contexts:
- context:
 cluster: local
 user: kubelet
 name: service-account-context
current-context: service-account-context

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 12/27

docker or rkt

kubelet

kube-proxy

You will also need to do assorted other con�guration on top of a base OS install.

Tip: One possible starting point is to setup a cluster using an existing Getting Started Guide. After

getting a cluster running, you can then copy the init.d scripts or systemd unit �les from that cluster,

and then modify them for use on your custom cluster.

Docker

The minimum required Docker version will vary as the kubelet version changes. The newest stable

release is a good choice. Kubelet will log a warning and refuse to start pods if the version is too old,

so pick a version and try it.

If you previously had Docker installed on a node without setting Kubernetes-speci�c options, you

may have a Docker-created bridge and iptables rules. You may want to remove these as follows

before proceeding to con�gure Docker for Kubernetes.

The way you con�gure docker will depend in whether you have chosen the routable-vip or overlay-

network approaches for your network. Some suggested docker options:

create your own bridge for the per-node CIDR ranges, call it cbr0, and set --bridge=cbr0

option on docker.

set --iptables=false so docker will not manipulate iptables for host-ports (too coarse on

older docker versions, may be �xed in newer versions) so that kube-proxy can manage iptables

instead of docker.

--ip-masq=false

if you have setup PodIPs to be routable, then you want this false, otherwise, docker will

rewrite the PodIP source-address to a NodeIP.

iptables -t nat -F
ip link set docker0 down
ip link delete docker0

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 13/27

some environments (e.g. GCE) still need you to masquerade out-bound tra�c when it leaves

the cloud environment. This is very environment speci�c.

if you are using an overlay network, consult those instructions.

--mtu=

may be required when using Flannel, because of the extra packet size due to udp

encapsulation

--insecure-registry $CLUSTER_SUBNET

to connect to a private registry, if you set one up, without using SSL.

You may want to increase the number of open �les for docker:

DOCKER_NOFILE=1000000

Where this con�g goes depends on your node OS. For example, GCE’s Debian-based distro uses

/etc/default/docker .

Ensure docker is working correctly on your system before proceeding with the rest of the installation,

by following examples given in the Docker documentation.

rkt

rkt is an alternative to Docker. You only need to install one of Docker or rkt. The minimum version

required is v0.5.6.

systemd is required on your node to run rkt. The minimum version required to match rkt v0.5.6 is

systemd 215.

rkt metadata service is also required for rkt networking support. You can start rkt metadata service

by using command like sudo systemd-run rkt metadata-service

Then you need to con�gure your kubelet with �ag:

--container-runtime=rkt

kubelet

https://github.com/coreos/rkt
https://github.com/coreos/rkt/releases/tag/v0.5.6
http://www.freedesktop.org/wiki/Software/systemd/
http://lists.freedesktop.org/archives/systemd-devel/2014-July/020903.html
https://github.com/coreos/rkt/blob/master/Documentation/networking/overview.md

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 14/27

All nodes should run kubelet. See Software Binaries.

Arguments to consider:

If following the HTTPS security approach:

--api-servers=https://$MASTER_IP

--kubeconfig=/var/lib/kubelet/kubeconfig

Otherwise, if taking the �rewall-based security approach

--api-servers=http://$MASTER_IP

--config=/etc/kubernetes/manifests

--cluster-dns= to the address of the DNS server you will setup (see Starting Cluster

Services.)

--cluster-domain= to the dns domain pre�x to use for cluster DNS addresses.

--docker-root=

--root-dir=

--configure-cbr0= (described below)

--register-node (described in Node documentation.)

kube-proxy

All nodes should run kube-proxy. (Running kube-proxy on a “master” node is not strictly required, but

being consistent is easier.) Obtain a binary as described for kubelet.

Arguments to consider:

If following the HTTPS security approach:

--master=https://$MASTER_IP

--kubeconfig=/var/lib/kube-proxy/kubeconfig

Otherwise, if taking the �rewall-based security approach

http://localhost:4000/docs/admin/node/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 15/27

--master=http://$MASTER_IP

Networking

Each node needs to be allocated its own CIDR range for pod networking. Call this NODE_X_POD_CIDR

.

A bridge called cbr0 needs to be created on each node. The bridge is explained further in the

networking documentation. The bridge itself needs an address from $NODE_X_POD_CIDR - by

convention the �rst IP. Call this NODE_X_BRIDGE_ADDR . For example, if NODE_X_POD_CIDR is

10.0.0.0/16 , then NODE_X_BRIDGE_ADDR is 10.0.0.1/16 . NOTE: this retains the /16 su�x

because of how this is used later.

Recommended, automatic approach:

1. Set --configure-cbr0=true option in kubelet init script and restart kubelet service.

Kubelet will con�gure cbr0 automatically. It will wait to do this until the node controller has

set Node.Spec.PodCIDR. Since you have not setup apiserver and node controller yet, the

bridge will not be setup immediately.

Alternate, manual approach:

1. Set --configure-cbr0=false on kubelet and restart.

2. Create a bridge.

ip link add name cbr0 type bridge

3. Set appropriate MTU. NOTE: the actual value of MTU will depend on your network

environment

ip link set dev cbr0 mtu 1460

4. Add the node’s network to the bridge (docker will go on other side of bridge).

ip addr add $NODE_X_BRIDGE_ADDR dev cbr0

5. Turn it on

ip link set dev cbr0 up

http://localhost:4000/docs/admin/networking/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 16/27

If you have turned off Docker’s IP masquerading to allow pods to talk to each other, then you may

need to do masquerading just for destination IPs outside the cluster network. For example:

This will rewrite the source address from the PodIP to the Node IP for tra�c bound outside the

cluster, and kernel connection tracking will ensure that responses destined to the node still reach the

pod.

NOTE: This is environment speci�c. Some environments will not need any masquerading at all.

Others, such as GCE, will not allow pod IPs to send tra�c to the internet, but have no problem with

them inside your GCE Project.

Other

Enable auto-upgrades for your OS package manager, if desired.

Con�gure log rotation for all node components (e.g. using logrotate).

Setup liveness-monitoring (e.g. using supervisord).

Setup volume plugin support (optional)

Install any client binaries for optional volume types, such as glusterfs-client for

GlusterFS volumes.

Using Con�guration Management

The previous steps all involved “conventional” system administration techniques for setting up

machines. You may want to use a Con�guration Management system to automate the node

con�guration process. There are examples of Saltstack, Ansible, Juju, and CoreOS Cloud Con�g in

the various Getting Started Guides.

Bootstrapping the Cluster

iptables -t nat -A POSTROUTING ! -d ${CLUSTER_SUBNET} -m addrtype ! --dst-type LOC

http://www.iptables.info/en/connection-state.html
http://linux.die.net/man/8/logrotate
http://supervisord.org/
http://localhost:4000/docs/admin/salt/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 17/27

While the basic node services (kubelet, kube-proxy, docker) are typically started and managed using

traditional system administration/automation approaches, the remaining master components of

Kubernetes are all con�gured and managed by Kubernetes:

Their options are speci�ed in a Pod spec (yaml or json) rather than an /etc/init.d �le or systemd

unit.

They are kept running by Kubernetes rather than by init.

etcd

You will need to run one or more instances of etcd.

Highly available and easy to restore - Run 3 or 5 etcd instances with, their logs written to a

directory backed by durable storage (RAID, GCE PD)

Not highly available, but easy to restore - Run one etcd instance, with its log written to a directory

backed by durable storage (RAID, GCE PD) Note: May result in operations outages in case of

instance outage

Highly available - Run 3 or 5 etcd instances with non durable storage. Note: Log can be written

to non-durable storage because storage is replicated.

See cluster-troubleshooting for more discussion on factors affecting cluster availability.

To run an etcd instance:

1. Copy cluster/saltbase/salt/etcd/etcd.manifest

2. Make any modi�cations needed

3. Start the pod by putting it into the kubelet manifest directory

Apiserver, Controller Manager, and Scheduler

The apiserver, controller manager, and scheduler will each run as a pod on the master node.

For each of these components, the steps to start them running are similar:

1. Start with a provided template for a pod.

http://localhost:4000/docs/admin/cluster-troubleshooting/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 18/27

2. Set the HYPERKUBE_IMAGE to the values chosen in Selecting Images.

3. Determine which �ags are needed for your cluster, using the advice below each template.

4. Set the �ags to be individual strings in the command array (e.g. $ARGN below)

5. Start the pod by putting the completed template into the kubelet manifest directory.

6. Verify that the pod is started.

Apiserver pod template

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "kube-apiserver"
 },
 "spec": {
 "hostNetwork": true,
 "containers": [
 {
 "name": "kube-apiserver",
 "image": "${HYPERKUBE_IMAGE}",
 "command": [
 "/hyperkube",
 "apiserver",
 "$ARG1",
 "$ARG2",
 ...
 "$ARGN"
],
 "ports": [
 {
 "name": "https",
 "hostPort": 443,
 "containerPort": 443
 },
 {
 "name": "local",
 "hostPort": 8080,
 "containerPort": 8080
 }
],
 "volumeMounts": [
 {
 "name": "srvkube",
 "mountPath": "/srv/kubernetes",

" dO l "

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 19/27

Here are some apiserver �ags you may need to set:

--cloud-provider= see cloud providers

--cloud-config= see cloud providers

--address=${MASTER_IP} or --bind-address=127.0.0.1 and --address=127.0.0.1 if you

want to run a proxy on the master node.

--service-cluster-ip-range=$SERVICE_CLUSTER_IP_RANGE

 "readOnly": true
 },
 {
 "name": "etcssl",
 "mountPath": "/etc/ssl",
 "readOnly": true
 }
],
 "livenessProbe": {
 "httpGet": {
 "scheme": "HTTP",
 "host": "127.0.0.1",
 "port": 8080,
 "path": "/healthz"
 },
 "initialDelaySeconds": 15,
 "timeoutSeconds": 15
 }
 }
],
 "volumes": [
 {
 "name": "srvkube",
 "hostPath": {
 "path": "/srv/kubernetes"
 }
 },
 {
 "name": "etcssl",
 "hostPath": {
 "path": "/etc/ssl"
 }
 }
]
 }
}

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 20/27

--etcd-servers=http://127.0.0.1:4001

--tls-cert-file=/srv/kubernetes/server.cert

--tls-private-key-file=/srv/kubernetes/server.key

--admission-control=$RECOMMENDED_LIST

See admission controllers for recommended arguments.

--allow-privileged=true , only if you trust your cluster user to run pods as root.

If you are following the �rewall-only security approach, then use these arguments:

--token-auth-file=/dev/null

--insecure-bind-address=$MASTER_IP

--advertise-address=$MASTER_IP

If you are using the HTTPS approach, then set:

--client-ca-file=/srv/kubernetes/ca.crt

--token-auth-file=/srv/kubernetes/known_tokens.csv

--basic-auth-file=/srv/kubernetes/basic_auth.csv

This pod mounts several node �le system directories using the hostPath volumes. Their purposes

are:

The /etc/ssl mount allows the apiserver to �nd the SSL root certs so it can authenticate

external services, such as a cloud provider.

This is not required if you do not use a cloud provider (e.g. bare-metal).

The /srv/kubernetes mount allows the apiserver to read certs and credentials stored on the

node disk. These could instead be stored on a persistent disk, such as a GCE PD, or baked into

the image.

http://localhost:4000/docs/admin/admission-controllers/

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 21/27

Optionally, you may want to mount /var/log as well and redirect output there (not shown in

template).

Do this if you prefer your logs to be accessible from the root �lesystem with tools like

journalctl.

TODO document proxy-ssh setup.

Cloud Providers

Apiserver supports several cloud providers.

options for --cloud-provider �ag are aws , azure , cloudstack , fake , gce , mesos ,

openstack , ovirt , photon , rackspace , vsphere , or unset.

unset used for e.g. bare metal setups.

support for new IaaS is added by contributing code here

Some cloud providers require a con�g �le. If so, you need to put con�g �le into apiserver image or

mount through hostPath.

--cloud-config= set if cloud provider requires a con�g �le.

Used by aws , gce , mesos , openshift , ovirt and rackspace .

You must put con�g �le into apiserver image or mount through hostPath.

Cloud con�g �le syntax is Gcfg.

AWS format de�ned by type AWSCloudCon�g

There is a similar type in the corresponding �le for other cloud providers.

GCE example: search for gce.conf in this �le

Scheduler pod template

Complete this template for the scheduler pod:

https://releases.k8s.io/master/pkg/cloudprovider/providers
https://code.google.com/p/gcfg/
https://releases.k8s.io/master/pkg/cloudprovider/providers/aws/aws.go
https://releases.k8s.io/master/cluster/gce/configure-vm.sh

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 22/27

Typically, no additional �ags are required for the scheduler.

Optionally, you may want to mount /var/log as well and redirect output there.

Controller Manager Template

Template for controller manager pod:

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "kube-scheduler"
 },
 "spec": {
 "hostNetwork": true,
 "containers": [
 {
 "name": "kube-scheduler",
 "image": "$HYBERKUBE_IMAGE",
 "command": [
 "/hyperkube",
 "scheduler",
 "--master=127.0.0.1:8080",
 "$SCHEDULER_FLAG1",
 ...
 "$SCHEDULER_FLAGN"
],
 "livenessProbe": {
 "httpGet": {
 "scheme": "HTTP",
 "host": "127.0.0.1",
 "port": 10251,
 "path": "/healthz"
 },
 "initialDelaySeconds": 15,
 "timeoutSeconds": 15
 }
 }
]
 }
}

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {

"name": "kube-controller-manager"

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 23/27

 name : kube controller manager
 },
 "spec": {
 "hostNetwork": true,
 "containers": [
 {
 "name": "kube-controller-manager",
 "image": "$HYPERKUBE_IMAGE",
 "command": [
 "/hyperkube",
 "controller-manager",
 "$CNTRLMNGR_FLAG1",
 ...
 "$CNTRLMNGR_FLAGN"
],
 "volumeMounts": [
 {
 "name": "srvkube",
 "mountPath": "/srv/kubernetes",
 "readOnly": true
 },
 {
 "name": "etcssl",
 "mountPath": "/etc/ssl",
 "readOnly": true
 }
],
 "livenessProbe": {
 "httpGet": {
 "scheme": "HTTP",
 "host": "127.0.0.1",
 "port": 10252,
 "path": "/healthz"
 },
 "initialDelaySeconds": 15,
 "timeoutSeconds": 15
 }
 }
],
 "volumes": [
 {
 "name": "srvkube",
 "hostPath": {
 "path": "/srv/kubernetes"
 }
 },
 {
 "name": "etcssl",
 "hostPath": {
 "path": "/etc/ssl"
 }
 }

]

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 24/27

Flags to consider using with controller manager:

--cluster-cidr= , the CIDR range for pods in cluster.

--allocate-node-cidrs= , if you are using --cloud-provider= , allocate and set the CIDRs

for pods on the cloud provider.

--cloud-provider= and --cloud-config as described in apiserver section.

--service-account-private-key-file=/srv/kubernetes/server.key , used by the service

account feature.

--master=127.0.0.1:8080

Starting and Verifying Apiserver, Scheduler, and Controller Manager

Place each completed pod template into the kubelet con�g dir (whatever --config= argument of

kubelet is set to, typically /etc/kubernetes/manifests). The order does not matter: scheduler and

controller manager will retry reaching the apiserver until it is up.

Use ps or docker ps to verify that each process has started. For example, verify that kubelet has

started a container for the apiserver like this:

Then try to connect to the apiserver:

]
 }
}

$ sudo docker ps | grep apiserver:
5783290746d5 gcr.io/google_containers/kube-apiserver:e36bf367342b5a80d7467f

$ echo $(curl -s http://localhost:8080/healthz)
ok
$ curl -s http://localhost:8080/api
{
 "versions": [
 "v1"
]
}

http://localhost:4000/docs/user-guide/service-accounts

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 25/27

If you have selected the --register-node=true option for kubelets, they will now begin self-

registering with the apiserver. You should soon be able to see all your nodes by running the

kubectl get nodes command. Otherwise, you will need to manually create node objects.

Starting Cluster Services

You will want to complete your Kubernetes clusters by adding cluster-wide services. These are

sometimes called addons, and an overview of their purpose is in the admin guide.

Notes for setting up each cluster service are given below:

Cluster DNS:

Required for many Kubernetes examples

Setup instructions

Admin Guide

Cluster-level Logging

Cluster-level Logging Overview

Cluster-level Logging with Elasticsearch

Cluster-level Logging with Stackdriver Logging

Container Resource Monitoring

Setup instructions

GUI

Setup instructions cluster.

Troubleshooting

Running validate-cluster

cluster/validate-cluster.sh is used by cluster/kube-up.sh to determine if the cluster start

succeeded.

http://localhost:4000/docs/admin/cluster-components/#addons
http://releases.k8s.io/master/cluster/addons/dns/
http://localhost:4000/docs/concepts/services-networking/dns-pod-service/
http://localhost:4000/docs/user-guide/logging/overview/
http://localhost:4000/docs/user-guide/logging/elasticsearch/
http://localhost:4000/docs/user-guide/logging/stackdriver/
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/
https://github.com/kubernetes/kube-ui

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 26/27

Example usage and output:

Inspect pods and services

Try to run through the “Inspect your cluster” section in one of the other Getting Started Guides, such

as GCE. You should see some services. You should also see “mirror pods” for the apiserver,

scheduler and controller-manager, plus any add-ons you started.

Try Examples

At this point you should be able to run through one of the basic examples, such as the nginx

example.

Running the Conformance Test

You may want to try to run the Conformance test. Any failures may give a hint as to areas that need

more attention.

Networking

The nodes must be able to connect to each other using their private IP. Verify this by pinging or SSH-

ing from one node to another.

Getting Help

KUBECTL_PATH=$(which kubectl) NUM_NODES=3 KUBERNETES_PROVIDER=local cluster/valida
Found 3 node(s).
NAME STATUS AGE VERSION
node1.local Ready 1h v1.6.9+a3d1dfa6f4335
node2.local Ready 1h v1.6.9+a3d1dfa6f4335
node3.local Ready 1h v1.6.9+a3d1dfa6f4335
Validate output:
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-1 Healthy {"health": "true"}
etcd-2 Healthy {"health": "true"}
etcd-0 Healthy {"health": "true"}
Cluster validation succeeded

http://localhost:4000/docs/getting-started-guides/gce/#inspect-your-cluster
http://localhost:4000/docs/tutorials/stateless-application/deployment.yaml
http://releases.k8s.io/master/test/e2e_node/conformance/run_test.sh

10/23/2017 Creating a Custom Cluster from Scratch - Kubernetes

http://localhost:4000/docs/getting-started-guides/scratch/ 27/27

If you run into trouble, please see the section on troubleshooting, post to the kubernetes-users group,

or come ask questions on Slack.

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

any any any any docs Community (@erictune)

For support level information on all solutions, see the Table of solutions chart.

http://localhost:4000/docs/getting-started-guides/gce/#troubleshooting
https://groups.google.com/forum/#!forum/kubernetes-users
http://localhost:4000/docs/troubleshooting#slack
http://localhost:4000/docs/getting-started-guides/scratch/
https://github.com/erictune
http://localhost:4000/docs/getting-started-guides/#table-of-solutions/

10/23/2017 Deprecated Alternatives - Kubernetes

http://localhost:4000/docs/getting-started-guides/alternatives/ 1/1

Deprecated Alternatives

Stop. These guides are superseded by
Minikube. They are only listed here for
completeness.

Using Vagrant

Advanced: Directly using Kubernetes raw binaries (Linux Only)

http://localhost:4000/docs/getting-started-guides/minikube/
https://git.k8s.io/community/contributors/devel/local-cluster/vagrant.md
https://git.k8s.io/community/contributors/devel/local-cluster/local.md

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 1/7

Running Kubernetes on Google Compute
Engine

The example below creates a Kubernetes cluster with 4 worker node Virtual Machines and a master

Virtual Machine (i.e. 5 VMs in your cluster). This cluster is set up and controlled from your

workstation (or wherever you �nd convenient).

Before you start

If you want a simpli�ed getting started experience and GUI for managing clusters, please consider

trying Google Container Engine (GKE) for hosted cluster installation and management.

If you want to use custom binaries or pure open source Kubernetes, please continue with the

instructions below.

Prerequisites

Before you start
Prerequisites
Starting a cluster
Installing the Kubernetes command line tools on your workstation
Getting started with your cluster

Inspect your cluster
Run some examples

Tearing down the cluster
Customizing
Troubleshooting

Project settings
Cluster initialization hang
SSH
Networking

Support Level
Further reading

https://cloud.google.com/container-engine/

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 2/7

1. You need a Google Cloud Platform account with billing enabled. Visit the Google Developers

Console for more details.

2. Install gcloud as necessary. gcloud can be installed as a part of the Google Cloud SDK.

3. Enable the Compute Engine Instance Group Manager API in the Google Cloud developers

console.

4. Make sure that gcloud is set to use the Google Cloud Platform project you want. You can check

the current project using gcloud config list project and change it via

gcloud config set project <project-id> .

5. Make sure you have credentials for GCloud by running gcloud auth login .

6. (Optional) In order to make API calls against GCE, you must also run

gcloud auth application-default login .

7. Make sure you can start up a GCE VM from the command line. At least make sure you can do

the Create an instance part of the GCE Quickstart.

8. Make sure you can SSH into the VM without interactive prompts. See the Log in to the instance

part of the GCE Quickstart.

Starting a cluster

You can install a client and start a cluster with either one of these commands (we list both in case

only one is installed on your machine):

or

Once this command completes, you will have a master VM and four worker VMs, running as a

Kubernetes cluster.

curl -sS https://get.k8s.io | bash

wget -q -O - https://get.k8s.io | bash

https://console.cloud.google.com/
https://cloud.google.com/sdk/
https://console.developers.google.com/apis/api/replicapool.googleapis.com/overview
https://console.developers.google.com/apis/library
https://cloud.google.com/compute/docs/instances/#startinstancegcloud
https://cloud.google.com/compute/docs/instances/#sshing

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 3/7

By default, some containers will already be running on your cluster. Containers like fluentd provide

logging, while heapster provides monitoring services.

The script run by the commands above creates a cluster with the name/pre�x “kubernetes”. It

de�nes one speci�c cluster con�g, so you can’t run it more than once.

Alternately, you can download and install the latest Kubernetes release from this page, then run the

<kubernetes>/cluster/kube-up.sh script to start the cluster:

If you want more than one cluster running in your project, want to use a different name, or want a

different number of worker nodes, see the <kubernetes>/cluster/gce/config-default.sh �le

for more �ne-grained con�guration before you start up your cluster.

If you run into trouble, please see the section on troubleshooting, post to the kubernetes-users group,

or come ask questions on Slack.

The next few steps will show you:

1. How to set up the command line client on your workstation to manage the cluster

2. Examples of how to use the cluster

3. How to delete the cluster

4. How to start clusters with non-default options (like larger clusters)

Installing the Kubernetes command line tools on your workstation

The cluster startup script will leave you with a running cluster and a kubernetes directory on your

workstation.

The kubectl tool controls the Kubernetes cluster manager. It lets you inspect your cluster resources,

create, delete, and update components, and much more. You will use it to look at your new cluster

and bring up example apps.

You can use gcloud to install the kubectl command-line tool on your workstation:

cd kubernetes
cluster/kube-up.sh

http://localhost:4000/docs/concepts/cluster-administration/logging/
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/README.md
https://github.com/kubernetes/kubernetes/releases
https://groups.google.com/forum/#!forum/kubernetes-users
http://localhost:4000/docs/troubleshooting/#slack
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 4/7

Note: The kubectl version bundled with gcloud may be older than the one downloaded by the

get.k8s.io install script. See Installing kubectl document to see how you can set up the latest

kubectl on your workstation.

Getting started with your cluster

Inspect your cluster

Once kubectl is in your path, you can use it to look at your cluster. E.g., running:

should show a set of services that look something like this:

Similarly, you can take a look at the set of pods that were created during cluster startup. You can do

this via the

command.

You’ll see a list of pods that looks something like this (the name speci�cs will be different):

gcloud components install kubectl

$ kubectl get --all-namespaces services

NAMESPACE NAME CLUSTER_IP EXTERNAL_IP PORT(S)
default kubernetes 10.0.0.1 <none> 443/TCP
kube-system kube-dns 10.0.0.2 <none> 53/TCP,53/U
kube-system kube-ui 10.0.0.3 <none> 80/TCP
...

$ kubectl get --all-namespaces pods

http://localhost:4000/docs/tasks/kubectl/install/
http://localhost:4000/docs/user-guide/services
http://localhost:4000/docs/user-guide/pods

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 5/7

Some of the pods may take a few seconds to start up (during this time they’ll show Pending), but

check that they all show as Running after a short period.

Run some examples

Then, see a simple nginx example to try out your new cluster.

For more complete applications, please look in the examples directory. The guestbook example is a

good “getting started” walkthrough.

Tearing down the cluster

To remove/delete/teardown the cluster, use the kube-down.sh script.

Likewise, the kube-up.sh in the same directory will bring it back up. You do not need to rerun the

curl or wget command: everything needed to setup the Kubernetes cluster is now on your

workstation.

Customizing

The script above relies on Google Storage to stage the Kubernetes release. It then will start (by

default) a single master VM along with 4 worker VMs. You can tweak some of these parameters by

editing kubernetes/cluster/gce/config-default.sh You can view a transcript of a successful

cluster creation here.

NAMESPACE NAME READY STATUS R
kube-system fluentd-cloud-logging-kubernetes-minion-63uo 1/1 Running 0
kube-system fluentd-cloud-logging-kubernetes-minion-c1n9 1/1 Running 0
kube-system fluentd-cloud-logging-kubernetes-minion-c4og 1/1 Running 0
kube-system fluentd-cloud-logging-kubernetes-minion-ngua 1/1 Running 0
kube-system kube-dns-v5-7ztia 3/3 Running 0
kube-system kube-ui-v1-curt1 1/1 Running 0
kube-system monitoring-heapster-v5-ex4u3 1/1 Running 1
kube-system monitoring-influx-grafana-v1-piled 2/2 Running 0

cd kubernetes
cluster/kube-down.sh

http://localhost:4000/docs/user-guide/simple-nginx
https://github.com/kubernetes/examples/tree/master/
https://github.com/kubernetes/examples/tree/master/guestbook/
https://gist.github.com/satnam6502/fc689d1b46db9772adea

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 6/7

Troubleshooting

Project settings

You need to have the Google Cloud Storage API, and the Google Cloud Storage JSON API enabled. It

is activated by default for new projects. Otherwise, it can be done in the Google Cloud Console. See

the Google Cloud Storage JSON API Overview for more details.

Also ensure that– as listed in the Prerequsites section– you’ve enabled the

Compute Engine Instance Group Manager API , and can start up a GCE VM from the command

line as in the GCE Quickstart instructions.

Cluster initialization hang

If the Kubernetes startup script hangs waiting for the API to be reachable, you can troubleshoot by

SSHing into the master and node VMs and looking at logs such as /var/log/startupscript.log .

Once you �x the issue, you should run kube-down.sh to cleanup after the partial cluster creation,

before running kube-up.sh to try again.

SSH

If you’re having trouble SSHing into your instances, ensure the GCE �rewall isn’t blocking port 22 to

your VMs. By default, this should work but if you have edited �rewall rules or created a new non-

default network, you’ll need to expose it:

gcloud compute firewall-rules create default-ssh --network=<network-name> --

description "SSH allowed from anywhere" --allow tcp:22

Additionally, your GCE SSH key must either have no passcode or you need to be using ssh-agent .

Networking

The instances must be able to connect to each other using their private IP. The script uses the

“default” network which should have a �rewall rule called “default-allow-internal” which allows tra�c

on any port on the private IPs. If this rule is missing from the default network or if you change the

network being used in cluster/config-default.sh create a new rule with the following �eld

values:

https://cloud.google.com/storage/docs/json_api/
https://cloud.google.com/compute/docs/quickstart

10/23/2017 Running Kubernetes on Google Compute Engine - Kubernetes

http://localhost:4000/docs/getting-started-guides/gce/ 7/7

Source Ranges: 10.0.0.0/8

Allowed Protocols and Port: tcp:1-65535;udp:1-65535;icmp

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

GCE Saltstack Debian GCE docs Project

For support level information on all solutions, see the Table of solutions chart.

Further reading

Please see the Kubernetes docs for more details on administering and using a Kubernetes cluster.

http://localhost:4000/docs/getting-started-guides/gce/
http://localhost:4000/docs/getting-started-guides/#table-of-solutions
http://localhost:4000/docs/

10/23/2017 Running Kubernetes on AWS EC2 - Kubernetes

http://localhost:4000/docs/getting-started-guides/aws/ 1/5

Running Kubernetes on AWS EC2

Supported Production Grade Tools

Kubernetes Operations - Production Grade K8s Installation, Upgrades, and Management.

Supports running Debian, Ubuntu, CentOS, and RHEL in AWS.

CoreOS Tectonic includes the open-source Tectonic Installer that creates Kubernetes clusters

with Container Linux nodes on AWS.

CoreOS originated and the Kubernetes Incubator maintains a CLI tool, kube-aws , that creates

and manages Kubernetes clusters with Container Linux nodes, using AWS tools: EC2,

CloudFormation and Autoscaling.

kube-up is no longer supported in kubernetes 1.6

kube-up.sh is a legacy tool for launching clusters. It is deprecated, and removed entirely from

kubernetes 1.6.

Supported Production Grade Tools
kube-up is no longer supported in kubernetes 1.6

Prerequisites
Cluster turnup

Supported procedure: get-kube
Getting started with your cluster

Command line administration tool: kubectl
Examples

Scaling the cluster
Tearing down the cluster
Support Level
Further reading

https://github.com/kubernetes/kops
https://coreos.com/tectonic/
https://github.com/coreos/tectonic-installer
https://github.com/kubernetes-incubator/kube-aws
https://coreos.com/why/

10/23/2017 Running Kubernetes on AWS EC2 - Kubernetes

http://localhost:4000/docs/getting-started-guides/aws/ 2/5

Prerequisites

1. This is only supported for kubernetes 1.5 and earlier. Consider switching to one of the supported

options.

2. You need an AWS account. Visit http://aws.amazon.com to get started

3. Install and con�gure the AWS Command Line Interface

4. We recommend installing using an account which has full access to the AWS APIs.

NOTE: This script uses the ‘default’ AWS pro�le by default. You may explicitly set the AWS pro�le to

use using the AWS_DEFAULT_PROFILE environment variable:

Cluster turnup

Supported procedure: get-kube

NOTE: This script calls cluster/kube-up.sh which in turn calls cluster/aws/util.sh using

cluster/aws/con�g-default.sh.

This process takes about 5 to 10 minutes. Once the cluster is up, the IP addresses of your master

and node(s) will be printed, as well as information about the default services running in the cluster

(monitoring, logging, dns). User credentials and security tokens are written in ~/.kube/config , they

will be necessary to use the CLI or the HTTP Basic Auth.

By default, the script will provision a new VPC and a 4 node k8s cluster in us-west-2a (Oregon) with

EC2 instances running on Debian. You can override the variables de�ned in con�g-default.sh to

change this behavior as follows:

export AWS_DEFAULT_PROFILE=myawsprofile

#Using wget
export KUBERNETES_PROVIDER=aws; wget -q -O - https://get.k8s.io | bash
#Using cURL
export KUBERNETES_PROVIDER=aws; curl -sS https://get.k8s.io | bash

http://aws.amazon.com/
http://aws.amazon.com/cli
http://releases.k8s.io/master/cluster/kube-up.sh
http://releases.k8s.io/master/cluster/aws/util.sh
http://releases.k8s.io/master/cluster/aws/config-default.sh
http://releases.k8s.io/master/cluster/aws/config-default.sh

10/23/2017 Running Kubernetes on AWS EC2 - Kubernetes

http://localhost:4000/docs/getting-started-guides/aws/ 3/5

If you don’t specify master and minion sizes, the scripts will attempt to guess the correct size of the

master and worker nodes based on ${NUM_NODES} . In version 1.3 these default are:

For the master, for clusters of less than 5 nodes it will use an m3.medium , for 6-10 nodes it will

use an m3.large ; for 11-100 nodes it will use an m3.xlarge .

For worker nodes, for clusters less than 50 nodes it will use a t2.micro , for clusters between

50 and 150 nodes it will use a t2.small and for clusters with greater than 150 nodes it will use

a t2.medium .

WARNING: beware that t2 instances receive a limited number of CPU credits per hour and might

not be suitable for clusters where the CPU is used consistently. As a rough estimation, consider 15

pods/node the absolute limit a t2.large instance can handle before it starts exhausting its CPU

credits steadily, although this number depends heavily on the usage.

In prior versions of Kubernetes, we defaulted the master node to a t2-class instance, but found that

this sometimes gave hard-to-diagnose problems when the master ran out of memory or CPU credits.

If you are running a test cluster and want to save money, you can specify

export MASTER_SIZE=t2.micro but if your master pauses do check the CPU credits in the AWS

console.

For production usage, we recommend at least export MASTER_SIZE=m3.medium and

export NODE_SIZE=m3.medium . And once you get above a handful of nodes, be aware that one

m3.large instance has more storage than two m3.medium instances, for the same price.

We generally recommend the m3 instances over the m4 instances, because the m3 instances

include local instance storage. Historically local instance storage has been more reliable than AWS

EBS, and performance should be more consistent. The ephemeral nature of this storage is a match

for ephemeral container workloads also!

export KUBE_AWS_ZONE=eu-west-1c
export NUM_NODES=2
export MASTER_SIZE=m3.medium
export NODE_SIZE=m3.medium
export AWS_S3_REGION=eu-west-1
export AWS_S3_BUCKET=mycompany-kubernetes-artifacts
export KUBE_AWS_INSTANCE_PREFIX=k8s
...

10/23/2017 Running Kubernetes on AWS EC2 - Kubernetes

http://localhost:4000/docs/getting-started-guides/aws/ 4/5

If you use an m4 instance, or another instance type which does not have local instance storage, you

may want to increase the NODE_ROOT_DISK_SIZE value, although the default value of 32 is probably

su�cient for the smaller instance types in the m4 family.

The script will also try to create or reuse a keypair called “kubernetes”, and IAM pro�les called

“kubernetes-master” and “kubernetes-minion”. If these already exist, make sure you want them to be

used here.

NOTE: If using an existing keypair named “kubernetes” then you must set the AWS_SSH_KEY key to

point to your private key.

Getting started with your cluster

Command line administration tool: kubectl

The cluster startup script will leave you with a kubernetes directory on your workstation.

Alternately, you can download the latest Kubernetes release from this page.

Next, add the appropriate binary folder to your PATH to access kubectl:

An up-to-date documentation page for this tool is available here: kubectl manual

By default, kubectl will use the kubeconfig �le generated during the cluster startup for

authenticating against the API. For more information, please read kubecon�g �les

Examples

See a simple nginx example to try out your new cluster.

The “Guestbook” application is another popular example to get started with Kubernetes: guestbook

example

For more complete applications, please look in the examples directory

OS X
export PATH=<path/to/kubernetes-directory>/platforms/darwin/amd64:$PATH

Linux
export PATH=<path/to/kubernetes-directory>/platforms/linux/amd64:$PATH

https://github.com/kubernetes/kubernetes/releases
http://localhost:4000/docs/user-guide/kubectl
http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
http://localhost:4000/docs/user-guide/simple-nginx
https://github.com/kubernetes/examples/tree/master/guestbook/
https://github.com/kubernetes/examples/tree/master/

10/23/2017 Running Kubernetes on AWS EC2 - Kubernetes

http://localhost:4000/docs/getting-started-guides/aws/ 5/5

Scaling the cluster

Adding and removing nodes through kubectl is not supported. You can still scale the amount of

nodes manually through adjustments of the ‘Desired’ and ‘Max’ properties within the Auto Scaling

Group, which was created during the installation.

Tearing down the cluster

Make sure the environment variables you used to provision your cluster are still exported, then call

the following script inside the kubernetes directory:

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

AWS kops Debian k8s (VPC) docs Community (@justinsb)

AWS CoreOS CoreOS �annel docs Community

For support level information on all solutions, see the Table of solutions chart.

Further reading

Please see the Kubernetes docs for more details on administering and using a Kubernetes cluster.

cluster/kube-down.sh

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-manual-scaling.html
https://github.com/kubernetes/kops
https://github.com/justinsb
http://localhost:4000/docs/getting-started-guides/aws
http://localhost:4000/docs/getting-started-guides/#table-of-solutions
http://localhost:4000/docs/

10/23/2017 Running Kubernetes on Azure - Kubernetes

http://localhost:4000/docs/getting-started-guides/azure/ 1/2

Running Kubernetes on Azure

Azure Container Service

The Azure Container Service offers simple deployments of one of three open source orchestrators:

DC/OS, Swarm, and Kubernetes clusters.

For an example of deploying a Kubernetes cluster onto Azure via the Azure Container Service:

Microsoft Azure Container Service - Kubernetes Walkthrough

Custom Deployments: ACS-Engine

The core of the Azure Container Service is open source and available on GitHub for the community

to use and contribute to: ACS-Engine.

ACS-Engine is a good choice if you need to make customizations to the deployment beyond what the

Azure Container Service o�cially supports. These customizations include deploying into existing

virtual networks, utilizing multiple agent pools, and more. Some community contributions to ACS-

Engine may even become features of the Azure Container Service.

The input to ACS-Engine is similar to the ARM template syntax used to deploy a cluster directly with

the Azure Container Service. The resulting output is an Azure Resource Manager Template that can

then be checked into source control and can then be used to deploy Kubernetes clusters into Azure.

You can get started quickly by following the ACS-Engine Kubernetes Walkthrough.

CoreOS Tectonic for Azure

The CoreOS Tectonic Installer for Azure is open source and available on GitHub for the community

to use and contribute to: Tectonic Installer.

Tectonic Installer is a good choice when you need to make cluster customizations as it is built on

Hashicorp’s Terraform Azure Resource Manager (ARM) provider. This enables users to customize or

https://azure.microsoft.com/en-us/services/container-service/
https://docs.microsoft.com/en-us/azure/container-service/container-service-kubernetes-walkthrough
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine/blob/master/docs/kubernetes.md
https://github.com/coreos/tectonic-installer
https://www.terraform.io/docs/providers/azurerm/

10/23/2017 Running Kubernetes on Azure - Kubernetes

http://localhost:4000/docs/getting-started-guides/azure/ 2/2

integrate using familiar Terraform tooling.

You can get started using the Tectonic Installer for Azure Guide.

https://coreos.com/tectonic/docs/latest/install/azure/azure-terraform.html

10/23/2017 Running Kubernetes on Alibaba Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/alibaba-cloud/ 1/1

Running Kubernetes on Alibaba Cloud

Alibaba Cloud Container Service

The Alibaba Cloud Container Service lets you run and manage Docker applications on a cluster of

Alibaba Cloud ECS instances. It supports the popular open source container orchestrators: Docker

Swarm and Kubernetes.

To simplify cluster deployment and management, use Kubernetes Suppport for Alibaba Cloud

Container Service. You can get started quickly by following the Kubernetes walk-through, and there

are some tutorials for Kubernetes Support on Alibaba Cloud in Chinese.

To use custom binaries or open source Kubernetes, follow the instructions below.

Custom Deployments

The source code for Kubernetes with Alibaba Cloud provider implmenetation is open source and

available on GitHub.

For more information, see “Quick deployment of Kubernetes - VPC environment on Alibaba Cloud” in

English and Chinese.

https://www.aliyun.com/product/containerservice
https://www.aliyun.com/solution/kubernetes/
https://help.aliyun.com/document_detail/53751.html
https://yq.aliyun.com/teams/11/type_blog-cid_200-page_1
https://github.com/AliyunContainerService/kubernetes
https://www.alibabacloud.com/forum/read-830
https://yq.aliyun.com/articles/66474

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 1/10

Running Kubernetes on CenturyLink Cloud

These scripts handle the creation, deletion and expansion of Kubernetes clusters on CenturyLink

Cloud.

You can accomplish all these tasks with a single command. We have made the Ansible playbooks

used to perform these tasks available here.

Find Help

If you run into any problems or want help with anything, we are here to help. Reach out to use via any

of the following ways: - Submit a github issue - Send an email to Kubernetes AT ctl DOT io - Visit

http://info.ctl.io/kubernetes

Find Help
Clusters of VMs or Physical Servers, your choice.
Requirements
Script Installation

Script Installation Example: Ubuntu 14 Walkthrough
Cluster Creation

Cluster Creation: Script Options
Cluster Expansion

Cluster Expansion: Script Options
Cluster Deletion
Examples
Cluster Features and Architecture
Optional add-ons
Cluster management

Accessing the cluster programmatically
Accessing the cluster with a browser
Con�guration �les

kubectl usage examples
What Kubernetes features do not work on CenturyLink Cloud
Ansible Files
Further reading

https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc/blob/master/ansible/README.md

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 2/10

Clusters of VMs or Physical Servers, your choice.

We support Kubernetes clusters on both Virtual Machines or Physical Servers. If you want to use

physical servers for the worker nodes (minions), simple use the –minion_type=bareMetal �ag.

For more information on physical servers, visit: https://www.ctl.io/bare-metal/)

Physical serves are only available in the VA1 and GB3 data centers.

VMs are available in all 13 of our public cloud locations

Requirements

The requirements to run this script are: - A linux administrative host (tested on ubuntu and OSX) -

python 2 (tested on 2.7.11) - pip (installed with python as of 2.7.9) - git - A CenturyLink Cloud account

with rights to create new hosts - An active VPN connection to the CenturyLink Cloud from your linux

host

Script Installation

After you have all the requirements met, please follow these instructions to install this script.

1) Clone this repository and cd into it.

2) Install all requirements, including * Ansible * CenturyLink Cloud SDK * Ansible Modules

3) Create the credentials �le from the template and use it to set your ENV variables

git clone https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc

sudo pip install -r ansible/requirements.txt

https://www.ctl.io/bare-metal/

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 3/10

4) Grant your machine access to the CenturyLink Cloud network by using a VM inside the network or

con�guring a VPN connection to the CenturyLink Cloud network.

Script Installation Example: Ubuntu 14 Walkthrough

If you use an ubuntu 14, for your convenience we have provided a step by step guide to install the

requirements and install the script.

Cluster Creation

To create a new Kubernetes cluster, simply run the kube-up.sh script. A complete list of script

options and some examples are listed below.

cp ansible/credentials.sh.template ansible/credentials.sh
vi ansible/credentials.sh
source ansible/credentials.sh

 # system
 apt-get update
 apt-get install -y git python python-crypto
 curl -O https://bootstrap.pypa.io/get-pip.py
 python get-pip.py

 # installing this repository
 mkdir -p ~home/k8s-on-clc
 cd ~home/k8s-on-clc
 git clone https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc.git
 cd adm-kubernetes-on-clc/
 pip install -r requirements.txt

 # getting started
 cd ansible
 cp credentials.sh.template credentials.sh; vi credentials.sh
 source credentials.sh

CLC_CLUSTER_NAME=[name of kubernetes cluster]
cd ./adm-kubernetes-on-clc
bash kube-up.sh -c="$CLC_CLUSTER_NAME"

https://www.ctl.io/knowledge-base/network/how-to-configure-client-vpn/

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 4/10

It takes about 15 minutes to create the cluster. Once the script completes, it will output some

commands that will help you setup kubectl on your machine to point to the new cluster.

When the cluster creation is complete, the con�guration �les for it are stored locally on your

administrative host, in the following directory

Cluster Creation: Script Options

Cluster Expansion

To expand an existing Kubernetes cluster, run the add-kube-node.sh script. A complete list of

script options and some examples are listed [below]. This script must be run from the same host

that created the cluster (or a host that has the cluster artifact �les stored in

~/.clc_kube/$cluster_name).

> CLC_CLUSTER_HOME=$HOME/.clc_kube/$CLC_CLUSTER_NAME/

Usage: kube-up.sh [OPTIONS]
Create servers in the CenturyLinkCloud environment and initialize a Kubernetes clu
Environment variables CLC_V2_API_USERNAME and CLC_V2_API_PASSWD must be set in
order to access the CenturyLinkCloud API

All options (both short and long form) require arguments, and must include "="
between option name and option value.

 -h (--help) display this help and exit
 -c= (--clc_cluster_name=) set the name of the cluster, as used in CLC gro
 -t= (--minion_type=) standard -> VM (default), bareMetal -> physical
 -d= (--datacenter=) VA1 (default)
 -m= (--minion_count=) number of kubernetes minion nodes
 -mem= (--vm_memory=) number of GB ram for each minion
 -cpu= (--vm_cpu=) number of virtual cps for each minion node
 -phyid= (--server_conf_id=) physical server configuration id, one of
 physical_server_20_core_conf_id
 physical_server_12_core_conf_id
 physical_server_4_core_conf_id (default)
 -etcd_separate_cluster=yes create a separate cluster of three etcd nodes,
 otherwise run etcd on the master node

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 5/10

Cluster Expansion: Script Options

Cluster Deletion

There are two ways to delete an existing cluster:

1) Use our python script:

2) Use the CenturyLink Cloud UI. To delete a cluster, log into the CenturyLink Cloud control portal and

delete the parent server group that contains the Kubernetes Cluster. We hope to add a scripted

option to do this soon.

Examples

Create a cluster with name of k8s_1, 1 master node and 3 worker minions (on physical machines), in

VA1

cd ./adm-kubernetes-on-clc
bash add-kube-node.sh -c="name_of_kubernetes_cluster" -m=2

Usage: add-kube-node.sh [OPTIONS]
Create servers in the CenturyLinkCloud environment and add to an
existing CLC kubernetes cluster

Environment variables CLC_V2_API_USERNAME and CLC_V2_API_PASSWD must be set in
order to access the CenturyLinkCloud API

 -h (--help) display this help and exit
 -c= (--clc_cluster_name=) set the name of the cluster, as used in CLC gro
 -m= (--minion_count=) number of kubernetes minion nodes to add

python delete_cluster.py --cluster=clc_cluster_name --datacenter=DC1

bash kube-up.sh --clc_cluster_name=k8s_1 --minion_type=bareMetal --minion_count=3

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 6/10

Create a cluster with name of k8s_2, an ha etcd cluster on 3 VMs and 6 worker minions (on VMs), in

VA1

Create a cluster with name of k8s_3, 1 master node, and 10 worker minions (on VMs) with higher

mem/cpu, in UC1:

Cluster Features and Architecture

We con�gure the Kubernetes cluster with the following features:

KubeDNS: DNS resolution and service discovery

Heapster/In�uxDB: For metric collection. Needed for Grafana and auto-scaling.

Grafana: Kubernetes/Docker metric dashboard

KubeUI: Simple web interface to view Kubernetes state

Kube Dashboard: New web interface to interact with your cluster

We use the following to create the Kubernetes cluster:

Kubernetes 1.1.7

Ubuntu 14.04

Flannel 0.5.4

Docker 1.9.1-0~trusty

Etcd 2.2.2

Optional add-ons

bash kube-up.sh --clc_cluster_name=k8s_2 --minion_type=standard --minion_count=6 -

bash kube-up.sh --clc_cluster_name=k8s_3 --minion_type=standard --minion_count=10

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 7/10

Logging: We offer an integrated centralized logging ELK platform so that all Kubernetes and

docker logs get sent to the ELK stack. To install the ELK stack and con�gure Kubernetes to send

logs to it, follow the log aggregation documentation. Note: We don’t install this by default as the

footprint isn’t trivial.

Cluster management

The most widely used tool for managing a Kubernetes cluster is the command-line utility kubectl .

If you do not already have a copy of this binary on your administrative machine, you may run the

script install_kubectl.sh which will download it and install it in /usr/bin/local .

The script requires that the environment variable CLC_CLUSTER_NAME be de�ned

install_kubectl.sh also writes a con�guration �le which will embed the necessary authentication

certi�cates for the particular cluster. The con�guration �le is written to the

${CLC_CLUSTER_HOME}/kube directory

Accessing the cluster programmatically

It’s possible to use the locally stored client certi�cates to access the apiserver. For example, you may

want to use any of the Kubernetes API client libraries to program against your Kubernetes cluster in

the programming language of your choice.

To demonstrate how to use these locally stored certi�cates, we provide the following example of

using curl to communicate to the master apiserver via https:

But please note, this does not work out of the box with the curl binary distributed with OSX.

export KUBECONFIG=${CLC_CLUSTER_HOME}/kube/config
kubectl version
kubectl cluster-info

curl \
 --cacert ${CLC_CLUSTER_HOME}/pki/ca.crt \
 --key ${CLC_CLUSTER_HOME}/pki/kubecfg.key \
 --cert ${CLC_CLUSTER_HOME}/pki/kubecfg.crt https://${MASTER_IP}:6443

https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc/blob/master/log_aggregration.md
http://localhost:4000/docs/reference/client-libraries/

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 8/10

Accessing the cluster with a browser

We install two UIs on Kubernetes. The original KubeUI and the newer kube dashboard. When you

create a cluster, the script should output URLs for these interfaces like this:

KubeUI is running at

https://${MASTER_IP}:6443/api/v1/namespaces/kube-system/services/kube-ui/proxy

kubernetes-dashboard is running at

https://${MASTER_IP}:6443/api/v1/namespaces/kube-system/services/kubernetes-

dashboard/proxy

Note on Authentication to the UIs: The cluster is set up to use basic authentication for the user

admin. Hitting the url at https://${MASTER_IP}:6443 will require accepting the self-signed

certi�cate from the apiserver, and then presenting the admin password written to �le at:

> _${CLC_CLUSTER_HOME}/kube/admin_password.txt_

Con�guration �les

Various con�guration �les are written into the home directory CLC_CLUSTER_HOME under

.clc_kube/${CLC_CLUSTER_NAME} in several subdirectories. You can use these �les to access the

cluster from machines other than where you created the cluster from.

config/ : Ansible variable �les containing parameters describing the master and minion hosts

hosts/ : hosts �les listing access information for the ansible playbooks

kube/ : kubectl con�guration �les, and the basic-authentication password for admin access

to the Kubernetes API

pki/ : public key infrastructure �les enabling TLS communication in the cluster

ssh/ : SSH keys for root access to the hosts

kubectl usage examples

There are a great many features of kubectl. Here are a few examples

http://localhost:4000/docs/tasks/web-ui-dashboard/

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 9/10

List existing nodes, pods, services and more, in all namespaces, or in just one:

The Kubernetes API server exposes services on web URLs, which are protected by requiring client

certi�cates. If you run a kubectl proxy locally, kubectl will provide the necessary certi�cates and

serve locally over http.

Then, you can access urls like

http://127.0.0.1:8001/api/v1/namespaces/kube-system/services/kube-ui/proxy/ without

the need for client certi�cates in your browser.

What Kubernetes features do not work on CenturyLink
Cloud

These are the known items that don’t work on CenturyLink cloud but do work on other cloud

providers:

At this time, there is no support services of the type LoadBalancer. We are actively working on

this and hope to publish the changes sometime around April 2016.

At this time, there is no support for persistent storage volumes provided by CenturyLink Cloud.

However, customers can bring their own persistent storage offering. We ourselves use Gluster.

Ansible Files

If you want more information about our Ansible �les, please read this �le

Further reading

kubectl get nodes
kubectl get --all-namespaces services
kubectl get --namespace=kube-system replicationcontrollers

kubectl proxy -p 8001

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/
https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc/blob/master/ansible/README.md

10/23/2017 Running Kubernetes on CenturyLink Cloud - Kubernetes

http://localhost:4000/docs/getting-started-guides/clc/ 10/10

Please see the Kubernetes docs for more details on administering and using a Kubernetes cluster.

http://localhost:4000/docs/

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 1/7

Running Kubernetes on Multiple Clouds with
Stackpoint.io

Introduction

Introduction
AWS

Choose a Provider
Con�gure Your Provider
Con�gure Your Cluster
Running the Cluster

GCE
Choose a Provider
Con�gure Your Provider
Con�gure Your Cluster
Running the Cluster

GKE
Choose a Provider
Con�gure Your Provider
Con�gure Your Cluster
Running the Cluster

DigitalOcean
Choose a Provider
Con�gure Your Provider
Con�gure Your Cluster
Running the Cluster

Microsoft Azure
Choose a Provider
Con�gure Your Provider
Con�gure Your Cluster
Running the Cluster

Packet
Choose a Provider
Con�gure Your Provider
Con�gure Your Cluster
Running the Cluster

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 2/7

StackPointCloud is the universal control plane for Kubernetes Anywhere. StackPointCloud allows you

to deploy and manage a Kubernetes cluster to the cloud provider of your choice in 3 steps using a

web-based interface.

AWS

To create a Kubernetes cluster on AWS, you will need an Access Key ID and a Secret Access Key

from AWS.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Amazon Web Services (AWS).

Con�gure Your Provider

Add your Access Key ID and a Secret Access Key from AWS. Select your default StackPointCloud

SSH keypair, or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Con�gure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to create the

cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on AWS, consult the Kubernetes

documentation.

https://stackpoint.io/
https://stackpoint.io/#/clusters
http://localhost:4000/docs/getting-started-guides/aws/

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 3/7

GCE

To create a Kubernetes cluster on GCE, you will need the Service Account JSON Data from Google.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Google Compute Engine (GCE).

Con�gure Your Provider

Add your Service Account JSON Data from Google. Select your default StackPointCloud SSH keypair,

or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Con�gure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to create the

cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on GCE, consult the Kubernetes

documentation.

GKE

To create a Kubernetes cluster on GKE, you will need the Service Account JSON Data from Google.

Choose a Provider

https://stackpoint.io/
https://stackpoint.io/#/clusters
http://localhost:4000/docs/getting-started-guides/gce/

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 4/7

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Google Container Engine (GKE).

Con�gure Your Provider

Add your Service Account JSON Data from Google. Select your default StackPointCloud SSH keypair,

or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Con�gure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to create the

cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on GKE, consult the o�cial

documentation.

DigitalOcean

To create a Kubernetes cluster on DigitalOcean, you will need a DigitalOcean API Token.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select DigitalOcean.

Con�gure Your Provider

https://stackpoint.io/
https://stackpoint.io/#/clusters
http://localhost:4000/docs/home/
https://stackpoint.io/

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 5/7

Add your DigitalOcean API Token. Select your default StackPointCloud SSH keypair, or click ADD SSH

KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Con�gure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to create the

cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on DigitalOcean, consult the o�cial

documentation.

Microsoft Azure

To create a Kubernetes cluster on Microsoft Azure, you will need an Azure Subscription ID,

Username/Email, and Password.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Microsoft Azure.

Con�gure Your Provider

Add your Azure Subscription ID, Username/Email, and Password. Select your default

StackPointCloud SSH keypair, or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Con�gure Your Cluster

https://stackpoint.io/#/clusters
http://localhost:4000/docs/home/
https://stackpoint.io/

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 6/7

Choose any extra options you may want to include with your cluster, then click SUBMIT to create the

cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on Azure, consult the Kubernetes

documentation.

Packet

To create a Kubernetes cluster on Packet, you will need a Packet API Key.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Packet.

Con�gure Your Provider

Add your Packet API Key. Select your default StackPointCloud SSH keypair, or click ADD SSH KEY to

add a new keypair.

Click SUBMIT to submit the authorization information.

Con�gure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to create the

cluster.

Running the Cluster

https://stackpoint.io/#/clusters
http://localhost:4000/docs/getting-started-guides/azure/
https://stackpoint.io/

10/23/2017 Running Kubernetes on Multiple Clouds with Stackpoint.io - Kubernetes

http://localhost:4000/docs/getting-started-guides/stackpoint/ 7/7

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on Packet, consult the o�cial

documentation.

https://stackpoint.io/#/clusters
http://localhost:4000/docs/home/

10/23/2017 Installing Kubernetes on AWS with kops - Kubernetes

http://localhost:4000/docs/getting-started-guides/kops/ 1/5

Installing Kubernetes on AWS with kops

Overview

This quickstart shows you how to easily install a Kubernetes cluster on AWS. It uses a tool called

kops .

kops is an opinionated provisioning system:

Fully automated installation

Uses DNS to identify clusters

Self-healing: everything runs in Auto-Scaling Groups

Limited OS support (Debian preferred, Ubuntu 16.04 supported, early support for CentOS &

RHEL)

High-Availability support

Can directly provision, or generate terraform manifests

If your opinions differ from these you may prefer to build your own cluster using kubeadm as a

building block. kops builds on the kubeadm work.

Creating a cluster

(1/5) Install kops

Requirements

You must have kubectl installed in order for kops to work.

Installation

Download kops from the releases page (it is also easy to build from source):

https://github.com/kubernetes/kops
http://localhost:4000/docs/admin/kubeadm/
http://localhost:4000/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/kops/releases

10/23/2017 Installing Kubernetes on AWS with kops - Kubernetes

http://localhost:4000/docs/getting-started-guides/kops/ 2/5

On MacOS:

On Linux:

(2/5) Create a route53 domain for your cluster

kops uses DNS for discovery, both inside the cluster and so that you can reach the kubernetes API

server from clients.

kops has a strong opinion on the cluster name: it should be a valid DNS name. By doing so you will

no longer get your clusters confused, you can share clusters with your colleagues unambiguously,

and you can reach them without relying on remembering an IP address.

You can, and probably should, use subdomains to divide your clusters. As our example we will use

useast1.dev.example.com . The API server endpoint will then be api.useast1.dev.example.com .

A Route53 hosted zone can serve subdomains. Your hosted zone could be

useast1.dev.example.com , but also dev.example.com or even example.com . kops works with

any of these, so typically you choose for organization reasons (e.g. you are allowed to create records

under dev.example.com , but not under example.com).

Let’s assume you’re using dev.example.com as your hosted zone. You create that hosted zone

using the normal process, or with a command such as

aws route53 create-hosted-zone --name dev.example.com --caller-reference 1 .

You must then set up your NS records in the parent domain, so that records in the domain will

resolve. Here, you would create NS records in example.com for dev . If it is a root domain name you

wget https://github.com/kubernetes/kops/releases/download/1.7.0/kops-darwin-amd64
chmod +x kops-darwin-amd64
mv kops-darwin-amd64 /usr/local/bin/kops
you can also install using Homebrew
brew update && brew install kops

wget https://github.com/kubernetes/kops/releases/download/1.7.0/kops-linux-amd64
chmod +x kops-linux-amd64
mv kops-linux-amd64 /usr/local/bin/kops

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html

10/23/2017 Installing Kubernetes on AWS with kops - Kubernetes

http://localhost:4000/docs/getting-started-guides/kops/ 3/5

would con�gure the NS records at your domain registrar (e.g. example.com would need to be

con�gured where you bought example.com).

This step is easy to mess up (it is the #1 cause of problems!) You can double-check that your cluster

is con�gured correctly if you have the dig tool by running:

dig NS dev.example.com

You should see the 4 NS records that Route53 assigned your hosted zone.

(3/5) Create an S3 bucket to store your clusters state

kops lets you manage your clusters even after installation. To do this, it must keep track of the

clusters that you have created, along with their con�guration, the keys they are using etc. This

information is stored in an S3 bucket. S3 permissions are used to control access to the bucket.

Multiple clusters can use the same S3 bucket, and you can share an S3 bucket between your

colleagues that administer the same clusters - this is much easier than passing around kubecfg �les.

But anyone with access to the S3 bucket will have administrative access to all your clusters, so you

don’t want to share it beyond the operations team.

So typically you have one S3 bucket for each ops team (and often the name will correspond to the

name of the hosted zone above!)

In our example, we chose dev.example.com as our hosted zone, so let’s pick

clusters.dev.example.com as the S3 bucket name.

Export AWS_PROFILE (if you need to select a pro�le for the AWS CLI to work)

Create the S3 bucket using aws s3 mb s3://clusters.dev.example.com

You can export KOPS_STATE_STORE=s3://clusters.dev.example.com and then kops will use

this location by default. We suggest putting this in your bash pro�le or similar.

(4/5) Build your cluster con�guration

Run “kops create cluster” to create your cluster con�guration:

kops create cluster --zones=us-east-1c useast1.dev.example.com

10/23/2017 Installing Kubernetes on AWS with kops - Kubernetes

http://localhost:4000/docs/getting-started-guides/kops/ 4/5

kops will create the con�guration for your cluster. Note that it only creates the con�guration, it does

not actually create the cloud resources - you’ll do that in the next step with a kops update cluster

. This give you an opportunity to review the con�guration or change it.

It prints commands you can use to explore further:

List your clusters with: kops get cluster

Edit this cluster with: kops edit cluster useast1.dev.example.com

Edit your node instance group: kops edit ig --name=useast1.dev.example.com nodes

Edit your master instance group:

kops edit ig --name=useast1.dev.example.com master-us-east-1c

If this is your �rst time using kops, do spend a few minutes to try those out! An instance group is a

set of instances, which will be registered as kubernetes nodes. On AWS this is implemented via auto-

scaling-groups. You can have several instance groups, for example if you wanted nodes that are a

mix of spot and on-demand instances, or GPU and non-GPU instances.

(5/5) Create the cluster in AWS

Run “kops update cluster” to create your cluster in AWS:

kops update cluster useast1.dev.example.com --yes

That takes a few seconds to run, but then your cluster will likely take a few minutes to actually be

ready. kops update cluster will be the tool you’ll use whenever you change the con�guration of

your cluster; it applies the changes you have made to the con�guration to your cluster - recon�guring

AWS or kubernetes as needed.

For example, after you kops edit ig nodes , then kops update cluster --yes to apply your

con�guration, and sometimes you will also have to kops rolling-update cluster to roll out the

con�guration immediately.

Without --yes , kops update cluster will show you a preview of what it is going to do. This is

handy for production clusters!

Explore other add-ons

10/23/2017 Installing Kubernetes on AWS with kops - Kubernetes

http://localhost:4000/docs/getting-started-guides/kops/ 5/5

See the list of add-ons to explore other add-ons, including tools for logging, monitoring, network

policy, visualization & control of your Kubernetes cluster.

What’s next

Learn more about Kubernetes concepts and kubectl .

Learn about kops advanced usage

Cleanup

To delete you cluster: kops delete cluster useast1.dev.example.com --yes

Feedback

Slack Channel: #sig-aws has a lot of kops users

GitHub Issues

http://localhost:4000/docs/concepts/cluster-administration/addons/
http://localhost:4000/docs/concepts/
http://localhost:4000/docs/user-guide/kubectl-overview/
https://github.com/kubernetes/kops
https://kubernetes.slack.com/messages/sig-aws/
https://github.com/kubernetes/kops/issues

10/23/2017 Installing Kubernetes On-premises/Cloud Providers with Kubespray - Kubernetes

http://localhost:4000/docs/getting-started-guides/kubespray/ 1/4

Installing Kubernetes On-premises/Cloud
Providers with Kubespray

Overview

This quickstart helps to install a Kubernetes cluster hosted on GCE, Azure, OpenStack, AWS, or

Baremetal with Kubespray.

Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain

knowledge for generic OS/Kubernetes clusters con�guration management tasks. Kubespray

provides:

a highly available cluster

composable attributes

support for most popular Linux distributions

continuous integration tests

To choose a tool which best �ts your use case, read this comparison to kubeadm and kops.

Creating a cluster

(1/5) Meet the underlay requirements

Provision servers with the following requirements:

Ansible v2.3 (or newer)

Jinja 2.9 (or newer)

python-netaddr installed on the machine that running Ansible commands

Target servers must have access to the Internet in order to pull docker images

https://github.com/kubernetes-incubator/kubespray
http://docs.ansible.com/
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/ansible.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/comparisons.md
http://localhost:4000/docs/getting-started-guides/kubeadm
http://localhost:4000/docs/getting-started-guides/kops
https://github.com/kubernetes-incubator/kubespray#requirements

10/23/2017 Installing Kubernetes On-premises/Cloud Providers with Kubespray - Kubernetes

http://localhost:4000/docs/getting-started-guides/kubespray/ 2/4

Target servers are con�gured to allow IPv4 forwarding

Target servers have SSH connectivity (tcp/22) directly to your nodes or through a bastion

host/ssh jump box

Target servers have a privileged user

Your SSH key must be copied to all the servers that are part of your inventory

Firewall rules con�gured properly to allow Ansible and Kubernetes components to communicate

If using a cloud provider, you must have the appropriate credentials available and exported as

environment variables

Kubespray provides the following utilities to help provision your environment:

Terraform scripts for the following cloud providers:

AWS

OpenStack

kubespray-cli

Note: kubespray-cli is no longer actively maintained. {. :note}

(2/5) Compose an inventory �le

After you provision your servers, create an inventory �le for Ansible. You can do this manually or via a

dynamic inventory script. For more information, see “Building your own inventory”.

(3/5) Plan your cluster deployment

Kubespray provides the ability to customize many aspects of the deployment:

CNI (networking) plugins

DNS con�guration

Choice of control plane: native/binary or containerized with docker or rkt)

Component versions

https://www.terraform.io/
https://github.com/kubernetes-incubator/kubespray/tree/master/contrib/terraform/aws
https://github.com/kubernetes-incubator/kubespray/tree/master/contrib/terraform/aws
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md
http://docs.ansible.com/ansible/intro_inventory.html
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#building-your-own-inventory

10/23/2017 Installing Kubernetes On-premises/Cloud Providers with Kubespray - Kubernetes

http://localhost:4000/docs/getting-started-guides/kubespray/ 3/4

Calico route re�ectors

Component runtime options

Certi�cate generation methods

Kubespray customizations can be made to a variable �le. If you are just getting started with

Kubespray, consider using the Kubespray defaults to deploy your cluster and explore Kubernetes.

(4/5) Deploy a Cluster

Next, deploy your cluster with one of two methods:

ansible-playbook.

kubespray-cli tool

Note: kubespray-cli is no longer actively maintained.

Both methods run the default cluster de�nition �le.

Large deployments (100+ nodes) may require speci�c adjustments for best results.

(5/5) Verify the deployment

Kubespray provides a way to verify inter-pod connectivity and DNS resolve with Netchecker.

Netchecker ensures the netchecker-agents pods can resolve DNS requests and ping each over

within the default namespace. Those pods mimic similar behavior of the rest of the workloads and

serve as cluster health indicators.

Cluster operations

Kubespray provides additional playbooks to manage your cluster: scale and upgrade.

Scale your cluster

You can scale your cluster by running the scale playbook. For more information, see “Adding nodes”.

http://docs.ansible.com/ansible/playbooks_variables.html
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#starting-custom-deployment
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md
https://github.com/kubernetes-incubator/kubespray/blob/master/cluster.yml
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/large-deployments.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/netcheck.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#Adding-nodes

10/23/2017 Installing Kubernetes On-premises/Cloud Providers with Kubespray - Kubernetes

http://localhost:4000/docs/getting-started-guides/kubespray/ 4/4

Upgrade your cluster

You can upgrade your cluster by running the upgrade-cluster playbook. For more information, see

“Upgrades”.

What’s next

Check out planned work on Kubespray’s roadmap.

Cleanup

You can reset your nodes and wipe out all components installed with Kubespray via the reset

playbook.

Caution: When running the reset playbook, be sure not to accidentally target your production

cluster!

Feedback

Slack Channel: #kubespray

GitHub Issues

https://github.com/kubernetes-incubator/kubespray/blob/master/docs/upgrades.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/roadmap.md
https://github.com/kubernetes-incubator/kubespray/blob/master/reset.yml
https://kubernetes.slack.com/messages/kubespray/
https://github.com/kubernetes-incubator/kubespray/issues

10/23/2017 Cloudstack - Kubernetes

http://localhost:4000/docs/getting-started-guides/cloudstack/ 1/3

Cloudstack

CloudStack is a software to build public and private clouds based on hardware virtualization

principles (traditional IaaS). To deploy Kubernetes on CloudStack there are several possibilities

depending on the Cloud being used and what images are made available. CloudStack also has a

vagrant plugin available, hence Vagrant could be used to deploy Kubernetes either using the existing

shell provisioner or using new Salt based recipes.

CoreOS templates for CloudStack are built nightly. CloudStack operators need to register this

template in their cloud before proceeding with these Kubernetes deployment instructions.

This guide uses an Ansible playbook. This is completely automated, a single playbook deploys

Kubernetes.

This Ansible playbook deploys Kubernetes on a CloudStack based Cloud using CoreOS images. The

playbook, creates an ssh key pair, creates a security group and associated rules and �nally starts

coreOS instances con�gured via cloud-init.

Prerequisites

On CloudStack server you also have to install libselinux-python :

Prerequisites
Clone the playbook
Create a Kubernetes cluster

Support Level

$ sudo apt-get install -y python-pip libssl-dev
$ sudo pip install cs
$ sudo pip install sshpubkeys
$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install ansible

yum install libselinux-python

https://cloudstack.apache.org/
http://coreos.com/
http://stable.release.core-os.net/amd64-usr/current/
http://docs.cloudstack.apache.org/projects/cloudstack-administration/en/latest/templates.html
https://github.com/apachecloudstack/k8s
http://ansibleworks.com/

10/23/2017 Cloudstack - Kubernetes

http://localhost:4000/docs/getting-started-guides/cloudstack/ 2/3

cs is a python module for the CloudStack API.

Set your CloudStack endpoint, API keys and HTTP method used.

You can de�ne them as environment variables: CLOUDSTACK_ENDPOINT , CLOUDSTACK_KEY ,

CLOUDSTACK_SECRET and CLOUDSTACK_METHOD .

Or create a ~/.cloudstack.ini �le:

We need to use the http POST method to pass the large userdata to the coreOS instances.

Clone the playbook

Create a Kubernetes cluster

You simply need to run the playbook.

Some variables can be edited in the k8s.yml �le.

[cloudstack]
endpoint = <your cloudstack api endpoint>
key = <your api access key>
secret = <your api secret key>
method = post

$ git clone https://github.com/apachecloudstack/k8s
$ cd kubernetes-cloudstack

$ ansible-playbook k8s.yml

vars:
 ssh_key: k8s
 k8s_num_nodes: 2
 k8s_security_group_name: k8s
 k8s_node_prefix: k8s2
 k8s_template: <templatename>
 k8s_instance_type: <serviceofferingname>

https://github.com/exoscale/cs

10/23/2017 Cloudstack - Kubernetes

http://localhost:4000/docs/getting-started-guides/cloudstack/ 3/3

This will start a Kubernetes master node and a number of compute nodes (by default 2). The

instance_type and template are speci�c, edit them to specify your CloudStack cloud speci�c

template and instance type (i.e. service offering).

Check the tasks and templates in roles/k8s if you want to modify anything.

Once the playbook as �nished, it will print out the IP of the Kubernetes master:

SSH to it using the key that was created and using the core user and you can list the machines in

your cluster:

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

CloudStack Ansible CoreOS �annel docs Community (@Guiques)

For support level information on all solutions, see the Table of solutions chart.

TASK: [k8s | debug msg='k8s master IP is {{ k8s_master.default_ip }}'] ********

$ ssh -i ~/.ssh/id_rsa_k8s core@<master IP>
$ fleetctl list-machines
MACHINE IP METADATA
a017c422... <node #1 IP> role=node
ad13bf84... <master IP> role=master
e9af8293... <node #2 IP> role=node

http://localhost:4000/docs/getting-started-guides/cloudstack
https://github.com/ltupin/
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 1/7

VMware vSphere

This page covers how to get started with deploying Kubernetes on vSphere and details for how to

con�gure the vSphere Cloud Provider.

Getting started with the vSphere Cloud Provider

Kubernetes comes with vSphere Cloud Provider, a cloud provider for vSphere that allows Kubernetes

Pods to use enterprise grade vSphere Storage.

Deploy Kubernetes on vSphere

To deploy Kubernetes on vSphere and use the vSphere Cloud Provider, see Kubernetes-Anywhere.

Detailed steps can be found at the getting started with Kubernetes-Anywhere on vSphere page.

vSphere Cloud Provider

vSphere Cloud Provider allows Kubernetes to use vSphere managed enterprise grade storage. It

supports:

Enterprise class services such as de-duplication and encryption with vSAN, QoS, high availability

and data reliability.

Policy based management at granularity of container volumes.

Volumes, Persistent Volumes, Storage Classes, dynamic provisioning of volumes, and scalable

deployment of Stateful Apps with StatefulSets.

For more detail visit vSphere Storage for Kubernetes Documentation.

Getting started with the vSphere Cloud Provider
Deploy Kubernetes on vSphere
vSphere Cloud Provider

Enable vSphere Cloud Provider
Known issues

Support Level

https://github.com/kubernetes/kubernetes-anywhere
https://git.k8s.io/kubernetes-anywhere/phase1/vsphere/README.md
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 2/7

Documentation for how to use vSphere managed storage can be found in the persistent volumes

user guide and the volumes user guide.

Examples can be found here.

Enable vSphere Cloud Provider

If a Kubernetes cluster has not been deployed using Kubernetes-Anywhere, follow the instructions

below to enable the vSphere Cloud Provider. These steps are not needed when using Kubernetes-

Anywhere, they will be done as part of the deployment.

Step-1 Create a VM folder and move Kubernetes Node VMs to this folder.

Step-2 Make sure Node VM names must comply with the regex

[a-z](([-0-9a-z]+)?[0-9a-z])?(\.[a-z0-9](([-0-9a-z]+)?[0-9a-z])?)* . If Node VMs do

not comply with this regex, rename them and make it compliant to this regex.

Node VM names constraints:

VM names can not begin with numbers.

VM names can not have capital letters, any special characters except . and - .

VM names can not be shorter than 3 chars and longer than 63.

Step-3 Enable disk UUID on Node virtual machines.

The disk.EnableUUID parameter must be set to “TRUE” for each Node VM. This step is necessary so

that the VMDK always presents a consistent UUID to the VM, thus allowing the disk to be mounted

properly.

For each of the virtual machine nodes that will be participating in the cluster, follow the steps below

using GOVC tool

Set up GOVC environment

export GOVC_URL='vCenter IP OR FQDN'

export GOVC_USERNAME='vCenter User'

export GOVC_PASSWORD='vCenter Password'

export GOVC_INSECURE=1

http://localhost:4000/docs/concepts/storage/persistent-volumes/#vsphere
http://localhost:4000/docs/concepts/storage/volumes/#vspherevolume
https://github.com/kubernetes/examples/tree/master/staging/volumes/vsphere
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.vcenterhost.doc/GUID-031BDB12-D3B2-4E2D-80E6-604F304B4D0C.html
https://github.com/vmware/govmomi/tree/master/govc

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 3/7

Find Node VM Paths

Set disk.EnableUUID to true for all VMs

Note: If Kubernetes Node VMs are created from template VM then disk.EnableUUID=1 can be set

on the template VM. VMs cloned from this template, will automatically inherit this property.

Step-4 Create and assign Roles to the vSphere Cloud Provider user and vSphere entities.

Note: if you want to use Administrator account then this step can be skipped.

vSphere Cloud Provider requires the following minimal set of privileges to interact with vCenter.

Please refer vSphere Documentation Center to know about steps for creating a Custom Role, User

and Role Assignment.

Roles Privileges Entities Propagate to
Children

manage-k8s-node-vms

Resource.AssignVMToPool
System.Anonymous
System.Read
System.View
VirtualMachine.Con�g.AddExistingDisk
VirtualMachine.Con�g.AddNewDisk
VirtualMachine.Con�g.AddRemoveDevice
VirtualMachine.Con�g.RemoveDisk
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.Delete

Cluster,
Hosts,
VM Folder

Yes

manage-k8s-volumes

Datastore.AllocateSpace
Datastore.FileManagement
System.Anonymous
System.Read
System.View

Datastore No

k8s-system-read-and-spbm-pro�le-
view

StoragePro�le.View
System.Anonymous
System.Read
System.View

vCenter No

ReadOnly
System.Anonymous
System.Read
System.View

Datacenter,
Datastore Cluster,
Datastore Storage
Folder

No

govc ls /datacenter/vm/<vm-folder-name>

govc vm.change -e="disk.enableUUID=1" -vm='VM Path'

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.security.doc/GUID-18071E9A-EED1-4968-8D51-E0B4F526FDA3.html

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 4/7

Step-5 Create the vSphere cloud con�g �le (vsphere.conf). Cloud con�g template can be found

here.

This con�g �le needs to be placed in the shared directory which should be accessible from kubelet

container, controller-manager pod, and API server pod.

vsphere.conf for Master Node:

Note: vm-name parameter is introduced in 1.6.4 release. Both vm-uuid and vm-name are optional

parameters. If vm-name is speci�ed then vm-uuid is not used. If both are not speci�ed then kubelet

will get vm-uuid from /sys/class/dmi/id/product_serial and query vCenter to �nd the Node

VM’s name.

vsphere.conf for Worker Nodes: (Only Applicable to 1.6.4 release and above. For older releases

this �le should have all the parameters speci�ed in Master node’s vSphere.conf �le).

Below is summary of supported parameters in the vsphere.conf �le

user is the vCenter username for vSphere Cloud Provider.

password is the password for vCenter user speci�ed with user .

server is the vCenter Server IP or FQDN

[Global]
 user = "vCenter username for cloud provider"
 password = "password"
 server = "IP/FQDN for vCenter"
 port = "443" #Optional
 insecure-flag = "1" #set to 1 if the vCenter uses a self-signed cert
 datacenter = "Datacenter name"
 datastore = "Datastore name" #Datastore to use for provisioning volumes us
 working-dir = "vCenter VM folder path in which node VMs are located"
 vm-name = "VM name of the Master Node" #Optional
 vm-uuid = "UUID of the Node VM" # Optional
[Disk]
 scsicontrollertype = pvscsi

[Global]
 vm-name = "VM name of the Worker Node"

https://github.com/kubernetes/kubernetes-anywhere/blob/master/phase1/vsphere/vsphere.conf

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 5/7

port is the vCenter Server Port. Default is 443 if not speci�ed.

insecure-flag is set to 1 if vCenter used a self-signed certi�cate.

datacenter is the name of the datacenter on which Node VMs are deployed.

datastore is the default datastore to use for provisioning volumes using storage

classes/dynamic provisioning.

vm-name is recently added con�guration parameter. This is optional parameter. When this

parameter is present, vsphere.conf �le on the worker node does not need vCenter credentials.

Note: vm-name is added in the release 1.6.4. Prior releases does not support this parameter.

working-dir can be set to empty (working-dir = “”), if Node VMs are located in the root VM

folder.

vm-uuid is the VM Instance UUID of virtual machine. vm-uuid can be set to empty (

vm-uuid = ""). If set to empty, this will be retrieved from /sys/class/dmi/id/product_serial �le

on virtual machine (requires root access).

vm-uuid needs to be set in this format - 423D7ADC-F7A9-F629-8454-CE9615C810F1

vm-uuid can be retrieved from Node Virtual machines using following command. This will

be different on each node VM.

datastore is the default datastore used for provisioning volumes using storage classes. If

datastore is located in storage folder or datastore is member of datastore cluster, make sure to

specify full datastore path. Make sure vSphere Cloud Provider user has Read Privilege set on the

datastore cluster or storage folder to be able to �nd datastore.

For datastore located in the datastore cluster, specify datastore as mentioned below

cat /sys/class/dmi/id/product_serial | sed -e 's/^VMware-//' -e 's/-/ /' |

datastore = "DatastoreCluster/datastore1"

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 6/7

For datastore located in the storage folder, specify datastore as mentioned below

Step-6 Add �ags to controller-manager, API server and Kubelet to enable vSphere Cloud Provider. *

Add following �ags to kubelet running on every node and to the controller-manager and API server

pods manifest �les.

Manifest �les for API server and controller-manager are generally located at

/etc/kubernetes/manifests .

Step-7 Restart Kubelet on all nodes.

Reload kubelet systemd unit �le using systemctl daemon-reload

Restart kubelet service using systemctl restart kubelet.service

Note: After enabling the vSphere Cloud Provider, Node names will be set to the VM names from the

vCenter Inventory.

Known issues

Please visit known issues for the list of major known issues with Kubernetes vSphere Cloud Provider.

Support Level

For quick support please join VMware Code Slack (kubernetes) and post your question.

IaaS
Provider

Con�g.
Mgmt OS Networking Docs Conforms Support Level

Vmware
vSphere

Kube-
anywhere

Photon
OS Flannel docs Community (@abrarshivani), (@kerneltime),

(@BaluDontu), (@luomiao), (@divyenpatel)

datastore = "DatastoreStorageFolder/datastore1"

--cloud-provider=vsphere
--cloud-config=<Path of the vsphere.conf file>

https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/known-issues.html
https://vmwarecode.slack.com/messages/kubernetes/
http://localhost:4000/docs/getting-started-guides/vsphere/
https://github.com/abrarshivani
https://github.com/kerneltime
https://github.com/BaluDontu
https://github.com/luomiao
https://github.com/divyenpatel

10/23/2017 VMware vSphere - Kubernetes

http://localhost:4000/docs/getting-started-guides/vsphere/ 7/7

If you identify any issues/problems using the vSphere cloud provider, you can create an issue in our

repo - VMware Kubernetes.

For support level information on all solutions, see the Table of solutions chart.

https://github.com/vmware/kubernetes
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 VMware Photon Controller - Kubernetes

http://localhost:4000/docs/getting-started-guides/photon-controller/ 1/6

VMware Photon Controller

The example below creates a Kubernetes cluster using VMware’s Photon Controller. The cluster will

have one Kubernetes master and three Kubernetes nodes.

Prerequisites

1. You need administrator access to a VMware Photon Controller deployment. (Administrator

access is only required for the initial setup: the actual creation of the cluster can be done by

anyone.)

2. The Photon Controller CLI needs to be installed on the machine on which you’ll be running kube-

up. If you have go installed, this can be easily installed with:

3. mkisofs needs to be installed. The installation process creates a CD-ROM ISO image to

bootstrap the VMs with cloud-init. If you are on a Mac, you can install this with brew:

Prerequisites
Download VM Image
Con�gure Photon Controller:
Con�gure kube-up
Creating your Kubernetes cluster
Removing your Kubernetes cluster
Making services publicly accessible

Option 1: NodePort
Option 2: Ingress Controller

Details
Logging into VMs

Networking
Support Level

go get github.com/vmware/photon-controller-cli/photon

brew install cdrtools

http://vmware.github.io/photon-controller/
https://github.com/vmware/photon-controller-cli
http://brew.sh/

10/23/2017 VMware Photon Controller - Kubernetes

http://localhost:4000/docs/getting-started-guides/photon-controller/ 2/6

4. Several common tools need to be installed: ssh , scp , openssl

5. You should have an ssh public key installed. This will be used to give you access to the VM’s

user account, kube .

6. Get or build a binary release

Download VM Image

Download a prebuilt Debian 8.2 VMDK that we’ll use as a base image:

This is a base Debian 8.2 image with the addition of:

openssh-server

open-vm-tools

cloud-init

Con�gure Photon Controller:

In order to deploy Kubernetes, you need to con�gure Photon Controller with:

A tenant, with associated resource ticket

A project within that tenant

VM and disk �avors, to describe the VM characteristics

An image: we’ll use the one above

When you do this, you’ll need to con�gure the cluster/photon-controller/config-common.sh

�le with the names of the tenant, project, �avors, and image.

If you prefer, you can use the provided cluster/photon-controller/setup-prereq.sh script to

create these. Assuming the IP address of your Photon Controller is 192.0.2.2 (change as appropriate)

curl --remote-name-all https://s3.amazonaws.com/photon-platform/artifacts/OS/debia

http://localhost:4000/docs/getting-started-guides/binary_release/

10/23/2017 VMware Photon Controller - Kubernetes

http://localhost:4000/docs/getting-started-guides/photon-controller/ 3/6

and the downloaded image is kube.vmdk, you can run:

The setup-prereq.sh script will create the tenant, project, �avors, and image based on the same

con�guration �le used by kube-up: cluster/photon-controller/config-common.sh . Note that it

will create a resource ticket which limits how many VMs a tenant can create. You will want to change

the resource ticket con�guration in config-common.sh based on your actual Photon Controller

deployment.

Con�gure kube-up

There are two �les used to con�gure kube-up’s interaction with Photon Controller:

1. cluster/photon-controller/config-common.sh has the most common parameters,

including the names of the tenant, project, and image.

2. cluster/photon-controller/config-default.sh has more advanced parameters including

the IP subnets to use, the number of nodes to create and which Kubernetes components to

con�gure.

Both �les have documentation to explain the different parameters.

Creating your Kubernetes cluster

To create your Kubernetes cluster we will run the standard kube-up command. As described above,

the parameters that control kube-up’s interaction with Photon Controller are speci�ed in �les, not on

the command-line.

The time to deploy varies based on the number of nodes you create as well as the speci�cations of

your Photon Controller hosts and network. Times vary from 10 - 30 minutes for a ten node cluster.

Once you have successfully reached this point, your Kubernetes cluster works just like any other.

photon target set https://192.0.2.2
photon target login ...credentials...
cluster/photon-controller/setup-prereq.sh https://192.0.2.2 kube.vmdk

KUBERNETES_PROVIDER=photon-controller cluster/kube-up.sh

10/23/2017 VMware Photon Controller - Kubernetes

http://localhost:4000/docs/getting-started-guides/photon-controller/ 4/6

Note that kube-up created a Kubernetes con�guration �le for you in ~/.kube/config . This �le will

allow you to use the kubectl command. It contains the IP address of the Kubernetes master as

well as the password for the admin user. If you wish to use the Kubernetes web-based user

interface you will need this password. In the con�g �le you’ll see a section that look like the following:

you use the password there. (Note that the output has been trimmed: the certi�cate data is much

lengthier)

Removing your Kubernetes cluster

The recommended way to remove your Kubernetes cluster is with the kube-down command:

Your Kubernetes cluster is just a set of VMs: you can manually remove them if you need to.

Making services publicly accessible

There are multiple ways to make services publicly accessible in Kubernetes. Currently, the photon-

controller support does not yet include built-in support for the LoadBalancer option.

Option 1: NodePort

One option is to use the NodePort option with a manually deployed balancer. Speci�cally:

Con�gure your service with the NodePort option. For example, this service uses the NodePort option.

All Kubernetes nodes will listen on a port and forward network tra�c to any pods in the service. In

this case, Kubernetes will choose a random port, but it will be the same port on all nodes.

- name: photon-kubernetes
 user:
 client-certificate-data: Q2Vyd...
 client-key-data: LS0tL...
 password: PASSWORD-HERE
 username: admin

KUBERNETES_PROVIDER=photon-controller cluster/kube-down.sh

10/23/2017 VMware Photon Controller - Kubernetes

http://localhost:4000/docs/getting-started-guides/photon-controller/ 5/6

Next, create a new standalone VM (or VMs, for high availability) to act as a load balancer. For

example, if you use haproxy, you could make a con�guration similar to the one below. Note that this

example assumes there are three Kubernetes nodes: you would adjust the con�guration to re�ect

the actual nodes you have. Also note that port 30144 should be replaced with whatever NodePort

was assigned by Kubernetes.

Option 2: Ingress Controller

Using an ingress controller may also be an appropriate solution. Note that it in a production

environment it will also require an external load balancer. However, it may be simpler to manage

because it will not require you to manually update the load balancer con�guration, as above.

Details

apiVersion: v1
kind: Service
metadata:
 name: nginx-demo-service
 labels:
 app: nginx-demo
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 name: http
 selector:
 app: nginx-demo

frontend nginx-demo
 bind *:30144
 mode http
 default_backend nodes
backend nodes
 mode http
 balance roundrobin
 option forwardfor
 http-request set-header X-Forwarded-Port %[dst_port]
 http-request add-header X-Forwarded-Proto https if { ssl_fc }
 option httpchk HEAD / HTTP/1.1\r\nHost:localhost
 server web0 192.0.2.2:30144 check
 server web1 192.0.2.3:30144 check
 server web2 192.0.2.4:30144 check

http://localhost:4000/docs/concepts/services-networking/ingress/#ingress-controllers

10/23/2017 VMware Photon Controller - Kubernetes

http://localhost:4000/docs/getting-started-guides/photon-controller/ 6/6

Logging into VMs

When the VMs are created, a kube user is created (using cloud-init). The password for the kube user

is the same as the administrator password for your Kubernetes master and can be found in your

Kubernetes con�guration �le: see above to �nd it. The kube user will also authorize your ssh public

key to log in. This is used during installation to avoid the need for passwords.

The VMs do have a root user, but ssh to the root user is disabled.

Networking

The Kubernetes cluster uses kube-proxy to con�gure the overlay network with iptables. Currently

we do not support other overlay networks such as Weave or Calico.

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Vmware Photon Saltstack Debian OVS docs Community (@alainroy)

http://localhost:4000/docs/getting-started-guides/photon-controller
https://github.com/alainroy

10/23/2017 Kubernetes on DCOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/dcos/ 1/1

Kubernetes on DCOS

Mesosphere provides an easy option to provision Kubernetes onto DC/OS, offering:

Pure upstream Kubernetes

Single-click cluster provisioning

Highly available and secure by default

Kubernetes running alongside fast-data platforms (e.g. Akka, Cassandra, Kafka, Spark)

O�cial Mesosphere Guide

The canonical source of getting started on DC/OS is located in the quickstart repo.

https://mesosphere.com/product/
https://github.com/mesosphere/dcos-kubernetes-quickstart

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 1/10

CoreOS on libvirt

Highlights

Super-fast cluster boot-up (few seconds instead of several minutes for vagrant)

Reduced disk usage thanks to COW

Reduced memory footprint thanks to KSM

Warnings about libvirt-coreos use case

The primary goal of the libvirt-coreos cluster provider is to deploy a multi-node Kubernetes

cluster on local VMs as fast as possible and to be as light as possible in term of resources used.

In order to achieve that goal, its deployment is very different from the “standard production

deployment” method used on other providers. This was done on purpose in order to implement

Highlights
Warnings about libvirt-coreos use case
Prerequisites

¹ Depending on your distribution, libvirt access may be denied by default or may require a
password at each access.
² Qemu will run with a speci�c user. It must have access to the VMs drives

Setup
Automated setup
Manual setup

Management
Interacting with your Kubernetes cluster with the kube-* scripts.
Troubleshooting

!!! Cannot �nd kubernetes-server-linux-amd64.tar.gz
Can’t �nd virsh in PATH, please �x and retry.
error: Failed to connect socket to ‘/var/run/libvirt/libvirt-sock’: No such �le or directory
error: Failed to connect socket to ‘/var/run/libvirt/libvirt-sock’: Permission denied
error: Out of memory initializing network (virsh net-create…)

Support Level

https://en.wikibooks.org/wiki/QEMU/Images#Copy_on_write
https://www.kernel.org/doc/Documentation/vm/ksm.txt

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 2/10

some optimizations made possible by the fact that we know that all VMs will be running on the same

physical machine.

The libvirt-coreos cluster provider doesn’t aim at being production look-alike.

Another difference is that no security is enforced on libvirt-coreos at all. For example,

Kube API server is reachable via a clear-text connection (no SSL);

Kube API server requires no credentials;

etcd access is not protected;

Kubernetes secrets are not protected as securely as they are on production environments;

etc.

So, a k8s application developer should not validate its interaction with Kubernetes on

libvirt-coreos because he might technically succeed in doing things that are prohibited on a

production environment like:

un-authenticated access to Kube API server;

Access to Kubernetes private data structures inside etcd;

etc.

On the other hand, libvirt-coreos might be useful for people investigating low level

implementation of Kubernetes because debugging techniques like sni�ng the network tra�c or

introspecting the etcd content are easier on libvirt-coreos than on a production deployment.

Prerequisites

1. Install dnsmasq

2. Install ebtables

3. Install qemu

4. Install libvirt

5. Install openssl

http://www.thekelleys.org.uk/dnsmasq/doc.html
http://ebtables.netfilter.org/
http://wiki.qemu.org/Main_Page
http://libvirt.org/
http://openssl.org/

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 3/10

6. Enable and start the libvirt daemon, e.g.:

1. systemctl enable libvirtd && systemctl start libvirtd # for systemd-based

systems

2. /etc/init.d/libvirt-bin start # for init.d-based systems

7. Grant libvirt access to your user¹

8. Check that your $HOME is accessible to the qemu user²

¹ Depending on your distribution, libvirt access may be denied by default or
may require a password at each access.

You can test it with the following command:

If you have access error messages, please read https://libvirt.org/acl.html and

https://libvirt.org/aclpolkit.html.

In short, if your libvirt has been compiled with Polkit support (ex: Arch, Fedora 21), you can create

/etc/polkit-1/rules.d/50-org.libvirt.unix.manage.rules as follows to grant full access to

libvirt to $USER

If your libvirt has not been compiled with Polkit (ex: Ubuntu 14.04.1 LTS), check the permissions on

the libvirt unix socket:

virsh -c qemu:///system pool-list

sudo /bin/sh -c "cat - > /etc/polkit-1/rules.d/50-org.libvirt.unix.manage.rules" <

polkit.addRule(function(action, subject) {
 if (action.id == "org.libvirt.unix.manage" &&
 subject.user == "$USER") {
 return polkit.Result.YES;
 polkit.log("action=" + action);
 polkit.log("subject=" + subject);
 }
});
EOF

https://libvirt.org/aclpolkit.html
https://libvirt.org/acl.html
https://libvirt.org/aclpolkit.html

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 4/10

(Replace $USER with your login name)

² Qemu will run with a speci�c user. It must have access to the VMs drives

All the disk drive resources needed by the VM (CoreOS disk image, Kubernetes binaries, cloud-init

�les, etc.) are put inside ./cluster/libvirt-coreos/libvirt_storage_pool .

As we’re using the qemu:///system instance of libvirt, qemu will run with a speci�c user:group

distinct from your user. It is con�gured in /etc/libvirt/qemu.conf . That qemu user must have

access to that libvirt storage pool.

If your $HOME is world readable, everything is �ne. If your $HOME is private, cluster/kube-up.sh

will fail with an error message like:

In order to �x that issue, you have several possibilities:

set POOL_PATH inside cluster/libvirt-coreos/config-default.sh to a directory:

backed by a �lesystem with a lot of free disk space

writable by your user;

accessible by the qemu user.

Grant the qemu user access to the storage pool.

On Arch:

$ ls -l /var/run/libvirt/libvirt-sock
srwxrwx--- 1 root libvirtd 0 févr. 12 16:03 /var/run/libvirt/libvirt-sock

$ usermod -a -G libvirtd $USER
$USER needs to logout/login to have the new group be taken into account

error: Cannot access storage file '$HOME/.../kubernetes/cluster/libvirt-coreos/lib

setfacl -m g:kvm:--x ~

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 5/10

Setup

By default, the libvirt-coreos setup will create a single Kubernetes master and 3 Kubernetes nodes.

Because the VM drives use Copy-on-Write and because of memory ballooning and KSM, there is a lot

of resource over-allocation.

There is both an automated way and a manual, customizable way of setting up libvirt Kubernetes

clusters on CoreOS.

Automated setup

There is an automated setup script on https://get.k8s.io that will download the tarball for Kubernetes

and spawn a Kubernetes cluster on a local CoreOS instances that the script creates. To run this

script, use wget or curl with the KUBERNETES_PROVIDER environment variable set to libvirt-coreos:

Here is the curl version of this command:

This script downloads and unpacks the tarball, then spawns a Kubernetes cluster on CoreOS

instances with the following characteristics:

Total of 4 KVM/QEMU instances

1 instance acting as a Kubernetes master node

3 instances acting as minion nodes

If you’d like to run this cluster with customized settings, follow the manual setup instructions.

Manual setup

To start your local cluster, open a shell and run:

export KUBERNETES_PROVIDER=libvirt-coreos; wget -q -O - https://get.k8s.io | bash

export KUBERNETES_PROVIDER=libvirt-coreos; curl -sS https://get.k8s.io | bash

https://get.k8s.io/

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 6/10

The KUBERNETES_PROVIDER environment variable tells all of the various cluster management scripts

which variant to use. If you forget to set this, the assumption is you are running on Google Compute

Engine.

The NUM_NODES environment variable may be set to specify the number of nodes to start. If it is not

set, the number of nodes defaults to 3.

The KUBE_PUSH environment variable may be set to specify which Kubernetes binaries must be

deployed on the cluster. Its possible values are:

release (default if KUBE_PUSH is not set) will deploy the binaries of

_output/release-tars/kubernetes-server-….tar.gz . This is built with make release or

make release-skip-tests .

local will deploy the binaries of _output/local/go/bin . These are built with make .

Management

You can check that your machines are there and running with:

cd kubernetes

export KUBERNETES_PROVIDER=libvirt-coreos
cluster/kube-up.sh

$ virsh -c qemu:///system list
 Id Name State
--
 15 kubernetes_master running
 16 kubernetes_node-01 running
 17 kubernetes_node-02 running
 18 kubernetes_node-03 running
 ``` 

You can check that the Kubernetes cluster is working with: 

```shell 
$ kubectl get nodes
NAME STATUS AGE VERSION
192.168.10.2 Ready 4h v1.6.0+fff5156
192.168.10.3 Ready 4h v1.6.0+fff5156
192.168.10.4 Ready 4h v1.6.0+fff5156

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 7/10

The VMs are running CoreOS. Your ssh keys have already been pushed to the VM. (It looks for

~/.ssh/id_*.pub) The user to use to connect to the VM is core . The IP to connect to the master is

192.168.10.1. The IPs to connect to the nodes are 192.168.10.2 and onwards.

Connect to kubernetes_master :

Connect to kubernetes_node-01 :

Interacting with your Kubernetes cluster with the kube-* scripts.

All of the following commands assume you have set KUBERNETES_PROVIDER appropriately:

Bring up a libvirt-CoreOS cluster of 5 nodes

Destroy the libvirt-CoreOS cluster

Update the libvirt-CoreOS cluster with a new Kubernetes release produced by make release or

make release-skip-tests :

Update the libvirt-CoreOS cluster with the locally built Kubernetes binaries produced by make :

ssh core@192.168.10.1

ssh core@192.168.10.2

export KUBERNETES_PROVIDER=libvirt-coreos

NUM_NODES=5 cluster/kube-up.sh

cluster/kube-down.sh

cluster/kube-push.sh

https://coreos.com/

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 8/10

Interact with the cluster

Troubleshooting

!!! Cannot �nd kubernetes-server-linux-amd64.tar.gz

Build the release tarballs:

Can’t �nd virsh in PATH, please �x and retry.

Install libvirt

On Arch:

On Ubuntu 14.04:

On Fedora 21:

error: Failed to connect socket to ‘/var/run/libvirt/libvirt-sock’: No such �le or
directory

Start the libvirt daemon

KUBE_PUSH=local cluster/kube-push.sh

kubectl ...

make release

pacman -S qemu libvirt

aptitude install qemu-system-x86 libvirt-bin

yum install qemu libvirt

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 9/10

On Arch:

The virtlogd.socket is not started with the libvirtd daemon. If you enable the libvirtd.service

it is linked and started automatically on the next boot.

On Ubuntu 14.04:

error: Failed to connect socket to ‘/var/run/libvirt/libvirt-sock’: Permission
denied

Fix libvirt access permission (Remember to adapt $USER)

On Arch and Fedora 21:

On Ubuntu:

error: Out of memory initializing network (virsh net-create…)

Ensure libvirtd has been restarted since ebtables was installed.

systemctl start libvirtd virtlogd.socket

service libvirt-bin start

cat > /etc/polkit-1/rules.d/50-org.libvirt.unix.manage.rules <<EOF

polkit.addRule(function(action, subject) {
 if (action.id == "org.libvirt.unix.manage" &&
 subject.user == "$USER") {
 return polkit.Result.YES;
 polkit.log("action=" + action);
 polkit.log("subject=" + subject);
 }
});
EOF

usermod -a -G libvirtd $USER

10/23/2017 CoreOS on libvirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/libvirt-coreos/ 10/10

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

libvirt/KVM CoreOS CoreOS libvirt/KVM docs Community (@lhuard1A)

For support level information on all solutions, see the Table of solutions chart.

http://localhost:4000/docs/getting-started-guides/libvirt-coreos
https://github.com/lhuard1A
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 oVirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/ovirt/ 1/3

oVirt

What is oVirt

oVirt is a virtual datacenter manager that delivers powerful management of multiple virtual

machines on multiple hosts. Using KVM and libvirt, oVirt can be installed on Fedora, CentOS, or Red

Hat Enterprise Linux hosts to set up and manage your virtual data center.

oVirt Cloud Provider Deployment

The oVirt cloud provider allows to easily discover and automatically add new VM instances as nodes

to your Kubernetes cluster. At the moment there are no community-supported or pre-loaded VM

images including Kubernetes but it is possible to import or install Project Atomic (or Fedora) in a VM

to generate a template. Any other distribution that includes Kubernetes may work as well.

It is mandatory to install the ovirt-guest-agent in the guests for the VM ip address and hostname to

be reported to ovirt-engine and ultimately to Kubernetes.

Once the Kubernetes template is available it is possible to start instantiating VMs that can be

discovered by the cloud provider.

Using the oVirt Cloud Provider

The oVirt Cloud Provider requires access to the oVirt REST-API to gather the proper information, the

required credential should be speci�ed in the ovirt-cloud.conf �le:

What is oVirt
oVirt Cloud Provider Deployment
Using the oVirt Cloud Provider
oVirt Cloud Provider Screencast
Support Level

http://ovedou.blogspot.it/2014/03/importing-glance-images-as-ovirt.html
http://www.ovirt.org/Quick_Start_Guide#Create_Virtual_Machines
http://www.ovirt.org/Quick_Start_Guide#Using_Templates
http://www.ovirt.org/documentation/how-to/guest-agent/install-the-guest-agent-in-fedora/

10/23/2017 oVirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/ovirt/ 2/3

In the same �le it is possible to specify (using the filters section) what search query to use to

identify the VMs to be reported to Kubernetes:

In the above example all the VMs tagged with the kubernetes label will be reported as nodes to

Kubernetes.

The ovirt-cloud.conf �le then must be speci�ed in kube-controller-manager:

oVirt Cloud Provider Screencast

This short screencast demonstrates how the oVirt Cloud Provider can be used to dynamically add

VMs to your Kubernetes cluster.

[connection]
uri = https://localhost:8443/ovirt-engine/api
username = admin@internal
password = admin

[filters]
Search query used to find nodes
vms = tag=kubernetes

kube-controller-manager ... --cloud-provider=ovirt --cloud-config=/path/to/ovirt-c

10/23/2017 oVirt - Kubernetes

http://localhost:4000/docs/getting-started-guides/ovirt/ 3/3

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

oVirt docs Community (@simon3z)

For support level information on all solutions, see the Table of solutions chart.

http://www.youtube.com/watch?v=JyyST4ZKne8
http://localhost:4000/docs/getting-started-guides/ovirt
https://github.com/simon3z
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 1/8

OpenStack Heat

Getting started with OpenStack

Note: The openstack-heat provider that this guide uses is deprecated as of Kubernetes v1.8 and

will be removed in a future release.

This guide will take you through the steps of deploying Kubernetes to Openstack using kube-up.sh .

The primary mechanisms for this are OpenStack Heat and the SaltStack distributed with Kubernetes.

The default OS is CentOS 7, this has not been tested on other operating systems.

This guide assumes you have access to a working OpenStack cluster with the following features:

Nova

Getting started with OpenStack
Pre-Requisites

Install OpenStack CLI tools
Con�gure Openstack CLI tools
Set additional con�guration values
Manually overriding con�guration values

Starting a cluster
Inspect your cluster
Using your cluster
Administering your cluster with Openstack

Salt
SSHing to your nodes
Cluster deployment customization examples

Proxy con�guration
Setting different Swift URL
Public network name.
Spinning up additional clusters.

Tearing down your cluster
Support Level

https://wiki.openstack.org/wiki/Heat
https://git.k8s.io/kubernetes/cluster/saltbase

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 2/8

Neutron

Swift

Glance

Heat

DNS resolution of instance names

By default this provider provisions 4 m1.medium instances. If you do not have resources available,

please see the Set additional con�guration values section for information on reducing the footprint

of your cluster.

Pre-Requisites

If you already have the required versions of the OpenStack CLI tools installed and con�gured, you

can move on to the Starting a cluster section.

Install OpenStack CLI tools

Con�gure Openstack CLI tools

Please talk to your local OpenStack administrator for an openrc.sh �le.

Once you have that �le, source it into your environment by typing

This provider will consume the correct variables to talk to OpenStack and turn-up the Kubernetes

cluster.

sudo pip install -U --force 'python-openstackclient==3.11.0'
sudo pip install -U --force 'python-heatclient==1.10.0'
sudo pip install -U --force 'python-swiftclient==3.3.0'
sudo pip install -U --force 'python-glanceclient==2.7.0'
sudo pip install -U --force 'python-novaclient==9.0.1'

. ~/path/to/openrc.sh

http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 3/8

Otherwise, you must set the following appropriately:

Set additional con�guration values

In addition, here are some commonly changed variables speci�c to this provider, with example

values. Under most circumstances you will not have to change these. Please see the �les in the next

section for a full list of options.

Manually overriding con�guration values

If you do not have your environment variables set, or do not want them consumed, modify the

variables in the following �les under cluster/openstack-heat :

con�g-default.sh Sets all parameters needed for heat template.

con�g-image.sh Sets parameters needed to download and create new OpenStack image via

glance.

openrc-default.sh Sets environment variables for communicating to OpenStack. These are

consumed by the cli tools (heat, glance, swift, nova).

openrc-swift.sh Some OpenStack setups require the use of separate swift credentials. Put

those credentials in this �le.

export OS_USERNAME=username
export OS_PASSWORD=password
export OS_TENANT_NAME=projectName
export OS_AUTH_URL=https://identityHost:portNumber/v2.0
export OS_TENANT_ID=tenantIDString
export OS_REGION_NAME=regionName

export STACK_NAME=KubernetesStack
export NUMBER_OF_MINIONS=3
export MAX_NUMBER_OF_MINIONS=3
export MASTER_FLAVOR=m1.small
export MINION_FLAVOR=m1.small
export EXTERNAL_NETWORK=public
export DNS_SERVER=8.8.8.8
export IMAGE_URL_PATH=http://cloud.centos.org/centos/7/images
export IMAGE_FILE=CentOS-7-x86_64-GenericCloud-1510.qcow2
export SWIFT_SERVER_URL=http://192.168.123.100:8080
export ENABLE_PROXY=false

http://releases.k8s.io/master/cluster/openstack-heat/config-default.sh
http://releases.k8s.io/master/cluster/openstack-heat/config-image.sh
http://releases.k8s.io/master/cluster/openstack-heat/openrc-default.sh
http://releases.k8s.io/master/cluster/openstack-heat/openrc-swift.sh

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 4/8

Please see the contents of these �les for documentation regarding each variable’s function.

Starting a cluster

Once you’ve installed the OpenStack CLI tools and have set your OpenStack environment variables,

issue this command:

Alternatively, you can download a Kubernetes release of version 1.3 or higher and extract the archive.

To start your cluster, open a shell and run:

Or, if you are working from a checkout of the Kubernetes code base, and want to build/test from

source:

Inspect your cluster

Once kube-up is �nished, your cluster should be running:

You can also list the nodes in your cluster:

export KUBERNETES_PROVIDER=openstack-heat; curl -sS https://get.k8s.io | bash

cd kubernetes # Or whichever path you have extracted the release to
KUBERNETES_PROVIDER=openstack-heat ./cluster/kube-up.sh

cd kubernetes # Or whatever your checkout root directory is called
make clean
make quick-release
KUBERNETES_PROVIDER=openstack-heat ./cluster/kube-up.sh

./cluster/kubectl.sh get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-1 Healthy {"health": "true"}
etcd-0 Healthy {"health": "true"}

https://github.com/kubernetes/kubernetes/releases

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 5/8

Being a new cluster, there will be no pods or replication controllers in the default namespace:

You are now ready to create Kubernetes objects.

Using your cluster

For a simple test, issue the following command:

Soon, you should have a running nginx pod:

Once the nginx pod is running, use the port-forward command to set up a proxy from your machine

to the pod.

You should now see nginx on http://localhost:8888.

For more complex examples please see the examples directory.

Administering your cluster with Openstack

./cluster/kubectl.sh get nodes
NAME STATUS AGE VERSION
kubernetesstack-node-ojszyjtr Ready 42m v1.6.0+fff5156
kubernetesstack-node-tzotzcbp Ready 46m v1.6.0+fff5156
kubernetesstack-node-uah8pkju Ready 47m v1.6.0+fff5156

./cluster/kubectl.sh get pods

./cluster/kubectl.sh get replicationcontrollers

./cluster/kubectl.sh run nginx --image=nginx --generator=run-pod/v1

./cluster/kubectl.sh get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 5m

./cluster/kubectl.sh port-forward nginx 8888:80

http://localhost:4000/docs/getting-started-guides/openstack-heat/
https://github.com/kubernetes/examples/tree/master/

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 6/8

You can manage the nodes in your cluster using the OpenStack CLI Tools.

First, set your environment variables:

To get all information about your cluster, use heat:

To see a list of nodes, use nova:

See the OpenStack CLI Reference for more details.

Salt

The OpenStack-Heat provider uses a standalone Salt con�guration. It only uses Salt for

bootstrapping the machines and creates no salt-master and does not auto-start the salt-minion

service on the nodes.

SSHing to your nodes

Your public key was added during the cluster turn-up, so you can easily ssh to them for

troubleshooting purposes.

Cluster deployment customization examples

. cluster/openstack-heat/config-default.sh

. cluster/openstack-heat/openrc-default.sh

openstack stack show $STACK_NAME

nova list --name=$STACK_NAME

ssh minion@IP_ADDRESS

http://docs.openstack.org/cli-reference/
http://localhost:4000/docs/admin/salt/#standalone-salt-configuration-on-gce-and-others

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 7/8

You may �nd the need to modify environment variables to change the behaviour of kube-up. Here are

some common scenarios:

Proxy con�guration

If you are behind a proxy, and have your local environment variables setup, you can use these

variables to setup your Kubernetes cluster:

Setting different Swift URL

Some deployments differ from the default Swift URL:

Public network name.

Sometimes the name of the public network differs from the default public :

Spinning up additional clusters.

You may want to spin up another cluster within your OpenStack project. Use the $STACK_NAME

variable to accomplish this.

For more con�guration examples, please browse the �les mentioned in the Con�guration section.

Tearing down your cluster

To bring down your cluster, issue the following command:

ENABLE_PROXY=true KUBERNETES_PROVIDER=openstack-heat ./cluster/kube-up.sh

 SWIFT_SERVER_URL="http://10.100.0.100:8080" KUBERNETES_PROVIDER=openstack-heat ./

EXTERNAL_NETWORK="network_external" KUBERNETES_PROVIDER=openstack-heat ./cluster/k

STACK_NAME=k8s-cluster-2 KUBERNETES_PROVIDER=openstack-heat ./cluster/kube-up.sh

10/23/2017 OpenStack Heat - Kubernetes

http://localhost:4000/docs/getting-started-guides/openstack-heat/ 8/8

If you have changed the default $STACK_NAME , you must specify the name. Note that this will not

remove any Cinder volumes created by Kubernetes.

Support Level

IaaS
Provider

Con�g.
Mgmt OS Networking Docs Conforms Support Level

OpenStack
Heat Saltstack CentOS Neutron +

�annel hostgw docs Community
(@FujitsuEnablingSoftwareTechnologyGmbH)

For support level information on all solutions, see the Table of solutions chart.

KUBERNETES_PROVIDER=openstack-heat ./cluster/kube-down.sh

http://localhost:4000/docs/getting-started-guides/openstack-heat
https://github.com/FujitsuEnablingSoftwareTechnologyGmbH
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 1/8

Running Kubernetes with rkt

This document describes how to run Kubernetes using rkt as the container runtime.

Note: This document describes how to use what is known as “rktnetes”. In future, Kubernetes will

support the rkt runtime through the Container Runtime Interface (CRI). At present the rkt shim for the

CRI is considered “experimental”, but if you wish to use it you will �nd instructions in the kubeadm

reference.

Prerequisites

Systemd must be installed and enabled. The minimum systemd version required for Kubernetes

v1.3 is 219 . Systemd is used to monitor and manage the pods on each node.

Prerequisites
Pod networking in rktnetes

Kubernetes CNI networking
kubenet: Google Compute Engine (GCE) network

rkt contained network
rkt contained network with bridge
rkt contained network with �annel
Contained network caveats:

Running rktnetes
Spin up a local Kubernetes cluster with the rkt runtime
Launch a rktnetes cluster on Google Compute Engine (GCE)
Launch a rktnetes cluster on AWS
Deploy apps to the cluster

Modular isolation with interchangeable stage1 images
Notes on using different stage1 images

Known issues and differences between rkt and Docker
Troubleshooting

Check rkt pod status
Check journal logs

Log verbosity
Check Kubernetes events and logs.

https://github.com/coreos/rkt
https://github.com/kubernetes-incubator/rktlet
http://localhost:4000/docs/admin/kubeadm/#use-kubeadm-with-other-cri-runtimes
http://www.freedesktop.org/wiki/Software/systemd/

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 2/8

Install the latest rkt release. The minimum rkt version required is v1.13.0. The CoreOS Linux

alpha channel ships with a recent rkt release, and you can easily upgrade rkt on CoreOS, if

necessary.

The rkt API service must be running on the node.

You will need kubelet installed on the node, and it’s recommended that you run kube-proxy on all

nodes. This document describes how to set the parameters for kubelet so that it uses rkt as the

runtime.

Pod networking in rktnetes

Kubernetes CNI networking

You can con�gure Kubernetes pod networking with the usual Container Network Interface (CNI)

network plugins by setting the kubelet’s --network-plugin and --network-plugin-dir options

appropriately. Con�gured in this fashion, the rkt container engine will be unaware of network details,

and expects to connect pods to the provided subnet.

kubenet: Google Compute Engine (GCE) network

The kubenet plugin can be selected with the kubelet option --network-plugin=kubenet . This

plugin is currently only supported on GCE. When using kubenet, Kubernetes CNI creates and

manages the network, and rkt is provided with a subnet from a bridge device connected to the GCE

network.

rkt contained network

Rather than delegating pod networking to Kubernetes, rkt can con�gure connectivity directly with its

own contained network on a subnet provided by a bridge device, the �annel SDN, or another CNI

plugin. Con�gured this way, rkt looks in its con�g directories, usually /etc/rkt/net.d , to discover

the CNI con�guration and invoke the appropriate plugins to create the pod network.

rkt contained network with bridge

The contained network is rkt’s default, so you can leave the kubelet’s --network-plugin option

empty to select this network. The contained network can be backed by any CNI plugin. With the

https://coreos.com/rkt/docs/latest/trying-out-rkt.html
https://github.com/coreos/rkt/releases/tag/v1.13.0
https://coreos.com/releases/
https://coreos.com/rkt/docs/latest/install-rkt-in-coreos.html
https://coreos.com/rkt/docs/latest/subcommands/api-service.html
http://localhost:4000/docs/getting-started-guides/scratch/#kubelet
http://localhost:4000/docs/getting-started-guides/scratch/#kube-proxy
http://localhost:4000/docs/concepts/cluster-administration/network-plugins/
https://coreos.com/rkt/docs/latest/networking/overview.html#contained-mode
https://coreos.com/rkt/docs/latest/configuration.html#command-line-flags

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 3/8

contained network, rkt will attempt to join pods to a network named rkt.kubernetes.io , so this

network name must be used for whatever desired CNI con�guration.

When using the contained network, create a network con�guration �le beneath the rkt network

con�g directory that de�nes how to create this rkt.kubernetes.io network in your environment.

This example sets up a bridge device with the bridge CNI plugin:

rkt contained network with �annel

While it is recommended to operate �annel through the Kubernetes CNI support, you can

alternatively con�gure the �annel plugin directly to provide the subnet for rkt’s contained network. An

example CNI/�annel con�g �le looks like this:

$ cat <<EOF >/etc/rkt/net.d/k8s_network_example.conf
{
 "name": "rkt.kubernetes.io",
 "type": "bridge",
 "bridge": "mybridge",
 "mtu": 1460,
 "addIf": "true",
 "isGateway": true,
 "ipMasq": true,
 "ipam": {
 "type": "host-local",
 "subnet": "10.22.0.0/16",
 "gateway": "10.22.0.1",
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
}
EOF

$ cat <<EOF >/etc/rkt/net.d/k8s_flannel_example.conf
{
 "name": "rkt.kubernetes.io",
 "type": "flannel",
 "delegate": {
 "isDefaultGateway": true
 }
}
EOF

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 4/8

For more information on �annel con�guration, see the CNI/�annel README.

Contained network caveats:

You must create an appropriate CNI con�guration �le with a network name of

rkt.kubernetes.io .

The downwards API and environment variable substitution will not contain the pod IP address.

The /etc/hosts �le will not contain the pod’s own hostname, although /etc/hostname is

populated.

Running rktnetes

Spin up a local Kubernetes cluster with the rkt runtime

To use rkt as the container runtime in a local Kubernetes cluster, supply the following �ags to the

kubelet:

--container-runtime=rkt Set the node’s container runtime to rkt.

--rkt-api-endpoint=HOST:PORT Set the endpoint of the rkt API service. Default:

localhost:15441 .

--rkt-path=PATH_TO_RKT_BINARY Set the path of the rkt binary. Optional. If empty, look for

rkt in $PATH .

--rkt-stage1-image=STAGE1 Set the name of the stage1 image, e.g.

coreos.com/rkt/stage1-coreos . Optional. If not set, the default Linux kernel software

isolation stage1 is used.

If you are using the hack/local-up-cluster.sh script to launch the cluster, you can edit the environment

variables CONTAINER_RUNTIME , RKT_PATH , and RKT_STAGE1_IMAGE to set these �ags. RKT_PATH

and RKT_STAGE1_IMAGE are optional if rkt is in your $PATH` with appropriate con�guration.

https://github.com/containernetworking/plugins/blob/master/plugins/meta/flannel/README.md
https://github.com/kubernetes/kubernetes/tree/master/hack/local-up-cluster.sh

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 5/8

Now you can launch the cluster using the local-up-cluster.sh script:

We are also working on getting rkt working as the container runtime in minikube.

Launch a rktnetes cluster on Google Compute Engine (GCE)

This section outlines using the kube-up script to launch a CoreOS/rkt cluster on GCE.

Specify the OS distribution, the GCE distributor’s master project, and the instance images for the

Kubernetes master and nodes. Set the KUBE_CONTAINER_RUNTIME to rkt :

Optionally, set the version of rkt by setting KUBE_RKT_VERSION :

Optionally, select an alternative stage1 isolator for the container runtime by setting

KUBE_RKT_STAGE1_IMAGE :

Then you can launch the cluster with:

$ export CONTAINER_RUNTIME=rkt
$ export RKT_PATH=<rkt_binary_path>
$ export RKT_STAGE1_IMAGE=<stage1-name>

$ hack/local-up-cluster.sh

$ export KUBE_OS_DISTRIBUTION=coreos
$ export KUBE_GCE_MASTER_PROJECT=coreos-cloud
$ export KUBE_GCE_MASTER_IMAGE=<image_id>
$ export KUBE_GCE_NODE_PROJECT=coreos-cloud
$ export KUBE_GCE_NODE_IMAGE=<image_id>
$ export KUBE_CONTAINER_RUNTIME=rkt

$ export KUBE_RKT_VERSION=1.13.0

$ export KUBE_RKT_STAGE1_IMAGE=<stage1-name>

$ cluster/kube-up.sh

https://github.com/kubernetes/minikube/issues/168

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 6/8

Launch a rktnetes cluster on AWS

The kube-up script is not yet supported on AWS. Instead, we recommend following the Kubernetes

on AWS guide to launch a CoreOS Kubernetes cluster on AWS, then setting kubelet options as above.

Deploy apps to the cluster

After creating the cluster, you can start deploying applications. For an introductory example, deploy a

simple nginx web server. Note that this example did not have to be modi�ed for use with a “rktnetes”

cluster. More examples can be found in the Kubernetes examples directory.

Modular isolation with interchangeable stage1 images

rkt executes containers in an interchangeable isolation environment. This facility is called the stage1

image. There are currently three supported rkt stage1 images:

systemd-nspawn stage1, the default. Isolates running containers with Linux kernel namespaces

and cgroups in a manner similar to the default container runtime.

KVM stage1, runs containers inside a KVM hypervisor-managed virtual machine. Experimental in

the Kubernetes v1.3 release.

fly stage1 , which isolates containers with only a chroot , giving host-level access to mount

and network namespaces for specially-privileged utilities.

In addition to the three provided stage1 images, you can create your own for speci�c isolation

requirements. If no con�guration is set, the default stage1 is used. There are two ways to select a

different stage1; either per-node, or per-pod:

Set the kubelet’s --rkt-stage1-image �ag, which tells the kubelet the stage1 image to use for

every pod on the node. For example, --rkt-stage1-image=coreos/rkt/stage1-coreos

selects the default systemd-nspawn stage1.

Set the annotation rkt.alpha.kubernetes.io/stage1-name-override to override the stage1

used to execute a given pod. This allows for mixing different container isolation mechanisms on

https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
http://localhost:4000/docs/user-guide/simple-nginx
https://github.com/kubernetes/examples/tree/master/
https://coreos.com/rkt/docs/latest/devel/architecture.html#stage-1
https://coreos.com/rkt/docs/latest/running-lkvm-stage1.html
https://coreos.com/rkt/docs/latest/running-fly-stage1.html
https://coreos.com/rkt/docs/latest/devel/stage1-implementors-guide.html
https://coreos.com/rkt/docs/latest/build-configure.html#parameters-for-setting-up-default-stage1-image

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 7/8

the same cluster or on the same node. For example, the following (shortened) pod manifest will

run its pod with the fly stage1 to give the application – the kubelet in this case – access to

the host’s namespace:

Notes on using different stage1 images

Setting the stage1 annotation could potentially give the pod root privileges. Because of this, the

privileged boolean in the pod’s securityContext must be set to true .

Use rkt’s contained network with the KVM stage1, because the CNI plugin driver does not yet fully

support the hypervisor-based runtime.

Known issues and differences between rkt and Docker

rkt and the default node container engine have very different designs, as do rkt’s native ACI and the

Docker container image format. Users may experience different behaviors when switching from one

container engine to the other. More information can be found in the Kubernetes rkt notes.

apiVersion: v1
kind: Pod
metadata:
 name: kubelet
 namespace: kube-system
 labels:
 k8s-app: kubelet
 annotations:
 rkt.alpha.kubernetes.io/stage1-name-override: coreos.com/rkt/stage1-fly
spec:
 containers:
 - name: kubelet
 image: quay.io/coreos/hyperkube:v1.3.0-beta.2_coreos.0
 command:
 - kubelet
 - --api-servers=127.0.0.1:8080
 - --config=/etc/kubernetes/manifests
 - --allow-privileged
 - --kubeconfig=/etc/kubernetes/kubeconfig
 securityContext:
 privileged: true
[...]

http://localhost:4000/docs/getting-started-guides/rkt/notes/

10/23/2017 Running Kubernetes with rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/ 8/8

Troubleshooting

Here are a few tips for troubleshooting Kubernetes with the rkt container engine:

Check rkt pod status

To check the status of running pods, use the rkt subcommands rkt list , rkt status , and

rkt image list . See the rkt commands documentation for more information about rkt

subcommands.

Check journal logs

Check a pod’s log using journalctl on the node. Pods are managed and named as systemd units.

The pod’s unit name is formed by concatenating a k8s_ pre�x with the pod UUID, in a format like

k8s_${RKT_UUID} . Find the pod’s UUID with rkt list to assemble its service name, then ask

journalctl for the logs:

Log verbosity

By default, the log verbosity level is 2. In order to see more log messages related to rkt, set this level

to 4 or above. For a local cluster, set the environment variable: LOG_LEVEL=4 .

Check Kubernetes events and logs.

Kubernetes provides various tools for troubleshooting and examination. More information can be

found in the app troubleshooting guide.

$ sudo journalctl -u k8s_ad623346

https://coreos.com/rkt/docs/latest/subcommands/list.html
https://coreos.com/rkt/docs/latest/subcommands/status.html
https://coreos.com/rkt/docs/latest/subcommands/image.html#rkt-image-list
https://coreos.com/rkt/docs/latest/commands.html
http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/

10/23/2017 Known Issues when Using rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/notes/ 1/4

Known Issues when Using rkt

The following features either are not supported or have large caveats when using the rkt container

runtime. Increasing support for these items and others, including reasonable feature parity with the

default container engine, is planned through future releases.

Non-existent host volume paths

When mounting a host volume path that does not exist, rkt will error out. Under the Docker runtime,

an empty directory will be created at the referenced path.

An example of a pod which will error out:

Also note that if subPath is speci�ed in the container’s volumeMounts and the subPath doesn’t

exist in the corresponding volume, the pod execution will fail as well.

Kubectl attach

apiVersion: v1
kind: Pod
metadata:
 labels:
 name: mount-dne
 name: mount-dne
spec:
 volumes:
 - name: does-not-exist
 hostPath:
 path: /does/not/exist
 containers:
 - name: exit
 image: busybox
 command: ["sh", "-c", "ls /test; sleep 60"]
 volumeMounts:
 - mountPath: /test
 name: does-not-exist

10/23/2017 Known Issues when Using rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/notes/ 2/4

The kubectl attach command does not work under the rkt container runtime. Because of this,

some �ags in kubectl run are not supported, including:

--attach=true

--leave-stdin-open=true

--rm=true

Port forwarding for kvm and �y stage1s

kubectl port-forward is not supported for pods that are executed with stage1-kvm or

stage1-fly .

Volume relabeling

Currently rkt supports only per-pod volume relabeling. After relabeling, the mounted volume is shared

by all Containers in the pod. There is not yet a way to make the relabeled volume accessible to only

one, or some subset, of Containers in the pod. Kubernetes issue # 28187 has the details.

kubectl get logs

Under rktnetes, kubectl get logs currently cannot get logs from applications that write them to

directly to /dev/stdout . Currently such log messages are printed on the node’s console.

Init Containers

Init Containers are currently not supported.

Container restart back-off

https://github.com/kubernetes/kubernetes/issues/28187
http://localhost:4000/docs/concepts/workloads/pods/init-containers

10/23/2017 Known Issues when Using rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/notes/ 3/4

Exponential restart back-off for a failing container is currently not supported.

Experimental NVIDIA GPU support

The --experimental-nvidia-gpus �ag, and related GPU features are not supported.

QoS Classes

Under rkt, QoS classes do not adjust the OOM Score of Containers as occurs under Docker.

HostPID and HostIPC namespaces

Setting the hostPID or hostIPC �ags on a pod is not supported.

For example, the following pod will not run correctly:

On the other hand, when running the pod with stage1-�y, the pod will be run in the host namespace.

Container image updates (patch)

Patching a pod to change the image will result in the entire pod restarting, not just the container that

was changed.

apiVersion: v1
kind: Pod
metadata:
 labels:
 name: host-ipc-pid
 name: host-ipc-pid
spec:
 hostIPC: true
 hostPID: true
 containers:
 ...

https://git.k8s.io/community/contributors/design-proposals/resource-management/gpu-support.md
https://coreos.com/rkt/docs/latest/running-fly-stage1.html

10/23/2017 Known Issues when Using rkt - Kubernetes

http://localhost:4000/docs/getting-started-guides/rkt/notes/ 4/4

ImagePullPolicy ‘Always’

When the container’s image pull policy is Always , rkt will always pull the image from remote even if

the image has not changed at all. This can add signi�cant latency for large images. The issue is

tracked by rkt upstream at #2937.

https://github.com/coreos/rkt/issues/2937

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 1/9

Kubernetes on Mesos

About Kubernetes on Mesos

Mesos allows dynamic sharing of cluster resources between Kubernetes and other �rst-class Mesos

frameworks such as HDFS, Spark, and Chronos. Mesos also ensures applications from different

frameworks running on your cluster are isolated and that resources are allocated fairly among them.

Mesos clusters can be deployed on nearly every IaaS cloud provider infrastructure or in your own

physical datacenter. Kubernetes on Mesos runs on-top of that and therefore allows you to easily

move Kubernetes workloads from one of these environments to the other.

This tutorial will walk you through setting up Kubernetes on a Mesos cluster. It provides a step by

step walk through of adding Kubernetes to a Mesos cluster and starting your �rst pod with an nginx

webserver.

NOTE: There are known issues with the current implementation and support for centralized logging

and monitoring is not yet available. Please �le an issue against the kubernetes-mesos project if you

have problems completing the steps below.

Further information is available in the Kubernetes on Mesos contrib directory.

Prerequisites

Understanding of Apache Mesos

About Kubernetes on Mesos
Prerequisites
Deploy Kubernetes-Mesos
Deploy etcd
Start Kubernetes-Mesos Services

Validate KM Services
Spin up a pod
Launching kube-dns
What next?

https://docs.mesosphere.com/latest/usage/service-guides/hdfs/
https://docs.mesosphere.com/latest/usage/service-guides/spark/
https://mesos.github.io/chronos/docs/getting-started.html
https://github.com/kubernetes-incubator/kube-mesos-framework/blob/master/docs/issues.md
https://github.com/mesosphere/kubernetes-mesos/issues
https://github.com/kubernetes-incubator/kube-mesos-framework/blob/master/README.md
http://mesos.apache.org/

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 2/9

A running Mesos cluster on Google Compute Engine

A VPN connection to the cluster

A machine in the cluster which should become the Kubernetes master node with:

Go (see here for required versions)

make (i.e. build-essential)

Docker

Note: You can, but you don’t have to deploy Kubernetes-Mesos on the same machine the Mesos

master is running on.

Deploy Kubernetes-Mesos

Log into the future Kubernetes master node over SSH, replacing the placeholder below with the

correct IP address.

Build Kubernetes-Mesos.

Set some environment variables. The internal IP address of the master may be obtained via

hostname -i .

Note that KUBERNETES_MASTER is used as the api endpoint. If you have existing ~/.kube/config

and point to another endpoint, you need to add option --server=${KUBERNETES_MASTER} to kubectl

in later steps.

ssh jclouds@${ip_address_of_master_node}

git clone https://github.com/kubernetes-incubator/kube-mesos-framework
cd kube-mesos-framework
make

export KUBERNETES_MASTER_IP=$(hostname -i)
export KUBERNETES_MASTER=http://${KUBERNETES_MASTER_IP}:8888

https://dcos.io/docs/latest/administration/installing/cloud/gce/
http://open.mesosphere.com/getting-started/cloud/google/mesosphere/#vpn-setup
https://git.k8s.io/community/contributors/devel/development.md

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 3/9

Deploy etcd

Start etcd and verify that it is running:

It’s also a good idea to ensure your etcd instance is reachable by testing it

If connectivity is OK, you will see an output of the available keys in etcd (if any).

Start Kubernetes-Mesos Services

Update your PATH to more easily run the Kubernetes-Mesos binaries:

Identify your Mesos master: depending on your Mesos installation this is either a host:port like

mesos-master:5050 or a ZooKeeper URL like zk://zookeeper:2181/mesos . In order to let

Kubernetes survive Mesos master changes, the ZooKeeper URL is recommended for production

environments.

Create a cloud con�g �le mesos-cloud.conf in the current directory with the following contents:

sudo docker run -d --hostname $(uname -n) --name etcd \
 -p 4001:4001 -p 7001:7001 quay.io/coreos/etcd:v2.2.1 \
 --listen-client-urls http://0.0.0.0:4001 \
 --advertise-client-urls http://${KUBERNETES_MASTER_IP}:4001

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
fd7bac9e2301 quay.io/coreos/etcd:v2.2.1 "/etcd" 5s ago Up 3s 2379/tcp,

curl -L http://${KUBERNETES_MASTER_IP}:4001/v2/keys/

export PATH="$(pwd)/_output/local/go/bin:$PATH"

export MESOS_MASTER=<host:port or zk:// url>

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 4/9

Now start the kubernetes-mesos API server, controller manager, and scheduler on the master node:

Disown your background jobs so that they’ll stay running if you log out.

Validate KM Services

Interact with the kubernetes-mesos framework via kubectl :

$ cat <<EOF >mesos-cloud.conf
[mesos-cloud]
 mesos-master = ${MESOS_MASTER}
EOF

$ km apiserver \
 --address=${KUBERNETES_MASTER_IP} \
 --etcd-servers=http://${KUBERNETES_MASTER_IP}:4001 \
 --service-cluster-ip-range=10.10.10.0/24 \
 --port=8888 \
 --cloud-provider=mesos \
 --cloud-config=mesos-cloud.conf \
 --secure-port=0 \
 --v=1 >apiserver.log 2>&1 &

$ km controller-manager \
 --master=${KUBERNETES_MASTER_IP}:8888 \
 --cloud-provider=mesos \
 --cloud-config=./mesos-cloud.conf \
 --v=1 >controller.log 2>&1 &

$ km scheduler \
 --address=${KUBERNETES_MASTER_IP} \
 --mesos-master=${MESOS_MASTER} \
 --etcd-servers=http://${KUBERNETES_MASTER_IP}:4001 \
 --mesos-user=root \
 --api-servers=${KUBERNETES_MASTER_IP}:8888 \
 --cluster-dns=10.10.10.10 \
 --cluster-domain=cluster.local \
 --v=2 >scheduler.log 2>&1 &

disown -a

$ kubectl get pods
NAME READY STATUS RESTARTS AGE

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 5/9

Lastly, look for Kubernetes in the Mesos web GUI by pointing your browser to

http://<mesos-master-ip:port> . Make sure you have an active VPN connection. Go to the

Frameworks tab, and look for an active framework named “Kubernetes”.

Spin up a pod

Write a JSON pod description to a local �le:

Send the pod description to Kubernetes using the kubectl CLI:

Wait a minute or two while dockerd downloads the image layers from the internet. We can use the

kubectl interface to monitor the status of our pod:

NOTE: your service IPs will likely differ
$ kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
k8sm-scheduler 10.10.10.113 <none> 10251/TCP 1d
kubernetes 10.10.10.1 <none> 443/TCP 1d

$ cat <<EOPOD >nginx.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
EOPOD

$ kubectl create -f ./nginx.yaml
pod "nginx" created

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 6/9

Verify that the pod task is running in the Mesos web GUI. Click on the Kubernetes framework. The

next screen should show the running Mesos task that started the Kubernetes pod.

Launching kube-dns

Kube-dns is an addon for Kubernetes which adds DNS-based service discovery to the cluster. For a

detailed explanation see DNS in Kubernetes.

The kube-dns addon runs as a pod inside the cluster. The pod consists of three co-located

containers:

a local etcd instance

the kube-dns DNS server

We assume that kube-dns will use

the service IP 10.10.10.10

and the cluster.local domain.

Note that we have passed these two values already as parameter to the apiserver above.

A template for a replication controller spinning up the pod with the 3 containers can be found at

cluster/addons/dns/kubedns-controller.yaml.in in the repository. The following steps are necessary

in order to get a valid replication controller yaml �le:

replace {{ pillar['dns_replicas'] }} with 1

replace {{ pillar['dns_domain'] }} with cluster.local.

add --kube_master_url=${KUBERNETES_MASTER} parameter to the kube2sky container

command.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 14s

https://releases.k8s.io/master/cluster/addons/dns/README.md
https://git.k8s.io/kubernetes/cluster/addons/dns/README.md#kube-dns
https://git.k8s.io/kubernetes/cluster/addons/dns/kubedns-controller.yaml.in

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 7/9

In addition the service template at cluster/addons/dns/kubedns-controller.yaml.in needs the

following replacement:

{{ pillar['dns_server'] }} with 10.10.10.10 .

To do this automatically:

Now the kube-dns pod and service are ready to be launched:

Check with kubectl get pods --namespace=kube-system that 3/3 containers of the pods are

eventually up and running. Note that the kube-dns pods run in the kube-system namespace, not in

default .

To check that the new DNS service in the cluster works, we start a busybox pod and use that to do a

DNS lookup. First create the busybox.yaml pod spec:

sed -e "s/{{ pillar\['dns_replicas'\] }}/1/g;"\
"s,\(command = \"/kube2sky\"\),\\1\\"$'\n'" - --kube_master_url=${KUBERNETE
"s/{{ pillar\['dns_domain'\] }}/cluster.local/g" \
 cluster/addons/dns/kubedns-controller.yaml.in > kubedns-controller.yaml
sed -e "s/{{ pillar\['dns_server'\] }}/10.10.10.10/g" \
 cluster/addons/dns/kubedns-svc.yaml.in > kubedns-svc.yaml

kubectl create -f ./kubedns-controller.yaml
kubectl create -f ./kubedns-svc.yaml

cat <<EOF >busybox.yaml

https://git.k8s.io/kubernetes/cluster/addons/dns/kubedns-controller.yaml.in

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 8/9

Then start the pod:

When the pod is up and running, start a lookup for the Kubernetes master service, made available on

10.10.10.1 by default:

If everything works �ne, you will get this output:

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Mesos/GCE docs Community (Kubernetes-Mesos Authors)

For support level information on all solutions, see the Table of solutions chart.

apiVersion: v1
kind: Pod
metadata:
 name: busybox
 namespace: default
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: busybox
 restartPolicy: Always
EOF

kubectl create -f ./busybox.yaml

kubectl exec busybox -- nslookup kubernetes

Server: 10.10.10.10
Address 1: 10.10.10.10

Name: kubernetes
Address 1: 10.10.10.1

http://localhost:4000/docs/getting-started-guides/mesos/
https://github.com/mesosphere/kubernetes-mesos/blob/master/AUTHORS.md
http://localhost:4000/docs/getting-started-guides/#table-of-solutions/

10/23/2017 Kubernetes on Mesos - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos/ 9/9

What next?

Try out some of the standard Kubernetes examples.

Read about Kubernetes on Mesos’ architecture in the contrib directory.

NOTE: Some examples require Kubernetes DNS to be installed on the cluster. Future work will add

instructions to this guide to enable support for Kubernetes DNS.

NOTE: Please be aware that there are known issues with the current Kubernetes-Mesos

implementation.

https://github.com/kubernetes/examples/tree/master/
https://github.com/kubernetes-incubator/kube-mesos-framework/blob/master/README.md
https://github.com/kubernetes-incubator/kube-mesos-framework/blob/master/docs/issues.md

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 1/9

Kubernetes on Mesos on Docker

The mesos/docker provider uses docker-compose to launch Kubernetes as a Mesos framework,

running in docker with its dependencies (etcd & mesos).

Cluster Goals

kubernetes development

pod/service development

demoing

fast deployment

minimal hardware requirements

minimal con�guration

entry point for exploration

simpli�ed networking

Cluster Goals
Cluster Topology
Prerequisites

Install on Mac (Homebrew)
Install on Linux

Docker Machine Con�g (Mac)
Walkthrough
Addons

KubeUI
End To End Testing
Kubernetes CLI
Helpful scripts
Build Locally
Support Level

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 2/9

fast end-to-end tests

local deployment

Non-Goals:

high availability

fault tolerance

remote deployment

production usage

monitoring

long running

state persistence across restarts

Cluster Topology

The cluster consists of several docker containers linked together by docker-managed hostnames:

Component Hostname Description

docker-grand-
ambassador Proxy to allow circular hostname linking in docker

etcd etcd Key/Value store used by Mesos

Mesos Master mesosmaster1 REST endpoint for interacting with Mesos

Mesos Slave (x2) mesosslave1,
mesosslave2

Mesos agents that offer resources and run framework executors (e.g.
Kubernetes Kublets)

Kubernetes API Server apiserver REST endpoint for interacting with Kubernetes

Kubernetes Controller
Manager controller

Kubernetes Scheduler scheduler Schedules container deployment by accepting Mesos offers

Prerequisites

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 3/9

Required:

Git - version control system

Docker CLI - container management command line client

Docker Engine - container management daemon

On Mac, use Docker Machine

Docker Compose - multi-container application orchestration

Optional:

Virtual Box

Free x86 virtualization engine with a Docker Machine driver

Golang - Go programming language

Required to build Kubernetes locally

Make - Utility for building executables from source

Required to build Kubernetes locally with make

Install on Mac (Homebrew)

It’s possible to install all of the above via Homebrew on a Mac.

Some steps print instructions for con�guring or launching. Make sure each is properly set up before

continuing to the next step.

Install on Linux

brew install git
brew install caskroom/cask/brew-cask
brew cask install virtualbox
brew install docker
brew install docker-machine
brew install docker-compose

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/machine/install-machine/
https://docs.docker.com/compose/install/
https://www.virtualbox.org/wiki/Downloads
https://golang.org/doc/install
https://en.wikipedia.org/wiki/Make_(software)
http://brew.sh/

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 4/9

Most of the above are available via apt and yum, but depending on your distribution, you may have to

install via other means to get the latest versions.

It is recommended to use Ubuntu, simply because it best supports AUFS, used by docker to mount

volumes. Alternate �le systems may not fully support docker-in-docker.

In order to build Kubernetes, the current user must be in a docker group with sudo privileges. See the

docker docs for instructions.

Docker Machine Con�g (Mac)

If on a Mac using docker-machine, the following steps will make the docker IPs (in the virtualbox VM)

reachable from the host machine (Mac).

1. Create VM

oracle-virtualbox

2. Set the VM’s host-only network to “promiscuous mode”:

oracle-virtualbox

conf docker-machine stop kube-dev VBoxManage modifyvm kube-dev --nicpromisc2

allow-all docker-machine start kube-dev

This allows the VM to accept packets that were sent to a different IP.

Since the host-only network routes tra�c between VMs and the host, other VMs will also be able

to access the docker IPs, if they have the following route.

3. Route tra�c to docker through the docker-machine IP:

docker-machine create --driver virtualbox kube-dev

eval "$(docker-machine env kube-dev)"

sudo route -n add -net 172.17.0.0 $(docker-machine ip kube-dev)

Since the docker-machine IP can change when the VM is restarted, this route may ne
To delete the route later: `sudo route delete 172.17.0.0`

https://docs.docker.com/installation/ubuntulinux/#create-a-docker-group

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 5/9

Walkthrough

1. Checkout source

shell git clone https://github.com/kubernetes/kubernetes cd kubernetes

By default, that will get you the bleeding edge of master branch. You may want a release branch

instead, if you have trouble with master.

2. Build binaries

You’ll need to build kubectl (CLI) for your local architecture and operating system and the rest of

the server binaries for linux/amd64.

Building a new release covers both cases:

shell KUBERNETES_CONTRIB=mesos build/release.sh

For developers, it may be faster to build locally.

3. [Optional] Build docker images

The following docker images are built as part of ./cluster/kube-up.sh , but it may make

sense to build them manually the �rst time because it may take a while.

1. Test image includes all the dependencies required for running e2e tests.

shell ./cluster/mesos/docker/test/build.sh

In the future, this image may be available to download. It doesn’t contain anything speci�c to

the current release, except its build dependencies.

2. Kubernetes-Mesos image includes the compiled linux binaries.

shell ./cluster/mesos/docker/km/build.sh

This image needs to be built every time you recompile the server binaries.

4. [Optional] Con�gure Mesos resources

By default, the mesos-slaves are con�gured to offer a �xed amount of resources (cpus, memory,

disk, ports). If you want to customize these values, update the MESOS_RESOURCES environment

variables in ./cluster/mesos/docker/docker-compose.yml . If you delete the

https://github.com/kubernetes/kubernetes/releases

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 6/9

MESOS_RESOURCES environment variables, the resource amounts will be auto-detected based on

the host resources, which will over-provision by > 2x.

If the con�gured resources are not available on the host, you may want to increase the

resources available to Docker Engine. You may have to increase you VM disk, memory, or cpu

allocation. See the Docker Machine docs for details (Virtualbox)

5. Con�gure provider

shell export KUBERNETES_PROVIDER=mesos/docker

This tells cluster scripts to use the code within cluster/mesos/docker .

6. Create cluster

shell ./cluster/kube-up.sh

If you manually built all the above docker images, you can skip that step during kube-up:

shell MESOS_DOCKER_SKIP_BUILD=true ./cluster/kube-up.sh

After deploying the cluster, ~/.kube/config will be created or updated to con�gure kubectl to

target the new cluster.

7. Explore tutorials

To learn more about Pods, Volumes, Labels, Services, and Replication Controllers, start with the

Kubernetes Tutorials.

To skip to a more advanced example, see the Guestbook Example

8. Destroy cluster

shell ./cluster/kube-down.sh

Addons

The kube-up for the mesos/docker provider will automatically deploy KubeDNS and KubeUI addons

as pods/services.

Check their status with:

https://docs.docker.com/machine/drivers/virtualbox
http://localhost:4000/docs/tutorials/
https://github.com/kubernetes/examples/tree/master/guestbook/

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 7/9

KubeUI

The web-based Kubernetes UI is accessible in a browser through the API Server proxy:

https://<apiserver>:6443/ui/ .

By default, basic-auth is con�gured with user admin and password admin .

The IP of the API Server can be found using ./cluster/kubectl.sh cluster-info .

End To End Testing

Warning: e2e tests can take a long time to run. You may not want to run them immediately if you’re

just getting started.

While your cluster is up, you can run the end-to-end tests:

Notable parameters: - Increase the logging verbosity: -v=2 - Run only a subset of the tests (regex

matching): -ginkgo.focus=<pattern>

To build, deploy, test, and destroy, all in one command (plus unit & integration tests):

Kubernetes CLI

When compiling from source, it’s simpler to use the ./cluster/kubectl.sh script, which detects

your platform & architecture and proxies commands to the appropriate kubectl binary.

ex: ./cluster/kubectl.sh get pods

./cluster/kubectl.sh get pods --namespace=kube-system

./cluster/test-e2e.sh

make test_e2e

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 8/9

Helpful scripts

Kill all docker containers

shell docker ps -q -a | xargs docker rm -f

Clean up unused docker volumes

shell docker run -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker:/var/lib/docker --rm martin/docker-cleanup-volumes

Build Locally

The steps above tell you how to build in a container, for minimal local dependencies. But if you have

Go and Make installed you can build locally much faster:

However, if you’re not on linux, you’ll still need to compile the linux/amd64 server binaries:

The above two steps should be signi�cantly faster than cross-compiling a whole new release for

every supported platform (which is what ./build/release.sh does).

Breakdown:

KUBERNETES_CONTRIB=mesos - enables building of the contrib/mesos binaries

hack/build-go.sh - builds the Go binaries for the current architecture (linux/amd64 when in a

docker container)

make - delegates to hack/build-go.sh

build/run.sh - executes a command in the build container

KUBERNETES_CONTRIB=mesos make

KUBERNETES_CONTRIB=mesos build/run.sh hack/build-go.sh

10/23/2017 Kubernetes on Mesos on Docker - Kubernetes

http://localhost:4000/docs/getting-started-guides/mesos-docker/ 9/9

build/release.sh - cross compiles Kubernetes for all supported architectures and operating

systems (slow)

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Mesos/Docker custom Ubuntu Docker docs Community (Kubernetes-Mesos Authors)

For support level information on all solutions, see the Table of solutions chart.

http://localhost:4000/docs/getting-started-guides/mesos-docker
https://github.com/mesosphere/kubernetes-mesos/blob/master/AUTHORS.md
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 1/19

O�ine

Deploy a CoreOS running Kubernetes environment. This particular guide is made to help those in an

OFFLINE system, whether for testing a POC before the real deal, or you are restricted to be totally

o�ine for your applications.

Prerequisites

1. Installed CentOS 6 for PXE server

2. At least two bare metal nodes to work with

High Level Design

1. Manage the tftp directory

1. /tftpboot/(coreos)(centos)(RHEL)

2. /tftpboot/pxelinux.0/(MAC) -> linked to Linux image con�g �le

Prerequisites
High Level Design
This Guides variables
Setup PXELINUX CentOS
Adding CoreOS to PXE
DHCP con�guration
Kubernetes
Cloud Con�gs

master.yml
node.yml

New pxelinux.cfg �le
Specify the pxelinux targets
Creating test pod
Helping commands for debugging
Support Level

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 2/19

2. Update per install the link for pxelinux

3. Update the DHCP con�g to re�ect the host needing deployment

4. Setup nodes to deploy CoreOS creating an etcd cluster.

5. Have no access to the public etcd discovery tool.

6. Installing the CoreOS slaves to become Kubernetes nodes.

This Guides variables

Node Description MAC IP

CoreOS/etcd/Kubernetes Master d0:00:67:13:0d:00 10.20.30.40

CoreOS Slave 1 d0:00:67:13:0d:01 10.20.30.41

CoreOS Slave 2 d0:00:67:13:0d:02 10.20.30.42

Setup PXELINUX CentOS

To setup CentOS PXELINUX environment there is a complete guide here. This section is the

abbreviated version.

1. Install packages needed on CentOS

2. vi /etc/xinetd.d/tftp to enable tftp service and change disable to ‘no’

3. Copy over the syslinux images we will need.

 sudo yum install tftp-server dhcp syslinux

 -disable = no

https://discovery.etcd.io/
http://docs.fedoraproject.org/en-US/Fedora/7/html/Installation_Guide/ap-pxe-server.html

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 3/19

4. Setup default boot menu

5. Edit the menu vi /tftpboot/pxelinux.cfg/default

 su -

 mkdir -p /tftpboot

 cd /tftpboot

 cp /usr/share/syslinux/pxelinux.0 /tftpboot

 cp /usr/share/syslinux/menu.c32 /tftpboot

 cp /usr/share/syslinux/memdisk /tftpboot

 cp /usr/share/syslinux/mboot.c32 /tftpboot

 cp /usr/share/syslinux/chain.c32 /tftpboot

 /sbin/service dhcpd start

 /sbin/service xinetd start

 /sbin/chkconfig tftp on

 mkdir /tftpboot/pxelinux.cfg

 touch /tftpboot/pxelinux.cfg/default

 default menu.c32

 prompt 0

 timeout 15

 ONTIMEOUT local

 display boot.msg

 MENU TITLE Main Menu

 LABEL local

 MENU LABEL Boot local hard drive

 LOCALBOOT 0

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 4/19

Now you should have a working PXELINUX setup to image CoreOS nodes. You can verify the

services by using VirtualBox locally or with bare metal servers.

Adding CoreOS to PXE

This section describes how to setup the CoreOS images to live alongside a pre-existing PXELINUX

environment. 1. Find or create the TFTP root directory that everything will be based on. - For this

document we will assume /tftpboot/ is our root directory.

2. Once we know and have our tftp root directory we will create a new directory structure for our

CoreOS images.

3. Download the CoreOS PXE �les provided by the CoreOS team.

1. Edit the menu vi /tftpboot/pxelinux.cfg/default again

 MY_TFTPROOT_DIR=/tftpboot
 mkdir -p $MY_TFTPROOT_DIR/images/coreos/
 cd $MY_TFTPROOT_DIR/images/coreos/
 wget http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe
 wget http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe
 wget http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe
 wget http://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe
 gpg --verify coreos_production_pxe.vmlinuz.sig
 gpg --verify coreos_production_pxe_image.cpio.gz.sig

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 5/19

This con�guration �le will now boot from local drive but have the option to PXE image CoreOS.

DHCP con�guration

This section covers con�guring the DHCP server to hand out our new images. In this case we are

assuming that there are other servers that will boot alongside other images. 1. Add the filename to

the host or subnet sections.

 default menu.c32

 prompt 0

 timeout 300

 ONTIMEOUT local

 display boot.msg

 MENU TITLE Main Menu

 LABEL local

 MENU LABEL Boot local hard drive

 LOCALBOOT 0

 MENU BEGIN CoreOS Menu

 LABEL coreos-master

 MENU LABEL CoreOS Master

 KERNEL images/coreos/coreos_production_pxe.vmlinuz

 APPEND initrd=images/coreos/coreos_production_pxe_image.cpio.gz cloud-

 LABEL coreos-slave

 MENU LABEL CoreOS Slave

 KERNEL images/coreos/coreos_production_pxe.vmlinuz

 APPEND initrd=images/coreos/coreos_production_pxe_image.cpio.gz cloud-

 MENU END

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 6/19

1. At this point we want to make pxelinux con�guration �les that will be the templates for the

different CoreOS deployments.

 filename "/tftpboot/pxelinux.0";

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 7/19

We will be specifying the node con�guration later in the guide.

Kubernetes

 subnet 10.20.30.0 netmask 255.255.255.0 {

 next-server 10.20.30.242;

 option broadcast-address 10.20.30.255;

 filename "<other default image>";

 ...

 # http://www.syslinux.org/wiki/index.php/PXELINUX

 host core_os_master {

 hardware ethernet d0:00:67:13:0d:00;

 option routers 10.20.30.1;

 fixed-address 10.20.30.40;

 option domain-name-servers 10.20.30.242;

 filename "/pxelinux.0";

 }

 host core_os_slave {

 hardware ethernet d0:00:67:13:0d:01;

 option routers 10.20.30.1;

 fixed-address 10.20.30.41;

 option domain-name-servers 10.20.30.242;

 filename "/pxelinux.0";

 }

 host core_os_slave2 {

 hardware ethernet d0:00:67:13:0d:02;

 option routers 10.20.30.1;

 fixed-address 10.20.30.42;

 option domain-name-servers 10.20.30.242;

 filename "/pxelinux.0";

 }

 ...

 }

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 8/19

To deploy our con�guration we need to create an etcd master. To do so we want to pxe CoreOS

with a speci�c cloud-con�g.yml. There are two options we have here. 1. Is to template the cloud

con�g �le and programmatically create new static con�gs for different cluster setups. 2. Have a

service discovery protocol running in our stack to do auto discovery.

This demo we just make a static single etcd server to host our Kubernetes and etcd master

servers.

Since we are OFFLINE here most of the helping processes in CoreOS and Kubernetes are then

limited. To do our setup we will then have to download and serve up our binaries for Kubernetes in

our local environment.

An easy solution is to host a small web server on the DHCP/TFTP host for all our binaries to make

them available to the local CoreOS PXE machines.

To get this up and running we are going to setup a simple apache server to serve our binaries

needed to bootstrap Kubernetes.

This is on the PXE server from the previous section:

This sets up our binaries we need to run Kubernetes. This would need to be enhanced to download

from the Internet for updates in the future.

Now for the good stuff!

rm /etc/httpd/conf.d/welcome.conf
cd /var/www/html/
wget -O kube-register https://github.com/kelseyhightower/kube-register/releases/d
wget -O setup-network-environment https://github.com/kelseyhightower/setup-network
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget https://storage.googleapis.com/kubernetes-release/release/v0.15.0/bin/linux/a
wget -O flanneld https://storage.googleapis.com/k8s/flanneld

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 9/19

Cloud Con�gs

The following con�g �les are tailored for the OFFLINE version of a Kubernetes deployment.

These are based on the work found here: master.yml, node.yml

To make the setup work, you need to replace a few placeholders:

Replace <PXE_SERVER_IP> with your PXE server ip address (e.g. 10.20.30.242)

Replace <MASTER_SERVER_IP> with the Kubernetes master ip address (e.g. 10.20.30.40)

If you run a private docker registry, replace rdocker.example.com with your docker registry dns

name.

If you use a proxy, replace rproxy.example.com with your proxy server (and port)

Add your own SSH public key(s) to the cloud con�g at the end

master.yml

On the PXE server make and �ll in the variables

vi /var/www/html/coreos/pxe-cloud-config-master.yml .

#cloud-config

write_files:
 - path: /opt/bin/waiter.sh
 owner: root
 content: |
 #! /usr/bin/bash
 until curl http://127.0.0.1:4001/v2/machines; do sleep 2; done
 - path: /opt/bin/kubernetes-download.sh
 owner: root
 permissions: 0755
 content: |
 #! /usr/bin/bash
 /usr/bin/wget -N -P "/opt/bin" "http://<PXE_SERVER_IP>/kubectl"
 /usr/bin/wget -N -P "/opt/bin" "http://<PXE_SERVER_IP>/kubernetes"
 /usr/bin/wget -N -P "/opt/bin" "http://<PXE_SERVER_IP>/kubecfg"
 chmod +x /opt/bin/*
 - path: /etc/profile.d/opt-path.sh
 owner: root
 permissions: 0755

http://localhost:4000/docs/getting-started-guides/coreos/cloud-configs/master.yaml
http://localhost:4000/docs/getting-started-guides/coreos/cloud-configs/node.yaml

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 10/19

 content: |
 #! /usr/bin/bash
 PATH=$PATH/opt/bin
coreos:
 units:
 - name: 10-eno1.network
 runtime: true
 content: |
 [Match]
 Name=eno1
 [Network]
 DHCP=yes
 - name: 20-nodhcp.network
 runtime: true
 content: |
 [Match]
 Name=en*
 [Network]
 DHCP=none
 - name: get-kube-tools.service
 runtime: true
 command: start
 content: |
 [Service]
 ExecStartPre=-/usr/bin/mkdir -p /opt/bin
 ExecStart=/opt/bin/kubernetes-download.sh
 RemainAfterExit=yes
 Type=oneshot
 - name: setup-network-environment.service
 command: start
 content: |
 [Unit]
 Description=Setup Network Environment
 Documentation=https://github.com/kelseyhightower/setup-network-environment
 Requires=network-online.target
 After=network-online.target
 [Service]
 ExecStartPre=-/usr/bin/mkdir -p /opt/bin
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/setup-net
 ExecStartPre=/usr/bin/chmod +x /opt/bin/setup-network-environment
 ExecStart=/opt/bin/setup-network-environment
 RemainAfterExit=yes
 Type=oneshot
 - name: etcd.service
 command: start
 content: |
 [Unit]
 Description=etcd
 Requires=setup-network-environment.service
 After=setup-network-environment.service
 [Service]

EnvironmentFile=/etc/network-environment

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 11/19

 EnvironmentFile /etc/network environment
 User=etcd
 PermissionsStartOnly=true
 ExecStart=/usr/bin/etcd \
 --name ${DEFAULT_IPV4} \
 --addr ${DEFAULT_IPV4}:4001 \
 --bind-addr 0.0.0.0 \
 --cluster-active-size 1 \
 --data-dir /var/lib/etcd \
 --http-read-timeout 86400 \
 --peer-addr ${DEFAULT_IPV4}:7001 \
 --snapshot true
 Restart=always
 RestartSec=10s
 - name: fleet.socket
 command: start
 content: |
 [Socket]
 ListenStream=/var/run/fleet.sock
 - name: fleet.service
 command: start
 content: |
 [Unit]
 Description=fleet daemon
 Wants=etcd.service
 After=etcd.service
 Wants=fleet.socket
 After=fleet.socket
 [Service]
 Environment="FLEET_ETCD_SERVERS=http://127.0.0.1:4001"
 Environment="FLEET_METADATA=role=master"
 ExecStart=/usr/bin/fleetd
 Restart=always
 RestartSec=10s
 - name: etcd-waiter.service
 command: start
 content: |
 [Unit]
 Description=etcd waiter
 Wants=network-online.target
 Wants=etcd.service
 After=etcd.service
 After=network-online.target
 Before=flannel.service
 Before=setup-network-environment.service
 [Service]
 ExecStartPre=/usr/bin/chmod +x /opt/bin/waiter.sh
 ExecStart=/usr/bin/bash /opt/bin/waiter.sh
 RemainAfterExit=true
 Type=oneshot
 - name: flannel.service
 command: start

t t: |

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 12/19

 content: |
 [Unit]
 Wants=etcd-waiter.service
 After=etcd-waiter.service
 Requires=etcd.service
 After=etcd.service
 After=network-online.target
 Wants=network-online.target
 Description=flannel is an etcd backed overlay network for containers
 [Service]
 Type=notify
 ExecStartPre=-/usr/bin/mkdir -p /opt/bin
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/flanneld
 ExecStartPre=/usr/bin/chmod +x /opt/bin/flanneld
 ExecStartPre=-/usr/bin/etcdctl mk /coreos.com/network/config '{"Network":"
 ExecStart=/opt/bin/flanneld
 - name: kube-apiserver.service
 command: start
 content: |
 [Unit]
 Description=Kubernetes API Server
 Documentation=https://github.com/kubernetes/kubernetes
 Requires=etcd.service
 After=etcd.service
 [Service]
 ExecStartPre=-/usr/bin/mkdir -p /opt/bin
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/kube-apis
 ExecStartPre=/usr/bin/chmod +x /opt/bin/kube-apiserver
 ExecStart=/opt/bin/kube-apiserver \
 --address=0.0.0.0 \
 --port=8080 \
 --service-cluster-ip-range=10.100.0.0/16 \
 --etcd-servers=http://127.0.0.1:4001 \
 --logtostderr=true
 Restart=always
 RestartSec=10
 - name: kube-controller-manager.service
 command: start
 content: |
 [Unit]
 Description=Kubernetes Controller Manager
 Documentation=https://github.com/kubernetes/kubernetes
 Requires=kube-apiserver.service
 After=kube-apiserver.service
 [Service]
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/kube-cont
 ExecStartPre=/usr/bin/chmod +x /opt/bin/kube-controller-manager
 ExecStart=/opt/bin/kube-controller-manager \
 --master=127.0.0.1:8080 \
 --logtostderr=true
 Restart=always
 RestartSec=10

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 13/19

node.yml

On the PXE server make and �ll in the variables

vi /var/www/html/coreos/pxe-cloud-config-slave.yml .

 - name: kube-scheduler.service
 command: start
 content: |
 [Unit]
 Description=Kubernetes Scheduler
 Documentation=https://github.com/kubernetes/kubernetes
 Requires=kube-apiserver.service
 After=kube-apiserver.service
 [Service]
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/kube-sche
 ExecStartPre=/usr/bin/chmod +x /opt/bin/kube-scheduler
 ExecStart=/opt/bin/kube-scheduler --master=127.0.0.1:8080
 Restart=always
 RestartSec=10
 - name: kube-register.service
 command: start
 content: |
 [Unit]
 Description=Kubernetes Registration Service
 Documentation=https://github.com/kelseyhightower/kube-register
 Requires=kube-apiserver.service
 After=kube-apiserver.service
 Requires=fleet.service
 After=fleet.service
 [Service]
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/kube-regi
 ExecStartPre=/usr/bin/chmod +x /opt/bin/kube-register
 ExecStart=/opt/bin/kube-register \
 --metadata=role=node \
 --fleet-endpoint=unix:///var/run/fleet.sock \
 --healthz-port=10248 \
 --api-endpoint=http://127.0.0.1:8080
 Restart=always
 RestartSec=10
 update:
 group: stable
 reboot-strategy: off
ssh_authorized_keys:
 - ssh-rsa AAAAB3NzaC1yc2EAAAAD...

#cloud-config

f

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 14/19

write_files:
 - path: /etc/default/docker
 content: |
 DOCKER_EXTRA_OPTS='--insecure-registry="rdocker.example.com:5000"'
coreos:
 units:
 - name: 10-eno1.network
 runtime: true
 content: |
 [Match]
 Name=eno1
 [Network]
 DHCP=yes
 - name: 20-nodhcp.network
 runtime: true
 content: |
 [Match]
 Name=en*
 [Network]
 DHCP=none
 - name: etcd.service
 mask: true
 - name: docker.service
 drop-ins:
 - name: 50-insecure-registry.conf
 content: |
 [Service]
 Environment="HTTP_PROXY=http://rproxy.example.com:3128/" "NO_PROXY=loc
 - name: fleet.service
 command: start
 content: |
 [Unit]
 Description=fleet daemon
 Wants=fleet.socket
 After=fleet.socket
 [Service]
 Environment="FLEET_ETCD_SERVERS=http://<MASTER_SERVER_IP>:4001"
 Environment="FLEET_METADATA=role=node"
 ExecStart=/usr/bin/fleetd
 Restart=always
 RestartSec=10s
 - name: flannel.service
 command: start
 content: |
 [Unit]
 After=network-online.target
 Wants=network-online.target
 Description=flannel is an etcd backed overlay network for containers
 [Service]
 Type=notify
 ExecStartPre=-/usr/bin/mkdir -p /opt/bin
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/flanneld

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 15/19

g p p
 ExecStartPre=/usr/bin/chmod +x /opt/bin/flanneld
 ExecStart=/opt/bin/flanneld -etcd-endpoints http://<MASTER_SERVER_IP>:4001
 - name: docker.service
 command: start
 content: |
 [Unit]
 After=flannel.service
 Wants=flannel.service
 Description=Docker Application Container Engine
 Documentation=http://docs.docker.io
 [Service]
 EnvironmentFile=-/etc/default/docker
 EnvironmentFile=/run/flannel/subnet.env
 ExecStartPre=/bin/mount --make-rprivate /
 ExecStart=/usr/bin/docker -d --bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}
 [Install]
 WantedBy=multi-user.target
 - name: setup-network-environment.service
 command: start
 content: |
 [Unit]
 Description=Setup Network Environment
 Documentation=https://github.com/kelseyhightower/setup-network-environment
 Requires=network-online.target
 After=network-online.target
 [Service]
 ExecStartPre=-/usr/bin/mkdir -p /opt/bin
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/setup-net
 ExecStartPre=/usr/bin/chmod +x /opt/bin/setup-network-environment
 ExecStart=/opt/bin/setup-network-environment
 RemainAfterExit=yes
 Type=oneshot
 - name: kube-proxy.service
 command: start
 content: |
 [Unit]
 Description=Kubernetes Proxy
 Documentation=https://github.com/kubernetes/kubernetes
 Requires=setup-network-environment.service
 After=setup-network-environment.service
 [Service]
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/kube-prox
 ExecStartPre=/usr/bin/chmod +x /opt/bin/kube-proxy
 ExecStart=/opt/bin/kube-proxy \
 --etcd-servers=http://<MASTER_SERVER_IP>:4001 \
 --logtostderr=true
 Restart=always
 RestartSec=10
 - name: kube-kubelet.service
 command: start
 content: |

[Unit]

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 16/19

New pxelinux.cfg �le

Create a pxelinux target �le for a slave node: vi /tftpboot/pxelinux.cfg/coreos-node-slave

And one for the master node: vi /tftpboot/pxelinux.cfg/coreos-node-master

 [Unit]
 Description=Kubernetes Kubelet
 Documentation=https://github.com/kubernetes/kubernetes
 Requires=setup-network-environment.service
 After=setup-network-environment.service
 [Service]
 EnvironmentFile=/etc/network-environment
 ExecStartPre=/usr/bin/wget -N -P /opt/bin http://<PXE_SERVER_IP>/kubelet
 ExecStartPre=/usr/bin/chmod +x /opt/bin/kubelet
 ExecStart=/opt/bin/kubelet \
 --address=0.0.0.0 \
 --port=10250 \
 --hostname-override=${DEFAULT_IPV4} \
 --api-servers=<MASTER_SERVER_IP>:8080 \
 --healthz-bind-address=0.0.0.0 \
 --healthz-port=10248 \
 --logtostderr=true
 Restart=always
 RestartSec=10
 update:
 group: stable
 reboot-strategy: off
ssh_authorized_keys:
 - ssh-rsa AAAAB3NzaC1yc2EAAAAD...

default coreos
prompt 1
timeout 15

display boot.msg

label coreos
 menu default
 kernel images/coreos/coreos_production_pxe.vmlinuz
 append initrd=images/coreos/coreos_production_pxe_image.cpio.gz cloud-config-u

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 17/19

Specify the pxelinux targets

Now that we have our new targets setup for master and slave we want to con�gure the speci�c

hosts to those targets. We will do this by using the pxelinux mechanism of setting a speci�c MAC

addresses to a speci�c pxelinux.cfg �le.

Refer to the MAC address table in the beginning of this guide. Documentation for more details can

be found here.

Reboot these servers to get the images PXEd and ready for running containers!

Creating test pod

Now that the CoreOS with Kubernetes installed is up and running lets spin up some Kubernetes pods

to demonstrate the system.

See a simple nginx example to try out your new cluster.

For more complete applications, please look in the examples directory.

Helping commands for debugging

default coreos
prompt 1
timeout 15

display boot.msg

label coreos
 menu default
 kernel images/coreos/coreos_production_pxe.vmlinuz
 append initrd=images/coreos/coreos_production_pxe_image.cpio.gz cloud-config-u

cd /tftpboot/pxelinux.cfg
ln -s coreos-node-master 01-d0-00-67-13-0d-00
ln -s coreos-node-slave 01-d0-00-67-13-0d-01
ln -s coreos-node-slave 01-d0-00-67-13-0d-02

http://www.syslinux.org/wiki/index.php/PXELINUX
http://localhost:4000/docs/user-guide/simple-nginx/
https://github.com/kubernetes/examples/tree/master/

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 18/19

List all keys in etcd:

List �eet machines

Check system status of services on master:

Check system status of services on a node:

List Kubernetes

Kill all pods:

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Bare-metal (O�ine) CoreOS CoreOS �annel docs Community (@jeffbean)

etcdctl ls --recursive

fleetctl list-machines

systemctl status kube-apiserver
systemctl status kube-controller-manager
systemctl status kube-scheduler
systemctl status kube-register

systemctl status kube-kubelet
systemctl status docker.service

kubectl get pods
kubectl get nodes

for i in `kubectl get pods | awk '{print $1}'`; do kubectl delete pod $i; done

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/
https://github.com/jeffbean

10/23/2017 Offline - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/bare_metal_offline/ 19/19

For support level information on all solutions, see the Table of solutions chart.

http://localhost:4000/docs/getting-started-guides/#table-of-solutions/

10/23/2017 Fedora via Ansible - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/ 1/6

Fedora via Ansible

Con�guring Kubernetes on Fedora via Ansible offers a simple way to quickly create a clustered

environment with little effort.

Prerequisites

1. Host able to run ansible and able to clone the following repo: Kubernetes

2. A Fedora 21+ host to act as cluster master

3. As many Fedora 21+ hosts as you would like, that act as cluster nodes

The hosts can be virtual or bare metal. Ansible will take care of the rest of the con�guration for you -

con�guring networking, installing packages, handling the �rewall, etc. This example will use one

master and two nodes.

Architecture of the cluster

A Kubernetes cluster requires etcd, a master, and n nodes, so we will create a cluster with three

hosts, for example:

Make sure your local machine has

Prerequisites
Architecture of the cluster
Setting up ansible access to your nodes
Setting up the cluster
Testing and using your new cluster
Support Level

master,etcd = kube-master.example.com
 node1 = kube-node-01.example.com
 node2 = kube-node-02.example.com

https://github.com/kubernetes/kubernetes.git

10/23/2017 Fedora via Ansible - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/ 2/6

ansible (must be 1.9.0+)

git

python-netaddr

If not

Now clone down the Kubernetes repository

Tell ansible about each machine and its role in your cluster

Get the IP addresses from the master and nodes. Add those to the

~/contrib/ansible/inventory/localhost.ini �le on the host running Ansible.

Setting up ansible access to your nodes

If you already are running on a machine which has passwordless ssh access to the kube-master and

kube-node-{01,02} nodes, and ‘sudo’ privileges, simply set the value of ansible_ssh_user in

~/contrib/ansible/inventory/group_vars/all.yml to the username which you use to ssh to

the nodes (i.e. fedora), and proceed to the next step…

dnf install -y ansible git python-netaddr

git clone https://github.com/kubernetes/contrib.git
cd contrib/ansible

[masters]
kube-master.example.com

[etcd]
kube-master.example.com

[nodes]
kube-node-01.example.com
kube-node-02.example.com

10/23/2017 Fedora via Ansible - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/ 3/6

Otherwise setup ssh on the machines like so (you will need to know the root password to all

machines in the cluster).

edit: ~/contrib/ansible/inventory/group_vars/all.yml

Con�guring ssh access to the cluster

If you already have ssh access to every machine using ssh public keys you may skip to setting up the

cluster

Make sure your local machine (root) has an ssh key pair if not

Copy the ssh public key to all nodes in the cluster

Setting up the cluster

Although the default value of variables in ~/contrib/ansible/inventory/group_vars/all.yml

should be good enough, if not, change them as needed.

Con�gure access to Kubernetes packages

Modify source_type as below to access Kubernetes packages through the package manager.

ansible_ssh_user: root

ssh-keygen

for node in kube-master.example.com kube-node-01.example.com kube-node-02.example.
 ssh-copy-id ${node}
done

edit: ~/contrib/ansible/inventory/group_vars/all.yml

source_type: packageManager

10/23/2017 Fedora via Ansible - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/ 4/6

Con�gure the IP addresses used for services

Each Kubernetes service gets its own IP address. These are not real IPs. You need to only select a

range of IPs which are not in use elsewhere in your environment.

Managing �annel

Modify flannel_subnet , flannel_prefix and flannel_host_prefix only if defaults are not

appropriate for your cluster.

Managing add on services in your cluster

Set cluster_logging to false or true (default) to disable or enable logging with elasticsearch.

Turn cluster_monitoring to true (default) or false to enable or disable cluster monitoring with

heapster and in�uxdb.

Turn dns_setup to true (recommended) or false to enable or disable whole DNS con�guration.

Tell ansible to get to work!

This will �nally setup your whole Kubernetes cluster for you.

Testing and using your new cluster

kube_service_addresses: 10.254.0.0/16

cluster_logging: true

cluster_monitoring: true

dns_setup: true

cd ~/contrib/ansible/scripts/

./deploy-cluster.sh

10/23/2017 Fedora via Ansible - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/ 5/6

That’s all there is to it. It’s really that easy. At this point you should have a functioning Kubernetes

cluster.

Show Kubernetes nodes

Run the following on the kube-master:

Show services running on masters and nodes

Show �rewall rules on the masters and nodes

Create /tmp/apache.json on the master with the following contents and deploy pod

kubectl get nodes

systemctl | grep -i kube

iptables -nvL

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "fedoraapache",
 "labels": {
 "name": "fedoraapache"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "fedoraapache",
 "image": "fedora/apache",
 "ports": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
]
 }
]
 }
}

10/23/2017 Fedora via Ansible - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config/ 6/6

Check where the pod was created

Check Docker status on nodes

After the pod is ‘Running’ Check web server access on the node

That’s it!

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Bare-metal Ansible Fedora �annel docs Project

For support level information on all solutions, see the Table of solutions chart.

kubectl create -f /tmp/apache.json

kubectl get pods

docker ps
docker images

curl http://localhost

http://localhost:4000/docs/getting-started-guides/fedora/fedora_ansible_config
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 Fedora (Single Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/ 1/6

Fedora (Single Node)

Prerequisites

1. You need 2 or more machines with Fedora installed. These can be either bare metal machines or

virtual machines.

Instructions

This is a getting started guide for Fedora. It is a manual con�guration so you understand all the

underlying packages / services / ports, etc…

This guide will only get ONE node (previously minion) working. Multiple nodes require a functional

networking con�guration done outside of Kubernetes. Although the additional Kubernetes

con�guration requirements should be obvious.

The Kubernetes package provides a few services: kube-apiserver, kube-scheduler, kube-controller-

manager, kubelet, kube-proxy. These services are managed by systemd and the con�guration resides

in a central location: /etc/kubernetes. We will break the services up between the hosts. The �rst host,

fed-master, will be the Kubernetes master. This host will run the kube-apiserver, kube-controller-

manager, and kube-scheduler. In addition, the master will also run etcd (not needed if etcd runs on a

different host but this guide assumes that etcd and Kubernetes master run on the same host). The

remaining host, fed-node will be the node and run kubelet, proxy and docker.

System Information:

Hosts:

Prerequisites
Instructions
Support Level

fed-master = 192.168.121.9
fed-node = 192.168.121.65

http://localhost:4000/docs/concepts/cluster-administration/networking/

10/23/2017 Fedora (Single Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/ 2/6

Prepare the hosts:

Install Kubernetes on all hosts - fed-{master,node}. This will also pull in docker. Also install etcd

on fed-master. This guide has been tested with Kubernetes-0.18 and beyond.

Running on AWS EC2 with RHEL 7.2, you need to enable “extras” repository for yum by editing

/etc/yum.repos.d/redhat-rhui.repo and changing the enable=0 to enable=1 for extras.

Install etcd

Add master and node to /etc/hosts on all machines (not needed if hostnames already in DNS).

Make sure that communication works between fed-master and fed-node by using a utility such

as ping.

Edit /etc/kubernetes/con�g (which should be the same on all hosts) to set the name of the

master server:

Disable the �rewall on both the master and node, as docker does not play well with other �rewall

rule managers. Please note that iptables-services does not exist on default fedora server install.

Con�gure the Kubernetes services on the master.

dnf -y install kubernetes

dnf -y install etcd

echo "192.168.121.9 fed-master
192.168.121.65 fed-node" >> /etc/hosts

Comma separated list of nodes in the etcd cluster
KUBE_MASTER="--master=http://fed-master:8080"

systemctl disable iptables-services firewalld
systemctl stop iptables-services firewalld

10/23/2017 Fedora (Single Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/ 3/6

Edit /etc/kubernetes/apiserver to appear as such. The service-cluster-ip-range IP addresses

must be an unused block of addresses, not used anywhere else. They do not need to be routed

or assigned to anything.

Edit /etc/etcd/etcd.conf to let etcd listen on all available IPs instead of 127.0.0.1. If you have not

done this, you might see an error such as “connection refused”.

Start the appropriate services on master:

Addition of nodes:

Create following node.json �le on Kubernetes master node:

The address on the local server to listen to.
KUBE_API_ADDRESS="--address=0.0.0.0"

Comma separated list of nodes in the etcd cluster
KUBE_ETCD_SERVERS="--etcd-servers=http://127.0.0.1:2379"

Address range to use for services
KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16"

Add your own!
KUBE_API_ARGS=""

ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:2379"

for SERVICES in etcd kube-apiserver kube-controller-manager kube-scheduler; do
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl status $SERVICES
done

10/23/2017 Fedora (Single Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/ 4/6

Now create a node object internally in your Kubernetes cluster by running:

Please note that in the above, it only creates a representation for the node fed-node internally. It does

not provision the actual fed-node. Also, it is assumed that fed-node (as speci�ed in name) can be

resolved and is reachable from Kubernetes master node. This guide will discuss how to provision a

Kubernetes node (fed-node) below.

Con�gure the Kubernetes services on the node.

We need to con�gure the kubelet on the node.

Edit /etc/kubernetes/kubelet to appear as such:

{
 "apiVersion": "v1",
 "kind": "Node",
 "metadata": {
 "name": "fed-node",
 "labels":{ "name": "fed-node-label"}
 },
 "spec": {
 "externalID": "fed-node"
 }
}

$ kubectl create -f ./node.json

$ kubectl get nodes
NAME STATUS AGE VERSION
fed-node Unknown 4h

10/23/2017 Fedora (Single Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/ 5/6

Start the appropriate services on the node (fed-node).

Check to make sure now the cluster can see the fed-node on fed-master, and its status changes

to Ready.

Deletion of nodes:

To delete fed-node from your Kubernetes cluster, one should run the following on fed-master (Please

do not do it, it is just for information):

You should be �nished!

The cluster should be running! Launch a test pod.

Kubernetes kubelet (node) config

The address for the info server to serve on (set to 0.0.0.0 or "" for all interf
KUBELET_ADDRESS="--address=0.0.0.0"

You may leave this blank to use the actual hostname
KUBELET_HOSTNAME="--hostname-override=fed-node"

location of the api-server
KUBELET_API_SERVER="--api-servers=http://fed-master:8080"

Add your own!
#KUBELET_ARGS=""

for SERVICES in kube-proxy kubelet docker; do
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl status $SERVICES
done

kubectl get nodes
NAME STATUS AGE VERSION
fed-node Ready 4h

kubectl delete -f ./node.json

10/23/2017 Fedora (Single Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/ 6/6

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Bare-metal custom Fedora none docs Project

For support level information on all solutions, see the Table of solutions chart.

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 Fedora (Multi Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/ 1/6

Fedora (Multi Node)

This document describes how to deploy Kubernetes on multiple hosts to set up a multi-node cluster

and networking with �annel. Follow fedora getting started guide to setup 1 master (fed-master) and

2 or more nodes. Make sure that all nodes have different names (fed-node1, fed-node2 and so on)

and labels (fed-node1-label, fed-node2-label, and so on) to avoid any con�ict. Also make sure that the

Kubernetes master host is running etcd, kube-controller-manager, kube-scheduler, and kube-

apiserver services, and the nodes are running docker, kube-proxy and kubelet services. Now install

�annel on Kubernetes nodes. Flannel on each node con�gures an overlay network that docker uses.

Flannel runs on each node to setup a unique class-C container network.

Prerequisites

You need 2 or more machines with Fedora installed.

Master Setup

Perform following commands on the Kubernetes master

Con�gure �annel by creating a flannel-config.json in your current directory on fed-master.

Flannel provides udp and vxlan among other overlay networking backend options. In this guide,

we choose kernel based vxlan backend. The contents of the json are:

Prerequisites
Master Setup
Node Setup
Test the cluster and �annel con�guration
Support Level

http://localhost:4000/docs/getting-started-guides/fedora/fedora_manual_config/

10/23/2017 Fedora (Multi Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/ 2/6

NOTE: Choose an IP range that is NOT part of the public IP address range.

Add the con�guration to the etcd server on fed-master.

Verify that the key exists in the etcd server on fed-master.

Node Setup

Perform following commands on all Kubernetes nodes

Install the �annel package

Edit the �annel con�guration �le /etc/syscon�g/�anneld as follows:

{
 "Network": "18.16.0.0/16",
 "SubnetLen": 24,
 "Backend": {
 "Type": "vxlan",
 "VNI": 1
 }
}

etcdctl set /coreos.com/network/config < flannel-config.json

etcdctl get /coreos.com/network/config

dnf -y install flannel

10/23/2017 Fedora (Multi Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/ 3/6

Note: By default, �annel uses the interface for the default route. If you have multiple interfaces and

would like to use an interface other than the default route one, you could add “-iface=” to

FLANNEL_OPTIONS. For additional options, run flanneld --help on command line.

Enable the �annel service.

If docker is not running, then starting �annel service is enough and skip the next step.

If docker is already running, then stop docker, delete docker bridge (docker0), start �anneld and

restart docker as follows. Another alternative is to just reboot the system (systemctl reboot).

Test the cluster and �annel con�guration

Now check the interfaces on the nodes. Notice there is now a �annel.1 interface, and the ip

addresses of docker0 and �annel.1 interfaces are in the same network. You will notice that docker0

Flanneld configuration options

etcd url location. Point this to the server where etcd runs
FLANNEL_ETCD="http://fed-master:2379"

etcd config key. This is the configuration key that flannel queries
For address range assignment
FLANNEL_ETCD_KEY="/coreos.com/network"

Any additional options that you want to pass
FLANNEL_OPTIONS=""

systemctl enable flanneld

systemctl start flanneld

systemctl stop docker
ip link delete docker0
systemctl start flanneld
systemctl start docker

10/23/2017 Fedora (Multi Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/ 4/6

is assigned a subnet (18.16.29.0/24 as shown below) on each Kubernetes node out of the IP range

con�gured above. A working output should look like this:

From any node in the cluster, check the cluster members by issuing a query to etcd server via curl

(only partial output is shown using grep -E "\{|\}|key|value"). If you set up a 1 master and 3

nodes cluster, you should see one block for each node showing the subnets they have been

assigned. You can associate those subnets to each node by the MAC address (VtepMAC) and IP

address (Public IP) that is listed in the output.

From all nodes, review the /run/flannel/subnet.env �le. This �le was generated automatically by

�annel.

ip -4 a|grep inet
 inet 127.0.0.1/8 scope host lo
 inet 192.168.122.77/24 brd 192.168.122.255 scope global dynamic eth0
 inet 18.16.29.0/16 scope global flannel.1
 inet 18.16.29.1/24 scope global docker0

curl -s http://fed-master:2379/v2/keys/coreos.com/network/subnets | python -mjson.

{
 "node": {
 "key": "/coreos.com/network/subnets",
 {
 "key": "/coreos.com/network/subnets/18.16.29.0-24",
 "value": "{\"PublicIP\":\"192.168.122.77\",\"BackendType\":\"vxlan
 },
 {
 "key": "/coreos.com/network/subnets/18.16.83.0-24",
 "value": "{\"PublicIP\":\"192.168.122.36\",\"BackendType\":\"vxlan
 },
 {
 "key": "/coreos.com/network/subnets/18.16.90.0-24",
 "value": "{\"PublicIP\":\"192.168.122.127\",\"BackendType\":\"vxla
 }
 }
}

10/23/2017 Fedora (Multi Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/ 5/6

At this point, we have etcd running on the Kubernetes master, and �annel / docker running on

Kubernetes nodes. Next steps are for testing cross-host container communication which will

con�rm that docker and �annel are con�gured properly.

Issue the following commands on any 2 nodes:

This will place you inside the container. Install iproute and iputils packages to install ip and ping

utilities. Due to a bug, it is required to modify capabilities of ping binary to work around “Operation

not permitted” error.

Now note the IP address on the �rst node:

And also note the IP address on the other node:

Now ping from the �rst node to the other node:

cat /run/flannel/subnet.env
FLANNEL_SUBNET=18.16.29.1/24
FLANNEL_MTU=1450
FLANNEL_IPMASQ=false

docker run -it fedora:latest bash
bash-4.3#

bash-4.3# dnf -y install iproute iputils
bash-4.3# setcap cap_net_raw-ep /usr/bin/ping

bash-4.3# ip -4 a l eth0 | grep inet
 inet 18.16.29.4/24 scope global eth0

bash-4.3# ip a l eth0 | grep inet
 inet 18.16.90.4/24 scope global eth0

bash-4.3# ping 18.16.90.4
PING 18.16.90.4 (18.16.90.4) 56(84) bytes of data.
64 bytes from 18.16.90.4: icmp_seq=1 ttl=62 time=0.275 ms
64 bytes from 18.16.90.4: icmp_seq=2 ttl=62 time=0.372 ms

https://bugzilla.redhat.com/show_bug.cgi?id=1142311

10/23/2017 Fedora (Multi Node) - Kubernetes

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster/ 6/6

Now Kubernetes multi-node cluster is set up with overlay networking set up by �annel.

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Bare-metal custom Fedora �annel docs Community (@aveshagarwal)

libvirt custom Fedora �annel docs Community (@aveshagarwal)

KVM custom Fedora �annel docs Community (@aveshagarwal)

For support level information on all solutions, see the Table of solutions chart.

http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster
https://github.com/aveshagarwal
http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster
https://github.com/aveshagarwal
http://localhost:4000/docs/getting-started-guides/fedora/flannel_multi_node_cluster
https://github.com/aveshagarwal
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 CentOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/ 1/6

CentOS

Warning

This guide has been deprecated. It was originally written for Kubernetes 1.1.0. Please check the

latest guide.

Prerequisites

To con�gure Kubernetes with CentOS, you’ll need a machine to act as a master, and one or more

CentOS 7 hosts to act as cluster nodes.

Starting a cluster

This is a getting started guide for CentOS. It is a manual con�guration so you understand all the

underlying packages / services / ports, etc…

The Kubernetes package provides a few services: kube-apiserver, kube-scheduler, kube-controller-

manager, kubelet, kube-proxy. These services are managed by systemd and the con�guration resides

in a central location: /etc/kubernetes. We will break the services up between the hosts. The �rst host,

centos-master, will be the Kubernetes master. This host will run the kube-apiserver, kube-controller-

manager and kube-scheduler. In addition, the master will also run etcd. The remaining hosts, centos-

minion-n will be the nodes and run kubelet, proxy, cadvisor and docker.

All of them run �anneld as networking overlay.

System Information:

Warning
Prerequisites
Starting a cluster
Support Level

https://github.com/kubernetes/kubernetes.github.io/issues/1613
http://localhost:4000/docs/getting-started-guides/kubeadm/

10/23/2017 CentOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/ 2/6

Hosts:

Please replace host IP with your environment.

Prepare the hosts:

Create a /etc/yum.repos.d/virt7-docker-common-release.repo on all hosts - centos-

{master,minion-n} with following information.

Install Kubernetes, etcd and �annel on all hosts - centos-{master,minion-n}. This will also pull in

docker and cadvisor.

Add master and node to /etc/hosts on all machines (not needed if hostnames already in DNS)

Edit /etc/kubernetes/con�g which will be the same on all hosts to contain:

centos-master = 192.168.121.9
centos-minion-1 = 192.168.121.65
centos-minion-2 = 192.168.121.66
centos-minion-3 = 192.168.121.67

[virt7-docker-common-release]
name=virt7-docker-common-release
baseurl=http://cbs.centos.org/repos/virt7-docker-common-release/x86_64/os/
gpgcheck=0

yum -y install --enablerepo=virt7-docker-common-release kubernetes etcd flannel

echo "192.168.121.9 centos-master
192.168.121.65 centos-minion-1
192.168.121.66 centos-minion-2
192.168.121.67 centos-minion-3" >> /etc/hosts

10/23/2017 CentOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/ 3/6

Disable the �rewall on the master and all the nodes, as docker does not play well with other

�rewall rule managers. CentOS won’t let you disable the �rewall as long as SELinux is enforcing,

so that needs to be disabled �rst.

Con�gure the Kubernetes services on the master.

Edit /etc/etcd/etcd.conf to appear as such:

Edit /etc/kubernetes/apiserver to appear as such:

logging to stderr means we get it in the systemd journal
KUBE_LOGTOSTDERR="--logtostderr=true"

journal message level, 0 is debug
KUBE_LOG_LEVEL="--v=0"

Should this cluster be allowed to run privileged docker containers
KUBE_ALLOW_PRIV="--allow-privileged=false"

How the replication controller and scheduler find the kube-apiserver
KUBE_MASTER="--master=http://centos-master:8080"

setenforce 0
systemctl disable iptables-services firewalld
systemctl stop iptables-services firewalld

[member]
ETCD_NAME=default
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:2379"

#[cluster]
ETCD_ADVERTISE_CLIENT_URLS="http://0.0.0.0:2379"

10/23/2017 CentOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/ 4/6

Start ETCD and con�gure it to hold the network overlay con�guration on master: Warning This

network must be unused in your network infrastructure! 172.30.0.0/16 is free in our network.

Con�gure �annel to overlay Docker network in /etc/syscon�g/�anneld on the master (also in the

nodes as we’ll see):

Start the appropriate services on master:

The address on the local server to listen to.
KUBE_API_ADDRESS="--address=0.0.0.0"

The port on the local server to listen on.
KUBE_API_PORT="--port=8080"

Port kubelets listen on
KUBELET_PORT="--kubelet-port=10250"

Comma separated list of nodes in the etcd cluster
KUBE_ETCD_SERVERS="--etcd-servers=http://centos-master:2379"

Address range to use for services
KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16"

Add your own!
KUBE_API_ARGS=""

systemctl start etcd
etcdctl mkdir /kube-centos/network
etcdctl mk /kube-centos/network/config "{ \"Network\": \"172.30.0.0/16\", \"Subnet

Flanneld configuration options

etcd url location. Point this to the server where etcd runs
FLANNEL_ETCD_ENDPOINTS="http://centos-master:2379"

etcd config key. This is the configuration key that flannel queries
For address range assignment
FLANNEL_ETCD_PREFIX="/kube-centos/network"

Any additional options that you want to pass
#FLANNEL_OPTIONS=""

10/23/2017 CentOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/ 5/6

Con�gure the Kubernetes services on the nodes.

We need to con�gure the kubelet and start the kubelet and proxy

Edit /etc/kubernetes/kubelet to appear as such:

Con�gure �annel to overlay Docker network in /etc/syscon�g/�anneld (in all the nodes)

Start the appropriate services on node (centos-minion-n).

for SERVICES in etcd kube-apiserver kube-controller-manager kube-scheduler flannel
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl status $SERVICES
done

The address for the info server to serve on
KUBELET_ADDRESS="--address=0.0.0.0"

The port for the info server to serve on
KUBELET_PORT="--port=10250"

You may leave this blank to use the actual hostname
Check the node number!
KUBELET_HOSTNAME="--hostname-override=centos-minion-n"

Location of the api-server
KUBELET_API_SERVER="--api-servers=http://centos-master:8080"

Add your own!
KUBELET_ARGS=""

Flanneld configuration options

etcd url location. Point this to the server where etcd runs
FLANNEL_ETCD_ENDPOINTS="http://centos-master:2379"

etcd config key. This is the configuration key that flannel queries
For address range assignment
FLANNEL_ETCD_PREFIX="/kube-centos/network"

Any additional options that you want to pass
#FLANNEL_OPTIONS=""

10/23/2017 CentOS - Kubernetes

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config/ 6/6

Con�gure kubectl

You should be �nished!

Check to make sure the cluster can see the node (on centos-master)

The cluster should be running! Launch a test pod.

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

Bare-metal custom CentOS �annel docs Community (@coolsvap)

For support level information on all solutions, see the Table of solutions chart.

for SERVICES in kube-proxy kubelet flanneld docker; do
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl status $SERVICES
done

kubectl config set-cluster default-cluster --server=http://centos-master:8080
kubectl config set-context default-context --cluster=default-cluster --user=defaul
kubectl config use-context default-context

$ kubectl get nodes
NAME STATUS AGE VERSION
centos-minion-1 Ready 3d v1.6.0+fff5156
centos-minion-2 Ready 3d v1.6.0+fff5156
centos-minion-3 Ready 3d v1.6.0+fff5156

http://localhost:4000/docs/getting-started-guides/centos/centos_manual_config
https://github.com/coolsvap
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 CoreOS on AWS or GCE - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/ 1/2

CoreOS on AWS or GCE

There are multiple guides on running Kubernetes with CoreOS:

O�cial CoreOS Guides

These guides are maintained by CoreOS and deploy Kubernetes the “CoreOS Way” with full TLS, the

DNS add-on, and more. These guides pass Kubernetes conformance testing and we encourage you

to test this yourself.

AWS Multi-Node

Guide and CLI tool for setting up a multi-node cluster on AWS. CloudFormation is used to set up a

master and multiple workers in auto-scaling groups.

Bare Metal Multi-Node

Guide and HTTP/API service for PXE booting and provisioning a multi-node cluster on bare metal.

Ignition is used to provision a master and multiple workers on the �rst boot from disk.

Vagrant Multi-Node

Guide to setting up a multi-node cluster on Vagrant. The deployer can independently con�gure the

number of etcd nodes, master nodes, and worker nodes to bring up a fully HA control plane.

Vagrant Single-Node

The quickest way to set up a Kubernetes development environment locally. As easy as git clone ,

vagrant up and con�guring kubectl .

Full Step by Step Guide

A generic guide to setting up an HA cluster on any cloud or bare metal, with full TLS. Repeat the

master or worker steps to con�gure more machines of that role.

Community Guides

O�cial CoreOS Guides
Community Guides
Support Level

https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/conformance-tests.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-baremetal.html#automated-provisioning
https://coreos.com/ignition/docs/latest/
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant-single.html
https://coreos.com/kubernetes/docs/latest/getting-started.html

10/23/2017 CoreOS on AWS or GCE - Kubernetes

http://localhost:4000/docs/getting-started-guides/coreos/ 2/2

These guides are maintained by community members, cover speci�c platforms and use cases, and

experiment with different ways of con�guring Kubernetes on CoreOS.

Easy Multi-node Cluster on Google Compute Engine

Scripted installation of a single master, multi-worker cluster on GCE. Kubernetes components are

managed by �eet.

Multi-node cluster using cloud-con�g and Weave on Vagrant

Con�gure a Vagrant-based cluster of 3 machines with networking provided by Weave.

Multi-node cluster using cloud-con�g and Vagrant

Con�gure a single master, multi-worker cluster locally, running on your choice of hypervisor:

VirtualBox, Parallels, or VMware

Single-node cluster using a small OS X App

Guide to running a solo cluster (master + worker) controlled by an OS X menubar application. Uses

xhyve + CoreOS under the hood.

Multi-node cluster with Vagrant and �eet units using a small OS X App

Guide to running a single master, multi-worker cluster controlled by an OS X menubar application.

Uses Vagrant under the hood.

Multi-node cluster using cloud-con�g, CoreOS and VMware ESXi

Con�gure a single master, single worker cluster on VMware ESXi.

Single/Multi-node cluster using cloud-con�g, CoreOS and Foreman

Con�gure a standalone Kubernetes or a Kubernetes cluster with Foreman.

Support Level

IaaS Provider Con�g. Mgmt OS Networking Docs Conforms Support Level

GCE CoreOS CoreOS �annel docs Community (@pires)

Vagrant CoreOS CoreOS �annel docs Community (@pires, @AntonioMeireles)

For support level information on all solutions, see the Table of solutions chart.

https://github.com/rimusz/coreos-multi-node-k8s-gce/blob/master/README.md
https://github.com/coreos/fleet
https://github.com/errordeveloper/weave-demos/blob/master/poseidon/README.md
https://github.com/pires/kubernetes-vagrant-coreos-cluster/blob/master/README.md
https://github.com/rimusz/kube-solo-osx/blob/master/README.md
https://github.com/rimusz/coreos-osx-gui-kubernetes-cluster/blob/master/README.md
https://github.com/xavierbaude/VMware-coreos-multi-nodes-Kubernetes
https://github.com/johscheuer/theforeman-coreos-kubernetes
https://theforeman.org/
http://localhost:4000/docs/getting-started-guides/coreos
https://github.com/pires
http://localhost:4000/docs/getting-started-guides/coreos
https://github.com/pires
https://github.com/AntonioMeireles
http://localhost:4000/docs/getting-started-guides/#table-of-solutions

10/23/2017 Kubernetes on Ubuntu - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/ 1/3

Kubernetes on Ubuntu

There are multiple ways to run a Kubernetes cluster with Ubuntu. These pages explain how to deploy

Kubernetes on Ubuntu on multiple public and private clouds, as well as bare metal.

O�cial Ubuntu Guides

The Canonical Distribution of Kubernetes

Supports AWS, GCE, Azure, Joyent, OpenStack, VMWare, Bare Metal and localhost deployments.

Quick Start

conjure-up provides the quickest way to deploy Kubernetes on Ubuntu for multiple clouds and bare

metal. It provides a user-friendly UI that prompts you for cloud credentials and con�guration options

Available for Ubuntu 16.04 and newer:

As well as Homebrew for macOS:

Operational Guides

O�cial Ubuntu Guides
Quick Start
Operational Guides

Developer Guides
Where to �nd us

sudo snap install conjure-up --classic
re-login may be required at that point if you just installed snap utility
conjure-up kubernetes

brew install conjure-up
conjure-up kubernetes

https://www.ubuntu.com/cloud/kubernetes
http://conjure-up.io/

10/23/2017 Kubernetes on Ubuntu - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/ 2/3

These are more in-depth guides for users choosing to run Kubernetes in production:

Installation

Validation

Backups

Upgrades

Scaling

Logging

Monitoring

Networking

Security

Storage

Troubleshooting

Decommissioning

Operational Considerations

Glossary

Developer Guides

Localhost using LXD

Where to �nd us

We’re normally following the following Slack channels:

sig-cluster-lifecycle

sig-cluster-ops

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/
http://localhost:4000/docs/getting-started-guides/ubuntu/validation/
http://localhost:4000/docs/getting-started-guides/ubuntu/backups/
http://localhost:4000/docs/getting-started-guides/ubuntu/upgrades/
http://localhost:4000/docs/getting-started-guides/ubuntu/scaling/
http://localhost:4000/docs/getting-started-guides/ubuntu/logging/
http://localhost:4000/docs/getting-started-guides/ubuntu/monitoring/
http://localhost:4000/docs/getting-started-guides/ubuntu/networking/
http://localhost:4000/docs/getting-started-guides/ubuntu/security/
http://localhost:4000/docs/getting-started-guides/ubuntu/storage/
http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/
http://localhost:4000/docs/getting-started-guides/ubuntu/decommissioning/
http://localhost:4000/docs/getting-started-guides/ubuntu/operational-considerations/
http://localhost:4000/docs/getting-started-guides/ubuntu/glossary/
http://localhost:4000/docs/getting-started-guides/ubuntu/local/
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://kubernetes.slack.com/messages/sig-cluster-ops/

10/23/2017 Kubernetes on Ubuntu - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/ 3/3

sig-onprem

and we monitor the Kubernetes mailing lists.

https://kubernetes.slack.com/messages/sig-onprem/

10/23/2017 Validation - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/validation/ 1/5

Validation

This page will outline how to ensure that a Juju deployed Kubernetes cluster has stood up correctly

and is ready to accept workloads.

Before you begin

This page assumes you have a working Juju deployed cluster.

Validation

End to End Testing

End-to-end (e2e) tests for Kubernetes provide a mechanism to test end-to-end behavior of the

system, and is the last signal to ensure end user operations match developer speci�cations.

Although unit and integration tests provide a good signal, in a distributed system like Kubernetes it is

not uncommon that a minor change may pass all unit and integration tests, but cause unforeseen

changes at the system level.

Before you begin
Validation

End to End Testing
Usage
Running the e2e test
Tuning the e2e test
More information on end-to-end testing
Evaluating end-to-end results

Flat �le
Action result output

Known issues
Upgrading the e2e tests

10/23/2017 Validation - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/validation/ 2/5

The primary objectives of the e2e tests are to ensure a consistent and reliable behavior of the

kubernetes code base, and to catch hard-to-test bugs before users do, when unit and integration

tests are insu�cient.

Usage

To deploy the end-to-end test suite, you need to relate the kubernetes-e2e charm to your existing

kubernetes-master nodes and easyrsa:

Once the relations have settled, you can do juju status until the workload status results in

Ready to test. - you may then kick off an end to end validation test.

Running the e2e test

The e2e test is encapsulated as an action to ensure consistent runs of the end to end test. The

defaults are sensible for most deployments.

Tuning the e2e test

The e2e test is con�gurable. By default it will focus on or skip the declared conformance tests in a

cloud agnostic way. Default behaviors are con�gurable. This allows the operator to test only a subset

of the conformance tests, or to test more behaviors not enabled by default. You can see all tunable

options on the charm by inspecting the schema output of the actions:

Output:

juju deploy cs:~containers/kubernetes-e2e
juju add-relation kubernetes-e2e kubernetes-master
juju add-relation kubernetes-e2e easyrsa

juju run-action kubernetes-e2e/0 test

juju actions kubernetes-e2e --format=yaml --schema

10/23/2017 Validation - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/validation/ 3/5

As an example, you can run a more limited set of tests for rapid validation of a deployed cluster. The

following example will skip the Flaky , Slow , and Feature labeled tests:

Note: the escaping of the regex due to how bash handles brackets.

To see the different types of tests the Kubernetes end-to-end charm has access to, we encourage

you to see the upstream documentation on the different types of tests, and to strongly understand

what subsets of the tests you are running.

Kinds of tests

More information on end-to-end testing

Along with the above descriptions, end-to-end testing is a much larger subject than this readme can

encapsulate. There is far more information in the end-to-end testing guide.

Evaluating end-to-end results

It is not enough to just simply run the test. Result output is stored in two places. The raw output of

the e2e run is available in the juju show-action-output command, as well as a �at �le on disk on

the kubernetes-e2e unit that executed the test.

test:
 description: Run end-to-end validation test suite
 properties:
 focus:
 default: \[Conformance\]
 description: Regex focus for executing the test
 type: string
 skip:
 default: \[Flaky\]
 description: Regex of tests to skip
 type: string
 timeout:
 default: 30000
 description: Timeout in nanoseconds
 type: integer
 title: test
 type: object

juju run-action kubernetes-e2e/0 test skip='\[(Flaky|Slow|Feature:.*)\]'

https://git.k8s.io/community/contributors/devel/e2e-tests.md#kinds-of-tests
https://git.k8s.io/community/contributors/devel/e2e-tests.md

10/23/2017 Validation - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/validation/ 4/5

Note: The results will only be available once the action has completed the test run. End-to-end

testing can be quite time intensive. Often times taking greater than 1 hour, depending on

con�guration.

Flat �le

Here’s how to copy the output out as a �le:

Output:

Copy output to your local machine:

Action result output

Or you can just show the output inline:

Output:

Show the results in your terminal:

juju run-action kubernetes-e2e/0 test

Action queued with id: 4ceed33a-d96d-465a-8f31-20d63442e51b

juju scp kubernetes-e2e/0:4ceed33a-d96d-465a-8f31-20d63442e51b.log .

juju run-action kubernetes-e2e/0 test

Action queued with id: 4ceed33a-d96d-465a-8f31-20d63442e51b

juju show-action-output 4ceed33a-d96d-465a-8f31-20d63442e51b

10/23/2017 Validation - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/validation/ 5/5

Known issues

The e2e test suite assumes egress network access. It will pull container images from gcr.io . You

will need to have this registry unblocked in your �rewall to successfully run e2e test results. Or you

may use the exposed proxy settings properly con�gured on the kubernetes-worker units.

Upgrading the e2e tests

The e2e tests are always expanding, you can see if there’s an upgrade available by running

juju status kubernetes-e2e .

When an upgrade is available, upgrade your deployment:

juju upgrade-charm kubernetes-e2e

https://github.com/juju-solutions/bundle-canonical-kubernetes#proxy-configuration

10/23/2017 Backups - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/backups/ 1/4

Backups

This page shows you how to backup and restore data from the different deployed services in a given

cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Exporting cluster data

Exporting of cluster data is not supported at this time.

Restoring cluster data

Importing of cluster data is not supported at this time.

Exporting etcd data

Migrating etcd is a fairly easy task.

Before you begin
Exporting cluster data
Restoring cluster data
Exporting etcd data
Restoring etcd data
Snapshot etcd data
Known Limitations

Loss of PKI warning
Restoring from snapshot on a scaled cluster

10/23/2017 Backups - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/backups/ 2/4

Step 1: Snapshot your existing cluster. This is encapsulated in the snapshot action.

Results:

Step 2: Check the status of the action so you can grab the snapshot and verify the sum. The

copy.cmd result output is a copy/paste command for you to download the exact snapshot that you

just created.

Download the snapshot archive from the unit that created the snapshot and verify the sha256 sum

Results:

Copy the snapshot to the local disk and then check the sha256sum.

Step 3: Deploy the new cluster leader, and attach the snapshot:

juju run-action etcd/0 snapshot

Action queued with id: b46d5d6f-5625-4320-8cda-b611c6ae580c

juju show-action-output b46d5d6f-5625-4320-8cda-b611c6ae580c

results:
 copy:
 cmd: juju scp etcd/0:/home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.4
 .
 snapshot:
 path: /home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz
 sha256: 1dea04627812397c51ee87e313433f3102f617a9cab1d1b79698323f6459953d
 size: 68K
status: completed

juju scp etcd/0:/home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.
sha256sum etcd-snapshot-2016-11-09-02.41.47.tar.gz

juju deploy etcd new-etcd --resource snapshot=./etcd-snapshot-2016-11-09-02.41.47.

10/23/2017 Backups - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/backups/ 3/4

Step 4: Re-Initialize the master with the data from the resource we just attached in step 3.

Restoring etcd data

Allows the operator to restore the data from a cluster-data snapshot. This comes with caveats and a

very speci�c path to restore a cluster:

The cluster must be in a state of only having a single member. So it’s best to deploy a new cluster

using the etcd charm, without adding any additional units.

The above code snippet will deploy a single unit of etcd, as ‘new-etcd’

Once the restore action has completed, evaluate the cluster health. If the unit is healthy, you may

resume scaling the application to meet your needs.

param target: destination directory to save the existing data.

param skip-backup: Don’t backup any existing data.

Snapshot etcd data

Allows the operator to snapshot a running clusters data for use in cloning, backing up, or migrating

Etcd clusters.

juju run-action new-etcd/0 restore

juju deploy etcd new-etcd

juju run-action etcd/0 restore target=/mnt/etcd-backups

juju run-action etcd/0 snapshot target=/mnt/etcd-backups

10/23/2017 Backups - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/backups/ 4/4

param target: destination directory to save the resulting snapshot archive.

Known Limitations

Loss of PKI warning

If you destroy the leader - identi�ed with the * text next to the unit number in status: all TLS pki will

be lost. No PKI migration occurs outside of the units requesting and registering the certi�cates.

Important: Mismanaging this con�guration will result in locking yourself out of the cluster, and can

potentially break existing deployments in very strange ways relating to x509 validation of certi�cates,

which affects both servers and clients.

Restoring from snapshot on a scaled cluster

Restoring from a snapshot on a scaled cluster will result in a broken cluster. Etcd performs

clustering during unit turn-up, and state is stored in Etcd itself. During the snapshot restore phase, a

new cluster ID is initialized, and peers are dropped from the snapshot state to enable snapshot

restoration. Please follow the migration instructions above in the restore action description.

10/23/2017 Upgrades - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/upgrades/ 1/5

Upgrades

This page will outline how to manage and execute a Kubernetes upgrade.

Before you begin

This page assumes you have a working deployed cluster.

Assumptions

You should always back up all your data before attempting an upgrade. Don’t forget to include the

workload inside your cluster! Refer to the backup documentation.

Preparing for an Upgrade

See if upgrades are available. The Kubernetes charms are updated bi-monthly and mentioned in the

Kubernetes release notes. Important operational considerations and change in behaviour will always

Before you begin
Assumptions
Preparing for an Upgrade
Upgrade etcd
Upgrade Kubernetes

Master Upgrades
Worker Upgrades
Blue/Green Upgrade
In place worker upgrade

Verify upgrade
Upgrade Flannel
Upgrade easyrsa

Rolling back etcd
Rolling back Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/backups

10/23/2017 Upgrades - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/upgrades/ 2/5

be documented in the release notes.

You can use juju status to see if an upgrade is available. There will either be an upgrade to

kubernetes or etcd, or both.

Upgrade etcd

Backing up etcd requires an export and snapshot, refer to the backup documentation to create a

snapshot. After the snapshot upgrade the etcd service with:

This will handle upgrades between minor versions of etcd. Major upgrades from etcd 2.x to 3.x are

currently unsupported. Instead, data will be run in etcdv2 stores over the etcdv3 api.

Upgrade Kubernetes

The Kubernetes Charms use snap channels to drive payloads. The channels are de�ned by

X.Y/channel where X.Y is the major.minor release of Kubernetes (e.g. 1.6) and channel is one

of the four following channels:

Channel name Description

stable The latest stable released patch version of Kubernetes

candidate Release candidate releases of Kubernetes

beta Latest alpha or beta of Kubernetes for that minor release

edge Nightly builds of that minor release of Kubernetes

If a release isn’t available, the next highest channel is used. For example, 1.6/beta will load

/candidate or /stable depending on availability of release. Development versions of Kubernetes

are available in that minor releases edge channel. There is no guarantee that edge or master will

work with the current charms.

Master Upgrades

juju upgrade-charm etcd

http://localhost:4000/docs/getting-started-guides/ubuntu/backups

10/23/2017 Upgrades - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/upgrades/ 3/5

First you need to upgrade the masters:

NOTE: Always upgrade the masters before the workers.

Once the latest charm is deployed, the channel for Kubernetes can be selected by issuing the

following:

Where x is the minor version of Kubernetes. For example, 1.6/stable . See above for Channel

de�nitions

Worker Upgrades

Two methods of upgrading workers are supported. Blue/Green Deployment and upgrade-in-place.

Both methods are provided for operational �exibility and both are supported and tested. Blue/Green

will require more hardware up front than inplace, but is a safer upgrade route.

Blue/Green Upgrade

Given the following deployment, where the workers are named kubernetes-alpha.

Deploy new worker(s):

Pause the old workers so your workload migrates:

Verify old workloads have migrated with:

juju upgrade-charm kubernetes-master

juju config kubernetes-master channel=1.x/stable

juju deploy kubernetes-beta

juju run-action kubernetes-alpha/# pause

http://martinfowler.com/bliki/BlueGreenDeployment.html

10/23/2017 Upgrades - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/upgrades/ 4/5

Tear down old workers with:

In place worker upgrade

Where x is the minor version of Kubernetes. For example, 1.6/stable . See above for Channel

de�nitions. Once you’ve con�gured kubernetes-worker with the appropriate channel, run the upgrade

action on each worker:

Verify upgrade

kubectl version should return the newer version.

It is recommended to rerun a cluster validation to ensure that the cluster upgrade has successfully

completed.

Upgrade Flannel

Upgrading �annel can be done at any time, it is independent of Kubernetes upgrades. Be advised that

networking is interrupted during the upgrade. You can initiate a �annel upgrade:

kubectl get pod -o wide

juju remove-application kubernetes-alpha

juju upgrade-charm kubernetes-worker
juju config kubernetes-worker channel=1.x/stable

juju run-action kubernetes-worker/0 upgrade
juju run-action kubernetes-worker/1 upgrade
...

juju upgrade-charm flannel

http://localhost:4000/docs/getting-started-guides/ubuntu/validation

10/23/2017 Upgrades - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/upgrades/ 5/5

Upgrade easyrsa

Upgrading easyrsa can be done at any time, it is independent of Kubernetes upgrades. Upgrading

easyrsa should result in zero downtime as it is not a running service:

Rolling back etcd

At this time rolling back etcd is unsupported.

Rolling back Kubernetes

At this time rolling back Kubernetes is unsupported.

juju upgrade-charm easyrsa

10/23/2017 Scaling - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/scaling/ 1/3

Scaling

Any of the applications can be scaled out post-deployment. The charms update the status

messages with progress, so it is recommended to run.

This page shows how to horizontally scale master and worker nodes on a cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Kubernetes masters

The provided Kubernetes master nodes act as a control plane for the cluster. The deployment has

been designed so that these nodes can be scaled independently of worker nodes to allow for more

operational �exibility. To scale a master node up, simply execute:

This will add another master node to the control plane. See the building high-availability clusters

section of the documentation for more information.

Kubernetes workers

watch -c juju status --color

Before you begin
Kubernetes masters
Kubernetes workers
etcd
Juju Controller

juju add-unit kubernetes-master

http://localhost:4000/docs/admin/high-availability

10/23/2017 Scaling - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/scaling/ 2/3

The kubernetes-worker nodes are the load-bearing units of a Kubernetes cluster.

By default pods are automatically spread throughout the kubernetes-worker units that you have

deployed.

To add more kubernetes-worker units to the cluster:

or specify machine constraints to create larger nodes:

Refer to the machine constraints documentation for other machine constraints that might be useful

for the kubernetes-worker units.

etcd

Etcd is used as a key-value store for the Kubernetes cluster. The bundle defaults to one instance in

this cluster.

For quorum reasons it is recommended to keep an odd number of etcd nodes. 3, 5, 7, and 9 nodes

are the recommended amount of nodes, depending on your cluster size. The CoreOS etcd

documentation has a chart for the optimal cluster size to determine fault tolerance.

To add an etcd unit:

Shrinking of an etcd cluster after growth is not recommended.

Juju Controller

juju add-unit kubernetes-worker

juju set-constraints kubernetes-worker "cpu-cores=8 mem=32G"
juju add-unit kubernetes-worker

juju add-unit etcd

https://jujucharms.com/docs/stable/charms-constraints
https://coreos.com/etcd/docs/latest/admin_guide.html#optimal-cluster-size

10/23/2017 Scaling - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/scaling/ 3/3

A single node is responsible for coordinating with all the Juju agents on each machine that manage

Kubernetes, it is called the controller node. For production deployments it is recommended to enable

HA of the controller node:

Enabling HA results in 3 controller nodes, this should be su�cient for most use cases. 5 and 7

controller nodes are also supported for extra large deployments.

Refer to the Juju HA controller documentation for more information.

juju enable-ha

https://jujucharms.com/docs/2.0/controllers-ha

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 1/8

Setting up Kubernetes with Juju

Out of the box it comes with the following components on 9 machines:

Kubernetes (automated deployment, operations, and scaling)

Three node Kubernetes cluster with one master and two worker nodes.

TLS used for communication between units for security.

Flannel Software De�ned Network (SDN) plugin

A load balancer for HA kubernetes-master (Experimental)

Optional Ingress Controller (on worker)

Optional Dashboard addon (on master) including Heapster for cluster monitoring

EasyRSA

Performs the role of a certi�cate authority serving self signed certi�cates to the requesting

units of the cluster.

ETCD (distributed key value store)

Three unit cluster for reliability.

The Juju Kubernetes work is curated by a dedicated team of community members, let us know how

we are doing. If you �nd any problems please open an issue on our tracker so we can �nd them.

Support Level

IaaS Provider Con�g.
Mgmt OS Networking Docs Conforms Support Level

Amazon Web Services
(AWS) Juju Ubuntu �annel,

calico* docs Commercial, Community (
@mbruzek, @chuckbutler)

OpenStack Juju Ubuntu �annel,
calico docs Commercial, Community (

@mbruzek, @chuckbutler)

https://github.com/juju-solutions/bundle-canonical-kubernetes
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 2/8

IaaS Provider Con�g.
Mgmt OS Networking Docs Conforms Support Level

Microsoft Azure Juju Ubuntu �annel docs Commercial, Community (
@mbruzek, @chuckbutler)

Google Compute Engine
(GCE) Juju Ubuntu �annel,

calico docs Commercial, Community (
@mbruzek, @chuckbutler)

Joyent Juju Ubuntu �annel docs Commercial, Community (
@mbruzek, @chuckbutler)

Rackspace Juju Ubuntu �annel docs Commercial, Community (
@mbruzek, @chuckbutler)

VMWare vSphere Juju Ubuntu �annel,
calico docs Commercial, Community (

@mbruzek, @chuckbutler)

Bare Metal (MAAS) Juju Ubuntu �annel,
calico docs Commercial, Community (

@mbruzek, @chuckbutler)

For support level information on all solutions, see the Table of solutions chart.

Ubuntu 16.04 introduced the Canonical Distribution of Kubernetes, a pure upstream distribution of

Kubernetes designed for production usage. This page shows you how to deploy a cluster.

Before you begin

Prerequisites

A working Juju client; this does not have to be a Linux machine, it can also be Windows or OSX.

A supported cloud.

Support Level
Before you begin
Prerequisites

Con�gure Juju to use your cloud provider
Launch a Kubernetes cluster
Monitor deployment
Interacting with the cluster
Scale up cluster
Scale out cluster
Tear down cluster
More Info

http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/ubuntu/
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
https://github.com/mbruzek
https://github.com/chuckbutler
http://localhost:4000/docs/getting-started-guides/#table-of-solutions
https://www.ubuntu.com/cloud/kubernetes
https://jujucharms.com/docs/2.0/getting-started-general

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 3/8

Bare Metal deployments are supported via MAAS. Refer to the MAAS documentation for

con�guration instructions.

OpenStack deployments are currently only tested on Icehouse and newer.

Network access to the following domains

*.jujucharms.com

gcr.io

github.com

Access to an Ubuntu mirror (public or private)

Con�gure Juju to use your cloud provider

Deployment of the cluster is supported on a wide variety of public clouds, private OpenStack clouds,

or raw bare metal clusters. Bare metal deployments are supported via MAAS.

After deciding which cloud to deploy to, follow the cloud setup page to con�gure deploying to that

cloud.

Load your cloud credentials for each cloud provider you would like to use.

In this example

You can also just auto load credentials for popular clouds with the juju autoload-credentials

command, which will auto import your credentials from the default �les and environment variables

for each cloud.

Next we need to bootstrap a controller to manage the cluster. You need to de�ne the cloud you want

to bootstrap on, the region, and then any name for your controller node:

juju add-credential aws
credential name: my_credentials
select auth-type [userpass, oauth, etc]: userpass
enter username: jorge
enter password: *******

juju update-clouds # This command ensures all the latest regions are up to date on
juju bootstrap aws/us-east-2

http://maas.io/
http://maas.io/docs/
http://maas.io/
https://jujucharms.com/docs/devel/getting-started
https://jujucharms.com/docs/2.0/credentials

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 4/8

or, another example, this time on Azure:

You will need a controller node for each cloud or region you are deploying to. See the controller

documentation for more information.

Note that each controller can host multiple Kubernetes clusters in a given cloud or region.

Launch a Kubernetes cluster

The following command will deploy the initial 9-node starter cluster. The speed of execution is very

dependent of the performance of the cloud you’re deploying to:

After this command executes the cloud will then launch instances and begin the deployment

process.

Monitor deployment

The juju status command provides information about each unit in the cluster. Use the

watch -c juju status --color command to get a real-time view of the cluster as it deploys.

When all the states are green and “Idle”, the cluster is ready to be used:

Output:

juju bootstrap azure/centralus

juju deploy canonical-kubernetes

juju status

https://jujucharms.com/docs/2.0/controllers

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 5/8

Interacting with the cluster

After the cluster is deployed you may assume control over the cluster from any kubernetes-master,

or kubernetes-worker node.

First you need to download the credentials and client application to your local workstation:

Model Controller Cloud/Region Version
default aws-us-east-2 aws/us-east-2 2.0.1

App Version Status Scale Charm Store
easyrsa 3.0.1 active 1 easyrsa jujucha
etcd 3.1.2 active 3 etcd jujucha
flannel 0.6.1 maintenance 4 flannel jujucha
kubeapi-load-balancer 1.10.0 active 1 kubeapi-load-balancer jujucha
kubernetes-master 1.6.1 active 1 kubernetes-master jujucha
kubernetes-worker 1.6.1 active 3 kubernetes-worker jujucha
topbeat active 3 topbeat jujucha

Unit Workload Agent Machine Public address Ports
easyrsa/0* active idle 0 52.15.95.92
etcd/0 active idle 3 52.15.79.127 2379/tcp
etcd/1* active idle 4 52.15.111.66 2379/tcp
etcd/2 active idle 5 52.15.144.25 2379/tcp
kubeapi-load-balancer/0* active idle 7 52.15.84.179 443/tcp
kubernetes-master/0* active idle 8 52.15.106.225 6443/tcp
 flannel/3 active idle 52.15.106.225
kubernetes-worker/0* active idle 9 52.15.153.246
 flannel/2 active idle 52.15.153.246
kubernetes-worker/1 active idle 10 52.15.52.103
 flannel/0* active idle 52.15.52.103
kubernetes-worker/2 active idle 11 52.15.104.181
 flannel/1 active idle 52.15.104.181

Machine State DNS Inst id Series AZ
0 started 52.15.95.92 i-06e66414008eca61c xenial us-east-2c
3 started 52.15.79.127 i-0038186d2c5103739 xenial us-east-2b
4 started 52.15.111.66 i-0ac66c86a8ec93b18 xenial us-east-2a
5 started 52.15.144.25 i-078cfe79313d598c9 xenial us-east-2c
7 started 52.15.84.179 i-00fd70321a51b658b xenial us-east-2c
8 started 52.15.106.225 i-0109a5fc942c53ed7 xenial us-east-2b
9 started 52.15.153.246 i-0ab63e34959cace8d xenial us-east-2b
10 started 52.15.52.103 i-0108a8cc0978954b5 xenial us-east-2a
11 started 52.15.104.181 i-0f5562571c649f0f2 xenial us-east-2c

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 6/8

Create the kubectl con�g directory.

Copy the kubecon�g �le to the default location.

Fetch a binary for the architecture you have deployed. If your client is a different architecture you will

need to get the appropriate kubectl binary through other means. In this example we copy kubectl

to ~/bin for convenience, by default this should be in your $PATH.

Query the cluster:

Output:

Congratulations, you’ve now set up a Kubernetes cluster!

Scale up cluster

Want larger Kubernetes nodes? It is easy to request different sizes of cloud resources from Juju by

using constraints. You can increase the amount of CPU or memory (RAM) in any of the systems

requested by Juju. This allows you to �ne tune the Kubernetes cluster to �t your workload. Use �ags

mkdir -p ~/.kube

juju scp kubernetes-master/0:config ~/.kube/config

mkdir -p ~/bin
juju scp kubernetes-master/0:kubectl ~/bin/kubectl

kubectl cluster-info

Kubernetes master is running at https://52.15.104.227:443
Heapster is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/ser
KubeDNS is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/serv
Grafana is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/serv
InfluxDB is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/ser

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 7/8

on the bootstrap command or as a separate juju constraints command. Look to the Juju

documentation for machine details.

Scale out cluster

Need more workers? We just add more units:

Or multiple units at one time:

You can also ask for speci�c instance types or other machine-speci�c constraints. See the

constraints documentation for more information. Here are some examples, note that generic

constraints such as cores and mem are more portable between clouds. In this case we’ll ask for a

speci�c instance type from AWS:

You can also scale the etcd charm for more fault tolerant key/value storage:

It is strongly recommended to run an odd number of units for quorum.

Tear down cluster

If you want stop the servers you can destroy the Juju model or the controller. Use the juju switch

command to get the current controller name:

juju add-unit kubernetes-worker

juju add-unit -n3 kubernetes-worker

juju set-constraints kubernetes-worker instance-type=c4.large
juju add-unit kubernetes-worker

juju add-unit -n3 etcd

https://jujucharms.com/docs/2.0/charms-constraints
https://jujucharms.com/docs/stable/reference-constraints

10/23/2017 Setting up Kubernetes with Juju - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/installation/ 8/8

This will shutdown and terminate all running instances on that cloud.

More Info

The Ubuntu Kubernetes deployment uses open-source operations, or operations as code, known as

charms. These charms are assembled from layers which keeps the code smaller and more focused

on the operations of just Kubernetes and its components.

The Kubernetes layer and bundles can be found in the kubernetes project on github.com:

Bundle location

Kubernetes charm layer location

Canonical Kubernetes home

Feature requests, bug reports, pull requests or any feedback would be much appreciated.

juju switch
juju destroy-controller $controllername --destroy-all-models

https://git.k8s.io/kubernetes/cluster/juju/bundles
https://git.k8s.io/kubernetes/cluster/juju/layers
https://jujucharms.com/canonical-kubernetes/

10/23/2017 Monitoring - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/monitoring/ 1/4

Monitoring

This page shows how to connect various logging solutions to a Juju deployed cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Connecting Datadog

Datadog is a SaaS offering which includes support for a range of integrations, including Kubernetes

and ETCD. While the solution is SAAS/Commercial, they include a Free tier which is supported with

the following method. To deploy a full Kubernetes stack with Datadog out of the box, do:

Installation of Datadog

To start, deploy the latest version Datadog from the Charm Store:

Before you begin
Connecting Datadog

Installation of Datadog
Connecting Elastic stack

New install of ElasticSearch
Existing ElasticSearch cluster

Connecting Nagios
New install of Nagios
Existing install of Nagios

juju deploy canonical-kubernetes-datadog

juju deploy datadog

10/23/2017 Monitoring - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/monitoring/ 2/4

Con�gure Datadog with your api-key, found in the Datadog dashboard. Replace XXXX with your API

key.

Finally, attach datadog to all applications you wish to monitor. For example, kubernetes-master,

kubernetes-worker, and etcd:

Connecting Elastic stack

The Elastic stack, formally “ELK” stack, refers to Elastic Search and the suite of tools to facilitate log

aggregation, monitoring, and dashboarding. To deploy a full Kubernetes stack with elastic out of the

box, do:

New install of ElasticSearch

To start, deploy the latest version of ElasticSearch, Kibana, Filebeat, and Topbeat from the Charm

Store:

This can be done in one command as:

However, if you wish to customize the deployment, or proceed manually, the following commands

can be issued:

juju configure datadog api-key=XXXX

juju add-relation datadog kubernetes-worker
juju add-relation datadog kubernetes-master
juju add-relation datadog etcd

juju deploy canonical-kubernetes-elastic

juju deploy beats-core

http://localhost:4000/docs/getting-started-guides/ubuntu/monitoring/

10/23/2017 Monitoring - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/monitoring/ 3/4

Finally, connect �lebeat and topbeat to all applications you wish to monitor. For example, kubernetes-

master and kubernetes-worker:

Existing ElasticSearch cluster

In the event an ElasticSearch cluster already exists, the following can be used to connect and

leverage it instead of creating a new, separate, cluster. First deploy the two beats, �lebeat and

topbeat

Con�gure both �lebeat and topbeat to connect to your ElasticSearch cluster, replacing

255.255.255.255 with the IP address in your setup.

Follow the above instructions on connect topbeat and �lebeat to the applications you wish to

monitor.

Connecting Nagios

juju deploy elasticsearch
juju deploy kibana
juju deploy filebeat
juju deploy topbeat

juju add-relation elasticsearch kibana
juju add-relation elasticsearch topbeat
juju add-relation elasticsearch filebeat

juju add-relation kubernetes-master topbeat
juju add-relation kubernetes-master filebeat
juju add-relation kubernetes-worker topbeat
juju add-relation kubernetes-worker filebeat

juju deploy filebeat
juju deploy topbeat

juju configure filebeat elasticsearch=255.255.255.255
juju configure topbeat elasticsearch=255.255.255.255

10/23/2017 Monitoring - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/monitoring/ 4/4

Nagios utilizes the Nagions Remote Execution Protocol (NRPE) as an agent on each node to derive

machine level details of the health and applications.

New install of Nagios

To start, deploy the latest version of the Nagios and NRPE charms from the store:

Connect Nagios to NRPE

Finally, add NRPE to all applications deployed that you wish to monitor, for example

kubernetes-master , kubernetes-worker , etcd , easyrsa , and kubeapi-load-balancer .

Existing install of Nagios

If you already have an existing Nagios installation, the nrpe-external-master charm can be used

instead. This will allow you to supply con�guration options that map your existing external Nagios

installation to NRPE. Replace 255.255.255.255 with the IP address of the nagios instance.

Once con�gured, connect nrpe-external-master as outlined above.

juju deploy nagios
juju deploy nrpe

juju add-relation nagios nrpe

juju add-relation nrpe kubernetes-master
juju add-relation nrpe kubernetes-worker
juju add-relation nrpe etcd
juju add-relation nrpe easyrsa
juju add-relation nrpe kubeapi-load-balancer

juju deploy nrpe-external-master
juju configure nrpe-external-master nagios_master=255.255.255.255

10/23/2017 Networking - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/networking/ 1/2

Networking

Kubernetes supports the Container Network Interface (CNI). This is a network plugin architecture

that allows you to use whatever Kubernetes-friendly SDN you want. Currently this means support for

Flannel.

This page shows how to the various network portions of a cluster work, and how to con�gure them.

Before you begin

This page assumes you have a working Juju deployed cluster.

Flannel

Usage

The �annel charm is a subordinate. This charm will require a principal charm that implements the

kubernetes-cni interface in order to properly deploy.

Con�guration

Before you begin
Flannel

Usage
Con�guration

juju deploy flannel
juju deploy etcd
juju deploy kubernetes-master
juju add-relation flannel kubernetes-master
juju add-relation flannel etcd

https://github.com/containernetworking/cni
https://jujucharms.com/docs/stable/authors-subordinate-applications

10/23/2017 Networking - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/networking/ 2/2

iface The interface to con�gure the �annel SDN binding. If this value is empty string or unde�ned the

code will attempt to �nd the default network adapter similar to the following command:

cidr The network range to con�gure the �annel SDN to declare when establishing networking setup

with etcd. Ensure this network range is not active on layers 2/3 you’re deploying to, as it will cause

collisions and odd behavior if care is not taken when selecting a good CIDR range to assign to

�annel. It’s also good practice to ensure you allot yourself a large enough IP range to support how

large your cluster will potentially scale. Class A IP ranges with /24 are a good option.

$ route | grep default | head -n 1 | awk {'print $8'}

10/23/2017 Security Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/security/ 1/2

Security Considerations

By default all connections between every provided node is secured via TLS by easyrsa, including the

etcd cluster.

Implementation

The TLS and easyrsa implementations use the following layers.

layer-tls-client layer-easyrsa

This page explains the security considerations of a deployed cluster and production

recommendations.

Before you begin

This page assumes you have a working Juju deployed cluster.

Limiting ssh access

By default the administrator can ssh to any deployed node in a cluster. You can mass disable ssh

access to the cluster nodes by issuing the following command.

Note: The Juju controller node will still have open ssh access in your cloud, and will be used as a

jump host in this case.

Implementation
Before you begin
Limiting ssh access

juju model-config proxy-ssh=true

https://jujucharms.com/docs/2.0/developer-layers
https://github.com/juju-solutions/layer-tls-client
https://github.com/juju-solutions/layer-easyrsa

10/23/2017 Security Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/security/ 2/2

Refer to the model management page in the Juju documentation for instructions on how to manage

ssh keys.

https://jujucharms.com/docs/2.0/models

10/23/2017 Storage - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/storage/ 1/2

Storage

This page explains how to install and con�gure persistent storage on a cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Ceph Persistent Volumes

The Canonical Distribution of Kubernetes allows you to connect with durable storage devices such

as Ceph. When paired with the Juju Storage feature you can add durable storage easily and across

clouds.

Deploy a minimum of three ceph-mon and three ceph-osd units.

Relate the units together: juju add-relation ceph-mon ceph-osd

List the storage pools available to Juju for your cloud:

Output:

Name Provider Attrs ebs ebs ebs-ssd ebs volume-type=ssd loop loop rootfs rootfs

tmpfs tmpfs

Before you begin
Ceph Persistent Volumes

juju deploy cs:ceph-mon -n 3
juju deploy cs:ceph-osd -n 3

juju storage-pools

http://ceph.com/
https://jujucharms.com/docs/2.0/charms-storage

10/23/2017 Storage - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/storage/ 2/2

> Note: This listing is for the Amazon Web Services public cloud. > Different clouds may have

different pool names.

Add a storage pool to the ceph-osd charm by NAME,SIZE,COUNT:

Next relate the storage cluster with the Kubernetes cluster:

We are now ready to enlist Persistent Volumes in Kubernetes which our workloads can consume via

Persistent Volume (PV) claims.

This example created a “test” Radios Block Device (rbd) in the size of 50 MB.

Use watch on your Kubernetes cluster like the following, you should see the PV become enlisted and

be marked as available:

Output:

To consume these Persistent Volumes, your pods will need an associated Persistent Volume Claim

with them, and is outside the scope of this README. See the Persistent Volumes documentation for

more information.

juju add-storage ceph-osd/0 osd-devices=ebs,10G,1
juju add-storage ceph-osd/1 osd-devices=ebs,10G,1
juju add-storage ceph-osd/2 osd-devices=ebs,10G,1

juju add-relation kubernetes-master ceph-mon

juju run-action kubernetes-master/0 create-rbd-pv name=test size=50

watch kubectl get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE

test 50M RWO Available 10s

http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/concepts/storage/persistent-volumes/

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/ 1/6

Troubleshooting

This document with highlighting how to troubleshoot the deployment of a Kubernetes cluster, it will

not cover debugging of workloads inside Kubernetes.

Before you begin

This page assumes you have a working Juju deployed cluster.

Understanding Cluster Status

Using juju status can give you some insight as to what’s happening in a cluster:

Before you begin
Understanding Cluster Status
SSHing to units.
Collecting Debug information
Common Problems

Load Balancer interfering with Helm
etcd
Kubernetes

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/ 2/6

In this example we can glean some information. The Workload column will show the status of a

given service. The Message section will show you the health of a given service in the cluster. During

deployment and maintenance these workload statuses will update to re�ect what a given node is

doing. For example the workload my say maintenance while message will describe this

maintenance as Installing docker .

During normal operation the Workload should read active , the Agent column (which re�ects what

the Juju agent is doing) should read idle , and the messages will either say Ready or another

descriptive term. juju status --color will also return all green results when a cluster’s

deployment is healthy.

Status can become unwieldy for large clusters, it is then recommended to check status on individual

services, for example to check the status on the workers only:

or just on the etcd cluster:

Model Controller Cloud/Region Version
kubes work-multi aws/us-east-2 2.0.2.1

App Version Status Scale Charm Store Rev OS
easyrsa 3.0.1 active 1 easyrsa jujucharms 3 ubu
etcd 2.2.5 active 1 etcd jujucharms 17 ubu
flannel 0.6.1 active 2 flannel jujucharms 6 ubu
kubernetes-master 1.4.5 active 1 kubernetes-master jujucharms 8 ubu
kubernetes-worker 1.4.5 active 1 kubernetes-worker jujucharms 11 ubu

Unit Workload Agent Machine Public address Ports Me
easyrsa/0* active idle 0/lxd/0 10.0.0.55 Ce
etcd/0* active idle 0 52.15.47.228 2379/tcp He
kubernetes-master/0* active idle 0 52.15.47.228 6443/tcp Ku
 flannel/1 active idle 52.15.47.228 Fl
kubernetes-worker/0* active idle 1 52.15.177.233 80/tcp,443/tcp Ku
 flannel/0* active idle 52.15.177.233 Fl

Machine State DNS Inst id Series AZ
0 started 52.15.47.228 i-0bb211a18be691473 xenial us-east-2a
0/lxd/0 started 10.0.0.55 juju-153b74-0-lxd-0 xenial
1 started 52.15.177.233 i-0502d7de733be31bb xenial us-east-2b

juju status kubernetes-workers

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/ 3/6

Errors will have an obvious message, and will return a red result when used with

juju status --color . Nodes that come up in this manner should be investigated.

SSHing to units.

You can ssh to individual units easily with the following convention, `juju ssh /<unit#>:

Will automatically ssh you to the 3rd worker unit.

This will automatically ssh you to the easyrsa unit.

Collecting Debug information

Sometimes it is useful to collect all the information from a node to share with a developer so

problems can be identifying. This section will deal on how to use the debug action to collect this

information. The debug action is only supported on kubernetes-worker nodes.

Which returns:

This produces a .tar.gz �le which you can retrieve:

juju status etcd

juju ssh kubernetes-worker/3

juju ssh easyrsa/0

juju run-action kubernetes-worker/0 debug

Action queued with id: 4b26e339-7366-4dc7-80ed-255ac0377020`

juju show-action-output 4b26e339-7366-4dc7-80ed-255ac0377020

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/ 4/6

This will give you the path for the debug results:

You can now copy the results to your local machine:

The archive includes basic information such as systemctl status, Juju logs, charm unit data, etc.

Additional application-speci�c information may be included as well.

Common Problems

Load Balancer interfering with Helm

This section assumes you have a working deployment of Kubernetes via Juju using a Load Balancer

for the API, and that you are using Helm to deploy charts.

To deploy Helm you will have run:

Then when using helm you may see one of the following errors:

Helm doesn’t get the version from the Tiller server

results:
 command: juju scp debug-test/0:/home/ubuntu/debug-20161110151539.tar.gz .
 path: /home/ubuntu/debug-20161110151539.tar.gz
status: completed
timing:
 completed: 2016-11-10 15:15:41 +0000 UTC
 enqueued: 2016-11-10 15:15:38 +0000 UTC
 started: 2016-11-10 15:15:40 +0000 UTC

juju scp kubernetes-worker/0:/home/ubuntu/debug-20161110151539.tar.gz .

helm init
$HELM_HOME has been configured at /home/ubuntu/.helm
Tiller (the helm server side component) has been installed into your Kubernetes Cl
Happy Helming!

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/ 5/6

Helm cannot install your chart

This is caused by the API load balancer not forwarding ports in the context of the helm client-server

relationship. To deploy using helm, you will need to follow these steps:

1. Expose the Kubernetes Master service

1. Identify the public IP address of one of your masters

helm version
Client: &version.Version{SemVer:"v2.1.3", GitCommit:"5cbc48fb305ca4bf68c26eb8d2a7e
Error: cannot connect to Tiller

helm install <chart> --debug
Error: forwarding ports: error upgrading connection: Upgrade request required

juju expose kubernetes-master

juju status kubernetes-master
Model Controller Cloud/Region Version
production k8s-admin aws/us-east-1 2.0.0

App Version Status Scale Charm Store Rev OS
flannel 0.6.1 active 1 flannel jujucharms 7 ubu
kubernetes-master 1.5.1 active 1 kubernetes-master jujucharms 10 ubu

Unit Workload Agent Machine Public address Ports Message
kubernetes-master/0* active idle 5 54.210.100.102 6443/tcp Kubern
 flannel/0 active idle 54.210.100.102 Flanne

Machine State DNS Inst id Series AZ
5 started 54.210.100.102 i-002b7150639eb183b xenial us-east-1a

Relation Provides Consumes Type
certificates easyrsa kubernetes-master regular
etcd etcd flannel regular
etcd etcd kubernetes-master regular
cni flannel kubernetes-master regular
loadbalancer kubeapi-load-balancer kubernetes-master regular
cni kubernetes-master flannel subordinate
cluster-dns kubernetes-master kubernetes-worker regular
cni kubernetes-worker flannel subordinate

10/23/2017 Troubleshooting - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/troubleshooting/ 6/6

In this context the public IP address is 54.210.100.102.

If you want to access this data programmatically you can use the JSON output:

1. Update the kubecon�g �le

Identify the kubecon�g �le or section used for this cluster, and edit the server con�guration.

By default, it will look like https://54.213.123.123:443 . Replace it with the Kubernetes Master

endpoint https://54.210.100.102:6443 and save.

Note that the default port used by CDK for the Kubernetes Master API is 6443 while the port exposed

by the load balancer is 443.

1. Start helming again!

etcd

Kubernetes

By default there is no log aggregation of the Kubernetes nodes, each node logs locally. It is

recommended to deploy the Elastic Stack for log aggregation if you desire centralized logging.

juju show-status kubernetes-master --format json | jq --raw-output '.applications.
54.210.100.102

helm install <chart> --debug
Created tunnel using local port: '36749'
SERVER: "localhost:36749"
CHART PATH: /home/ubuntu/.helm/<chart>
NAME: <chart>
...
...

10/23/2017 Decommissioning - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/decommissioning/ 1/3

Decommissioning

Warning: By the time you’ve reached this step you should have backed up your workloads and

pertinent data, this section is for the complete destruction of a cluster.

This page shows you how to properly decommission a cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

It is recommended to deploy individual Kubernetes clusters in their own models, so that there is a

clean separation between environments. To remove a cluster �rst �nd out which model it’s in with

juju list-models . The controller reserves an admin model for itself. If you have chosen to not

name your model it might show up as default .

You can then destroy the model, which will in turn destroy the cluster inside of it:

Before you begin
Cleaning up the Controller

$ juju list-models
Controller: aws-us-east-2

Model Cloud/Region Status Machines Cores Access Last connection
controller aws/us-east-2 available 1 2 admin just now
my-kubernetes-cluster* aws/us-east-2 available 12 22 admin 2 min

juju destroy-model my-kubernetes-cluster

10/23/2017 Decommissioning - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/decommissioning/ 2/3

This will destroy and decommission all nodes. You can con�rm all nodes are destroyed by running

juju status .

If you’re using a public cloud this will terminate the instances. If you’re on bare metal using MAAS

this will release the nodes, optionally wipe the disk, power off the machines, and return them to

available pool of machines to deploy from.

Cleaning up the Controller

If you’re not using the controller for anything else, you will also need to remove the controller

instance:

$ juju destroy-model my-kubernetes-cluster
WARNING! This command will destroy the "my-kubernetes-cluster" model.
This includes all machines, applications, data and other resources.

Continue [y/N]? y
Destroying model
Waiting on model to be removed, 12 machine(s), 10 application(s)...
Waiting on model to be removed, 12 machine(s), 9 application(s)...
Waiting on model to be removed, 12 machine(s), 8 application(s)...
Waiting on model to be removed, 12 machine(s), 7 application(s)...
Waiting on model to be removed, 12 machine(s)...
Waiting on model to be removed...
$

$ juju list-controllers
Use --refresh flag with this command to see the latest information.

Controller Model User Access Cloud/Region Models Machines HA Ve
aws-us-east-2* - admin superuser aws/us-east-2 2 1 none 2.

$ juju destroy-controller aws-us-east-2
WARNING! This command will destroy the "aws-us-east-2" controller.
This includes all machines, applications, data and other resources.

Continue? (y/N):y
Destroying controller
Waiting for hosted model resources to be reclaimed
All hosted models reclaimed, cleaning up controller machines
$

10/23/2017 Decommissioning - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/decommissioning/ 3/3

10/23/2017 Operational Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/operational-considerations/ 1/5

Operational Considerations

This page gives recommendations and hints for people managing long lived clusters

Before you begin

This page assumes you understand the basics of Juju and Kubernetes.

Managing Juju

Sizing your controller node

The Juju Controller:

requires about 2 to 2.5GB RAM to operate.

uses a MongoDB database as a storage backend for the con�guration and state of the cluster.

This database can grow signi�cantly, and can also be the biggest consumer of CPU cycles on

the instance

aggregates and stores the log data of all services and units. Therefore, signi�cant storage is

needed for long lived models. If your intention is to keep the cluster running, make sure to

provision at least 64GB for the logs.

To bootstrap a controller with constraints run the following command:

Before you begin
Managing Juju

Sizing your controller node
SSHing into the Controller Node

Managing your Kubernetes cluster
Running privileged containers
Private registry

Example usage

10/23/2017 Operational Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/operational-considerations/ 2/5

Juju will select the cheapest instance type matching your constraints on your target cloud. You can

also use the instance-type constraint in conjunction with root-disk for strict control. For more

information about the constraints available, refer to the o�cial documentation

Additional information about logging can be found in the logging section

SSHing into the Controller Node

By default, Juju will create a pair of SSH keys that it will use to automate the connection to units.

They are stored on the client node in ~/.local/share/juju/ssh/

After deployment, Juju Controller is a “silent unit” that acts as a proxy between the client and the

deployed applications. Nevertheless it can be useful to SSH into it.

First you need to understand your environment, especially if you run several Juju models and

controllers. Run

The �rst line Controller: k8s refers to how you bootstrapped.

Then you will see 2, 3 or more models listed below.

admin/controller is the default model that hosts all controller units of juju

admin/default is created by default as the primary model to host the user application, such as

the Kubernetes cluster

admin/whale is an additional model created if you use conjure-up as an overlay on top of Juju.

juju bootstrap --contraints "mem=8GB cpu-cores=4 root-disk=128G"

juju list-models --all
$ juju models --all
Controller: k8s

Model Cloud/Region Status Machines Cores Access Last connecti
admin/controller lxd/localhost available 1 - admin just now
admin/default lxd/localhost available 0 - admin 2017-01-23
admin/whale* lxd/localhost available 6 - admin 3 minutes ago

https://jujucharms.com/docs/stable/reference-constraints
http://localhost:4000/docs/getting-started-guides/ubuntu/logging

10/23/2017 Operational Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/operational-considerations/ 3/5

Now to ssh into a controller node, you �rst ask Juju to switch context, then ssh as you would with a

normal unit:

At this stage, you can query the controller model as well:

Note that if you had bootstrapped in HA mode, you would see several machines listed.

Now ssh-ing into the controller follows the same semantic as classic Juju commands:

When you are done and want to come back to your initial model, exit the controller and

Then if you need to switch back to your cluster and ssh into the units, run

juju switch controller

juju status
Model Controller Cloud/Region Version
controller k8s lxd/localhost 2.0.2

App Version Status Scale Charm Store Rev OS Notes

Unit Workload Agent Machine Public address Ports Message

Machine State DNS Inst id Series AZ
0 started 10.191.22.15 juju-2a5ed8-0 xenial

$ juju ssh 0
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.8.0-34-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

Last login: Tue Jan 24 16:38:13 2017 from 10.191.22.1
ubuntu@juju-2a5ed8-0:~$

10/23/2017 Operational Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/operational-considerations/ 4/5

Managing your Kubernetes cluster

Running privileged containers

By default, juju-deployed clusters do not support running privileged containers. If you need them, you

have to enable the allow-privileged con�g on both kubernetes-master and kubernetes-worker:

Private registry

With the registry action, you can easily create a private docker registry that uses TLS authentication.

However, note that a registry deployed with that action is not HA; it uses storage tied to the

kubernetes node where the pod is running. Consequently, if the registry pod is migrated from one

node to another, you will need to re-publish the images.

Example usage

Create the relevant authentication �les. Let’s say you want user userA to authenticate with the

password passwordA . Then you’ll do:

(the htpasswd program comes with the apache2-utils package)

Assuming that your registry will be reachable at myregistry.company.com , you already have your

TLS key in the registry.key �le, and your TLS certi�cate (with myregistry.company.com as

Common Name) in the registry.crt �le, you would then run:

juju switch default

juju config kubernetes-master allow-privileged=true
juju config kubernetes-worker allow-privileged=true

echo "userA:passwordA" > htpasswd-plain
htpasswd -c -b -B htpasswd userA passwordA

juju run-action kubernetes-worker/0 registry domain=myregistry.company.com htpassw

10/23/2017 Operational Considerations - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/operational-considerations/ 5/5

If you then decide that you want do delete the registry, just run:

juju run-action kubernetes-worker/0 registry delete=true ingress=true

10/23/2017 Glossary and Terminology - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/glossary/ 1/1

Glossary and Terminology

This page explains some of the terminology used in deploying Kubernetes with Juju.

Before you begin

This page assumes you have a working Juju deployed cluster.

controller - The management node of a cloud environment. Typically you have one controller per

cloud region, or more in HA environments. The controller is responsible for managing all subsequent

models in a given environment. It contains the Juju API server and its underlying database.

model - A collection of charms and their relationships that de�ne a deployment. This includes

machines and units. A controller can host multiple models. It is recommended to separate

Kubernetes clusters into individual models for management and isolation reasons.

charm - The de�nition of a service, including its metadata, dependencies with other services,

required packages, and application management logic. It contains all the operational knowledge of

deploying a Kubernetes cluster. Included charm examples are kubernetes-core , easy-rsa ,

kibana , and etcd .

unit - A given instance of a service. These may or may not use up a whole machine, and may be

colocated on the same machine. So for example you might have a kubernetes-worker , and

filebeat , and topbeat units running on a single machine, but they are three distinct units of

different services.

machine - A physical node, these can either be bare metal nodes, or virtual machines provided by a

cloud.

Before you begin

10/23/2017 Local Kubernetes development with LXD - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/local/ 1/5

Local Kubernetes development with LXD

The purpose of using LXD on a local machine is to emulate the same deployment that a user would

use in a cloud or bare metal. Each node is treated as a machine, with the same characteristics as

production. Each node is a separate container, which runs Docker containers and kubectl inside

(see Cluster Intro for more info).

Running Kubernetes locally has obvious development advantages, such as lower cost and faster

iteration than constantly deploying and tearing down clusters on a public cloud. Ideally, a Kubernetes

developer can spawn all necessary nodes inside local containers and test new con�gurations as they

are committed. This page will show you how to deploy a cluster to LXD containers on a local

machine.

Before you begin

Install conjure-up, a tool for deploying big software.

Note: If conjure-up asks you to “Setup an ipv6 subnet” with LXD, answer NO. ipv6 with Juju/LXD is

currently unsupported.

Deploying Kubernetes

Start the deployment with:

Before you begin
Deploying Kubernetes
Accessing the Cluster

sudo snap install conjure-up --classic

conjure-up kubernetes

https://linuxcontainers.org/lxd/
http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/
http://conjure-up.io/

10/23/2017 Local Kubernetes development with LXD - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/local/ 2/5

For this walkthrough we are going to create a new controller - select the localhost Cloud type:

Deploy the applications:

Wait for Juju bootstrap to �nish:

10/23/2017 Local Kubernetes development with LXD - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/local/ 3/5

Wait for our Applications to be fully deployed:

Run the �nal post-processing steps to automatically con�gure your Kubernetes environment:

10/23/2017 Local Kubernetes development with LXD - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/local/ 4/5

Review the �nal summary screen:

10/23/2017 Local Kubernetes development with LXD - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/local/ 5/5

Accessing the Cluster

You can access your Kubernetes cluster by running the following:

Or if you’ve already run this once it’ll create a new con�g �le as shown in the summary screen.

kubectl --kubeconfig=~/.kube/config

kubectl --kubeconfig=~/.kube/config.conjure-up

10/23/2017 Logging - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/logging/ 1/2

Logging

Agent Logging

The juju debug-log will show all of the consolidated logs of all the Juju agents running on each

node of the cluster. This can be useful for �nding out why a speci�c node hasn’t deployed or is in an

error state. These agent logs are located in /var/lib/juju/agents on every node.

See the Juju documentation for more information.

Managing log verbosity

Log verbosity in Juju is set at the model level. You can adjust it at any time:

and later

In addition, the jujud daemon is started in debug mode by default on all controllers. To remove that

behavior edit /var/lib/juju/init/jujud-machine-0/exec-start.sh on the controller node and

comment the --debug section.

It then contains:

juju add-model k8s-development --config logging-config='<root>=DEBUG;unit=DEBUG'

juju config-model k8s-production --config logging-config='<root>=ERROR;unit=ERROR'

https://jujucharms.com/docs/stable/troubleshooting-logs

10/23/2017 Logging - Kubernetes

http://localhost:4000/docs/getting-started-guides/ubuntu/logging/ 2/2

Then restart the service with:

See the o�cial documentation for more information about logging and other model settings in Juju.

#!/usr/bin/env bash

Set up logging.
touch '/var/log/juju/machine-0.log'
chown syslog:syslog '/var/log/juju/machine-0.log'
chmod 0600 '/var/log/juju/machine-0.log'
exec >> '/var/log/juju/machine-0.log'
exec 2>&1

Run the script.
'/var/lib/juju/tools/machine-0/jujud' machine --data-dir '/var/lib/juju' --machine

sudo systemctl restart jujud-machine-0.service

https://jujucharms.com/docs/stable/models-config

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 1/7

Windows Server Containers

Kubernetes version 1.5 introduces support for Windows Server Containers. In version 1.5, the

Kubernetes control plane (API Server, Scheduler, Controller Manager, etc) continue to run on Linux,

while the kubelet and kube-proxy can be run on Windows Server.

Note: Windows Server Containers on Kubernetes is an Alpha feature in Kubernetes 1.5.

Prerequisites

In Kubernetes version 1.5, Windows Server Containers for Kubernetes is supported using the

following:

1. Kubernetes control plane running on existing Linux infrastructure (version 1.5 or later).

2. Kubenet network plugin setup on the Linux nodes.

3. Windows Server 2016 (RTM version 10.0.14393 or later).

4. Docker Version 1.12.2-cs2-ws-beta or later for Windows Server nodes (Linux nodes and

Kubernetes control plane can run any Kubernetes supported Docker Version).

Networking

Network is achieved using L3 routing. Because third-party networking plugins (e.g. �annel, calico,

etc) don’t natively work on Windows Server, existing technology that is built into the Windows and

Linux operating systems is relied on. In this L3 networking approach, a /16 subnet is chosen for the

cluster nodes, and a /24 subnet is assigned to each worker node. All pods on a given worker node

will be connected to the /24 subnet. This allows pods on the same node to communicate with each

other. In order to enable networking between pods running on different nodes, routing features that

are built into Windows Server 2016 and Linux are used.

Linux

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 2/7

The above networking approach is already supported on Linux using a bridge interface, which

essentially creates a private network local to the node. Similar to the Windows side, routes to all

other pod CIDRs must be created in order to send packets via the “public” NIC.

Windows

Each Window Server node should have the following con�guration:

1. Two NICs (virtual networking adapters) are required on each Windows Server node - The two

Windows container networking modes of interest (transparent and L2 bridge) use an external

Hyper-V virtual switch. This means that one of the NICs is entirely allocated to the bridge,

creating the need for the second NIC.

2. Transparent container network created - This is a manual con�guration step and is shown in

Route Setup section below.

3. RRAS (Routing) Windows feature enabled - Allows routing between NICs on the box, and also

“captures” packets that have the destination IP of a POD running on the node. To enable, open

“Server Manager”. Click on “Roles”, “Add Roles”. Click “Next”. Select “Network Policy and Access

Services”. Click on “Routing and Remote Access Service” and the underlying checkboxes.

4. Routes de�ned pointing to the other pod CIDRs via the “public” NIC - These routes are added to

the built-in routing table as shown in Route Setup section below.

The following diagram illustrates the Windows Server networking setup for Kubernetes Setup:

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 3/7

Setting up Windows Server Containers on Kubernetes

To run Windows Server Containers on Kubernetes, you’ll need to set up both your host machines and

the Kubernetes node components for Windows and setup Routes for Pod communication on

different nodes.

Host Setup

Windows Host Setup

1. Windows Server container host running Windows Server 2016 and Docker v1.12. Follow the

setup instructions outlined by this blog post: https://msdn.microsoft.com/en-

us/virtualization/windowscontainers/quick_start/quick_start_windows_server.

2. DNS support for Windows recently got merged to docker master and is currently not supported

in a stable docker release. To use DNS build docker from master or download the binary from

Docker master.

3. Pull the apprenda/pause image from https://hub.docker.com/r/apprenda/pause .

4. RRAS (Routing) Windows feature enabled.

5. Install a VMSwitch of type Internal , by running

New-VMSwitch -Name KubeProxySwitch -SwitchType Internal command in PowerShell

window. This will create a new Network Interface with name vEthernet (KubeProxySwitch) .

This interface will be used by kube-proxy to add Service IPs.

Linux Host Setup

1. Linux hosts should be setup according to their respective distro documentation and the

requirements of the Kubernetes version you will be using.

2. CNI network plugin installed.

Component Setup

Requirements

https://master.dockerproject.org/

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 4/7

Git

Go 1.7.1+

make (if using Linux or MacOS)

Important notes and other dependencies are listed here

kubelet

To build the kubelet, run:

1. cd $GOPATH/src/k8s.io/kubernetes

2. Build kubelet

1. Linux/MacOS: KUBE_BUILD_PLATFORMS=windows/amd64 make WHAT=cmd/kubelet

2. Windows: go build cmd/kubelet/kubelet.go

kube-proxy

To build kube-proxy, run:

1. cd $GOPATH/src/k8s.io/kubernetes

2. Build kube-proxy

1. Linux/MacOS: KUBE_BUILD_PLATFORMS=windows/amd64 make WHAT=cmd/kube-proxy

2. Windows: go build cmd/kube-proxy/proxy.go

Route Setup

The below example setup assumes one Linux and two Windows Server 2016 nodes and a cluster

CIDR 192.168.0.0/16

Hostname Routable IP address Pod CIDR

Lin01 <IP of Lin01 host> 192.168.0.0/24

Win01 <IP of Win01 host> 192.168.1.0/24

https://git.k8s.io/community/contributors/devel/development.md#building-kubernetes-on-a-local-osshell-environment

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 5/7

Hostname Routable IP address Pod CIDR

Win02 <IP of Win02 host> 192.168.2.0/24

Lin01

Win01

Win02

Starting the Cluster

To start your cluster, you’ll need to start both the Linux-based Kubernetes control plane, and the

Windows Server-based Kubernetes node components. ## Starting the Linux-based Control Plane

Use your preferred method to start Kubernetes cluster on Linux. Please note that Cluster CIDR might

need to be updated. ## Starting the Windows Node Components To start kubelet on your Windows

node: Run the following in a PowerShell window. Be aware that if the node reboots or the process

exits, you will have to rerun the commands below to restart the kubelet.

ip route add 192.168.1.0/24 via <IP of Win01 host>
ip route add 192.168.2.0/24 via <IP of Win02 host>

docker network create -d transparent --gateway 192.168.1.1 --subnet 192.168.1.0/24
A bridge is created with Adapter name "vEthernet (HNSTransparent)". Set its IP a
netsh interface ipv4 set address "vEthernet (HNSTransparent)" addr=192.168.1.1
route add 192.168.0.0 mask 255.255.255.0 192.168.0.1 if <Interface Id of the Routa
route add 192.168.2.0 mask 255.255.255.0 192.168.2.1 if <Interface Id of the Routa

docker network create -d transparent --gateway 192.168.2.1 --subnet 192.168.2.0/24
A bridge is created with Adapter name "vEthernet (HNSTransparent)". Set its IP a
netsh interface ipv4 set address "vEthernet (HNSTransparent)" addr=192.168.2.1
route add 192.168.0.0 mask 255.255.255.0 192.168.0.1 if <Interface Id of the Routa
route add 192.168.1.0 mask 255.255.255.0 192.168.1.1 if <Interface Id of the Routa

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 6/7

1. Set environment variable CONTAINER_NETWORK value to the docker container network to use

$env:CONTAINER_NETWORK = "<docker network>"

2. Run kubelet executable using the below command

kubelet.exe --hostname-override=<ip address/hostname of the windows node> --

pod-infra-container-image="apprenda/pause" --resolv-conf="" --api_servers=<api

server location>

To start kube-proxy on your Windows node:

Run the following in a PowerShell window with administrative privileges. Be aware that if the node

reboots or the process exits, you will have to rerun the commands below to restart the kube-proxy.

1. Set environment variable INTERFACE_TO_ADD_SERVICE_IP value to

vEthernet (KubeProxySwitch) which we created in Windows Host Setup above

$env:INTERFACE_TO_ADD_SERVICE_IP = "vEthernet (KubeProxySwitch)"

2. Run kube-proxy executable using the below command

.\proxy.exe --v=3 --proxy-mode=userspace --hostname-override=<ip

address/hostname of the windows node> --master=<api server location> --bind-

address=<ip address of the windows node>

Scheduling Pods on Windows

Because your cluster has both Linux and Windows nodes, you must explicitly set the nodeSelector

constraint to be able to schedule Pods to Windows nodes. You must set nodeSelector with the label

beta.kubernetes.io/os to the value windows; see the following example:

10/23/2017 Windows Server Containers - Kubernetes

http://localhost:4000/docs/getting-started-guides/windows/ 7/7

Known Limitations:

1. There is no network namespace in Windows and as a result currently only one container per pod

is supported.

2. Secrets currently do not work because of a bug in Windows Server Containers described here.

3. Con�gMaps have not been implemented yet.

4. kube-proxy implementation uses netsh portproxy and as it only supports TCP, DNS

currently works only if the client retries DNS query using TCP.

{
 "apiVersion": "v1",
 "kind": "Pod",
 "metadata": {
 "name": "iis",
 "labels": {
 "name": "iis"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "iis",
 "image": "microsoft/iis",
 "ports": [
 {
 "containerPort": 80
 }
]
 }
],
 "nodeSelector": {
 "beta.kubernetes.io/os": "windows"
 }
 }
}

https://github.com/docker/docker/issues/28401

10/23/2017 Validate Node Setup - Kubernetes

http://localhost:4000/docs/admin/node-conformance/ 1/3

Validate Node Setup

Node Conformance Test

Node conformance test is a containerized test framework that provides a system veri�cation and

functionality test for a node. The test validates whether the node meets the minimum requirements

for Kubernetes; a node that passes the test is quali�ed to join a Kubernetes cluster.

Limitations

In Kubernetes version 1.5, node conformance test has the following limitations:

Node conformance test only supports Docker as the container runtime.

Node Prerequisite

To run node conformance test, a node must satisfy the same prerequisites as a standard

Kubernetes node. At a minimum, the node should have the following daemons installed:

Container Runtime (Docker)

Kubelet

Running Node Conformance Test

Node Conformance Test
Limitations
Node Prerequisite
Running Node Conformance Test
Running Node Conformance Test for Other Architectures
Running Selected Test
Caveats

10/23/2017 Validate Node Setup - Kubernetes

http://localhost:4000/docs/admin/node-conformance/ 2/3

To run the node conformance test, perform the following steps:

1. Point your Kubelet to localhost --api-servers="http://localhost:8080" , because the test

framework starts a local master to test Kubelet. There are some other Kubelet �ags you may

care:

1. --pod-cidr : If you are using kubenet , you should specify an arbitrary CIDR to Kubelet, for

example --pod-cidr=10.180.0.0/24 .

2. --cloud-provider : If you are using --cloud-provider=gce , you should remove the �ag

to run the test.

2. Run the node conformance test with command:

Running Node Conformance Test for Other
Architectures

Kubernetes also provides node conformance test docker images for other architectures:

Arch Image

amd64 node-test-amd64

arm node-test-arm

arm64 node-test-arm64

Running Selected Test

$CONFIG_DIR is the pod manifest path of your Kubelet.
$LOG_DIR is the test output path.
sudo docker run -it --rm --privileged --net=host \
 -v /:/rootfs -v $CONFIG_DIR:$CONFIG_DIR -v $LOG_DIR:/var/result \
 gcr.io/google_containers/node-test:0.2

10/23/2017 Validate Node Setup - Kubernetes

http://localhost:4000/docs/admin/node-conformance/ 3/3

To run speci�c tests, overwrite the environment variable FOCUS with the regular expression of tests

you want to run.

To skip speci�c tests, overwrite the environment variable SKIP with the regular expression of tests

you want to skip.

Node conformance test is a containerized version of node e2e test. By default, it runs all

conformance tests.

Theoretically, you can run any node e2e test if you con�gure the container and mount required

volumes properly. But it is strongly recommended to only run conformance test, because it requires

much more complex con�guration to run non-conformance test.

Caveats

The test leaves some docker images on the node, including the node conformance test image

and images of containers used in the functionality test.

The test leaves dead containers on the node. These containers are created during the

functionality test.

sudo docker run -it --rm --privileged --net=host \
 -v /:/rootfs:ro -v $CONFIG_DIR:$CONFIG_DIR -v $LOG_DIR:/var/result \
 -e FOCUS=MirrorPod \ # Only run MirrorPod test
 gcr.io/google_containers/node-test:0.2

sudo docker run -it --rm --privileged --net=host \
 -v /:/rootfs:ro -v $CONFIG_DIR:$CONFIG_DIR -v $LOG_DIR:/var/result \
 -e SKIP=MirrorPod \ # Run all conformance tests but skip MirrorPod test
 gcr.io/google_containers/node-test:0.2

https://github.com/kubernetes/community/blob/master/contributors/devel/e2e-node-tests.md

10/23/2017 Installing Addons - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/addons/ 1/2

Installing Addons

Overview

Add-ons extend the functionality of Kubernetes.

This page lists some of the available add-ons and links to their respective installation instructions.

Add-ons in each section are sorted alphabetically - the ordering does not imply any preferential

status.

Networking and Network Policy

Calico is a secure L3 networking and network policy provider.

Canal unites Flannel and Calico, providing networking and network policy.

Cilium is a L3 network and network policy plugin that can enforce HTTP/API/L7 policies

transparently. Both routing and overlay/encapsulation mode are supported.

Contiv provides con�gurable networking (native L3 using BGP, overlay using vxlan, classic L2,

and Cisco-SDN/ACI) for various use cases and a rich policy framework. Contiv project is fully

open sourced. The installer provides both kubeadm and non-kubeadm based installation

options.

Flannel is an overlay network provider that can be used with Kubernetes.

Romana is a Layer 3 networking solution for pod networks that also supports the NetworkPolicy

API. Kubeadm add-on installation details available here.

Weave Net provides networking and network policy, will carry on working on both sides of a

network partition, and does not require an external database.

CNI-Genie enables Kubernetes to seamlessly connect to a choice of CNI plugins, such as

Flannel, Calico, Canal, Romana, or Weave.

http://docs.projectcalico.org/latest/getting-started/kubernetes/installation/hosted/
https://github.com/tigera/canal/tree/master/k8s-install
https://github.com/cilium/cilium
http://contiv.github.io/
http://github.com/contiv
http://github.com/contiv/install
https://github.com/coreos/flannel/blob/master/Documentation/kube-flannel.yml
http://romana.io/
http://localhost:4000/docs/concepts/services-networking/network-policies/
https://github.com/romana/romana/tree/master/containerize
https://www.weave.works/docs/net/latest/kube-addon/
https://github.com/Huawei-PaaS/CNI-Genie

10/23/2017 Installing Addons - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/addons/ 2/2

Service Discovery

CoreDNS is a �exible, extensible DNS server which can be installed as the in-cluster DNS for

pods.

Visualization & Control

Dashboard is a dashboard web interface for Kubernetes.

Weave Scope is a tool for graphically visualizing your containers, pods, services etc. Use it in

conjunction with a Weave Cloud account or host the UI yourself.

Legacy Add-ons

There are several other add-ons documented in the deprecated cluster/addons directory.

Well-maintained ones should be linked to here. PRs welcome!

https://coredns.io/
https://github.com/coredns/deployment/tree/master/kubernetes
https://github.com/kubernetes/dashboard#kubernetes-dashboard
https://www.weave.works/documentation/scope-latest-installing/#k8s
https://cloud.weave.works/
https://git.k8s.io/kubernetes/cluster/addons

10/23/2017 Configuring Kubernetes with Salt - Kubernetes

http://localhost:4000/docs/admin/salt/ 1/4

Con�guring Kubernetes with Salt

The Kubernetes cluster can be con�gured using Salt.

The Salt scripts are shared across multiple hosting providers and depending on where you host your

Kubernetes cluster, you may be using different operating systems and different networking

con�gurations. As a result, it’s important to understand some background information before making

Salt changes in order to minimize introducing failures for other hosting providers.

Salt cluster setup

The salt-master service runs on the kubernetes-master (except on the default GCE and OpenStack-

Heat setup).

The salt-minion service runs on the kubernetes-master and each kubernetes-node in the cluster.

Each salt-minion service is con�gured to interact with the salt-master service hosted on the

kubernetes-master via the master.conf �le (except on GCE and OpenStack-Heat).

The salt-master is contacted by each salt-minion and depending upon the machine information

presented, the salt-master will provision the machine as either a kubernetes-master or kubernetes-

node with all the required capabilities needed to run Kubernetes.

If you are running the Vagrant based environment, the salt-api service is running on the kubernetes-

master. It is con�gured to enable the vagrant user to introspect the salt cluster in order to �nd out

about machines in the Vagrant environment via a REST API.

Standalone Salt Con�guration on GCE and others

[root@kubernetes-master] $ cat /etc/salt/minion.d/master.conf
master: kubernetes-master

10/23/2017 Configuring Kubernetes with Salt - Kubernetes

http://localhost:4000/docs/admin/salt/ 2/4

On GCE and OpenStack, using the Openstack-Heat provider, the master and nodes are all con�gured

as standalone minions. The con�guration for each VM is derived from the VM’s instance metadata

and then stored in Salt grains (/etc/salt/minion.d/grains.conf) and pillars (

/srv/salt-overlay/pillar/cluster-params.sls) that local Salt uses to enforce state.

All remaining sections that refer to master/minion setups should be ignored for GCE and OpenStack.

One fallout of this setup is that the Salt mine doesn’t exist - there is no sharing of con�guration

amongst nodes.

Salt security

(Not applicable on default GCE and OpenStack-Heat setup.)

Security is not enabled on the salt-master, and the salt-master is con�gured to auto-accept incoming

requests from minions. It is not recommended to use this security con�guration in production

environments without deeper study. (In some environments this isn’t as bad as it might sound if the

salt master port isn’t externally accessible and you trust everyone on your network.)

Salt minion con�guration

Each minion in the salt cluster has an associated con�guration that instructs the salt-master how to

provision the required resources on the machine.

An example �le is presented below using the Vagrant based environment.

[root@kubernetes-master] $ cat /etc/salt/master.d/auto-accept.conf
open_mode: True
auto_accept: True

[root@kubernetes-master] $ cat /etc/salt/minion.d/grains.conf
grains:
 etcd_servers: $MASTER_IP
 cloud: vagrant
 roles:
 - kubernetes-master

http://docs.saltstack.com/en/latest/topics/tutorials/standalone_minion.html
https://cloud.google.com/compute/docs/metadata

10/23/2017 Configuring Kubernetes with Salt - Kubernetes

http://localhost:4000/docs/admin/salt/ 3/4

Each hosting environment has a slightly different grains.conf �le that is used to build conditional

logic where required in the Salt �les.

The following enumerates the set of de�ned key/value pairs that are supported today. If you add new

ones, please make sure to update this list.

Key Value

api_servers (Optional) The IP address / host name where a kubelet can get read-only access to kube-
apiserver

cbr-cidr (Optional) The minion IP address range used for the docker container bridge.

cloud (Optional) Which IaaS platform is used to host Kubernetes, gce, azure, aws, vagrant

etcd_servers
(Optional) Comma-delimited list of IP addresses the kube-apiserver and kubelet use to
reach etcd. Uses the IP of the �rst machine in the kubernetes_master role, or 127.0.0.1 on
GCE.

hostnamef (Optional) The full host name of the machine, i.e. uname -n

node_ip (Optional) The IP address to use to address this node

hostname_override (Optional) Mapped to the kubelet hostname-override

network_mode (Optional) Networking model to use among nodes: openvswitch

networkInterfaceName (Optional) Networking interface to use to bind addresses, default value eth0

publicAddressOverride (Optional) The IP address the kube-apiserver should use to bind against for external read-
only access

roles
(Required) 1. kubernetes-master means this machine is the master in the

Kubernetes cluster. 2. kubernetes-pool means this machine is a kubernetes-node.
Depending on the role, the Salt scripts will provision different resources on the machine.

These keys may be leveraged by the Salt sls �les to branch behavior.

In addition, a cluster may be running a Debian based operating system or Red Hat based operating

system (Centos, Fedora, RHEL, etc.). As a result, it’s important to sometimes distinguish behavior

based on operating system using if branches like the following.

10/23/2017 Configuring Kubernetes with Salt - Kubernetes

http://localhost:4000/docs/admin/salt/ 4/4

Best Practices

When con�guring default arguments for processes, it’s best to avoid the use of EnvironmentFiles

(Systemd in Red Hat environments) or init.d �les (Debian distributions) to hold default values that

should be common across operating system environments. This helps keep our Salt template �les

easy to understand for editors who may not be familiar with the particulars of each distribution.

Future enhancements (Networking)

Per pod IP con�guration is provider-speci�c, so when making networking changes, it’s important to

sandbox these as all providers may not use the same mechanisms (iptables, openvswitch, etc.)

We should de�ne a grains.conf key that captures more speci�cally what network con�guration

environment is being used to avoid future confusion across providers.

Further reading

The cluster/saltbase tree has more details on the current SaltStack con�guration.

{% if grains['os_family'] == 'RedHat' %}
// something specific to a RedHat environment (Centos, Fedora, RHEL) where you may
{% else %}
// something specific to Debian environment (apt-get, initd)
{% endif %}

http://releases.k8s.io/master/cluster/saltbase/

10/23/2017 Building Large Clusters - Kubernetes

http://localhost:4000/docs/admin/cluster-large/ 1/5

Building Large Clusters

Support

At v1.8, Kubernetes supports clusters with up to 5000 nodes. More speci�cally, we support

con�gurations that meet all of the following criteria:

No more than 5000 nodes

No more than 150000 total pods

No more than 300000 total containers

No more than 100 pods per node

Setup

A cluster is a set of nodes (physical or virtual machines) running Kubernetes agents, managed by a

“master” (the cluster-level control plane).

Normally the number of nodes in a cluster is controlled by the value NUM_NODES in the platform-

speci�c config-default.sh �le (for example, see GCE’s config-default.sh).

Simply changing that value to something very large, however, may cause the setup script to fail for

many cloud providers. A GCE deployment, for example, will run in to quota issues and fail to bring the

Support
Setup

Quota Issues
Etcd storage
Size of master and master components
Addon Resources
Allowing minor node failure at startup

http://releases.k8s.io/master/cluster/gce/config-default.sh

10/23/2017 Building Large Clusters - Kubernetes

http://localhost:4000/docs/admin/cluster-large/ 2/5

cluster up.

When setting up a large Kubernetes cluster, the following issues must be considered.

Quota Issues

To avoid running into cloud provider quota issues, when creating a cluster with many nodes,

consider:

Increase the quota for things like CPU, IPs, etc.

In GCE, for example, you’ll want to increase the quota for:

CPUs

VM instances

Total persistent disk reserved

In-use IP addresses

Firewall Rules

Forwarding rules

Routes

Target pools

Gating the setup script so that it brings up new node VMs in smaller batches with waits in

between, because some cloud providers rate limit the creation of VMs.

Etcd storage

To improve performance of large clusters, we store events in a separate dedicated etcd instance.

When creating a cluster, existing salt scripts:

start and con�gure additional etcd instance

con�gure api-server to use it for storing events

Size of master and master components

https://cloud.google.com/compute/docs/resource-quotas

10/23/2017 Building Large Clusters - Kubernetes

http://localhost:4000/docs/admin/cluster-large/ 3/5

On GCE/GKE and AWS, kube-up automatically con�gures the proper VM size for your master

depending on the number of nodes in your cluster. On other providers, you will need to con�gure it

manually. For reference, the sizes we use on GCE are

1-5 nodes: n1-standard-1

6-10 nodes: n1-standard-2

11-100 nodes: n1-standard-4

101-250 nodes: n1-standard-8

251-500 nodes: n1-standard-16

more than 500 nodes: n1-standard-32

And the sizes we use on AWS are

1-5 nodes: m3.medium

6-10 nodes: m3.large

11-100 nodes: m3.xlarge

101-250 nodes: m3.2xlarge

251-500 nodes: c4.4xlarge

more than 500 nodes: c4.8xlarge

Note that these master node sizes are currently only set at cluster startup time, and are not adjusted

if you later scale your cluster up or down (e.g. manually removing or adding nodes, or using a cluster

autoscaler).

Addon Resources

To prevent memory leaks or other resource issues in cluster addons from consuming all the

resources available on a node, Kubernetes sets resource limits on addon containers to limit the CPU

and Memory resources they can consume (See PR #10653 and #10778).

For example:

https://releases.k8s.io/master/cluster/addons
http://pr.k8s.io/10653/files
http://pr.k8s.io/10778/files

10/23/2017 Building Large Clusters - Kubernetes

http://localhost:4000/docs/admin/cluster-large/ 4/5

Except for Heapster, these limits are static and are based on data we collected from addons running

on 4-node clusters (see #10335). The addons consume a lot more resources when running on large

deployment clusters (see #5880). So, if a large cluster is deployed without adjusting these values, the

addons may continuously get killed because they keep hitting the limits.

To avoid running into cluster addon resource issues, when creating a cluster with many nodes,

consider the following:

Scale memory and CPU limits for each of the following addons, if used, as you scale up the size

of cluster (there is one replica of each handling the entire cluster so memory and CPU usage

tends to grow proportionally with size/load on cluster):

In�uxDB and Grafana

kubedns, dnsmasq, and sidecar

Kibana

Scale number of replicas for the following addons, if used, along with the size of cluster (there

are multiple replicas of each so increasing replicas should help handle increased load, but, since

load per replica also increases slightly, also consider increasing CPU/memory limits):

elasticsearch

Increase memory and CPU limits slightly for each of the following addons, if used, along with the

size of cluster (there is one replica per node but CPU/memory usage increases slightly along

with cluster load/size as well):

FluentD with ElasticSearch Plugin

FluentD with GCP Plugin

Heapster’s resource limits are set dynamically based on the initial size of your cluster (see #16185

and #22940). If you �nd that Heapster is running out of resources, you should adjust the formulas

 containers:
 - name: fluentd-cloud-logging
 image: gcr.io/google_containers/fluentd-gcp:1.16
 resources:
 limits:
 cpu: 100m
 memory: 200Mi

http://issue.k8s.io/10335#issuecomment-117861225
http://issue.k8s.io/5880#issuecomment-113984085
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/influxdb/influxdb-grafana-controller.yaml
http://releases.k8s.io/master/cluster/addons/dns/kubedns-controller.yaml.in
http://releases.k8s.io/master/cluster/addons/fluentd-elasticsearch/kibana-controller.yaml
http://releases.k8s.io/master/cluster/addons/fluentd-elasticsearch/es-controller.yaml
http://releases.k8s.io/master/cluster/addons/fluentd-elasticsearch/fluentd-es-ds.yaml
http://releases.k8s.io/master/cluster/addons/fluentd-gcp/fluentd-gcp-ds.yaml
http://issue.k8s.io/16185
http://issue.k8s.io/22940

10/23/2017 Building Large Clusters - Kubernetes

http://localhost:4000/docs/admin/cluster-large/ 5/5

that compute heapster memory request (see those PRs for details).

For directions on how to detect if addon containers are hitting resource limits, see the

Troubleshooting section of Compute Resources.

In the future, we anticipate to set all cluster addon resource limits based on cluster size, and to

dynamically adjust them if you grow or shrink your cluster. We welcome PRs that implement those

features.

Allowing minor node failure at startup

For various reasons (see #18969 for more details) running kube-up.sh with a very large

NUM_NODES may fail due to a very small number of nodes not coming up properly. Currently you

have two choices: restart the cluster (kube-down.sh and then kube-up.sh again), or before

running kube-up.sh set the environment variable ALLOWED_NOTREADY_NODES to whatever value

you feel comfortable with. This will allow kube-up.sh to succeed with fewer than NUM_NODES

coming up. Depending on the reason for the failure, those additional nodes may join later or the

cluster may remain at a size of NUM_NODES - ALLOWED_NOTREADY_NODES .

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/#troubleshooting
http://issue.k8s.io/13048
https://github.com/kubernetes/kubernetes/issues/18969

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 1/8

Running in Multiple Zones

Introduction

Kubernetes 1.2 adds support for running a single cluster in multiple failure zones (GCE calls them

simply “zones”, AWS calls them “availability zones”, here we’ll refer to them as “zones”). This is a

lightweight version of a broader Cluster Federation feature (previously referred to by the affectionate

nickname “Ubernetes”). Full Cluster Federation allows combining separate Kubernetes clusters

running in different regions or cloud providers (or on-premises data centers). However, many users

simply want to run a more available Kubernetes cluster in multiple zones of their single cloud

provider, and this is what the multizone support in 1.2 allows (this previously went by the nickname

“Ubernetes Lite”).

Multizone support is deliberately limited: a single Kubernetes cluster can run in multiple zones, but

only within the same region (and cloud provider). Only GCE and AWS are currently supported

automatically (though it is easy to add similar support for other clouds or even bare metal, by simply

arranging for the appropriate labels to be added to nodes and volumes).

Functionality

When nodes are started, the kubelet automatically adds labels to them with zone information.

Introduction
Functionality
Limitations
Walkthrough

Bringing up your cluster
Nodes are labeled
Add more nodes in a second zone
Volume a�nity
Pods are spread across zones
Shutting down the cluster

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/federation/federation.md

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 2/8

Kubernetes will automatically spread the pods in a replication controller or service across nodes in a

single-zone cluster (to reduce the impact of failures.) With multiple-zone clusters, this spreading

behaviour is extended across zones (to reduce the impact of zone failures.) (This is achieved via

SelectorSpreadPriority). This is a best-effort placement, and so if the zones in your cluster are

heterogeneous (e.g. different numbers of nodes, different types of nodes, or different pod resource

requirements), this might prevent perfectly even spreading of your pods across zones. If desired, you

can use homogenous zones (same number and types of nodes) to reduce the probability of unequal

spreading.

When persistent volumes are created, the PersistentVolumeLabel admission controller

automatically adds zone labels to them. The scheduler (via the VolumeZonePredicate predicate)

will then ensure that pods that claim a given volume are only placed into the same zone as that

volume, as volumes cannot be attached across zones.

Limitations

There are some important limitations of the multizone support:

We assume that the different zones are located close to each other in the network, so we don’t

perform any zone-aware routing. In particular, tra�c that goes via services might cross zones

(even if pods in some pods backing that service exist in the same zone as the client), and this

may incur additional latency and cost.

Volume zone-a�nity will only work with a PersistentVolume , and will not work if you directly

specify an EBS volume in the pod spec (for example).

Clusters cannot span clouds or regions (this functionality will require full federation support).

Although your nodes are in multiple zones, kube-up currently builds a single master node by

default. While services are highly available and can tolerate the loss of a zone, the control plane

is located in a single zone. Users that want a highly available control plane should follow the high

availability instructions.

StatefulSet volume zone spreading when using dynamic provisioning is currently not compatible

with pod a�nity or anti-a�nity policies.

http://localhost:4000/docs/admin/high-availability

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 3/8

If the name of the StatefulSet contains dashes (“-“), volume zone spreading may not provide a

uniform distribution of storage across zones.

When specifying multiple PVCs in a Deployment or Pod spec, the StorageClass needs to be

con�gured for a speci�c, single zone, or the PVs need to be statically provisioned in a speci�c

zone. Another workaround is to use a StatefulSet, which will ensure that all the volumes for a

replica are provisioned in the same zone.

Walkthrough

We’re now going to walk through setting up and using a multi-zone cluster on both GCE & AWS. To

do so, you bring up a full cluster (specifying MULTIZONE=true), and then you add nodes in additional

zones by running kube-up again (specifying KUBE_USE_EXISTING_MASTER=true).

Bringing up your cluster

Create the cluster as normal, but pass MULTIZONE to tell the cluster to manage multiple zones;

creating nodes in us-central1-a.

GCE:

AWS:

This step brings up a cluster as normal, still running in a single zone (but MULTIZONE=true has

enabled multi-zone capabilities).

Nodes are labeled

View the nodes; you can see that they are labeled with zone information. They are all in

us-central1-a (GCE) or us-west-2a (AWS) so far. The labels are

curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE

curl -sS https://get.k8s.io | MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 4/8

failure-domain.beta.kubernetes.io/region for the region, and

failure-domain.beta.kubernetes.io/zone for the zone:

Add more nodes in a second zone

Let’s add another set of nodes to the existing cluster, reusing the existing master, running in a

different zone (us-central1-b or us-west-2b). We run kube-up again, but by specifying

KUBE_USE_EXISTING_MASTER=true kube-up will not create a new master, but will reuse one that

was previously created instead.

GCE:

On AWS we also need to specify the network CIDR for the additional subnet, along with the master

internal IP address:

View the nodes again; 3 more nodes should have launched and be tagged in us-central1-b:

> kubectl get nodes --show-labels

NAME STATUS AGE VERSION LABELS
kubernetes-master Ready,SchedulingDisabled 6m v1.6.0+fff5156 beta.ku
kubernetes-minion-87j9 Ready 6m v1.6.0+fff5156 beta.ku
kubernetes-minion-9vlv Ready 6m v1.6.0+fff5156 beta.ku
kubernetes-minion-a12q Ready 6m v1.6.0+fff5156 beta.ku

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 5/8

Volume a�nity

Create a volume using the dynamic volume creation (only PersistentVolumes are supported for zone

a�nity):

NOTE: For version 1.3+ Kubernetes will distribute dynamic PV claims across the con�gured zones.

For version 1.2, dynamic persistent volumes were always created in the zone of the cluster master

(here us-central1-a / us-west-2a); that issue (#23330) was addressed in 1.3+.

Now lets validate that Kubernetes automatically labeled the zone & region the PV was created in.

> kubectl get nodes --show-labels

NAME STATUS AGE VERSION LABELS
kubernetes-master Ready,SchedulingDisabled 16m v1.6.0+fff5156 beta.k
kubernetes-minion-281d Ready 2m v1.6.0+fff5156 beta.k
kubernetes-minion-87j9 Ready 16m v1.6.0+fff5156 beta.k
kubernetes-minion-9vlv Ready 16m v1.6.0+fff5156 beta.k
kubernetes-minion-a12q Ready 17m v1.6.0+fff5156 beta.k
kubernetes-minion-pp2f Ready 2m v1.6.0+fff5156 beta.k
kubernetes-minion-wf8i Ready 2m v1.6.0+fff5156 beta.k

kubectl create -f - <<EOF
{
 "kind": "PersistentVolumeClaim",
 "apiVersion": "v1",
 "metadata": {
 "name": "claim1",
 "annotations": {
 "volume.alpha.kubernetes.io/storage-class": "foo"
 }
 },
 "spec": {
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "5Gi"
 }
 }
 }
}
EOF

https://github.com/kubernetes/kubernetes/issues/23330

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 6/8

So now we will create a pod that uses the persistent volume claim. Because GCE PDs / AWS EBS

volumes cannot be attached across zones, this means that this pod can only be created in the same

zone as the volume:

Note that the pod was automatically created in the same zone as the volume, as cross-zone

attachments are not generally permitted by cloud providers:

Pods are spread across zones

Pods in a replication controller or service are automatically spread across zones. First, let’s launch

more nodes in a third zone:

> kubectl get pv --show-labels
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv-gce-mj4gm 5Gi RWO Bound default/claim1 46s

kubectl create -f - <<EOF
kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: claim1
EOF

> kubectl describe pod mypod | grep Node
Node: kubernetes-minion-9vlv/10.240.0.5
> kubectl get node kubernetes-minion-9vlv --show-labels
NAME STATUS AGE VERSION LABELS
kubernetes-minion-9vlv Ready 22m v1.6.0+fff5156 beta.kubernetes.io/inst

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 7/8

GCE:

AWS:

Verify that you now have nodes in 3 zones:

Create the guestbook-go example, which includes an RC of size 3, running a simple web app:

The pods should be spread across all 3 zones:

Load-balancers span all zones in a cluster; the guestbook-go example includes an example load-

balanced service:

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE

KUBE_USE_EXISTING_MASTER=true MULTIZONE=true KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE

kubectl get nodes --show-labels

find kubernetes/examples/guestbook-go/ -name '*.json' | xargs -I {} kubectl create

> kubectl describe pod -l app=guestbook | grep Node
Node: kubernetes-minion-9vlv/10.240.0.5
Node: kubernetes-minion-281d/10.240.0.8
Node: kubernetes-minion-olsh/10.240.0.11

 > kubectl get node kubernetes-minion-9vlv kubernetes-minion-281d kubernetes-minio
NAME STATUS AGE VERSION LABELS
kubernetes-minion-9vlv Ready 34m v1.6.0+fff5156 beta.kubernetes.io/inst
kubernetes-minion-281d Ready 20m v1.6.0+fff5156 beta.kubernetes.io/inst
kubernetes-minion-olsh Ready 3m v1.6.0+fff5156 beta.kubernetes.io/inst

10/23/2017 Running in Multiple Zones - Kubernetes

http://localhost:4000/docs/admin/multiple-zones/ 8/8

The load balancer correctly targets all the pods, even though they are in multiple zones.

Shutting down the cluster

When you’re done, clean up:

GCE:

AWS:

> kubectl describe service guestbook | grep LoadBalancer.Ingress
LoadBalancer Ingress: 130.211.126.21

> ip=130.211.126.21

> curl -s http://${ip}:3000/env | grep HOSTNAME
 "HOSTNAME": "guestbook-44sep",

> (for i in `seq 20`; do curl -s http://${ip}:3000/env | grep HOSTNAME; done) | s
 "HOSTNAME": "guestbook-44sep",
 "HOSTNAME": "guestbook-hum5n",
 "HOSTNAME": "guestbook-ppm40",

KUBERNETES_PROVIDER=gce KUBE_USE_EXISTING_MASTER=true KUBE_GCE_ZONE=us-central1-f
KUBERNETES_PROVIDER=gce KUBE_USE_EXISTING_MASTER=true KUBE_GCE_ZONE=us-central1-b
KUBERNETES_PROVIDER=gce KUBE_GCE_ZONE=us-central1-a kubernetes/cluster/kube-down.s

KUBERNETES_PROVIDER=aws KUBE_USE_EXISTING_MASTER=true KUBE_AWS_ZONE=us-west-2c kub
KUBERNETES_PROVIDER=aws KUBE_USE_EXISTING_MASTER=true KUBE_AWS_ZONE=us-west-2b kub
KUBERNETES_PROVIDER=aws KUBE_AWS_ZONE=us-west-2a kubernetes/cluster/kube-down.sh

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 1/8

Building High-Availability Clusters

Introduction

This document describes how to build a high-availability (HA) Kubernetes cluster. This is a fairly

advanced topic. Users who merely want to experiment with Kubernetes are encouraged to use

con�gurations that are simpler to set up such as Minikube or try Google Container Engine for hosted

Kubernetes.

Also, at this time high availability support for Kubernetes is not continuously tested in our end-to-end

(e2e) testing. We will be working to add this continuous testing, but for now the single-node master

installations are more heavily tested.

Overview

Setting up a truly reliable, highly available distributed system requires a number of steps. It is akin to

wearing underwear, pants, a belt, suspenders, another pair of underwear, and another pair of pants.

Introduction
Overview
Initial set-up
Reliable nodes
Establishing a redundant, reliable data storage layer

Clustering etcd
Validating your cluster

Even more reliable storage
Replicated API Servers

Installing con�guration �les
Starting the API Server
Load balancing

Master elected components
Installing con�guration �les

Conclusion

http://localhost:4000/docs/getting-started-guides/minikube/
https://cloud.google.com/container-engine/

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 2/8

We go into each of these steps in detail, but a summary is given here to help guide and orient the

user.

The steps involved are as follows:

Creating the reliable constituent nodes that collectively form our HA master implementation.

Setting up a redundant, reliable storage layer with clustered etcd.

Starting replicated, load balanced Kubernetes API servers

Setting up master-elected Kubernetes scheduler and controller-manager daemons

Here’s what the system should look like when it’s �nished:

Initial set-up

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 3/8

The remainder of this guide assumes that you are setting up a 3-node clustered master, where each

machine is running some �avor of Linux. Examples in the guide are given for Debian distributions,

but they should be easily adaptable to other distributions. Likewise, this set up should work whether

you are running in a public or private cloud provider, or if you are running on bare metal.

The easiest way to implement an HA Kubernetes cluster is to start with an existing single-master

cluster. The instructions at https://get.k8s.io describe easy installation for single-master clusters on

a variety of platforms.

Reliable nodes

On each master node, we are going to run a number of processes that implement the Kubernetes

API. The �rst step in making these reliable is to make sure that each automatically restarts when it

fails. To achieve this, we need to install a process watcher. We choose to use the kubelet that we

run on each of the worker nodes. This is convenient, since we can use containers to distribute our

binaries, we can establish resource limits, and introspect the resource usage of each daemon. Of

course, we also need something to monitor the kubelet itself (insert who watches the watcher jokes

here). For Debian systems, we choose monit, but there are a number of alternate choices. For

example, on systemd-based systems (e.g. RHEL, CentOS), you can run ‘systemctl enable kubelet’.

If you are extending from a standard Kubernetes installation, the kubelet binary should already be

present on your system. You can run which kubelet to determine if the binary is in fact installed. If

it is not installed, you should install the kubelet binary, the kubelet init �le and default-kubelet scripts.

If you are using monit, you should also install the monit daemon (apt-get install monit) and the

monit-kubelet and monit-docker con�gs.

On systemd systems you systemctl enable kubelet and systemctl enable docker .

Establishing a redundant, reliable data storage layer

The central foundation of a highly available solution is a redundant, reliable storage layer. The

number one rule of high-availability is to protect the data. Whatever else happens, whatever catches

on �re, if you have the data, you can rebuild. If you lose the data, you’re done.

https://get.k8s.io/
https://storage.googleapis.com/kubernetes-release/release/v0.19.3/bin/linux/amd64/kubelet
http://releases.k8s.io/master/cluster/saltbase/salt/kubelet/initd
http://localhost:4000/docs/admin/high-availability/default-kubelet
http://localhost:4000/docs/admin/high-availability/monit-kubelet
http://localhost:4000/docs/admin/high-availability/monit-docker

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 4/8

Clustered etcd already replicates your storage to all master instances in your cluster. This means

that to lose data, all three nodes would need to have their physical (or virtual) disks fail at the same

time. The probability that this occurs is relatively low, so for many people running a replicated etcd

cluster is likely reliable enough. You can add additional reliability by increasing the size of the cluster

from three to �ve nodes. If that is still insu�cient, you can add even more redundancy to your

storage layer.

Clustering etcd

The full details of clustering etcd are beyond the scope of this document, lots of details are given on

the etcd clustering page. This example walks through a simple cluster set up, using etcd’s built in

discovery to build our cluster.

First, hit the etcd discovery service to create a new token:

On each node, copy the etcd.yaml �le into /etc/kubernetes/manifests/etcd.yaml

The kubelet on each node actively monitors the contents of that directory, and it will create an

instance of the etcd server from the de�nition of the pod speci�ed in etcd.yaml .

Note that in etcd.yaml you should substitute the token URL you got above for

${DISCOVERY_TOKEN} on all three machines, and you should substitute a different name (e.g.

node-1) for ${NODE_NAME} and the correct IP address for ${NODE_IP} on each machine.

Validating your cluster

Once you copy this into all three nodes, you should have a clustered etcd set up. You can validate on

master with

and

curl https://discovery.etcd.io/new?size=3

kubectl exec < pod_name > etcdctl member list

kubectl exec < pod_name > etcdctl cluster-health

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering.md
http://localhost:4000/docs/admin/high-availability/etcd.yaml

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 5/8

You can also validate that this is working with etcdctl set foo bar on one node, and

etcdctl get foo on a different node.

Even more reliable storage

Of course, if you are interested in increased data reliability, there are further options which make the

place where etcd installs its data even more reliable than regular disks (belts and suspenders, ftw!).

If you use a cloud provider, then they usually provide this for you, for example Persistent Disk on the

Google Cloud Platform. These are block-device persistent storage that can be mounted onto your

virtual machine. Other cloud providers provide similar solutions.

If you are running on physical machines, you can also use network attached redundant storage using

an iSCSI or NFS interface. Alternatively, you can run a clustered �le system like Gluster or Ceph.

Finally, you can also run a RAID array on each physical machine.

Regardless of how you choose to implement it, if you chose to use one of these options, you should

make sure that your storage is mounted to each machine. If your storage is shared between the

three masters in your cluster, you should create a different directory on the storage for each node.

Throughout these instructions, we assume that this storage is mounted to your machine in

/var/etcd/data .

Replicated API Servers

Once you have replicated etcd set up correctly, we will also install the apiserver using the kubelet.

Installing con�guration �les

First you need to create the initial log �le, so that Docker mounts a �le instead of a directory:

Next, you need to create a /srv/kubernetes/ directory on each node. This directory includes:

basic_auth.csv - basic auth user and password

ca.crt - Certi�cate Authority cert

touch /var/log/kube-apiserver.log

https://cloud.google.com/compute/docs/disks/persistent-disks

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 6/8

known_tokens.csv - tokens that entities (e.g. the kubelet) can use to talk to the apiserver

kubecfg.crt - Client certi�cate, public key

kubecfg.key - Client certi�cate, private key

server.cert - Server certi�cate, public key

server.key - Server certi�cate, private key

The easiest way to create this directory, may be to copy it from the master node of a working cluster,

or you can manually generate these �les yourself.

Starting the API Server

Once these �les exist, copy the kube-apiserver.yaml into /etc/kubernetes/manifests/ on each

master node.

The kubelet monitors this directory, and will automatically create an instance of the

kube-apiserver container using the pod de�nition speci�ed in the �le.

Load balancing

At this point, you should have 3 apiservers all working correctly. If you set up a network load balancer,

you should be able to access your cluster via that load balancer, and see tra�c balancing between

the apiserver instances. Setting up a load balancer will depend on the speci�cs of your platform, for

example instructions for the Google Cloud Platform can be found here.

Note, if you are using authentication, you may need to regenerate your certi�cate to include the IP

address of the balancer, in addition to the IP addresses of the individual nodes.

For pods that you deploy into the cluster, the kubernetes service/dns name should provide a load

balanced endpoint for the master automatically.

For external users of the API (e.g. the kubectl command line interface, continuous build pipelines,

or other clients) you will want to con�gure them to talk to the external load balancer’s IP address.

Master elected components

http://localhost:4000/docs/admin/high-availability/kube-apiserver.yaml
https://cloud.google.com/compute/docs/load-balancing/

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 7/8

So far we have set up state storage, and we have set up the API server, but we haven’t run anything

that actually modi�es cluster state, such as the controller manager and scheduler. To achieve this

reliably, we only want to have one actor modifying state at a time, but we want replicated instances

of these actors, in case a machine dies. To achieve this, we are going to use a lease-lock in the API to

perform master election. We will use the --leader-elect �ag for each scheduler and controller-

manager, using a lease in the API will ensure that only 1 instance of the scheduler and controller-

manager are running at once.

The scheduler and controller-manager can be con�gured to talk to the API server that is on the same

node (i.e. 127.0.0.1), or it can be con�gured to communicate using the load balanced IP address of

the API servers. Regardless of how they are con�gured, the scheduler and controller-manager will

complete the leader election process mentioned above when using the --leader-elect �ag.

In case of a failure accessing the API server, the elected leader will not be able to renew the lease,

causing a new leader to be elected. This is especially relevant when con�guring the scheduler and

controller-manager to access the API server via 127.0.0.1, and the API server on the same node is

unavailable.

Installing con�guration �les

First, create empty log �les on each node, so that Docker will mount the �les not make new

directories:

Next, set up the descriptions of the scheduler and controller manager pods on each node by copying

kube-scheduler.yaml and kube-controller-manager.yaml into the /etc/kubernetes/manifests/

directory.

Conclusion

At this point, you are done (yeah!) with the master components, but you still need to add worker

nodes (boo!).

touch /var/log/kube-scheduler.log
touch /var/log/kube-controller-manager.log

http://localhost:4000/docs/admin/high-availability/kube-scheduler.yaml
http://localhost:4000/docs/admin/high-availability/kube-controller-manager.yaml

10/23/2017 Building High-Availability Clusters - Kubernetes

http://localhost:4000/docs/admin/high-availability/ 8/8

If you have an existing cluster, this is as simple as recon�guring your kubelets to talk to the load-

balanced endpoint, and restarting the kubelets on each node.

If you are turning up a fresh cluster, you will need to install the kubelet and kube-proxy on each

worker node, and set the --apiserver �ag to your replicated endpoint.

10/23/2017 Downloading or Building Kubernetes - Kubernetes

http://localhost:4000/docs/getting-started-guides/binary_release/ 1/2

Downloading or Building Kubernetes

You can either build a release from sources or download a pre-built release. If you do not plan on

developing Kubernetes itself, we suggest a pre-built release.

If you just want to run Kubernetes locally for development, we recommend using Minikube. You can

download Minikube here. Minikube sets up a local VM that runs a Kubernetes cluster securely, and

makes it easy to work with that cluster.

Prebuilt Binary Release

The list of binary releases is available for download from the GitHub Kubernetes repo release page.

Download the latest release and unpack this tar �le on Linux or OS X, cd to the created

kubernetes/ directory, and then follow the getting started guide for your cloud.

On OS X you can also use the homebrew package manager: brew install kubernetes-cli

Building from source

Get the Kubernetes source. If you are simply building a release from source there is no need to set up

a full golang environment as all building happens in a Docker container.

Building a release is simple.

For more details on the release process see the build directory

Download Kubernetes and automatically set up a default cluster

Prebuilt Binary Release
Building from source
Download Kubernetes and automatically set up a default cluster

git clone https://github.com/kubernetes/kubernetes.git
cd kubernetes
make release

https://github.com/kubernetes/minikube/releases/latest
https://github.com/kubernetes/kubernetes/releases
http://brew.sh/
http://releases.k8s.io/master/build/

10/23/2017 Downloading or Building Kubernetes - Kubernetes

http://localhost:4000/docs/getting-started-guides/binary_release/ 2/2

The bash script at https://get.k8s.io , which can be run with wget or curl , automatically

downloads Kubernetes, and provisions a cluster based on your desired cloud provider.

Possible values for YOUR_PROVIDER include:

gce - Google Compute Engine [default]

gke - Google Container Engine

aws - Amazon EC2

azure - Microsoft Azure

vagrant - Vagrant (on local virtual machines)

vsphere - VMWare VSphere

rackspace - Rackspace

For the complete, up-to-date list of providers supported by this script, see the /cluster folder in the

main Kubernetes repo, where each folder represents a possible value for YOUR_PROVIDER . If you

don’t see your desired provider, try looking at our getting started guides; there’s a good chance we

have docs for them.

wget version
export KUBERNETES_PROVIDER=YOUR_PROVIDER; wget -q -O - https://get.k8s.io | bash

curl version
export KUBERNETES_PROVIDER=YOUR_PROVIDER; curl -sS https://get.k8s.io | bash

https://get.k8s.io/
https://github.com/kubernetes/kubernetes/tree/master/cluster
http://localhost:4000/docs/getting-started-guides

10/23/2017 Concepts - Kubernetes

http://localhost:4000/docs/concepts/ 1/3

Concepts

The Concepts section helps you learn about the parts of the Kubernetes system and the

abstractions Kubernetes uses to represent your cluster, and helps you obtain a deeper understanding

of how Kubernetes works.

Overview

To work with Kubernetes, you use Kubernetes API objects to describe your cluster’s desired state:

what applications or other workloads you want to run, what container images they use, the number

of replicas, what network and disk resources you want to make available, and more. You set your

desired state by creating objects using the Kubernetes API, typically via the command-line interface,

kubectl . You can also use the Kubernetes API directly to interact with the cluster and set or modify

your desired state.

Once you’ve set your desired state, the Kubernetes Control Plane works to make the cluster’s current

state match the desired state. To do so, Kubernetes performs a variety of tasks automatically–such

as starting or restarting containers, scaling the number of replicas of a given application, and more.

The Kubernetes Control Plane consists of a collection of processes running on your cluster:

The Kubernetes Master is a collection of three processes that run on a single node in your

cluster, which is designated as the master node. Those processes are: kube-apiserver, kube-

controller-manager and kube-scheduler.

Each individual non-master node in your cluster runs two processes:

kubelet, which communicates with the Kubernetes Master.

kube-proxy, a network proxy which re�ects Kubernetes networking services on each node.

Kubernetes Objects

http://localhost:4000/docs/admin/kube-apiserver/
http://localhost:4000/docs/admin/kube-controller-manager/
http://localhost:4000/docs/admin/kube-scheduler/
http://localhost:4000/docs/admin/kubelet/
http://localhost:4000/docs/admin/kube-proxy/

10/23/2017 Concepts - Kubernetes

http://localhost:4000/docs/concepts/ 2/3

Kubernetes contains a number of abstractions that represent the state of your system: deployed

containerized applications and workloads, their associated network and disk resources, and other

information about what your cluster is doing. These abstractions are represented by objects in the

Kubernetes API; see the Kubernetes Objects overview for more details.

The basic Kubernetes objects include:

Pod

Service

Volume

Namespace

In addition, Kubernetes contains a number of higher-level abstractions called Controllers. Controllers

build upon the basic objects, and provide additional functionality and convenience features. They

include:

ReplicaSet

Deployment

StatefulSet

DaemonSet

Job

Kubernetes Control Plane

The various parts of the Kubernetes Control Plane, such as the Kubernetes Master and kubelet

processes, govern how Kubernetes communicates with your cluster. The Control Plane maintains a

record of all of the Kubernetes Objects in the system, and runs continuous control loops to manage

those objects’ state. At any given time, the Control Plane’s control loops will respond to changes in

the cluster and work to make the actual state of all the objects in the system match the desired state

that you provided.

For example, when you use the Kubernetes API to create a Deployment object, you provide a new

desired state for the system. The Kubernetes Control Plane records that object creation, and carries

http://localhost:4000/docs/concepts/abstractions/overview/
http://localhost:4000/docs/concepts/workloads/pods/pod-overview/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/

10/23/2017 Concepts - Kubernetes

http://localhost:4000/docs/concepts/ 3/3

out your instructions by starting the required applications and scheduling them to cluster nodes–

thus making the cluster’s actual state match the desired state.

Kubernetes Master

The Kubernetes master is responsible for maintaining the desired state for your cluster. When you

interact with Kubernetes, such as by using the kubectl command-line interface, you’re

communicating with your cluster’s Kubernetes master.

The “master” refers to a collection of processes managing the cluster state. Typically these

processes are all run on a single node in the cluster, and this node is also referred to as the master.

The master can also be replicated for availability and redundancy.

Kubernetes Nodes

The nodes in a cluster are the machines (VMs, physical servers, etc) that run your applications and

cloud work�ows. The Kubernetes master controls each node; you’ll rarely interact with nodes

directly.

Object Metadata

Annotations

What’s next

If you would like to write a concept page, see Using Page Templates for information about the

concept page type and the concept template.

http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/
http://localhost:4000/docs/home/contribute/page-templates/

10/23/2017 What is Kubernetes? - Kubernetes

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/ 1/6

What is Kubernetes?

This page is an overview of Kubernetes.

Kubernetes is an open-source platform designed to automate deploying, scaling, and operating

application containers.

With Kubernetes, you are able to quickly and e�ciently respond to customer demand:

Deploy your applications quickly and predictably.

Scale your applications on the �y.

Roll out new features seamlessly.

Limit hardware usage to required resources only.

Our goal is to foster an ecosystem of components and tools that relieve the burden of running

applications in public and private clouds.

Kubernetes is

Portable: public, private, hybrid, multi-cloud

Extensible: modular, pluggable, hookable, composable

Self-healing: auto-placement, auto-restart, auto-replication, auto-scaling

Google started the Kubernetes project in 2014. Kubernetes builds upon a decade and a half of

experience that Google has with running production workloads at scale, combined with best-of-breed

Kubernetes is
Why containers?

Why do I need Kubernetes and what can it do?
How is Kubernetes a platform?
What Kubernetes is not
What does Kubernetes mean? K8s?

What’s next

http://www.slideshare.net/BrianGrant11/wso2con-us-2015-kubernetes-a-platform-for-automating-deployment-scaling-and-operations
https://research.google.com/pubs/pub43438.html

10/23/2017 What is Kubernetes? - Kubernetes

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/ 2/6

ideas and practices from the community.

Why containers?

Looking for reasons why you should be using containers?

The Old Way to deploy applications was to install the applications on a host using the operating

system package manager. This had the disadvantage of entangling the applications’ executables,

con�guration, libraries, and lifecycles with each other and with the host OS. One could build

immutable virtual-machine images in order to achieve predictable rollouts and rollbacks, but VMs are

heavyweight and non-portable.

The New Way is to deploy containers based on operating-system-level virtualization rather than

hardware virtualization. These containers are isolated from each other and from the host: they have

their own �lesystems, they can’t see each others’ processes, and their computational resource usage

https://aucouranton.com/2014/06/13/linux-containers-parallels-lxc-openvz-docker-and-more/

10/23/2017 What is Kubernetes? - Kubernetes

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/ 3/6

can be bounded. They are easier to build than VMs, and because they are decoupled from the

underlying infrastructure and from the host �lesystem, they are portable across clouds and OS

distributions.

Because containers are small and fast, one application can be packed in each container image. This

one-to-one application-to-image relationship unlocks the full bene�ts of containers. With containers,

immutable container images can be created at build/release time rather than deployment time, since

each application doesn’t need to be composed with the rest of the application stack, nor married to

the production infrastructure environment. Generating container images at build/release time

enables a consistent environment to be carried from development into production. Similarly,

containers are vastly more transparent than VMs, which facilitates monitoring and management.

This is especially true when the containers’ process lifecycles are managed by the infrastructure

rather than hidden by a process supervisor inside the container. Finally, with a single application per

container, managing the containers becomes tantamount to managing deployment of the

application.

Summary of container bene�ts:

Agile application creation and deployment: Increased ease and e�ciency of container image

creation compared to VM image use.

Continuous development, integration, and deployment: Provides for reliable and frequent

container image build and deployment with quick and easy rollbacks (due to image

immutability).

Dev and Ops separation of concerns: Create application container images at build/release time

rather than deployment time, thereby decoupling applications from infrastructure.

Environmental consistency across development, testing, and production: Runs the same on a

laptop as it does in the cloud.

Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS, on-prem, Google

Container Engine, and anywhere else.

Application-centric management: Raises the level of abstraction from running an OS on virtual

hardware to run an application on an OS using logical resources.

Loosely coupled, distributed, elastic, liberated micro-services: Applications are broken into

smaller, independent pieces and can be deployed and managed dynamically – not a fat

monolithic stack running on one big single-purpose machine.

https://martinfowler.com/articles/microservices.html

10/23/2017 What is Kubernetes? - Kubernetes

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/ 4/6

Resource isolation: Predictable application performance.

Resource utilization: High e�ciency and density.

Why do I need Kubernetes and what can it do?

At a minimum, Kubernetes can schedule and run application containers on clusters of physical or

virtual machines. However, Kubernetes also allows developers to ‘cut the cord’ to physical and virtual

machines, moving from a host-centric infrastructure to a container-centric infrastructure, which

provides the full advantages and bene�ts inherent to containers. Kubernetes provides the

infrastructure to build a truly container-centric development environment.

Kubernetes satis�es a number of common needs of applications running in production, such as:

Co-locating helper processes, facilitating composite applications and preserving the one-

application-per-container model

Mounting storage systems

Distributing secrets

Checking application health

Replicating application instances

Using Horizontal Pod Autoscaling

Naming and discovering

Balancing loads

Rolling updates

Monitoring resources

Accessing and ingesting logs

Debugging applications

Providing authentication and authorization

This provides the simplicity of Platform as a Service (PaaS) with the �exibility of Infrastructure as a

Service (IaaS), and facilitates portability across infrastructure providers.

http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/
http://localhost:4000/docs/concepts/services-networking/connect-applications-service/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/
http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/
http://localhost:4000/docs/concepts/cluster-administration/logging/
http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/
http://localhost:4000/docs/admin/authorization/

10/23/2017 What is Kubernetes? - Kubernetes

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/ 5/6

How is Kubernetes a platform?

Even though Kubernetes provides a lot of functionality, there are always new scenarios that would

bene�t from new features. Application-speci�c work�ows can be streamlined to accelerate

developer velocity. Ad hoc orchestration that is acceptable initially often requires robust automation

at scale. This is why Kubernetes was also designed to serve as a platform for building an ecosystem

of components and tools to make it easier to deploy, scale, and manage applications.

Labels empower users to organize their resources however they please. Annotations enable users to

decorate resources with custom information to facilitate their work�ows and provide an easy way for

management tools to checkpoint state.

Additionally, the Kubernetes control plane is built upon the same APIs that are available to

developers and users. Users can write their own controllers, such as schedulers, with their own APIs

that can be targeted by a general-purpose command-line tool.

This design has enabled a number of other systems to build atop Kubernetes.

What Kubernetes is not

Kubernetes is not a traditional, all-inclusive PaaS (Platform as a Service) system. It preserves user

choice where it is important.

Kubernetes:

Does not limit the types of applications supported. It does not dictate application frameworks

(e.g., Wild�y), restrict the set of supported language runtimes (for example, Java, Python, Ruby),

cater to only 12-factor applications, nor distinguish apps from services. Kubernetes aims to

support an extremely diverse variety of workloads, including stateless, stateful, and data-

processing workloads. If an application can run in a container, it should run great on Kubernetes.

Does not provide middleware (e.g., message buses), data-processing frameworks (for example,

Spark), databases (e.g., mysql), nor cluster storage systems (e.g., Ceph) as built-in services.

Such applications run on Kubernetes.

Does not have a click-to-deploy service marketplace.

Does not deploy source code and does not build your application. Continuous Integration (CI)

work�ow is an area where different users and projects have their own requirements and

preferences, so it supports layering CI work�ows on Kubernetes but doesn’t dictate how layering

should work.

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/
http://localhost:4000/docs/concepts/overview/components/
http://localhost:4000/docs/reference/api-overview/
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/extending-api.md
http://localhost:4000/docs/user-guide/kubectl-overview/
https://git.k8s.io/community/contributors/design-proposals/architecture/principles.md
http://wildfly.org/
https://12factor.net/

10/23/2017 What is Kubernetes? - Kubernetes

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/ 6/6

Allows users to choose their logging, monitoring, and alerting systems. (It provides some

integrations as proof of concept.)

Does not provide nor mandate a comprehensive application con�guration language/system (for

example, jsonnet).

Does not provide nor adopt any comprehensive machine con�guration, maintenance,

management, or self-healing systems.

On the other hand, a number of PaaS systems run on Kubernetes, such as Openshift, Deis, and

Eldarion. You can also roll your own custom PaaS, integrate with a CI system of your choice, or use

only Kubernetes by deploying your container images on Kubernetes.

Since Kubernetes operates at the application level rather than at the hardware level, it provides some

generally applicable features common to PaaS offerings, such as deployment, scaling, load

balancing, logging, and monitoring. However, Kubernetes is not monolithic, and these default

solutions are optional and pluggable.

Additionally, Kubernetes is not a mere orchestration system. In fact, it eliminates the need for

orchestration. The technical de�nition of orchestration is execution of a de�ned work�ow: �rst do A,

then B, then C. In contrast, Kubernetes is comprised of a set of independent, composable control

processes that continuously drive the current state towards the provided desired state. It shouldn’t

matter how you get from A to C. Centralized control is also not required; the approach is more akin to

choreography. This results in a system that is easier to use and more powerful, robust, resilient, and

extensible.

What does Kubernetes mean? K8s?

The name Kubernetes originates from Greek, meaning helmsman or pilot, and is the root of governor

and cybernetic. K8s is an abbreviation derived by replacing the 8 letters “ubernete” with “8”.

What’s next

Ready to Get Started?

For more details, see the Kubernetes Documentation.

https://github.com/google/jsonnet
https://www.openshift.org/
http://deis.io/
http://eldarion.cloud/
http://www.etymonline.com/index.php?term=cybernetics
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/home/

10/23/2017 Kubernetes Components - Kubernetes

http://localhost:4000/docs/concepts/overview/components/ 1/5

Kubernetes Components

This document outlines the various binary components needed to deliver a functioning Kubernetes

cluster.

Master Components

Master components provide the cluster’s control plane. Master components make global decisions

about the cluster (for example, scheduling), and detecting and responding to cluster events (starting

up a new pod when a replication controller’s ‘replicas’ �eld is unsatis�ed).

Master components can be run on any node in the cluster. However, for simplicity, set up scripts

typically start all master components on the same VM, and do not run user containers on this VM.

See Building High-Availability Clusters for an example multi-master-VM setup.

kube-apiserver

Master Components
kube-apiserver
etcd
kube-controller-manager
cloud-controller-manager
kube-scheduler
addons

DNS
Web UI (Dashboard)
Container Resource Monitoring
Cluster-level Logging

Node components
kubelet
kube-proxy
docker
rkt
supervisord
�uentd

http://localhost:4000/docs/admin/high-availability/

10/23/2017 Kubernetes Components - Kubernetes

http://localhost:4000/docs/concepts/overview/components/ 2/5

kube-apiserver exposes the Kubernetes API. It is the front-end for the Kubernetes control plane. It is

designed to scale horizontally – that is, it scales by deploying more instances. See Building High-

Availability Clusters.

etcd

etcd is used as Kubernetes’ backing store. All cluster data is stored here. Always have a backup plan

for etcd’s data for your Kubernetes cluster.

kube-controller-manager

kube-controller-manager runs controllers, which are the background threads that handle routine

tasks in the cluster. Logically, each controller is a separate process, but to reduce complexity, they

are all compiled into a single binary and run in a single process.

These controllers include:

Node Controller: Responsible for noticing and responding when nodes go down.

Replication Controller: Responsible for maintaining the correct number of pods for every

replication controller object in the system.

Endpoints Controller: Populates the Endpoints object (that is, joins Services & Pods).

Service Account & Token Controllers: Create default accounts and API access tokens for new

namespaces.

cloud-controller-manager

cloud-controller-manager runs controllers that interact with the underlying cloud providers. The

cloud-controller-manager binary is an alpha feature introduced in Kubernetes release 1.6.

cloud-controller-manager runs cloud-provider-speci�c controller loops only. You must disable these

controller loops in the kube-controller-manager. You can disable the controller loops by setting the

--cloud-provider �ag to external when starting the kube-controller-manager.

cloud-controller-manager allows cloud vendors code and the Kubernetes core to evolve independent

of each other. In prior releases, the core Kubernetes code was dependent upon cloud-provider-

speci�c code for functionality. In future releases, code speci�c to cloud vendors should be

http://localhost:4000/docs/admin/kube-apiserver/
http://localhost:4000/docs/admin/high-availability/
http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/
http://localhost:4000/docs/admin/kube-controller-manager/

10/23/2017 Kubernetes Components - Kubernetes

http://localhost:4000/docs/concepts/overview/components/ 3/5

maintained by the cloud vendor themselves, and linked to cloud-controller-manager while running

Kubernetes.

The following controllers have cloud provider dependencies:

Node Controller: For checking the cloud provider to determine if a node has been deleted in the

cloud after it stops responding

Route Controller: For setting up routes in the underlying cloud infrastructure

Service Controller: For creating, updating and deleting cloud provider load balancers

Volume Controller: For creating, attaching, and mounting volumes, and interacting with the cloud

provider to orchestrate volumes

kube-scheduler

kube-scheduler watches newly created pods that have no node assigned, and selects a node for

them to run on.

addons

Addons are pods and services that implement cluster features. The pods may be managed by

Deployments, ReplicationControllers, and so on. Namespaced addon objects are created in the

kube-system namespace.

Addon manager creates and maintains addon resources. See here for more details.

DNS

While the other addons are not strictly required, all Kubernetes clusters should have cluster DNS, as

many examples rely on it.

Cluster DNS is a DNS server, in addition to the other DNS server(s) in your environment, which serves

DNS records for Kubernetes services.

Containers started by Kubernetes automatically include this DNS server in their DNS searches.

Web UI (Dashboard)

http://localhost:4000/docs/admin/kube-scheduler/
http://releases.k8s.io/HEAD/cluster/addons
http://localhost:4000/docs/concepts/services-networking/dns-pod-service/

10/23/2017 Kubernetes Components - Kubernetes

http://localhost:4000/docs/concepts/overview/components/ 4/5

Dashboard is a general purpose, web-based UI for Kubernetes clusters. It allows users to manage

and troubleshoot applications running in the cluster, as well as the cluster itself.

Container Resource Monitoring

Container Resource Monitoring records generic time-series metrics about containers in a central

database, and provides a UI for browsing that data.

Cluster-level Logging

A Cluster-level logging mechanism is responsible for saving container logs to a central log store with

search/browsing interface.

Node components

Node components run on every node, maintaining running pods and providing the Kubernetes

runtime environment.

kubelet

kubelet is the primary node agent. It watches for pods that have been assigned to its node (either by

apiserver or via local con�guration �le) and:

Mounts the pod’s required volumes.

Downloads the pod’s secrets.

Runs the pod’s containers via docker (or, experimentally, rkt).

Periodically executes any requested container liveness probes.

Reports the status of the pod back to the rest of the system, by creating a mirror pod if

necessary.

Reports the status of the node back to the rest of the system.

kube-proxy

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/
http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/
http://localhost:4000/docs/concepts/cluster-administration/logging/
http://localhost:4000/docs/admin/kubelet/

10/23/2017 Kubernetes Components - Kubernetes

http://localhost:4000/docs/concepts/overview/components/ 5/5

kube-proxy enables the Kubernetes service abstraction by maintaining network rules on the host and

performing connection forwarding.

docker

docker is used for running containers.

rkt

rkt is supported experimentally for running containers as an alternative to docker.

supervisord

supervisord is a lightweight process monitor and control system that can be used to keep kubelet

and docker running.

�uentd

fluentd is a daemon which helps provide cluster-level logging.

http://localhost:4000/docs/admin/kube-proxy/

10/23/2017 Understanding Kubernetes Objects - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/kubernetes-objects/ 1/4

Understanding Kubernetes Objects

This page explains how Kubernetes objects are represented in the Kubernetes API, and how you can

express them in .yaml format.

Understanding Kubernetes Objects

Kubernetes Objects are persistent entities in the Kubernetes system. Kubernetes uses these entities

to represent the state of your cluster. Speci�cally, they can describe:

What containerized applications are running (and on which nodes)

The resources available to those applications

The policies around how those applications behave, such as restart policies, upgrades, and fault-

tolerance

A Kubernetes object is a “record of intent”–once you create the object, the Kubernetes system will

constantly work to ensure that object exists. By creating an object, you’re effectively telling the

Kubernetes system what you want your cluster’s workload to look like; this is your cluster’s desired

state.

To work with Kubernetes objects–whether to create, modify, or delete them–you’ll need to use the

Kubernetes API. When you use the kubectl command-line interface, for example, the CLI makes

the necessary Kubernetes API calls for you; you can also use the Kubernetes API directly in your own

programs. Kubernetes currently provides a golang client library for this purpose, and other

language libraries (such as Python) are being developed.

Understanding Kubernetes Objects
Object Spec and Status
Describing a Kubernetes Object
Required Fields

What’s next

https://git.k8s.io/community/contributors/devel/api-conventions.md
https://github.com/kubernetes/client-go
https://github.com/kubernetes-incubator/client-python

10/23/2017 Understanding Kubernetes Objects - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/kubernetes-objects/ 2/4

Object Spec and Status

Every Kubernetes object includes two nested object �elds that govern the object’s con�guration: the

object spec and the object status. The spec, which you must provide, describes your desired state for

the object–the characteristics that you want the object to have. The status describes the actual state

of the object, and is supplied and updated by the Kubernetes system. At any given time, the

Kubernetes Control Plane actively manages an object’s actual state to match the desired state you

supplied.

For example, a Kubernetes Deployment is an object that can represent an application running on

your cluster. When you create the Deployment, you might set the Deployment spec to specify that

you want three replicas of the application to be running. The Kubernetes system reads the

Deployment spec and starts three instances of your desired application–updating the status to

match your spec. If any of those instances should fail (a status change), the Kubernetes system

responds to the difference between spec and status by making a correction–in this case, starting a

replacement instance.

For more information on the object spec, status, and metadata, see the Kubernetes API Conventions.

Describing a Kubernetes Object

When you create an object in Kubernetes, you must provide the object spec that describes its

desired state, as well as some basic information about the object (such as a name). When you use

the Kubernetes API to create the object (either directly or via kubectl), that API request must

include that information as JSON in the request body. Most often, you provide the information to

kubectl in a .yaml �le. kubectl converts the information to JSON when making the API request.

Here’s an example .yaml �le that shows the required �elds and object spec for a Kubernetes

Deployment:

nginx-deployment.yaml

https://git.k8s.io/community/contributors/devel/api-conventions.md
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/overview/working-with-objects/nginx-deployment.yaml

10/23/2017 Understanding Kubernetes Objects - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/kubernetes-objects/ 3/4

nginx-deployment.yaml

One way to create a Deployment using a .yaml �le like the one above is to use the

kubectl create command in the kubectl command-line interface, passing the .yaml �le as an

argument. Here’s an example:

The output is similar to this:

Required Fields

In the .yaml �le for the Kubernetes object you want to create, you’ll need to set values for the

following �elds:

apiVersion - Which version of the Kubernetes API you’re using to create this object

kind - What kind of object you want to create

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

$ kubectl create -f docs/user-guide/nginx-deployment.yaml --record

deployment "nginx-deployment" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/overview/working-with-objects/nginx-deployment.yaml
http://localhost:4000/docs/user-guide/kubectl/v1.7/#create

10/23/2017 Understanding Kubernetes Objects - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/kubernetes-objects/ 4/4

metadata - Data that helps uniquely identify the object, including a name string, UID, and

optional namespace

You’ll also need to provide the object spec �eld. The precise format of the object spec is different

for every Kubernetes object, and contains nested �elds speci�c to that object. The Kubernetes API

reference can help you �nd the spec format for all of the objects you can create using Kubernetes.

What’s next

Learn about the most important basic Kubernetes objects, such as Pod.

http://localhost:4000/docs/concepts/overview/kubernetes-api/
http://localhost:4000/docs/concepts/abstractions/pod/

10/23/2017 Names - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/names/ 1/1

Names

All objects in the Kubernetes REST API are unambiguously identi�ed by a Name and a UID.

For non-unique user-provided attributes, Kubernetes provides labels and annotations.

Names

Names are generally client-provided. Only one object of a given kind can have a given name at a time

(i.e., they are spatially unique). But if you delete an object, you can make a new object with the same

name. Names are used to refer to an object in a resource URL, such as /api/v1/pods/some-name .

By convention, the names of Kubernetes resources should be up to maximum length of 253

characters and consist of lower case alphanumeric characters, - , and . , but certain resources

have more speci�c restrictions. See the identi�ers design doc for the precise syntax rules for names.

UIDs

UIDs are generated by Kubernetes. Every object created over the whole lifetime of a Kubernetes

cluster has a distinct UID (i.e., they are spatially and temporally unique).

http://localhost:4000/docs/user-guide/labels
http://localhost:4000/docs/user-guide/annotations
https://git.k8s.io/community/contributors/design-proposals/architecture/identifiers.md

10/23/2017 Namespaces - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/ 1/3

Namespaces

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual

clusters are called namespaces.

When to Use Multiple Namespaces

Namespaces are intended for use in environments with many users spread across multiple teams,

or projects. For clusters with a few to tens of users, you should not need to create or think about

namespaces at all. Start using namespaces when you need the features they provide.

Namespaces provide a scope for names. Names of resources need to be unique within a

namespace, but not across namespaces.

Namespaces are a way to divide cluster resources between multiple uses (via resource quota).

In future versions of Kubernetes, objects in the same namespace will have the same access control

policies by default.

It is not necessary to use multiple namespaces just to separate slightly different resources, such as

different versions of the same software: use labels to distinguish resources within the same

namespace.

Working with Namespaces

Creation and deletion of namespaces is described in the Admin Guide documentation for

namespaces.

Viewing namespaces

You can list the current namespaces in a cluster using:

http://localhost:4000/docs/concepts/policy/resource-quotas/
http://localhost:4000/docs/user-guide/labels
http://localhost:4000/docs/admin/namespaces

10/23/2017 Namespaces - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/ 2/3

Kubernetes starts with two initial namespaces:

default The default namespace for objects with no other namespace

kube-system The namespace for objects created by the Kubernetes system

Setting the namespace for a request

To temporarily set the namespace for a request, use the --namespace �ag.

For example:

Setting the namespace preference

You can permanently save the namespace for all subsequent kubectl commands in that context.

Namespaces and DNS

When you create a Service, it creates a corresponding DNS entry. This entry is of the form

<service-name>.<namespace-name>.svc.cluster.local , which means that if a container just

uses <service-name> , it will resolve to the service which is local to a namespace. This is useful for

using the same con�guration across multiple namespaces such as Development, Staging and

$ kubectl get namespaces
NAME STATUS AGE
default Active 1d
kube-system Active 1d

$ kubectl --namespace=<insert-namespace-name-here> run nginx --image=nginx
$ kubectl --namespace=<insert-namespace-name-here> get pods

$ kubectl config set-context $(kubectl config current-context) --namespace=<insert
Validate it
$ kubectl config view | grep namespace:

http://localhost:4000/docs/user-guide/services
http://localhost:4000/docs/admin/dns

10/23/2017 Namespaces - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/ 3/3

Production. If you want to reach across namespaces, you need to use the fully quali�ed domain

name (FQDN).

Not All Objects are in a Namespace

Most Kubernetes resources (e.g. pods, services, replication controllers, and others) are in some

namespaces. However namespace resources are not themselves in a namespace. And low-level

resources, such as nodes and persistentVolumes, are not in any namespace. Events are an

exception: they may or may not have a namespace, depending on the object the event is about.

http://localhost:4000/docs/admin/node

10/23/2017 Labels and Selectors - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/ 1/6

Labels and Selectors

Labels are key/value pairs that are attached to objects, such as pods. Labels are intended to be used

to specify identifying attributes of objects that are meaningful and relevant to users, but do not

directly imply semantics to the core system. Labels can be used to organize and to select subsets of

objects. Labels can be attached to objects at creation time and subsequently added and modi�ed at

any time. Each object can have a set of key/value labels de�ned. Each Key must be unique for a

given object.

We’ll eventually index and reverse-index labels for e�cient queries and watches, use them to sort

and group in UIs and CLIs, etc. We don’t want to pollute labels with non-identifying, especially large

and/or structured, data. Non-identifying information should be recorded using annotations.

Motivation

Labels enable users to map their own organizational structures onto system objects in a loosely

coupled fashion, without requiring clients to store these mappings.

"labels": {
 "key1" : "value1",
 "key2" : "value2"
}

Motivation
Syntax and character set
Label selectors
Equality-based requirement
Set-based requirement

API
LIST and WATCH �ltering
Set references in API objects

Service and ReplicationController
Resources that support set-based requirements
Selecting sets of nodes

http://localhost:4000/docs/user-guide/annotations

10/23/2017 Labels and Selectors - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/ 2/6

Service deployments and batch processing pipelines are often multi-dimensional entities (e.g.,

multiple partitions or deployments, multiple release tracks, multiple tiers, multiple micro-services per

tier). Management often requires cross-cutting operations, which breaks encapsulation of strictly

hierarchical representations, especially rigid hierarchies determined by the infrastructure rather than

by users.

Example labels:

"release" : "stable" , "release" : "canary"

"environment" : "dev" , "environment" : "qa" , "environment" : "production"

"tier" : "frontend" , "tier" : "backend" , "tier" : "cache"

"partition" : "customerA" , "partition" : "customerB"

"track" : "daily" , "track" : "weekly"

These are just examples of commonly used labels; you are free to develop your own conventions.

Keep in mind that label Key must be unique for a given object.

Syntax and character set

Labels are key/value pairs. Valid label keys have two segments: an optional pre�x and name,

separated by a slash (/). The name segment is required and must be 63 characters or less,

beginning and ending with an alphanumeric character ([a-z0-9A-Z]) with dashes (-), underscores

(_), dots (.), and alphanumerics between. The pre�x is optional. If speci�ed, the pre�x must be a

DNS subdomain: a series of DNS labels separated by dots (.), not longer than 253 characters in

total, followed by a slash (/). If the pre�x is omitted, the label Key is presumed to be private to the

user. Automated system components (e.g. kube-scheduler , kube-controller-manager ,

kube-apiserver , kubectl , or other third-party automation) which add labels to end-user objects

must specify a pre�x. The kubernetes.io/ pre�x is reserved for Kubernetes core components.

Valid label values must be 63 characters or less and must be empty or begin and end with an

alphanumeric character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and

alphanumerics between.

10/23/2017 Labels and Selectors - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/ 3/6

Label selectors

Unlike names and UIDs, labels do not provide uniqueness. In general, we expect many objects to

carry the same label(s).

Via a label selector, the client/user can identify a set of objects. The label selector is the core

grouping primitive in Kubernetes.

The API currently supports two types of selectors: equality-based and set-based. A label selector can

be made of multiple requirements which are comma-separated. In the case of multiple requirements,

all must be satis�ed so the comma separator acts as an AND logical operator.

An empty label selector (that is, one with zero requirements) selects every object in the collection.

A null label selector (which is only possible for optional selector �elds) selects no objects.

Note: the label selectors of two controllers must not overlap within a namespace, otherwise they will

�ght with each other.

Equality-based requirement

Equality- or inequality-based requirements allow �ltering by label keys and values. Matching objects

must satisfy all of the speci�ed label constraints, though they may have additional labels as well.

Three kinds of operators are admitted = , == , != . The �rst two represent equality (and are simply

synonyms), while the latter represents inequality. For example:

The former selects all resources with key equal to environment and value equal to production .

The latter selects all resources with key equal to tier and value distinct from frontend , and all

resources with no labels with the tier key. One could �lter for resources in production excluding

frontend using the comma operator: environment=production,tier!=frontend

Set-based requirement

environment = production
tier != frontend

http://localhost:4000/docs/user-guide/identifiers

10/23/2017 Labels and Selectors - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/ 4/6

Set-based label requirements allow �ltering keys according to a set of values. Three kinds of

operators are supported: in , notin and exists (only the key identi�er). For example:

The �rst example selects all resources with key equal to environment and value equal to

production or qa . The second example selects all resources with key equal to tier and values

other than frontend and backend , and all resources with no labels with the tier key. The third

example selects all resources including a label with key partition ; no values are checked. The

fourth example selects all resources without a label with key partition ; no values are checked.

Similarly the comma separator acts as an AND operator. So �ltering resources with a partition

key (no matter the value) and with environment different than qa can be achieved using

partition,environment notin (qa) . The set-based label selector is a general form of equality

since environment=production is equivalent to environment in (production) ; similarly for !=

and notin .

Set-based requirements can be mixed with equality-based requirements. For example:

partition in (customerA, customerB),environment!=qa .

API

LIST and WATCH �ltering

LIST and WATCH operations may specify label selectors to �lter the sets of objects returned using a

query parameter. Both requirements are permitted (presented here as they would appear in a URL

query string):

equality-based requirements:

?labelSelector=environment%3Dproduction,tier%3Dfrontend

set-based requirements:

?labelSelector=environment+in+%28production%2Cqa%29%2Ctier+in+%28frontend%29

environment in (production, qa)
tier notin (frontend, backend)
partition
!partition

10/23/2017 Labels and Selectors - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/ 5/6

Both label selector styles can be used to list or watch resources via a REST client. For example,

targeting apiserver with kubectl and using equality-based one may write:

or using set-based requirements:

As already mentioned set-based requirements are more expressive. For instance, they can

implement the OR operator on values:

or restricting negative matching via exists operator:

Set references in API objects

Some Kubernetes objects, such as services and replicationcontrollers , also use label

selectors to specify sets of other resources, such as pods.

Service and ReplicationController

The set of pods that a service targets is de�ned with a label selector. Similarly, the population of

pods that a replicationcontroller should manage is also de�ned with a label selector.

Labels selectors for both objects are de�ned in json or yaml �les using maps, and only equality-

based requirement selectors are supported:

$ kubectl get pods -l environment=production,tier=frontend

$ kubectl get pods -l 'environment in (production),tier in (frontend)'

$ kubectl get pods -l 'environment in (production, qa)'

$ kubectl get pods -l 'environment,environment notin (frontend)'

"selector": {
 "component" : "redis",
}

http://localhost:4000/docs/user-guide/services
http://localhost:4000/docs/user-guide/replication-controller
http://localhost:4000/docs/user-guide/pods

10/23/2017 Labels and Selectors - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/ 6/6

or

this selector (respectively in json or yaml format) is equivalent to component=redis or

component in (redis) .

Resources that support set-based requirements

Newer resources, such as Job , Deployment , Replica Set , and Daemon Set , support set-based

requirements as well.

matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is

equivalent to an element of matchExpressions , whose key �eld is “key”, the operator is “In”, and

the values array contains only “value”. matchExpressions is a list of pod selector requirements.

Valid operators include In, NotIn, Exists, and DoesNotExist. The values set must be non-empty in the

case of In and NotIn. All of the requirements, from both matchLabels and matchExpressions are

ANDed together – they must all be satis�ed in order to match.

Selecting sets of nodes

One use case for selecting over labels is to constrain the set of nodes onto which a pod can

schedule. See the documentation on node selection for more information.

selector:
 component: redis

selector:
 matchLabels:
 component: redis
 matchExpressions:
 - {key: tier, operator: In, values: [cache]}
 - {key: environment, operator: NotIn, values: [dev]}

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/user-guide/node-selection

10/23/2017 Annotations - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/ 1/2

Annotations

You can use Kubernetes annotations to attach arbitrary non-identifying metadata to objects. Clients

such as tools and libraries can retrieve this metadata.

Attaching metadata to objects

You can use either labels or annotations to attach metadata to Kubernetes objects. Labels can be

used to select objects and to �nd collections of objects that satisfy certain conditions. In contrast,

annotations are not used to identify and select objects. The metadata in an annotation can be small

or large, structured or unstructured, and can include characters not permitted by labels.

Annotations, like labels, are key/value maps:

Here are some examples of information that could be recorded in annotations:

Fields managed by a declarative con�guration layer. Attaching these �elds as annotations

distinguishes them from default values set by clients or servers, and from auto-generated �elds

and �elds set by auto-sizing or auto-scaling systems.

Build, release, or image information like timestamps, release IDs, git branch, PR numbers, image

hashes, and registry address.

Pointers to logging, monitoring, analytics, or audit repositories.

Client library or tool information that can be used for debugging purposes: for example, name,

version, and build information.

Attaching metadata to objects
What’s next

"annotations": {
 "key1" : "value1",
 "key2" : "value2"
}

10/23/2017 Annotations - Kubernetes

http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/ 2/2

User or tool/system provenance information, such as URLs of related objects from other

ecosystem components.

Lightweight rollout tool metadata: for example, con�g or checkpoints.

Phone or pager numbers of persons responsible, or directory entries that specify where that

information can be found, such as a team web site.

Instead of using annotations, you could store this type of information in an external database or

directory, but that would make it much harder to produce shared client libraries and tools for

deployment, management, introspection, and the like.

What’s next

Learn more about Labels and Selectors.

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/

10/23/2017 The Kubernetes API - Kubernetes

http://localhost:4000/docs/concepts/overview/kubernetes-api/ 1/4

The Kubernetes API

Overall API conventions are described in the API conventions doc.

API endpoints, resource types and samples are described in API Reference.

Remote access to the API is discussed in the access doc.

The Kubernetes API also serves as the foundation for the declarative con�guration schema for the

system. The Kubectl command-line tool can be used to create, update, delete, and get API objects.

Kubernetes also stores its serialized state (currently in etcd) in terms of the API resources.

Kubernetes itself is decomposed into multiple components, which interact through its API.

API changes

In our experience, any system that is successful needs to grow and change as new use cases

emerge or existing ones change. Therefore, we expect the Kubernetes API to continuously change

and grow. However, we intend to not break compatibility with existing clients, for an extended period

of time. In general, new API resources and new resource �elds can be expected to be added

frequently. Elimination of resources or �elds will require following the API deprecation policy.

What constitutes a compatible change and how to change the API are detailed by the API change

document.

OpenAPI and Swagger de�nitions

Complete API details are documented using Swagger v1.2 and OpenAPI. The Kubernetes apiserver

(aka “master”) exposes an API that can be used to retrieve the Swagger v1.2 Kubernetes API spec

located at /swaggerapi . You can also enable a UI to browse the API documentation at

/swagger-ui by passing the --enable-swagger-ui=true �ag to apiserver.

Starting with Kubernetes 1.4, OpenAPI spec is also available at /swagger.json . While we are

transitioning from Swagger v1.2 to OpenAPI (aka Swagger v2.0), some of the tools such as kubectl

https://git.k8s.io/community/contributors/devel/api-conventions.md
http://localhost:4000/docs/reference
http://localhost:4000/docs/admin/accessing-the-api
http://localhost:4000/docs/user-guide/kubectl
https://coreos.com/docs/distributed-configuration/getting-started-with-etcd/
https://kubernetes.io/docs/reference/deprecation-policy/
https://git.k8s.io/community/contributors/devel/api_changes.md
http://swagger.io/
https://www.openapis.org/
https://git.k8s.io/kubernetes/api/openapi-spec/swagger.json

10/23/2017 The Kubernetes API - Kubernetes

http://localhost:4000/docs/concepts/overview/kubernetes-api/ 2/4

and swagger-ui are still using v1.2 spec. OpenAPI spec is in Beta as of Kubernetes 1.5.

Kubernetes implements an alternative Protobuf based serialization format for the API that is

primarily intended for intra-cluster communication, documented in the design proposal and the IDL

�les for each schema are located in the Go packages that de�ne the API objects.

API versioning

To make it easier to eliminate �elds or restructure resource representations, Kubernetes supports

multiple API versions, each at a different API path, such as /api/v1 or

/apis/extensions/v1beta1 .

We chose to version at the API level rather than at the resource or �eld level to ensure that the API

presents a clear, consistent view of system resources and behavior, and to enable controlling access

to end-of-lifed and/or experimental APIs. The JSON and Protobuf serialization schemas follow the

same guidelines for schema changes - all descriptions below cover both formats.

Note that API versioning and Software versioning are only indirectly related. The API and release

versioning proposal describes the relationship between API versioning and software versioning.

Different API versions imply different levels of stability and support. The criteria for each level are

described in more detail in the API Changes documentation. They are summarized here:

Alpha level:

The version names contain alpha (e.g. v1alpha1).

May be buggy. Enabling the feature may expose bugs. Disabled by default.

Support for feature may be dropped at any time without notice.

The API may change in incompatible ways in a later software release without notice.

Recommended for use only in short-lived testing clusters, due to increased risk of bugs and

lack of long-term support.

Beta level:

The version names contain beta (e.g. v2beta3).

Code is well tested. Enabling the feature is considered safe. Enabled by default.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/protobuf.md
https://git.k8s.io/community/contributors/design-proposals/release/versioning.md
https://git.k8s.io/community/contributors/devel/api_changes.md#alpha-beta-and-stable-versions

10/23/2017 The Kubernetes API - Kubernetes

http://localhost:4000/docs/concepts/overview/kubernetes-api/ 3/4

Support for the overall feature will not be dropped, though details may change.

The schema and/or semantics of objects may change in incompatible ways in a

subsequent beta or stable release. When this happens, we will provide instructions for

migrating to the next version. This may require deleting, editing, and re-creating API objects.

The editing process may require some thought. This may require downtime for applications

that rely on the feature.

Recommended for only non-business-critical uses because of potential for incompatible

changes in subsequent releases. If you have multiple clusters which can be upgraded

independently, you may be able to relax this restriction.

Please do try our beta features and give feedback on them! Once they exit beta, it may

not be practical for us to make more changes.

Stable level:

The version name is vX where X is an integer.

Stable versions of features will appear in released software for many subsequent versions.

API groups

To make it easier to extend the Kubernetes API, we implemented API groups. The API group is

speci�ed in a REST path and in the apiVersion �eld of a serialized object.

Currently there are several API groups in use:

1. The “core” (oftentimes called “legacy”, due to not having explicit group name) group, which is at

REST path /api/v1 and is not speci�ed as part of the apiVersion �eld, e.g. apiVersion: v1

.

2. The named groups are at REST path /apis/$GROUP_NAME/$VERSION , and use

apiVersion: $GROUP_NAME/$VERSION (e.g. apiVersion: batch/v1). Full list of supported

API groups can be seen in Kubernetes API reference.

There are two supported paths to extending the API with custom resources:

1. CustomResourceDe�nition is for users with very basic CRUD needs.

https://git.k8s.io/community/contributors/design-proposals/api-machinery/api-group.md
http://localhost:4000/docs/reference/
http://localhost:4000/docs/concepts/api-extension/custom-resources/
http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

10/23/2017 The Kubernetes API - Kubernetes

http://localhost:4000/docs/concepts/overview/kubernetes-api/ 4/4

2. Coming soon: users needing the full set of Kubernetes API semantics can implement their own

apiserver and use the aggregator to make it seamless for clients.

Enabling API groups

Certain resources and API groups are enabled by default. They can be enabled or disabled by setting

--runtime-config on apiserver. --runtime-config accepts comma separated values. For ex: to

disable batch/v1, set --runtime-config=batch/v1=false , to enable batch/v2alpha1, set

--runtime-config=batch/v2alpha1 . The �ag accepts comma separated set of key=value pairs

describing runtime con�guration of the apiserver.

IMPORTANT: Enabling or disabling groups or resources requires restarting apiserver and controller-

manager to pick up the --runtime-config changes.

Enabling resources in the groups

DaemonSets, Deployments, HorizontalPodAutoscalers, Ingress, Jobs and ReplicaSets are enabled by

default. Other extensions resources can be enabled by setting --runtime-config on apiserver.

--runtime-config accepts comma separated values. For example: to disable deployments and

ingress, set

--runtime-

config=extensions/v1beta1/deployments=false,extensions/v1beta1/ingress=false

https://git.k8s.io/community/contributors/design-proposals/api-machinery/aggregated-api-servers.md

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 1/8

Nodes

What is a node?

A node is a worker machine in Kubernetes, previously known as a minion . A node may be a VM or

physical machine, depending on the cluster. Each node has the services necessary to run pods and

is managed by the master components. The services on a node include Docker, kubelet and kube-

proxy. See The Kubernetes Node section in the architecture design doc for more details.

Node Status

A node’s status contains the following information:

Addresses

Phase deprecated

Condition

Capacity

What is a node?
Node Status

Addresses
Phase
Condition
Capacity
Info

Management
Node Controller
Self-Registration of Nodes

Manual Node Administration
Node capacity

API Object

http://localhost:4000/docs/user-guide/pods
https://git.k8s.io/community/contributors/design-proposals/architecture/architecture.md#the-kubernetes-node

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 2/8

Info

Each section is described in detail below.

Addresses

The usage of these �elds varies depending on your cloud provider or bare metal con�guration.

HostName: The hostname as reported by the node’s kernel. Can be overridden via the kubelet

--hostname-override parameter.

ExternalIP: Typically the IP address of the node that is externally routable (available from outside

the cluster).

InternalIP: Typically the IP address of the node that is routable only within the cluster.

Phase

Deprecated: node phase is no longer used.

Condition

The conditions �eld describes the status of all Running nodes.

Node Condition Description

OutOfDisk True if there is insu�cient free space on the node for adding new pods, otherwise False

Ready
True if the node is healthy and ready to accept pods, False if the node is not healthy and

is not accepting pods, and Unknown if the node controller has not heard from the node in the
last 40 seconds

MemoryPressure
True if pressure exists on the node memory – that is, if the node memory is low; otherwise

False

DiskPressure
True if pressure exists on the disk size – that is, if the disk capacity is low; otherwise

False

NetworkUnavailable True if the network for the node is not correctly con�gured, otherwise False

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 3/8

The node condition is represented as a JSON object. For example, the following response describes

a healthy node.

If the Status of the Ready condition is “Unknown” or “False” for longer than the

pod-eviction-timeout , an argument is passed to the kube-controller-manager and all of the Pods

on the node are scheduled for deletion by the Node Controller. The default eviction timeout duration

is �ve minutes. In some cases when the node is unreachable, the apiserver is unable to

communicate with the kubelet on it. The decision to delete the pods cannot be communicated to the

kubelet until it re-establishes communication with the apiserver. In the meantime, the pods which are

scheduled for deletion may continue to run on the partitioned node.

In versions of Kubernetes prior to 1.5, the node controller would force delete these unreachable pods

from the apiserver. However, in 1.5 and higher, the node controller does not force delete pods until it

is con�rmed that they have stopped running in the cluster. One can see these pods which may be

running on an unreachable node as being in the “Terminating” or “Unknown” states. In cases where

Kubernetes cannot deduce from the underlying infrastructure if a node has permanently left a

cluster, the cluster administrator may need to delete the node object by hand. Deleting the node

object from Kubernetes causes all the Pod objects running on it to be deleted from the apiserver,

freeing up their names.

Version 1.8 introduces an alpha feature that automatically creates taints that represent conditions.

To enable this behavior, pass an additional feature gate �ag

--feature-gates=...,TaintNodesByCondition=true to the API server, controller manager, and

scheduler. When TaintNodesByCondition is enabled, the scheduler ignores conditions when

considering a Node; instead it looks at the Node’s taints and a Pod’s tolerations.

Now users can choose between the old scheduling model and a new, more �exible scheduling

model. A Pod that does not have any tolerations gets scheduled according to the old model. But a

Pod that tolerates the taints of a particular Node can be scheduled on that Node.

"conditions": [
 {
 "kind": "Ready",
 "status": "True"
 }
]

http://localhost:4000/docs/admin/kube-controller-manager
http://localhost:4000/docs/concepts/workloads/pods/pod/#force-deletion-of-pods
http://localhost:4000/docs/concepts/configuration/taint-and-toleration

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 4/8

Note that because of small delay, usually less than one second, between time when condition is

observed and a taint is created, it’s possible that enabling this feature will slightly increase number of

Pods that are successfully scheduled but rejected by the kubelet.

Capacity

Describes the resources available on the node: CPU, memory and the maximum number of pods that

can be scheduled onto the node.

Info

General information about the node, such as kernel version, Kubernetes version (kubelet and kube-

proxy version), Docker version (if used), OS name. The information is gathered by Kubelet from the

node.

Management

Unlike pods and services, a node is not inherently created by Kubernetes: it is created externally by

cloud providers like Google Compute Engine, or exists in your pool of physical or virtual machines.

What this means is that when Kubernetes creates a node, it is really just creating an object that

represents the node. After creation, Kubernetes will check whether the node is valid or not. For

example, if you try to create a node from the following content:

Kubernetes will create a node object internally (the representation), and validate the node by health

checking based on the metadata.name �eld (we assume metadata.name can be resolved). If the

node is valid, i.e. all necessary services are running, it is eligible to run a pod; otherwise, it will be

{
 "kind": "Node",
 "apiVersion": "v1",
 "metadata": {
 "name": "10.240.79.157",
 "labels": {
 "name": "my-first-k8s-node"
 }
 }
}

http://localhost:4000/docs/user-guide/pods
http://localhost:4000/docs/user-guide/services

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 5/8

ignored for any cluster activity until it becomes valid. Note that Kubernetes will keep the object for

the invalid node unless it is explicitly deleted by the client, and it will keep checking to see if it

becomes valid.

Currently, there are three components that interact with the Kubernetes node interface: node

controller, kubelet, and kubectl.

Node Controller

The node controller is a Kubernetes master component which manages various aspects of nodes.

The node controller has multiple roles in a node’s life. The �rst is assigning a CIDR block to the node

when it is registered (if CIDR assignment is turned on).

The second is keeping the node controller’s internal list of nodes up to date with the cloud provider’s

list of available machines. When running in a cloud environment, whenever a node is unhealthy, the

node controller asks the cloud provider if the VM for that node is still available. If not, the node

controller deletes the node from its list of nodes.

The third is monitoring the nodes’ health. The node controller is responsible for updating the

NodeReady condition of NodeStatus to ConditionUnknown when a node becomes unreachable (i.e.

the node controller stops receiving heartbeats for some reason, e.g. due to the node being down),

and then later evicting all the pods from the node (using graceful termination) if the node continues

to be unreachable. (The default timeouts are 40s to start reporting ConditionUnknown and 5m after

that to start evicting pods.) The node controller checks the state of each node every

--node-monitor-period seconds.

In Kubernetes 1.4, we updated the logic of the node controller to better handle cases when a large

number of nodes have problems with reaching the master (e.g. because the master has networking

problem). Starting with 1.4, the node controller will look at the state of all nodes in the cluster when

making a decision about pod eviction.

In most cases, node controller limits the eviction rate to --node-eviction-rate (default 0.1) per

second, meaning it won’t evict pods from more than 1 node per 10 seconds.

The node eviction behavior changes when a node in a given availability zone becomes unhealthy.

The node controller checks what percentage of nodes in the zone are unhealthy (NodeReady

condition is ConditionUnknown or ConditionFalse) at the same time. If the fraction of unhealthy

nodes is at least --unhealthy-zone-threshold (default 0.55) then the eviction rate is reduced: if

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 6/8

the cluster is small (i.e. has less than or equal to --large-cluster-size-threshold nodes -

default 50) then evictions are stopped, otherwise the eviction rate is reduced to

--secondary-node-eviction-rate (default 0.01) per second. The reason these policies are

implemented per availability zone is because one availability zone might become partitioned from

the master while the others remain connected. If your cluster does not span multiple cloud provider

availability zones, then there is only one availability zone (the whole cluster).

A key reason for spreading your nodes across availability zones is so that the workload can be

shifted to healthy zones when one entire zone goes down. Therefore, if all nodes in a zone are

unhealthy then node controller evicts at the normal rate --node-eviction-rate . The corner case is

when all zones are completely unhealthy (i.e. there are no healthy nodes in the cluster). In such case,

the node controller assumes that there’s some problem with master connectivity and stops all

evictions until some connectivity is restored.

Starting in Kubernetes 1.6, the NodeController is also responsible for evicting pods that are running

on nodes with NoExecute taints, when the pods do not tolerate the taints. Additionally, as an alpha

feature that is disabled by default, the NodeController is responsible for adding taints corresponding

to node problems like node unreachable or not ready. See this documentation for details about

NoExecute taints and the alpha feature.

Starting in version 1.8, the node controller can be made responsible for creating taints that represent

Node conditions. This is an alpha feature of version 1.8.

Self-Registration of Nodes

When the kubelet �ag --register-node is true (the default), the kubelet will attempt to register

itself with the API server. This is the preferred pattern, used by most distros.

For self-registration, the kubelet is started with the following options:

--kubeconfig - Path to credentials to authenticate itself to the apiserver.

--cloud-provider - How to talk to a cloud provider to read metadata about itself.

--register-node - Automatically register with the API server.

--register-with-taints - Register the node with the given list of taints (comma separated

<key>=<value>:<effect>). No-op if register-node is false.

http://localhost:4000/docs/concepts/configuration/taint-and-toleration

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 7/8

--node-ip IP address of the node.

--node-labels - Labels to add when registering the node in the cluster.

--node-status-update-frequency - Speci�es how often kubelet posts node status to master.

Currently, any kubelet is authorized to create/modify any node resource, but in practice it only

creates/modi�es its own. (In the future, we plan to only allow a kubelet to modify its own node

resource.)

Manual Node Administration

A cluster administrator can create and modify node objects.

If the administrator wishes to create node objects manually, set the kubelet �ag

--register-node=false .

The administrator can modify node resources (regardless of the setting of --register-node).

Modi�cations include setting labels on the node and marking it unschedulable.

Labels on nodes can be used in conjunction with node selectors on pods to control scheduling, e.g.

to constrain a pod to only be eligible to run on a subset of the nodes.

Marking a node as unschedulable will prevent new pods from being scheduled to that node, but will

not affect any existing pods on the node. This is useful as a preparatory step before a node reboot,

etc. For example, to mark a node unschedulable, run this command:

Note that pods which are created by a DaemonSet controller bypass the Kubernetes scheduler, and

do not respect the unschedulable attribute on a node. The assumption is that daemons belong on

the machine even if it is being drained of applications in preparation for a reboot.

Node capacity

The capacity of the node (number of cpus and amount of memory) is part of the node object.

Normally, nodes register themselves and report their capacity when creating the node object. If you

are doing manual node administration, then you need to set node capacity when adding a node.

kubectl cordon $NODENAME

10/23/2017 Nodes - Kubernetes

http://localhost:4000/docs/concepts/architecture/nodes/ 8/8

The Kubernetes scheduler ensures that there are enough resources for all the pods on a node. It

checks that the sum of the requests of containers on the node is no greater than the node capacity.

It includes all containers started by the kubelet, but not containers started directly by Docker nor

processes not in containers.

If you want to explicitly reserve resources for non-pod processes, you can create a placeholder pod.

Use the following template:

Set the cpu and memory values to the amount of resources you want to reserve. Place the �le in the

manifest directory (--config=DIR �ag of kubelet). Do this on each kubelet where you want to

reserve resources.

API Object

Node is a top-level resource in the Kubernetes REST API. More details about the API object can be

found at: Node API object.

apiVersion: v1
kind: Pod
metadata:
 name: resource-reserver
spec:
 containers:
 - name: sleep-forever
 image: gcr.io/google_containers/pause:0.8.0
 resources:
 requests:
 cpu: 100m
 memory: 100Mi

http://localhost:4000/docs/api-reference/v1.8/#node-v1-core

10/23/2017 Master-Node communication - Kubernetes

http://localhost:4000/docs/concepts/architecture/master-node-communication/ 1/3

Master-Node communication

Overview

This document catalogs the communication paths between the master (really the apiserver) and the

Kubernetes cluster. The intent is to allow users to customize their installation to harden the network

con�guration such that the cluster can be run on an untrusted network (or on fully public IPs on a

cloud provider).

Cluster -> Master

All communication paths from the cluster to the master terminate at the apiserver (none of the other

master components are designed to expose remote services). In a typical deployment, the apiserver

is con�gured to listen for remote connections on a secure HTTPS port (443) with one or more forms

of client authentication enabled. One or more forms of authorization should be enabled, especially if

anonymous requests or service account tokens are allowed.

Nodes should be provisioned with the public root certi�cate for the cluster such that they can

connect securely to the apiserver along with valid client credentials. For example, on a default GCE

deployment, the client credentials provided to the kubelet are in the form of a client certi�cate. See

kubelet TLS bootstrapping for automated provisioning of kubelet client certi�cates.

Pods that wish to connect to the apiserver can do so securely by leveraging a service account so

that Kubernetes will automatically inject the public root certi�cate and a valid bearer token into the

pod when it is instantiated. The kubernetes service (in all namespaces) is con�gured with a virtual

IP address that is redirected (via kube-proxy) to the HTTPS endpoint on the apiserver.

Overview
Cluster -> Master
Master -> Cluster

apiserver -> kubelet
apiserver -> nodes, pods, and services
SSH Tunnels

http://localhost:4000/docs/admin/authentication/
http://localhost:4000/docs/admin/authorization/
http://localhost:4000/docs/admin/authentication/#anonymous-requests
http://localhost:4000/docs/admin/authentication/#service-account-tokens
http://localhost:4000/docs/admin/kubelet-tls-bootstrapping/

10/23/2017 Master-Node communication - Kubernetes

http://localhost:4000/docs/concepts/architecture/master-node-communication/ 2/3

The master components communicate with the cluster apiserver over the insecure (not encrypted or

authenticated) port. This port is typically only exposed on the localhost interface of the master

machine, so that the master components, all running on the same machine, can communicate with

the cluster apiserver. Over time, the master components will be migrated to use the secure port with

authentication and authorization (see #13598).

As a result, the default operating mode for connections from the cluster (nodes and pods running on

the nodes) to the master is secured by default and can run over untrusted and/or public networks.

Master -> Cluster

There are two primary communication paths from the master (apiserver) to the cluster. The �rst is

from the apiserver to the kubelet process which runs on each node in the cluster. The second is from

the apiserver to any node, pod, or service through the apiserver’s proxy functionality.

apiserver -> kubelet

The connections from the apiserver to the kubelet are used for:

Fetching logs for pods.

Attaching (through kubectl) to running pods.

Providing the kubelet’s port-forwarding functionality.

These connections terminate at the kubelet’s HTTPS endpoint. By default, the apiserver does not

verify the kubelet’s serving certi�cate, which makes the connection subject to man-in-the-middle

attacks, and unsafe to run over untrusted and/or public networks.

To verify this connection, use the --kubelet-certificate-authority �ag to provide the apiserver

with a root certi�cate bundle to use to verify the kubelet’s serving certi�cate.

If that is not possible, use SSH tunneling between the apiserver and kubelet if required to avoid

connecting over an untrusted or public network.

Finally, Kubelet authentication and/or authorization should be enabled to secure the kubelet API.

apiserver -> nodes, pods, and services

https://github.com/kubernetes/kubernetes/issues/13598
http://localhost:4000/docs/admin/kubelet-authentication-authorization/

10/23/2017 Master-Node communication - Kubernetes

http://localhost:4000/docs/concepts/architecture/master-node-communication/ 3/3

The connections from the apiserver to a node, pod, or service default to plain HTTP connections and

are therefore neither authenticated nor encrypted. They can be run over a secure HTTPS connection

by pre�xing https: to the node, pod, or service name in the API URL, but they will not validate the

certi�cate provided by the HTTPS endpoint nor provide client credentials so while the connection will

be encrypted, it will not provide any guarantees of integrity. These connections are not currently safe

to run over untrusted and/or public networks.

SSH Tunnels

Google Container Engine uses SSH tunnels to protect the Master -> Cluster communication paths. In

this con�guration, the apiserver initiates an SSH tunnel to each node in the cluster (connecting to the

ssh server listening on port 22) and passes all tra�c destined for a kubelet, node, pod, or service

through the tunnel. This tunnel ensures that the tra�c is not exposed outside of the private GCE

network in which the cluster is running.

https://cloud.google.com/container-engine/docs/

10/23/2017 Custom Resources - Kubernetes

http://localhost:4000/docs/concepts/api-extension/custom-resources/ 1/3

Custom Resources

This page explains the concept of custom resources, which are extensions of the Kubernetes API.

Custom resources

A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a certain

kind. For example, the built-in pods resource contains a collection of Pod objects.

A custom resource is an extension of the Kubernetes API that is not necessarily available on every

Kubernetes cluster. In other words, it represents a customization of a particular Kubernetes

installation.

Custom resources can appear and disappear in a running cluster through dynamic registration, and

cluster admins can update custom resources independently of the cluster itself. Once a custom

resource is installed, users can create and access its objects with kubectl, just as they do for built-in

resources like pods.

Custom controllers

On their own, custom resources simply let you store and retrieve structured data. It is only when

combined with a controller that they become a true declarative API. The controller interprets the

structured data as a record of the user’s desired state, and continually takes action to achieve and

maintain that state.

A custom controller is a controller that users can deploy and update on a running cluster,

independently of the cluster’s own lifecycle. Custom controllers can work with any kind of resource,

Custom resources
Custom controllers
CustomResourceDe�nitions
API server aggregation
What’s next

http://localhost:4000/docs/reference/api-overview/
http://localhost:4000/docs/concepts/overview/working-with-objects/kubernetes-objects/
http://localhost:4000/docs/user-guide/kubectl-overview/
http://localhost:4000/docs/concepts/overview/working-with-objects/kubernetes-objects/#understanding-kubernetes-objects

10/23/2017 Custom Resources - Kubernetes

http://localhost:4000/docs/concepts/api-extension/custom-resources/ 2/3

but they are especially effective when combined with custom resources. The Operator pattern is one

example of such a combination. It allows developers to encode domain knowledge for speci�c

applications into an extension of the Kubernetes API.

CustomResourceDe�nitions

CustomResourceDe�nition (CRD) is a built-in API that offers a simple way to create custom

resources. Deploying a CRD into the cluster causes the Kubernetes API server to begin serving the

speci�ed custom resource on your behalf.

This frees you from writing your own API server to handle the custom resource, but the generic

nature of the implementation means you have less �exibility than with API server aggregation.

Refer to the Custom Resource Example for a demonstration of how to register a new custom

resource, work with instances of your new resource type, and setup a controller to handle events.

Note: CRD is the successor to the deprecated ThirdPartyResource (TPR) API, and is available

as of Kubernetes 1.7.

API server aggregation

Usually, each resource in the Kubernetes API requires code that handles REST requests and

manages persistent storage of objects. The main Kubernetes API server handles built-in resources

like pods and services, and can also handle custom resources in a generic way through

CustomResourceDe�nitions.

The aggregation layer allows you to provide specialized implementations for your custom resources

by writing and deploying your own standalone API server. The main API server delegates requests to

you for the custom resources that you handle, making them available to all of its clients.

What’s next

Learn how to Extend the Kubernetes API with the aggregation layer.

https://coreos.com/blog/introducing-operators.html
http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
https://github.com/kubernetes/kubernetes/tree/master/staging/src/k8s.io/apiextensions-apiserver/examples/client-go
http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/
http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/

10/23/2017 Custom Resources - Kubernetes

http://localhost:4000/docs/concepts/api-extension/custom-resources/ 3/3

Learn how to Extend the Kubernetes API with CustomResourceDe�nition.

Learn how to Migrate a ThirdPartyResource to CustomResourceDe�nition.

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/

10/23/2017 Extending the Kubernetes API with the aggregation layer - Kubernetes

http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/ 1/2

Extending the Kubernetes API with the
aggregation layer

The aggregation layer allows Kubernetes to be extended with additional APIs, beyond what is offered

by the core Kubernetes APIs.

Overview

The aggregation layer enables installing additional Kubernetes-style APIs in your cluster. These can

either be pre-built, existing 3rd party solutions, such as service-catalog, or user-created APIs like

apiserver-builder, which can get you started.

In 1.7 the aggregation layer runs in-process with the kube-apiserver. Until an extension resource is

registered, the aggregation layer will do nothing. To register an API, users must add an APIService

object, which “claims” the URL path in the Kubernetes API. At that point, the aggregation layer will

proxy anything sent to that API path (e.g. /apis/myextension.mycompany.io/v1/…) to the registered

APIService.

Ordinarily, the APIService will be implemented by an extension-apiserver in a pod running in the

cluster. This extension-apiserver will normally need to be paired with one or more controllers if active

management of the added resources is needed. As a result, the apiserver-builder will actually provide

a skeleton for both. As another example, when the service-catalog is installed, it provides both the

extension-apiserver and controller for the services it provides.

What’s next

To get the aggregator working in your environment, con�gure the aggregation layer.

Then, setup an extension api-server to work with the aggregation layer.

Overview
What’s next

https://github.com/kubernetes-incubator/service-catalog/blob/master/README.md
https://github.com/kubernetes-incubator/apiserver-builder/blob/master/README.md
http://localhost:4000/docs/tasks/access-kubernetes-api/configure-aggregation-layer/
http://localhost:4000/docs/tasks/access-kubernetes-api/setup-extension-api-server/

10/23/2017 Extending the Kubernetes API with the aggregation layer - Kubernetes

http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/ 2/2

Also, learn how to extend the Kubernetes API using Custom Resource De�nitions.

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 1/10

Images

You create your Docker image and push it to a registry before referring to it in a Kubernetes pod.

The image property of a container supports the same syntax as the docker command does,

including private registries and tags.

Updating Images

The default pull policy is IfNotPresent which causes the Kubelet to skip pulling an image if it

already exists. If you would like to always force a pull, you can do one of the following:

set the imagePullPolicy of the container to Always ;

use :latest as the tag for the image to use;

enable the AlwaysPullImages admission controller.

If you did not specify tag of your image, it will be assumed as :latest , with pull image policy of

Always correspondingly.

Updating Images
Using a Private Registry

Using Google Container Registry
Using AWS EC2 Container Registry
Using Azure Container Registry (ACR)
Con�guring Nodes to Authenticate to a Private Repository
Pre-pulling Images
Specifying ImagePullSecrets on a Pod

Creating a Secret with a Docker Con�g
Bypassing kubectl create secrets

Referring to an imagePullSecrets on a Pod
Use Cases

http://localhost:4000/docs/admin/admission-controllers/#alwayspullimages

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 2/10

Note that you should avoid using :latest tag, see Best Practices for Con�guration for more

information.

Using a Private Registry

Private registries may require keys to read images from them. Credentials can be provided in several

ways:

Using Google Container Registry

Per-cluster

automatically con�gured on Google Compute Engine or Google Container Engine

all pods can read the project’s private registry

Using AWS EC2 Container Registry (ECR)

use IAM roles and policies to control access to ECR repositories

automatically refreshes ECR login credentials

Using Azure Container Registry (ACR)

Con�guring Nodes to Authenticate to a Private Registry

all pods can read any con�gured private registries

requires node con�guration by cluster administrator

Pre-pulling Images

all pods can use any images cached on a node

requires root access to all nodes to setup

Specifying ImagePullSecrets on a Pod

only pods which provide own keys can access the private registry Each option is described

in more detail below.

Using Google Container Registry

http://localhost:4000/docs/concepts/configuration/overview/#container-images

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 3/10

Kubernetes has native support for the Google Container Registry (GCR), when running on Google

Compute Engine (GCE). If you are running your cluster on GCE or Google Container Engine (GKE),

simply use the full image name (e.g. gcr.io/my_project/image:tag).

All pods in a cluster will have read access to images in this registry.

The kubelet will authenticate to GCR using the instance’s Google service account. The service

account on the instance will have a https://www.googleapis.com/auth/devstorage.read_only ,

so it can pull from the project’s GCR, but not push.

Using AWS EC2 Container Registry

Kubernetes has native support for the AWS EC2 Container Registry, when nodes are AWS EC2

instances.

Simply use the full image name (e.g. ACCOUNT.dkr.ecr.REGION.amazonaws.com/imagename:tag)

in the Pod de�nition.

All users of the cluster who can create pods will be able to run pods that use any of the images in the

ECR registry.

The kubelet will fetch and periodically refresh ECR credentials. It needs the following permissions to

do this:

ecr:GetAuthorizationToken

ecr:BatchCheckLayerAvailability

ecr:GetDownloadUrlForLayer

ecr:GetRepositoryPolicy

ecr:DescribeRepositories

ecr:ListImages

ecr:BatchGetImage

Requirements:

https://cloud.google.com/tools/container-registry/
https://aws.amazon.com/ecr/

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 4/10

You must be using kubelet version v1.2.0 or newer. (e.g. run

/usr/bin/kubelet --version=true).

If your nodes are in region A and your registry is in a different region B, you need version v1.3.0

or newer.

ECR must be offered in your region

Troubleshooting:

Verify all requirements above.

Get $REGION (e.g. us-west-2) credentials on your workstation. SSH into the host and run

Docker manually with those creds. Does it work?

Verify kubelet is running with --cloud-provider=aws .

Check kubelet logs (e.g. journalctl -u kubelet) for log lines like:

plugins.go:56] Registering credential provider: aws-ecr-key

provider.go:91] Refreshing cache for provider: *aws_credentials.ecrProvider

Using Azure Container Registry (ACR)

When using Azure Container Registry you can authenticate using either an admin user or a service

principal. In either case, authentication is done via standard Docker authentication. These

instructions assume the azure-cli command line tool.

You �rst need to create a registry and generate credentials, complete documentation for this can be

found in the Azure container registry documentation.

Once you have created your container registry, you will use the following credentials to login:

DOCKER_USER : service principal, or admin username

DOCKER_PASSWORD : service principal password, or admin user password

DOCKER_REGISTRY_SERVER : ${some-registry-name}.azurecr.io

DOCKER_EMAIL : ${some-email-address}

https://azure.microsoft.com/en-us/services/container-registry/
https://github.com/azure/azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-azure-cli

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 5/10

Once you have those variables �lled in you can con�gure a Kubernetes Secret and use it to deploy a

Pod.

Con�guring Nodes to Authenticate to a Private Repository

Note: if you are running on Google Container Engine (GKE), there will already be a .dockercfg on

each node with credentials for Google Container Registry. You cannot use this approach.

Note: if you are running on AWS EC2 and are using the EC2 Container Registry (ECR), the kubelet on

each node will manage and update the ECR login credentials. You cannot use this approach.

Note: this approach is suitable if you can control node con�guration. It will not work reliably on GCE,

and any other cloud provider that does automatic node replacement.

Docker stores keys for private registries in the $HOME/.dockercfg or

$HOME/.docker/config.json �le. If you put this in the $HOME of user root on a kubelet, then

docker will use it.

Here are the recommended steps to con�guring your nodes to use a private registry. In this example,

run these on your desktop/laptop:

1. Run docker login [server] for each set of credentials you want to use. This updates

$HOME/.docker/config.json .

2. View $HOME/.docker/config.json in an editor to ensure it contains just the credentials you

want to use.

3. Get a list of your nodes, for example:

1. if you want the names:

nodes=$(kubectl get nodes -o jsonpath='{range.items[*].metadata}{.name}

{end}')

2. if you want to get the IPs:

nodes=$(kubectl get nodes -o jsonpath='{range .items[*].status.addresses[?

(@.type=="ExternalIP")]}{.address} {end}')

4. Copy your local .docker/config.json to the home directory of root on each node.

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 6/10

1. for example:

for n in $nodes; do scp ~/.docker/config.json

root@$n:/root/.docker/config.json; done

Verify by creating a pod that uses a private image, e.g.:

If everything is working, then, after a few moments, you should see:

If it failed, then you will see:

You must ensure all nodes in the cluster have the same .docker/config.json . Otherwise, pods

will run on some nodes and fail to run on others. For example, if you use node autoscaling, then each

instance template needs to include the .docker/config.json or mount a drive that contains it.

All pods will have read access to images in any private registry once private registry keys are added

to the .docker/config.json .

$ cat <<EOF > /tmp/private-image-test-1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: private-image-test-1
spec:
 containers:
 - name: uses-private-image
 image: $PRIVATE_IMAGE_NAME
 imagePullPolicy: Always
 command: ["echo", "SUCCESS"]
EOF
$ kubectl create -f /tmp/private-image-test-1.yaml
pod "private-image-test-1" created
$

$ kubectl logs private-image-test-1
SUCCESS

$ kubectl describe pods/private-image-test-1 | grep "Failed"
 Fri, 26 Jun 2015 15:36:13 -0700 Fri, 26 Jun 2015 15:39:13 -0700 19 {kub

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 7/10

This was tested with a private docker repository as of 26 June with Kubernetes version v0.19.3. It

should also work for a private registry such as quay.io, but that has not been tested.

Pre-pulling Images

Note: if you are running on Google Container Engine (GKE), there will already be a .dockercfg on

each node with credentials for Google Container Registry. You cannot use this approach.

Note: this approach is suitable if you can control node con�guration. It will not work reliably on GCE,

and any other cloud provider that does automatic node replacement.

By default, the kubelet will try to pull each image from the speci�ed registry. However, if the

imagePullPolicy property of the container is set to IfNotPresent or Never , then a local image

is used (preferentially or exclusively, respectively).

If you want to rely on pre-pulled images as a substitute for registry authentication, you must ensure

all nodes in the cluster have the same pre-pulled images.

This can be used to preload certain images for speed or as an alternative to authenticating to a

private registry.

All pods will have read access to any pre-pulled images.

Specifying ImagePullSecrets on a Pod

Note: This approach is currently the recommended approach for GKE, GCE, and any cloud-providers

where node creation is automated.

Kubernetes supports specifying registry keys on a pod.

Creating a Secret with a Docker Con�g

Run the following command, substituting the appropriate uppercase values:

If you need access to multiple registries, you can create one secret for each registry. Kubelet will

merge any imagePullSecrets into a single virtual .docker/config.json when pulling images for

$ kubectl create secret docker-registry myregistrykey --docker-server=DOCKER_REGIS
secret "myregistrykey" created.

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 8/10

your Pods.

Pods can only reference image pull secrets in their own namespace, so this process needs to be

done one time per namespace.

Bypassing kubectl create secrets

If for some reason you need multiple items in a single .docker/config.json or need control not

given by the above command, then you can create a secret using json or yaml.

Be sure to:

set the name of the data item to .dockerconfigjson

base64 encode the docker �le and paste that string, unbroken as the value for �eld

data[".dockerconfigjson"]

set type to kubernetes.io/dockerconfigjson

Example:

If you get the error message error: no objects passed to create , it may mean the base64

encoded string is invalid. If you get an error message like

Secret "myregistrykey" is invalid: data[.dockerconfigjson]: invalid value ... , it

means the data was successfully un-base64 encoded, but could not be parsed as a

.docker/config.json �le.

Referring to an imagePullSecrets on a Pod

apiVersion: v1
kind: Secret
metadata:
 name: myregistrykey
 namespace: awesomeapps
data:
 .dockerconfigjson: UmVhbGx5IHJlYWxseSByZWVlZWVlZWVlZWFhYWFhYWFhYWFhYWFhYWFhYWFhY
type: kubernetes.io/dockerconfigjson

http://localhost:4000/docs/user-guide/secrets/#creating-a-secret-manually

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 9/10

Now, you can create pods which reference that secret by adding an imagePullSecrets section to a

pod de�nition.

This needs to be done for each pod that is using a private registry.

However, setting of this �eld can be automated by setting the imagePullSecrets in a serviceAccount

resource.

You can use this in conjunction with a per-node .docker/config.json . The credentials will be

merged. This approach will work on Google Container Engine (GKE).

Use Cases

There are a number of solutions for con�guring private registries. Here are some common use cases

and suggested solutions.

1. Cluster running only non-proprietary (e.g. open-source) images. No need to hide images.

1. Use public images on the Docker hub.

1. No con�guration required.

2. On GCE/GKE, a local mirror is automatically used for improved speed and availability.

2. Cluster running some proprietary images which should be hidden to those outside the company,

but visible to all cluster users.

1. Use a hosted private Docker registry.

1. It may be hosted on the Docker Hub, or elsewhere.

apiVersion: v1
kind: Pod
metadata:
 name: foo
 namespace: awesomeapps
spec:
 containers:
 - name: foo
 image: janedoe/awesomeapp:v1
 imagePullSecrets:
 - name: myregistrykey

http://localhost:4000/docs/user-guide/service-accounts
https://docs.docker.com/registry/
https://hub.docker.com/account/signup/

10/23/2017 Images - Kubernetes

http://localhost:4000/docs/concepts/containers/images/ 10/10

2. Manually con�gure .docker/con�g.json on each node as described above.

2. Or, run an internal private registry behind your �rewall with open read access.

1. No Kubernetes con�guration is required.

3. Or, when on GCE/GKE, use the project’s Google Container Registry.

1. It will work better with cluster autoscaling than manual node con�guration.

4. Or, on a cluster where changing the node con�guration is inconvenient, use

imagePullSecrets .

3. Cluster with a proprietary images, a few of which require stricter access control.

1. Ensure AlwaysPullImages admission controller is active. Otherwise, all Pods potentially have

access to all images.

2. Move sensitive data into a “Secret” resource, instead of packaging it in an image.

4. A multi-tenant cluster where each tenant needs own private registry.

1. Ensure AlwaysPullImages admission controller is active. Otherwise, all Pods of all tenants

potentially have access to all images.

2. Run a private registry with authorization required.

3. Generate registry credential for each tenant, put into secret, and populate secret to each

tenant namespace.

4. The tenant adds that secret to imagePullSecrets of each namespace.

http://localhost:4000/docs/admin/admission-controllers/#alwayspullimages
http://localhost:4000/docs/admin/admission-controllers/#alwayspullimages

10/23/2017 Container Environment Variables - Kubernetes

http://localhost:4000/docs/concepts/containers/container-environment-variables/ 1/2

Container Environment Variables

This page describes the resources available to Containers in the Container environment.

Container environment

The Kubernetes Container environment provides several important resources to Containers:

A �lesystem, which is a combination of an image and one or more volumes.

Information about the Container itself.

Information about other objects in the cluster.

Container information

The hostname of a Container is the name of the Pod in which the Container is running. It is available

through the hostname command or the gethostname function call in libc.

The Pod name and namespace are available as environment variables through the downward API.

User de�ned environment variables from the Pod de�nition are also available to the Container, as are

any environment variables speci�ed statically in the Docker image.

Cluster information

A list of all services that were running when a Container was created is available to that Container as

environment variables. Those environment variables match the syntax of Docker links.

For a service named foo that maps to a container port named bar, the following variables are

de�ned:

Container environment
Container information
Cluster information

What’s next

http://localhost:4000/docs/concepts/containers/images/
http://localhost:4000/docs/concepts/storage/volumes/
http://man7.org/linux/man-pages/man2/gethostname.2.html
http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/

10/23/2017 Container Environment Variables - Kubernetes

http://localhost:4000/docs/concepts/containers/container-environment-variables/ 2/2

Services have dedicated IP addresses and are available to the Container via DNS, if DNS addon is

enabled.

What’s next

Learn more about Container lifecycle hooks.

Get hands-on experience attaching handlers to Container lifecycle events.

FOO_SERVICE_HOST=<the host the service is running on>
FOO_SERVICE_PORT=<the port the service is running on>

http://releases.k8s.io/master/cluster/addons/dns/
http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/
http://localhost:4000/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

10/23/2017 Container Lifecycle Hooks - Kubernetes

http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/ 1/3

Container Lifecycle Hooks

This page describes how kubelet managed Containers can use the Container lifecycle hook

framework to run code triggered by events during their management lifecycle.

Overview

Analogous to many programming language frameworks that have component lifecycle hooks, such

as Angular, Kubernetes provides Containers with lifecycle hooks. The hooks enable Containers to be

aware of events in their management lifecycle and run code implemented in a handler when the

corresponding lifecycle hook is executed.

Container hooks

There are two hooks that are exposed to Containers:

PostStart

This hook executes immediately after a container is created. However, there is no guarantee that the

hook will execute before the container ENTRYPOINT. No parameters are passed to the handler.

PreStop

This hook is called immediately before a container is terminated. It is blocking, meaning it is

synchronous, so it must complete before the call to delete the container can be sent. No parameters

are passed to the handler.

Overview
Container hooks

Hook handler implementations
Hook handler execution
Hook delivery guarantees
Debugging Hook handlers

What’s next

10/23/2017 Container Lifecycle Hooks - Kubernetes

http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/ 2/3

A more detailed description of the termination behavior can be found in Termination of Pods.

Hook handler implementations

Containers can access a hook by implementing and registering a handler for that hook. There are

two types of hook handlers that can be implemented for Containers:

Exec - Executes a speci�c command, such as pre-stop.sh , inside the cgroups and

namespaces of the Container. Resources consumed by the command are counted against the

Container.

HTTP - Executes an HTTP request against a speci�c endpoint on the Container.

Hook handler execution

When a Container lifecycle management hook is called, the Kubernetes management system

executes the handler in the Container registered for that hook.

Hook handler calls are synchronous within the context of the Pod containing the Container. This

means that for a PostStart hook, the Container ENTRYPOINT and hook �re asynchronously.

However, if the hook takes too long to run or hangs, the Container cannot reach a running state.

The behavior is similar for a PreStop hook. If the hook hangs during execution, the Pod phase stays

in a running state and never reaches failed . If a PostStart or PreStop hook fails, it kills the

Container.

Users should make their hook handlers as lightweight as possible. There are cases, however, when

long running commands make sense, such as when saving state prior to stopping a Container.

Hook delivery guarantees

Hook delivery is intended to be at least once, which means that a hook may be called multiple times

for any given event, such as for PostStart or PreStop . It is up to the hook implementation to

handle this correctly.

Generally, only single deliveries are made. If, for example, an HTTP hook receiver is down and is

unable to take tra�c, there is no attempt to resend. In some rare cases, however, double delivery may

http://localhost:4000/docs/concepts/workloads/pods/pod/#termination-of-pods

10/23/2017 Container Lifecycle Hooks - Kubernetes

http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/ 3/3

occur. For instance, if a kubelet restarts in the middle of sending a hook, the hook might be resent

after the kubelet comes back up.

Debugging Hook handlers

The logs for a Hook handler are not exposed in Pod events. If a handler fails for some reason, it

broadcasts an event. For PostStart , this is the FailedPostStartHook event, and for PreStop ,

this is the FailedPreStopHook event. You can see these events by running

kubectl describe pod <pod_name> . Here is some example output of events from running this

command:

What’s next

Learn more about the Container environment.

Get hands-on experience attaching handlers to Container lifecycle events.

Events:
 FirstSeen LastSeen Count From SubobjectPath
 --------- -------- ----- ---- -------------
 1m 1m 1 {default-scheduler } Nor
 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 38s 38s 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 37s 37s 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 38s 37s 2 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd}
 1m 22s 2 {kubelet gke-test-cluster-default-pool-a07e5d30-siq

http://localhost:4000/docs/concepts/containers/container-environment-variables/
http://localhost:4000/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

10/23/2017 Pod Overview - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/ 1/5

Pod Overview

This page provides an overview of Pod , the smallest deployable object in the Kubernetes object

model.

Understanding Pods

A Pod is the basic building block of Kubernetes–the smallest and simplest unit in the Kubernetes

object model that you create or deploy. A Pod represents a running process on your cluster.

A Pod encapsulates an application container (or, in some cases, multiple containers), storage

resources, a unique network IP, and options that govern how the container(s) should run. A Pod

represents a unit of deployment: a single instance of an application in Kubernetes, which might

consist of either a single container or a small number of containers that are tightly coupled and that

share resources.

Docker is the most common container runtime used in a Kubernetes Pod, but Pods support other

container runtimes as well.

Pods in a Kubernetes cluster can be used in two main ways:

Pods that run a single container. The “one-container-per-Pod” model is the most common

Kubernetes use case; in this case, you can think of a Pod as a wrapper around a single container,

and Kubernetes manages the Pods rather than the containers directly.

Pods that run multiple containers that need to work together. A Pod might encapsulate an

application composed of multiple co-located containers that are tightly coupled and need to

Understanding Pods
How Pods manage multiple Containers

Networking
Storage

Working with Pods
Pods and Controllers

Pod Templates
What’s next

https://www.docker.com/

10/23/2017 Pod Overview - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/ 2/5

share resources. These co-located containers might form a single cohesive unit of service–one

container serving �les from a shared volume to the public, while a separate “sidecar” container

refreshes or updates those �les. The Pod wraps these containers and storage resources

together as a single manageable entity.

The Kubernetes Blog has some additional information on Pod use cases. For more information, see:

The Distributed System Toolkit: Patterns for Composite Containers

Container Design Patterns

Each Pod is meant to run a single instance of a given application. If you want to scale your

application horizontally (e.g., run multiple instances), you should use multiple Pods, one for each

instance. In Kubernetes, this is generally referred to as replication. Replicated Pods are usually

created and managed as a group by an abstraction called a Controller. See Pods and Controllers for

more information.

How Pods manage multiple Containers

Pods are designed to support multiple cooperating processes (as containers) that form a cohesive

unit of service. The containers in a Pod are automatically co-located and co-scheduled on the same

physical or virtual machine in the cluster. The containers can share resources and dependencies,

communicate with one another, and coordinate when and how they are terminated.

Note that grouping multiple co-located and co-managed containers in a single Pod is a relatively

advanced use case. You should use this pattern only in speci�c instances in which your containers

are tightly coupled. For example, you might have a container that acts as a web server for �les in a

shared volume, and a separate “sidecar” container that updates those �les from a remote source, as

in the following diagram:

http://blog.kubernetes.io/
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2016/06/container-design-patterns.html

10/23/2017 Pod Overview - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/ 3/5

Pods provide two kinds of shared resources for their constituent containers: networking and storage.

Networking

Each Pod is assigned a unique IP address. Every container in a Pod shares the network namespace,

including the IP address and network ports. Containers inside a Pod can communicate with one

another using localhost . When containers in a Pod communicate with entities outside the Pod,

they must coordinate how they use the shared network resources (such as ports).

Storage

A Pod can specify a set of shared storage volumes. All containers in the Pod can access the shared

volumes, allowing those containers to share data. Volumes also allow persistent data in a Pod to

survive in case one of the containers within needs to be restarted. See Volumes for more information

on how Kubernetes implements shared storage in a Pod.

Working with Pods

You’ll rarely create individual Pods directly in Kubernetes–even singleton Pods. This is because Pods

are designed as relatively ephemeral, disposable entities. When a Pod gets created (directly by you,

or indirectly by a Controller), it is scheduled to run on a Node in your cluster. The Pod remains on that

10/23/2017 Pod Overview - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/ 4/5

Node until the process is terminated, the pod object is deleted, or the pod is evicted for lack of

resources, or the Node fails.

Note: Restarting a container in a Pod should not be confused with restarting the Pod. The Pod itself

does not run, but is an environment the containers run in and persists until it is deleted.

Pods do not, by themselves, self-heal. If a Pod is scheduled to a Node that fails, or if the scheduling

operation itself fails, the Pod is deleted; likewise, a Pod won’t survive an eviction due to a lack of

resources or Node maintenance. Kubernetes uses a higher-level abstraction, called a Controller, that

handles the work of managing the relatively disposable Pod instances. Thus, while it is possible to

use Pod directly, it’s far more common in Kubernetes to manage your pods using a Controller. See

Pods and Controllers for more information on how Kubernetes uses Controllers to implement Pod

scaling and healing.

Pods and Controllers

A Controller can create and manage multiple Pods for you, handling replication and rollout and

providing self-healing capabilities at cluster scope. For example, if a Node fails, the Controller might

automatically replace the Pod by scheduling an identical replacement on a different Node.

Some examples of Controllers that contain one or more pods include:

Deployment

StatefulSet

DaemonSet

In general, Controllers use a Pod Template that you provide to create the Pods for which it is

responsible.

Pod Templates

Pod templates are pod speci�cations which are included in other objects, such as Replication

Controllers, Jobs, and DaemonSets. Controllers use Pod Templates to make actual pods.

Rather than specifying the current desired state of all replicas, pod templates are like cookie cutters.

Once a cookie has been cut, the cookie has no relationship to the cutter. There is no quantum

entanglement. Subsequent changes to the template or even switching to a new template has no

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Pod Overview - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/ 5/5

direct effect on the pods already created. Similarly, pods created by a replication controller may

subsequently be updated directly. This is in deliberate contrast to pods, which do specify the current

desired state of all containers belonging to the pod. This approach radically simpli�es system

semantics and increases the �exibility of the primitive.

What’s next

Learn more about Pod behavior:

Pod Termination

Other Pod Topics

http://localhost:4000/docs/concepts/workloads/pods/pod/#termination-of-pods

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 1/7

Pods

pods are the smallest deployable units of computing that can be created and managed in

Kubernetes.

What is a Pod?

A pod (as in a pod of whales or pea pod) is a group of one or more containers (such as Docker

containers), with shared storage/network, and a speci�cation for how to run the containers. A pod’s

contents are always co-located and co-scheduled, and run in a shared context. A pod models an

application-speci�c “logical host” - it contains one or more application containers which are relatively

tightly coupled — in a pre-container world, they would have executed on the same physical or virtual

machine.

While Kubernetes supports more container runtimes than just Docker, Docker is the most commonly

known runtime, and it helps to describe pods in Docker terms.

The shared context of a pod is a set of Linux namespaces, cgroups, and potentially other facets of

isolation - the same things that isolate a Docker container. Within a pod’s context, the individual

applications may have further sub-isolations applied.

Containers within a pod share an IP address and port space, and can �nd each other via localhost .

They can also communicate with each other using standard inter-process communications like

What is a Pod?
Motivation for pods

Management
Resource sharing and communication

Uses of pods
Alternatives considered
Durability of pods (or lack thereof)
Termination of Pods

Force deletion of pods
Privileged mode for pod containers
API Object

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 2/7

SystemV semaphores or POSIX shared memory. Containers in different pods have distinct IP

addresses and can not communicate by IPC.

Applications within a pod also have access to shared volumes, which are de�ned as part of a pod

and are made available to be mounted into each application’s �lesystem.

In terms of Docker constructs, a pod is modelled as a group of Docker containers with shared

namespaces and shared volumes. PID namespace sharing is not yet implemented in Docker.

Like individual application containers, pods are considered to be relatively ephemeral (rather than

durable) entities. As discussed in life of a pod, pods are created, assigned a unique ID (UID), and

scheduled to nodes where they remain until termination (according to restart policy) or deletion. If a

node dies, the pods scheduled to that node are scheduled for deletion, after a timeout period. A given

pod (as de�ned by a UID) is not “rescheduled” to a new node; instead, it can be replaced by an

identical pod, with even the same name if desired, but with a new UID (see replication controller for

more details). (In the future, a higher-level API may support pod migration.)

When something is said to have the same lifetime as a pod, such as a volume, that means that it

exists as long as that pod (with that UID) exists. If that pod is deleted for any reason, even if an

identical replacement is created, the related thing (e.g. volume) is also destroyed and created anew.

A multi-container pod that contains a �le puller and a web server that uses a persistent volume for

shared storage between the containers.

https://www.docker.com/
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 3/7

Motivation for pods

Management

Pods are a model of the pattern of multiple cooperating processes which form a cohesive unit of

service. They simplify application deployment and management by providing a higher-level

abstraction than the set of their constituent applications. Pods serve as unit of deployment,

horizontal scaling, and replication. Colocation (co-scheduling), shared fate (e.g. termination),

coordinated replication, resource sharing, and dependency management are handled automatically

for containers in a pod.

Resource sharing and communication

Pods enable data sharing and communication among their constituents.

The applications in a pod all use the same network namespace (same IP and port space), and can

thus “�nd” each other and communicate using localhost . Because of this, applications in a pod

must coordinate their usage of ports. Each pod has an IP address in a �at shared networking space

that has full communication with other physical computers and pods across the network.

The hostname is set to the pod’s Name for the application containers within the pod. More details on

networking.

In addition to de�ning the application containers that run in the pod, the pod speci�es a set of shared

storage volumes. Volumes enable data to survive container restarts and to be shared among the

applications within the pod.

Uses of pods

Pods can be used to host vertically integrated application stacks (e.g. LAMP), but their primary

motivation is to support co-located, co-managed helper programs, such as:

content management systems, �le and data loaders, local cache managers, etc.

log and checkpoint backup, compression, rotation, snapshotting, etc.

data change watchers, log tailers, logging and monitoring adapters, event publishers, etc.

http://localhost:4000/docs/concepts/cluster-administration/networking/

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 4/7

proxies, bridges, and adapters

controllers, managers, con�gurators, and updaters

Individual pods are not intended to run multiple instances of the same application, in general.

For a longer explanation, see The Distributed System ToolKit: Patterns for Composite Containers.

Alternatives considered

Why not just run multiple programs in a single (Docker) container?

1. Transparency. Making the containers within the pod visible to the infrastructure enables the

infrastructure to provide services to those containers, such as process management and

resource monitoring. This facilitates a number of conveniences for users.

2. Decoupling software dependencies. The individual containers may be versioned, rebuilt and

redeployed independently. Kubernetes may even support live updates of individual containers

someday.

3. Ease of use. Users don’t need to run their own process managers, worry about signal and exit-

code propagation, etc.

4. E�ciency. Because the infrastructure takes on more responsibility, containers can be lighter

weight.

Why not support a�nity-based co-scheduling of containers?

That approach would provide co-location, but would not provide most of the bene�ts of pods, such

as resource sharing, IPC, guaranteed fate sharing, and simpli�ed management.

Durability of pods (or lack thereof)

Pods aren’t intended to be treated as durable entities. They won’t survive scheduling failures, node

failures, or other evictions, such as due to lack of resources, or in the case of node maintenance.

In general, users shouldn’t need to create pods directly. They should almost always use controllers

(e.g., Deployments), even for singletons. Controllers provide self-healing with a cluster scope, as well

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 5/7

as replication and rollout management.

The use of collective APIs as the primary user-facing primitive is relatively common among cluster

scheduling systems, including Borg, Marathon, Aurora, and Tupperware.

Pod is exposed as a primitive in order to facilitate:

scheduler and controller pluggability

support for pod-level operations without the need to “proxy” them via controller APIs

decoupling of pod lifetime from controller lifetime, such as for bootstrapping

decoupling of controllers and services — the endpoint controller just watches pods

clean composition of Kubelet-level functionality with cluster-level functionality — Kubelet is

effectively the “pod controller”

high-availability applications, which will expect pods to be replaced in advance of their

termination and certainly in advance of deletion, such as in the case of planned evictions, image

prefetching, or live pod migration #3949

There is new �rst-class support for stateful pods with the StatefulSet controller (currently in beta).

The feature was alpha in 1.4 and was called PetSet. For prior versions of Kubernetes, best practice

for having stateful pods is to create a replication controller with replicas equal to 1 and a

corresponding service, see this MySQL deployment example.

Termination of Pods

Because pods represent running processes on nodes in the cluster, it is important to allow those

processes to gracefully terminate when they are no longer needed (vs being violently killed with a

KILL signal and having no chance to clean up). Users should be able to request deletion and know

when processes terminate, but also be able to ensure that deletes eventually complete. When a user

requests deletion of a pod the system records the intended grace period before the pod is allowed to

be forcefully killed, and a TERM signal is sent to the main process in each container. Once the grace

period has expired the KILL signal is sent to those processes and the pod is then deleted from the

API server. If the Kubelet or the container manager is restarted while waiting for processes to

terminate, the termination will be retried with the full grace period.

https://research.google.com/pubs/pub43438.html
https://mesosphere.github.io/marathon/docs/rest-api.html
http://aurora.apache.org/documentation/latest/reference/configuration/#job-schema
http://www.slideshare.net/Docker/aravindnarayanan-facebook140613153626phpapp02-37588997
http://issue.k8s.io/3949
http://localhost:4000/docs/concepts/workloads/controllers/statefulset.md
http://localhost:4000/docs/tutorials/stateful-application/run-stateful-application/

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 6/7

An example �ow:

1. User sends command to delete Pod, with default grace period (30s)

2. The Pod in the API server is updated with the time beyond which the Pod is considered “dead”

along with the grace period.

3. Pod shows up as “Terminating” when listed in client commands

4. (simultaneous with 3) When the Kubelet sees that a Pod has been marked as terminating

because the time in 2 has been set, it begins the pod shutdown process.

5. If the pod has de�ned a preStop hook, it is invoked inside of the pod. If the preStop hook is still

running after the grace period expires, step 2 is then invoked with a small (2 second) extended

grace period.

6. The processes in the Pod are sent the TERM signal.

7. (simultaneous with 3), Pod is removed from endpoints list for service, and are no longer

considered part of the set of running pods for replication controllers. Pods that shutdown slowly

can continue to serve tra�c as load balancers (like the service proxy) remove them from their

rotations.

8. When the grace period expires, any processes still running in the Pod are killed with SIGKILL.

9. The Kubelet will �nish deleting the Pod on the API server by setting grace period 0 (immediate

deletion). The Pod disappears from the API and is no longer visible from the client.

By default, all deletes are graceful within 30 seconds. The kubectl delete command supports the

--grace-period=<seconds> option which allows a user to override the default and specify their

own value. The value 0 force deletes the pod. In kubectl version >= 1.5, you must specify an

additional �ag --force along with --grace-period=0 in order to perform force deletions.

Force deletion of pods

Force deletion of a pod is de�ned as deletion of a pod from the cluster state and etcd immediately.

When a force deletion is performed, the apiserver does not wait for con�rmation from the kubelet

that the pod has been terminated on the node it was running on. It removes the pod in the API

http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/#hook-details

10/23/2017 Pods - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod/ 7/7

immediately so a new pod can be created with the same name. On the node, pods that are set to

terminate immediately will still be given a small grace period before being force killed.

Force deletions can be potentially dangerous for some pods and should be performed with caution.

In case of StatefulSet pods, please refer to the task documentation for deleting Pods from a

StatefulSet.

Privileged mode for pod containers

From Kubernetes v1.1, any container in a pod can enable privileged mode, using the privileged

�ag on the SecurityContext of the container spec. This is useful for containers that want to use

linux capabilities like manipulating the network stack and accessing devices. Processes within the

container get almost the same privileges that are available to processes outside a container. With

privileged mode, it should be easier to write network and volume plugins as separate pods that don’t

need to be compiled into the kubelet.

If the master is running Kubernetes v1.1 or higher, and the nodes are running a version lower than

v1.1, then new privileged pods will be accepted by api-server, but will not be launched. They will be

pending state. If user calls kubectl describe pod FooPodName , user can see the reason why the

pod is in pending state. The events table in the describe command output will say:

Error validating pod "FooPodName"."FooPodNamespace" from api, ignoring:

spec.containers[0].securityContext.privileged: forbidden '<*>(0xc2089d3248)true'

If the master is running a version lower than v1.1, then privileged pods cannot be created. If user

attempts to create a pod, that has a privileged container, the user will get the following error:

The Pod "FooPodName" is invalid. spec.containers[0].securityContext.privileged:

forbidden '<*>(0xc20b222db0)true'

API Object

Pod is a top-level resource in the Kubernetes REST API. More details about the API object can be

found at: Pod API object.

http://localhost:4000/docs/tasks/run-application/force-delete-stateful-set-pod/
http://localhost:4000/docs/api-reference/v1.8/#pod-v1-core

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 1/7

Pod Lifecycle

This page describes the lifecycle of a Pod.

Pod phase

A Pod’s status �eld is a PodStatus object, which has a phase �eld.

The phase of a Pod is a simple, high-level summary of where the Pod is in its lifecycle. The phase is

not intended to be a comprehensive rollup of observations of Container or Pod state, nor is it

intended to be a comprehensive state machine.

The number and meanings of Pod phase values are tightly guarded. Other than what is documented

here, nothing should be assumed about Pods that have a given phase value.

Here are the possible values for phase :

Pending: The Pod has been accepted by the Kubernetes system, but one or more of the

Container images has not been created. This includes time before being scheduled as well as

time spent downloading images over the network, which could take a while.

Running: The Pod has been bound to a node, and all of the Containers have been created. At

least one Container is still running, or is in the process of starting or restarting.

Pod phase
Pod conditions
Container probes

When should you use liveness or readiness probes?
Pod and Container status
Restart policy
Pod lifetime
Examples

Advanced liveness probe example
Example states

What’s next

http://localhost:4000/docs/resources-reference/v1.8/#podstatus-v1-core

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 2/7

Succeeded: All Containers in the Pod have terminated in success, and will not be restarted.

Failed: All Containers in the Pod have terminated, and at least one Container has terminated in

failure. That is, the Container either exited with non-zero status or was terminated by the system.

Unknown: For some reason the state of the Pod could not be obtained, typically due to an error

in communicating with the host of the Pod.

Pod conditions

A Pod has a PodStatus, which has an array of PodConditions. Each element of the PodCondition

array has a type �eld and a status �eld. The type �eld is a string, with possible values

PodScheduled, Ready, Initialized, and Unschedulable. The status �eld is a string, with possible

values True, False, and Unknown.

Container probes

A Probe is a diagnostic performed periodically by the kubelet on a Container. To perform a

diagnostic, the kubelet calls a Handler implemented by the Container. There are three types of

handlers:

ExecAction: Executes a speci�ed command inside the Container. The diagnostic is considered

successful if the command exits with a status code of 0.

TCPSocketAction: Performs a TCP check against the Container’s IP address on a speci�ed port.

The diagnostic is considered successful if the port is open.

HTTPGetAction: Performs an HTTP Get request against the Container’s IP address on a

speci�ed port and path. The diagnostic is considered successful if the response has a status

code greater than or equal to 200 and less than 400.

Each probe has one of three results:

Success: The Container passed the diagnostic.

Failure: The Container failed the diagnostic.

http://localhost:4000/docs/resources-reference/v1.8/#podcondition-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#probe-v1-core
http://localhost:4000/docs/admin/kubelet/
https://godoc.org/k8s.io/kubernetes/pkg/api/v1#Handler
http://localhost:4000/docs/resources-reference/v1.8/#execaction-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#tcpsocketaction-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#httpgetaction-v1-core

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 3/7

Unknown: The diagnostic failed, so no action should be taken.

The kubelet can optionally perform and react to two kinds of probes on running Containers:

livenessProbe : Indicates whether the Container is running. If the liveness probe fails, the

kubelet kills the Container, and the Container is subjected to its restart policy. If a Container does

not provide a liveness probe, the default state is Success .

readinessProbe : Indicates whether the Container is ready to service requests. If the readiness

probe fails, the endpoints controller removes the Pod’s IP address from the endpoints of all

Services that match the Pod. The default state of readiness before the initial delay is Failure .

If a Container does not provide a readiness probe, the default state is Success .

When should you use liveness or readiness probes?

If the process in your Container is able to crash on its own whenever it encounters an issue or

becomes unhealthy, you do not necessarily need a liveness probe; the kubelet will automatically

perform the correct action in accordance with the Pod’s restartPolicy .

If you’d like your Container to be killed and restarted if a probe fails, then specify a liveness probe,

and specify a restartPolicy of Always or OnFailure.

If you’d like to start sending tra�c to a Pod only when a probe succeeds, specify a readiness probe.

In this case, the readiness probe might be the same as the liveness probe, but the existence of the

readiness probe in the spec means that the Pod will start without receiving any tra�c and only start

receiving tra�c after the probe starts succeeding.

If you want your Container to be able to take itself down for maintenance, you can specify a

readiness probe that checks an endpoint speci�c to readiness that is different from the liveness

probe.

Note that if you just want to be able to drain requests when the Pod is deleted, you do not necessarily

need a readiness probe; on deletion, the Pod automatically puts itself into an unready state

regardless of whether the readiness probe exists. The Pod remains in the unready state while it waits

for the Containers in the Pod to stop.

Pod and Container status

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 4/7

For detailed information about Pod Container status, see PodStatus and ContainerStatus. Note that

the information reported as Pod status depends on the current ContainerState.

Restart policy

A PodSpec has a restartPolicy �eld with possible values Always, OnFailure, and Never. The

default value is Always. restartPolicy applies to all Containers in the Pod. restartPolicy only

refers to restarts of the Containers by the kubelet on the same node. Failed Containers that are

restarted by the kubelet are restarted with an exponential back-off delay (10s, 20s, 40s …) capped at

�ve minutes, and is reset after ten minutes of successful execution. As discussed in the Pods

document, once bound to a node, a Pod will never be rebound to another node.

Pod lifetime

In general, Pods do not disappear until someone destroys them. This might be a human or a

controller. The only exception to this rule is that Pods with a phase of Succeeded or Failed for more

than some duration (determined by the master) will expire and be automatically destroyed.

Three types of controllers are available:

Use a Job for Pods that are expected to terminate, for example, batch computations. Jobs are

appropriate only for Pods with restartPolicy equal to OnFailure or Never.

Use a ReplicationController, ReplicaSet, or Deployment for Pods that are not expected to

terminate, for example, web servers. ReplicationControllers are appropriate only for Pods with a

restartPolicy of Always.

Use a DaemonSet for Pods that need to run one per machine, because they provide a machine-

speci�c system service.

All three types of controllers contain a PodTemplate. It is recommended to create the appropriate

controller and let it create Pods, rather than directly create Pods yourself. That is because Pods alone

are not resilient to machine failures, but controllers are.

http://localhost:4000/docs/resources-reference/v1.8/#podstatus-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#containerstatus-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#containerstatus-v1-core
http://localhost:4000/docs/user-guide/pods/#durability-of-pods-or-lack-thereof
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 5/7

If a node dies or is disconnected from the rest of the cluster, Kubernetes applies a policy for setting

the phase of all Pods on the lost node to Failed.

Examples

Advanced liveness probe example

Liveness probes are executed by the kubelet, so all requests are made in the kubelet network

namespace.

Example states

Pod is running and has one Container. Container exits with success.

Log completion event.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-http
spec:
 containers:
 - args:
 - /server
 image: gcr.io/google_containers/liveness
 livenessProbe:
 httpGet:
 # when "host" is not defined, "PodIP" will be used
 # host: my-host
 # when "scheme" is not defined, "HTTP" scheme will be used. Only "HTTP" an
 # scheme: HTTPS
 path: /healthz
 port: 8080
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 initialDelaySeconds: 15
 timeoutSeconds: 1
 name: liveness

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 6/7

If restartPolicy is:

Always: Restart Container; Pod phase stays Running.

OnFailure: Pod phase becomes Succeeded.

Never: Pod phase becomes Succeeded.

Pod is running and has one Container. Container exits with failure.

Log failure event.

If restartPolicy is:

Always: Restart Container; Pod phase stays Running.

OnFailure: Restart Container; Pod phase stays Running.

Never: Pod phase becomes Failed.

Pod is running and has two Containers. Container 1 exits with failure.

Log failure event.

If restartPolicy is:

Always: Restart Container; Pod phase stays Running.

OnFailure: Restart Container; Pod phase stays Running.

Never: Do not restart Container; Pod phase stays Running.

If Container 1 is not running, and Container 2 exits:

Log failure event.

If restartPolicy is:

Always: Restart Container; Pod phase stays Running.

OnFailure: Restart Container; Pod phase stays Running.

Never: Pod phase becomes Failed.

Pod is running and has one Container. Container runs out of memory.

10/23/2017 Pod Lifecycle - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/ 7/7

Container terminates in failure.

Log OOM event.

If restartPolicy is:

Always: Restart Container; Pod phase stays Running.

OnFailure: Restart Container; Pod phase stays Running.

Never: Log failure event; Pod phase becomes Failed.

Pod is running, and a disk dies.

Kill all Containers.

Log appropriate event.

Pod phase becomes Failed.

If running under a controller, Pod is recreated elsewhere.

Pod is running, and its node is segmented out.

Node controller waits for timeout.

Node controller sets Pod phase to Failed.

If running under a controller, Pod is recreated elsewhere.

What’s next

Get hands-on experience attaching handlers to Container lifecycle events.

Get hands-on experience con�guring liveness and readiness probes.

Learn more about Container lifecycle hooks.

http://localhost:4000/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/
http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 1/9

Init Containers

This feature has exited beta in 1.6. Init Containers can be speci�ed in the PodSpec alongside the app

containers array. The beta annotation value will still be respected and overrides the PodSpec �eld

value, however, they are deprecated in 1.6 and 1.7. In 1.8, the annotations are no longer supported

and must be converted to the PodSpec �eld.

This page provides an overview of Init Containers, which are specialized Containers that run before

app Containers and can contain utilities or setup scripts not present in an app image.

Understanding Init Containers

A Pod can have multiple Containers running apps within it, but it can also have one or more Init

Containers, which are run before the app Containers are started.

Init Containers are exactly like regular Containers, except:

They always run to completion.

Each one must complete successfully before the next one is started.

If an Init Container fails for a Pod, Kubernetes restarts the Pod repeatedly until the Init Container

succeeds. However, if the Pod has a restartPolicy of Never, it is not restarted.

Understanding Init Containers
Differences from regular Containers

What can Init Containers be used for?
Examples
Init Containers in use

Detailed behavior
Resources
Pod restart reasons

Support and compatibility
What’s next

http://localhost:4000/docs/concepts/abstractions/pod/

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 2/9

To specify a Container as an Init Container, add the initContainers �eld on the PodSpec as a

JSON array of objects of type v1.Container alongside the app containers array. The status of the

init containers is returned in status.initContainerStatuses �eld as an array of the container

statuses (similar to the status.containerStatuses �eld).

Differences from regular Containers

Init Containers support all the �elds and features of app Containers, including resource limits,

volumes, and security settings. However, the resource requests and limits for an Init Container are

handled slightly differently, which are documented in Resources below. Also, Init Containers do not

support readiness probes because they must run to completion before the Pod can be ready.

If multiple Init Containers are speci�ed for a Pod, those Containers are run one at a time in sequential

order. Each must succeed before the next can run. When all of the Init Containers have run to

completion, Kubernetes initializes the Pod and runs the application Containers as usual.

What can Init Containers be used for?

Because Init Containers have separate images from app Containers, they have some advantages for

start-up related code:

They can contain and run utilities that are not desirable to include in the app Container image for

security reasons.

They can contain utilities or custom code for setup that is not present in an app image. For

example, there is no need to make an image FROM another image just to use a tool like sed ,

awk , python , or dig during setup.

The application image builder and deployer roles can work independently without the need to

jointly build a single app image.

They use Linux namespaces so that they have different �lesystem views from app Containers.

Consequently, they can be given access to Secrets that app Containers are not able to access.

They run to completion before any app Containers start, whereas app Containers run in parallel,

so Init Containers provide an easy way to block or delay the startup of app Containers until some

set of preconditions are met.

http://localhost:4000/docs/api-reference/v1.8/#container-v1-core

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 3/9

Examples

Here are some ideas for how to use Init Containers:

Wait for a service to be created with a shell command like:

Register this Pod with a remote server from the downward API with a command like:

Wait for some time before starting the app Container with a command like sleep 60 .

Clone a git repository into a volume.

Place values into a con�guration �le and run a template tool to dynamically generate a

con�guration �le for the main app Container. For example, place the POD_IP value in a

con�guration and generate the main app con�guration �le using Jinja.

More detailed usage examples can be found in the StatefulSets documentation and the Production

Pods guide.

Init Containers in use

The following yaml �le for Kubernetes 1.5 outlines a simple Pod which has two Init Containers. The

�rst waits for myservice and the second waits for mydb . Once both containers complete, the Pod

will begin.

 for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; exit 1

 curl -X POST http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/registe

http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/tasks/#handling-initialization

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 4/9

There is a new syntax in Kubernetes 1.6, although the old annotation syntax still works for 1.6 and

1.7. The new syntax must be used for 1.8 or greater. We have moved the declaration of init

containers to spec :

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 annotations:
 pod.beta.kubernetes.io/init-containers: '[
 {
 "name": "init-myservice",
 "image": "busybox",
 "command": ["sh", "-c", "until nslookup myservice; do echo waiting for
 },
 {
 "name": "init-mydb",
 "image": "busybox",
 "command": ["sh", "-c", "until nslookup mydb; do echo waiting for mydb
 }
]'
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 5/9

1.5 syntax still works on 1.6, but we recommend using 1.6 syntax. In Kubernetes 1.6, Init Containers

were made a �eld in the API. The beta annotation is still respected in 1.6 and 1.7, but is not

supported in 1.8 or greater.

Yaml �le below outlines the mydb and myservice services:

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']
 initContainers:
 - name: init-myservice
 image: busybox
 command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice
 - name: init-mydb
 image: busybox
 command: ['sh', '-c', 'until nslookup mydb; do echo waiting for mydb; sleep 2;

kind: Service
apiVersion: v1
metadata:
 name: myservice
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

kind: Service
apiVersion: v1
metadata:
 name: mydb
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9377

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 6/9

This Pod can be started and debugged with the following commands:

Once we start the mydb and myservice services, we can see the Init Containers complete and the

myapp-pod is created:

$ kubectl create -f myapp.yaml
pod "myapp-pod" created
$ kubectl get -f myapp.yaml
NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 6m
$ kubectl describe -f myapp.yaml
Name: myapp-pod
Namespace: default
[...]
Labels: app=myapp
Status: Pending
[...]
Init Containers:
 init-myservice:
[...]
 State: Running
[...]
 init-mydb:
[...]
 State: Waiting
 Reason: PodInitializing
 Ready: False
[...]
Containers:
 myapp-container:
[...]
 State: Waiting
 Reason: PodInitializing
 Ready: False
[...]
Events:
 FirstSeen LastSeen Count From SubObjectPath
 --------- -------- ----- ---- -------------
 16s 16s 1 {default-scheduler }
 16s 16s 1 {kubelet 172.17.4.201} spec.initContainers{
 13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{
 13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{
 13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{
$ kubectl logs myapp-pod -c init-myservice # Inspect the first init container
$ kubectl logs myapp-pod -c init-mydb # Inspect the second init container

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 7/9

This example is very simple but should provide some inspiration for you to create your own Init

Containers.

Detailed behavior

During the startup of a Pod, the Init Containers are started in order, after the network and volumes

are initialized. Each Container must exit successfully before the next is started. If a Container fails to

start due to the runtime or exits with failure, it is retried according to the Pod restartPolicy .

However, if the Pod restartPolicy is set to Always, the Init Containers use RestartPolicy

OnFailure.

A Pod cannot be Ready until all Init Containers have succeeded. The ports on an Init Container are

not aggregated under a service. A Pod that is initializing is in the Pending state but should have a

condition Initializing set to true.

If the Pod is restarted, all Init Containers must execute again.

Changes to the Init Container spec are limited to the container image �eld. Altering an Init Container

image �eld is equivalent to restarting the Pod.

Because Init Containers can be restarted, retried, or re-executed, Init Container code should be

idempotent. In particular, code that writes to �les on EmptyDirs should be prepared for the

possibility that an output �le already exists.

Init Containers have all of the �elds of an app Container. However, Kubernetes prohibits

readinessProbe from being used because Init Containers cannot de�ne readiness distinct from

completion. This is enforced during validation.

Use activeDeadlineSeconds on the Pod and livenessProbe on the Container to prevent Init

Containers from failing forever. The active deadline includes Init Containers.

$ kubectl create -f services.yaml
service "myservice" created
service "mydb" created
$ kubectl get -f myapp.yaml
NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 9m

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 8/9

The name of each app and Init Container in a Pod must be unique; a validation error is thrown for any

Container sharing a name with another.

Resources

Given the ordering and execution for Init Containers, the following rules for resource usage apply:

The highest of any particular resource request or limit de�ned on all Init Containers is the

effective init request/limit

The Pod’s effective request/limit for a resource is the higher of:

the sum of all app Containers request/limit for a resource

the effective init request/limit for a resource

Scheduling is done based on effective requests/limits, which means Init Containers can reserve

resources for initialization that are not used during the life of the Pod.

QoS tier of the Pod’s effective QoS tier is the QoS tier for Init Containers and app containers alike.

Quota and limits are applied based on the effective Pod request and limit.

Pod level cgroups are based on the effective Pod request and limit, the same as the scheduler.

Pod restart reasons

A Pod can restart, causing re-execution of Init Containers, for the following reasons:

A user updates the PodSpec causing the Init Container image to change. App Container image

changes only restart the app Container.

The Pod infrastructure container is restarted. This is uncommon and would have to be done by

someone with root access to nodes.

All containers in a Pod are terminated while restartPolicy is set to Always, forcing a restart,

and the Init Container completion record has been lost due to garbage collection.

Support and compatibility

10/23/2017 Init Containers - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/init-containers/ 9/9

A cluster with Apiserver version 1.6.0 or greater supports Init Containers using the

spec.initContainers �eld. Previous versions support Init Containers using the alpha or beta

annotations. The spec.initContainers �eld is also mirrored into alpha and beta annotations so

that Kubelets version 1.3.0 or greater can execute Init Containers, and so that a version 1.6 apiserver

can safely be rolled back to version 1.5.x without losing Init Container functionality for existing

created pods.

In Apiserver and Kubelet versions 1.8.0 or greater, support for the alpha and beta annotations is

removed, requiring a conversion from the deprecated annotations to the spec.initContainers

�eld.

What’s next

Creating a Pod that has an Init Container

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-initialization/#creating-a-pod-that-has-an-init-container

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 1/7

Disruptions

This guide is for application owners who want to build highly available applications, and thus need to

understand what types of Disruptions can happen to Pods.

It is also for Cluster Administrators who want to perform automated cluster actions, like upgrading

and autoscaling clusters.

Voluntary and Involuntary Disruptions

Pods do not disappear until someone (a person or a controller) destroys them, or there is an

unavoidable hardware or system software error.

We call these unavoidable cases involuntary disruptions to an application. Examples are:

a hardware failure of the physical machine backing the node

cluster administrator deletes VM (instance) by mistake

cloud provider or hypervisor failure makes VM disappear

a kernel panic

the node disappears from the cluster due to cluster network partition

eviction of a pod due to the node being out-of-resources.

Except for the out-of-resources condition, all these conditions should be familiar to most users; they

are not speci�c to Kubernetes.

Voluntary and Involuntary Disruptions
Dealing with Disruptions
How Disruption Budgets Work
PDB Example
Separating Cluster Owner and Application Owner Roles
How to perform Disruptive Actions on your Cluster
What’s next

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 2/7

We call other cases voluntary disruptions. These include both actions initiated by the application

owner and those initiated by a Cluster Administrator. Typical application owner actions include:

deleting the deployment or other controller that manages the pod

updating a deployment’s pod template causing a restart

directly deleting a pod (e.g. by accident)

Cluster Administrator actions include:

Draining a node for repair or upgrade.

Draining a node from a cluster to scale the cluster down (learn about Cluster Autoscaling).

Removing a pod from a node to permit something else to �t on that node.

These actions might be taken directly by the cluster administrator, or by automation run by the

cluster administrator, or by your cluster hosting provider.

Ask your cluster administrator or consult your cloud provider or distribution documentation to

determine if any sources of voluntary disruptions are enabled for your cluster. If none are enabled,

you can skip creating Pod Disruption Budgets.

Dealing with Disruptions

Here are some ways to mitigate involuntary disruptions:

Ensure your pod requests the resources it needs.

Replicate your application if you need higher availability. (Learn about running replicated

stateless and stateful applications.)

For even higher availability when running replicated applications, spread applications across

racks (using anti-a�nity) or across zones (if using a multi-zone cluster.)

The frequency of voluntary disruptions varies. On a basic Kubernetes cluster, there are no voluntary

disruptions at all. However, your cluster administrator or hosting provider may run some additional

services which cause voluntary disruptions. For example, rolling out node software updates can

cause voluntary updates. Also, some implementations of cluster (node) autoscaling may cause

http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/
http://localhost:4000/docs/tasks/administer-cluster/cluster-management/#cluster-autoscaler
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-ram-container
http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/
http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/
http://localhost:4000/docs/user-guide/node-selection/#inter-pod-affinity-and-anti-affinity-beta-feature
http://localhost:4000/docs/admin/multiple-zones

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 3/7

voluntary disruptions to defragment and compact nodes. You cluster administrator or hosting

provider should have documented what level of voluntary disruptions, if any, to expect.

Kubernetes offers features to help run highly available applications at the same time as frequent

voluntary disruptions. We call this set of features Disruption Budgets.

How Disruption Budgets Work

An Application Owner can create a PodDisruptionBudget object (PDB) for each application. A PDB

limits the number pods of a replicated application that are down simultaneously from voluntary

disruptions. For example, a quorum-based application would like to ensure that the number of

replicas running is never brought below the number needed for a quorum. A web front end might

want to ensure that the number of replicas serving load never falls below a certain percentage of the

total.

Cluster managers and hosting providers should use tools which respect Pod Disruption Budgets by

calling the Eviction API instead of directly deleting pods. Examples are the kubectl drain

command and the Kubernetes-on-GCE cluster upgrade script (cluster/gce/upgrade.sh).

When a cluster administrator wants to drain a node they use the kubectl drain command. That

tool tries to evict all the pods on the machine. The eviction request may be temporarily rejected, and

the tool periodically retries all failed requests until all pods are terminated, or until a con�gurable

timeout is reached.

A PDB speci�es the number of replicas that an application can tolerate having, relative to how many

it is intended to have. For example, a Deployment which has a spec.replicas: 5 is supposed to

have 5 pods at any given time. If its PDB allows for there to be 4 at a time, then the Eviction API will

allow voluntary disruption of one, but not two pods, at a time.

The group of pods that comprise the application is speci�ed using a label selector, the same as the

one used by the application’s controller (deployment, stateful-set, etc).

The “intended” number of pods is computed from the .spec.replicas of the pods controller. The

controller is discovered from the pods using the .metadata.ownerReferences of the object.

PDBs cannot prevent involuntary disruptions from occurring, but they do count against the budget.

http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/#the-eviction-api

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 4/7

Pods which are deleted or unavailable due to a rolling upgrade to an application do count against the

disruption budget, but controllers (like deployment and stateful-set) are not limited by PDBs when

doing rolling upgrades – the handling of failures during application updates is con�gured in the

controller spec. (Learn about updating a deployment.)

When a pod is evicted using the eviction API, it is gracefully terminated (see

terminationGracePeriodSeconds in PodSpec.)

PDB Example

Consider a cluster with 3 nodes, node-1 through node-3 . The cluster is running several

applications. One of them has 3 replicas initially called pod-a , pod-b , and pod-c . Another,

unrelated pod without a PDB, called pod-x , is also shown. Initially, the pods are laid out as follows:

node-1 node-2 node-3

pod-a available pod-b available pod-c available

pod-x available

All 3 pods are part of a deployment, and they collectively have a PDB which requires there be at least

2 of the 3 pods to be available at all times.

For example, assume the cluster administrator wants to reboot into a new kernel version to �x a bug

in the kernel. The cluster administrator �rst tries to drain node-1 using the kubectl drain

command. That tool tries to evict pod-a and pod-x . This succeeds immediately. Both pods go into

the terminating state at the same time. This puts the cluster in this state:

node-1 draining node-2 node-3

pod-a terminating pod-b available pod-c available

pod-x terminating

The deployment notices that one of the pods is terminating, so it creates a replacement called

pod-d . Since node-1 is cordoned, it lands on another node. Something has also created pod-y as

a replacement for pod-x .

http://localhost:4000/docs/concepts/workloads/controllers/deployment/#updating-a-deployment
http://localhost:4000/docs/resources-reference/v1.8/#podspec-v1-core

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 5/7

(Note: for a StatefulSet, pod-a , which would be called something like pod-1 , would need to

terminate completely before its replacement, which is also called pod-1 but has a different UID,

could be created. Otherwise, the example applies to a StatefulSet as well.)

Now the cluster is in this state:

node-1 draining node-2 node-3

pod-a terminating pod-b available pod-c available

pod-x terminating pod-d starting pod-y

At some point, the pods terminate, and the cluster looks like this:

node-1 drained node-2 node-3

 pod-b available pod-c available

 pod-d starting pod-y

At this point, if an impatient cluster administrator tries to drain node-2 or node-3 , the drain

command will block, because there are only 2 available pods for the deployment, and its PDB

requires at least 2. After some time passes, pod-d becomes available.

The cluster state now looks like this:

node-1 drained node-2 node-3

 pod-b available pod-c available

 pod-d available pod-y

Now, the cluster administrator tries to drain node-2 . The drain command will try to evict the two

pods in some order, say pod-b �rst and then pod-d . It will succeed at evicting pod-b . But, when it

tries to evict pod-d , it will be refused because that would leave only one pod available for the

deployment.

The deployment creates a replacement for pod-b called pod-e . However, not there are not enough

resources in the cluster to schedule pod-e . So, the drain will again block. The cluster may end up in

this state:

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 6/7

node-1 drained node-2 node-3 no node

 pod-b available pod-c available pod-e pending

 pod-d available pod-y

At this point, the cluster administrator needs to add a node back to the cluster to proceed with the

upgrade.

You can see how Kubernetes varies the rate at which disruptions can happen, according to:

how many replicas an application needs

how long it takes to gracefully shutdown an instance

how long it takes a new instance to start up

the type of controller

the cluster’s resource capacity

Separating Cluster Owner and Application Owner Roles

Often, it is useful to think of the Cluster Manager and Application Owner as separate roles with

limited knowledge of each other. This separation of responsibilities may make sense in these

scenarios:

when there are many application teams sharing a Kubernetes cluster, and there is natural

specialization of roles

when third-party tools or services are used to automate cluster management

Pod Disruption Budgets support this separation of roles by providing an interface between the roles.

If you do not have such a separation of responsibilities in your organization, you may not need to use

Pod Disruption Budgets.

How to perform Disruptive Actions on your Cluster

10/23/2017 Disruptions - Kubernetes

http://localhost:4000/docs/concepts/workloads/pods/disruptions/ 7/7

If you are a Cluster Administrator, and you need to perform a disruptive action on all the nodes in

your cluster, such as a node or system software upgrade, here are some options:

Accept downtime during the upgrade.

Fail over to another complete replica cluster.

No downtime, but may be costly both for the duplicated nodes, and for human effort to

orchestrate the switchover.

Write disruption tolerant applications and use PDBs.

No downtime.

Minimal resource duplication.

Allows more automation of cluster administration.

Writing disruption-tolerant applications is tricky, but the work to tolerate voluntary

disruptions largely overlaps with work to support autoscaling and tolerating involuntary

disruptions.

What’s next

Follow steps to protect your application by con�guring a Pod Disruption Budget.

Learn more about draining nodes

http://localhost:4000/docs/tasks/run-application/configure-pdb/
http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 1/9

Replica Sets

ReplicaSet is the next-generation Replication Controller. The only difference between a ReplicaSet

and a Replication Controller right now is the selector support. ReplicaSet supports the new set-based

selector requirements as described in the labels user guide whereas a Replication Controller only

supports equality-based selector requirements.

How to use a ReplicaSet

Most kubectl commands that support Replication Controllers also support ReplicaSets. One

exception is the rolling-update command. If you want the rolling update functionality please

consider using Deployments instead. Also, the rolling-update command is imperative whereas

Deployments are declarative, so we recommend using Deployments through the rollout

command.

How to use a ReplicaSet
When to use a ReplicaSet
Example
Writing a ReplicaSet Spec

Pod Template
Pod Selector
Labels on a ReplicaSet
Replicas

Working with ReplicaSets
Deleting a ReplicaSet and its Pods
Deleting just a ReplicaSet
Isolating pods from a ReplicaSet
Scaling a ReplicaSet
ReplicaSet as an Horizontal Pod Autoscaler Target

Alternatives to ReplicaSet
Deployment (Recommended)
Bare Pods
Job
DaemonSet

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#label-selectors
http://localhost:4000/docs/user-guide/kubectl/
http://localhost:4000/docs/user-guide/kubectl/v1.8/#rolling-update
http://localhost:4000/docs/user-guide/kubectl/v1.8/#rolling-update
http://localhost:4000/docs/user-guide/kubectl/v1.8/#rollout

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 2/9

While ReplicaSets can be used independently, today it’s mainly used by Deployments as a

mechanism to orchestrate pod creation, deletion and updates. When you use Deployments you don’t

have to worry about managing the ReplicaSets that they create. Deployments own and manage their

ReplicaSets.

When to use a ReplicaSet

A ReplicaSet ensures that a speci�ed number of pod replicas are running at any given time. However,

a Deployment is a higher-level concept that manages ReplicaSets and provides declarative updates

to pods along with a lot of other useful features. Therefore, we recommend using Deployments

instead of directly using ReplicaSets, unless you require custom update orchestration or don’t require

updates at all.

This actually means that you may never need to manipulate ReplicaSet objects: use a Deployment

instead, and de�ne your application in the spec section.

Example

frontend.yaml

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/frontend.yaml

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 3/9

frontend.yaml

Saving this manifest into frontend.yaml and submitting it to a Kubernetes cluster should create

the de�ned ReplicaSet and the pods that it manages.

apiVersion: apps/v1beta2 # for versions before 1.6.0 use extensions/v1beta1
kind: ReplicaSet
metadata:
 name: frontend
 labels:
 app: guestbook
 tier: frontend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 3
 selector:
 matchLabels:
 tier: frontend
 matchExpressions:
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 app: guestbook
 tier: frontend
 spec:
 containers:
 - name: php-redis
 image: gcr.io/google_samples/gb-frontend:v3
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access environment variables to find service host
 # info, comment out the 'value: dns' line above, and uncomment the
 # line below.
 # value: env
 ports:
 - containerPort: 80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/frontend.yaml

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 4/9

Writing a ReplicaSet Spec

As with all other Kubernetes API objects, a ReplicaSet needs the apiVersion , kind , and metadata

�elds. For general information about working with manifests, see here, here, and here.

A ReplicaSet also needs a .spec section.

$ kubectl create -f frontend.yaml
replicaset "frontend" created
$ kubectl describe rs/frontend
Name: frontend
Namespace: default
Selector: tier=frontend,tier in (frontend)
Labels: app=guestbook
 tier=frontend
Annotations: <none>
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=guestbook
 tier=frontend
 Containers:
 php-redis:
 Image: gcr.io/google_samples/gb-frontend:v3
 Port: 80/TCP
 Requests:
 cpu: 100m
 memory: 100Mi
 Environment:
 GET_HOSTS_FROM: dns
 Mounts: <none>
 Volumes: <none>
Events:
 FirstSeen LastSeen Count From SubobjectPath Type
 --------- -------- ----- ---- ------------- --------
 1m 1m 1 {replicaset-controller } Normal
 1m 1m 1 {replicaset-controller } Normal
 1m 1m 1 {replicaset-controller } Normal
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
frontend-9si5l 1/1 Running 0 1m
frontend-dnjpy 1/1 Running 0 1m
frontend-qhloh 1/1 Running 0 1m

http://localhost:4000/docs/user-guide/simple-yaml/
http://localhost:4000/docs/user-guide/configuring-containers/
http://localhost:4000/docs/concepts/tools/kubectl/object-management-overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 5/9

Pod Template

The .spec.template is the only required �eld of the .spec . The .spec.template is a pod

template. It has exactly the same schema as a pod, except that it is nested and does not have an

apiVersion or kind .

In addition to required �elds of a pod, a pod template in a ReplicaSet must specify appropriate labels

and an appropriate restart policy.

For labels, make sure to not overlap with other controllers. For more information, see pod selector.

For restart policy, the only allowed value for .spec.template.spec.restartPolicy is Always ,

which is the default.

For local container restarts, ReplicaSet delegates to an agent on the node, for example the Kubelet or

Docker.

Pod Selector

The .spec.selector �eld is a label selector. A ReplicaSet manages all the pods with labels that

match the selector. It does not distinguish between pods that it created or deleted and pods that

another person or process created or deleted. This allows the ReplicaSet to be replaced without

affecting the running pods.

The .spec.template.metadata.labels must match the .spec.selector , or it will be rejected by

the API.

In Kubernetes 1.8 the API version apps/v1beta2 on the ReplicaSet kind is the current version and is

enabled by default. The API version extensions/v1beta1 is deprecated. In API version

apps/v1beta2 , .spec.selector and .metadata.labels no longer default to

.spec.template.metadata.labels if not set. So they must be set explicitly. Also note that

.spec.selector is immutable after creation starting in API version apps/v1beta2 .

Also you should not normally create any pods whose labels match this selector, either directly, with

another ReplicaSet, or with another controller such as a Deployment. If you do so, the ReplicaSet

thinks that it created the other pods. Kubernetes does not stop you from doing this.

If you do end up with multiple controllers that have overlapping selectors, you will have to manage

the deletion yourself.

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/#pod-templates
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
http://localhost:4000/docs/admin/kubelet/
http://localhost:4000/docs/user-guide/labels/#label-selectors

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 6/9

Labels on a ReplicaSet

The ReplicaSet can itself have labels (.metadata.labels). Typically, you would set these the same

as the .spec.template.metadata.labels . However, they are allowed to be different, and the

.metadata.labels do not affect the behavior of the ReplicaSet.

Replicas

You can specify how many pods should run concurrently by setting .spec.replicas . The number

running at any time may be higher or lower, such as if the replicas were just increased or decreased,

or if a pod is gracefully shut down, and a replacement starts early.

If you do not specify .spec.replicas , then it defaults to 1.

Working with ReplicaSets

Deleting a ReplicaSet and its Pods

To delete a ReplicaSet and all its pods, use kubectl delete . Kubectl will scale the ReplicaSet to

zero and wait for it to delete each pod before deleting the ReplicaSet itself. If this kubectl command

is interrupted, it can be restarted.

When using the REST API or go client library, you need to do the steps explicitly (scale replicas to 0,

wait for pod deletions, then delete the ReplicaSet).

Deleting just a ReplicaSet

You can delete a ReplicaSet without affecting any of its pods, using kubectl delete with the

--cascade=false option.

When using the REST API or go client library, simply delete the ReplicaSet object.

Once the original is deleted, you can create a new ReplicaSet to replace it. As long as the old and new

.spec.selector are the same, then the new one will adopt the old pods. However, it will not make

any effort to make existing pods match a new, different pod template. To update pods to a new spec

in a controlled way, use a rolling update.

http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete
http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 7/9

Isolating pods from a ReplicaSet

Pods may be removed from a ReplicaSet’s target set by changing their labels. This technique may be

used to remove pods from service for debugging, data recovery, etc. Pods that are removed in this

way will be replaced automatically (assuming that the number of replicas is not also changed).

Scaling a ReplicaSet

A ReplicaSet can be easily scaled up or down by simply updating the .spec.replicas �eld. The

ReplicaSet controller ensures that that a desired number of pods with a matching label selector are

available and operational.

ReplicaSet as an Horizontal Pod Autoscaler Target

A ReplicaSet can also be a target for Horizontal Pod Autoscalers (HPA). That is, a ReplicaSet can be

auto-scaled by an HPA. Here is an example HPA targeting the ReplicaSet we created in the previous

example.

hpa-rs.yaml

Saving this manifest into hpa-rs.yaml and submitting it to a Kubernetes cluster should create the

de�ned HPA that autoscales the target ReplicaSet depending on the CPU usage of the replicated

pods.

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: frontend-scaler
spec:
 scaleTargetRef:
 kind: ReplicaSet
 name: frontend
 minReplicas: 3
 maxReplicas: 10
 targetCPUUtilizationPercentage: 50

kubectl create -f hpa-rs.yaml

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/hpa-rs.yaml

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 8/9

Alternatively, you can use the kubectl autoscale command to accomplish the same (and it’s

easier!)

Alternatives to ReplicaSet

Deployment (Recommended)

Deployment is a higher-level API object that updates its underlying ReplicaSets and their Pods in a

similar fashion as kubectl rolling-update . Deployments are recommended if you want this

rolling update functionality, because unlike kubectl rolling-update , they are declarative, server-

side, and have additional features. For more information on running a stateless application using a

Deployment, please read Run a Stateless Application Using a Deployment.

Bare Pods

Unlike the case where a user directly created pods, a ReplicaSet replaces pods that are deleted or

terminated for any reason, such as in the case of node failure or disruptive node maintenance, such

as a kernel upgrade. For this reason, we recommend that you use a ReplicaSet even if your

application requires only a single pod. Think of it similarly to a process supervisor, only it supervises

multiple pods across multiple nodes instead of individual processes on a single node. A ReplicaSet

delegates local container restarts to some agent on the node (for example, Kubelet or Docker).

Job

Use a Job instead of a ReplicaSet for pods that are expected to terminate on their own (that is,

batch jobs).

DaemonSet

Use a DaemonSet instead of a ReplicaSet for pods that provide a machine-level function, such as

machine monitoring or machine logging. These pods have a lifetime that is tied to a machine

kubectl autoscale rs frontend

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Replica Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/ 9/9

lifetime: the pod needs to be running on the machine before other pods start, and are safe to

terminate when the machine is otherwise ready to be rebooted/shutdown.

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 1/11

Replication Controller

NOTE: A Deployment that con�gures a ReplicaSet is now the recommended way to set up

replication.

A ReplicationController ensures that a speci�ed number of pod replicas are running at any one time.

In other words, a ReplicationController makes sure that a pod or a homogeneous set of pods is

always up and available.

How a ReplicationController Works
Running an example ReplicationController
Writing a ReplicationController Spec

Pod Template
Labels on the ReplicationController
Pod Selector
Multiple Replicas

Working with ReplicationControllers
Deleting a ReplicationController and its Pods
Deleting just a ReplicationController
Isolating pods from a ReplicationController

Common usage patterns
Rescheduling
Scaling
Rolling updates
Multiple release tracks
Using ReplicationControllers with Services

Writing programs for Replication
Responsibilities of the ReplicationController
API Object
Alternatives to ReplicationController

ReplicaSet
Deployment (Recommended)
Bare Pods
Job
DaemonSet

For more information

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 2/11

How a ReplicationController Works

If there are too many pods, the ReplicationController terminates the extra pods. If there are too few,

the ReplicationController starts more pods. Unlike manually created pods, the pods maintained by a

ReplicationController are automatically replaced if they fail, are deleted, or are terminated. For

example, your pods are re-created on a node after disruptive maintenance such as a kernel upgrade.

For this reason, you should use a ReplicationController even if your application requires only a single

pod. A ReplicationController is similar to a process supervisor, but instead of supervising individual

processes on a single node, the ReplicationController supervises multiple pods across multiple

nodes.

ReplicationController is often abbreviated to “rc” or “rcs” in discussion, and as a shortcut in kubectl

commands.

A simple case is to create one ReplicationController object to reliably run one instance of a Pod

inde�nitely. A more complex use case is to run several identical replicas of a replicated service, such

as web servers.

Running an example ReplicationController

This example ReplicationController con�g runs three copies of the nginx web server.

replication.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/replication.yaml

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 3/11

replication.yaml

Run the example job by downloading the example �le and then running this command:

Check on the status of the ReplicationController using this command:

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 app: nginx
 template:
 metadata:
 name: nginx
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

$ kubectl create -f ./replication.yaml
replicationcontroller "nginx" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/replication.yaml

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 4/11

Here, three pods are created, but none is running yet, perhaps because the image is being pulled. A

little later, the same command may show:

To list all the pods that belong to the ReplicationController in a machine readable form, you can use a

command like this:

Here, the selector is the same as the selector for the ReplicationController (seen in the

kubectl describe output, and in a different form in replication.yaml . The

--output=jsonpath option speci�es an expression that just gets the name from each pod in the

returned list.

$ kubectl describe replicationcontrollers/nginx
Name: nginx
Namespace: default
Selector: app=nginx
Labels: app=nginx
Annotations: <none>
Replicas: 3 current / 3 desired
Pods Status: 0 Running / 3 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: nginx
 Port: 80/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 FirstSeen LastSeen Count From SubobjectPath
 --------- -------- ----- ---- -------------
 20s 20s 1 {replication-controller }
 20s 20s 1 {replication-controller }
 20s 20s 1 {replication-controller }

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

$ pods=$(kubectl get pods --selector=app=nginx --output=jsonpath={.items..metadata
echo $pods
nginx-3ntk0 nginx-4ok8v nginx-qrm3m

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 5/11

Writing a ReplicationController Spec

As with all other Kubernetes con�g, a ReplicationController needs apiVersion , kind , and

metadata �elds. For general information about working with con�g �les, see here, here, and here.

A ReplicationController also needs a .spec section.

Pod Template

The .spec.template is the only required �eld of the .spec .

The .spec.template is a pod template. It has exactly the same schema as a pod, except it is

nested and does not have an apiVersion or kind .

In addition to required �elds for a Pod, a pod template in a ReplicationController must specify

appropriate labels and an appropriate restart policy. For labels, make sure not to overlap with other

controllers. See pod selector.

Only a .spec.template.spec.restartPolicy equal to Always is allowed, which is the default if

not speci�ed.

For local container restarts, ReplicationControllers delegate to an agent on the node, for example the

Kubelet or Docker.

Labels on the ReplicationController

The ReplicationController can itself have labels (.metadata.labels). Typically, you would set these

the same as the .spec.template.metadata.labels ; if .metadata.labels is not speci�ed then it

defaults to .spec.template.metadata.labels . However, they are allowed to be different, and the

.metadata.labels do not affect the behavior of the ReplicationController.

Pod Selector

The .spec.selector �eld is a label selector. A ReplicationController manages all the pods with

labels that match the selector. It does not distinguish between pods that it created or deleted and

http://localhost:4000/docs/user-guide/simple-yaml/
http://localhost:4000/docs/user-guide/configuring-containers/
http://localhost:4000/docs/concepts/tools/kubectl/object-management-overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
http://localhost:4000/docs/concepts/workloads/pods/pod-overview/#pod-templates
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
http://localhost:4000/docs/admin/kubelet/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#label-selectors

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 6/11

pods that another person or process created or deleted. This allows the ReplicationController to be

replaced without affecting the running pods.

If speci�ed, the .spec.template.metadata.labels must be equal to the .spec.selector , or it

will be rejected by the API. If .spec.selector is unspeci�ed, it will be defaulted to

.spec.template.metadata.labels .

Also you should not normally create any pods whose labels match this selector, either directly, with

another ReplicationController, or with another controller such as Job. If you do so, the

ReplicationController thinks that it created the other pods. Kubernetes does not stop you from doing

this.

If you do end up with multiple controllers that have overlapping selectors, you will have to manage

the deletion yourself (see below).

Multiple Replicas

You can specify how many pods should run concurrently by setting .spec.replicas to the number

of pods you would like to have running concurrently. The number running at any time may be higher

or lower, such as if the replicas were just increased or decreased, or if a pod is gracefully shutdown,

and a replacement starts early.

If you do not specify .spec.replicas , then it defaults to 1.

Working with ReplicationControllers

Deleting a ReplicationController and its Pods

To delete a ReplicationController and all its pods, use kubectl delete . Kubectl will scale the

ReplicationController to zero and wait for it to delete each pod before deleting the

ReplicationController itself. If this kubectl command is interrupted, it can be restarted.

When using the REST API or go client library, you need to do the steps explicitly (scale replicas to 0,

wait for pod deletions, then delete the ReplicationController).

Deleting just a ReplicationController

http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 7/11

You can delete a ReplicationController without affecting any of its pods.

Using kubectl, specify the --cascade=false option to kubectl delete .

When using the REST API or go client library, simply delete the ReplicationController object.

Once the original is deleted, you can create a new ReplicationController to replace it. As long as the

old and new .spec.selector are the same, then the new one will adopt the old pods. However, it

will not make any effort to make existing pods match a new, different pod template. To update pods

to a new spec in a controlled way, use a rolling update.

Isolating pods from a ReplicationController

Pods may be removed from a ReplicationController’s target set by changing their labels. This

technique may be used to remove pods from service for debugging, data recovery, etc. Pods that are

removed in this way will be replaced automatically (assuming that the number of replicas is not also

changed).

Common usage patterns

Rescheduling

As mentioned above, whether you have 1 pod you want to keep running, or 1000, a

ReplicationController will ensure that the speci�ed number of pods exists, even in the event of node

failure or pod termination (for example, due to an action by another control agent).

Scaling

The ReplicationController makes it easy to scale the number of replicas up or down, either manually

or by an auto-scaling control agent, by simply updating the replicas �eld.

Rolling updates

The ReplicationController is designed to facilitate rolling updates to a service by replacing pods one-

by-one.

As explained in #1353, the recommended approach is to create a new ReplicationController with 1

replica, scale the new (+1) and old (-1) controllers one by one, and then delete the old controller after

http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete
http://issue.k8s.io/1353

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 8/11

it reaches 0 replicas. This predictably updates the set of pods regardless of unexpected failures.

Ideally, the rolling update controller would take application readiness into account, and would ensure

that a su�cient number of pods were productively serving at any given time.

The two ReplicationControllers would need to create pods with at least one differentiating label, such

as the image tag of the primary container of the pod, since it is typically image updates that motivate

rolling updates.

Rolling update is implemented in the client tool kubectl rolling-update . Visit

kubectl rolling-update task for more concrete examples.

Multiple release tracks

In addition to running multiple releases of an application while a rolling update is in progress, it’s

common to run multiple releases for an extended period of time, or even continuously, using multiple

release tracks. The tracks would be differentiated by labels.

For instance, a service might target all pods with tier in (frontend), environment in (prod) .

Now say you have 10 replicated pods that make up this tier. But you want to be able to ‘canary’ a new

version of this component. You could set up a ReplicationController with replicas set to 9 for the

bulk of the replicas, with labels tier=frontend, environment=prod, track=stable , and another

ReplicationController with replicas set to 1 for the canary, with labels

tier=frontend, environment=prod, track=canary . Now the service is covering both the canary

and non-canary pods. But you can mess with the ReplicationControllers separately to test things out,

monitor the results, etc.

Using ReplicationControllers with Services

Multiple ReplicationControllers can sit behind a single service, so that, for example, some tra�c goes

to the old version, and some goes to the new version.

A ReplicationController will never terminate on its own, but it isn’t expected to be as long-lived as

services. Services may be composed of pods controlled by multiple ReplicationControllers, and it is

expected that many ReplicationControllers may be created and destroyed over the lifetime of a

service (for instance, to perform an update of pods that run the service). Both services themselves

and their clients should remain oblivious to the ReplicationControllers that maintain the pods of the

services.

http://localhost:4000/docs/user-guide/kubectl/v1.8/#rolling-update
http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 9/11

Writing programs for Replication

Pods created by a ReplicationController are intended to be fungible and semantically identical,

though their con�gurations may become heterogeneous over time. This is an obvious �t for

replicated stateless servers, but ReplicationControllers can also be used to maintain availability of

master-elected, sharded, and worker-pool applications. Such applications should use dynamic work

assignment mechanisms, such as the etcd lock module or RabbitMQ work queues, as opposed to

static/one-time customization of the con�guration of each pod, which is considered an anti-pattern.

Any pod customization performed, such as vertical auto-sizing of resources (for example, cpu or

memory), should be performed by another online controller process, not unlike the

ReplicationController itself.

Responsibilities of the ReplicationController

The ReplicationController simply ensures that the desired number of pods matches its label selector

and are operational. Currently, only terminated pods are excluded from its count. In the future,

readiness and other information available from the system may be taken into account, we may add

more controls over the replacement policy, and we plan to emit events that could be used by external

clients to implement arbitrarily sophisticated replacement and/or scale-down policies.

The ReplicationController is forever constrained to this narrow responsibility. It itself will not perform

readiness nor liveness probes. Rather than performing auto-scaling, it is intended to be controlled by

an external auto-scaler (as discussed in #492), which would change its replicas �eld. We will not

add scheduling policies (for example, spreading) to the ReplicationController. Nor should it verify that

the pods controlled match the currently speci�ed template, as that would obstruct auto-sizing and

other automated processes. Similarly, completion deadlines, ordering dependencies, con�guration

expansion, and other features belong elsewhere. We even plan to factor out the mechanism for bulk

pod creation (#170).

The ReplicationController is intended to be a composable building-block primitive. We expect higher-

level APIs and/or tools to be built on top of it and other complementary primitives for user

convenience in the future. The “macro” operations currently supported by kubectl (run, stop, scale,

https://coreos.com/docs/distributed-configuration/etcd-modules/
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
http://issue.k8s.io/620
http://issue.k8s.io/492
http://issue.k8s.io/367#issuecomment-48428019
http://issue.k8s.io/170

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 10/11

rolling-update) are proof-of-concept examples of this. For instance, we could imagine something like

Asgard managing ReplicationControllers, auto-scalers, services, scheduling policies, canaries, etc.

API Object

Replication controller is a top-level resource in the Kubernetes REST API. More details about the API

object can be found at: ReplicationController API object.

Alternatives to ReplicationController

ReplicaSet

ReplicaSet is the next-generation ReplicationController that supports the new set-based label

selector. It’s mainly used by Deployment as a mechanism to orchestrate pod creation, deletion and

updates. Note that we recommend using Deployments instead of directly using Replica Sets, unless

you require custom update orchestration or don’t require updates at all.

Deployment (Recommended)

Deployment is a higher-level API object that updates its underlying Replica Sets and their Pods in a

similar fashion as kubectl rolling-update . Deployments are recommended if you want this

rolling update functionality, because unlike kubectl rolling-update , they are declarative, server-

side, and have additional features.

Bare Pods

Unlike in the case where a user directly created pods, a ReplicationController replaces pods that are

deleted or terminated for any reason, such as in the case of node failure or disruptive node

maintenance, such as a kernel upgrade. For this reason, we recommend that you use a

ReplicationController even if your application requires only a single pod. Think of it similarly to a

process supervisor, only it supervises multiple pods across multiple nodes instead of individual

processes on a single node. A ReplicationController delegates local container restarts to some agent

on the node (for example, Kubelet or Docker).

http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html
http://localhost:4000/docs/api-reference/v1.8/#replicationcontroller-v1-core
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#set-based-requirement
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Replication Controller - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/ 11/11

Job

Use a Job instead of a ReplicationController for pods that are expected to terminate on their own

(that is, batch jobs).

DaemonSet

Use a DaemonSet instead of a ReplicationController for pods that provide a machine-level function,

such as machine monitoring or machine logging. These pods have a lifetime that is tied to a

machine lifetime: the pod needs to be running on the machine before other pods start, and are safe

to terminate when the machine is otherwise ready to be rebooted/shutdown.

For more information

Read Run Stateless AP Replication Controller.

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/tutorials/stateless-application/run-stateless-ap-replication-controller/

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 1/28

Deployments

A Deployment controller provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment object, and the Deployment controller changes the

actual state to the desired state at a controlled rate. You can de�ne Deployments to create new

ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments.

Note: You should not manage ReplicaSets owned by a Deployment. All the use cases should

be covered by manipulating the Deployment object. Consider opening an issue in the main

Kubernetes repository if your use case is not covered below.

Use Case
Creating a Deployment

Pod-template-hash label
Updating a Deployment

Rollover (aka multiple updates in-�ight)
Label selector updates

Rolling Back a Deployment
Checking Rollout History of a Deployment
Rolling Back to a Previous Revision

Scaling a Deployment
Proportional scaling

Pausing and Resuming a Deployment
Deployment status

Progressing Deployment
Complete Deployment
Failed Deployment
Operating on a failed deployment

Clean up Policy
Use Cases

Canary Deployment
Writing a Deployment Spec

Pod Template
Replicas

http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 2/28

Use Case

The following are typical use cases for Deployments:

Create a Deployment to rollout a ReplicaSet. The ReplicaSet creates Pods in the background.

Check the status of the rollout to see if it succeeds or not.

Declare the new state of the Pods by updating the PodTemplateSpec of the Deployment. A new

ReplicaSet is created and the Deployment manages moving the Pods from the old ReplicaSet to

the new one at a controlled rate. Each new ReplicaSet updates the revision of the Deployment.

Rollback to an earlier Deployment revision if the current state of the Deployment is not stable.

Each rollback updates the revision of the Deployment.

Scale up the Deployment to facilitate more load.

Pause the Deployment to apply multiple �xes to its PodTemplateSpec and then resume it to

start a new rollout.

Use the status of the Deployment as an indicator that a rollout has stuck.

Clean up older ReplicaSets that you don’t need anymore.

Creating a Deployment

Selector
Strategy

Recreate Deployment
Rolling Update Deployment

Max Unavailable
Max Surge

Progress Deadline Seconds
Min Ready Seconds
Rollback To
Revision History Limit
Paused

Alternative to Deployments
kubectl rolling update

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 3/28

The following is an example of a Deployment. It creates a ReplicaSet to bring up three nginx Pods:

nginx-deployment.yaml

In this example:

A Deployment named nginx-deployment is created, indicated by the metadata: name �eld.

The Deployment creates three replicated Pods, indicated by the replicas �eld.

The Pod template’s speci�cation, or template: spec �eld, indicates that the Pods run one

container, nginx , which runs the nginx Docker Hub image at version 1.7.9.

The Deployment opens port 80 for use by the Pods.

The template �eld contains the following instructions:

The Pods are labeled app: nginx

Create one container and name it nginx .

apiVersion: apps/v1beta2 # for versions before 1.7.0 use apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/nginx-deployment.yaml
https://hub.docker.com/

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 4/28

Run the nginx image at version 1.7.9 .

Open port 80 so that the container can send and accept tra�c.

To create this Deployment, run the following command:

Note: You can append --record to this command to record the current command in the

annotations of the created or updated resource. This is useful for future review, such as investigating

which commands were executed in each Deployment revision.

Next, run kubectl get deployments . The output is similar to the following:

When you inspect the Deployments in your cluster, the following �elds are displayed:

NAME lists the names of the Deployments in the cluster.

DESIRED displays the desired number of replicas of the application, which you de�ne when you

create the Deployment. This is the desired state.

CURRENT displays how many replicas are currently running.

UP-TO-DATE displays the number of replicas that have been updated to achieve the desired

state.

AVAILABLE displays how many replicas of the application are available to your users.

AGE displays the amount of time that the application has been running.

Notice how the values in each �eld correspond to the values in the Deployment speci�cation:

The number of desired replicas is 3 according to spec: replicas �eld.

The number of current replicas is 0 according to the .status.replicas �eld.

kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes.github.i

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 3 0 0 0 1s

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 5/28

The number of up-to-date replicas is 0 accoridng to the .status.updatedReplicas �eld.

The number of available replicas is 0 according to the .status.availableReplicas �eld.

To see the Deployment rollout status, run

kubectl rollout status deployment/nginx-deployment . This command returns the following

output:

Run the kubectl get deployments again a few seconds later:

Notice that the Deployment has created all three replicas, and all replicas are up-to-date (they contain

the latest Pod template) and available (the Pod status is Ready for at least the value of the

Deployment’s .spec.minReadySeconds �eld).

To see the ReplicaSet (rs) created by the deployment, run kubectl get rs :

Notice that the name of the ReplicaSet is always formatted as

[DEPLOYMENT-NAME]-[POD-TEMPLATE-HASH-VALUE] . The hash value is automatically generated

when the Deployment is created.

To see the labels automatically generated for each pod, run kubectl get pods --show-labels .

The following output is returned:

Waiting for rollout to finish: 2 out of 3 new replicas have been updated...
deployment "nginx-deployment" successfully rolled out

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 3 3 3 3 18s

NAME DESIRED CURRENT READY AGE
nginx-deployment-2035384211 3 3 3 18s

NAME READY STATUS RESTARTS AGE LABEL
nginx-deployment-2035384211-7ci7o 1/1 Running 0 18s app=n
nginx-deployment-2035384211-kzszj 1/1 Running 0 18s app=n
nginx-deployment-2035384211-qqcnn 1/1 Running 0 18s app=n

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 6/28

The created ReplicaSet ensures that there are three nginx Pods running at all times.

Note: You must specify an appropriate selector and Pod template labels in a Deployment (in

this case, app: nginx). Do not overlap labels or selectors with other controllers (including

other Deployments and StatefulSets). Kubernetes doesn’t stop you from overlapping, and if

multiple controllers have overlapping selectors those controllers might con�ict and behave

unexpectedly.

Pod-template-hash label

Note: Do not change this label.

The pod-template-hash label is added by the Deployment controller to every ReplicaSet that a

Deployment creates or adopts.

This label ensures that child ReplicaSets of a Deployment do not overlap. It is generated by hashing

the PodTemplate of the ReplicaSet and using the resulting hash as the label value that is added to

the ReplicaSet selector, Pod template labels, and in any existing Pods that the ReplicaSet might have.

Updating a Deployment

Note: A Deployment’s rollout is triggered if and only if the Deployment’s pod template (that is,

.spec.template) is changed, for example if the labels or container images of the template

are updated. Other updates, such as scaling the Deployment, do not trigger a rollout.

Suppose that we now want to update the nginx Pods to use the nginx:1.9.1 image instead of the

nginx:1.7.9 image.

$ kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1
deployment "nginx-deployment" image updated

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 7/28

Alternatively, we can edit the Deployment and change

.spec.template.spec.containers[0].image from nginx:1.7.9 to nginx:1.9.1 :

To see the rollout status, run:

After the rollout succeeds, you may want to get the Deployment:

The number of up-to-date replicas indicates that the Deployment has updated the replicas to the

latest con�guration. The current replicas indicates the total replicas this Deployment manages, and

the available replicas indicates the number of current replicas that are available.

We can run kubectl get rs to see that the Deployment updated the Pods by creating a new

ReplicaSet and scaling it up to 3 replicas, as well as scaling down the old ReplicaSet to 0 replicas.

Running get pods should now show only the new Pods:

$ kubectl edit deployment/nginx-deployment
deployment "nginx-deployment" edited

$ kubectl rollout status deployment/nginx-deployment
Waiting for rollout to finish: 2 out of 3 new replicas have been updated...
deployment "nginx-deployment" successfully rolled out

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 3 3 3 3 36s

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-1564180365 3 3 3 6s
nginx-deployment-2035384211 0 0 0 36s

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-1564180365-khku8 1/1 Running 0 14s
nginx-deployment-1564180365-nacti 1/1 Running 0 14s
nginx-deployment-1564180365-z9gth 1/1 Running 0 14s

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 8/28

Next time we want to update these Pods, we only need to update the Deployment’s pod template

again.

Deployment can ensure that only a certain number of Pods may be down while they are being

updated. By default, it ensures that at least 1 less than the desired number of Pods are up (1 max

unavailable).

Deployment can also ensure that only a certain number of Pods may be created above the desired

number of Pods. By default, it ensures that at most 1 more than the desired number of Pods are up

(1 max surge).

In a future version of Kubernetes, the defaults will change from 1-1 to 25%-25%.

For example, if you look at the above Deployment closely, you will see that it �rst created a new Pod,

then deleted some old Pods and created new ones. It does not kill old Pods until a su�cient number

of new Pods have come up, and does not create new Pods until a su�cient number of old Pods have

been killed. It makes sure that number of available Pods is at least 2 and the number of total Pods is

at most 4.

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 9/28

Here we see that when we �rst created the Deployment, it created a ReplicaSet (nginx-deployment-

2035384211) and scaled it up to 3 replicas directly. When we updated the Deployment, it created a

new ReplicaSet (nginx-deployment-1564180365) and scaled it up to 1 and then scaled down the old

ReplicaSet to 2, so that at least 2 Pods were available and at most 4 Pods were created at all times.

It then continued scaling up and down the new and the old ReplicaSet, with the same rolling update

strategy. Finally, we’ll have 3 available replicas in the new ReplicaSet, and the old ReplicaSet is scaled

down to 0.

$ kubectl describe deployments
Name: nginx-deployment
Namespace: default
CreationTimestamp: Tue, 15 Mar 2016 12:01:06 -0700
Labels: app=nginx
Annotations: deployment.kubernetes.io/revision=2
Selector: app=nginx
Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: nginx:1.9.1
 Port: 80/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-1564180365 (3/3 replicas created)
Events:
 FirstSeen LastSeen Count From SubobjectPath Type
 --------- -------- ----- ---- ------------- --------
 36s 36s 1 {deployment-controller } Normal
 23s 23s 1 {deployment-controller } Normal
 23s 23s 1 {deployment-controller } Normal
 23s 23s 1 {deployment-controller } Normal
 21s 21s 1 {deployment-controller } Normal
 21s 21s 1 {deployment-controller } Normal

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 10/28

Rollover (aka multiple updates in-�ight)

Each time a new deployment object is observed by the deployment controller, a ReplicaSet is created

to bring up the desired Pods if there is no existing ReplicaSet doing so. Existing ReplicaSet

controlling Pods whose labels match .spec.selector but whose template does not match

.spec.template are scaled down. Eventually, the new ReplicaSet will be scaled to

.spec.replicas and all old ReplicaSets will be scaled to 0.

If you update a Deployment while an existing rollout is in progress, the Deployment will create a new

ReplicaSet as per the update and start scaling that up, and will roll over the ReplicaSet that it was

scaling up previously – it will add it to its list of old ReplicaSets and will start scaling it down.

For example, suppose you create a Deployment to create 5 replicas of nginx:1.7.9 , but then

updates the Deployment to create 5 replicas of nginx:1.9.1 , when only 3 replicas of nginx:1.7.9

had been created. In that case, Deployment will immediately start killing the 3 nginx:1.7.9 Pods

that it had created, and will start creating nginx:1.9.1 Pods. It will not wait for 5 replicas of

nginx:1.7.9 to be created before changing course.

Label selector updates

It is generally discouraged to make label selector updates and it is suggested to plan your selectors

up front. In any case, if you need to perform a label selector update, exercise great caution and make

sure you have grasped all of the implications.

Note: In API version apps/v1beta2 , a Deployment’s label selector is immutable after it gets

created.

Selector additions require the pod template labels in the Deployment spec to be updated with

the new label too, otherwise a validation error is returned. This change is a non-overlapping one,

meaning that the new selector does not select ReplicaSets and Pods created with the old

selector, resulting in orphaning all old ReplicaSets and creating a new ReplicaSet.

Selector updates – that is, changing the existing value in a selector key – result in the same

behavior as additions.

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 11/28

Selector removals – that is, removing an existing key from the Deployment selector – do not

require any changes in the pod template labels. No existing ReplicaSet is orphaned, and a new

ReplicaSet is not created, but note that the removed label still exists in any existing Pods and

ReplicaSets.

Rolling Back a Deployment

Sometimes you may want to rollback a Deployment; for example, when the Deployment is not stable,

such as crash looping. By default, all of the Deployment’s rollout history is kept in the system so that

you can rollback anytime you want (you can change that by modifying revision history limit).

Note: A Deployment’s revision is created when a Deployment’s rollout is triggered. This means

that the new revision is created if and only if the Deployment’s pod template (

.spec.template) is changed, for example if you update the labels or container images of the

template. Other updates, such as scaling the Deployment, do not create a Deployment

revision, so that we can facilitate simultaneous manual- or auto-scaling. This means that

when you roll back to an earlier revision, only the Deployment’s pod template part is rolled

back.

Suppose that we made a typo while updating the Deployment, by putting the image name as

nginx:1.91 instead of nginx:1.9.1 :

The rollout will be stuck.

Press Ctrl-C to stop the above rollout status watch. For more information on stuck rollouts, read

more here.

$ kubectl set image deployment/nginx-deployment nginx=nginx:1.91
deployment "nginx-deployment" image updated

$ kubectl rollout status deployments nginx-deployment
Waiting for rollout to finish: 2 out of 3 new replicas have been updated...

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 12/28

You will also see that both the number of old replicas (nginx-deployment-1564180365 and nginx-

deployment-2035384211) and new replicas (nginx-deployment-3066724191) are 2.

Looking at the Pods created, you will see that the 2 Pods created by new ReplicaSet are stuck in an

image pull loop.

Note: The Deployment controller will stop the bad rollout automatically, and will stop scaling

up the new ReplicaSet. This depends on the rollingUpdate parameters (maxUnavailable

speci�cally) that you have speci�ed. Kubernetes by default sets the value to 1 and

spec.replicas to 1 so if you haven’t cared about setting those parameters, your Deployment

can have 100% unavailability by default! This will be �xed in Kubernetes in a future version.

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-1564180365 2 2 0 25s
nginx-deployment-2035384211 0 0 0 36s
nginx-deployment-3066724191 2 2 2 6s

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-1564180365-70iae 1/1 Running 0 25s
nginx-deployment-1564180365-jbqqo 1/1 Running 0 25s
nginx-deployment-3066724191-08mng 0/1 ImagePullBackOff 0 6s
nginx-deployment-3066724191-eocby 0/1 ImagePullBackOff 0 6s

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 13/28

To �x this, we need to rollback to a previous revision of Deployment that is stable.

Checking Rollout History of a Deployment

First, check the revisions of this deployment:

Because we recorded the command while creating this Deployment using --record , we can easily

see the changes we made in each revision.

To further see the details of each revision, run:

$ kubectl describe deployment
Name: nginx-deployment
Namespace: default
CreationTimestamp: Tue, 15 Mar 2016 14:48:04 -0700
Labels: app=nginx
Selector: app=nginx
Replicas: 2 updated | 3 total | 2 available | 2 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
OldReplicaSets: nginx-deployment-1564180365 (2/2 replicas created)
NewReplicaSet: nginx-deployment-3066724191 (2/2 replicas created)
Events:
 FirstSeen LastSeen Count From SubobjectPath Type
 --------- -------- ----- ---- ------------- --------
 1m 1m 1 {deployment-controller } Normal
 22s 22s 1 {deployment-controller } Normal
 22s 22s 1 {deployment-controller } Normal
 22s 22s 1 {deployment-controller } Normal
 21s 21s 1 {deployment-controller } Normal
 21s 21s 1 {deployment-controller } Normal
 13s 13s 1 {deployment-controller } Normal
 13s 13s 1 {deployment-controller } Normal
 13s 13s 1 {deployment-controller } Normal

$ kubectl rollout history deployment/nginx-deployment
deployments "nginx-deployment"
REVISION CHANGE-CAUSE
1 kubectl create -f docs/user-guide/nginx-deployment.yaml --record
2 kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1
3 kubectl set image deployment/nginx-deployment nginx=nginx:1.91

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 14/28

Rolling Back to a Previous Revision

Now we’ve decided to undo the current rollout and rollback to the previous revision:

Alternatively, you can rollback to a speci�c revision by specify that in --to-revision :

For more details about rollout related commands, read kubectl rollout .

The Deployment is now rolled back to a previous stable revision. As you can see, a

DeploymentRollback event for rolling back to revision 2 is generated from Deployment controller.

$ kubectl rollout history deployment/nginx-deployment --revision=2
deployments "nginx-deployment" revision 2
 Labels: app=nginx
 pod-template-hash=1159050644
 Annotations: kubernetes.io/change-cause=kubectl set image deployment/nginx-depl
 Containers:
 nginx:
 Image: nginx:1.9.1
 Port: 80/TCP
 QoS Tier:
 cpu: BestEffort
 memory: BestEffort
 Environment Variables: <none>
 No volumes.

$ kubectl rollout undo deployment/nginx-deployment
deployment "nginx-deployment" rolled back

$ kubectl rollout undo deployment/nginx-deployment --to-revision=2
deployment "nginx-deployment" rolled back

http://localhost:4000/docs/user-guide/kubectl/v1.8/#rollout

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 15/28

Scaling a Deployment

You can scale a Deployment by using the following command:

Assuming horizontal pod autoscaling is enabled in your cluster, you can setup an autoscaler for your

Deployment and choose the minimum and maximum number of Pods you want to run based on the

CPU utilization of your existing Pods.

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 3 3 3 3 30m

$ kubectl describe deployment
Name: nginx-deployment
Namespace: default
CreationTimestamp: Tue, 15 Mar 2016 14:48:04 -0700
Labels: app=nginx
Selector: app=nginx
Replicas: 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-1564180365 (3/3 replicas created)
Events:
 FirstSeen LastSeen Count From SubobjectPath Type
 --------- -------- ----- ---- ------------- --------
 30m 30m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 29m 29m 1 {deployment-controller } Normal
 2m 2m 1 {deployment-controller } Normal
 2m 2m 1 {deployment-controller } Normal
 29m 2m 2 {deployment-controller } Normal

$ kubectl scale deployment nginx-deployment --replicas=10
deployment "nginx-deployment" scaled

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 16/28

Proportional scaling

RollingUpdate Deployments support running multiple versions of an application at the same time.

When you or an autoscaler scales a RollingUpdate Deployment that is in the middle of a rollout

(either in progress or paused), then the Deployment controller will balance the additional replicas in

the existing active ReplicaSets (ReplicaSets with Pods) in order to mitigate risk. This is called

proportional scaling.

For example, you are running a Deployment with 10 replicas, maxSurge=3, and maxUnavailable=2.

You update to a new image which happens to be unresolvable from inside the cluster.

The image update starts a new rollout with ReplicaSet nginx-deployment-1989198191, but it’s

blocked due to the maxUnavailable requirement that we mentioned above.

Then a new scaling request for the Deployment comes along. The autoscaler increments the

Deployment replicas to 15. The Deployment controller needs to decide where to add these new 5

replicas. If we weren’t using proportional scaling, all 5 of them would be added in the new ReplicaSet.

With proportional scaling, we spread the additional replicas across all ReplicaSets. Bigger

proportions go to the ReplicaSets with the most replicas and lower proportions go to ReplicaSets

$ kubectl autoscale deployment nginx-deployment --min=10 --max=15 --cpu-percent=80
deployment "nginx-deployment" autoscaled

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 10 10 10 10 50s

$ kubectl set image deploy/nginx-deployment nginx=nginx:sometag
deployment "nginx-deployment" image updated

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-1989198191 5 5 0 9s
nginx-deployment-618515232 8 8 8 1m

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 17/28

with less replicas. Any leftovers are added to the ReplicaSet with the most replicas. ReplicaSets with

zero replicas are not scaled up.

In our example above, 3 replicas will be added to the old ReplicaSet and 2 replicas will be added to

the new ReplicaSet. The rollout process should eventually move all replicas to the new ReplicaSet,

assuming the new replicas become healthy.

Pausing and Resuming a Deployment

You can pause a Deployment before triggering one or more updates and then resume it. This will

allow you to apply multiple �xes in between pausing and resuming without triggering unnecessary

rollouts.

For example, with a Deployment that was just created:

Pause by running the following command:

Then update the image of the Deployment:

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 15 18 7 8 7m
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-1989198191 7 7 0 7m
nginx-deployment-618515232 11 11 11 7m

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 1m
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-2142116321 3 3 3 1m

$ kubectl rollout pause deployment/nginx-deployment
deployment "nginx-deployment" paused

$ kubectl set image deploy/nginx-deployment nginx=nginx:1.9.1
deployment "nginx-deployment" image updated

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 18/28

Notice that no new rollout started:

You can make as many updates as you wish, for example, update the resources that will be used:

The initial state of the Deployment prior to pausing it will continue its function, but new updates to

the Deployment will not have any effect as long as the Deployment is paused.

Eventually, resume the Deployment and observe a new ReplicaSet coming up with all the new

updates:

$ kubectl rollout history deploy/nginx-deployment
deployments "nginx"
REVISION CHANGE-CAUSE
1 <none>

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-2142116321 3 3 3 2m

$ kubectl set resources deployment nginx-deployment -c=nginx --limits=cpu=200m,mem
deployment "nginx-deployment" resource requirements updated

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 19/28

Note: You cannot rollback a paused Deployment until you resume it.

Deployment status

A Deployment enters various states during its lifecycle. It can be progressing while rolling out a new

ReplicaSet, it can be complete, or it can fail to progress.

Progressing Deployment

Kubernetes marks a Deployment as progressing when one of the following tasks is performed:

The Deployment creates a new ReplicaSet.

The Deployment is scaling up its newest ReplicaSet.

The Deployment is scaling down its older ReplicaSet(s).

$ kubectl rollout resume deploy/nginx-deployment
deployment "nginx" resumed
$ kubectl get rs -w
NAME DESIRED CURRENT READY AGE
nginx-2142116321 2 2 2 2m
nginx-3926361531 2 2 0 6s
nginx-3926361531 2 2 1 18s
nginx-2142116321 1 2 2 2m
nginx-2142116321 1 2 2 2m
nginx-3926361531 3 2 1 18s
nginx-3926361531 3 2 1 18s
nginx-2142116321 1 1 1 2m
nginx-3926361531 3 3 1 18s
nginx-3926361531 3 3 2 19s
nginx-2142116321 0 1 1 2m
nginx-2142116321 0 1 1 2m
nginx-2142116321 0 0 0 2m
nginx-3926361531 3 3 3 20s
^C
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-2142116321 0 0 0 2m
nginx-3926361531 3 3 3 28s

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 20/28

New Pods become ready or available (ready for at least MinReadySeconds).

You can monitor the progress for a Deployment by using kubectl rollout status .

Complete Deployment

Kubernetes marks a Deployment as complete when it has the following characteristics:

All of the replicas associated with the Deployment have been updated to the latest version

you’ve speci�ed, meaning any updates you’ve requested have been completed.

All of the replicas associated with the Deployment are available.

No old replicas for the Deployment are running.

You can check if a Deployment has completed by using kubectl rollout status . If the rollout

completed successfully, kubectl rollout status returns a zero exit code.

Failed Deployment

Your Deployment may get stuck trying to deploy its newest ReplicaSet without ever completing. This

can occur due to some of the following factors:

Insu�cient quota

Readiness probe failures

Image pull errors

Insu�cient permissions

Limit ranges

Application runtime miscon�guration

$ kubectl rollout status deploy/nginx-deployment
Waiting for rollout to finish: 2 of 3 updated replicas are available...
deployment "nginx" successfully rolled out
$ echo $?
0

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 21/28

One way you can detect this condition is to specify a deadline parameter in your Deployment spec: (

spec.progressDeadlineSeconds). spec.progressDeadlineSeconds denotes the number of

seconds the Deployment controller waits before indicating (in the Deployment status) that the

Deployment progress has stalled.

The following kubectl command sets the spec with progressDeadlineSeconds to make the

controller report lack of progress for a Deployment after 10 minutes:

Once the deadline has been exceeded, the Deployment controller adds a DeploymentCondition with

the following attributes to the Deployment’s status.conditions :

Type=Progressing

Status=False

Reason=ProgressDeadlineExceeded

See the Kubernetes API conventions for more information on status conditions.

Note: Kubernetes will take no action on a stalled Deployment other than to report a status

condition with Reason=ProgressDeadlineExceeded . Higher level orchestrators can take

advantage of it and act accordingly, for example, rollback the Deployment to its previous

version.

Note: If you pause a Deployment, Kubernetes does not check progress against your speci�ed

deadline. You can safely pause a Deployment in the middle of a rollout and resume without

triggering the condition for exceeding the deadline.

You may experience transient errors with your Deployments, either due to a low timeout that you

have set or due to any other kind of error that can be treated as transient. For example, let’s suppose

you have insu�cient quota. If you describe the Deployment you will notice the following section:

$ kubectl patch deployment/nginx-deployment -p '{"spec":{"progressDeadlineSeconds"
"nginx-deployment" patched

https://git.k8s.io/community/contributors/devel/api-conventions.md#typical-status-properties

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 22/28

If you run kubectl get deployment nginx-deployment -o yaml , the Deployement status might

look like this:

Eventually, once the Deployment progress deadline is exceeded, Kubernetes updates the status and

the reason for the Progressing condition:

$ kubectl describe deployment nginx-deployment
<...>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True ReplicaSetUpdated
 ReplicaFailure True FailedCreate
<...>

status:
 availableReplicas: 2
 conditions:
 - lastTransitionTime: 2016-10-04T12:25:39Z
 lastUpdateTime: 2016-10-04T12:25:39Z
 message: Replica set "nginx-deployment-4262182780" is progressing.
 reason: ReplicaSetUpdated
 status: "True"
 type: Progressing
 - lastTransitionTime: 2016-10-04T12:25:42Z
 lastUpdateTime: 2016-10-04T12:25:42Z
 message: Deployment has minimum availability.
 reason: MinimumReplicasAvailable
 status: "True"
 type: Available
 - lastTransitionTime: 2016-10-04T12:25:39Z
 lastUpdateTime: 2016-10-04T12:25:39Z
 message: 'Error creating: pods "nginx-deployment-4262182780-" is forbidden: ex
 object-counts, requested: pods=1, used: pods=3, limited: pods=2'
 reason: FailedCreate
 status: "True"
 type: ReplicaFailure
 observedGeneration: 3
 replicas: 2
 unavailableReplicas: 2

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 23/28

You can address an issue of insu�cient quota by scaling down your Deployment, by scaling down

other controllers you may be running, or by increasing quota in your namespace. If you satisfy the

quota conditions and the Deployment controller then completes the Deployment rollout, you’ll see

the Deployment’s status update with a successful condition (Status=True and

Reason=NewReplicaSetAvailable).

Type=Available with Status=True means that your Deployment has minimum availability.

Minimum availability is dictated by the parameters speci�ed in the deployment strategy.

Type=Progressing with Status=True means that your Deployment is either in the middle of a

rollout and it is progressing or that it has successfully completed its progress and the minimum

required new replicas are available (see the Reason of the condition for the particulars - in our case

Reason=NewReplicaSetAvailable means that the Deployment is complete).

You can check if a Deployment has failed to progress by using kubectl rollout status .

kubectl rollout status returns a non-zero exit code if the Deployment has exceeded the

progression deadline.

Operating on a failed deployment

Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing False ProgressDeadlineExceeded
 ReplicaFailure True FailedCreate

Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable

$ kubectl rollout status deploy/nginx-deployment
Waiting for rollout to finish: 2 out of 3 new replicas have been updated...
error: deployment "nginx" exceeded its progress deadline
$ echo $?
1

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 24/28

All actions that apply to a complete Deployment also apply to a failed Deployment. You can scale it

up/down, roll back to a previous revision, or even pause it if you need to apply multiple tweaks in the

Deployment pod template.

Clean up Policy

You can set .spec.revisionHistoryLimit �eld in a Deployment to specify how many old

ReplicaSets for this Deployment you want to retain. The rest will be garbage-collected in the

background. By default, all revision history will be kept. In a future version, it will default to switch to

2.

Note: Explicitly setting this �eld to 0, will result in cleaning up all the history of your

Deployment thus that Deployment will not be able to roll back.

Use Cases

Canary Deployment

If you want to roll out releases to a subset of users or servers using the Deployment, you can create

multiple Deployments, one for each release, following the canary pattern described in managing

resources.

Writing a Deployment Spec

As with all other Kubernetes con�gs, a Deployment needs apiVersion , kind , and metadata

�elds. For general information about working with con�g �les, see deploying applications,

con�guring containers, and using kubectl to manage resources documents.

A Deployment also needs a .spec section.

Pod Template

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
http://localhost:4000/docs/tutorials/stateless-application/run-stateless-application-deployment/
http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 25/28

The .spec.template is the only required �eld of the .spec .

The .spec.template is a pod template. It has exactly the same schema as a Pod, except it is

nested and does not have an apiVersion or kind .

In addition to required �elds for a Pod, a pod template in a Deployment must specify appropriate

labels and an appropriate restart policy. For labels, make sure not to overlap with other controllers.

See selector).

Only a .spec.template.spec.restartPolicy equal to Always is allowed, which is the default if

not speci�ed.

Replicas

.spec.replicas is an optional �eld that speci�es the number of desired Pods. It defaults to 1.

Selector

.spec.selector is an optional �eld that speci�es a label selector for the Pods targeted by this

deployment.

.spec.selector must match .spec.template.metadata.labels , or it will be rejected by the API.

In API version apps/v1beta2 , .spec.selector and .metadata.labels no longer default to

.spec.template.metadata.labels if not set. So they must be set explicitly. Also note that

.spec.selector is immutable after creation of the Deployment in apps/v1beta2 .

A Deployment may terminate Pods whose labels match the selector if their template is different from

.spec.template or if the total number of such Pods exceeds .spec.replicas . It brings up new

Pods with .spec.template if the number of Pods is less than the desired number.

Note: You should not create other pods whose labels match this selector, either directly, by

creating another Deployment, or by creating another controller such as a ReplicaSet or a

ReplicationController. If you do so, the �rst Deployment thinks that it created these other pods.

Kubernetes does not stop you from doing this.

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/#pod-templates
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 26/28

If you have multiple controllers that have overlapping selectors, the controllers will �ght with each

other and won’t behave correctly.

Strategy

.spec.strategy speci�es the strategy used to replace old Pods by new ones.

.spec.strategy.type can be “Recreate” or “RollingUpdate”. “RollingUpdate” is the default value.

Recreate Deployment

All existing Pods are killed before new ones are created when .spec.strategy.type==Recreate .

Rolling Update Deployment

The Deployment updates Pods in a rolling update fashion when

.spec.strategy.type==RollingUpdate . You can specify maxUnavailable and maxSurge to

control the rolling update process.

Max Unavailable

.spec.strategy.rollingUpdate.maxUnavailable is an optional �eld that speci�es the maximum

number of Pods that can be unavailable during the update process. The value can be an absolute

number (for example, 5) or a percentage of desired Pods (for example, 10%). The absolute number is

calculated from percentage by rounding down. The value cannot be 0 if

.spec.strategy.rollingUpdate.maxSurge is 0. The default value is 25%.

For example, when this value is set to 30%, the old ReplicaSet can be scaled down to 70% of desired

Pods immediately when the rolling update starts. Once new Pods are ready, old ReplicaSet can be

scaled down further, followed by scaling up the new ReplicaSet, ensuring that the total number of

Pods available at all times during the update is at least 70% of the desired Pods.

Max Surge

.spec.strategy.rollingUpdate.maxSurge is an optional �eld that speci�es the maximum

number of Pods that can be created over the desired number of Pods. The value can be an absolute

number (for example, 5) or a percentage of desired Pods (for example, 10%). The value cannot be 0 if

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 27/28

MaxUnavailable is 0. The absolute number is calculated from the percentage by rounding up. The

default value is 25%.

For example, when this value is set to 30%, the new ReplicaSet can be scaled up immediately when

the rolling update starts, such that the total number of old and new Pods does not exceed 130% of

desired Pods. Once old Pods have been killed, the new ReplicaSet can be scaled up further, ensuring

that the total number of Pods running at any time during the update is at most 130% of desired

Pods.

Progress Deadline Seconds

.spec.progressDeadlineSeconds is an optional �eld that speci�es the number of seconds you

want to wait for your Deployment to progress before the system reports back that the Deployment

has failed progressing - surfaced as a condition with Type=Progressing , Status=False . and

Reason=ProgressDeadlineExceeded in the status of the resource. The deployment controller will

keep retrying the Deployment. In the future, once automatic rollback will be implemented, the

deployment controller will roll back a Deployment as soon as it observes such a condition.

If speci�ed, this �eld needs to be greater than .spec.minReadySeconds .

Min Ready Seconds

.spec.minReadySeconds is an optional �eld that speci�es the minimum number of seconds for

which a newly created Pod should be ready without any of its containers crashing, for it to be

considered available. This defaults to 0 (the Pod will be considered available as soon as it is ready).

To learn more about when a Pod is considered ready, see Container Probes.

Rollback To

Field .spec.rollbackTo has been deprecated in API versions extensions/v1beta1 and

apps/v1beta1 , and is no longer supported in API version apps/v1beta2 . Instead,

kubectl rollout undo as introduced in Rolling Back to a Previous Revision should be used.

Revision History Limit

A Deployment’s revision history is stored in the replica sets it controls.

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/#container-probes

10/23/2017 Deployments - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/ 28/28

.spec.revisionHistoryLimit is an optional �eld that speci�es the number of old ReplicaSets to

retain to allow rollback. Its ideal value depends on the frequency and stability of new Deployments.

All old ReplicaSets will be kept by default, consuming resources in etcd and crowding the output of

kubectl get rs , if this �eld is not set. The con�guration of each Deployment revision is stored in

its ReplicaSets; therefore, once an old ReplicaSet is deleted, you lose the ability to rollback to that

revision of Deployment.

More speci�cally, setting this �eld to zero means that all old ReplicaSets with 0 replica will be

cleaned up. In this case, a new Deployment rollout cannot be undone, since its revision history is

cleaned up.

Paused

.spec.paused is an optional boolean �eld for pausing and resuming a Deployment. The only

difference between a paused Deployment and one that is not paused, is that any changes into the

PodTemplateSpec of the paused Deployment will not trigger new rollouts as long as it is paused. A

Deployment is not paused by default when it is created.

Alternative to Deployments

kubectl rolling update

Kubectl rolling update updates Pods and ReplicationControllers in a similar fashion. But

Deployments are recommended, since they are declarative, server side, and have additional features,

such as rolling back to any previous revision even after the rolling update is done.

http://localhost:4000/docs/user-guide/kubectl/v1.8/#rolling-update

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 1/8

StatefulSets

StatefulSet is the workload API object used to manage stateful applications. StatefulSets are

beta in 1.8.

Manage the deployment and scaling of a set of Pods, and provide guarantees about ordering. They

do so by maintaining a unique, sticky identity for each of their Pods.

Like Deployments, StatefulSets manage Pods that are based on an identical container spec.

However, although their specs are the same, the Pods in a StatefulSet are not interchangeable. Each

Pod has a persistent identi�er that it maintains across any rescheduling.

StatefulSets also operate according to the Controller pattern. You de�ne your desired state in a

StatefulSet object, and the StatefulSet controller makes any necessary updates to the get there from

the current state.

Using StatefulSets

Using StatefulSets
Limitations
Components
Pod Selector
Pod Identity

Ordinal Index
Stable Network ID
Stable Storage

Deployment and Scaling Guarantees
Pod Management Policies

OrderedReady Pod Management
Parallel Pod Management

Update Strategies
On Delete
Rolling Updates

Partitions
What’s next

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 2/8

StatefulSets are valuable for applications that require one or more of the following.

Stable, unique network identi�ers.

Stable, persistent storage.

Ordered, graceful deployment and scaling.

Ordered, graceful deletion and termination.

Ordered, automated rolling updates.

In the above, stable is synonymous with persistence across Pod (re)scheduling. If an application

doesn’t require any stable identi�ers or ordered deployment, deletion, or scaling, you should deploy

your application with a controller that provides a set of stateless replicas. Controllers such as

Deployment or ReplicaSet may be better suited to your stateless needs.

Limitations

StatefulSet is a beta resource, not available in any Kubernetes release prior to 1.5.

As with all alpha/beta resources, you can disable StatefulSet through the --runtime-config

option passed to the apiserver.

The storage for a given Pod must either be provisioned by a PersistentVolume Provisioner based

on the requested storage class , or pre-provisioned by an admin.

Deleting and/or scaling a StatefulSet down will not delete the volumes associated with the

StatefulSet. This is done to ensure data safety, which is generally more valuable than an

automatic purge of all related StatefulSet resources.

StatefulSets currently require a Headless Service to be responsible for the network identity of the

Pods. You are responsible for creating this Service.

Components

The example below demonstrates the components of a StatefulSet.

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/README.md
http://localhost:4000/docs/concepts/services-networking/service/#headless-services

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 3/8

A Headless Service, named nginx, is used to control the network domain.

The StatefulSet, named web, has a Spec that indicates that 3 replicas of the nginx container will

be launched in unique Pods.

The volumeClaimTemplates will provide stable storage using PersistentVolumes provisioned by

a PersistentVolume Provisioner.

http://localhost:4000/docs/concepts/storage/volumes/

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 4/8

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: nginx

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: web
spec:
 selector:
 matchLabels:
 app: nginx # has to match .spec.template.metadata.labels
 serviceName: "nginx"
 replicas: 3 # by default is 1
 template:
 metadata:
 labels:
 app: nginx # has to match .spec.selector.matchLabels
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: nginx
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html
 volumeClaimTemplates:
 - metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: my-storage-class
 resources:
 requests:
 storage: 1Gi

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 5/8

Pod Selector

You must set the spec.selector �eld of a StatefulSet to match the labels of its

.spec.template.metadata.labels . Prior to Kubernetes 1.8, the spec.selector �eld was

defaulted when omitted. In 1.8 and later versions, failing to specify a matching Pod Selector will

result in a validation error during StatefulSet creation.

Pod Identity

StatefulSet Pods have a unique identity that is comprised of an ordinal, a stable network identity, and

stable storage. The identity sticks to the Pod, regardless of which node it’s (re)scheduled on.

Ordinal Index

For a StatefulSet with N replicas, each Pod in the StatefulSet will be assigned an integer ordinal, in

the range [0,N), that is unique over the Set.

Stable Network ID

Each Pod in a StatefulSet derives its hostname from the name of the StatefulSet and the ordinal of

the Pod. The pattern for the constructed hostname is $(statefulset name)-$(ordinal) . The

example above will create three Pods named web-0,web-1,web-2 . A StatefulSet can use a

Headless Service to control the domain of its Pods. The domain managed by this Service takes the

form: $(service name).$(namespace).svc.cluster.local , where “cluster.local” is the cluster

domain. As each Pod is created, it gets a matching DNS subdomain, taking the form:

$(podname).$(governing service domain) , where the governing service is de�ned by the

serviceName �eld on the StatefulSet.

Here are some examples of choices for Cluster Domain, Service name, StatefulSet name, and how

that affects the DNS names for the StatefulSet’s Pods.

Cluster
Domain

Service
(ns/name)

StatefulSet
(ns/name) StatefulSet Domain Pod DNS Pod

Hostname

http://localhost:4000/docs/concepts/services-networking/service/#headless-services
http://releases.k8s.io/master/cluster/addons/dns/README.md

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 6/8

Cluster
Domain

Service
(ns/name)

StatefulSet
(ns/name) StatefulSet Domain Pod DNS Pod

Hostname

cluster.local default/nginx default/web nginx.default.svc.cluster.local web-{0..N-
1}.nginx.default.svc.cluster.local web-{0..N-1}

cluster.local foo/nginx foo/web nginx.foo.svc.cluster.local web-{0..N-
1}.nginx.foo.svc.cluster.local web-{0..N-1}

kube.local foo/nginx foo/web nginx.foo.svc.kube.local web-{0..N-
1}.nginx.foo.svc.kube.local web-{0..N-1}

Note that Cluster Domain will be set to cluster.local unless otherwise con�gured.

Stable Storage

Kubernetes creates one PersistentVolume for each VolumeClaimTemplate. In the nginx example

above, each Pod will receive a single PersistentVolume with a StorageClass of my-storage-class

and 1 Gib of provisioned storage. If no StorageClass is speci�ed, then the default StorageClass will

be used. When a Pod is (re)scheduled onto a node, its volumeMounts mount the PersistentVolumes

associated with its PersistentVolume Claims. Note that, the PersistentVolumes associated with the

Pods’ PersistentVolume Claims are not deleted when the Pods, or StatefulSet are deleted. This must

be done manually.

Deployment and Scaling Guarantees

For a StatefulSet with N replicas, when Pods are being deployed, they are created sequentially, in

order from {0..N-1}.

When Pods are being deleted, they are terminated in reverse order, from {N-1..0}.

Before a scaling operation is applied to a Pod, all of its predecessors must be Running and

Ready.

Before a Pod is terminated, all of its successors must be completely shutdown.

The StatefulSet should not specify a pod.Spec.TerminationGracePeriodSeconds of 0. This

practice is unsafe and strongly discouraged. For further explanation, please refer to force deleting

StatefulSet Pods.

http://releases.k8s.io/master/cluster/addons/dns/README.md
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/tasks/run-application/force-delete-stateful-set-pod/

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 7/8

When the nginx example above is created, three Pods will be deployed in the order web-0, web-1,

web-2. web-1 will not be deployed before web-0 is Running and Ready, and web-2 will not be

deployed until web-1 is Running and Ready. If web-0 should fail, after web-1 is Running and Ready,

but before web-2 is launched, web-2 will not be launched until web-0 is successfully relaunched and

becomes Running and Ready.

If a user were to scale the deployed example by patching the StatefulSet such that replicas=1 ,

web-2 would be terminated �rst. web-1 would not be terminated until web-2 is fully shutdown and

deleted. If web-0 were to fail after web-2 has been terminated and is completely shutdown, but prior

to web-1’s termination, web-1 would not be terminated until web-0 is Running and Ready.

Pod Management Policies

In Kubernetes 1.7 and later, StatefulSet allows you to relax its ordering guarantees while preserving

its uniqueness and identity guarantees via its .spec.podManagementPolicy �eld.

OrderedReady Pod Management

OrderedReady pod management is the default for StatefulSets. It implements the behavior

described above.

Parallel Pod Management

Parallel pod management tells the StatefulSet controller to launch or terminate all Pods in

parallel, and to not wait for Pods to become Running and Ready or completely terminated prior to

launching or terminating another Pod.

Update Strategies

In Kubernetes 1.7 and later, StatefulSet’s .spec.updateStrategy �eld allows you to con�gure and

disable automated rolling updates for containers, labels, resource request/limits, and annotations for

the Pods in a StatefulSet.

On Delete

http://localhost:4000/docs/user-guide/pod-states/

10/23/2017 StatefulSets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/ 8/8

The OnDelete update strategy implements the legacy (1.6 and prior) behavior. It is the default

strategy when spec.updateStrategy is left unspeci�ed. When a StatefulSet’s

.spec.updateStrategy.type is set to OnDelete , the StatefulSet controller will not automatically

update the Pods in a StatefulSet. Users must manually delete Pods to cause the controller to create

new Pods that re�ect modi�cations made to a StatefulSet’s .spec.template .

Rolling Updates

The RollingUpdate update strategy implements automated, rolling update for the Pods in a

StatefulSet. When a StatefulSet’s .spec.updateStrategy.type is set to RollingUpdate , the

StatefulSet controller will delete and recreate each Pod in the StatefulSet. It will proceed in the same

order as Pod termination (from the largest ordinal to the smallest), updating each Pod one at a time.

It will wait until an updated Pod is Running and Ready prior to updating its predecessor.

Partitions

The RollingUpdate update strategy can be partitioned, by specifying a

.spec.updateStrategy.rollingUpdate.partition . If a partition is speci�ed, all Pods with an

ordinal that is greater than or equal to the partition will be updated when the StatefulSet’s

.spec.template is updated. All Pods with an ordinal that is less than the partition will not be

updated, and, even if they are deleted, they will be recreated at the previous version. If a StatefulSet’s

.spec.updateStrategy.rollingUpdate.partition is greater than its .spec.replicas , updates

to its .spec.template will not be propagated to its Pods. In most cases you will not need to use a

partition, but they are useful if you want to stage an update, roll out a canary, or perform a phased roll

out.

What’s next

Follow an example of deploying a stateful application.

Follow an example of deploying Cassandra with Stateful Sets.

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/
http://localhost:4000/docs/tutorials/stateful-application/cassandra/

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 1/8

Daemon Sets

What is a DaemonSet?

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added to the

cluster, Pods are added to them. As nodes are removed from the cluster, those Pods are garbage

collected. Deleting a DaemonSet will clean up the Pods it created.

Some typical uses of a DaemonSet are:

running a cluster storage daemon, such as glusterd , ceph , on each node.

running a logs collection daemon on every node, such as fluentd or logstash .

running a node monitoring daemon on every node, such as Prometheus Node Exporter,

collectd , Datadog agent, New Relic agent, or Ganglia gmond .

In a simple case, one DaemonSet, covering all nodes, would be used for each type of daemon. A

more complex setup might use multiple DaemonSets for a single type of daemon, but with different

What is a DaemonSet?
Writing a DaemonSet Spec

Create a DaemonSet
Required Fields
Pod Template
Pod Selector
Running Pods on Only Some Nodes

How Daemon Pods are Scheduled
Communicating with Daemon Pods
Updating a DaemonSet
Alternatives to DaemonSet

Init Scripts
Bare Pods
Static Pods
Deployments

https://github.com/prometheus/node_exporter

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 2/8

�ags and/or different memory and cpu requests for different hardware types.

Writing a DaemonSet Spec

Create a DaemonSet

You can describe a DaemonSet in a YAML �le. For example, the daemonset.yaml �le below

describes a DaemonSet that runs the �uentd-elasticsearch Docker image:

daemonset.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/daemonset.yaml

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 3/8

daemonset.yaml

Create a DaemonSet based on the YAML �le: kubectl create -f daemonset.yaml

Required Fields

apiVersion: apps/v1beta2
kind: DaemonSet
metadata:
 name: fluentd-elasticsearch
 namespace: kube-system
 labels:
 k8s-app: fluentd-logging
spec:
 selector:
 matchLabels:
 name: fluentd-elasticsearch
 template:
 metadata:
 labels:
 name: fluentd-elasticsearch
 spec:
 containers:
 - name: fluentd-elasticsearch
 image: gcr.io/google-containers/fluentd-elasticsearch:1.20
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: varlibdockercontainers
 mountPath: /var/lib/docker/containers
 readOnly: true
 terminationGracePeriodSeconds: 30
 volumes:
 - name: varlog
 hostPath:
 path: /var/log
 - name: varlibdockercontainers
 hostPath:
 path: /var/lib/docker/containers

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/daemonset.yaml

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 4/8

As with all other Kubernetes con�g, a DaemonSet needs apiVersion , kind , and metadata �elds.

For general information about working with con�g �les, see deploying applications, con�guring

containers, and working with resources documents.

A DaemonSet also needs a .spec section.

Pod Template

The .spec.template is one of the required �elds in .spec .

The .spec.template is a pod template. It has exactly the same schema as a Pod, except it is

nested and does not have an apiVersion or kind .

In addition to required �elds for a Pod, a Pod template in a DaemonSet has to specify appropriate

labels (see pod selector).

A Pod Template in a DaemonSet must have a RestartPolicy equal to Always , or be unspeci�ed,

which defaults to Always .

Pod Selector

The .spec.selector �eld is a pod selector. It works the same as the .spec.selector of a Job.

As of Kubernetes 1.8, you must specify a pod selector that matches the labels of the

.spec.template . The pod selector will no longer be defaulted when left empty. Selector defaulting

was not compatible with kubectl apply . Also, once a DaemonSet is created, its spec.selector

can not be mutated. Mutating the pod selector can lead to the unintentional orphaning of Pods, and

it was found to be confusing to users.

The spec.selector is an object consisting of two �elds:

matchLabels - works the same as the .spec.selector of a ReplicationController.

matchExpressions - allows to build more sophisticated selectors by specifying key, list of

values and an operator that relates the key and values.

When the two are speci�ed the result is ANDed.

http://localhost:4000/docs/user-guide/deploying-applications/
http://localhost:4000/docs/user-guide/configuring-containers/
http://localhost:4000/docs/concepts/tools/kubectl/object-management-overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
http://localhost:4000/docs/concepts/workloads/pods/pod-overview/#pod-templates
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/user-guide/pod-states
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 5/8

If the .spec.selector is speci�ed, it must match the .spec.template.metadata.labels . If not

speci�ed, they are defaulted to be equal. Con�g with these not matching will be rejected by the API.

Also you should not normally create any Pods whose labels match this selector, either directly, via

another DaemonSet, or via other controller such as ReplicaSet. Otherwise, the DaemonSet controller

will think that those Pods were created by it. Kubernetes will not stop you from doing this. One case

where you might want to do this is manually create a Pod with a different value on a node for testing.

If you attempt to create a DaemonSet such that

Running Pods on Only Some Nodes

If you specify a .spec.template.spec.nodeSelector , then the DaemonSet controller will create

Pods on nodes which match that node selector. Likewise if you specify a

.spec.template.spec.affinity , then DaemonSet controller will create Pods on nodes which

match that node a�nity. If you do not specify either, then the DaemonSet controller will create Pods

on all nodes.

How Daemon Pods are Scheduled

Normally, the machine that a Pod runs on is selected by the Kubernetes scheduler. However, Pods

created by the DaemonSet controller have the machine already selected (.spec.nodeName is

speci�ed when the Pod is created, so it is ignored by the scheduler). Therefore:

The unschedulable �eld of a node is not respected by the DaemonSet controller.

The DaemonSet controller can make Pods even when the scheduler has not been started, which

can help cluster bootstrap.

Daemon Pods do respect taints and tolerations, but they are created with NoExecute tolerations for

the following taints with no tolerationSeconds :

node.alpha.kubernetes.io/notReady

node.alpha.kubernetes.io/unreachable

http://localhost:4000/docs/concepts/configuration/assign-pod-node/
http://localhost:4000/docs/concepts/configuration/assign-pod-node/
http://localhost:4000/docs/admin/node/#manual-node-administration
http://localhost:4000/docs/concepts/configuration/assign-pod-node/#taints-and-tolerations-beta-feature

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 6/8

This ensures that when the TaintBasedEvictions alpha feature is enabled, they will not be evicted

when there are node problems such as a network partition. (When the TaintBasedEvictions

feature is not enabled, they are also not evicted in these scenarios, but due to hard-coded behavior of

the NodeController rather than due to tolerations).

They also tolerate following NoSchedule taints:

node.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressure

When the support to critical pods is enabled and the pods in a DaemonSet are labelled as critical, the

Daemon pods are created with an additional NoSchedule toleration for the

node.kubernetes.io/out-of-disk taint.

Note that all above NoSchedule taints above are created only in version 1.8 or later if the alpha

feature TaintNodesByCondition is enabled.

Communicating with Daemon Pods

Some possible patterns for communicating with Pods in a DaemonSet are:

Push: Pods in the DaemonSet are con�gured to send updates to another service, such as a stats

database. They do not have clients.

NodeIP and Known Port: Pods in the DaemonSet can use a hostPort , so that the pods are

reachable via the node IPs. Clients know the list of node IPs somehow, and know the port by

convention.

DNS: Create a headless service with the same pod selector, and then discover DaemonSets

using the endpoints resource or retrieve multiple A records from DNS.

Service: Create a service with the same Pod selector, and use the service to reach a daemon on

a random node. (No way to reach speci�c node.)

Updating a DaemonSet

http://localhost:4000/docs/concepts/services-networking/service/#headless-services

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 7/8

If node labels are changed, the DaemonSet will promptly add Pods to newly matching nodes and

delete Pods from newly not-matching nodes.

You can modify the Pods that a DaemonSet creates. However, Pods do not allow all �elds to be

updated. Also, the DaemonSet controller will use the original template the next time a node (even

with the same name) is created.

You can delete a DaemonSet. If you specify --cascade=false with kubectl , then the Pods will be

left on the nodes. You can then create a new DaemonSet with a different template. The new

DaemonSet with the different template will recognize all the existing Pods as having matching labels.

It will not modify or delete them despite a mismatch in the Pod template. You will need to force new

Pod creation by deleting the Pod or deleting the node.

In Kubernetes version 1.6 and later, you can perform a rolling update on a DaemonSet.

Future releases of Kubernetes will support controlled updating of nodes.

Alternatives to DaemonSet

Init Scripts

It is certainly possible to run daemon processes by directly starting them on a node (e.g. using init

, upstartd , or systemd). This is perfectly �ne. However, there are several advantages to running

such processes via a DaemonSet:

Ability to monitor and manage logs for daemons in the same way as applications.

Same con�g language and tools (e.g. Pod templates, kubectl) for daemons and applications.

Future versions of Kubernetes will likely support integration between DaemonSet-created Pods

and node upgrade work�ows.

Running daemons in containers with resource limits increases isolation between daemons from

app containers. However, this can also be accomplished by running the daemons in a container

but not in a Pod (e.g. start directly via Docker).

Bare Pods

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/

10/23/2017 Daemon Sets - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/ 8/8

It is possible to create Pods directly which specify a particular node to run on. However, a

DaemonSet replaces Pods that are deleted or terminated for any reason, such as in the case of node

failure or disruptive node maintenance, such as a kernel upgrade. For this reason, you should use a

DaemonSet rather than creating individual Pods.

Static Pods

It is possible to create Pods by writing a �le to a certain directory watched by Kubelet. These are

called static pods. Unlike DaemonSet, static Pods cannot be managed with kubectl or other

Kubernetes API clients. Static Pods do not depend on the apiserver, making them useful in cluster

bootstrapping cases. Also, static Pods may be deprecated in the future.

Deployments

DaemonSets are similar to Deployments in that they both create Pods, and those Pods have

processes which are not expected to terminate (e.g. web servers, storage servers).

Use a Deployment for stateless services, like frontends, where scaling up and down the number of

replicas and rolling out updates are more important than controlling exactly which host the Pod runs

on. Use a DaemonSet when it is important that a copy of a Pod always run on all or certain hosts,

and when it needs to start before other Pods.

http://localhost:4000/docs/concepts/cluster-administration/static-pod/
http://localhost:4000/docs/concepts/workloads/controllers/deployment.md

10/23/2017 Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/garbage-collection/ 1/5

Garbage Collection

The role of the Kubernetes garbage collector is to delete certain objects that once had an owner, but

no longer have an owner.

Note: Garbage collection is a beta feature and is enabled by default in Kubernetes version 1.4 and

later.

Owners and dependents

Some Kubernetes objects are owners of other objects. For example, a ReplicaSet is the owner of a

set of Pods. The owned objects are called dependents of the owner object. Every dependent object

has a metadata.ownerReferences �eld that points to the owning object.

Sometimes, Kubernetes sets the value of ownerReference automatically. For example, when you

create a ReplicaSet, Kubernetes automatically sets the ownerReference �eld of each Pod in the

ReplicaSet. In 1.6, Kubernetes automatically sets the value of ownerReference for objects created

or adopted by ReplicationController, ReplicaSet, StatefulSet, DaemonSet, and Deployment.

You can also specify relationships between owners and dependents by manually setting the

ownerReference �eld.

Here’s a con�guration �le for a ReplicaSet that has three Pods:

my-repset.yaml

Owners and dependents
Controlling how the garbage collector deletes dependents

Background cascading deletion
Foreground cascading deletion
Setting the cascading deletion policy
Additional note on Deployments

Known issues
What’s next

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/my-repset.yaml

10/23/2017 Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/garbage-collection/ 2/5

my-repset.yaml

If you create the ReplicaSet and then view the Pod metadata, you can see OwnerReferences �eld:

The output shows that the Pod owner is a ReplicaSet named my-repset:

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: my-repset
spec:
 replicas: 3
 selector:
 matchLabels:
 pod-is-for: garbage-collection-example
 template:
 metadata:
 labels:
 pod-is-for: garbage-collection-example
 spec:
 containers:
 - name: nginx
 image: nginx

kubectl create -f https://k8s.io/docs/concepts/abstractions/controllers/my-repset.
kubectl get pods --output=yaml

apiVersion: v1
kind: Pod
metadata:
 ...
 ownerReferences:
 - apiVersion: extensions/v1beta1
 controller: true
 blockOwnerDeletion: true
 kind: ReplicaSet
 name: my-repset
 uid: d9607e19-f88f-11e6-a518-42010a800195
 ...

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/my-repset.yaml

10/23/2017 Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/garbage-collection/ 3/5

Controlling how the garbage collector deletes
dependents

When you delete an object, you can specify whether the object’s dependents are also deleted

automatically. Deleting dependents automatically is called cascading deletion. There are two modes

of cascading deletion: background and foreground.

If you delete an object without deleting its dependents automatically, the dependents are said to be

orphaned.

Background cascading deletion

In background cascading deletion, Kubernetes deletes the owner object immediately and the garbage

collector then deletes the dependents in the background.

Foreground cascading deletion

In foreground cascading deletion, the root object �rst enters a “deletion in progress” state. In the

“deletion in progress” state, the following things are true:

The object is still visible via the REST API

The object’s deletionTimestamp is set

The object’s metadata.finalizers contains the value “foregroundDeletion”.

Once the “deletion in progress” state is set, the garbage collector deletes the object’s dependents.

Once the garbage collector has deleted all “blocking” dependents (objects with

ownerReference.blockOwnerDeletion=true), it delete the owner object.

Note that in the “foregroundDeletion”, only dependents with ownerReference.blockOwnerDeletion

block the deletion of the owner object. Kubernetes version 1.7 will add an admission controller that

controls user access to set blockOwnerDeletion to true based on delete permissions on the owner

object, so that unauthorized dependents cannot delay deletion of an owner object.

If an object’s ownerReferences �eld is set by a controller (such as Deployment or ReplicaSet),

blockOwnerDeletion is set automatically and you do not need to manually modify this �eld.

10/23/2017 Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/garbage-collection/ 4/5

Setting the cascading deletion policy

To control the cascading deletion policy, set the deleteOptions.propagationPolicy �eld on your

owner object. Possible values include “Orphan”, “Foreground”, or “Background”.

The default garbage collection policy for many controller resources is orphan , including

ReplicationController, ReplicaSet, StatefulSet, DaemonSet, and Deployment. So unless you specify

otherwise, dependent objects are orphaned.

Here’s an example that deletes dependents in background:

Here’s an example that deletes dependents in foreground:

Here’s an example that orphans dependents:

kubectl also supports cascading deletion. To delete dependents automatically using kubectl, set

--cascade to true. To orphan dependents, set --cascade to false. The default value for

--cascade is true.

Here’s an example that orphans the dependents of a ReplicaSet:

kubectl proxy --port=8080
curl -X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicase
-d '{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Background"}' \
-H "Content-Type: application/json"

kubectl proxy --port=8080
curl -X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicase
-d '{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Foreground"}' \
-H "Content-Type: application/json"

kubectl proxy --port=8080
curl -X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicase
-d '{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Orphan"}' \
-H "Content-Type: application/json"

kubectl delete replicaset my-repset --cascade=false

10/23/2017 Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/garbage-collection/ 5/5

Additional note on Deployments

When using cascading deletes with Deployments you must use propagationPolicy: Foreground

to delete not only the ReplicaSets created, but also their Pods. If this type of propagationPolicy is not

used, only the ReplicaSets will be deleted, and the Pods will be orphaned. See kubeadm/#149 for

more information.

Known issues

Tracked at #26120

What’s next

Design Doc 1

Design Doc 2

https://github.com/kubernetes/kubeadm/issues/149#issuecomment-284766613
https://github.com/kubernetes/kubernetes/issues/26120
https://git.k8s.io/community/contributors/design-proposals/api-machinery/garbage-collection.md
https://git.k8s.io/community/contributors/design-proposals/api-machinery/synchronous-garbage-collection.md

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 1/12

Jobs - Run to Completion

What is a Job?

A job creates one or more pods and ensures that a speci�ed number of them successfully terminate.

As pods successfully complete, the job tracks the successful completions. When a speci�ed number

of successful completions is reached, the job itself is complete. Deleting a Job will cleanup the pods

it created.

A simple case is to create one Job object in order to reliably run one Pod to completion. The Job

object will start a new Pod if the �rst pod fails or is deleted (for example due to a node hardware

failure or a node reboot).

A Job can also be used to run multiple pods in parallel.

Running an example Job

What is a Job?
Running an example Job
Writing a Job Spec

Pod Template
Pod Selector
Parallel Jobs

Controlling Parallelism
Handling Pod and Container Failures

Pod Backoff failure policy
Job Termination and Cleanup
Job Patterns
Advanced Usage

Specifying your own pod selector
Alternatives

Bare Pods
Replication Controller
Single Job starts Controller Pod

Cron Jobs

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 2/12

Here is an example Job con�g. It computes π to 2000 places and prints it out. It takes around 10s to

complete.

job.yaml

Run the example job by downloading the example �le and then running this command:

Check on the status of the job using this command:

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 template:
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never
 backoffLimit: 4

$ kubectl create -f ./job.yaml
job "pi" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/job.yaml

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 3/12

To view completed pods of a job, use kubectl get pods --show-all . The --show-all will show

completed pods too.

To list all the pods that belong to a job in a machine readable form, you can use a command like this:

Here, the selector is the same as the selector for the job. The --output=jsonpath option speci�es

an expression that just gets the name from each pod in the returned list.

View the standard output of one of the pods:

$ kubectl describe jobs/pi
Name: pi
Namespace: default
Selector: controller-uid=b1db589a-2c8d-11e6-b324-0209dc45a495
Labels: controller-uid=b1db589a-2c8d-11e6-b324-0209dc45a495
 job-name=pi
Annotations: <none>
Parallelism: 1
Completions: 1
Start Time: Tue, 07 Jun 2016 10:56:16 +0200
Pods Statuses: 0 Running / 1 Succeeded / 0 Failed
Pod Template:
 Labels: controller-uid=b1db589a-2c8d-11e6-b324-0209dc45a495
 job-name=pi
 Containers:
 pi:
 Image: perl
 Port:
 Command:
 perl
 -Mbignum=bpi
 -wle
 print bpi(2000)
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 FirstSeen LastSeen Count From SubobjectPath Type R
 --------- -------- ----- ---- ------------- -------- -
 1m 1m 1 {job-controller } Normal S

$ pods=$(kubectl get pods --show-all --selector=job-name=pi --output=jsonpath={.i
echo $pods
pi-aiw0a

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 4/12

Writing a Job Spec

As with all other Kubernetes con�g, a Job needs apiVersion , kind , and metadata �elds.

A Job also needs a .spec section.

Pod Template

The .spec.template is the only required �eld of the .spec .

The .spec.template is a pod template. It has exactly the same schema as a pod, except it is

nested and does not have an apiVersion or kind .

In addition to required �elds for a Pod, a pod template in a job must specify appropriate labels (see

pod selector) and an appropriate restart policy.

Only a RestartPolicy equal to Never or OnFailure is allowed.

Pod Selector

The .spec.selector �eld is optional. In almost all cases you should not specify it. See section

specifying your own pod selector.

Parallel Jobs

There are three main types of jobs:

1. Non-parallel Jobs

1. normally only one pod is started, unless the pod fails.

2. job is complete as soon as Pod terminates successfully.

2. Parallel Jobs with a �xed completion count:

$ kubectl logs $pods
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
http://localhost:4000/docs/concepts/workloads/pods/pod-overview/#pod-templates
http://localhost:4000/docs/user-guide/pods
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 5/12

1. specify a non-zero positive value for .spec.completions .

2. the job is complete when there is one successful pod for each value in the range 1 to

.spec.completions .

3. not implemented yet: each pod passed a different index in the range 1 to

.spec.completions .

3. Parallel Jobs with a work queue: - do not specify .spec.completions , default to

.spec.Parallelism . - the pods must coordinate with themselves or an external service to

determine what each should work on.

1. each pod is independently capable of determining whether or not all its peers are done, thus

the entire Job is done.

2. when any pod terminates with success, no new pods are created.

3. once at least one pod has terminated with success and all pods are terminated, then the job

is completed with success.

4. once any pod has exited with success, no other pod should still be doing any work or writing

any output. They should all be in the process of exiting.

For a Non-parallel job, you can leave both .spec.completions and .spec.parallelism unset.

When both are unset, both are defaulted to 1.

For a Fixed Completion Count job, you should set .spec.completions to the number of

completions needed. You can set .spec.parallelism , or leave it unset and it will default to 1.

For a Work Queue Job, you must leave .spec.completions unset, and set .spec.parallelism to

a non-negative integer.

For more information about how to make use of the different types of job, see the job patterns

section.

Controlling Parallelism

The requested parallelism (.spec.parallelism) can be set to any non-negative value. If it is

unspeci�ed, it defaults to 1. If it is speci�ed as 0, then the Job is effectively paused until it is

increased.

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 6/12

A job can be scaled up using the kubectl scale command. For example, the following command

sets .spec.parallelism of a job called myjob to 10:

You can also use the scale subresource of the Job resource.

Actual parallelism (number of pods running at any instant) may be more or less than requested

parallelism, for a variety or reasons:

For Fixed Completion Count jobs, the actual number of pods running in parallel will not exceed

the number of remaining completions. Higher values of .spec.parallelism are effectively

ignored.

For work queue jobs, no new pods are started after any pod has succeeded – remaining pods

are allowed to complete, however.

If the controller has not had time to react.

If the controller failed to create pods for any reason (lack of ResourceQuota, lack of permission,

etc.), then there may be fewer pods than requested.

The controller may throttle new pod creation due to excessive previous pod failures in the same

Job.

When a pod is gracefully shutdown, it takes time to stop.

Handling Pod and Container Failures

A Container in a Pod may fail for a number of reasons, such as because the process in it exited with

a non-zero exit code, or the Container was killed for exceeding a memory limit, etc. If this happens,

and the .spec.template.spec.restartPolicy = "OnFailure" , then the Pod stays on the node,

but the Container is re-run. Therefore, your program needs to handle the case when it is restarted

locally, or else specify .spec.template.spec.restartPolicy = "Never" . See pods-states for

more information on restartPolicy .

$ kubectl scale --replicas=$N jobs/myjob
job "myjob" scaled

http://localhost:4000/docs/user-guide/pod-states

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 7/12

An entire Pod can also fail, for a number of reasons, such as when the pod is kicked off the node

(node is upgraded, rebooted, deleted, etc.), or if a container of the Pod fails and the

.spec.template.spec.restartPolicy = "Never" . When a Pod fails, then the Job controller

starts a new Pod. Therefore, your program needs to handle the case when it is restarted in a new

pod. In particular, it needs to handle temporary �les, locks, incomplete output and the like caused by

previous runs.

Note that even if you specify .spec.parallelism = 1 and .spec.completions = 1 and

.spec.template.spec.restartPolicy = "Never" , the same program may sometimes be started

twice.

If you do specify .spec.parallelism and .spec.completions both greater than 1, then there

may be multiple pods running at once. Therefore, your pods must also be tolerant of concurrency.

Pod Backoff failure policy

There are situations where you want to fail a Job after some amount of retries due to a logical error

in con�guration etc. To do so set .spec.template.spec.backoffLimit to specify the number of

retries before considering a Job as failed. The back-off limit is set by default to 6. Failed Pods

associated with the Job are recreated by the Job controller with an exponential back-off delay (10s,

20s, 40s …) capped at six minutes, The back-off limit is reset if no new failed Pods appear before the

Job’s next status check.

Job Termination and Cleanup

When a Job completes, no more Pods are created, but the Pods are not deleted either. Since they are

terminated, they don’t show up with kubectl get pods , but they will show up with

kubectl get pods -a . Keeping them around allows you to still view the logs of completed pods to

check for errors, warnings, or other diagnostic output. The job object also remains after it is

completed so that you can view its status. It is up to the user to delete old jobs after noting their

status. Delete the job with kubectl (e.g. kubectl delete jobs/pi or

kubectl delete -f ./job.yaml). When you delete the job using kubectl , all the pods it created

are deleted too.

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 8/12

If a Job’s pods are failing repeatedly, the Job will keep creating new pods forever, by default. Retrying

forever can be a useful pattern. If an external dependency of the Job’s pods is missing (for example

an input �le on a networked storage volume is not present), then the Job will keep trying Pods, and

when you later resolve the external dependency (for example, creating the missing �le) the Job will

then complete without any further action.

However, if you prefer not to retry forever, you can set a deadline on the job. Do this by setting the

spec.activeDeadlineSeconds �eld of the job to a number of seconds. The job will have status

with reason: DeadlineExceeded . No more pods will be created, and existing pods will be deleted.

Note that both the Job Spec and the Pod Template Spec within the Job have a �eld with the same

name. Set the one on the Job.

Job Patterns

The Job object can be used to support reliable parallel execution of Pods. The Job object is not

designed to support closely-communicating parallel processes, as commonly found in scienti�c

computing. It does support parallel processing of a set of independent but related work items. These

might be emails to be sent, frames to be rendered, �les to be transcoded, ranges of keys in a NoSQL

database to scan, and so on.

apiVersion: batch/v1
kind: Job
metadata:
 name: pi-with-timeout
spec:
 activeDeadlineSeconds: 100
 template:
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never
 backoffLimit: 5

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 9/12

In a complex system, there may be multiple different sets of work items. Here we are just

considering one set of work items that the user wants to manage together — a batch job.

There are several different patterns for parallel computation, each with strengths and weaknesses.

The tradeoffs are:

One Job object for each work item, vs. a single Job object for all work items. The latter is better

for large numbers of work items. The former creates some overhead for the user and for the

system to manage large numbers of Job objects. Also, with the latter, the resource usage of the

job (number of concurrently running pods) can be easily adjusted using the kubectl scale

command.

Number of pods created equals number of work items, vs. each pod can process multiple work

items. The former typically requires less modi�cation to existing code and containers. The latter

is better for large numbers of work items, for similar reasons to the previous bullet.

Several approaches use a work queue. This requires running a queue service, and modi�cations

to the existing program or container to make it use the work queue. Other approaches are easier

to adapt to an existing containerised application.

The tradeoffs are summarized here, with columns 2 to 4 corresponding to the above tradeoffs. The

pattern names are also links to examples and more detailed description.

Pattern Single Job
object

Fewer pods than work
items?

Use app
unmodi�ed?

Works in Kube
1.1?

Job Template Expansion ✓ ✓

Queue with Pod Per Work Item ✓ sometimes ✓

Queue with Variable Pod Count ✓ ✓ ✓

Single Job with Static Work
Assignment ✓ ✓

When you specify completions with .spec.completions , each Pod created by the Job controller

has an identical spec . This means that all pods will have the same command line and the same

image, the same volumes, and (almost) the same environment variables. These patterns are

different ways to arrange for pods to work on different things.

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/
http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 10/12

This table shows the required settings for .spec.parallelism and .spec.completions for each

of the patterns. Here, W is the number of work items.

Pattern .spec.completions .spec.parallelism

Job Template Expansion 1 should be 1

Queue with Pod Per Work Item W any

Queue with Variable Pod Count 1 any

Single Job with Static Work Assignment W any

Advanced Usage

Specifying your own pod selector

Normally, when you create a job object, you do not specify spec.selector . The system defaulting

logic adds this �eld when the job is created. It picks a selector value that will not overlap with any

other jobs.

However, in some cases, you might need to override this automatically set selector. To do this, you

can specify the spec.selector of the job.

Be very careful when doing this. If you specify a label selector which is not unique to the pods of that

job, and which matches unrelated pods, then pods of the unrelated job may be deleted, or this job

may count other pods as completing it, or one or both of the jobs may refuse to create pods or run to

completion. If a non-unique selector is chosen, then other controllers (e.g. ReplicationController) and

their pods may behave in unpredictable ways too. Kubernetes will not stop you from making a

mistake when specifying spec.selector .

Here is an example of a case when you might want to use this feature.

Say job old is already running. You want existing pods to keep running, but you want the rest of the

pods it creates to use a different pod template and for the job to have a new name. You cannot

update the job because these �elds are not updatable. Therefore, you delete job old but leave its

pods running, using kubectl delete jobs/old --cascade=false . Before deleting it, you make a

note of what selector it uses:

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/
http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 11/12

Then you create a new job with name new and you explicitly specify the same selector. Since the

existing pods have label job-uid=a8f3d00d-c6d2-11e5-9f87-42010af00002 , they are controlled

by job new as well.

You need to specify manualSelector: true in the new job since you are not using the selector that

the system normally generates for you automatically.

The new Job itself will have a different uid from a8f3d00d-c6d2-11e5-9f87-42010af00002 . Setting

manualSelector: true tells the system to that you know what you are doing and to allow this

mismatch.

Alternatives

Bare Pods

When the node that a pod is running on reboots or fails, the pod is terminated and will not be

restarted. However, a Job will create new pods to replace terminated ones. For this reason, we

kind: Job
metadata:
 name: old
 ...
spec:
 selector:
 matchLabels:
 job-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002
 ...

kind: Job
metadata:
 name: new
 ...
spec:
 manualSelector: true
 selector:
 matchLabels:
 job-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002
 ...

10/23/2017 Jobs - Run to Completion - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/ 12/12

recommend that you use a job rather than a bare pod, even if your application requires only a single

pod.

Replication Controller

Jobs are complementary to Replication Controllers. A Replication Controller manages pods which

are not expected to terminate (e.g. web servers), and a Job manages pods that are expected to

terminate (e.g. batch jobs).

As discussed in Pod Lifecycle, Job is only appropriate for pods with RestartPolicy equal to

OnFailure or Never . (Note: If RestartPolicy is not set, the default value is Always .)

Single Job starts Controller Pod

Another pattern is for a single Job to create a pod which then creates other pods, acting as a sort of

custom controller for those pods. This allows the most �exibility, but may be somewhat complicated

to get started with and offers less integration with Kubernetes.

One example of this pattern would be a Job which starts a Pod which runs a script that in turn starts

a Spark master controller (see spark example), runs a spark driver, and then cleans up.

An advantage of this approach is that the overall process gets the completion guarantee of a Job

object, but complete control over what pods are created and how work is assigned to them.

Cron Jobs

Support for creating Jobs at speci�ed times/dates (i.e. cron) is available in Kubernetes 1.4. More

information is available in the cron job documents

http://localhost:4000/docs/user-guide/replication-controller
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
https://github.com/kubernetes/examples/tree/master/staging/spark/README.md
https://github.com/kubernetes/kubernetes/pull/11980
http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/

10/23/2017 Cron Jobs - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/ 1/6

Cron Jobs

What is a cron job?

A Cron Job manages time based Jobs, namely:

Once at a speci�ed point in time

Repeatedly at a speci�ed point in time

One CronJob object is like one line of a crontab (cron table) �le. It runs a job periodically on a given

schedule, written in Cron format.

Note: The question mark (?) in the schedule has the same meaning as an asterisk * , that is, it

stands for any of available value for a given �eld.

Note: CronJob resource in batch/v2alpha1 API group has been deprecated starting from cluster

version 1.8. You should switch to using batch/v1beta1 , instead, which is enabled by default in the

API server. Further in this document, we will be using batch/v1beta1 in all the examples.

A typical use case is:

Schedule a job execution at a given point in time.

What is a cron job?
Prerequisites

Creating a Cron Job
Deleting a Cron Job
Cron Job Limitations
Writing a Cron Job Spec

Schedule
Job Template
Starting Deadline Seconds
Concurrency Policy
Suspend
Jobs History Limits

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
https://en.wikipedia.org/wiki/Cron

10/23/2017 Cron Jobs - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/ 2/6

Create a periodic job, e.g. database backup, sending emails.

Prerequisites

You need a working Kubernetes cluster at version >= 1.8 (for CronJob). For previous versions of

cluster (< 1.8) you need to explicitly enable batch/v2alpha1 API by passing

--runtime-config=batch/v2alpha1=true to the API server (see Turn on or off an API version for

your cluster for more).

Creating a Cron Job

Here is an example Cron Job. Every minute, it runs a simple job to print current time and then say

hello.

cronjob.yaml

Run the example cron job by downloading the example �le and then running this command:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: hello
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: hello
 image: busybox
 args:
 - /bin/sh
 - -c
 - date; echo Hello from the Kubernetes cluster
 restartPolicy: OnFailure

$ kubectl create -f ./cronjob.yaml
cronjob "hello" created

http://localhost:4000/docs/admin/cluster-management/#turn-on-or-off-an-api-version-for-your-cluster
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/workloads/controllers/cronjob.yaml

10/23/2017 Cron Jobs - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/ 3/6

Alternatively, use kubectl run to create a cron job without writing full con�g:

After creating the cron job, get its status using this command:

As you can see above, there’s no active job yet, and no job has been scheduled, either.

Watch for the job to be created in around one minute:

Now you’ve seen one running job scheduled by “hello”. We can stop watching it and get the cron job

again:

You should see that “hello” successfully scheduled a job at the time speci�ed in LAST-SCHEDULE .

There are currently 0 active jobs, meaning that the job that’s scheduled is completed or failed.

Now, �nd the pods created by the job last scheduled and view the standard output of one of the

pods. Note that your job name and pod name would be different.

$ kubectl run hello --schedule="*/1 * * * *" --restart=OnFailure --image=busybox -
cronjob "hello" created

$ kubectl get cronjob hello
NAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULE
hello */1 * * * * False 0 <none>

$ kubectl get jobs --watch
NAME DESIRED SUCCESSFUL AGE
hello-4111706356 1 1 2s

$ kubectl get cronjob hello
NAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULE
hello */1 * * * * False 0 Mon, 29 Aug 2016 14:34:00 -0700

10/23/2017 Cron Jobs - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/ 4/6

Deleting a Cron Job

Once you don’t need a cron job anymore, simply delete it with kubectl :

This stops new jobs from being created and removes all the jobs and pods created by this cronjob.

You can read more about it in garbage collection section.

Cron Job Limitations

A cron job creates a job object about once per execution time of its schedule. We say “about”

because there are certain circumstances where two jobs might be created, or no job might be

created. We attempt to make these rare, but do not completely prevent them. Therefore, jobs should

be idempotent.

The job is responsible for retrying pods, parallelism among pods it creates, and determining the

success or failure of the set of pods. A cron job does not examine pods at all.

Writing a Cron Job Spec

As with all other Kubernetes con�gs, a cron job needs apiVersion , kind , and metadata �elds. For

general information about working with con�g �les, see deploying applications, con�guring

Replace "hello-4111706356" with the job name in your system
$ pods=$(kubectl get pods --selector=job-name=hello-4111706356 --output=jsonpath={

$ echo $pods
hello-4111706356-o9qcm

$ kubectl logs $pods
Mon Aug 29 21:34:09 UTC 2016
Hello from the Kubernetes cluster

$ kubectl delete cronjob hello
cronjob "hello" deleted

http://localhost:4000/docs/concepts/workloads/controllers/garbage-collection/
http://localhost:4000/docs/user-guide/deploying-applications
http://localhost:4000/docs/user-guide/configuring-containers

10/23/2017 Cron Jobs - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/ 5/6

containers, and using kubectl to manage resources documents.

A cron job also needs a .spec section.

Note: All modi�cations to a cron job, especially its .spec , will be applied only to the next run.

Schedule

The .spec.schedule is a required �eld of the .spec . It takes a Cron format string, e.g. 0 * * * *

or @hourly , as schedule time of its jobs to be created and executed.

Job Template

The .spec.jobTemplate is another required �eld of the .spec . It is a job template. It has exactly

the same schema as a Job, except it is nested and does not have an apiVersion or kind , see

Writing a Job Spec.

Starting Deadline Seconds

The .spec.startingDeadlineSeconds �eld is optional. It stands for the deadline (in seconds) for

starting the job if it misses its scheduled time for any reason. Missed jobs executions will be counted

as failed ones. If not speci�ed, there’s no deadline.

Concurrency Policy

The .spec.concurrencyPolicy �eld is also optional. It speci�es how to treat concurrent

executions of a job created by this cron job. Only one of the following concurrent policies may be

speci�ed:

Allow (default): allows concurrently running jobs

Forbid : forbids concurrent runs, skipping next run if previous hasn’t �nished yet

Replace : cancels currently running job and replaces it with a new one

Note that concurrency policy only applies to the jobs created by the same cron job. If there are

multiple cron jobs, their respective jobs are always allowed to run concurrently.

http://localhost:4000/docs/user-guide/configuring-containers
http://localhost:4000/docs/user-guide/working-with-resources
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
https://en.wikipedia.org/wiki/Cron
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/#writing-a-job-spec

10/23/2017 Cron Jobs - Kubernetes

http://localhost:4000/docs/concepts/workloads/controllers/cron-jobs/ 6/6

Suspend

The .spec.suspend �eld is also optional. If set to true , all subsequent executions will be

suspended. It does not apply to already started executions. Defaults to false.

Jobs History Limits

The .spec.successfulJobsHistoryLimit and .spec.failedJobsHistoryLimit �elds are

optional. These �elds specify how many completed and failed jobs should be kept. By default, they

are set to 3 and 1 respectively. Setting a limit to 0 corresponds to keeping none of the

corresponding kind of jobs after they �nish.

10/23/2017 Configuration Best Practices - Kubernetes

http://localhost:4000/docs/concepts/configuration/overview/ 1/5

Con�guration Best Practices

This document highlights and consolidates con�guration best practices that are introduced

throughout the user-guide, getting-started documentation, and examples.

This is a living document. If you think of something that is not on this list but might be useful to

others, please don’t hesitate to �le an issue or submit a PR.

General Con�g Tips

When de�ning con�gurations, specify the latest stable API version (currently v1).

Con�guration �les should be stored in version control before being pushed to the cluster. This

allows quick roll-back of a con�guration if needed. It also aids with cluster re-creation and

restoration if necessary.

Write your con�guration �les using YAML rather than JSON. Though these formats can be used

interchangeably in almost all scenarios, YAML tends to be more user-friendly.

Group related objects into a single �le whenever it makes sense. One �le is often easier to

manage than several. See the guestbook-all-in-one.yaml �le as an example of this syntax.

Note also that many kubectl commands can be called on a directory, so you can also call

kubectl create on a directory of con�g �les. See below for more details.

Don’t specify default values unnecessarily, in order to simplify and minimize con�gs, and to

reduce error. For example, omit the selector and labels in a ReplicationController if you

want them to be the same as the labels in its podTemplate , since those �elds are populated

General Con�g Tips
“Naked” Pods vs Replication Controllers and Jobs
Services
Using Labels
Container Images
Using kubectl

https://github.com/kubernetes/examples/tree/master/guestbook/all-in-one/guestbook-all-in-one.yaml

10/23/2017 Configuration Best Practices - Kubernetes

http://localhost:4000/docs/concepts/configuration/overview/ 2/5

from the podTemplate labels by default. See the guestbook app’s .yaml �les for some examples

of this.

Put an object description in an annotation to allow better introspection.

“Naked” Pods vs Replication Controllers and Jobs

If there is a viable alternative to naked pods (in other words: pods not bound to a replication

controller), go with the alternative. Naked pods will not be rescheduled in the event of node

failure.

Replication controllers are almost always preferable to creating pods, except for some explicit

restartPolicy: Never scenarios. A Job object (currently in Beta) may also be appropriate.

Services

It’s typically best to create a service before corresponding replication controllers. This lets the

scheduler spread the pods that comprise the service.

You can also use this process to ensure that at least one replica works before creating lots of

them:

1. Create a replication controller without specifying replicas (this will set replicas=1);

2. Create a service;

3. Then scale up the replication controller.

Don’t use hostPort unless it is absolutely necessary (for example: for a node daemon). It

speci�es the port number to expose on the host. When you bind a Pod to a hostPort , there are

a limited number of places to schedule a pod due to port con�icts— you can only schedule as

many such Pods as there are nodes in your Kubernetes cluster.

If you only need access to the port for debugging purposes, you can use the kubectl proxy and

apiserver proxy or kubectl port-forward. You can use a Service object for external service

access.

https://github.com/kubernetes/examples/tree/master/guestbook/
https://github.com/kubernetes/examples/tree/master/guestbook/frontend-deployment.yaml
http://localhost:4000/docs/user-guide/replication-controller
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/
http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api/
http://localhost:4000/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Configuration Best Practices - Kubernetes

http://localhost:4000/docs/concepts/configuration/overview/ 3/5

If you explicitly need to expose a pod’s port on the host machine, consider using a NodePort

service before resorting to hostPort .

Avoid using hostNetwork , for the same reasons as hostPort .

Use headless services for easy service discovery when you don’t need kube-proxy load

balancing. See headless services.

Using Labels

De�ne and use labels that identify semantic attributes of your application or deployment. For

example, instead of attaching a label to a set of pods to explicitly represent some service (For

example, service: myservice), or explicitly representing the replication controller managing

the pods (for example, controller: mycontroller), attach labels that identify semantic

attributes, such as { app: myapp, tier: frontend, phase: test, deployment: v3 } . This will let you select

the object groups appropriate to the context— for example, a service for all “tier: frontend” pods,

or all “test” phase components of app “myapp”. See the guestbook app for an example of this

approach.

A service can be made to span multiple deployments, such as is done across rolling updates, by

simply omitting release-speci�c labels from its selector, rather than updating a service’s selector

to match the replication controller’s selector fully.

To facilitate rolling updates, include version info in replication controller names, for example as a

su�x to the name. It is useful to set a ‘version’ label as well. The rolling update creates a new

controller as opposed to modifying the existing controller. So, there will be issues with version-

agnostic controller names. See the documentation on the rolling-update command for more

detail.

Note that the Deployment object obviates the need to manage replication controller ‘version

names’. A desired state of an object is described by a Deployment, and if changes to that spec

are applied, the deployment controller changes the actual state to the desired state at a

controlled rate. (Deployment objects are currently part of the extensions API Group.)

You can manipulate labels for debugging. Because Kubernetes replication controllers and

services match to pods using labels, this allows you to remove a pod from being considered by a

controller, or served tra�c by a service, by removing the relevant selector labels. If you remove

http://localhost:4000/docs/concepts/services-networking/service/#type-nodeport
http://localhost:4000/docs/concepts/services-networking/service/#headless-services
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
https://github.com/kubernetes/examples/tree/master/guestbook/
http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/
http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/overview/kubernetes-api/#api-groups

10/23/2017 Configuration Best Practices - Kubernetes

http://localhost:4000/docs/concepts/configuration/overview/ 4/5

the labels of an existing pod, its controller will create a new pod to take its place. This is a useful

way to debug a previously “live” pod in a quarantine environment. See the kubectl label

command.

Container Images

The default container image pull policy is IfNotPresent , which causes the Kubelet to not pull

an image if it already exists. If you would like to always force a pull, you must specify a pull

image policy of Always in your .yaml �le (imagePullPolicy: Always) or specify a :latest

tag on your image.

That is, if you’re specifying an image with other than the :latest tag, for example myimage:v1

, and there is an image update to that same tag, the Kubelet won’t pull the updated image. You

can address this by ensuring that any updates to an image bump the image tag as well (for

example, myimage:v2), and ensuring that your con�gs point to the correct version.

Note: You should avoid using :latest tag when deploying containers in production, because

this makes it hard to track which version of the image is running and hard to roll back.

To work only with a speci�c version of an image, you can specify an image with its digest

(SHA256). This approach guarantees that the image will never update. For detailed information

about working with image digests, see the Docker documentation.

Using kubectl

Use kubectl create -f <directory> where possible. This looks for con�g objects in all

.yaml , .yml , and .json �les in <directory> and passes them to create .

Use kubectl delete rather than stop . Delete has a superset of the functionality of stop ,

and stop is deprecated.

Use kubectl bulk operations (via �les and/or labels) for get and delete. See label selectors and

using labels effectively.

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
http://localhost:4000/docs/concepts/containers/images/
http://localhost:4000/docs/admin/kubelet/
https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#label-selectors
http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/#using-labels-effectively

10/23/2017 Configuration Best Practices - Kubernetes

http://localhost:4000/docs/concepts/configuration/overview/ 5/5

Use kubectl run and expose to quickly create and expose single container Deployments. See

the quick start guide for an example.

http://localhost:4000/docs/user-guide/quick-start/

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 1/15

Managing Compute Resources for
Containers

When you specify a Pod, you can optionally specify how much CPU and memory (RAM) each

Container needs. When Containers have resource requests speci�ed, the scheduler can make better

decisions about which nodes to place Pods on. And when Containers have their limits speci�ed,

contention for resources on a node can be handled in a speci�ed manner. For more details about the

difference between requests and limits, see Resource QoS.

Resource types

CPU and memory are each a resource type. A resource type has a base unit. CPU is speci�ed in units

of cores, and memory is speci�ed in units of bytes.

Resource types
Resource requests and limits of Pod and Container
Meaning of CPU
Meaning of memory
How Pods with resource requests are scheduled
How Pods with resource limits are run
Monitoring compute resource usage
Troubleshooting

My Pods are pending with event message failedScheduling
My Container is terminated

Local ephemeral storage (alpha feature)
Requests and limits setting for local ephemeral storage
How Pods with ephemeral-storage requests are scheduled
How Pods with ephemeral-storage limits run

Opaque integer resources (alpha feature)
Extended Resources
Planned Improvements
What’s next

http://localhost:4000/docs/user-guide/pods
https://git.k8s.io/community/contributors/design-proposals/node/resource-qos.md

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 2/15

CPU and memory are collectively referred to as compute resources, or just resources. Compute

resources are measurable quantities that can be requested, allocated, and consumed. They are

distinct from API resources. API resources, such as Pods and Services are objects that can be read

and modi�ed through the Kubernetes API server.

Resource requests and limits of Pod and Container

Each Container of a Pod can specify one or more of the following:

spec.containers[].resources.limits.cpu

spec.containers[].resources.limits.memory

spec.containers[].resources.requests.cpu

spec.containers[].resources.requests.memory

Although requests and limits can only be speci�ed on individual Containers, it is convenient to talk

about Pod resource requests and limits. A Pod resource request/limit for a particular resource type is

the sum of the resource requests/limits of that type for each Container in the Pod.

Meaning of CPU

Limits and requests for CPU resources are measured in cpu units. One cpu, in Kubernetes, is

equivalent to:

1 AWS vCPU

1 GCP Core

1 Azure vCore

1 Hyperthread on a bare-metal Intel processor with Hyperthreading

Fractional requests are allowed. A Container with spec.containers[].resources.requests.cpu

of 0.5 is guaranteed half as much CPU as one that asks for 1 CPU. The expression 0.1 is

equivalent to the expression 100m , which can be read as “one hundred millicpu”. Some people say

http://localhost:4000/docs/concepts/overview/kubernetes-api/
http://localhost:4000/docs/user-guide/services

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 3/15

“one hundred millicores”, and this is understood to mean the same thing. A request with a decimal

point, like 0.1 , is converted to 100m by the API, and precision �ner than 1m is not allowed. For this

reason, the form 100m might be preferred.

CPU is always requested as an absolute quantity, never as a relative quantity; 0.1 is the same

amount of CPU on a single-core, dual-core, or 48-core machine.

Meaning of memory

Limits and requests for memory are measured in bytes. You can express memory as a plain integer

or as a �xed-point integer using one of these su�xes: E, P, T, G, M, K. You can also use the power-of-

two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following represent roughly the same value:

Here’s an example. The following Pod has two Containers. Each Container has a request of 0.25 cpu

and 64MiB (226 bytes) of memory. Each Container has a limit of 0.5 cpu and 128MiB of memory. You

can say the Pod has a request of 0.5 cpu and 128 MiB of memory, and a limit of 1 cpu and 256MiB of

memory.

128974848, 129e6, 129M, 123Mi

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 4/15

How Pods with resource requests are scheduled

When you create a Pod, the Kubernetes scheduler selects a node for the Pod to run on. Each node

has a maximum capacity for each of the resource types: the amount of CPU and memory it can

provide for Pods. The scheduler ensures that, for each resource type, the sum of the resource

requests of the scheduled Containers is less than the capacity of the node. Note that although actual

memory or CPU resource usage on nodes is very low, the scheduler still refuses to place a Pod on a

node if the capacity check fails. This protects against a resource shortage on a node when resource

usage later increases, for example, during a daily peak in request rate.

How Pods with resource limits are run

When the kubelet starts a Container of a Pod, it passes the CPU and memory limits to the container

runtime.

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: db
 image: mysql
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 - name: wp
 image: wordpress
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 5/15

When using Docker:

The spec.containers[].resources.requests.cpu is converted to its core value, which is

potentially fractional, and multiplied by 1024. The greater of this number or 2 is used as the

value of the --cpu-shares �ag in the docker run command.

The spec.containers[].resources.limits.cpu is converted to its millicore value and

multiplied by 100. The resulting value is the total amount of CPU time that a container can use

every 100ms. A container cannot use more than its share of CPU time during this interval.

Note: The default quota period is 100ms. The minimum resolution of CPU quota is 1ms.

The spec.containers[].resources.limits.memory is converted to an integer, and used as

the value of the --memory �ag in the docker run command.

If a Container exceeds its memory limit, it might be terminated. If it is restartable, the kubelet will

restart it, as with any other type of runtime failure.

If a Container exceeds its memory request, it is likely that its Pod will be evicted whenever the node

runs out of memory.

A Container might or might not be allowed to exceed its CPU limit for extended periods of time.

However, it will not be killed for excessive CPU usage.

To determine whether a Container cannot be scheduled or is being killed due to resource limits, see

the Troubleshooting section.

Monitoring compute resource usage

The resource usage of a Pod is reported as part of the Pod status.

If optional monitoring is con�gured for your cluster, then Pod resource usage can be retrieved from

the monitoring system.

Troubleshooting

https://docs.docker.com/engine/reference/run/#/cpu-share-constraint
https://docs.docker.com/engine/reference/run/#/user-memory-constraints
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/README.md

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 6/15

My Pods are pending with event message failedScheduling

If the scheduler cannot �nd any node where a Pod can �t, the Pod remains unscheduled until a place

can be found. An event is produced each time the scheduler fails to �nd a place for the Pod, like this:

In the preceding example, the Pod named “frontend” fails to be scheduled due to insu�cient CPU

resource on the node. Similar error messages can also suggest failure due to insu�cient memory

(PodExceedsFreeMemory). In general, if a Pod is pending with a message of this type, there are

several things to try:

Add more nodes to the cluster.

Terminate unneeded Pods to make room for pending Pods.

Check that the Pod is not larger than all the nodes. For example, if all the nodes have a capacity

of cpu: 1 , then a Pod with a request of cpu: 1.1 will never be scheduled.

You can check node capacities and amounts allocated with the kubectl describe nodes

command. For example:

$ kubectl describe pod frontend | grep -A 3 Events
Events:
 FirstSeen LastSeen Count From Subobject PathReason Message
 36s 5s 6 {scheduler } FailedScheduling Failed for reaso

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 7/15

In the preceding output, you can see that if a Pod requests more than 1120m CPUs or 6.23Gi of

memory, it will not �t on the node.

By looking at the Pods section, you can see which Pods are taking up space on the node.

The amount of resources available to Pods is less than the node capacity, because system daemons

use a portion of the available resources. The allocatable �eld NodeStatus gives the amount of

resources that are available to Pods. For more information, see Node Allocatable Resources.

The resource quota feature can be con�gured to limit the total amount of resources that can be

consumed. If used in conjunction with namespaces, it can prevent one team from hogging all the

resources.

My Container is terminated

$ kubectl describe nodes e2e-test-minion-group-4lw4
Name: e2e-test-minion-group-4lw4
[... lines removed for clarity ...]
Capacity:
 alpha.kubernetes.io/nvidia-gpu: 0
 cpu: 2
 memory: 7679792Ki
 pods: 110
Allocatable:
 alpha.kubernetes.io/nvidia-gpu: 0
 cpu: 1800m
 memory: 7474992Ki
 pods: 110
[... lines removed for clarity ...]
Non-terminated Pods: (5 in total)
 Namespace Name CPU Requests CPU Limits Mem
 --------- ---- ------------ ---------- ---
 kube-system fluentd-gcp-v1.38-28bv1 100m (5%) 0 (0%) 200
 kube-system kube-dns-3297075139-61lj3 260m (13%) 0 (0%) 100
 kube-system kube-proxy-e2e-test-... 100m (5%) 0 (0%) 0 (
 kube-system monitoring-influxdb-grafana-v4-z1m12 200m (10%) 200m (10%) 600
 kube-system node-problem-detector-v0.1-fj7m3 20m (1%) 200m (10%) 20M
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 680m (34%) 400m (20%) 920Mi (12%) 1070Mi (14%)

http://localhost:4000/docs/resources-reference/v1.8/#nodestatus-v1-core
https://git.k8s.io/community/contributors/design-proposals/node/node-allocatable.md
http://localhost:4000/docs/concepts/policy/resource-quotas/

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 8/15

Your Container might get terminated because it is resource-starved. To check whether a Container is

being killed because it is hitting a resource limit, call kubectl describe pod on the Pod of interest:

In the preceding example, the Restart Count: 5 indicates that the simmemleak Container in the

Pod was terminated and restarted �ve times.

You can call kubectl get pod with the -o go-template=... option to fetch the status of

previously terminated Containers:

[12:54:41] $ kubectl describe pod simmemleak-hra99
Name: simmemleak-hra99
Namespace: default
Image(s): saadali/simmemleak
Node: kubernetes-node-tf0f/10.240.216.66
Labels: name=simmemleak
Status: Running
Reason:
Message:
IP: 10.244.2.75
Replication Controllers: simmemleak (1/1 replicas created)
Containers:
 simmemleak:
 Image: saadali/simmemleak
 Limits:
 cpu: 100m
 memory: 50Mi
 State: Running
 Started: Tue, 07 Jul 2015 12:54:41 -0700
 Last Termination State: Terminated
 Exit Code: 1
 Started: Fri, 07 Jul 2015 12:54:30 -0700
 Finished: Fri, 07 Jul 2015 12:54:33 -0700
 Ready: False
 Restart Count: 5
Conditions:
 Type Status
 Ready False
Events:
 FirstSeen LastSeen Count From
 Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {sched
 Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubel
 Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubel
 Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubel
 Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubel

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 9/15

You can see that the Container was terminated because of reason:OOM Killed , where OOM stands

for Out Of Memory.

Local ephemeral storage (alpha feature)

Kubernetes version 1.8 introduces a new resource, ephemeral-storage for managing local ephemeral

storage. In each Kubernetes node, kubelet’s root directory (/var/lib/kubelet by default) and log

directory (/var/log) are stored on the root partition of the node. This partition is also shared and

consumed by pods via EmptyDir volumes, container logs, image layers and container writable layers.

This partition is “ephemeral” and applications cannot expect any performance SLAs (Disk IOPS for

example) from this partition. Local ephemeral storage management only applies for the root

partition; the optional partition for image layer and writable layer is out of scope.

Note: If an optional runntime partition is used, root parition will not hold any image layer or

writable layers.

Requests and limits setting for local ephemeral storage

Each Container of a Pod can specify one or more of the following:

spec.containers[].resources.limits.ephemeral-storage

spec.containers[].resources.requests.ephemeral-storage

Limits and requests for ephemeral-storage are measured in bytes. You can express storage as a

plain integer or as a �xed-point integer using one of these su�xes: E, P, T, G, M, K. You can also use

the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following represent roughly the

same value:

[13:59:01] $ kubectl get pod -o go-template='{{range.status.containerStatuses}}{{"
Container Name: simmemleak
LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 10/15

For example, the following Pod has two Containers. Each Container has a request of 2GiB of local

ephemeral storage. Each Container has a limit of 4GiB of local ephemeral storage. Therefore, the Pod

has a request of 4GiB of local ephemeral storage, and a limit of 8GiB of storage.

How Pods with ephemeral-storage requests are scheduled

When you create a Pod, the Kubernetes scheduler selects a node for the Pod to run on. Each node

has a maximum amount of local ephemeral storage it can provide for Pods. (For more information,

see “Node Allocatable” The scheduler ensures that the sum of the resource requests of the

scheduled Containers is less than the capacity of the node.

How Pods with ephemeral-storage limits run

For container-level isolation, if a Container’s writable layer and logs usage exceeds its storage limit,

the pod will be evicted. For pod-level isolation, if the sum of the local ephemeral storage usage from

all containers and also the pod’s EmptyDir volumes exceeds the limit, the pod will be evicted.

128974848, 129e6, 129M, 123Mi

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: db
 image: mysql
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 - name: wp
 image: wordpress
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 11/15

Opaque integer resources (alpha feature)

DEPRECATION NOTICE: As of Kubernetes v1.8 , this has been deprecated

Kubernetes version 1.5 introduces Opaque integer resources. Opaque integer resources allow cluster

operators to advertise new node-level resources that would be otherwise unknown to the system.

Users can consume these resources in Pod specs just like CPU and memory. The scheduler takes

care of the resource accounting so that no more than the available amount is simultaneously

allocated to Pods.

Note: Opaque Integer Resources will be removed in version 1.9. Extended Resources are a

replacement for Opaque Integer Resources. Users can use any domain name pre�x outside of

the kubernetes.io/ domain instead of the previous

pod.alpha.kubernetes.io/opaque-int-resource- pre�x.

Opaque integer resources are resources that begin with the pre�x

pod.alpha.kubernetes.io/opaque-int-resource- . The API server restricts quantities of these

resources to whole numbers. Examples of valid quantities are 3 , 3000m and 3Ki . Examples of

invalid quantities are 0.5 and 1500m .

There are two steps required to use opaque integer resources. First, the cluster operator must

advertise a per-node opaque resource on one or more nodes. Second, users must request the

opaque resource in Pods.

To advertise a new opaque integer resource, the cluster operator should submit a PATCH HTTP

request to the API server to specify the available quantity in the status.capacity for a node in the

cluster. After this operation, the node’s status.capacity will include a new resource. The

status.allocatable �eld is updated automatically with the new resource asynchronously by the

kubelet. Note that because the scheduler uses the node status.allocatable value when

evaluating Pod �tness, there may be a short delay between patching the node capacity with a new

resource and the �rst pod that requests the resource to be scheduled on that node.

Example:

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 12/15

Here is an example showing how to use curl to form an HTTP request that advertises �ve “foo”

resources on node k8s-node-1 whose master is k8s-master .

Note: In the preceding request, ~1 is the encoding for the character / in the patch path. The

operation path value in JSON-Patch is interpreted as a JSON-Pointer. For more details, see IETF RFC

6901, section 3.

To consume an opaque resource in a Pod, include the name of the opaque resource as a key in the

spec.containers[].resources.requests map.

The Pod is scheduled only if all of the resource requests are satis�ed, including cpu, memory and

any opaque resources. The Pod will remain in the PENDING state as long as the resource request

cannot be met by any node.

Example:

The Pod below requests 2 cpus and 1 “foo” (an opaque resource.)

Extended Resources

curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "add", "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-i
http://k8s-master:8080/api/v1/nodes/k8s-node-1/status

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: myimage
 resources:
 requests:
 cpu: 2
 pod.alpha.kubernetes.io/opaque-int-resource-foo: 1

https://tools.ietf.org/html/rfc6901#section-3

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 13/15

Kubernetes version 1.8 introduces Extended Resources. Extended Resources are fully-quali�ed

resource names outside the kubernetes.io domain. Extended Resources allow cluster operators

to advertise new node-level resources that would be otherwise unknown to the system. Extended

Resource quantities must be integers and cannot be overcommitted.

Users can consume Extended Resources in Pod specs just like CPU and memory. The scheduler

takes care of the resource accounting so that no more than the available amount is simultaneously

allocated to Pods.

The API server restricts quantities of Extended Resources to whole numbers. Examples of valid

quantities are 3 , 3000m and 3Ki . Examples of invalid quantities are 0.5 and 1500m .

Note: Extended Resources replace Opaque Integer Resources. Users can use any domain

name pre�x outside of the kubernetes.io/ domain instead of the previous

pod.alpha.kubernetes.io/opaque-int-resource- pre�x.

There are two steps required to use Extended Resources. First, the cluster operator must advertise a

per-node Extended Resource on one or more nodes. Second, users must request the Extended

Resource in Pods.

To advertise a new Extended Resource, the cluster operator should submit a PATCH HTTP request

to the API server to specify the available quantity in the status.capacity for a node in the cluster.

After this operation, the node’s status.capacity will include a new resource. The

status.allocatable �eld is updated automatically with the new resource asynchronously by the

kubelet. Note that because the scheduler uses the node status.allocatable value when

evaluating Pod �tness, there may be a short delay between patching the node capacity with a new

resource and the �rst pod that requests the resource to be scheduled on that node.

Example:

Here is an example showing how to use curl to form an HTTP request that advertises �ve

“example.com/foo” resources on node k8s-node-1 whose master is k8s-master .

curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]
http://k8s-master:8080/api/v1/nodes/k8s-node-1/status

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 14/15

Note: In the preceding request, ~1 is the encoding for the character / in the patch path. The

operation path value in JSON-Patch is interpreted as a JSON-Pointer. For more details, see

IETF RFC 6901, section 3.

To consume an Extended Resource in a Pod, include the resource name as a key in the

spec.containers[].resources.requests map.

Note: Extended resources cannot be overcommitted, so request and limit must be equal if

both are present in a container spec.

The Pod is scheduled only if all of the resource requests are satis�ed, including cpu, memory and

any Extended Resources. The Pod will remain in the PENDING state as long as the resource request

cannot be met by any node.

Example:

The Pod below requests 2 cpus and 1 “example.com/foo” (an extended resource.)

Planned Improvements

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-container
 image: myimage
 resources:
 requests:
 cpu: 2
 example.com/foo: 1

https://tools.ietf.org/html/rfc6901#section-3

10/23/2017 Managing Compute Resources for Containers - Kubernetes

http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/ 15/15

Kubernetes version 1.5 only allows resource quantities to be speci�ed on a Container. It is planned to

improve accounting for resources that are shared by all Containers in a Pod, such as emptyDir

volumes.

Kubernetes version 1.5 only supports Container requests and limits for CPU and memory. It is

planned to add new resource types, including a node disk space resource, and a framework for

adding custom resource types.

Kubernetes supports overcommitment of resources by supporting multiple levels of Quality of

Service.

In Kubernetes version 1.5, one unit of CPU means different things on different cloud providers, and

on different machine types within the same cloud providers. For example, on AWS, the capacity of a

node is reported in ECUs, while in GCE it is reported in logical cores. We plan to revise the de�nition

of the cpu resource to allow for more consistency across providers and platforms.

What’s next

Get hands-on experience assigning CPU and RAM resources to a container.

Container

ResourceRequirements

http://localhost:4000/docs/concepts/storage/volumes/#emptydir
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/resources.md
http://issue.k8s.io/168
http://aws.amazon.com/ec2/faqs/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-ram-container/
http://localhost:4000/docs/api-reference/v1.8/#container-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#resourcerequirements-v1-core

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 1/11

Assigning Pods to Nodes

You can constrain a pod to only be able to run on particular nodes or to prefer to run on particular

nodes. There are several ways to do this, and they all use label selectors to make the selection.

Generally such constraints are unnecessary, as the scheduler will automatically do a reasonable

placement (e.g. spread your pods across nodes, not place the pod on a node with insu�cient free

resources, etc.) but there are some circumstances where you may want more control on a node

where a pod lands, e.g. to ensure that a pod ends up on a machine with an SSD attached to it, or to

co-locate pods from two different services that communicate a lot into the same availability zone.

You can �nd all the �les for these examples in our docs repo here.

nodeSelector

nodeSelector is the simplest form of constraint. nodeSelector is a �eld of PodSpec. It speci�es

a map of key-value pairs. For the pod to be eligible to run on a node, the node must have each of the

indicated key-value pairs as labels (it can have additional labels as well). The most common usage is

one key-value pair.

Let’s walk through an example of how to use nodeSelector .

nodeSelector
Step Zero: Prerequisites
Step One: Attach label to the node
Step Two: Add a nodeSelector �eld to your pod con�guration

Interlude: built-in node labels
A�nity and anti-a�nity

Node a�nity (beta feature)
Inter-pod a�nity and anti-a�nity (beta feature)

An example of a pod that uses pod a�nity:
More Practical Use-cases

Always co-located in the same node
Never co-located in the same node

http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/architecture/nodes/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
https://github.com/kubernetes/kubernetes.github.io/tree/master/docs/user-guide/node-selection

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 2/11

Step Zero: Prerequisites

This example assumes that you have a basic understanding of Kubernetes pods and that you have

turned up a Kubernetes cluster.

Step One: Attach label to the node

Run kubectl get nodes to get the names of your cluster’s nodes. Pick out the one that you want

to add a label to, and then run kubectl label nodes <node-name> <label-key>=<label-value>

to add a label to the node you’ve chosen. For example, if my node name is ‘kubernetes-foo-node-

1.c.a-robinson.internal’ and my desired label is ‘disktype=ssd’, then I can run

kubectl label nodes kubernetes-foo-node-1.c.a-robinson.internal disktype=ssd .

If this fails with an “invalid command” error, you’re likely using an older version of kubectl that doesn’t

have the label command. In that case, see the previous version of this guide for instructions on

how to manually set labels on a node.

Also, note that label keys must be in the form of DNS labels (as described in the identi�ers doc),

meaning that they are not allowed to contain any upper-case letters.

You can verify that it worked by re-running kubectl get nodes --show-labels and checking that

the node now has a label.

Step Two: Add a nodeSelector �eld to your pod con�guration

Take whatever pod con�g �le you want to run, and add a nodeSelector section to it, like this. For

example, if this is my pod con�g:

Then add a nodeSelector like so:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx

https://github.com/kubernetes/kubernetes#documentation
https://github.com/kubernetes/kubernetes/blob/a053dbc313572ed60d89dae9821ecab8bfd676dc/examples/node-selection/README.md
https://git.k8s.io/community/contributors/design-proposals/architecture/identifiers.md

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 3/11

pod.yaml

When you then run kubectl create -f pod.yaml , the pod will get scheduled on the node that you

attached the label to! You can verify that it worked by running kubectl get pods -o wide and

looking at the “NODE” that the pod was assigned to.

Interlude: built-in node labels

In addition to labels you attach, nodes come pre-populated with a standard set of labels. As of

Kubernetes v1.4 these labels are

kubernetes.io/hostname

failure-domain.beta.kubernetes.io/zone

failure-domain.beta.kubernetes.io/region

beta.kubernetes.io/instance-type

beta.kubernetes.io/os

beta.kubernetes.io/arch

A�nity and anti-a�nity

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 nodeSelector:
 disktype: ssd

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/configuration/pod.yaml

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 4/11

nodeSelector provides a very simple way to constrain pods to nodes with particular labels. The

a�nity/anti-a�nity feature, currently in beta, greatly expands the types of constraints you can

express. The key enhancements are

1. the language is more expressive (not just “AND of exact match”)

2. you can indicate that the rule is “soft”/”preference” rather than a hard requirement, so if the

scheduler can’t satisfy it, the pod will still be scheduled

3. you can constrain against labels on other pods running on the node (or other topological

domain), rather than against labels on the node itself, which allows rules about which pods can

and cannot be co-located

The a�nity feature consists of two types of a�nity, “node a�nity” and “inter-pod a�nity/anti-a�nity.”

Node a�nity is like the existing nodeSelector (but with the �rst two bene�ts listed above), while

inter-pod a�nity/anti-a�nity constrains against pod labels rather than node labels, as described in

the third item listed above, in addition to having the �rst and second properties listed above.

nodeSelector continues to work as usual, but will eventually be deprecated, as node a�nity can

express everything that nodeSelector can express.

Node a�nity (beta feature)

Node a�nity was introduced as alpha in Kubernetes 1.2. Node a�nity is conceptually similar to

nodeSelector – it allows you to constrain which nodes your pod is eligible to schedule on, based

on labels on the node.

There are currently two types of node a�nity, called

requiredDuringSchedulingIgnoredDuringExecution and

preferredDuringSchedulingIgnoredDuringExecution . You can think of them as “hard” and “soft”

respectively, in the sense that the former speci�es rules that must be met for a pod to schedule onto

a node (just like nodeSelector but using a more expressive syntax), while the latter speci�es

preferences that the scheduler will try to enforce but will not guarantee. The

“IgnoredDuringExecution” part of the names means that, similar to how nodeSelector works, if

labels on a node change at runtime such that the a�nity rules on a pod are no longer met, the pod

will still continue to run on the node. In the future we plan to offer

requiredDuringSchedulingRequiredDuringExecution which will be just like

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 5/11

requiredDuringSchedulingIgnoredDuringExecution except that it will evict pods from nodes

that cease to satisfy the pods’ node a�nity requirements.

Thus an example of requiredDuringSchedulingIgnoredDuringExecution would be “only run the

pod on nodes with Intel CPUs” and an example

preferredDuringSchedulingIgnoredDuringExecution would be “try to run this set of pods in

availability zone XYZ, but if it’s not possible, then allow some to run elsewhere”.

Node a�nity is speci�ed as �eld nodeAffinity of �eld affinity in the PodSpec.

Here’s an example of a pod that uses node a�nity:

pod-with-node-affinity.yaml

This node a�nity rule says the pod can only be placed on a node with a label whose key is

kubernetes.io/e2e-az-name and whose value is either e2e-az1 or e2e-az2 . In addition, among

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: another-node-label-key
 operator: In
 values:
 - another-node-label-value
 containers:
 - name: with-node-affinity
 image: gcr.io/google_containers/pause:2.0

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/configuration/pod-with-node-affinity.yaml

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 6/11

nodes that meet that criteria, nodes with a label whose key is another-node-label-key and whose

value is another-node-label-value should be preferred.

You can see the operator In being used in the example. The new node a�nity syntax supports the

following operators: In , NotIn , Exists , DoesNotExist , Gt , Lt . There is no explicit “node anti-

a�nity” concept, but NotIn and DoesNotExist give that behavior.

If you specify both nodeSelector and nodeAffinity , both must be satis�ed for the pod to be

scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types, then the pod can

be scheduled onto a node if one of the nodeSelectorTerms is satis�ed.

If you specify multiple matchExpressions associated with nodeSelectorTerms , then the pod can

be scheduled onto a node only if all matchExpressions can be satis�ed.

If you remove or change the label of the node where the pod is scheduled, the pod won’t be removed.

In other words, the a�nity selection works only at the time of scheduling the pod.

For more information on node a�nity, see the design doc here.

Inter-pod a�nity and anti-a�nity (beta feature)

Inter-pod a�nity and anti-a�nity were introduced in Kubernetes 1.4. Inter-pod a�nity and anti-a�nity

allow you to constrain which nodes your pod is eligible to be scheduled based on labels on pods that

are already running on the node rather than based on labels on nodes. The rules are of the form “this

pod should (or, in the case of anti-a�nity, should not) run in an X if that X is already running one or

more pods that meet rule Y.” Y is expressed as a LabelSelector with an associated list of

namespaces (or “all” namespaces); unlike nodes, because pods are namespaced (and therefore the

labels on pods are implicitly namespaced), a label selector over pod labels must specify which

namespaces the selector should apply to. Conceptually X is a topology domain like node, rack, cloud

provider zone, cloud provider region, etc. You express it using a topologyKey which is the key for

the node label that the system uses to denote such a topology domain, e.g. see the label keys listed

above in the section Interlude: built-in node labels.

As with node a�nity, there are currently two types of pod a�nity and anti-a�nity, called

requiredDuringSchedulingIgnoredDuringExecution and

preferredDuringSchedulingIgnoredDuringExecution which denote “hard” vs. “soft”

https://git.k8s.io/community/contributors/design-proposals/scheduling/nodeaffinity.md

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 7/11

requirements. See the description in the node a�nity section earlier. An example of

requiredDuringSchedulingIgnoredDuringExecution a�nity would be “co-locate the pods of

service A and service B in the same zone, since they communicate a lot with each other” and an

example preferredDuringSchedulingIgnoredDuringExecution anti-a�nity would be “spread the

pods from this service across zones” (a hard requirement wouldn’t make sense, since you probably

have more pods than zones).

Inter-pod a�nity is speci�ed as �eld podAffinity of �eld affinity in the PodSpec. And inter-pod

anti-a�nity is speci�ed as �eld podAntiAffinity of �eld affinity in the PodSpec.

An example of a pod that uses pod a�nity:

pod-with-pod-affinity.yaml

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: failure-domain.beta.kubernetes.io/zone
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: gcr.io/google_containers/pause:2.0

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/configuration/pod-with-pod-affinity.yaml

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 8/11

The a�nity on this pod de�nes one pod a�nity rule and one pod anti-a�nity rule. In this example, the

podAffinity is requiredDuringSchedulingIgnoredDuringExecution while the

podAntiAffinity is preferredDuringSchedulingIgnoredDuringExecution . The pod a�nity

rule says that the pod can schedule onto a node only if that node is in the same zone as at least one

already-running pod that has a label with key “security” and value “S1”. (More precisely, the pod is

eligible to run on node N if node N has a label with key

failure-domain.beta.kubernetes.io/zone and some value V such that there is at least one

node in the cluster with key failure-domain.beta.kubernetes.io/zone and value V that is

running a pod that has a label with key “security” and value “S1”.) The pod anti-a�nity rule says that

the pod prefers to not schedule onto a node if that node is already running a pod with label having

key “security” and value “S2”. (If the topologyKey were

failure-domain.beta.kubernetes.io/zone then it would mean that the pod cannot schedule

onto a node if that node is in the same zone as a pod with label having key “security” and value “S2”.)

See the design doc. for many more examples of pod a�nity and anti-a�nity, both the

requiredDuringSchedulingIgnoredDuringExecution �avor and the

preferredDuringSchedulingIgnoredDuringExecution �avor.

The legal operators for pod a�nity and anti-a�nity are In , NotIn , Exists , DoesNotExist .

In principle, the topologyKey can be any legal label-key. However, for performance and security

reasons, there are some constraints on topologyKey:

1. For a�nity and for RequiredDuringScheduling pod anti-a�nity, empty topologyKey is not

allowed.

2. For RequiredDuringScheduling pod anti-a�nity, the admission controller

LimitPodHardAntiAffinityTopology was introduced to limit topologyKey to

kubernetes.io/hostname . If you want to make it available for custom topologies, you may

modify the admission controller, or simply disable it.

3. For PreferredDuringScheduling pod anti-a�nity, empty topologyKey is interpreted as “all

topologies” (“all topologies” here is now limited to the combination of

kubernetes.io/hostname , failure-domain.beta.kubernetes.io/zone and

failure-domain.beta.kubernetes.io/region).

https://git.k8s.io/community/contributors/design-proposals/scheduling/podaffinity.md

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 9/11

4. Except for the above cases, the topologyKey can be any legal label-key.

In addition to labelSelector and topologyKey , you can optionally specify a list namespaces of

namespaces which the labelSelector should match against (this goes at the same level of the

de�nition as labelSelector and topologyKey). If omitted, it defaults to the namespace of the pod

where the a�nity/anti-a�nity de�nition appears. If de�ned but empty, it means “all namespaces.”

All matchExpressions associated with requiredDuringSchedulingIgnoredDuringExecution

a�nity and anti-a�nity must be satis�ed for the pod to schedule onto a node.

More Practical Use-cases

Interpod A�nity and AnitA�nity can be even more useful when they are used with higher level

collections such as ReplicaSets, Statefulsets, Deployments, etc. One can easily con�gure that a set

of workloads should be co-located in the same de�ned topology, eg., the same node.

Always co-located in the same node

In a three node cluster, a web application has in-memory cache such as redis. We want the web-

servers to be co-located with the cache as much as possible. Here is the yaml snippet of a simple

redis deployment with three replicas and selector label app=store

Below yaml snippet of the webserver deployment has podAffinity con�gured, this informs the

scheduler that all its replicas are to be co-located with pods that has selector label app=store

apiVersion: apps/v1beta1 # for versions before 1.6.0 use extensions/v1beta1
kind: Deployment
metadata:
 name: redis-cache
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: store
 spec:
 containers:
 - name: redis-server
 image: redis:3.2-alpine

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 10/11

if we create the above two deployments, our three node cluster could look like below.

node-1 node-2 node-3

webserver-1 webserver-2 webserver-3

cache-1 cache-2 cache-3

As you can see, all the 3 replicas of the web-server are automatically co-located with the cache as

expected.

apiVersion: apps/v1beta1 # for versions before 1.6.0 use extensions/v1beta1
kind: Deployment
metadata:
 name: web-server
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: web-store
 spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - store
 topologyKey: "kubernetes.io/hostname"
 containers:
 - name: web-app

$kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
redis-cache-1450370735-6dzlj 1/1 Running 0 8m 10.192.4.2
redis-cache-1450370735-j2j96 1/1 Running 0 8m 10.192.2.2
redis-cache-1450370735-z73mh 1/1 Running 0 8m 10.192.3.1
web-server-1287567482-5d4dz 1/1 Running 0 7m 10.192.2.3
web-server-1287567482-6f7v5 1/1 Running 0 7m 10.192.4.3
web-server-1287567482-s330j 1/1 Running 0 7m 10.192.3.2

10/23/2017 Assigning Pods to Nodes - Kubernetes

http://localhost:4000/docs/concepts/configuration/assign-pod-node/ 11/11

Best practice is to con�gure these highly available stateful workloads such as redis with AntiA�nity

rules for more guaranteed spreading, which we will see in the next section.

Never co-located in the same node

Highly Available database statefulset has one master and three replicas, one may prefer none of the

database instances to be co-located in the same node.

node-1 node-2 node-3 node-4

DB-MASTER DB-REPLICA-1 DB-REPLICA-2 DB-REPLICA-3

Here is an example of zookeper statefulset con�gured with anti-a�nity for high availability.

For more information on inter-pod a�nity/anti-a�nity, see the design doc here.

You may want to check Taints as well, which allow a node to repel a set of pods.

https://kubernetes.io/docs/tutorials/stateful-application/zookeeper/#tolerating-node-failure
https://git.k8s.io/community/contributors/design-proposals/scheduling/podaffinity.md
http://localhost:4000/docs/concepts/configuration/taint-and-toleration/

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 1/7

Taints and Tolerations

Node a�nity, described here, is a property of pods that attracts them to a set of nodes (either as a

preference or a hard requirement). Taints are the opposite – they allow a node to repel a set of pods.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate

nodes. One or more taints are applied to a node; this marks that the node should not accept any

pods that do not tolerate the taints. Tolerations are applied to pods, and allow (but do not require) the

pods to schedule onto nodes with matching taints.

Concepts

You add a taint to a node using kubectl taint. For example,

places a taint on node node1 . The taint has key key , value value , and taint effect NoSchedule .

This means that no pod will be able to schedule onto node1 unless it has a matching toleration. You

specify a toleration for a pod in the PodSpec. Both of the following tolerations “match” the taint

created by the kubectl taint line above, and thus a pod with either toleration would be able to

schedule onto node1 :

kubectl taint nodes node1 key=value:NoSchedule

tolerations:
- key: "key"
 operator: "Equal"
 value: "value"
 effect: "NoSchedule"

tolerations:
- key: "key"
 operator: "Exists"
 effect: "NoSchedule"

http://localhost:4000/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
http://localhost:4000/docs/user-guide/kubectl/v1.7/#taint

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 2/7

A toleration “matches” a taint if the keys are the same and the effects are the same, and:

the operator is Exists (in which case no value should be speci�ed), or

the operator is Equal and the value s are equal

Operator defaults to Equal if not speci�ed.

NOTE: There are two special cases:

An empty key with operator Exists matches all keys, values and effects which means this will

tolerate everything.

An empty effect matches all effects with key key .

The above example used effect of NoSchedule . Alternatively, you can use effect of

PreferNoSchedule . This is a “preference” or “soft” version of NoSchedule – the system will try to

avoid placing a pod that does not tolerate the taint on the node, but it is not required. The third kind

of effect is NoExecute , described later.

You can put multiple taints on the same node and multiple tolerations on the same pod. The way

Kubernetes processes multiple taints and tolerations is like a �lter: start with all of a node’s taints,

then ignore the ones for which the pod has a matching toleration; the remaining un-ignored taints

have the indicated effects on the pod. In particular,

if there is at least one un-ignored taint with effect NoSchedule then Kubernetes will not

schedule the pod onto that node

if there is no un-ignored taint with effect NoSchedule but there is at least one un-ignored taint

with effect PreferNoSchedule then Kubernetes will try to not schedule the pod onto the node

tolerations:
- operator: "Exists"

tolerations:
- key: "key"
 operator: "Exists"

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 3/7

if there is at least one un-ignored taint with effect NoExecute then the pod will be evicted from

the node (if it is already running on the node), and will not be scheduled onto the node (if it is not

yet running on the node).

For example, imagine you taint a node like this

And a pod has two tolerations:

In this case, the pod will not be able to schedule onto the node, because there is no toleration

matching the third taint. But it will be able to continue running if it is already running on the node

when the taint is added, because the third taint is the only one of the three that is not tolerated by the

pod.

Normally, if a taint with effect NoExecute is added to a node, then any pods that do not tolerate the

taint will be evicted immediately, and any pods that do tolerate the taint will never be evicted.

However, a toleration with NoExecute effect can specify an optional tolerationSeconds �eld that

dictates how long the pod will stay bound to the node after the taint is added. For example,

kubectl taint nodes node1 key1=value1:NoSchedule
kubectl taint nodes node1 key1=value1:NoExecute
kubectl taint nodes node1 key2=value2:NoSchedule

tolerations:
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"

tolerations:
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 4/7

means that if this pod is running and a matching taint is added to the node, then the pod will stay

bound to the node for 3600 seconds, and then be evicted. If the taint is removed before that time, the

pod will not be evicted.

Example Use Cases

Taints and tolerations are a �exible way to steer pods away from nodes or evict pods that shouldn’t

be running. A few of the use cases are

Dedicated Nodes: If you want to dedicate a set of nodes for exclusive use by a particular set of

users, you can add a taint to those nodes (say,

kubectl taint nodes nodename dedicated=groupName:NoSchedule) and then add a

corresponding toleration to their pods (this would be done most easily by writing a custom

admission controller). The pods with the tolerations will then be allowed to use the tainted

(dedicated) nodes as well as any other nodes in the cluster. If you want to dedicate the nodes to

them and ensure they only use the dedicated nodes, then you should additionally add a label

similar to the taint to the same set of nodes (e.g. dedicated=groupName), and the admission

controller should additionally add a node a�nity to require that the pods can only schedule onto

nodes labeled with dedicated=groupName .

Nodes with Special Hardware: In a cluster where a small subset of nodes have specialized

hardware (for example GPUs), it is desirable to keep pods that don’t need the specialized

hardware off of those nodes, thus leaving room for later-arriving pods that do need the

specialized hardware. This can be done by tainting the nodes that have the specialized hardware

(e.g. kubectl taint nodes nodename special=true:NoSchedule or

kubectl taint nodes nodename special=true:PreferNoSchedule) and adding a

corresponding toleration to pods that use the special hardware. As in the dedicated nodes use

case, it is probably easiest to apply the tolerations using a custom admission controller). For

example, the admission controller could use some characteristic(s) of the pod to determine that

the pod should be allowed to use the special nodes and hence the admission controller should

add the toleration. To ensure that the pods that need the special hardware only schedule onto

the nodes that have the special hardware, you will need some additional mechanism, e.g. you

could represent the special resource using opaque integer resources and request it as a

http://localhost:4000/docs/admin/admission-controllers/
http://localhost:4000/docs/admin/admission-controllers/
http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/#opaque-integer-resources-alpha-feature

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 5/7

resource in the PodSpec, or you could label the nodes that have the special hardware and use

node a�nity on the pods that need the hardware.

Taint based Evictions (alpha feature): A per-pod-con�gurable eviction behavior when there are

node problems, which is described in the next section.

Taint based Evictions

Earlier we mentioned the NoExecute taint effect, which affects pods that are already running on the

node as follows

pods that do not tolerate the taint are evicted immediately

pods that tolerate the taint without specifying tolerationSeconds in their toleration

speci�cation remain bound forever

pods that tolerate the taint with a speci�ed tolerationSeconds remain bound for the speci�ed

amount of time

The above behavior is a beta feature. In addition, Kubernetes 1.6 has alpha support for representing

node problems. In other words, the node controller automatically taints a node when certain

condition is true. The built-in taints currently include:

node.alpha.kubernetes.io/notReady : Node is not ready. This corresponds to the

NodeCondition Ready being “ False ”.

node.alpha.kubernetes.io/unreachable : Node is unreachable from the node controller. This

corresponds to the NodeCondition Ready being “ Unknown ”.

node.kubernetes.io/outOfDisk : Node becomes out of disk.

node.kubernetes.io/memoryPressure : Node has memory pressure.

node.kubernetes.io/diskPressure : Node has disk pressure.

node.kubernetes.io/networkUnavailable : Node’s network is unavailable.

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 6/7

node.cloudprovider.kubernetes.io/uninitialized : When kubelet is started with “external”

cloud provider, it sets this taint on a node to mark it as unusable. When a controller from the

cloud-controller-manager initializes this node, kubelet removes this taint.

When the TaintBasedEvictions alpha feature is enabled (you can do this by including

TaintBasedEvictions=true in --feature-gates , such as

--feature-gates=FooBar=true,TaintBasedEvictions=true), the taints are automatically added

by the NodeController (or kubelet) and the normal logic for evicting pods from nodes based on the

Ready NodeCondition is disabled. (Note: To maintain the existing rate limiting behavior of pod

evictions due to node problems, the system actually adds the taints in a rate-limited way. This

prevents massive pod evictions in scenarios such as the master becoming partitioned from the

nodes.) This alpha feature, in combination with tolerationSeconds , allows a pod to specify how

long it should stay bound to a node that has one or both of these problems.

For example, an application with a lot of local state might want to stay bound to node for a long time

in the event of network partition, in the hope that the partition will recover and thus the pod eviction

can be avoided. The toleration the pod would use in that case would look like

Note that Kubernetes automatically adds a toleration for node.alpha.kubernetes.io/notReady

with tolerationSeconds=300 unless the pod con�guration provided by the user already has a

toleration for node.alpha.kubernetes.io/notReady . Likewise it adds a toleration for

node.alpha.kubernetes.io/unreachable with tolerationSeconds=300 unless the pod

con�guration provided by the user already has a toleration for

node.alpha.kubernetes.io/unreachable .

These automatically-added tolerations ensure that the default pod behavior of remaining bound for 5

minutes after one of these problems is detected is maintained. The two default tolerations are added

by the DefaultTolerationSeconds admission controller.

tolerations:
- key: "node.alpha.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 6000

http://localhost:4000/docs/concepts/architecture/nodes/
https://git.k8s.io/kubernetes/plugin/pkg/admission/defaulttolerationseconds

10/23/2017 Taints and Tolerations - Kubernetes

http://localhost:4000/docs/concepts/configuration/taint-and-toleration/ 7/7

DaemonSet pods are created with NoExecute tolerations for the following taints with no

tolerationSeconds :

node.alpha.kubernetes.io/unreachable

node.alpha.kubernetes.io/notReady

This ensures that DaemonSet pods are never evicted due to these problems, which matches the

behavior when this feature is disabled.

Taint Nodes by Condition

Version 1.8 introduces an alpha feature that causes the node controller to create taints

corresponding to Node conditions. When this feature is enabled, the scheduler does not check

conditions; instead the scheduler checks taints. This assures that conditions don’t affect what’s

scheduled onto the Node. The user can choose to ignore some of the Node’s problems (represented

as conditions) by adding appropriate Pod tolerations.

To make sure that turning on this feature doesn’t break DaemonSets, starting in version 1.8, the

DaemonSet controller automatically adds the following NoSchedule tolerations to all daemons:

node.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressure

node.kubernetes.io/out-of-disk (only for critical pods)

The above settings ensure backward compatibility, but we understand they may not �t all user’s

needs, which is why cluster admin may choose to add arbitrary tolerations to DaemonSets.

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 1/19

Secrets

Objects of type secret are intended to hold sensitive information, such as passwords, OAuth

tokens, and ssh keys. Putting this information in a secret is safer and more �exible than putting it

verbatim in a pod de�nition or in a docker image. See Secrets design document for more

information.

Overview of Secrets

Overview of Secrets
Built-in Secrets

Service Accounts Automatically Create and Attach Secrets with API Credentials
Creating your own Secrets

Creating a Secret Using kubectl create secret
Creating a Secret Manually
Decoding a Secret

Using Secrets
Using Secrets as Files from a Pod
Using Secrets as Environment Variables
Using imagePullSecrets

Arranging for imagePullSecrets to be Automatically Attached
Automatic Mounting of Manually Created Secrets

Details
Restrictions
Secret and Pod Lifetime interaction

Use cases
Use-Case: Pod with ssh keys
Use-Case: Pods with prod / test credentials
Use-case: Dot�les in secret volume
Use-case: Secret visible to one container in a pod

Best practices
Clients that use the secrets API

Security Properties
Protections
Risks

https://git.k8s.io/community/contributors/design-proposals/auth/secrets.md

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 2/19

A Secret is an object that contains a small amount of sensitive data such as a password, a token, or

a key. Such information might otherwise be put in a Pod speci�cation or in an image; putting it in a

Secret object allows for more control over how it is used, and reduces the risk of accidental

exposure.

Users can create secrets, and the system also creates some secrets.

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in two ways: as

�les in a volume mounted on one or more of its containers, or used by kubelet when pulling images

for the pod.

Built-in Secrets

Service Accounts Automatically Create and Attach Secrets with API
Credentials

Kubernetes automatically creates secrets which contain credentials for accessing the API and it

automatically modi�es your pods to use this type of secret.

The automatic creation and use of API credentials can be disabled or overridden if desired. However,

if all you need to do is securely access the apiserver, this is the recommended work�ow.

See the Service Account documentation for more information on how Service Accounts work.

Creating your own Secrets

Creating a Secret Using kubectl create secret

Say that some pods need to access a database. The username and password that the pods should

use is in the �les ./username.txt and ./password.txt on your local machine.

The kubectl create secret command packages these �les into a Secret and creates the object

on the Apiserver.

Create files needed for rest of example.
$ echo -n "admin" > ./username.txt
$ echo -n "1f2d1e2e67df" > ./password.txt

http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/user-guide/service-accounts

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 3/19

You can check that the secret was created like this:

Note that neither get nor describe shows the contents of the �le by default. This is to protect the

secret from being exposed accidentally to someone looking or from being stored in a terminal log.

See decoding a secret for how to see the contents.

Creating a Secret Manually

You can also create a secret object in a �le �rst, in json or yaml format, and then create that object.

Each item must be base64 encoded:

Now write a secret object that looks like this:

$ kubectl create secret generic db-user-pass --from-file=./username.txt --from-fil
secret "db-user-pass" created

$ kubectl get secrets
NAME TYPE DATA AGE
db-user-pass Opaque 2 51s

$ kubectl describe secrets/db-user-pass
Name: db-user-pass
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
password.txt: 12 bytes
username.txt: 5 bytes

$ echo -n "admin" | base64
YWRtaW4=
$ echo -n "1f2d1e2e67df" | base64
MWYyZDFlMmU2N2Rm

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 4/19

The data �eld is a map. Its keys must match DNS_SUBDOMAIN , except that leading dots are also

allowed. The values are arbitrary data, encoded using base64.

Create the secret using kubectl create :

Encoding Note: The serialized JSON and YAML values of secret data are encoded as base64 strings.

Newlines are not valid within these strings and must be omitted. When using the base64 utility on

Darwin/OS X users should avoid using the -b option to split long lines. Conversely Linux users

should add the option -w 0 to base64 commands or the pipeline base64 | tr -d '\n' if -w

option is not available.

Decoding a Secret

Secrets can be retrieved via the kubectl get secret command. For example, to retrieve the secret

created in the previous section:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 username: YWRtaW4=
 password: MWYyZDFlMmU2N2Rm

$ kubectl create -f ./secret.yaml
secret "mysecret" created

https://git.k8s.io/community/contributors/design-proposals/architecture/identifiers.md
http://localhost:4000/docs/user-guide/kubectl/v1.7/#create

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 5/19

Decode the password �eld:

Using Secrets

Secrets can be mounted as data volumes or be exposed as environment variables to be used by a

container in a pod. They can also be used by other parts of the system, without being directly

exposed to the pod. For example, they can hold credentials that other parts of the system should use

to interact with external systems on your behalf.

Using Secrets as Files from a Pod

To consume a Secret in a volume in a Pod:

1. Create a secret or use an existing one. Multiple pods can reference the same secret.

2. Modify your Pod de�nition to add a volume under spec.volumes[] . Name the volume anything,

and have a spec.volumes[].secret.secretName �eld equal to the name of the secret object.

3. Add a spec.containers[].volumeMounts[] to each container that needs the secret. Specify

spec.containers[].volumeMounts[].readOnly = true and

spec.containers[].volumeMounts[].mountPath to an unused directory name where you

would like the secrets to appear.

$ kubectl get secret mysecret -o yaml
apiVersion: v1
data:
 username: YWRtaW4=
 password: MWYyZDFlMmU2N2Rm
kind: Secret
metadata:
 creationTimestamp: 2016-01-22T18:41:56Z
 name: mysecret
 namespace: default
 resourceVersion: "164619"
 selfLink: /api/v1/namespaces/default/secrets/mysecret
 uid: cfee02d6-c137-11e5-8d73-42010af00002
type: Opaque

$ echo "MWYyZDFlMmU2N2Rm" | base64 --decode
1f2d1e2e67df

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 6/19

4. Modify your image and/or command line so that the program looks for �les in that directory.

Each key in the secret data map becomes the �lename under mountPath .

This is an example of a pod that mounts a secret in a volume:

Each secret you want to use needs to be referred to in spec.volumes .

If there are multiple containers in the pod, then each container needs its own volumeMounts block,

but only one spec.volumes is needed per secret.

You can package many �les into one secret, or use many secrets, whichever is convenient.

Projection of secret keys to speci�c paths

We can also control the paths within the volume where Secret keys are projected. You can use

spec.volumes[].secret.items �eld to change target path of each key:

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 readOnly: true
 volumes:
 - name: foo
 secret:
 secretName: mysecret

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 7/19

What will happen:

username secret is stored under /etc/foo/my-group/my-username �le instead of

/etc/foo/username .

password secret is not projected

If spec.volumes[].secret.items is used, only keys speci�ed in items are projected. To consume

all keys from the secret, all of them must be listed in the items �eld. All listed keys must exist in the

corresponding secret. Otherwise, the volume is not created.

Secret �les permissions

You can also specify the permission mode bits �les part of a secret will have. If you don’t specify any,

0644 is used by default. You can specify a default mode for the whole secret volume and override

per key if needed.

For example, you can specify a default mode like this:

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 readOnly: true
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 items:
 - key: username
 path: my-group/my-username

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 8/19

Then, the secret will be mounted on /etc/foo and all the �les created by the secret volume mount

will have permission 0400 .

Note that the JSON spec doesn’t support octal notation, so use the value 256 for 0400 permissions.

If you use yaml instead of json for the pod, you can use octal notation to specify permissions in a

more natural way.

You can also use mapping, as in the previous example, and specify different permission for different

�les like this:

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 defaultMode: 256

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 items:
 - key: username
 path: my-group/my-username
 mode: 511

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 9/19

In this case, the �le resulting in /etc/foo/my-group/my-username will have permission value of

0777 . Owing to JSON limitations, you must specify the mode in decimal notation.

Note that this permission value might be displayed in decimal notation if you read it later.

Consuming Secret Values from Volumes

Inside the container that mounts a secret volume, the secret keys appear as �les and the secret

values are base-64 decoded and stored inside these �les. This is the result of commands executed

inside the container from the example above:

The program in a container is responsible for reading the secrets from the �les.

Mounted Secrets are updated automatically

When a secret being already consumed in a volume is updated, projected keys are eventually

updated as well. Kubelet is checking whether the mounted secret is fresh on every periodic sync.

However, it is using its local ttl-based cache for getting the current value of the secret. As a result, the

total delay from the moment when the secret is updated to the moment when new keys are

projected to the pod can be as long as kubelet sync period + ttl of secrets cache in kubelet.

Using Secrets as Environment Variables

To use a secret in an environment variable in a pod:

1. Create a secret or use an existing one. Multiple pods can reference the same secret.

2. Modify your Pod de�nition in each container that you wish to consume the value of a secret key

to add an environment variable for each secret key you wish to consume. The environment

variable that consumes the secret key should populate the secret’s name and key in

env[x].valueFrom.secretKeyRef .

$ ls /etc/foo/
username
password
$ cat /etc/foo/username
admin
$ cat /etc/foo/password
1f2d1e2e67df

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 10/19

3. Modify your image and/or command line so that the program looks for values in the speci�ed

environment variables

This is an example of a pod that uses secrets from environment variables:

Consuming Secret Values from Environment Variables

Inside a container that consumes a secret in an environment variables, the secret keys appear as

normal environment variables containing the base-64 decoded values of the secret data. This is the

result of commands executed inside the container from the example above:

Using imagePullSecrets

An imagePullSecret is a way to pass a secret that contains a Docker (or other) image registry

password to the Kubelet so it can pull a private image on behalf of your Pod.

Manually specifying an imagePullSecret

apiVersion: v1
kind: Pod
metadata:
 name: secret-env-pod
spec:
 containers:
 - name: mycontainer
 image: redis
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: password
 restartPolicy: Never

$ echo $SECRET_USERNAME
admin
$ echo $SECRET_PASSWORD
1f2d1e2e67df

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 11/19

Use of imagePullSecrets is described in the images documentation

Arranging for imagePullSecrets to be Automatically Attached

You can manually create an imagePullSecret, and reference it from a serviceAccount. Any pods

created with that serviceAccount or that default to use that serviceAccount, will get their

imagePullSecret �eld set to that of the service account. See Adding ImagePullSecrets to a service

account for a detailed explanation of that process.

Automatic Mounting of Manually Created Secrets

Manually created secrets (e.g. one containing a token for accessing a github account) can be

automatically attached to pods based on their service account. See Injecting Information into Pods

Using a PodPreset for a detailed explanation of that process.

Details

Restrictions

Secret volume sources are validated to ensure that the speci�ed object reference actually points to

an object of type Secret . Therefore, a secret needs to be created before any pods that depend on it.

Secret API objects reside in a namespace. They can only be referenced by pods in that same

namespace.

Individual secrets are limited to 1MB in size. This is to discourage creation of very large secrets

which would exhaust apiserver and kubelet memory. However, creation of many smaller secrets

could also exhaust memory. More comprehensive limits on memory usage due to secrets is a

planned feature.

Kubelet only supports use of secrets for Pods it gets from the API server. This includes any pods

created using kubectl, or indirectly via a replication controller. It does not include pods created via the

kubelets --manifest-url �ag, its --config �ag, or its REST API (these are not common ways to

create pods.)

Secrets must be created before they are consumed in pods as environment variables unless they are

marked as optional. References to Secrets that do not exist will prevent the pod from starting.

http://localhost:4000/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/#adding-imagepullsecrets-to-a-service-account
http://localhost:4000/docs/tasks/run-application/podpreset/

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 12/19

References via secretKeyRef to keys that do not exist in a named Secret will prevent the pod from

starting.

Secrets used to populate environment variables via envFrom that have keys that are considered

invalid environment variable names will have those keys skipped. The pod will be allowed to start.

There will be an event whose reason is InvalidVariableNames and the message will contain the

list of invalid keys that were skipped. The example shows a pod which refers to the default/mysecret

that contains 2 invalid keys, 1badkey and 2alsobad.

Secret and Pod Lifetime interaction

When a pod is created via the API, there is no check whether a referenced secret exists. Once a pod

is scheduled, the kubelet will try to fetch the secret value. If the secret cannot be fetched because it

does not exist or because of a temporary lack of connection to the API server, kubelet will

periodically retry. It will report an event about the pod explaining the reason it is not started yet. Once

the secret is fetched, the kubelet will create and mount a volume containing it. None of the pod’s

containers will start until all the pod’s volumes are mounted.

Use cases

Use-Case: Pod with ssh keys

Create a secret containing some ssh keys:

Security Note: think carefully before sending your own ssh keys: other users of the cluster may have

access to the secret. Use a service account which you want to be accessible to all the users with

whom you share the Kubernetes cluster, and can revoke if they are compromised.

$ kubectl get events
LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT
0s 0s 1 dapi-test-pod Pod

$ kubectl create secret generic ssh-key-secret --from-file=ssh-privatekey=/path/to

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 13/19

Now we can create a pod which references the secret with the ssh key and consumes it in a volume:

When the container’s command runs, the pieces of the key will be available in:

The container is then free to use the secret data to establish an ssh connection.

Use-Case: Pods with prod / test credentials

This example illustrates a pod which consumes a secret containing prod credentials and another

pod which consumes a secret with test environment credentials.

Make the secrets:

Now make the pods:

kind: Pod
apiVersion: v1
metadata:
 name: secret-test-pod
 labels:
 name: secret-test
spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: ssh-key-secret
 containers:
 - name: ssh-test-container
 image: mySshImage
 volumeMounts:
 - name: secret-volume
 readOnly: true
 mountPath: "/etc/secret-volume"

/etc/secret-volume/ssh-publickey
/etc/secret-volume/ssh-privatekey

$ kubectl create secret generic prod-db-secret --from-literal=username=produser --
secret "prod-db-secret" created
$ kubectl create secret generic test-db-secret --from-literal=username=testuser --
secret "test-db-secret" created

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 14/19

Both containers will have the following �les present on their �lesystems with the values for each

container’s environment:

apiVersion: v1
kind: List
items:
- kind: Pod
 apiVersion: v1
 metadata:
 name: prod-db-client-pod
 labels:
 name: prod-db-client
 spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: prod-db-secret
 containers:
 - name: db-client-container
 image: myClientImage
 volumeMounts:
 - name: secret-volume
 readOnly: true
 mountPath: "/etc/secret-volume"
- kind: Pod
 apiVersion: v1
 metadata:
 name: test-db-client-pod
 labels:
 name: test-db-client
 spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: test-db-secret
 containers:
 - name: db-client-container
 image: myClientImage
 volumeMounts:
 - name: secret-volume
 readOnly: true
 mountPath: "/etc/secret-volume"

/etc/secret-volume/username
/etc/secret-volume/password

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 15/19

Note how the specs for the two pods differ only in one �eld; this facilitates creating pods with

different capabilities from a common pod con�g template.

You could further simplify the base pod speci�cation by using two Service Accounts: one called, say,

prod-user with the prod-db-secret , and one called, say, test-user with the test-db-secret .

Then, the pod spec can be shortened to, for example:

Use-case: Dot�les in secret volume

In order to make piece of data ‘hidden’ (i.e., in a �le whose name begins with a dot character), simply

make that key begin with a dot. For example, when the following secret is mounted into a volume:

kind: Pod
apiVersion: v1
metadata:
 name: prod-db-client-pod
 labels:
 name: prod-db-client
spec:
 serviceAccount: prod-db-client
 containers:
 - name: db-client-container
 image: myClientImage

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 16/19

The secret-volume will contain a single �le, called .secret-file , and the

dotfile-test-container will have this �le present at the path

/etc/secret-volume/.secret-file .

NOTE

Files beginning with dot characters are hidden from the output of ls -l ; you must use ls -la to

see them when listing directory contents.

Use-case: Secret visible to one container in a pod

Consider a program that needs to handle HTTP requests, do some complex business logic, and then

sign some messages with an HMAC. Because it has complex application logic, there might be an

unnoticed remote �le reading exploit in the server, which could expose the private key to an attacker.

kind: Secret
apiVersion: v1
metadata:
 name: dotfile-secret
data:
 .secret-file: dmFsdWUtMg0KDQo=

kind: Pod
apiVersion: v1
metadata:
 name: secret-dotfiles-pod
spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: dotfile-secret
 containers:
 - name: dotfile-test-container
 image: gcr.io/google_containers/busybox
 command:
 - ls
 - "-l"
 - "/etc/secret-volume"
 volumeMounts:
 - name: secret-volume
 readOnly: true
 mountPath: "/etc/secret-volume"

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 17/19

This could be divided into two processes in two containers: a frontend container which handles user

interaction and business logic, but which cannot see the private key; and a signer container that can

see the private key, and responds to simple signing requests from the frontend (e.g. over localhost

networking).

With this partitioned approach, an attacker now has to trick the application server into doing

something rather arbitrary, which may be harder than getting it to read a �le.

Best practices

Clients that use the secrets API

When deploying applications that interact with the secrets API, access should be limited using

authorization policies such as RBAC.

Secrets often hold values that span a spectrum of importance, many of which can cause escalations

within Kubernetes (e.g. service account tokens) and to external systems. Even if an individual app

can reason about the power of the secrets it expects to interact with, other apps within the same

namespace can render those assumptions invalid.

For these reasons watch and list requests for secrets within a namespace are extremely

powerful capabilities and should be avoided, since listing secrets allows the clients to inspect the

values if all secrets are in that namespace. The ability to watch and list all secrets in a cluster

should be reserved for only the most privileged, system-level components.

Applications that need to access the secrets API should perform get requests on the secrets they

need. This lets administrators restrict access to all secrets while white-listing access to individual

instances that the app needs.

For improved performance over a looping get , clients can design resources that reference a secret

then watch the resource, re-requesting the secret when the reference changes. Additionally, a “bulk

watch” API to let clients watch individual resources has also been proposed, and will likely be

available in future releases of Kubernetes.

Security Properties

https://kubernetes.io/docs/admin/authorization/
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/#referring-to-resources
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/bulk_watch.md

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 18/19

Protections

Because secret objects can be created independently of the pods that use them, there is less risk

of the secret being exposed during the work�ow of creating, viewing, and editing pods. The system

can also take additional precautions with secret objects, such as avoiding writing them to disk

where possible.

A secret is only sent to a node if a pod on that node requires it. It is not written to disk. It is stored in a

tmpfs. It is deleted once the pod that depends on it is deleted.

On most Kubernetes-project-maintained distributions, communication between user to the apiserver,

and from apiserver to the kubelets, is protected by SSL/TLS. Secrets are protected when transmitted

over these channels.

Secret data on nodes is stored in tmpfs volumes and thus does not come to rest on the node.

There may be secrets for several pods on the same node. However, only the secrets that a pod

requests are potentially visible within its containers. Therefore, one Pod does not have access to the

secrets of another pod.

There may be several containers in a pod. However, each container in a pod has to request the secret

volume in its volumeMounts for it to be visible within the container. This can be used to construct

useful security partitions at the Pod level.

Risks

In the API server secret data is stored as plaintext in etcd; therefore:

Administrators should limit access to etcd to admin users

Secret data in the API server is at rest on the disk that etcd uses; admins may want to

wipe/shred disks used by etcd when no longer in use

If you con�gure the secret through a manifest (JSON or YAML) �le which has the secret data

encoded as base64, sharing this �le or checking it in to a source repository means the secret is

compromised. Base64 encoding is not an encryption method and is considered the same as

plain text.

Applications still need to protect the value of secret after reading it from the volume, such as not

accidentally logging it or transmitting it to an untrusted party.

10/23/2017 Secrets - Kubernetes

http://localhost:4000/docs/concepts/configuration/secret/ 19/19

A user who can create a pod that uses a secret can also see the value of that secret. Even if

apiserver policy does not allow that user to read the secret object, the user could run a pod

which exposes the secret.

If multiple replicas of etcd are run, then the secrets will be shared between them. By default, etcd

does not secure peer-to-peer communication with SSL/TLS, though this can be con�gured.

Currently, anyone with root on any node can read any secret from the apiserver, by

impersonating the kubelet. It is a planned feature to only send secrets to nodes that actually

require them, to restrict the impact of a root exploit on a single node.

10/23/2017 Organizing Cluster Access Using kubeconfig Files - Kubernetes

http://localhost:4000/docs/concepts/configuration/organize-cluster-access-kubeconfig/ 1/4

Organizing Cluster Access Using kubecon�g
Files

Use kubecon�g �les to organize information about clusters, users, namespaces, and authentication

mechanisms. The kubectl command-line tool uses kubecon�g �les to �nd the information it needs

to choose a cluster and communicate with the API server of a cluster.

Note: A �le that is used to con�gure access to clusters is called a kubecon�g �le. This is a

generic way of referring to con�guration �les. It does not mean that there is a �le named

kubeconfig .

By default, kubectl looks for a �le named config in the $HOME/.kube directory. You can specify

other kubecon�g �les by setting the KUBECONFIG environment variable or by setting the

--kubeconfig �ag.

For step-by-step instructions on creating and specifying kubecon�g �les, see Con�gure Access to

Multiple Clusters.

Supporting multiple clusters, users, and authentication
mechanisms

Suppose you have several clusters, and your users and components authenticate in a variety of

ways. For example:

Supporting multiple clusters, users, and authentication mechanisms
Context
The KUBECONFIG environment variable
Merging kubecon�g �les
File references
What’s next

http://localhost:4000/docs/user-guide/kubectl/v1.8/
http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters

10/23/2017 Organizing Cluster Access Using kubeconfig Files - Kubernetes

http://localhost:4000/docs/concepts/configuration/organize-cluster-access-kubeconfig/ 2/4

A running kubelet might authenticate using certi�cates.

A user might authenticate using tokens.

Administrators might have sets of certi�cates that they provide to individual users.

With kubecon�g �les, you can organize your clusters, users, and namespaces. You can also de�ne

contexts to quickly and easily switch between clusters and namespaces.

Context

A context element in a kubecon�g �le is used to group access parameters under a convenient name.

Each context has three parameters: cluster, namespace, and user. By default, the kubectl

command-line tool uses parameters from the current context to communicate with the cluster.

To choose the current context: kubectl config use-context

The KUBECONFIG environment variable

The KUBECONFIG environment variable holds a list of kubecon�g �les. For Linux and Mac, the list is

colon-delimited. For Windows, the list is semicolon-delimited. The KUBECONFIG environment variable

is not required. If the KUBECONFIG environment variable doesn’t exist, kubectl uses the default

kubecon�g �le, $HOME/.kube/config .

If the KUBECONFIG environment variable does exist, kubectl uses an effective con�guration that is

the result of merging the �les listed in the KUBECONFIG evironment variable.

Merging kubecon�g �les

To see your con�guration, enter this command:

kubectl config view

10/23/2017 Organizing Cluster Access Using kubeconfig Files - Kubernetes

http://localhost:4000/docs/concepts/configuration/organize-cluster-access-kubeconfig/ 3/4

As described previously, the output might be from a single kubecon�g �le, or it might be the result of

merging several kubecon�g �les.

Here are the rules that kubectl uses when it merges kubecon�g �les:

1. If the --kubeconfig �ag is set, use only the speci�ed �le. Do not merge. Only one instance of

this �ag is allowed.

Otherwise, if the KUBECONFIG environment variable is set, use it as a list of �les that should be

merged. Merge the �les listed in the KUBECONFIG envrionment variable according to these rules:

1. Ignore empty �lenames.

2. Produce errors for �les with content that cannot be deserialized.

3. The �rst �le to set a particular value or map key wins.

4. Never change the value or map key. Example: Preserve the context of the �rst �le to set

current-context . Example: If two �les specify a red-user , use only values from the �rst

�le’s red-user . Even if the second �le has non-con�icting entries under red-user , discard

them.

For an example of setting the KUBECONFIG environment variable, see Setting the KUBECONFIG

environment variable.

Otherwise, use the default kubecon�g �le, $HOME/.kube/config , with no merging.

2. Determine the context to use based on the �rst hit in this chain:

1. Use the --context command-line �ag if it exits.

2. Use the current-context from the merged kubecon�g �les.

An empty context is allowed at this point.

3. Determine the cluster and user. At this point, there might or might not be a context. Determine

the cluster and user based on the �rst hit in this chain, which is run twice: once for user and

once for cluster:

1. Use a command-line �ag if it exists: --user or --cluster .

2. If the context is non-empty, take the user or cluster from the context.

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable

10/23/2017 Organizing Cluster Access Using kubeconfig Files - Kubernetes

http://localhost:4000/docs/concepts/configuration/organize-cluster-access-kubeconfig/ 4/4

The user and cluster can be empty at this point.

4. Determine the actual cluster information to use. At this point, there might or might not be cluster

information. Build each piece of the cluster information based on this chain; the �rst hit wins:

1. Use command line �ags if they exist: --server , --certificate-authority ,

--insecure-skip-tls-verify .

2. If any cluster information attributes exist from the merged kubecon�g �les, use them.

3. If there is no server location, fail.

5. Determine the actual user information to use. Build user information using the same rules as

cluster information, except allow only one authentication technique per user:

1. Use command line �ags if they exist: --client-certificate , --client-key ,

--username , --password , --token .

2. Use the user �elds from the merged kubecon�g �les.

3. If there are two con�icting techniques, fail.

6. For any information still missing, use default values and potentially prompt for authentication

information.

File references

File and path references in a kubecon�g �le are relative to the location of the kubecon�g �le. File

references on the command line are relative to the current working directory. In

$HOME/.kube/config , relative paths are stored relatively, and absolute paths are stored absolutely.

What’s next

Con�gure Access to Multiple Clusters

kubectl con�g

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
http://localhost:4000/docs/user-guide/kubectl/v1.8/

10/23/2017 Pod Priority and Preemption - Kubernetes

http://localhost:4000/docs/concepts/configuration/pod-priority-preemption/ 1/6

Pod Priority and Preemption

FEATURE STATE: Kubernetes v1.8 alpha

Pods in Kubernetes 1.8 and later can have priority. Priority indicates the importance of a Pod relative

to other Pods. When a Pod cannot be scheduled, the scheduler tries to preempt (evict) lower priority

Pods to make scheduling of the pending Pod possible. In a future Kubernetes release, priority will

also affect out-of-resource eviction ordering on the Node.

Note: Preemption does not respect PodDisruptionBudget; see the limitations section for more

details.

How to use priority and preemption

To use priority and preemption in Kubernetes 1.8, follow these steps:

1. Enable the feature.

2. Add one or more PriorityClasses.

3. Create Pods with PriorityClassName set to one of the added PriorityClasses. Of course you

do not need to create the Pods directly; normally you would add PriorityClassName to the Pod

How to use priority and preemption
Enabling priority and preemption
PriorityClass

Example PriorityClass
Pod priority
Preemption

Limitations of preemption (alpha version)
Starvation of preempting Pod
PodDisruptionBudget is not supported
Inter-Pod a�nity on lower-priority Pods
Cross node preemption

http://localhost:4000/docs/user-guide/pods

10/23/2017 Pod Priority and Preemption - Kubernetes

http://localhost:4000/docs/concepts/configuration/pod-priority-preemption/ 2/6

template of a collection object like a Deployment.

The following sections provide more information about these steps.

Enabling priority and preemption

Pod priority and preemption is disabled by default in Kubernetes 1.8. To enable the feature, set this

command-line �ag for the API server and the scheduler:

Also set this �ag for API server:

After the feature is enabled, you can create PriorityClasses and create Pods with

PriorityClassName set.

If you try the feature and then decide to disable it, you must remove the PodPriority command-line

�ag or set it to false, and then restart the API server and scheduler. After the feature is disabled, the

existing Pods keep their priority �elds, but preemption is disabled, and priority �elds are ignored, and

you cannot set PriorityClassName in new Pods.

PriorityClass

A PriorityClass is a non-namespaced object that de�nes a mapping from a priority class name to the

integer value of the priority. The name is speci�ed in the name �eld of the PriorityClass object’s

metadata. The value is speci�ed in the required value �eld. The higher the value, the higher the

priority.

A PriorityClass object can have any 32-bit integer value smaller than or equal to 1 billion. Larger

numbers are reserved for critical system Pods that should not normally be preempted or evicted. A

cluster admin should create one PriorityClass object for each such mapping that they want.

--feature-gates=PodPriority=true

--runtime-config=scheduling.k8s.io/v1alpha1=true

10/23/2017 Pod Priority and Preemption - Kubernetes

http://localhost:4000/docs/concepts/configuration/pod-priority-preemption/ 3/6

PriorityClass also has two optional �elds: globalDefault and description . The globalDefault

�eld indicates that the value of this PriorityClass should be used for Pods without a

PriorityClassName . Only one PriorityClass with globalDefault set to true can exist in the

system. If there is no PriorityClass with globalDefault set, the priority of Pods with no

PriorityClassName is zero.

The description �eld is an arbitrary string. It is meant to tell users of the cluster when they should

use this PriorityClass.

Note 1: If you upgrade your existing cluster and enable this feature, the priority of your existing

Pods will be considered to be zero.

Note 2: Addition of a PriorityClass with globalDefault set to true does not change the

priorities of existing Pods. The value of such a PriorityClass is used only for Pods created after

the PriorityClass is added.

Note 3: If you delete a PriorityClass, existing Pods that use the name of the deleted priority

class remain unchanged, but you are not able to create more Pods that use the name of the

deleted PriorityClass.

Example PriorityClass

Pod priority

apiVersion: v1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000000
globalDefault: false
description: "This priority class should be used for XYZ service pods only."

10/23/2017 Pod Priority and Preemption - Kubernetes

http://localhost:4000/docs/concepts/configuration/pod-priority-preemption/ 4/6

After you have one or more PriorityClasses, you can create Pods that specify one of those

PriorityClass names in their speci�cations. The priority admission controller uses the

priorityClassName �eld and populates the integer value of the priority. If the priority class is not

found, the Pod is rejected.

The following YAML is an example of a Pod con�guration that uses the PriorityClass created in the

preceding example. The priority admission controller checks the speci�cation and resolves the

priority of the Pod to 1000000.

Preemption

When Pods are created, they go to a queue and wait to be scheduled. The scheduler picks a Pod

from the queue and tries to schedule it on a Node. If no Node is found that satis�es all the speci�ed

requirements of the Pod, preemption logic is triggered for the pending Pod. Let’s call the pending pod

P. Preemption logic tries to �nd a Node where removal of one or more Pods with lower priority than P

would enable P to be scheduled on that Node. If such a Node is found, one or more lower priority

Pods get deleted from the Node. After the Pods are gone, P can be scheduled on the Node.

Limitations of preemption (alpha version)

Starvation of preempting Pod

When Pods are preempted, the victims get their graceful termination period. They have that much

time to �nish their work and exit. If they don’t, they are killed. This graceful termination period creates

a time gap between the point that the scheduler preempts Pods and the time when the pending Pod

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 priorityClassName: high-priority

https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods

10/23/2017 Pod Priority and Preemption - Kubernetes

http://localhost:4000/docs/concepts/configuration/pod-priority-preemption/ 5/6

(P) can be scheduled on the Node (N). In the meantime, the scheduler keeps scheduling other

pending Pods. As victims exit or get terminated, the scheduler tries to schedule Pods in the pending

queue, and one or more of them may be considered and scheduled to N before the scheduler

considers scheduling P on N. In such a case, it is likely that when all the victims exit, Pod P won’t �t

on Node N anymore. So, scheduler will have to preempt other Pods on Node N or another Node so

that P can be scheduled. This scenario might be repeated again for the second and subsequent

rounds of preemption, and P might not get scheduled for a while. This scenario can cause problems

in various clusters, but is particularly problematic in clusters with a high Pod creation rate.

We will address this problem in the beta version of Pod preemption. The solution we plan to

implement is provided here.

PodDisruptionBudget is not supported

A Pod Disruption Budget (PDB) allows application owners to limit the number Pods of a replicated

application that are down simultaneously from voluntary disruptions. However, the alpha version of

preemption does not respect PDB when choosing preemption victims. We plan to add PDB support

in beta, but even in beta, respecting PDB will be best effort. The Scheduler will try to �nd victims

whose PDB won’t be violated by preemption, but if no such victims are found, preemption will still

happen, and lower priority Pods will be removed despite their PDBs being violated.

Inter-Pod a�nity on lower-priority Pods

In version 1.8, a Node is considered for preemption only when the answer to this question is yes: “If

all the Pods with lower priority than the pending Pod are removed from the Node, can the pending

pod be scheduled on the Node?”

Note: Preemption does not necessarily remove all lower-priority Pods. If the pending pod can

be scheduled by removing fewer than all lower-priority Pods, then only a portion of the lower-

priority Pods are removed. Even so, the answer to the preceding question must be yes. If the

answer is no, the Node is not considered for preemption.

If a pending Pod has inter-pod a�nity to one or more of the lower-priority Pods on the Node, the

inter-Pod a�nity rule cannot be satis�ed in the absence of those lower-priority Pods. In this case, the

scheduler does not preempt any Pods on the Node. Instead, it looks for another Node. The scheduler

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/pod-preemption.md#preemption-mechanics
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

10/23/2017 Pod Priority and Preemption - Kubernetes

http://localhost:4000/docs/concepts/configuration/pod-priority-preemption/ 6/6

might �nd a suitable Node or it might not. There is no guarantee that the pending Pod can be

scheduled.

We might address this issue in future versions, but we don’t have a clear plan yet. We will not

consider it a blocker for Beta or GA. Part of the reason is that �nding the set of lower-priority Pods

that satisfy all inter-Pod a�nity rules is computationally expensive, and adds substantial complexity

to the preemption logic. Besides, even if preemption keeps the lower-priority Pods to satisfy inter-Pod

a�nity, the lower priority Pods might be preempted later by other Pods, which removes the bene�ts

of having the complex logic of respecting inter-Pod a�nity.

Our recommended solution for this problem is to create inter-Pod a�nity only towards equal or

higher priority pods.

Cross node preemption

Suppose a Node N is being considered for preemption so that a pending Pod P can be scheduled on

N. P might become feasible on N only if a Pod on another Node is preempted. Here’s an example:

Pod P is being considered for Node N.

Pod Q is running on another Node in the same zone as Node N.

Pod P has anit-a�nity with Pod Q.

There are no other cases of anti-a�nity between Pod P and other Pods in the zone.

In order to schedule Pod P on Node N, Pod Q should be preempted, but scheduler does not

perform cross-node preemption. So, Pod P will be deemed unschedulable on Node N.

If Pod Q were removed from its Node, the anti-a�nity violation would be gone, and Pod P could

possibly be scheduled on Node N.

We may consider adding cross Node preemption in future versions if we �nd an algorithm with

reasonable performance. We cannot promise anything at this point, and cross Node preemption will

not be considered a blocker for Beta or GA.

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 1/18

Services

Kubernetes Pods are mortal. They are born and when they die, they are not resurrected.

ReplicationControllers in particular create and destroy Pods dynamically (e.g. when scaling up

or down or when doing rolling updates). While each Pod gets its own IP address, even those IP

addresses cannot be relied upon to be stable over time. This leads to a problem: if some set of Pods

(let’s call them backends) provides functionality to other Pods (let’s call them frontends) inside the

Kubernetes cluster, how do those frontends �nd out and keep track of which backends are in that

set?

Enter Services .

A Kubernetes Service is an abstraction which de�nes a logical set of Pods and a policy by which

to access them - sometimes called a micro-service. The set of Pods targeted by a Service is

(usually) determined by a Label Selector (see below for why you might want a Service without

a selector).

As an example, consider an image-processing backend which is running with 3 replicas. Those

replicas are fungible - frontends do not care which backend they use. While the actual Pods that

compose the backend set may change, the frontend clients should not need to be aware of that or

keep track of the list of backends themselves. The Service abstraction enables this decoupling.

For Kubernetes-native applications, Kubernetes offers a simple Endpoints API that is updated

whenever the set of Pods in a Service changes. For non-native applications, Kubernetes offers a

virtual-IP-based bridge to Services which redirects to the backend Pods .

De�ning a service
Services without selectors

Virtual IPs and service proxies
Proxy-mode: userspace
Proxy-mode: iptables

Multi-Port Services
Choosing your own IP address

Why not use round-robin DNS?

http://localhost:4000/docs/user-guide/pods
http://localhost:4000/docs/user-guide/replication-controller
http://localhost:4000/docs/user-guide/kubectl/v1.7/#rolling-update
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#label-selectors

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 2/18

De�ning a service

A Service in Kubernetes is a REST object, similar to a Pod . Like all of the REST objects, a

Service de�nition can be POSTed to the apiserver to create a new instance. For example, suppose

you have a set of Pods that each expose port 9376 and carry a label "app=MyApp" .

Discovering services
Environment variables
DNS

Headless services
With selectors
Without selectors

Publishing services - service types
Type NodePort
Type LoadBalancer

Internal load balancer
SSL support on AWS
PROXY protocol support on AWS

External IPs
Shortcomings
Future work
The gory details of virtual IPs

Avoiding collisions
IPs and VIPs

Userspace
Iptables

API Object
For More Information

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 3/18

This speci�cation will create a new Service object named “my-service” which targets TCP port

9376 on any Pod with the "app=MyApp" label. This Service will also be assigned an IP address

(sometimes called the “cluster IP”), which is used by the service proxies (see below). The Service ’s

selector will be evaluated continuously and the results will be POSTed to an Endpoints object also

named “my-service”.

Note that a Service can map an incoming port to any targetPort . By default the targetPort

will be set to the same value as the port �eld. Perhaps more interesting is that targetPort can be

a string, referring to the name of a port in the backend Pods . The actual port number assigned to

that name can be different in each backend Pod . This offers a lot of �exibility for deploying and

evolving your Services . For example, you can change the port number that pods expose in the next

version of your backend software, without breaking clients.

Kubernetes Services support TCP and UDP for protocols. The default is TCP .

Services without selectors

Services generally abstract access to Kubernetes Pods , but they can also abstract other kinds of

backends. For example:

You want to have an external database cluster in production, but in test you use your own

databases.

You want to point your service to a service in another Namespace or on another cluster.

You are migrating your workload to Kubernetes and some of your backends run outside of

Kubernetes.

In any of these scenarios you can de�ne a service without a selector:

http://localhost:4000/docs/user-guide/namespaces

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 4/18

Because this service has no selector, the corresponding Endpoints object will not be created. You

can manually map the service to your own speci�c endpoints:

NOTE: Endpoint IPs may not be loopback (127.0.0.0/8), link-local (169.254.0.0/16), or link-local

multicast (224.0.0.0/24).

Accessing a Service without a selector works the same as if it had a selector. The tra�c will be

routed to endpoints de�ned by the user (1.2.3.4:9376 in this example).

An ExternalName service is a special case of service that does not have selectors. It does not de�ne

any ports or endpoints. Rather, it serves as a way to return an alias to an external service residing

outside the cluster.

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

kind: Endpoints
apiVersion: v1
metadata:
 name: my-service
subsets:
 - addresses:
 - ip: 1.2.3.4
 ports:
 - port: 9376

kind: Service
apiVersion: v1
metadata:
 name: my-service
 namespace: prod
spec:
 type: ExternalName
 externalName: my.database.example.com

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 5/18

When looking up the host my-service.prod.svc.CLUSTER , the cluster DNS service will return a

CNAME record with the value my.database.example.com . Accessing such a service works in the

same way as others, with the only difference that the redirection happens at the DNS level and no

proxying or forwarding occurs. Should you later decide to move your database into your cluster, you

can start its pods, add appropriate selectors or endpoints and change the service type .

Virtual IPs and service proxies

Every node in a Kubernetes cluster runs a kube-proxy . kube-proxy is responsible for

implementing a form of virtual IP for Services of type other than ExternalName . In Kubernetes

v1.0 the proxy was purely in userspace. In Kubernetes v1.1 an iptables proxy was added, but was not

the default operating mode. Since Kubernetes v1.2, the iptables proxy is the default.

As of Kubernetes v1.0, Services are a “layer 4” (TCP/UDP over IP) construct. In Kubernetes v1.1 the

Ingress API was added (beta) to represent “layer 7” (HTTP) services.

Proxy-mode: userspace

In this mode, kube-proxy watches the Kubernetes master for the addition and removal of Service

and Endpoints objects. For each Service it opens a port (randomly chosen) on the local node.

Any connections to this “proxy port” will be proxied to one of the Service ’s backend Pods (as

reported in Endpoints). Which backend Pod to use is decided based on the SessionAffinity of

the Service . Lastly, it installs iptables rules which capture tra�c to the Service ’s clusterIP

(which is virtual) and Port and redirects that tra�c to the proxy port which proxies the backend

Pod .

The net result is that any tra�c bound for the Service ’s IP:Port is proxied to an appropriate

backend without the clients knowing anything about Kubernetes or Services or Pods .

By default, the choice of backend is round robin. Client-IP based session a�nity can be selected by

setting service.spec.sessionAffinity to "ClientIP" (the default is "None"), and you can set

the max session sticky time by setting the �eld

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 6/18

service.spec.sessionAffinityConfig.clientIP.timeoutSeconds if you have already set

service.spec.sessionAffinity to "ClientIP" (the default is “10800”).

Backend Pod 1
labels: app=MyApp
port: 9376

Backend Pod 2
labels: app=MyApp
port: 9376

Backend Pod 3
labels: app=MyApp
port: 9376

Client

kubeproxy

apiserver

ServiceIP
(iptables)

Node

Proxy-mode: iptables

In this mode, kube-proxy watches the Kubernetes master for the addition and removal of Service

and Endpoints objects. For each Service it installs iptables rules which capture tra�c to the

Service ’s clusterIP (which is virtual) and Port and redirects that tra�c to one of the Service ’s

backend sets. For each Endpoints object it installs iptables rules which select a backend Pod .

By default, the choice of backend is random. Client-IP based session a�nity can be selected by

setting service.spec.sessionAffinity to "ClientIP" (the default is "None"), and you can set

the max session sticky time by setting the �eld

service.spec.sessionAffinityConfig.clientIP.timeoutSeconds if you have already set

service.spec.sessionAffinity to "ClientIP" (the default is “10800”).

As with the userspace proxy, the net result is that any tra�c bound for the Service ’s IP:Port is

proxied to an appropriate backend without the clients knowing anything about Kubernetes or

Services or Pods . This should be faster and more reliable than the userspace proxy. However,

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 7/18

unlike the userspace proxier, the iptables proxier cannot automatically retry another Pod if the one it

initially selects does not respond, so it depends on having working readiness probes.

Backend Pod 1
labels: app=MyApp
port: 9376

Backend Pod 2
labels: app=MyApp
port: 9376

Backend Pod 3
labels: app=MyApp
port: 9376

Client kubeproxy

apiserver

ServiceIP
(iptables)

Node

Multi-Port Services

Many Services need to expose more than one port. For this case, Kubernetes supports multiple

port de�nitions on a Service object. When using multiple ports you must give all of your ports

names, so that endpoints can be disambiguated. For example:

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#defining-readiness-probes

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 8/18

Choosing your own IP address

You can specify your own cluster IP address as part of a Service creation request. To do this, set

the spec.clusterIP �eld. For example, if you already have an existing DNS entry that you wish to

replace, or legacy systems that are con�gured for a speci�c IP address and di�cult to re-con�gure.

The IP address that a user chooses must be a valid IP address and within the

service-cluster-ip-range CIDR range that is speci�ed by �ag to the API server. If the IP address

value is invalid, the apiserver returns a 422 HTTP status code to indicate that the value is invalid.

Why not use round-robin DNS?

A question that pops up every now and then is why we do all this stuff with virtual IPs rather than just

use standard round-robin DNS. There are a few reasons:

There is a long history of DNS libraries not respecting DNS TTLs and caching the results of

name lookups.

Many apps do DNS lookups once and cache the results.

Even if apps and libraries did proper re-resolution, the load of every client re-resolving DNS over

and over would be di�cult to manage.

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 9376
 - name: https
 protocol: TCP
 port: 443
 targetPort: 9377

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 9/18

We try to discourage users from doing things that hurt themselves. That said, if enough people ask

for this, we may implement it as an alternative.

Discovering services

Kubernetes supports 2 primary modes of �nding a Service - environment variables and DNS.

Environment variables

When a Pod is run on a Node , the kubelet adds a set of environment variables for each active

Service . It supports both Docker links compatible variables (see makeLinkVariables) and simpler

{SVCNAME}_SERVICE_HOST and {SVCNAME}_SERVICE_PORT variables, where the Service name is

upper-cased and dashes are converted to underscores.

For example, the Service "redis-master" which exposes TCP port 6379 and has been allocated

cluster IP address 10.0.0.11 produces the following environment variables:

This does imply an ordering requirement - any Service that a Pod wants to access must be created

before the Pod itself, or else the environment variables will not be populated. DNS does not have

this restriction.

DNS

An optional (though strongly recommended) cluster add-on is a DNS server. The DNS server watches

the Kubernetes API for new Services and creates a set of DNS records for each. If DNS has been

enabled throughout the cluster then all Pods should be able to do name resolution of Services

automatically.

REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11

https://docs.docker.com/userguide/dockerlinks/
http://releases.k8s.io/master/pkg/kubelet/envvars/envvars.go#L49
http://releases.k8s.io/master/cluster/addons/README.md

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 10/18

For example, if you have a Service called "my-service" in Kubernetes Namespace "my-ns" a

DNS record for "my-service.my-ns" is created. Pods which exist in the "my-ns" Namespace

should be able to �nd it by simply doing a name lookup for "my-service" . Pods which exist in

other Namespaces must qualify the name as "my-service.my-ns" . The result of these name

lookups is the cluster IP.

Kubernetes also supports DNS SRV (service) records for named ports. If the "my-service.my-ns"

Service has a port named "http" with protocol TCP , you can do a DNS SRV query for

"_http._tcp.my-service.my-ns" to discover the port number for "http" .

The Kubernetes DNS server is the only way to access services of type ExternalName . More

information is available in the DNS Pods and Services.

Headless services

Sometimes you don’t need or want load-balancing and a single service IP. In this case, you can create

“headless” services by specifying "None" for the cluster IP (spec.clusterIP).

This option allows developers to reduce coupling to the Kubernetes system by allowing them

freedom to do discovery their own way. Applications can still use a self-registration pattern and

adapters for other discovery systems could easily be built upon this API.

For such Services , a cluster IP is not allocated, kube-proxy does not handle these services, and

there is no load balancing or proxying done by the platform for them. How DNS is automatically

con�gured depends on whether the service has selectors de�ned.

With selectors

For headless services that de�ne selectors, the endpoints controller creates Endpoints records in

the API, and modi�es the DNS con�guration to return A records (addresses) that point directly to the

Pods backing the Service .

Without selectors

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 11/18

For headless services that do not de�ne selectors, the endpoints controller does not create

Endpoints records. However, the DNS system looks for and con�gures either:

CNAME records for ExternalName -type services.

A records for any Endpoints that share a name with the service, for all other types.

Publishing services - service types

For some parts of your application (e.g. frontends) you may want to expose a Service onto an

external (outside of your cluster) IP address.

Kubernetes ServiceTypes allow you to specify what kind of service you want. The default is

ClusterIP .

Type values and their behaviors are:

ClusterIP : Exposes the service on a cluster-internal IP. Choosing this value makes the service

only reachable from within the cluster. This is the default ServiceType .

NodePort : Exposes the service on each Node’s IP at a static port (the NodePort). A

ClusterIP service, to which the NodePort service will route, is automatically created. You’ll be

able to contact the NodePort service, from outside the cluster, by requesting

<NodeIP>:<NodePort> .

LoadBalancer : Exposes the service externally using a cloud provider’s load balancer.

NodePort and ClusterIP services, to which the external load balancer will route, are

automatically created.

ExternalName : Maps the service to the contents of the externalName �eld (e.g.

foo.bar.example.com), by returning a CNAME record with its value. No proxying of any kind is

set up. This requires version 1.7 or higher of kube-dns .

Type NodePort

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 12/18

If you set the type �eld to "NodePort" , the Kubernetes master will allocate a port from a �ag-

con�gured range (default: 30000-32767), and each Node will proxy that port (the same port number

on every Node) into your Service . That port will be reported in your Service ’s

spec.ports[*].nodePort �eld.

If you want a speci�c port number, you can specify a value in the nodePort �eld, and the system will

allocate you that port or else the API transaction will fail (i.e. you need to take care about possible

port collisions yourself). The value you specify must be in the con�gured range for node ports.

This gives developers the freedom to set up their own load balancers, to con�gure environments that

are not fully supported by Kubernetes, or even to just expose one or more nodes’ IPs directly.

Note that this Service will be visible as both <NodeIP>:spec.ports[*].nodePort and

spec.clusterIp:spec.ports[*].port .

Type LoadBalancer

On cloud providers which support external load balancers, setting the type �eld to

"LoadBalancer" will provision a load balancer for your Service . The actual creation of the load

balancer happens asynchronously, and information about the provisioned balancer will be published

in the Service ’s status.loadBalancer �eld. For example:

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376
 nodePort: 30061
 clusterIP: 10.0.171.239
 loadBalancerIP: 78.11.24.19
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 146.148.47.155

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 13/18

Tra�c from the external load balancer will be directed at the backend Pods , though exactly how that

works depends on the cloud provider. Some cloud providers allow the loadBalancerIP to be

speci�ed. In those cases, the load-balancer will be created with the user-speci�ed loadBalancerIP .

If the loadBalancerIP �eld is not speci�ed, an ephemeral IP will be assigned to the loadBalancer. If

the loadBalancerIP is speci�ed, but the cloud provider does not support the feature, the �eld will

be ignored.

Special notes for Azure: To use user-speci�ed public type loadBalancerIP , a static type public IP

address resource needs to be created �rst, and it should be in the same resource group of the

cluster. Then you could specify the assigned IP address as loadBalancerIP .

Internal load balancer

In a mixed environment it is sometimes necessary to route tra�c from services inside the same

VPC.

In a split-horizon DNS environment you would need two services to be able to route both external

and internal tra�c to your endpoints.

This can be achieved by adding the following annotations to the service based on cloud provider.

SSL support on AWS

For partial SSL support on clusters running on AWS, starting with 1.3 three annotations can be

added to a LoadBalancer service:

Select one of the tabs.

Default GCP AWS Azure

metadata:
 name: my-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:us-east-1:1

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 14/18

The �rst speci�es the ARN of the certi�cate to use. It can be either a certi�cate from a third party

issuer that was uploaded to IAM or one created within AWS Certi�cate Manager.

The second annotation speci�es which protocol a pod speaks. For HTTPS and SSL, the ELB will

expect the pod to authenticate itself over the encrypted connection.

HTTP and HTTPS will select layer 7 proxying: the ELB will terminate the connection with the user,

parse headers and inject the X-Forwarded-For header with the user’s IP address (pods will only see

the IP address of the ELB at the other end of its connection) when forwarding requests.

TCP and SSL will select layer 4 proxying: the ELB will forward tra�c without modifying the headers.

In a mixed-use environment where some ports are secured and others are left unencrypted, the

following annotations may be used:

In the above example, if the service contained three ports, 80 , 443 , and 8443 , then 443 and 8443

would use the SSL certi�cate, but 80 would just be proxied HTTP.

PROXY protocol support on AWS

To enable PROXY protocol support for clusters running on AWS, you can use the following service

annotation:

metadata:
 name: my-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: (https|http|ssl

 metadata:
 name: my-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http
 service.beta.kubernetes.io/aws-load-balancer-ssl-ports: "443,8443"

 metadata:
 name: my-service
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-proxy-protocol: "*"

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 15/18

Since version 1.3.0 the use of this annotation applies to all ports proxied by the ELB and cannot be

con�gured otherwise.

External IPs

If there are external IPs that route to one or more cluster nodes, Kubernetes services can be exposed

on those externalIPs . Tra�c that ingresses into the cluster with the external IP (as destination IP),

on the service port, will be routed to one of the service endpoints. externalIPs are not managed by

Kubernetes and are the responsibility of the cluster administrator.

In the ServiceSpec, externalIPs can be speci�ed along with any of the ServiceTypes . In the

example below, my-service can be accessed by clients on 80.11.12.10:80 (externalIP:port)

Shortcomings

Using the userspace proxy for VIPs will work at small to medium scale, but will not scale to very large

clusters with thousands of Services. See the original design proposal for portals for more details.

Using the userspace proxy obscures the source-IP of a packet accessing a Service . This makes

some kinds of �rewalling impossible. The iptables proxier does not obscure in-cluster source IPs, but

it does still impact clients coming through a load-balancer or node-port.

The Type �eld is designed as nested functionality - each level adds to the previous. This is not

strictly required on all cloud providers (e.g. Google Compute Engine does not need to allocate a

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 9376
 externalIPs:
 - 80.11.12.10

http://issue.k8s.io/1107

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 16/18

NodePort to make LoadBalancer work, but AWS does) but the current API requires it.

Future work

In the future we envision that the proxy policy can become more nuanced than simple round robin

balancing, for example master-elected or sharded. We also envision that some Services will have

“real” load balancers, in which case the VIP will simply transport the packets there.

We intend to improve our support for L7 (HTTP) Services .

We intend to have more �exible ingress modes for Services which encompass the current

ClusterIP , NodePort , and LoadBalancer modes and more.

The gory details of virtual IPs

The previous information should be su�cient for many people who just want to use Services .

However, there is a lot going on behind the scenes that may be worth understanding.

Avoiding collisions

One of the primary philosophies of Kubernetes is that users should not be exposed to situations that

could cause their actions to fail through no fault of their own. In this situation, we are looking at

network ports - users should not have to choose a port number if that choice might collide with

another user. That is an isolation failure.

In order to allow users to choose a port number for their Services , we must ensure that no two

Services can collide. We do that by allocating each Service its own IP address.

To ensure each service receives a unique IP, an internal allocator atomically updates a global

allocation map in etcd prior to creating each service. The map object must exist in the registry for

services to get IPs, otherwise creations will fail with a message indicating an IP could not be

allocated. A background controller is responsible for creating that map (to migrate from older

versions of Kubernetes that used in memory locking) as well as checking for invalid assignments

due to administrator intervention and cleaning up any IPs that were allocated but which no service

currently uses.

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 17/18

IPs and VIPs

Unlike Pod IP addresses, which actually route to a �xed destination, Service IPs are not actually

answered by a single host. Instead, we use iptables (packet processing logic in Linux) to de�ne

virtual IP addresses which are transparently redirected as needed. When clients connect to the VIP,

their tra�c is automatically transported to an appropriate endpoint. The environment variables and

DNS for Services are actually populated in terms of the Service ’s VIP and port.

We support two proxy modes - userspace and iptables, which operate slightly differently.

Userspace

As an example, consider the image processing application described above. When the backend

Service is created, the Kubernetes master assigns a virtual IP address, for example 10.0.0.1.

Assuming the Service port is 1234, the Service is observed by all of the kube-proxy instances

in the cluster. When a proxy sees a new Service , it opens a new random port, establishes an

iptables redirect from the VIP to this new port, and starts accepting connections on it.

When a client connects to the VIP the iptables rule kicks in, and redirects the packets to the

Service proxy ’s own port. The Service proxy chooses a backend, and starts proxying tra�c

from the client to the backend.

This means that Service owners can choose any port they want without risk of collision. Clients

can simply connect to an IP and port, without being aware of which Pods they are actually

accessing.

Iptables

Again, consider the image processing application described above. When the backend Service is

created, the Kubernetes master assigns a virtual IP address, for example 10.0.0.1. Assuming the

Service port is 1234, the Service is observed by all of the kube-proxy instances in the cluster.

When a proxy sees a new Service , it installs a series of iptables rules which redirect from the VIP to

per- Service rules. The per- Service rules link to per- Endpoint rules which redirect (Destination

NAT) to the backends.

When a client connects to the VIP the iptables rule kicks in. A backend is chosen (either based on

session a�nity or randomly) and packets are redirected to the backend. Unlike the userspace proxy,

10/23/2017 Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/service/ 18/18

packets are never copied to userspace, the kube-proxy does not have to be running for the VIP to

work, and the client IP is not altered.

This same basic �ow executes when tra�c comes in through a node-port or through a load-balancer,

though in those cases the client IP does get altered.

API Object

Service is a top-level resource in the Kubernetes REST API. More details about the API object can be

found at: Service API object.

For More Information

Read Connecting a Front End to a Back End Using a Service.

http://localhost:4000/docs/api-reference/v1.8/#service-v1-core
http://localhost:4000/docs/tutorials/connecting-apps/connecting-frontend-backend/

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 1/12

DNS Pods and Services

Introduction

As of Kubernetes 1.3, DNS is a built-in service launched automatically using the addon manager

cluster add-on.

Kubernetes DNS schedules a DNS Pod and Service on the cluster, and con�gures the kubelets to tell

individual containers to use the DNS Service’s IP to resolve DNS names.

What things get DNS names?

Every Service de�ned in the cluster (including the DNS server itself) is assigned a DNS name. By

default, a client Pod’s DNS search list will include the Pod’s own namespace and the cluster’s default

domain. This is best illustrated by example:

Assume a Service named foo in the Kubernetes namespace bar . A Pod running in namespace

bar can look up this service by simply doing a DNS query for foo . A Pod running in namespace

quux can look up this service by doing a DNS query for foo.bar .

Supported DNS schema

The following sections detail the supported record types and layout that is supported. Any other

layout or names or queries that happen to work are considered implementation details and are

subject to change without warning.

Services

A records

http://releases.k8s.io/master/cluster/addons/README.md

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 2/12

“Normal” (not headless) Services are assigned a DNS A record for a name of the form

my-svc.my-namespace.svc.cluster.local . This resolves to the cluster IP of the Service.

“Headless” (without a cluster IP) Services are also assigned a DNS A record for a name of the form

my-svc.my-namespace.svc.cluster.local . Unlike normal Services, this resolves to the set of IPs

of the pods selected by the Service. Clients are expected to consume the set or else use standard

round-robin selection from the set.

SRV records

SRV Records are created for named ports that are part of normal or Headless Services. For each

named port, the SRV record would have the form

_my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster.local . For a regular

service, this resolves to the port number and the CNAME:

my-svc.my-namespace.svc.cluster.local . For a headless service, this resolves to multiple

answers, one for each pod that is backing the service, and contains the port number and a CNAME

of the pod of the form auto-generated-name.my-svc.my-namespace.svc.cluster.local .

Backwards compatibility

Previous versions of kube-dns made names of the form my-svc.my-namespace.cluster.local

(the ‘svc’ level was added later). This is no longer supported.

Pods

A Records

When enabled, pods are assigned a DNS A record in the form of

pod-ip-address.my-namespace.pod.cluster.local .

For example, a pod with IP 1.2.3.4 in the namespace default with a DNS name of

cluster.local would have an entry: 1-2-3-4.default.pod.cluster.local .

A Records and hostname based on Pod’s hostname and subdomain �elds

Currently when a pod is created, its hostname is the Pod’s metadata.name value.

http://localhost:4000/docs/concepts/services-networking/service/#headless-services

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 3/12

With v1.2, users can specify a Pod annotation, pod.beta.kubernetes.io/hostname , to specify

what the Pod’s hostname should be. The Pod annotation, if speci�ed, takes precedence over the

Pod’s name, to be the hostname of the pod. For example, given a Pod with annotation

pod.beta.kubernetes.io/hostname: my-pod-name , the Pod will have its hostname set to “my-

pod-name”.

With v1.3, the PodSpec has a hostname �eld, which can be used to specify the Pod’s hostname.

This �eld value takes precedence over the pod.beta.kubernetes.io/hostname annotation value.

v1.2 introduces a beta feature where the user can specify a Pod annotation,

pod.beta.kubernetes.io/subdomain , to specify the Pod’s subdomain. The �nal domain will be “

...svc.". For example, a Pod with the hostname annotation set to "foo", and the subdomain annotation

set to "bar", in namespace "my-namespace", will have the FQDN "foo.bar.my-

namespace.svc.cluster.local"

With v1.3, the PodSpec has a subdomain �eld, which can be used to specify the Pod’s subdomain.

This �eld value takes precedence over the pod.beta.kubernetes.io/subdomain annotation value.

Example:

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 4/12

If there exists a headless service in the same namespace as the pod and with the same name as the

subdomain, the cluster’s KubeDNS Server also returns an A record for the Pod’s fully quali�ed

hostname. Given a Pod with the hostname set to “busybox-1” and the subdomain set to “default-

apiVersion: v1
kind: Service
metadata:
 name: default-subdomain
spec:
 selector:
 name: busybox
 clusterIP: None
 ports:
 - name: foo # Actually, no port is needed.
 port: 1234
 targetPort: 1234

apiVersion: v1
kind: Pod
metadata:
 name: busybox1
 labels:
 name: busybox
spec:
 hostname: busybox-1
 subdomain: default-subdomain
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 name: busybox

apiVersion: v1
kind: Pod
metadata:
 name: busybox2
 labels:
 name: busybox
spec:
 hostname: busybox-2
 subdomain: default-subdomain
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 name: busybox

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 5/12

subdomain”, and a headless Service named “default-subdomain” in the same namespace, the pod

will see its own FQDN as “busybox-1.default-subdomain.my-namespace.svc.cluster.local”. DNS

serves an A record at that name, pointing to the Pod’s IP. Both pods “busybox1” and “busybox2” can

have their distinct A records.

As of Kubernetes v1.2, the Endpoints object also has the annotation

endpoints.beta.kubernetes.io/hostnames-map . Its value is the json representation of

map[string(IP)][endpoints.HostRecord], for example: ‘{“10.245.1.6”:{HostName: “my-webserver”}}’. If

the Endpoints are for a headless service, an A record is created with the format ...svc. For the

example json, if endpoints are for a headless service named "bar", and one of the endpoints has IP

"10.245.1.6", an A record is created with the name "my-webserver.bar.my-

namespace.svc.cluster.local" and the A record lookup would return "10.245.1.6". This endpoints

annotation generally does not need to be speci�ed by end-users, but can used by the internal service

controller to deliver the aforementioned feature.

With v1.3, The Endpoints object can specify the hostname for any endpoint, along with its IP. The

hostname �eld takes precedence over the hostname value that might have been speci�ed via the

endpoints.beta.kubernetes.io/hostnames-map annotation.

With v1.3, the following annotations are deprecated: pod.beta.kubernetes.io/hostname ,

pod.beta.kubernetes.io/subdomain , endpoints.beta.kubernetes.io/hostnames-map .

How do I test if it is working?

Create a simple Pod to use as a test environment

Create a �le named busybox.yaml with the following contents:

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 6/12

Then create a pod using this �le:

Wait for this pod to go into the running state

You can get its status with: kubectl get pods busybox

You should see:

Validate that DNS is working

Once that pod is running, you can exec nslookup in that environment:

You should see something like:

apiVersion: v1
kind: Pod
metadata:
 name: busybox
 namespace: default
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: busybox
 restartPolicy: Always

kubectl create -f busybox.yaml

NAME READY STATUS RESTARTS AGE
busybox 1/1 Running 0 <some-time>

kubectl exec -ti busybox -- nslookup kubernetes.default

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 7/12

If you see that, DNS is working correctly.

Troubleshooting Tips

If the nslookup command fails, check the following:

Check the local DNS con�guration �rst

Take a look inside the resolv.conf �le. (See “Inheriting DNS from the node” and “Known issues” below

for more information)

Verify that the search path and name server are set up like the following (note that search path may

vary for different cloud providers):

DNS Policy

By default, DNS policy for a pod is ‘ClusterFirst’. So pods running with hostNetwork cannot resolve

DNS names. To have DNS options set along with hostNetwork, you should specify DNS policy

explicitly to ‘ClusterFirstWithHostNet’. Update the busybox.yaml as following:

Server: 10.0.0.10
Address 1: 10.0.0.10

Name: kubernetes.default
Address 1: 10.0.0.1

kubectl exec busybox cat /etc/resolv.conf

search default.svc.cluster.local svc.cluster.local cluster.local google.internal c
nameserver 10.0.0.10
options ndots:5

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 8/12

Quick diagnosis

Errors such as the following indicate a problem with the kube-dns add-on or associated Services:

or

Check if the DNS pod is running

Use the kubectl get pods command to verify that the DNS pod is running.

You should see something like:

apiVersion: v1
kind: Pod
metadata:
 name: busybox
 namespace: default
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: busybox
 restartPolicy: Always
 hostNetwork: true
 dnsPolicy: ClusterFirstWithHostNet

$ kubectl exec -ti busybox -- nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10

nslookup: can't resolve 'kubernetes.default'

$ kubectl exec -ti busybox -- nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

nslookup: can't resolve 'kubernetes.default'

kubectl get pods --namespace=kube-system -l k8s-app=kube-dns

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 9/12

If you see that no pod is running or that the pod has failed/completed, the DNS add-on may not be

deployed by default in your current environment and you will have to deploy it manually.

Check for Errors in the DNS pod

Use kubectl logs command to see logs for the DNS daemons.

See if there is any suspicious log. W, E, F letter at the beginning represent Warning, Error and Failure.

Please search for entries that have these as the logging level and use kubernetes issues to report

unexpected errors.

Is DNS service up?

Verify that the DNS service is up by using the kubectl get service command.

You should see:

If you have created the service or in the case it should be created by default but it does not appear,

see this debugging services page for more information.

NAME READY STATUS RES
...
kube-dns-v19-ezo1y 3/3 Running 0
...

kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l
kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l
kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l

kubectl get svc --namespace=kube-system

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
kube-dns 10.0.0.10 <none> 53/UDP,53/TCP 1h
...

https://github.com/kubernetes/kubernetes/issues
http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 10/12

Are DNS endpoints exposed?

You can verify that DNS endpoints are exposed by using the kubectl get endpoints command.

You should see something like:

NAME ENDPOINTS AGE kube-dns 10.180.3.17:53,10.180.3.17:53 1h

If you do not see the endpoints, see endpoints section in the debugging services documentation.

For additional Kubernetes DNS examples, see the cluster-dns examples in the Kubernetes GitHub

repository.

Kubernetes Federation (Multiple Zone support)

Release 1.3 introduced Cluster Federation support for multi-site Kubernetes installations. This

required some minor (backward-compatible) changes to the way the Kubernetes cluster DNS server

processes DNS queries, to facilitate the lookup of federated services (which span multiple

Kubernetes clusters). See the Cluster Federation Administrators’ Guide for more details on Cluster

Federation and multi-site support.

How it Works

The running Kubernetes DNS pod holds 3 containers - kubedns, dnsmasq and a health check called

healthz. The kubedns process watches the Kubernetes master for changes in Services and

Endpoints, and maintains in-memory lookup structures to service DNS requests. The dnsmasq

container adds DNS caching to improve performance. The healthz container provides a single health

check endpoint while performing dual healthchecks (for dnsmasq and kubedns).

The DNS pod is exposed as a Kubernetes Service with a static IP. Once assigned the kubelet passes

DNS con�gured using the --cluster-dns=10.0.0.10 �ag to each container.

DNS names also need domains. The local domain is con�gurable, in the kubelet using the �ag

--cluster-domain=<default local domain> .

kubectl get ep kube-dns --namespace=kube-system

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/
https://github.com/kubernetes/examples/tree/master/staging/cluster-dns
http://localhost:4000/docs/concepts/cluster-administration/federation/

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 11/12

The Kubernetes cluster DNS server (based off the SkyDNS library) supports forward lookups (A

records), service lookups (SRV records) and reverse IP address lookups (PTR records).

Inheriting DNS from the node

When running a pod, kubelet will prepend the cluster DNS server and search paths to the node’s own

DNS settings. If the node is able to resolve DNS names speci�c to the larger environment, pods

should be able to, also. See “Known issues” below for a caveat.

If you don’t want this, or if you want a different DNS con�g for pods, you can use the kubelet’s

--resolv-conf �ag. Setting it to “” means that pods will not inherit DNS. Setting it to a valid �le path

means that kubelet will use this �le instead of /etc/resolv.conf for DNS inheritance.

Known issues

Kubernetes installs do not con�gure the nodes’ resolv.conf �les to use the cluster DNS by default,

because that process is inherently distro-speci�c. This should probably be implemented eventually.

Linux’s libc is impossibly stuck (see this bug from 2005) with limits of just 3 DNS nameserver

records and 6 DNS search records. Kubernetes needs to consume 1 nameserver record and 3

search records. This means that if a local installation already uses 3 nameserver s or uses more

than 3 search es, some of those settings will be lost. As a partial workaround, the node can run

dnsmasq which will provide more nameserver entries, but not more search entries. You can also

use kubelet’s --resolv-conf �ag.

If you are using Alpine version 3.3 or earlier as your base image, DNS may not work properly owing to

a known issue with Alpine. Check here for more information.

References

Docs for the DNS cluster addon

What’s next

https://github.com/skynetservices/skydns
https://bugzilla.redhat.com/show_bug.cgi?id=168253
https://github.com/kubernetes/kubernetes/issues/30215
http://releases.k8s.io/master/cluster/addons/dns/README.md

10/23/2017 DNS Pods and Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/ 12/12

Autoscaling the DNS Service in a Cluster.

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 1/12

Connecting Applications with Services

The Kubernetes model for connecting containers

Now that you have a continuously running, replicated application you can expose it on a network.

Before discussing the Kubernetes approach to networking, it is worthwhile to contrast it with the

“normal” way networking works with Docker.

By default, Docker uses host-private networking, so containers can talk to other containers only if

they are on the same machine. In order for Docker containers to communicate across nodes, they

must be allocated ports on the machine’s own IP address, which are then forwarded or proxied to the

containers. This obviously means that containers must either coordinate which ports they use very

carefully or else be allocated ports dynamically.

Coordinating ports across multiple developers is very di�cult to do at scale and exposes users to

cluster-level issues outside of their control. Kubernetes assumes that pods can communicate with

other pods, regardless of which host they land on. We give every pod its own cluster-private-IP

address so you do not need to explicitly create links between pods or mapping container ports to

host ports. This means that containers within a Pod can all reach each other’s ports on localhost,

and all pods in a cluster can see each other without NAT. The rest of this document will elaborate on

how you can run reliable services on such a networking model.

This guide uses a simple nginx server to demonstrate proof of concept. The same principles are

embodied in a more complete Jenkins CI application.

The Kubernetes model for connecting containers
Exposing pods to the cluster
Creating a Service
Accessing the Service

Environment Variables
DNS

Securing the Service
Exposing the Service
Further reading
What’s next?

http://blog.kubernetes.io/2015/07/strong-simple-ssl-for-kubernetes.html

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 2/12

Exposing pods to the cluster

We did this in a previous example, but let’s do it once again and focus on the networking perspective.

Create an nginx pod, and note that it has a container port speci�cation:

run-my-nginx.yaml

This makes it accessible from any node in your cluster. Check the nodes the pod is running on:

Check your pods’ IPs:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-nginx
spec:
 replicas: 2
 template:
 metadata:
 labels:
 run: my-nginx
 spec:
 containers:
 - name: my-nginx
 image: nginx
 ports:
 - containerPort: 80

$ kubectl create -f ./run-my-nginx.yaml
$ kubectl get pods -l run=my-nginx -o wide
NAME READY STATUS RESTARTS AGE IP
my-nginx-3800858182-jr4a2 1/1 Running 0 13s 10.244.3.4
my-nginx-3800858182-kna2y 1/1 Running 0 13s 10.244.2.5

$ kubectl get pods -l run=my-nginx -o yaml | grep podIP
 podIP: 10.244.3.4
 podIP: 10.244.2.5

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/run-my-nginx.yaml

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 3/12

You should be able to ssh into any node in your cluster and curl both IPs. Note that the containers

are not using port 80 on the node, nor are there any special NAT rules to route tra�c to the pod. This

means you can run multiple nginx pods on the same node all using the same containerPort and

access them from any other pod or node in your cluster using IP. Like Docker, ports can still be

published to the host node’s interfaces, but the need for this is radically diminished because of the

networking model.

You can read more about how we achieve this if you’re curious.

Creating a Service

So we have pods running nginx in a �at, cluster wide, address space. In theory, you could talk to

these pods directly, but what happens when a node dies? The pods die with it, and the Deployment

will create new ones, with different IPs. This is the problem a Service solves.

A Kubernetes Service is an abstraction which de�nes a logical set of Pods running somewhere in

your cluster, that all provide the same functionality. When created, each Service is assigned a unique

IP address (also called clusterIP). This address is tied to the lifespan of the Service, and will not

change while the Service is alive. Pods can be con�gured to talk to the Service, and know that

communication to the Service will be automatically load-balanced out to some pod that is a member

of the Service.

You can create a Service for your 2 nginx replicas with kubectl expose :

This is equivalent to kubectl create -f the following yaml:

nginx-svc.yaml

$ kubectl expose deployment/my-nginx
service "my-nginx" exposed

http://localhost:4000/docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/nginx-svc.yaml

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 4/12

nginx-svc.yaml

This speci�cation will create a Service which targets TCP port 80 on any Pod with the

run: my-nginx label, and expose it on an abstracted Service port (targetPort : is the port the

container accepts tra�c on, port : is the abstracted Service port, which can be any port other pods

use to access the Service). View service API object to see the list of supported �elds in service

de�nition. Check your Service:

As mentioned previously, a Service is backed by a group of pods. These pods are exposed through

endpoints . The Service’s selector will be evaluated continuously and the results will be POSTed to

an Endpoints object also named my-nginx . When a pod dies, it is automatically removed from the

endpoints, and new pods matching the Service’s selector will automatically get added to the

endpoints. Check the endpoints, and note that the IPs are the same as the pods created in the �rst

step:

apiVersion: v1
kind: Service
metadata:
 name: my-nginx
 labels:
 run: my-nginx
spec:
 ports:
 - port: 80
 protocol: TCP
 selector:
 run: my-nginx

$ kubectl get svc my-nginx
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-nginx 10.0.162.149 <none> 80/TCP 21s

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/nginx-svc.yaml
http://localhost:4000/docs/api-reference/v1.8/#service-v1-core

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 5/12

You should now be able to curl the nginx Service on <CLUSTER-IP>:<PORT> from any node in your

cluster. Note that the Service IP is completely virtual, it never hits the wire, if you’re curious about

how this works you can read more about the service proxy.

Accessing the Service

Kubernetes supports 2 primary modes of �nding a Service - environment variables and DNS. The

former works out of the box while the latter requires the kube-dns cluster addon.

Environment Variables

When a Pod runs on a Node, the kubelet adds a set of environment variables for each active Service.

This introduces an ordering problem. To see why, inspect the environment of your running nginx

pods (your pod name will be different):

Note there’s no mention of your Service. This is because you created the replicas before the Service.

Another disadvantage of doing this is that the scheduler might put both pods on the same machine,

$ kubectl describe svc my-nginx
Name: my-nginx
Namespace: default
Labels: run=my-nginx
Annotations: <none>
Selector: run=my-nginx
Type: ClusterIP
IP: 10.0.162.149
Port: <unset> 80/TCP
Endpoints: 10.244.2.5:80,10.244.3.4:80
Session Affinity: None
Events: <none>

$ kubectl get ep my-nginx
NAME ENDPOINTS AGE
my-nginx 10.244.2.5:80,10.244.3.4:80 1m

$ kubectl exec my-nginx-3800858182-jr4a2 -- printenv | grep SERVICE
KUBERNETES_SERVICE_HOST=10.0.0.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443

http://localhost:4000/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
http://releases.k8s.io/master/cluster/addons/dns/README.md

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 6/12

which will take your entire Service down if it dies. We can do this the right way by killing the 2 pods

and waiting for the Deployment to recreate them. This time around the Service exists before the

replicas. This will give you scheduler-level Service spreading of your pods (provided all your nodes

have equal capacity), as well as the right environment variables:

You may notice that the pods have different names, since they are killed and recreated.

DNS

Kubernetes offers a DNS cluster addon Service that uses skydns to automatically assign dns names

to other Services. You can check if it’s running on your cluster:

If it isn’t running, you can enable it. The rest of this section will assume you have a Service with a

long lived IP (my-nginx), and a dns server that has assigned a name to that IP (the kube-dns cluster

addon), so you can talk to the Service from any pod in your cluster using standard methods (e.g.

gethostbyname). Let’s run another curl application to test this:

$ kubectl scale deployment my-nginx --replicas=0; kubectl scale deployment my-ngin

$ kubectl get pods -l run=my-nginx -o wide
NAME READY STATUS RESTARTS AGE IP N
my-nginx-3800858182-e9ihh 1/1 Running 0 5s 10.244.2.7 k
my-nginx-3800858182-j4rm4 1/1 Running 0 5s 10.244.3.8 k

$ kubectl exec my-nginx-3800858182-e9ihh -- printenv | grep SERVICE
KUBERNETES_SERVICE_PORT=443
MY_NGINX_SERVICE_HOST=10.0.162.149
KUBERNETES_SERVICE_HOST=10.0.0.1
MY_NGINX_SERVICE_PORT=80
KUBERNETES_SERVICE_PORT_HTTPS=443

$ kubectl get services kube-dns --namespace=kube-system
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns 10.0.0.10 <none> 53/UDP,53/TCP 8m

$ kubectl run curl --image=radial/busyboxplus:curl -i --tty
Waiting for pod default/curl-131556218-9fnch to be running, status is Pending, pod
Hit enter for command prompt

http://releases.k8s.io/master/cluster/addons/dns/README.md#how-do-i-configure-it

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 7/12

Then, hit enter and run nslookup my-nginx :

Securing the Service

Till now we have only accessed the nginx server from within the cluster. Before exposing the Service

to the internet, you want to make sure the communication channel is secure. For this, you will need:

Self signed certi�cates for https (unless you already have an identity certi�cate)

An nginx server con�gured to use the certi�cates

A secret that makes the certi�cates accessible to pods

You can acquire all these from the nginx https example, in short:

Now modify your nginx replicas to start an https server using the certi�cate in the secret, and the

Service, to expose both ports (80 and 443):

nginx-secure-app.yaml

[root@curl-131556218-9fnch:/]$ nslookup my-nginx
Server: 10.0.0.10
Address 1: 10.0.0.10

Name: my-nginx
Address 1: 10.0.162.149

$ make keys secret KEY=/tmp/nginx.key CERT=/tmp/nginx.crt SECRET=/tmp/secret.json
$ kubectl create -f /tmp/secret.json
secret "nginxsecret" created
$ kubectl get secrets
NAME TYPE DATA AGE
default-token-il9rc kubernetes.io/service-account-token 1 1d
nginxsecret Opaque 2 1m

http://localhost:4000/docs/user-guide/secrets
https://github.com/kubernetes/examples/tree/master/staging/https-nginx/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/nginx-secure-app.yaml

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 8/12

nginx-secure-app.yaml

Noteworthy points about the nginx-secure-app manifest:

apiVersion: v1
kind: Service
metadata:
 name: my-nginx
 labels:
 run: my-nginx
spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 name: http
 - port: 443
 protocol: TCP
 name: https
 selector:
 run: my-nginx

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-nginx
spec:
 replicas: 1
 template:
 metadata:
 labels:
 run: my-nginx
 spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: nginxsecret
 containers:
 - name: nginxhttps
 image: bprashanth/nginxhttps:1.0
 ports:
 - containerPort: 443
 - containerPort: 80
 volumeMounts:
 - mountPath: /etc/nginx/ssl
 name: secret-volume

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/nginx-secure-app.yaml

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 9/12

It contains both Deployment and Service speci�cation in the same �le.

The nginx server serves http tra�c on port 80 and https tra�c on 443, and nginx Service

exposes both ports.

Each container has access to the keys through a volume mounted at /etc/nginx/ssl. This is

setup before the nginx server is started.

At this point you can reach the nginx server from any node.

Note how we supplied the -k parameter to curl in the last step, this is because we don’t know

anything about the pods running nginx at certi�cate generation time, so we have to tell curl to ignore

the CName mismatch. By creating a Service we linked the CName used in the certi�cate with the

actual DNS name used by pods during Service lookup. Let’s test this from a pod (the same secret is

being reused for simplicity, the pod only needs nginx.crt to access the Service):

curlpod.yaml

$ kubectl delete deployments,svc my-nginx; kubectl create -f ./nginx-secure-app.ya

$ kubectl get pods -o yaml | grep -i podip
 podIP: 10.244.3.5
node $ curl -k https://10.244.3.5
...
<h1>Welcome to nginx!</h1>

https://github.com/kubernetes/examples/tree/master/staging/https-nginx/default.conf
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/curlpod.yaml

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 10/12

curlpod.yaml

Exposing the Service

For some parts of your applications you may want to expose a Service onto an external IP address.

Kubernetes supports two ways of doing this: NodePorts and LoadBalancers. The Service created in

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: curl-deployment
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: curlpod
 spec:
 volumes:
 - name: secret-volume
 secret:
 secretName: nginxsecret
 containers:
 - name: curlpod
 command:
 - sh
 - -c
 - while true; do sleep 1; done
 image: radial/busyboxplus:curl
 volumeMounts:
 - mountPath: /etc/nginx/ssl
 name: secret-volume

$ kubectl create -f ./curlpod.yaml
$ kubectl get pods -l app=curlpod
NAME READY STATUS RESTARTS AGE
curl-deployment-1515033274-1410r 1/1 Running 0 1m
$ kubectl exec curl-deployment-1515033274-1410r -- curl https://my-nginx --cacert
...
<title>Welcome to nginx!</title>
...

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/curlpod.yaml

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 11/12

the last section already used NodePort , so your nginx https replica is ready to serve tra�c on the

internet if your node has a public IP.

Let’s now recreate the Service to use a cloud load balancer, just change the Type of my-nginx

Service from NodePort to LoadBalancer :

$ kubectl get svc my-nginx -o yaml | grep nodePort -C 5
 uid: 07191fb3-f61a-11e5-8ae5-42010af00002
spec:
 clusterIP: 10.0.162.149
 ports:
 - name: http
 nodePort: 31704
 port: 8080
 protocol: TCP
 targetPort: 80
 - name: https
 nodePort: 32453
 port: 443
 protocol: TCP
 targetPort: 443
 selector:
 run: my-nginx

$ kubectl get nodes -o yaml | grep ExternalIP -C 1
 - address: 104.197.41.11
 type: ExternalIP
 allocatable:
--
 - address: 23.251.152.56
 type: ExternalIP
 allocatable:
...

$ curl https://<EXTERNAL-IP>:<NODE-PORT> -k
...
<h1>Welcome to nginx!</h1>

$ kubectl edit svc my-nginx
$ kubectl get svc my-nginx
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-nginx 10.0.162.149 162.222.184.144 80/TCP,81/TCP,82/TCP 21s

$ curl https://<EXTERNAL-IP> -k
...
<title>Welcome to nginx!</title>

10/23/2017 Connecting Applications with Services - Kubernetes

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/ 12/12

The IP address in the EXTERNAL-IP column is the one that is available on the public internet. The

CLUSTER-IP is only available inside your cluster/private cloud network.

Note that on AWS, type LoadBalancer creates an ELB, which uses a (long) hostname, not an IP. It’s

too long to �t in the standard kubectl get svc output, in fact, so you’ll need to do

kubectl describe service my-nginx to see it. You’ll see something like this:

Further reading

Kubernetes also supports Federated Services, which can span multiple clusters and cloud providers,

to provide increased availability, better fault tolerance and greater scalability for your services. See

the Federated Services User Guide for further information.

What’s next?

Learn about more Kubernetes features that will help you run containers reliably in production.

$ kubectl describe service my-nginx
...
LoadBalancer Ingress: a320587ffd19711e5a37606cf4a74574-1142138393.us-east-1.elb.
...

http://localhost:4000/docs/concepts/cluster-administration/federation-service-discovery/
http://localhost:4000/docs/user-guide/production-pods

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 1/10

Ingress Resources

Terminology

Throughout this doc you will see a few terms that are sometimes used interchangeably elsewhere,

that might cause confusion. This section attempts to clarify them.

Node: A single virtual or physical machine in a Kubernetes cluster.

Cluster: A group of nodes �rewalled from the internet, that are the primary compute resources

managed by Kubernetes.

Edge router: A router that enforces the �rewall policy for your cluster. This could be a gateway

managed by a cloud provider or a physical piece of hardware.

Cluster network: A set of links, logical or physical, that facilitate communication within a cluster

according to the Kubernetes networking model. Examples of a Cluster network include Overlays

such as �annel or SDNs such as OVS.

Service: A Kubernetes Service that identi�es a set of pods using label selectors. Unless

mentioned otherwise, Services are assumed to have virtual IPs only routable within the cluster

network.

What is Ingress?
Prerequisites
The Ingress Resource
Ingress controllers
Before you begin
Types of Ingress

Single Service Ingress
Simple fanout
Name based virtual hosting
TLS
Loadbalancing

Updating an Ingress
Failing across availability zones
Future Work
Alternatives

http://localhost:4000/docs/concepts/cluster-administration/networking/
https://github.com/coreos/flannel#flannel
http://localhost:4000/docs/admin/ovs-networking/
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 2/10

What is Ingress?

Typically, services and pods have IPs only routable by the cluster network. All tra�c that ends up at

an edge router is either dropped or forwarded elsewhere. Conceptually, this might look like:

An Ingress is a collection of rules that allow inbound connections to reach the cluster services.

It can be con�gured to give services externally-reachable URLs, load balance tra�c, terminate SSL,

offer name based virtual hosting etc. Users request ingress by POSTing the Ingress resource to the

API server. An Ingress controller is responsible for ful�lling the Ingress, usually with a loadbalancer,

though it may also con�gure your edge router or additional frontends to help handle the tra�c in an

HA manner.

Prerequisites

Before you start using the Ingress resource, there are a few things you should understand. The

Ingress is a beta resource, not available in any Kubernetes release prior to 1.1. You need an Ingress

controller to satisfy an Ingress, simply creating the resource will have no effect.

GCE/GKE deploys an ingress controller on the master. You can deploy any number of custom

ingress controllers in a pod. You must annotate each ingress with the appropriate class, as indicated

here and here.

 internet
 |

 [Services]

 internet
 |
 [Ingress]
 --|-----|--
 [Services]

https://git.k8s.io/ingress/controllers/nginx#running-multiple-ingress-controllers
https://git.k8s.io/ingress/controllers/gce/BETA_LIMITATIONS.md#disabling-glbc

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 3/10

Make sure you review the beta limitations of this controller. In environments other than GCE/GKE,

you need to deploy a controller as a pod.

The Ingress Resource

A minimal Ingress might look like:

POSTing this to the API server will have no effect if you have not con�gured an Ingress controller.

Lines 1-6: As with all other Kubernetes con�g, an Ingress needs apiVersion , kind , and metadata

�elds. For general information about working with con�g �les, see deploying applications,

con�guring containers, managing resources and ingress con�guration rewrite.

Lines 7-9: Ingress spec has all the information needed to con�gure a loadbalancer or proxy server.

Most importantly, it contains a list of rules matched against all incoming requests. Currently the

Ingress resource only supports http rules.

Lines 10-11: Each http rule contains the following information: A host (e.g.: foo.bar.com, defaults to *

in this example), a list of paths (e.g.: /testpath) each of which has an associated backend (test:80).

Both the host and path must match the content of an incoming request before the loadbalancer

directs tra�c to the backend.

Lines 12-14: A backend is a service:port combination as described in the services doc. Ingress tra�c

is typically sent directly to the endpoints matching a backend.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 backend:
 serviceName: test
 servicePort: 80

https://git.k8s.io/ingress/controllers/gce/BETA_LIMITATIONS.md
https://git.k8s.io/ingress/controllers
http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/
http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/
https://github.com/kubernetes/ingress/blob/master/controllers/nginx/configuration.md#rewrite
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 4/10

Global Parameters: For the sake of simplicity the example Ingress has no global parameters, see the

API reference for a full de�nition of the resource. One can specify a global default backend in the

absence of which requests that don’t match a path in the spec are sent to the default backend of the

Ingress controller.

Ingress controllers

In order for the Ingress resource to work, the cluster must have an Ingress controller running. This is

unlike other types of controllers, which typically run as part of the kube-controller-manager

binary, and which are typically started automatically as part of cluster creation. You need to choose

the ingress controller implementation that is the best �t for your cluster, or implement one. Examples

and instructions can be found here.

Before you begin

The following document describes a set of cross platform features exposed through the Ingress

resource. Ideally, all Ingress controllers should ful�ll this speci�cation, but we’re not there yet. The

docs for the GCE and nginx controllers are here and here respectively. Make sure you review

controller speci�c docs so you understand the caveats of each one.

Types of Ingress

Single Service Ingress

There are existing Kubernetes concepts that allow you to expose a single service (see alternatives),

however you can do so through an Ingress as well, by specifying a default backend with no rules.

ingress.yaml

https://releases.k8s.io/master/staging/src/k8s.io/api/extensions/v1beta1/types.go
https://git.k8s.io/ingress/controllers
https://git.k8s.io/ingress/controllers/gce/README.md
https://git.k8s.io/ingress/controllers/nginx/README.md
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/ingress.yaml

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 5/10

ingress.yaml

If you create it using kubectl create -f you should see:

Where 107.178.254.228 is the IP allocated by the Ingress controller to satisfy this Ingress. The

RULE column shows that all tra�c sent to the IP is directed to the Kubernetes Service listed under

BACKEND .

Simple fanout

As described previously, pods within kubernetes have IPs only visible on the cluster network, so we

need something at the edge accepting ingress tra�c and proxying it to the right endpoints. This

component is usually a highly available loadbalancer. An Ingress allows you to keep the number of

loadbalancers down to a minimum, for example, a setup like:

would require an Ingress such as:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test-ingress
spec:
 backend:
 serviceName: testsvc
 servicePort: 80

$ kubectl get ing
NAME RULE BACKEND ADDRESS
test-ingress - testsvc:80 107.178.254.228

foo.bar.com -> 178.91.123.132 -> / foo s1:80
 / bar s2:80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/ingress.yaml

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 6/10

When you create the Ingress with kubectl create -f :

The Ingress controller will provision an implementation speci�c loadbalancer that satis�es the

Ingress, as long as the services (s1, s2) exist. When it has done so, you will see the address of the

loadbalancer under the last column of the Ingress.

Name based virtual hosting

Name-based virtual hosts use multiple host names for the same IP address.

The following Ingress tells the backing loadbalancer to route requests based on the Host header.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
 annotations:
 ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: s1
 servicePort: 80
 - path: /bar
 backend:
 serviceName: s2
 servicePort: 80

$ kubectl get ing
NAME RULE BACKEND ADDRESS
test -
 foo.bar.com
 /foo s1:80
 /bar s2:80

foo.bar.com --| |-> foo.bar.com s1:80
 | 178.91.123.132 |
bar.foo.com --| |-> bar.foo.com s2:80

https://tools.ietf.org/html/rfc7230#section-5.4

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 7/10

Default Backends: An Ingress with no rules, like the one shown in the previous section, sends all

tra�c to a single default backend. You can use the same technique to tell a loadbalancer where to

�nd your website’s 404 page, by specifying a set of rules and a default backend. Tra�c is routed to

your default backend if none of the Hosts in your Ingress match the Host in the request header,

and/or none of the paths match the URL of the request.

TLS

You can secure an Ingress by specifying a secret that contains a TLS private key and certi�cate.

Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination. If the TLS

con�guration section in an Ingress speci�es different hosts, they will be multiplexed on the same

port according to the hostname speci�ed through the SNI TLS extension (provided the Ingress

controller supports SNI). The TLS secret must contain keys named tls.crt and tls.key that

contain the certi�cate and private key to use for TLS, e.g.:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - backend:
 serviceName: s1
 servicePort: 80
 - host: bar.foo.com
 http:
 paths:
 - backend:
 serviceName: s2
 servicePort: 80

http://localhost:4000/docs/user-guide/secrets

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 8/10

Referencing this secret in an Ingress will tell the Ingress controller to secure the channel from the

client to the loadbalancer using TLS:

Note that there is a gap between TLS features supported by various Ingress controllers. Please refer

to documentation on nginx, GCE, or any other platform speci�c Ingress controller to understand how

TLS works in your environment.

Loadbalancing

An Ingress controller is bootstrapped with some loadbalancing policy settings that it applies to all

Ingress, such as the loadbalancing algorithm, backend weight scheme etc. More advanced

loadbalancing concepts (e.g.: persistent sessions, dynamic weights) are not yet exposed through the

Ingress. You can still get these features through the service loadbalancer. With time, we plan to distill

loadbalancing patterns that are applicable cross platform into the Ingress resource.

It’s also worth noting that even though health checks are not exposed directly through the Ingress,

there exist parallel concepts in Kubernetes such as readiness probes which allow you to achieve the

same end result. Please review the controller speci�c docs to see how they handle health checks

(nginx, GCE).

apiVersion: v1
data:
 tls.crt: base64 encoded cert
 tls.key: base64 encoded key
kind: Secret
metadata:
 name: testsecret
 namespace: default
type: Opaque

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: no-rules-map
spec:
 tls:
 - secretName: testsecret
 backend:
 serviceName: s1
 servicePort: 80

https://git.k8s.io/ingress/controllers/nginx/README.md#https
https://git.k8s.io/ingress/controllers/gce/README.md#tls
https://git.k8s.io/contrib/service-loadbalancer
http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://git.k8s.io/ingress/controllers/nginx/README.md
https://git.k8s.io/ingress/controllers/gce/README.md#health-checks

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 9/10

Updating an Ingress

Say you’d like to add a new Host to an existing Ingress, you can update it by editing the resource:

This should pop up an editor with the existing yaml, modify it to include the new Host:

Saving it will update the resource in the API server, which should tell the Ingress controller to

recon�gure the loadbalancer.

$ kubectl get ing
NAME RULE BACKEND ADDRESS
test - 178.91.123.132
 foo.bar.com
 /foo s1:80
$ kubectl edit ing test

spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - backend:
 serviceName: s1
 servicePort: 80
 path: /foo
 - host: bar.baz.com
 http:
 paths:
 - backend:
 serviceName: s2
 servicePort: 80
 path: /foo
..

$ kubectl get ing
NAME RULE BACKEND ADDRESS
test - 178.91.123.132
 foo.bar.com
 /foo s1:80
 bar.baz.com
 /foo s2:80

10/23/2017 Ingress Resources - Kubernetes

http://localhost:4000/docs/concepts/services-networking/ingress/ 10/10

You can achieve the same by invoking kubectl replace -f on a modi�ed Ingress yaml �le.

Failing across availability zones

Techniques for spreading tra�c across failure domains differs between cloud providers. Please

check the documentation of the relevant Ingress controller for details. Please refer to the federation

doc for details on deploying Ingress in a federated cluster.

Future Work

Various modes of HTTPS/TLS support (e.g.: SNI, re-encryption)

Requesting an IP or Hostname via claims

Combining L4 and L7 Ingress

More Ingress controllers

Please track the L7 and Ingress proposal for more details on the evolution of the resource, and the

Ingress repository for more details on the evolution of various Ingress controllers.

Alternatives

You can expose a Service in multiple ways that don’t directly involve the Ingress resource:

Use Service.Type=LoadBalancer

Use Service.Type=NodePort

Use a Port Proxy

Deploy the Service loadbalancer. This allows you to share a single IP among multiple Services

and achieve more advanced loadbalancing through Service Annotations.

http://localhost:4000/docs/concepts/cluster-administration/federation/
https://github.com/kubernetes/kubernetes/pull/12827
https://github.com/kubernetes/ingress/tree/master
http://localhost:4000/docs/concepts/services-networking/service/#type-loadbalancer
http://localhost:4000/docs/concepts/services-networking/service/#type-nodeport
https://git.k8s.io/contrib/for-demos/proxy-to-service
https://git.k8s.io/contrib/service-loadbalancer

10/23/2017 Network Policies - Kubernetes

http://localhost:4000/docs/concepts/services-networking/network-policies/ 1/6

Network Policies

A network policy is a speci�cation of how groups of pods are allowed to communicate with each

other and other network endpoints.

NetworkPolicy resources use labels to select pods and de�ne rules which specify what tra�c is

allowed to the selected pods.

Prerequisites

Network policies are implemented by the network plugin, so you must be using a networking solution

which supports NetworkPolicy - simply creating the resource without a controller to implement it

will have no effect.

Isolated and Non-isolated Pods

By default, pods are non-isolated; they accept tra�c from any source.

Pods become isolated by having a NetworkPolicy that selects them. Once there is any NetworkPolicy

in a namespace selecting a particular pod, that pod will reject any connections that are not allowed

by any NetworkPolicy. (Other pods in the namespace that are not selected by any NetworkPolicy will

continue to accept all tra�c.)

Prerequisites
Isolated and Non-isolated Pods
The NetworkPolicy Resource
Default policies

Default deny all ingress tra�c
Default allow all ingress tra�c
Default deny all egress tra�c.
Default allow all egress tra�c
Default deny all ingress and all egress tra�c

What’s next?

10/23/2017 Network Policies - Kubernetes

http://localhost:4000/docs/concepts/services-networking/network-policies/ 2/6

The NetworkPolicy Resource

See the api-reference for a full de�nition of the resource.

An example NetworkPolicy might look like this:

POSTing this to the API server will have no effect unless your chosen networking solution supports

network policy.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 project: myproject
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: TCP
 port: 6379
 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

http://localhost:4000/docs/api-reference/v1.8/#networkpolicy-v1-networking

10/23/2017 Network Policies - Kubernetes

http://localhost:4000/docs/concepts/services-networking/network-policies/ 3/6

Mandatory Fields: As with all other Kubernetes con�g, a NetworkPolicy needs apiVersion , kind

, and metadata �elds. For general information about working with con�g �les, see here, here, and

here.

spec: NetworkPolicy spec has all the information needed to de�ne a particular network policy in

the given namespace.

podSelector: Each NetworkPolicy includes a podSelector which selects the grouping of pods to

which the policy applies. Since NetworkPolicy currently only supports de�ning ingress rules, this

podSelector essentially de�nes the “destination pods” for the policy. The example policy selects

pods with the label “role=db”. An empty podSelector selects all pods in the namespace.

policyTypes: Each NetworkPolicy includes a policyTypes list which may include either Ingress

, Egress , or both. The policyTypes �eld indicates whether or not the given policy applies to

ingress tra�c to selected pod, egress tra�c from selected pods, or both. If no policyTypes are

speci�ed on a NetworkPolicy then by default Ingress will always be set and Egress will be set if

the NetworkPolicy has any egress rules.

ingress: Each NetworkPolicy may include a list of whitelist ingress rules. Each rule allows tra�c

which matches both the from and ports sections. The example policy contains a single rule,

which matches tra�c on a single port, from either of two sources, the �rst speci�ed via a

namespaceSelector and the second speci�ed via a podSelector .

egress: Each NetworkPolicy may include a list of whitelist egress rules. Each rule allows tra�c

which matches both the to and ports sections. The example policy contains a single rule, which

matches tra�c on a single port to any destination in 10.0.0.0/24 .

ipBlock: ipBlock describes a particular CIDR that is allowed to the pods matched by a

NetworkPolicySpec’s podSelector. The except entry is a slice of CIDRs that should not be included

within an IP Block. Except values will be rejected if they are outside the CIDR range.

So, the example NetworkPolicy:

1. isolates “role=db” pods in the “default” namespace for both ingress and egress tra�c (if they

weren’t already isolated)

http://localhost:4000/docs/user-guide/simple-yaml
http://localhost:4000/docs/user-guide/configuring-containers
http://localhost:4000/docs/user-guide/working-with-resources
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

10/23/2017 Network Policies - Kubernetes

http://localhost:4000/docs/concepts/services-networking/network-policies/ 4/6

2. allows connections to TCP port 6379 of “role=db” pods in the “default” namespace from any pod

in the “default” namespace with the label “role=frontend”

3. allows connections to TCP port 6379 of “role=db” pods in the “default” namespace from any pod

in a namespace with the label “project=myproject”

4. allows connections from any pod in the “default” namespace with the label “role=db” to CIDR

10.0.0.0/24 on TCP port 5978

See the NetworkPolicy getting started guide for further examples.

Default policies

By default, if no policies exist in a namespace, then all ingress and egress tra�c is allowed to and

from pods in that namespace. The following examples let you change the default behavior in that

namespace.

Default deny all ingress tra�c

You can create a “default” isolation policy for a namespace by creating a NetworkPolicy that selects

all pods but does not allow any ingress tra�c to those pods.

This ensures that even pods that aren’t selected by any other NetworkPolicy will still be isolated. This

policy does not change the default egress isolation behavior.

Default allow all ingress tra�c

If you want to allow all tra�c to all pods in a namespace (even if policies are added that cause some

pods to be treated as “isolated”), you can create a policy that explicitly allows all tra�c in that

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny
spec:
 podSelector:
 policyTypes:
 - Ingress

http://localhost:4000/docs/getting-started-guides/network-policy/walkthrough

10/23/2017 Network Policies - Kubernetes

http://localhost:4000/docs/concepts/services-networking/network-policies/ 5/6

namespace.

Default deny all egress tra�c.

You can create a “default” egress isolation policy for a namespace by creating a NetworkPolicy that

selects all pods but does not allow any egress tra�c from those pods.

This ensures that even pods that aren’t selected by any other NetworkPolicy will not be allowed

egress tra�c. This policy does not change the default ingress isolation behavior.

Default allow all egress tra�c

If you want to allow all tra�c from all pods in a namespace (even if policies are added that cause

some pods to be treated as “isolated”), you can create a policy that explicitly allows all egress tra�c

in that namespace.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-all
spec:
 podSelector:
 ingress:
 - {}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny
spec:
 podSelector:
 policyTypes:
 - Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-all
spec:
 podSelector:
 egress:
 - {}

10/23/2017 Network Policies - Kubernetes

http://localhost:4000/docs/concepts/services-networking/network-policies/ 6/6

Default deny all ingress and all egress tra�c

You can create a “default” policy for a namespace which prevents all ingress AND egress tra�c by

creating the following NetworkPolicy in that namespace.

This ensures that even pods that aren’t selected by any other NetworkPolicy will not be allowed

ingress or egress tra�c.

What’s next?

See the Declare Network Policy walkthrough for further examples.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny
spec:
 podSelector:
 policyTypes:
 - Ingress
 - Egress

http://localhost:4000/docs/tasks/administer-cluster/declare-network-policy/

10/23/2017 Adding entries to Pod /etc/hosts with HostAliases - Kubernetes

http://localhost:4000/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases/ 1/4

Adding entries to Pod /etc/hosts with
HostAliases

Adding entries to a Pod’s /etc/hosts �le provides Pod-level override of hostname resolution when

DNS and other options are not applicable. In 1.7, users can add these custom entries with the

HostAliases �eld in PodSpec.

Modi�cation not using HostAliases is not suggested because the �le is managed by Kubelet and can

be overwritten on during Pod creation/restart.

Default Hosts File Content

Lets start an Nginx Pod which is assigned an Pod IP:

The hosts �le content would look like this:

Default Hosts File Content
Adding Additional Entries with HostAliases
Limitations
Why Does Kubelet Manage the Hosts File?

$ kubectl run nginx --image nginx --generator=run-pod/v1
pod "nginx" created

$ kubectl get pods --output=wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx 1/1 Running 0 13s 10.200.0.4 worker0

10/23/2017 Adding entries to Pod /etc/hosts with HostAliases - Kubernetes

http://localhost:4000/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases/ 2/4

by default, the hosts �le only includes ipv4 and ipv6 boilerplates like localhost and its own

hostname.

Adding Additional Entries with HostAliases

In addition to the default boilerplate, we can add additional entries to the hosts �le to resolve

foo.local , bar.local to 127.0.0.1 and foo.remote , bar.remote to 10.1.2.3 , we can by

adding HostAliases to the Pod under .spec.hostAliases :

hostaliases-pod.yaml

$ kubectl exec nginx -- cat /etc/hosts
Kubernetes-managed hosts file.
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
fe00::0 ip6-mcastprefix
fe00::1 ip6-allnodes
fe00::2 ip6-allrouters
10.200.0.4 nginx

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/hostaliases-pod.yaml

10/23/2017 Adding entries to Pod /etc/hosts with HostAliases - Kubernetes

http://localhost:4000/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases/ 3/4

hostaliases-pod.yaml

This Pod can be started with the following commands:

The hosts �le content would look like this:

apiVersion: v1
kind: Pod
metadata:
 name: hostaliases-pod
spec:
 restartPolicy: Never
 hostAliases:
 - ip: "127.0.0.1"
 hostnames:
 - "foo.local"
 - "bar.local"
 - ip: "10.1.2.3"
 hostnames:
 - "foo.remote"
 - "bar.remote"
 containers:
 - name: cat-hosts
 image: busybox
 command:
 - cat
 args:
 - "/etc/hosts"

$ kubectl apply -f hostaliases-pod.yaml
pod "hostaliases-pod" created

$ kubectl get pod -a -o=wide
NAME READY STATUS RESTARTS AGE IP
hostaliases-pod 0/1 Completed 0 6s 10.244.1

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/services-networking/hostaliases-pod.yaml

10/23/2017 Adding entries to Pod /etc/hosts with HostAliases - Kubernetes

http://localhost:4000/docs/concepts/services-networking/add-entries-to-pod-etc-hosts-with-host-aliases/ 4/4

With the additional entries speci�ed at the bottom.

Limitations

HostAlias is only supported in 1.7+.

HostAlias support in 1.7 is limited to non-hostNetwork Pods because kubelet only manages the

hosts �le for non-hostNetwork Pods.

In 1.8, HostAlias is supported for all Pods regardless of network con�guration.

Why Does Kubelet Manage the Hosts File?

Kubelet manages the hosts �le for each container of the Pod to prevent Docker from modifying the

�le after the containers have already been started.

Because of the managed-nature of the �le, any user-written content will be overwritten whenever the

hosts �le is remounted by Kubelet in the event of a container restart or a Pod reschedule. Thus, it is

not suggested to modify the contents of the �le.

$ kubectl logs hostaliases-pod
Kubernetes-managed hosts file.
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
fe00::0 ip6-mcastprefix
fe00::1 ip6-allnodes
fe00::2 ip6-allrouters
10.244.135.10 hostaliases-pod
127.0.0.1 foo.local
127.0.0.1 bar.local
10.1.2.3 foo.remote
10.1.2.3 bar.remote

https://github.com/kubernetes/kubernetes/issues/14633
https://github.com/moby/moby/issues/17190

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 1/25

Volumes

On-disk �les in a container are ephemeral, which presents some problems for non-trivial applications

when running in containers. First, when a container crashes, kubelet will restart it, but the �les will be

lost - the container starts with a clean state. Second, when running containers together in a Pod it is

often necessary to share �les between those containers. The Kubernetes Volume abstraction solves

both of these problems.

Familiarity with pods is suggested.

Background
Types of Volumes

emptyDir
Example pod

hostPath
Example pod

gcePersistentDisk
Creating a PD
Example pod

awsElasticBlockStore
Creating an EBS volume
AWS EBS Example con�guration

nfs
iscsi
fc (�bre channel)
�ocker
glusterfs
rbd
cephfs
gitRepo
secret
persistentVolumeClaim
downwardAPI
projected

Example pod with a secret, a downward API, and a con�gmap.
Example pod with multiple secrets with a non-default permission mode set.

http://localhost:4000/docs/user-guide/pods

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 2/25

Background

Docker also has a concept of volumes, though it is somewhat looser and less managed. In Docker, a

volume is simply a directory on disk or in another container. Lifetimes are not managed and until very

recently there were only local-disk-backed volumes. Docker now provides volume drivers, but the

functionality is very limited for now (e.g. as of Docker 1.7 only one volume driver is allowed per

container and there is no way to pass parameters to volumes).

A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the pod that encloses

it. Consequently, a volume outlives any containers that run within the Pod, and data is preserved

across Container restarts. Of course, when a Pod ceases to exist, the volume will cease to exist, too.

Perhaps more importantly than this, Kubernetes supports many types of volumes, and a Pod can

use any number of them simultaneously.

At its core, a volume is just a directory, possibly with some data in it, which is accessible to the

containers in a pod. How that directory comes to be, the medium that backs it, and the contents of it

are determined by the particular volume type used.

To use a volume, a pod speci�es what volumes to provide for the pod (the spec.volumes �eld) and

where to mount those into containers(the spec.containers.volumeMounts �eld).

AzureFileVolume
AzureDiskVolume
vsphereVolume

Creating a VMDK volume
vSphere VMDK Example con�guration

Quobyte
PortworxVolume
ScaleIO
StorageOS
local

Using subPath
Resources
Out-of-Tree Volume Plugins
Mount propagation
What’s next

https://docs.docker.com/engine/admin/volumes/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 3/25

A process in a container sees a �lesystem view composed from their Docker image and volumes.

The Docker image is at the root of the �lesystem hierarchy, and any volumes are mounted at the

speci�ed paths within the image. Volumes can not mount onto other volumes or have hard links to

other volumes. Each container in the Pod must independently specify where to mount each volume.

Types of Volumes

Kubernetes supports several types of Volumes:

emptyDir

hostPath

gcePersistentDisk

awsElasticBlockStore

nfs

iscsi

fc (fibre channel)

flocker

glusterfs

rbd

cephfs

gitRepo

secret

persistentVolumeClaim

downwardAPI

projected

https://docs.docker.com/userguide/dockerimages/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 4/25

azureFileVolume

azureDisk

vsphereVolume

Quobyte

PortworxVolume

ScaleIO

StorageOS

local

We welcome additional contributions.

emptyDir

An emptyDir volume is �rst created when a Pod is assigned to a Node, and exists as long as that

Pod is running on that node. As the name says, it is initially empty. Containers in the pod can all read

and write the same �les in the emptyDir volume, though that volume can be mounted at the same

or different paths in each container. When a Pod is removed from a node for any reason, the data in

the emptyDir is deleted forever.

Note: a container crashing does NOT remove a pod from a node, so the data in an emptyDir

volume is safe across container crashes.

Some uses for an emptyDir are:

scratch space, such as for a disk-based merge sort

checkpointing a long computation for recovery from crashes

holding �les that a content-manager container fetches while a webserver container serves the

data

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 5/25

By default, emptyDir volumes are stored on whatever medium is backing the node - that might be

disk or SSD or network storage, depending on your environment. However, you can set the

emptyDir.medium �eld to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed �lesystem)

for you instead. While tmpfs is very fast, be aware that unlike disks, tmpfs is cleared on node reboot

and any �les you write will count against your container’s memory limit.

Example pod

hostPath

A hostPath volume mounts a �le or directory from the host node’s �lesystem into your pod. This is

not something that most Pods will need, but it offers a powerful escape hatch for some applications.

For example, some uses for a hostPath are:

running a container that needs access to Docker internals; use a hostPath of

/var/lib/docker

running cAdvisor in a container; use a hostPath of /dev/cgroups

allowing a pod to specify whether a given hostPath should exist prior to the pod running,

whether it should be created, and what it should exist as

In addition to the required path property, user can optionally specify a type for a hostPath

volume.

apiVersion: v1
kind: Pod
metadata:
 name: test-pd
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 6/25

The supported values for �eld type are:

Value Behavior

 Empty string (default) is for backward compatibility, which means that no checks will be
performed before mounting the hostPath volume.

DirectoryOrCreate If nothing exists at the given path, an empty directory will be created there as needed with
permission set to 0755, having the same group and ownership with Kubelet.

Directory A directory must exist at the given path

FileOrCreate If nothing exists at the given path, an empty �le will be created there as needed with permission
set to 0644, having the same group and ownership with Kubelet.

File A �le must exist at the given path

Socket A UNIX socket must exist at the given path

CharDevice A character device must exist at the given path

BlockDevice A block device must exist at the given path

Watch out when using this type of volume, because:

pods with identical con�guration (such as created from a podTemplate) may behave differently

on different nodes due to different �les on the nodes

when Kubernetes adds resource-aware scheduling, as is planned, it will not be able to account

for resources used by a hostPath

the �les or directories created on the underlying hosts are only writable by root. You either need

to run your process as root in a privileged container or modify the �le permissions on the host to

be able to write to a hostPath volume

Example pod

http://localhost:4000/docs/user-guide/security-context

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 7/25

gcePersistentDisk

A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your

pod. Unlike emptyDir , which is erased when a Pod is removed, the contents of a PD are preserved

and the volume is merely unmounted. This means that a PD can be pre-populated with data, and that

data can be “handed off” between pods.

Important: You must create a PD using gcloud or the GCE API or UI before you can use it.

There are some restrictions when using a gcePersistentDisk :

the nodes on which pods are running must be GCE VMs

those VMs need to be in the same GCE project and zone as the PD

A feature of PD is that they can be mounted as read-only by multiple consumers simultaneously.

This means that you can pre-populate a PD with your dataset and then serve it in parallel from as

many pods as you need. Unfortunately, PDs can only be mounted by a single consumer in read-write

mode - no simultaneous writers allowed.

apiVersion: v1
kind: Pod
metadata:
 name: test-pd
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /test-pd
 name: test-volume
 volumes:
 - name: test-volume
 hostPath:
 # directory location on host
 path: /data
 # this field is optional
 type: Directory

http://cloud.google.com/compute/docs/disks

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 8/25

Using a PD on a pod controlled by a ReplicationController will fail unless the PD is read-only or the

replica count is 0 or 1.

Creating a PD

Before you can use a GCE PD with a pod, you need to create it.

Example pod

awsElasticBlockStore

An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your

pod. Unlike emptyDir , which is erased when a Pod is removed, the contents of an EBS volume are

preserved and the volume is merely unmounted. This means that an EBS volume can be pre-

populated with data, and that data can be “handed off” between pods.

Important: You must create an EBS volume using aws ec2 create-volume or the AWS API

before you can use it.

gcloud compute disks create --size=500GB --zone=us-central1-a my-data-disk

apiVersion: v1
kind: Pod
metadata:
 name: test-pd
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /test-pd
 name: test-volume
 volumes:
 - name: test-volume
 # This GCE PD must already exist.
 gcePersistentDisk:
 pdName: my-data-disk
 fsType: ext4

http://aws.amazon.com/ebs/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 9/25

There are some restrictions when using an awsElasticBlockStore volume:

the nodes on which pods are running must be AWS EC2 instances

those instances need to be in the same region and availability-zone as the EBS volume

EBS only supports a single EC2 instance mounting a volume

Creating an EBS volume

Before you can use an EBS volume with a pod, you need to create it.

Make sure the zone matches the zone you brought up your cluster in. (And also check that the size

and EBS volume type are suitable for your use!)

AWS EBS Example con�guration

nfs

An nfs volume allows an existing NFS (Network File System) share to be mounted into your pod.

Unlike emptyDir , which is erased when a Pod is removed, the contents of an nfs volume are

aws ec2 create-volume --availability-zone=eu-west-1a --size=10 --volume-type=gp2

apiVersion: v1
kind: Pod
metadata:
 name: test-ebs
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /test-ebs
 name: test-volume
 volumes:
 - name: test-volume
 # This AWS EBS volume must already exist.
 awsElasticBlockStore:
 volumeID: <volume-id>
 fsType: ext4

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 10/25

preserved and the volume is merely unmounted. This means that an NFS volume can be pre-

populated with data, and that data can be “handed off” between pods. NFS can be mounted by

multiple writers simultaneously.

Important: You must have your own NFS server running with the share exported before you

can use it.

See the NFS example for more details.

iscsi

An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your pod.

Unlike emptyDir , which is erased when a Pod is removed, the contents of an iscsi volume are

preserved and the volume is merely unmounted. This means that an iscsi volume can be pre-

populated with data, and that data can be “handed off” between pods.

Important: You must have your own iSCSI server running with the volume created before you

can use it.

A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously. This

means that you can pre-populate a volume with your dataset and then serve it in parallel from as

many pods as you need. Unfortunately, iSCSI volumes can only be mounted by a single consumer in

read-write mode - no simultaneous writers allowed.

See the iSCSI example for more details.

fc (�bre channel)

An fc volume allows an existing �bre channel volume to be mounted in a pod. You can specify

single or multiple target World Wide Names using the parameter targetWWNs in your volume

con�guration. If multiple WWNs are speci�ed, targetWWNs expect that those WWNs are from multi-

path connections.

https://github.com/kubernetes/examples/tree/master/staging/volumes/nfs
https://github.com/kubernetes/examples/tree/master/staging/volumes/iscsi

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 11/25

Important: You must con�gure FC SAN Zoning to allocate and mask those LUNs (volumes) to

the target WWNs beforehand so that Kubernetes hosts can access them.

See the FC example for more details.

�ocker

Flocker is an open-source clustered container data volume manager. It provides management and

orchestration of data volumes backed by a variety of storage backends.

A flocker volume allows a Flocker dataset to be mounted into a pod. If the dataset does not

already exist in Flocker, it needs to be �rst created with the Flocker CLI or by using the Flocker API. If

the dataset already exists it will be reattached by Flocker to the node that the pod is scheduled. This

means data can be “handed off” between pods as required.

Important: You must have your own Flocker installation running before you can use it.

See the Flocker example for more details.

glusterfs

A glusterfs volume allows a Glusterfs (an open source networked �lesystem) volume to be

mounted into your pod. Unlike emptyDir , which is erased when a Pod is removed, the contents of a

glusterfs volume are preserved and the volume is merely unmounted. This means that a glusterfs

volume can be pre-populated with data, and that data can be “handed off” between pods. GlusterFS

can be mounted by multiple writers simultaneously.

Important: You must have your own GlusterFS installation running before you can use it.

See the GlusterFS example for more details.

rbd

https://github.com/kubernetes/examples/tree/master/staging/volumes/fibre_channel
https://clusterhq.com/flocker
https://github.com/kubernetes/examples/tree/master/staging/volumes/flocker
http://www.gluster.org/
https://github.com/kubernetes/examples/tree/master/staging/volumes/glusterfs

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 12/25

An rbd volume allows a Rados Block Device volume to be mounted into your pod. Unlike emptyDir

, which is erased when a Pod is removed, the contents of a rbd volume are preserved and the

volume is merely unmounted. This means that a RBD volume can be pre-populated with data, and

that data can be “handed off” between pods.

Important: You must have your own Ceph installation running before you can use RBD.

A feature of RBD is that it can be mounted as read-only by multiple consumers simultaneously. This

means that you can pre-populate a volume with your dataset and then serve it in parallel from as

many pods as you need. Unfortunately, RBD volumes can only be mounted by a single consumer in

read-write mode - no simultaneous writers allowed.

See the RBD example for more details.

cephfs

A cephfs volume allows an existing CephFS volume to be mounted into your pod. Unlike emptyDir

, which is erased when a Pod is removed, the contents of a cephfs volume are preserved and the

volume is merely unmounted. This means that a CephFS volume can be pre-populated with data,

and that data can be “handed off” between pods. CephFS can be mounted by multiple writers

simultaneously.

Important: You must have your own Ceph server running with the share exported before you

can use it.

See the CephFS example for more details.

gitRepo

A gitRepo volume is an example of what can be done as a volume plugin. It mounts an empty

directory and clones a git repository into it for your pod to use. In the future, such volumes may be

moved to an even more decoupled model, rather than extending the Kubernetes API for every such

use case.

Here is an example for gitRepo volume:

http://ceph.com/docs/master/rbd/rbd/
https://github.com/kubernetes/examples/tree/master/staging/volumes/rbd
https://github.com/kubernetes/examples/tree/master/staging/volumes/cephfs/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 13/25

secret

A secret volume is used to pass sensitive information, such as passwords, to pods. You can store

secrets in the Kubernetes API and mount them as �les for use by pods without coupling to

Kubernetes directly. secret volumes are backed by tmpfs (a RAM-backed �lesystem) so they are

never written to non-volatile storage.

Important: You must create a secret in the Kubernetes API before you can use it.

Secrets are described in more detail here.

persistentVolumeClaim

A persistentVolumeClaim volume is used to mount a PersistentVolume into a pod.

PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or

an iSCSI volume) without knowing the details of the particular cloud environment.

See the PersistentVolumes example for more details.

downwardAPI

apiVersion: v1
kind: Pod
metadata:
 name: server
spec:
 containers:
 - image: nginx
 name: nginx
 volumeMounts:
 - mountPath: /mypath
 name: git-volume
 volumes:
 - name: git-volume
 gitRepo:
 repository: "git@somewhere:me/my-git-repository.git"
 revision: "22f1d8406d464b0c0874075539c1f2e96c253775"

http://localhost:4000/docs/user-guide/secrets
http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/concepts/storage/persistent-volumes/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 14/25

A downwardAPI volume is used to make downward API data available to applications. It mounts a

directory and writes the requested data in plain text �les.

See the downwardAPI volume example for more details.

projected

A projected volume maps several existing volume sources into the same directory.

Currently, the following types of volume sources can be projected:

secret

downwardAPI

configMap

All sources are required to be in the same namespace as the pod. For more details, see the all-in-one

volume design document.

Example pod with a secret, a downward API, and a con�gmap.

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/all-in-one-volume.md

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 15/25

Example pod with multiple secrets with a non-default permission mode set.

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - downwardAPI:
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: container-test
 resource: limits.cpu
 - configMap:
 name: myconfigmap
 items:
 - key: config
 path: my-group/my-config

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 16/25

Each projected volume source is listed in the spec under sources . The parameters are nearly the

same with two exceptions:

For secrets, the secretName �eld has been changed to name to be consistent with Con�gMap

naming.

The defaultMode can only be speci�ed at the projected level and not for each volume source.

However, as illustrated above, you can explicitly set the mode for each individual projection.

AzureFileVolume

A AzureFileVolume is used to mount a Microsoft Azure File Volume (SMB 2.1 and 3.0) into a Pod.

More details can be found here.

AzureDiskVolume

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - secret:
 name: mysecret2
 items:
 - key: password
 path: my-group/my-password
 mode: 511

https://github.com/kubernetes/examples/tree/master/staging/volumes/azure_file/README.md

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 17/25

A AzureDiskVolume is used to mount a Microsoft Azure Data Disk into a Pod.

More details can be found here.

vsphereVolume

Prerequisite: Kubernetes with vSphere Cloud Provider con�gured. For cloudprovider

con�guration please refer vSphere getting started guide.

A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod. The contents of a

volume are preserved when it is unmounted. It supports both VMFS and VSAN datastore.

Important: You must create VMDK using one of the following method before using with POD.

Creating a VMDK volume

Choose one of the following methods to create a VMDK.

vSphere VMDK Example con�guration

First ssh into ESX, then use the following command to create a VMDK:

Create using vmkfstools Create using vmware-vdiskmanager

vmkfstools -c 2G /vmfs/volumes/DatastoreName/volumes/myDisk.vmdk

https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-about-disks-vhds/
https://github.com/kubernetes/examples/tree/master/staging/volumes/azure_disk/README.md
http://localhost:4000/docs/getting-started-guides/vsphere/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 18/25

More examples can be found here.

Quobyte

A Quobyte volume allows an existing Quobyte volume to be mounted into your pod.

Important: You must have your own Quobyte setup running with the volumes created before

you can use it.

See the Quobyte example for more details.

PortworxVolume

A PortworxVolume is an elastic block storage layer that runs hyperconverged with Kubernetes.

Portworx �ngerprints storage in a server, tiers based on capabilities, and aggregates capacity across

multiple servers. Portworx runs in-guest in virtual machines or on bare metal Linux nodes.

A PortworxVolume can be dynamically created through Kubernetes or it can also be pre-provisioned

and referenced inside a Kubernetes pod. Here is an example pod referencing a pre-provisioned

PortworxVolume:

apiVersion: v1
kind: Pod
metadata:
 name: test-vmdk
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /test-vmdk
 name: test-volume
 volumes:
 - name: test-volume
 # This VMDK volume must already exist.
 vsphereVolume:
 volumePath: "[DatastoreName] volumes/myDisk"
 fsType: ext4

https://github.com/kubernetes/examples/tree/master/staging/volumes/vsphere
http://www.quobyte.com/
https://github.com/kubernetes/examples/tree/master/staging/volumes/quobyte

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 19/25

Important: Make sure you have an existing PortworxVolume with name pxvol before using it

in the pod.

More details and examples can be found here.

ScaleIO

ScaleIO is a software-based storage platform that can use existing hardware to create clusters of

scalable shared block networked storage. The ScaleIO volume plugin allows deployed pods to

access existing ScaleIO volumes (or it can dynamically provision new volumes for persistent volume

claims, see ScaleIO Persistent Volumes).

Important: You must have an existing ScaleIO cluster already setup and running with the

volumes created before you can use them.

The following is an example pod con�guration with ScaleIO:

apiVersion: v1
kind: Pod
metadata:
 name: test-portworx-volume-pod
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /mnt
 name: pxvol
 volumes:
 - name: pxvol
 # This Portworx volume must already exist.
 portworxVolume:
 volumeID: "pxvol"
 fsType: "<fs-type>"

https://github.com/kubernetes/examples/tree/master/staging/volumes/portworx/README.md
http://localhost:4000/docs/concepts/storage/persistent-volumes/#scaleio

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 20/25

For further detail, please the see the ScaleIO examples.

StorageOS

A storageos volume allows an existing StorageOS volume to be mounted into your pod.

StorageOS runs as a container within your Kubernetes environment, making local or attached

storage accessible from any node within the Kubernetes cluster. Data can be replicated to protect

against node failure. Thin provisioning and compression can improve utilization and reduce cost.

At its core, StorageOS provides block storage to containers, accessible via a �le system.

The StorageOS container requires 64-bit Linux and has no additional dependencies. A free developer

licence is available.

Important: You must run the StorageOS container on each node that wants to access

StorageOS volumes or that will contribute storage capacity to the pool. For installation

instructions, consult the StorageOS documentation.

apiVersion: v1
kind: Pod
metadata:
 name: pod-0
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: pod-0
 volumeMounts:
 - mountPath: /test-pd
 name: vol-0
 volumes:
 - name: vol-0
 scaleIO:
 gateway: https://localhost:443/api
 system: scaleio
 protectionDomain: sd0
 storagePool: sp1
 volumeName: vol-0
 secretRef:
 name: sio-secret
 fsType: xfs

https://github.com/kubernetes/examples/tree/master/staging/volumes/scaleio
https://www.storageos.com/
https://docs.storageos.com/

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 21/25

For more information including Dynamic Provisioning and Persistent Volume Claims, please see the

StorageOS examples.

local

This volume type is alpha in 1.7.

A local volume represents a mounted local storage device such as a disk, partition or directory.

Local volumes can only be used as a statically created PersistentVolume.

Compared to HostPath volumes, local volumes can be used in a durable manner without manually

scheduling pods to nodes, as the system is aware of the volume’s node constraints.

However, local volumes are still subject to the availability of the underlying node and are not suitable

for all applications.

The following is an example PersistentVolume spec using a local volume:

apiVersion: v1
kind: Pod
metadata:
 labels:
 name: redis
 role: master
 name: test-storageos-redis
spec:
 containers:
 - name: master
 image: kubernetes/redis:v1
 env:
 - name: MASTER
 value: "true"
 ports:
 - containerPort: 6379
 volumeMounts:
 - mountPath: /redis-master-data
 name: redis-data
 volumes:
 - name: redis-data
 storageos:
 # The `redis-vol01` volume must already exist within StorageOS in the `def
 volumeName: redis-vol01
 fsType: ext4

https://github.com/kubernetes/examples/tree/master/staging/volumes/storageos

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 22/25

Note: The local PersistentVolume cleanup and deletion requires manual intervention without

the external provisioner.

For details on the local volume type, see the Local Persistent Storage user guide.

Using subPath

Sometimes, it is useful to share one volume for multiple uses in a single pod. The

volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume

instead of its root.

Here is an example of a pod with a LAMP stack (Linux Apache Mysql PHP) using a single, shared

volume. The HTML contents are mapped to its html folder, and the databases will be stored in its

mysql folder:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv
 annotations:
 "volume.alpha.kubernetes.io/node-affinity": '{
 "requiredDuringSchedulingIgnoredDuringExecution": {
 "nodeSelectorTerms": [
 { "matchExpressions": [
 { "key": "kubernetes.io/hostname",
 "operator": "In",
 "values": ["example-node"]
 }
]}
]}
 }'
spec:
 capacity:
 storage: 100Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/disks/ssd1

https://github.com/kubernetes-incubator/external-storage/tree/master/local-volume

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 23/25

Resources

The storage media (Disk, SSD, etc.) of an emptyDir volume is determined by the medium of the

�lesystem holding the kubelet root dir (typically /var/lib/kubelet). There is no limit on how much

space an emptyDir or hostPath volume can consume, and no isolation between containers or

between pods.

In the future, we expect that emptyDir and hostPath volumes will be able to request a certain

amount of space using a resource speci�cation, and to select the type of media to use, for clusters

that have several media types.

Out-of-Tree Volume Plugins

In addition to the previously listed volume types, storage vendors may create custom plugins without

adding it to the Kubernetes repository. This can be achieved by using the FlexVolume plugin.

apiVersion: v1
kind: Pod
metadata:
 name: my-lamp-site
spec:
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-lamp-site-data

http://localhost:4000/docs/user-guide/compute-resources

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 24/25

FlexVolume enables users to mount vendor volumes into a pod. The vendor plugin is implemented

using a driver, an executable supporting a list of volume commands de�ned by the FlexVolume API.

Drivers must be installed in a pre-de�ned volume plugin path on each node. This is an alpha feature

and may change in future.

More details can be found here.

Mount propagation

Note: Mount propagation is an alpha feature in Kubernetes 1.8 and may be redesigned or even

removed in future releases.

Mount propagation allows for sharing volumes mounted by a Container to other Containers in the

same Pod, or even to other Pods on the same node.

If the MountPropagation feature is disabled, volume mounts in pods are not propagated. That is,

Containers run with private mount propagation as described in the Linux kernel documentation.

To enable this feature, specify MountPropagation=true in the --feature-gates command line

option. When enabled, the volumeMounts �eld of a Container has a new mountPropagation

sub�eld. Its values are:

HostToContainer - This volume mount will receive all subsequent mounts that are mounted to

this volume or any of its subdirectories. This is the default mode when the MountPropagation

feature is enabled.

In other words, if the host mounts anything inside the volume mount, the Container will see it

mounted there.

Similarly, if any pod with Bidirectional mount propagation to the same volume mounts

anything there, the Container with HostToContainer mount propagation will see it.

This mode is equal to rslave mount propagation as described in the Linux kernel

documentation

https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md
https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt

10/23/2017 Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/volumes/ 25/25

Bidirectional - This volume mount behaves the same the HostToContainer mount. In

addition, all volume mounts created by the Container will be propagated back to the host and to

all Containers of all Pods that use the same volume.

A typical use case for this mode is a Pod with a Flex volume driver or a Pod that needs to mount

something on the host using a HostPath volume.

This mode is equal to rshared mount propagation as described in the Linux kernel

documentation

Caution: Bidirectional mount propagation can be dangerous. It can damage the host

operating system and therefore it is allowed only in privileged Containers. Familiarity with

Linux kernel behavior is strongly recommended. In addition, any volume mounts created by

Containers in Pods must be destroyed (unmounted) by the Containers on termination.

What’s next

Follow an example of deploying WordPress and MySQL with Persistent Volumes.

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 1/31

Persistent Volumes

This document describes the current state of PersistentVolumes in Kubernetes. Familiarity with

volumes is suggested.

Introduction
Lifecycle of a volume and claim

Provisioning
Static
Dynamic

Binding
Using
Reclaiming

Retaining
Recycling
Deleting

Expanding Persistent Volumes Claims
Types of Persistent Volumes
Persistent Volumes

Capacity
Access Modes
Class
Reclaim Policy
Mount Options
Phase

PersistentVolumeClaims
Access Modes
Resources
Selector
Class

Claims As Volumes
A Note on Namespaces

StorageClasses
Provisioner
Reclaim Policy
Mount Options
Parameters

http://localhost:4000/docs/concepts/storage/volumes/

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 2/31

Introduction

Managing storage is a distinct problem from managing compute. The PersistentVolume

subsystem provides an API for users and administrators that abstracts details of how storage is

provided from how it is consumed. To do this we introduce two new API resources:

PersistentVolume and PersistentVolumeClaim .

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an

administrator. It is a resource in the cluster just like a node is a cluster resource. PVs are volume

plugins like Volumes, but have a lifecycle independent of any individual pod that uses the PV. This

API object captures the details of the implementation of the storage, be that NFS, iSCSI, or a cloud-

provider-speci�c storage system.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a pod. Pods

consume node resources and PVCs consume PV resources. Pods can request speci�c levels of

resources (CPU and Memory). Claims can request speci�c size and access modes (e.g., can be

mounted once read/write or many times read-only).

While PersistentVolumeClaims allow a user to consume abstract storage resources, it is common

that users need PersistentVolumes with varying properties, such as performance, for different

problems. Cluster administrators need to be able to offer a variety of PersistentVolumes that differ

AWS
GCE
Glusterfs
OpenStack Cinder
vSphere
Ceph RBD
Quobyte
Azure Disk

Azure Unmanaged Disk Storage Class
New Azure Disk Storage Class (starting from v1.7.2)

Azure File
Portworx Volume
ScaleIO
StorageOS

Writing Portable Con�guration

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 3/31

in more ways than just size and access modes, without exposing users to the details of how those

volumes are implemented. For these needs there is the StorageClass resource.

A StorageClass provides a way for administrators to describe the “classes” of storage they offer.

Different classes might map to quality-of-service levels, or to backup policies, or to arbitrary policies

determined by the cluster administrators. Kubernetes itself is unopinionated about what classes

represent. This concept is sometimes called “pro�les” in other storage systems.

Please see the detailed walkthrough with working examples.

Lifecycle of a volume and claim

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks

to the resource. The interaction between PVs and PVCs follows this lifecycle:

Provisioning

There are two ways PVs may be provisioned: statically or dynamically.

Static

A cluster administrator creates a number of PVs. They carry the details of the real storage which is

available for use by cluster users. They exist in the Kubernetes API and are available for

consumption.

Dynamic

When none of the static PVs the administrator created matches a user’s PersistentVolumeClaim ,

the cluster may try to dynamically provision a volume specially for the PVC. This provisioning is

based on StorageClasses : the PVC must request a class and the administrator must have created

and con�gured that class in order for dynamic provisioning to occur. Claims that request the class

"" effectively disable dynamic provisioning for themselves.

Binding

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 4/31

A user creates, or has already created in the case of dynamic provisioning, a

PersistentVolumeClaim with a speci�c amount of storage requested and with certain access

modes. A control loop in the master watches for new PVCs, �nds a matching PV (if possible), and

binds them together. If a PV was dynamically provisioned for a new PVC, the loop will always bind

that PV to the PVC. Otherwise, the user will always get at least what they asked for, but the volume

may be in excess of what was requested. Once bound, PersistentVolumeClaim binds are

exclusive, regardless of the mode used to bind them.

Claims will remain unbound inde�nitely if a matching volume does not exist. Claims will be bound as

matching volumes become available. For example, a cluster provisioned with many 50Gi PVs would

not match a PVC requesting 100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

Using

Pods use claims as volumes. The cluster inspects the claim to �nd the bound volume and mounts

that volume for a pod. For volumes which support multiple access modes, the user speci�es which

mode desired when using their claim as a volume in a pod.

Once a user has a claim and that claim is bound, the bound PV belongs to the user for as long as

they need it. Users schedule Pods and access their claimed PVs by including a

persistentVolumeClaim in their Pod’s volumes block. See below for syntax details.

Reclaiming

When a user is done with their volume, they can delete the PVC objects from the API which allows

reclamation of the resource. The reclaim policy for a PersistentVolume tells the cluster what to do

with the volume after it has been released of its claim. Currently, volumes can either be Retained,

Recycled or Deleted.

Retaining

The Retain reclaim policy allows for manual reclamation of the resource. When the

PersistentVolumeClaim is deleted, the PersistentVolume still exists and the volume is

considered “released”. But it is not yet available for another claim because the previous claimant’s

data remains on the volume. An administrator can manually reclaim the volume with the following

steps.

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 5/31

1. Delete the PersistentVolume . The associated storage asset in external infrastructure (such as

an AWS EBS, GCE PD, Azure Disk, or Cinder volume) still exists after the PV is deleted.

2. Manually clean up the data on the associated storage asset accordingly.

3. Manually delete the associated storage asset, or if you want to reuse the same storage asset,

create a new PersistentVolume with the storage asset de�nition.

Recycling

If supported by appropriate volume plugin, recycling performs a basic scrub (

rm -rf /thevolume/*) on the volume and makes it available again for a new claim.

However, an administrator can con�gure a custom recycler pod template using the Kubernetes

controller manager command line arguments as described here. The custom recycler pod template

must contain a volumes speci�cation, as shown in the example below:

However, the particular path speci�ed in the custom recycler pod template in the volumes part is

replaced with the particular path of the volume that is being recycled.

Deleting

apiVersion: v1
kind: Pod
metadata:
 name: pv-recycler
 namespace: default
spec:
 restartPolicy: Never
 volumes:
 - name: vol
 hostPath:
 path: /any/path/it/will/be/replaced
 containers:
 - name: pv-recycler
 image: "gcr.io/google_containers/busybox"
 command: ["/bin/sh", "-c", "test -e /scrub && rm -rf /scrub/..?* /scrub/.[!.]*
 volumeMounts:
 - name: vol
 mountPath: /scrub

http://localhost:4000/docs/admin/kube-controller-manager/

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 6/31

For volume plugins that support the Delete reclaim policy, deletion removes both the

PersistentVolume object from Kubernetes, as well as deleting the associated storage asset in the

external infrastructure, such as an AWS EBS, GCE PD, Azure Disk, or Cinder volume. Volumes that

were dynamically provisioned inherit the reclaim policy of their StorageClass , which defaults to

Delete. The administrator should con�gure the StorageClass according to users’ expectations,

otherwise the PV must be edited or patched after it is created. See Change the Reclaim Policy of a

PersistentVolume.

Expanding Persistent Volumes Claims

With Kubernetes 1.8, we have added Alpha support for expanding persistent volumes. The current

Alpha support was designed to only support volume types that don’t need �le system resizing

(Currently only glusterfs).

Administrator can allow expanding persistent volume claims by setting ExpandPersistentVolumes

feature gate to true. Administrator should also enable PersistentVolumeClaimResize admission

plugin to perform additional validations of volumes that can be resized.

Once PersistentVolumeClaimResize admission plug-in has been turned on, resizing will only be

allowed for storage classes whose allowVolumeExpansion �eld is set to true.

Once both feature gate and aforementioned admission plug-in are turned on, an user can request

larger volume for their PersistentVolumeClaim by simply editing the claim and requesting bigger

size. This in turn will trigger expansion of volume that is backing underlying PersistentVolume .

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gluster-vol-default
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://192.168.10.100:8080"
 restuser: ""
 secretNamespace: ""
 secretName: ""
allowVolumeExpansion: true

https://kubernetes.io/docs/tasks/administer-cluster/change-pv-reclaim-policy/
http://localhost:4000/docs/admin/admission-controllers/#persistentvolumeclaimresize

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 7/31

Under no circustances a new PersistentVolume gets created to satisfy the claim. Kubernetes will

attempt to resize existing volume to satisfy the claim.

Types of Persistent Volumes

PersistentVolume types are implemented as plugins. Kubernetes currently supports the following

plugins:

GCEPersistentDisk

AWSElasticBlockStore

AzureFile

AzureDisk

FC (Fibre Channel)

FlexVolume

Flocker

NFS

iSCSI

RBD (Ceph Block Device)

CephFS

Cinder (OpenStack block storage)

Glusterfs

VsphereVolume

Quobyte Volumes

HostPath (Single node testing only – local storage is not supported in any way and WILL NOT

WORK in a multi-node cluster)

VMware Photon

Portworx Volumes

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 8/31

ScaleIO Volumes

StorageOS

Persistent Volumes

Each PV contains a spec and status, which is the speci�cation and status of the volume.

Capacity

Generally, a PV will have a speci�c storage capacity. This is set using the PV’s capacity attribute.

See the Kubernetes Resource Model to understand the units expected by capacity .

Currently, storage size is the only resource that can be set or requested. Future attributes may

include IOPS, throughput, etc.

Access Modes

A PersistentVolume can be mounted on a host in any way supported by the resource provider. As

shown in the table below, providers will have different capabilities and each PV’s access modes are

set to the speci�c modes supported by that particular volume. For example, NFS can support

 apiVersion: v1
 kind: PersistentVolume
 metadata:
 name: pv0003
 spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Recycle
 storageClassName: slow
 mountOptions:
 - hard
 - nfsvers=4.1
 nfs:
 path: /tmp
 server: 172.17.0.2

https://git.k8s.io/community/contributors/design-proposals/scheduling/resources.md

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 9/31

multiple read/write clients, but a speci�c NFS PV might be exported on the server as read-only. Each

PV gets its own set of access modes describing that speci�c PV’s capabilities.

The access modes are:

ReadWriteOnce – the volume can be mounted as read-write by a single node

ReadOnlyMany – the volume can be mounted read-only by many nodes

ReadWriteMany – the volume can be mounted as read-write by many nodes

In the CLI, the access modes are abbreviated to:

RWO - ReadWriteOnce

ROX - ReadOnlyMany

RWX - ReadWriteMany

Important! A volume can only be mounted using one access mode at a time, even if it supports

many. For example, a GCEPersistentDisk can be mounted as ReadWriteOnce by a single node or

ReadOnlyMany by many nodes, but not at the same time.

Volume Plugin ReadWriteOnce ReadOnlyMany ReadWriteMany

AWSElasticBlockStore ✓ - -

AzureFile ✓ ✓ ✓

AzureDisk ✓ - -

CephFS ✓ ✓ ✓

Cinder ✓ - -

FC ✓ ✓ -

FlexVolume ✓ ✓ -

Flocker ✓ - -

GCEPersistentDisk ✓ ✓ -

Glusterfs ✓ ✓ ✓

HostPath ✓ - -

iSCSI ✓ ✓ -

PhotonPersistentDisk ✓ - -

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 10/31

Volume Plugin ReadWriteOnce ReadOnlyMany ReadWriteMany

Quobyte ✓ ✓ ✓

NFS ✓ ✓ ✓

RBD ✓ ✓ -

VsphereVolume ✓ - -

PortworxVolume ✓ - ✓

ScaleIO ✓ ✓ -

StorageOS ✓ - -

Class

A PV can have a class, which is speci�ed by setting the storageClassName attribute to the name of

a StorageClass . A PV of a particular class can only be bound to PVCs requesting that class. A PV

with no storageClassName has no class and can only be bound to PVCs that request no particular

class.

In the past, the annotation volume.beta.kubernetes.io/storage-class was used instead of the

storageClassName attribute. This annotation is still working, however it will become fully

deprecated in a future Kubernetes release.

Reclaim Policy

Current reclaim policies are:

Retain – manual reclamation

Recycle – basic scrub (rm -rf /thevolume/*)

Delete – associated storage asset such as AWS EBS, GCE PD, Azure Disk, or OpenStack Cinder

volume is deleted

Currently, only NFS and HostPath support recycling. AWS EBS, GCE PD, Azure Disk, and Cinder

volumes support deletion.

Mount Options

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 11/31

A Kubernetes administrator can specify additional mount options for when a Persistent Volume is

mounted on a node.

Note: Not all Persistent volume types support mount options.

The following volume types support mount options:

GCEPersistentDisk

AWSElasticBlockStore

AzureFile

AzureDisk

NFS

iSCSI

RBD (Ceph Block Device)

CephFS

Cinder (OpenStack block storage)

Glusterfs

VsphereVolume

Quobyte Volumes

VMware Photon

Mount options are not validated, so mount will simply fail if one is invalid.

In the past, the annotation volume.beta.kubernetes.io/mount-options was used instead of the

mountOptions attribute. This annotation is still working, however it will become fully deprecated in a

future Kubernetes release.

Phase

A volume will be in one of the following phases:

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 12/31

Available – a free resource that is not yet bound to a claim

Bound – the volume is bound to a claim

Released – the claim has been deleted, but the resource is not yet reclaimed by the cluster

Failed – the volume has failed its automatic reclamation

The CLI will show the name of the PVC bound to the PV.

PersistentVolumeClaims

Each PVC contains a spec and status, which is the speci�cation and status of the claim.

Access Modes

Claims use the same conventions as volumes when requesting storage with speci�c access modes.

Resources

Claims, like pods, can request speci�c quantities of a resource. In this case, the request is for

storage. The same resource model applies to both volumes and claims.

Selector

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi
 storageClassName: slow
 selector:
 matchLabels:
 release: "stable"
 matchExpressions:
 - {key: environment, operator: In, values: [dev]}

https://git.k8s.io/community/contributors/design-proposals/scheduling/resources.md

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 13/31

Claims can specify a label selector to further �lter the set of volumes. Only the volumes whose labels

match the selector can be bound to the claim. The selector can consist of two �elds:

matchLabels - the volume must have a label with this value

matchExpressions - a list of requirements made by specifying key, list of values, and operator

that relates the key and values. Valid operators include In, NotIn, Exists, and DoesNotExist.

All of the requirements, from both matchLabels and matchExpressions are ANDed together –

they must all be satis�ed in order to match.

Class

A claim can request a particular class by specifying the name of a StorageClass using the attribute

storageClassName . Only PVs of the requested class, ones with the same storageClassName as

the PVC, can be bound to the PVC.

PVCs don’t necessarily have to request a class. A PVC with its storageClassName set equal to ""

is always interpreted to be requesting a PV with no class, so it can only be bound to PVs with no

class (no annotation or one set equal to ""). A PVC with no storageClassName is not quite the

same and is treated differently by the cluster depending on whether the DefaultStorageClass

admission plugin is turned on.

If the admission plugin is turned on, the administrator may specify a default StorageClass . All

PVCs that have no storageClassName can be bound only to PVs of that default. Specifying a

default StorageClass is done by setting the annotation

storageclass.kubernetes.io/is-default-class equal to “true” in a StorageClass object.

If the administrator does not specify a default, the cluster responds to PVC creation as if the

admission plugin were turned off. If more than one default is speci�ed, the admission plugin

forbids the creation of all PVCs.

If the admission plugin is turned off, there is no notion of a default StorageClass . All PVCs that

have no storageClassName can be bound only to PVs that have no class. In this case, the PVCs

that have no storageClassName are treated the same way as PVCs that have their

storageClassName set to "" .

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#label-selectors
http://localhost:4000/docs/admin/admission-controllers/#defaultstorageclass

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 14/31

Depending on installation method, a default StorageClass may be deployed to Kubernetes cluster by

addon manager during installation.

When a PVC speci�es a selector in addition to requesting a StorageClass , the requirements are

ANDed together: only a PV of the requested class and with the requested labels may be bound to the

PVC.

Note: Currently, a PVC with a non-empty selector can’t have a PV dynamically provisioned

for it.

In the past, the annotation volume.beta.kubernetes.io/storage-class was used instead of

storageClassName attribute. This annotation is still working, however it won’t be supported in a

future Kubernetes release.

Claims As Volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as

the pod using the claim. The cluster �nds the claim in the pod’s namespace and uses it to get the

PersistentVolume backing the claim. The volume is then mounted to the host and into the pod.

A Note on Namespaces

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 15/31

PersistentVolumes binds are exclusive, and since PersistentVolumeClaims are namespaced

objects, mounting claims with “Many” modes (ROX , RWX) is only possible within one namespace.

StorageClasses

Each StorageClass contains the �elds provisioner , parameters , and reclaimPolicy , which

are used when a PersistentVolume belonging to the class needs to be dynamically provisioned.

The name of a StorageClass object is signi�cant, and is how users can request a particular class.

Administrators set the name and other parameters of a class when �rst creating StorageClass

objects, and the objects cannot be updated once they are created.

Administrators can specify a default StorageClass just for PVCs that don’t request any particular

class to bind to: see the PersistentVolumeClaim section for details.

Provisioner

Storage classes have a provisioner that determines what volume plugin is used for provisioning PVs.

This �eld must be speci�ed.

Volume Plugin Internal Provisioner Con�g Example

AWSElasticBlockStore ✓ AWS

AzureFile ✓ Azure File

AzureDisk ✓ Azure Disk

CephFS - -

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: standard
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2
reclaimPolicy: Retain
mountOptions:
 - debug

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 16/31

Volume Plugin Internal Provisioner Con�g Example

Cinder ✓ OpenStack Cinder

FC - -

FlexVolume - -

Flocker ✓ -

GCEPersistentDisk ✓ GCE

Glusterfs ✓ Glusterfs

iSCSI - -

PhotonPersistentDisk ✓ -

Quobyte ✓ Quobyte

NFS - -

RBD ✓ Ceph RBD

VsphereVolume ✓ vSphere

PortworxVolume ✓ Portworx Volume

ScaleIO ✓ ScaleIO

You are not restricted to specifying the “internal” provisioners listed here (whose names are pre�xed

with “kubernetes.io” and shipped alongside Kubernetes). You can also run and specify external

provisioners, which are independent programs that follow a speci�cation de�ned by Kubernetes.

Authors of external provisioners have full discretion over where their code lives, how the provisioner

is shipped, how it needs to be run, what volume plugin it uses (including Flex), etc. The repository

kubernetes-incubator/external-storage houses a library for writing external provisioners that

implements the bulk of the speci�cation plus various community-maintained external provisioners.

For example, NFS doesn’t provide an internal provisioner, but an external provisioner can be used.

Some external provisioners are listed under the repository kubernetes-incubator/external-storage.

There are also cases when 3rd party storage vendors provide their own external provisioner.

Reclaim Policy

Persistent Volumes that are dynamically created by a storage class will have the reclaim policy

speci�ed in the reclaimPolicy �eld of the class, which can be either Delete or Retain . If no

reclaimPolicy is speci�ed when a StorageClass object is created, it will default to Delete .

https://git.k8s.io/community/contributors/design-proposals/storage/volume-provisioning.md
https://github.com/kubernetes-incubator/external-storage
https://github.com/kubernetes-incubator/external-storage

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 17/31

Persistent Volumes that are created manually and managed via a storage class will have whatever

reclaim policy they were assigned at creation.

Mount Options

Persistent Volumes that are dynamically created by a storage class will have the mount options

speci�ed in the mountOptions �eld of the class.

If the volume plugin does not support mount options but mount options are speci�ed, provisioning

will fail. Mount options are not validated on neither the class nor PV, so mount of the PV will simply

fail if one is invalid.

Parameters

Storage classes have parameters that describe volumes belonging to the storage class. Different

parameters may be accepted depending on the provisioner . For example, the value io1 , for the

parameter type , and the parameter iopsPerGB are speci�c to EBS. When a parameter is omitted,

some default is used.

AWS

type : io1 , gp2 , sc1 , st1 . See AWS docs for details. Default: gp2 .

zone : AWS zone. If neither zone nor zones is speci�ed, volumes are generally round-robin-ed

across all active zones where Kubernetes cluster has a node. zone and zones parameters

must not be used at the same time.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1
 zones: us-east-1d, us-east-1c
 iopsPerGB: "10"

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 18/31

zones : A comma separated list of AWS zone(s). If neither zone nor zones is speci�ed,

volumes are generally round-robin-ed across all active zones where Kubernetes cluster has a

node. zone and zones parameters must not be used at the same time.

iopsPerGB : only for io1 volumes. I/O operations per second per GiB. AWS volume plugin

multiplies this with size of requested volume to compute IOPS of the volume and caps it at 20

000 IOPS (maximum supported by AWS, see AWS docs. A string is expected here, i.e. "10" , not

10 .

encrypted : denotes whether the EBS volume should be encrypted or not. Valid values are

"true" or "false" . A string is expected here, i.e. "true" , not true .

kmsKeyId : optional. The full Amazon Resource Name of the key to use when encrypting the

volume. If none is supplied but encrypted is true, a key is generated by AWS. See AWS docs for

valid ARN value.

GCE

type : pd-standard or pd-ssd . Default: pd-standard

zone : GCE zone. If neither zone nor zones is speci�ed, volumes are generally round-robin-ed

across all active zones where Kubernetes cluster has a node. zone and zones parameters

must not be used at the same time.

zones : A comma separated list of GCE zone(s). If neither zone nor zones is speci�ed,

volumes are generally round-robin-ed across all active zones where Kubernetes cluster has a

node. zone and zones parameters must not be used at the same time.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 zones: us-central1-a, us-central1-b

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 19/31

Glusterfs

resturl : Gluster REST service/Heketi service url which provision gluster volumes on demand.

The general format should be IPaddress:Port and this is a mandatory parameter for

GlusterFS dynamic provisioner. If Heketi service is exposed as a routable service in

openshift/kubernetes setup, this can have a format similar to

http://heketi-storage-project.cloudapps.mystorage.com where the fqdn is a resolvable

heketi service url.

restauthenabled : Gluster REST service authentication boolean that enables authentication to

the REST server. If this value is ‘true’, restuser and restuserkey or secretNamespace +

secretName have to be �lled. This option is deprecated, authentication is enabled when any of

restuser , restuserkey , secretName or secretNamespace is speci�ed.

restuser : Gluster REST service/Heketi user who has access to create volumes in the Gluster

Trusted Pool.

restuserkey : Gluster REST service/Heketi user’s password which will be used for

authentication to the REST server. This parameter is deprecated in favor of secretNamespace +

secretName .

secretNamespace , secretName : Identi�cation of Secret instance that contains user password

to use when talking to Gluster REST service. These parameters are optional, empty password

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: slow
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://127.0.0.1:8081"
 clusterid: "630372ccdc720a92c681fb928f27b53f"
 restauthenabled: "true"
 restuser: "admin"
 secretNamespace: "default"
 secretName: "heketi-secret"
 gidMin: "40000"
 gidMax: "50000"
 volumetype: "replicate:3"

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 20/31

will be used when both secretNamespace and secretName are omitted. The provided secret

must have type “kubernetes.io/glusterfs”, e.g. created in this way:

$ kubectl create secret generic heketi-secret --type="kubernetes.io/glusterfs"

--from-literal=key='opensesame' --namespace=default

Example of a secret can be found in glusterfs-provisioning-secret.yaml.

clusterid : 630372ccdc720a92c681fb928f27b53f is the ID of the cluster which will be used

by Heketi when provisioning the volume. It can also be a list of clusterids, for ex:

“8452344e2becec931ece4e33c4674e4e,42982310de6c63381718ccfa6d8cf397”. This is an

optional parameter.

gidMin , gidMax : The minimum and maximum value of GID range for the storage class. A

unique value (GID) in this range (gidMin-gidMax) will be used for dynamically provisioned

volumes. These are optional values. If not speci�ed, the volume will be provisioned with a value

between 2000-2147483647 which are defaults for gidMin and gidMax respectively.

volumetype : The volume type and its parameters can be con�gured with this optional value. If

the volume type is not mentioned, it’s up to the provisioner to decide the volume type. For

example: ‘Replica volume’: volumetype: replicate:3 where ‘3’ is replica count. ‘Disperse/EC

volume’: volumetype: disperse:4:2 where ‘4’ is data and ‘2’ is the redundancy count.

‘Distribute volume’: volumetype: none

For available volume types and administration options, refer to the Administration Guide.

For further reference information, see How to con�gure Heketi.

When persistent volumes are dynamically provisioned, the Gluster plugin automatically creates

an endpoint and a headless service in the name gluster-dynamic-<claimname> . The dynamic

endpoint and service are automatically deleted when the persistent volume claim is deleted.

OpenStack Cinder

https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/glusterfs/glusterfs-secret.yaml
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/part-Overview.html
https://github.com/heketi/heketi/wiki/Setting-up-the-topology

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 21/31

type : VolumeType created in Cinder. Default is empty.

availability : Availability Zone. If not speci�ed, volumes are generally round-robin-ed across

all active zones where Kubernetes cluster has a node.

vSphere

1. Create a persistent volume with a user speci�ed disk format.

diskformat : thin , zeroedthick and eagerzeroedthick . Default: "thin" .

1. Create a persistent volume with a disk format on a user speci�ed datastore.

diskformat : thin , zeroedthick and eagerzeroedthick . Default: "thin" .

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gold
provisioner: kubernetes.io/cinder
parameters:
 type: fast
 availability: nova

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: fast
provisioner: kubernetes.io/vsphere-volume
parameters:
 diskformat: zeroedthick

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: fast
provisioner: kubernetes.io/vsphere-volume
parameters:
 diskformat: zeroedthick
 datastore: VSANDatastore

https://docs.openstack.org/user-guide/dashboard-manage-volumes.html

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 22/31

datastore : The user can also specify the datastore in the Storageclass. The volume will be

created on the datastore speci�ed in the storage class which in this case is VSANDatastore .

This �eld is optional. If not speci�ed as in previous YAML description, the volume will be created

on the datastore speci�ed in the vsphere con�g �le used to initialize the vSphere Cloud Provider.

1. Create a persistent volume with user speci�ed VSAN storage capabilities.

Here, the user can specify VSAN storage capabilities for dynamic volume provisioning inside

Kubernetes.

Storage Policies capture storage requirements, such as performance and availability, for

persistent volumes. These policies determine how the container volume storage objects are

provisioned and allocated within the datastore to guarantee the requested Quality of Service.

Storage policies are composed of storage capabilities, typically represented by a key-value pair.

The key is a speci�c property that the datastore can offer and the value is a metric, or a range,

that the datastore guarantees for a provisioned object, such as a container volume backed by a

virtual disk.

As described in o�cial documentation, VSAN exposes multiple storage capabilities. The below

table lists VSAN storage capabilities that are currently supported by vSphere Cloud Provider.

Storage Capability Name Description

cacheReservation Flash read cache reservation

diskStripes Number of disk stripes per object

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: vsan-policy-fast
provisioner: kubernetes.io/vsphere-volume
parameters:
 diskformat: thin
 hostFailuresToTolerate: "1"
 diskStripes: "2"
 cacheReservation: "20"
 datastore: VSANDatastore

https://pubs.vmware.com/vsphere-65/index.jsp?topic=%2Fcom.vmware.vsphere.virtualsan.doc%2FGUID-08911FD3-2462-4C1C-AE81-0D4DBC8F7990.html

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 23/31

Storage Capability Name Description

forceProvisioning Force provisioning

hostFailuresToTolerate Number of failures to tolerate

iopsLimit IOPS limit for object

objectSpaceReservation Object space reservation

vSphere Infrastructure(VI) administrator can specify storage requirements for applications in

terms of storage capabilities while creating a storage class inside Kubernetes. Please note that

while creating a StorageClass, administrator should specify storage capability names used in the

table above as these names might differ from the ones used by VSAN. For example - Number of

disk stripes per object is referred to as stripeWidth in VSAN documentation however vSphere

Cloud Provider uses a friendly name diskStripes.

You can see vSphere example for more details.

Ceph RBD

monitors : Ceph monitors, comma delimited. This parameter is required.

adminId : Ceph client ID that is capable of creating images in the pool. Default is “admin”.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: fast
provisioner: kubernetes.io/rbd
parameters:
 monitors: 10.16.153.105:6789
 adminId: kube
 adminSecretName: ceph-secret
 adminSecretNamespace: kube-system
 pool: kube
 userId: kube
 userSecretName: ceph-secret-user
 fsType: ext4
 imageFormat: "2"
 imageFeatures: "layering"

https://github.com/kubernetes/examples/tree/master/staging/volumes/vsphere

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 24/31

adminSecretNamespace : The namespace for adminSecret . Default is “default”.

adminSecret : Secret Name for adminId . This parameter is required. The provided secret must

have type “kubernetes.io/rbd”.

pool : Ceph RBD pool. Default is “rbd”.

userId : Ceph client ID that is used to map the RBD image. Default is the same as adminId .

userSecretName : The name of Ceph Secret for userId to map RBD image. It must exist in the

same namespace as PVCs. This parameter is required. The provided secret must have type

“kubernetes.io/rbd”, e.g. created in this way:

$ kubectl create secret generic ceph-secret --type="kubernetes.io/rbd" --from-

literal=key='QVFEQ1pMdFhPUnQrSmhBQUFYaERWNHJsZ3BsMmNjcDR6RFZST0E9PQ==' --

namespace=kube-system

fsType : fsType that is supported by kubernetes. Default: "ext4" .

imageFormat : Ceph RBD image format, “1” or “2”. Default is “1”.

imageFeatures : This parameter is optional and should only be used if you set imageFormat to

“2”. Currently supported features are layering only. Default is “”, and no features are turned on.

Quobyte

quobyteAPIServer : API Server of Quobyte in the format http(s)://api-server:7860

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: slow
provisioner: kubernetes.io/quobyte
parameters:
 quobyteAPIServer: "http://138.68.74.142:7860"
 registry: "138.68.74.142:7861"
 adminSecretName: "quobyte-admin-secret"
 adminSecretNamespace: "kube-system"
 user: "root"
 group: "root"
 quobyteConfig: "BASE"
 quobyteTenant: "DEFAULT"

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 25/31

registry : Quobyte registry to use to mount the volume. You can specify the registry as

<host>:<port> pair or if you want to specify multiple registries you just have to put a comma

between them e.q. <host1>:<port>,<host2>:<port>,<host3>:<port> . The host can be an IP

address or if you have a working DNS you can also provide the DNS names.

adminSecretNamespace : The namespace for adminSecretName . Default is “default”.

adminSecretName : secret that holds information about the Quobyte user and the password to

authenticate against the API server. The provided secret must have type

“kubernetes.io/quobyte”, e.g. created in this way:

$ kubectl create secret generic quobyte-admin-secret --

type="kubernetes.io/quobyte" --from-literal=key='opensesame' --namespace=kube-

system

user : maps all access to this user. Default is “root”.

group : maps all access to this group. Default is “nfsnobody”.

quobyteConfig : use the speci�ed con�guration to create the volume. You can create a new

con�guration or modify an existing one with the Web console or the quobyte CLI. Default is

“BASE”.

quobyteTenant : use the speci�ed tenant ID to create/delete the volume. This Quobyte tenant

has to be already present in Quobyte. Default is “DEFAULT”.

Azure Disk

Azure Unmanaged Disk Storage Class

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/azure-disk
parameters:
 skuName: Standard_LRS
 location: eastus
 storageAccount: azure_storage_account_name

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 26/31

skuName : Azure storage account Sku tier. Default is empty.

location : Azure storage account location. Default is empty.

storageAccount : Azure storage account name. If a storage account is provided, it must reside

in the same resource group as the cluster, and location is ignored. If a storage account is not

provided, a new storage account will be created in the same resource group as the cluster.

New Azure Disk Storage Class (starting from v1.7.2)

storageaccounttype : Azure storage account Sku tier. Default is empty.

kind : Possible values are shared (default), dedicated , and managed . When kind is

shared , all unmanaged disks are created in a few shared storage accounts in the same

resource group as the cluster. When kind is dedicated , a new dedicated storage account will

be created for the new unmanaged disk in the same resource group as the cluster.

Premium VM can attach both Standard_LRS and Premium_LRS disks, while Standard VM can

only attach Standard_LRS disks.

Managed VM can only attach managed disks and unmanaged VM can only attach unmanaged

disks.

Azure File

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/azure-disk
parameters:
 storageaccounttype: Standard_LRS
 kind: Shared

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 27/31

skuName : Azure storage account Sku tier. Default is empty.

location : Azure storage account location. Default is empty.

storageAccount : Azure storage account name. Default is empty. If a storage account is not

provided, all storage accounts associated with the resource group are searched to �nd one that

matches skuName and location . If a storage account is provided, it must reside in the same

resource group as the cluster, and skuName and location are ignored.

During provision, a secret is created for mounting credentials. If the cluster has enabled both RBAC

and Controller Roles, add the create permission of resource secret for clusterrole

system:controller:persistent-volume-binder .

Portworx Volume

fs : �lesystem to be laid out: [none/xfs/ext4] (default: ext4).

block_size : block size in Kbytes (default: 32).

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azurefile
provisioner: kubernetes.io/azure-file
parameters:
 skuName: Standard_LRS
 location: eastus
 storageAccount: azure_storage_account_name

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: portworx-io-priority-high
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "1"
 snap_interval: "70"
 io_priority: "high"

http://localhost:4000/docs/admin/authorization/rbac/
http://localhost:4000/docs/admin/authorization/rbac/#controller-roles

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 28/31

repl : number of synchronous replicas to be provided in the form of replication factor [1..3]

(default: 1) A string is expected here i.e. "1" and not 1 .

io_priority : determines whether the volume will be created from higher performance or a

lower priority storage [high/medium/low] (default: low).

snap_interval : clock/time interval in minutes for when to trigger snapshots. Snapshots are

incremental based on difference with the prior snapshot, 0 disables snaps (default: 0). A string

is expected here i.e. "70" and not 70 .

aggregation_level : speci�es the number of chunks the volume would be distributed into, 0

indicates a non-aggregated volume (default: 0). A string is expected here i.e. "0" and not 0

ephemeral : speci�es whether the volume should be cleaned-up after unmount or should be

persistent. emptyDir use case can set this value to true and persistent volumes use case

such as for databases like Cassandra should set to false, [true/false] (default false). A string is

expected here i.e. "true" and not true .

ScaleIO

provisioner : attribute is set to kubernetes.io/scaleio

gateway : address to a ScaleIO API gateway (required)

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/scaleio
parameters:
 gateway: https://192.168.99.200:443/api
 system: scaleio
 protectionDomain: pd0
 storagePool: sp1
 storageMode: ThinProvisionned
 secretRef: sio-secret
 readOnly: false
 fsType: xfs

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 29/31

system : the name of the ScaleIO system (required)

protectionDomain : the name of the ScaleIO protection domain (required)

storagePool : the name of the volume storage pool (required)

storageMode : the storage provision mode: ThinProvisionned (default) or

ThickProvisionned

secretRef : reference to a con�gured Secret object (required)

readOnly : speci�es the access mode to the mounted volume (default false)

fsType : the �le system to use for the volume (default ext4)

The ScaleIO Kubernetes volume plugin requires a con�gured Secret object. The secret must be

created with type kubernetes.io/scaleio and use the same namespace value as that of the PVC

where it is referenced as shown in the following command:

StorageOS

pool : The name of the StorageOS distributed capacity pool to provision the volume from. Uses

the default pool which is normally present if not speci�ed.

$> kubectl create secret generic sio-secret --type="kubernetes.io/scaleio" --from-

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: fast
provisioner: kubernetes.io/storageos
parameters:
 pool: default
 description: Kubernetes volume
 fsType: ext4
 adminSecretNamespace: default
 adminSecretName: storageos-secret

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 30/31

description : The description to assign to volumes that were created dynamically. All volume

descriptions will be the same for the storage class, but different storage classes can be used to

allow descriptions for different use cases. Defaults to Kubernetes volume .

fsType : The default �lesystem type to request. Note that user-de�ned rules within StorageOS

may override this value. Defaults to ext4 .

adminSecretNamespace : The namespace where the API con�guration secret is located.

Required if adminSecretName set.

adminSecretName : The name of the secret to use for obtaining the StorageOS API credentials.

If not speci�ed, default values will be attempted.

The StorageOS Kubernetes volume plugin can use a Secret object to specify an endpoint and

credentials to access the StorageOS API. This is only required when the defaults have been changed.

The secret must be created with type kubernetes.io/storageos as shown in the following

command:

Secrets used for dynamically provisioned volumes may be created in any namespace and referenced

with the adminSecretNamespace parameter. Secrets used by pre-provisioned volumes must be

created in the same namespace as the PVC that references it.

Writing Portable Con�guration

If you’re writing con�guration templates or examples that run on a wide range of clusters and need

persistent storage, we recommend that you use the following pattern:

Do include PersistentVolumeClaim objects in your bundle of con�g (alongside Deployments,

Con�gMaps, etc).

Do not include PersistentVolume objects in the con�g, since the user instantiating the con�g

may not have permission to create PersistentVolumes.

$ kubectl create secret generic storageos-secret --type="kubernetes.io/storageos"

10/23/2017 Persistent Volumes - Kubernetes

http://localhost:4000/docs/concepts/storage/persistent-volumes/ 31/31

Give the user the option of providing a storage class name when instantiating the template.

If the user provides a storage class name, and the cluster is version 1.4 or newer, put that

value into the volume.beta.kubernetes.io/storage-class annotation of the PVC. This

will cause the PVC to match the right storage class if the cluster has StorageClasses

enabled by the admin.

If the user does not provide a storage class name or the cluster is version 1.3, then instead

put a volume.alpha.kubernetes.io/storage-class: default annotation on the PVC.

This will cause a PV to be automatically provisioned for the user with sane default

characteristics on some clusters.

Despite the word alpha in the name, the code behind this annotation has beta level

support.

Do not use volume.beta.kubernetes.io/storage-class: with any value including

the empty string since it will prevent DefaultStorageClass admission controller from

running if enabled.

In your tooling, do watch for PVCs that are not getting bound after some time and surface this to

the user, as this may indicate that the cluster has no dynamic storage support (in which case the

user should create a matching PV) or the cluster has no storage system (in which case the user

cannot deploy con�g requiring PVCs).

In the future, we expect most clusters to have DefaultStorageClass enabled, and to have

some form of storage available. However, there may not be any storage class names which work

on all clusters, so continue to not set one by default. At some point, the alpha annotation will

cease to have meaning, but the unset storageClass �eld on the PVC will have the desired

effect.

10/23/2017 Cluster Administration Overview - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/cluster-administration-overview/ 1/3

Cluster Administration Overview

The cluster administration overview is for anyone creating or administering a Kubernetes cluster. It

assumes some familiarity with concepts in the User Guide.

Planning a cluster

See the guides in Picking the Right Solution for examples of how to plan, set up, and con�gure

Kubernetes clusters. The solutions listed in this article are called distros.

Before choosing a guide, here are some considerations:

Do you just want to try out Kubernetes on your computer, or do you want to build a high-

availability, multi-node cluster? Choose distros best suited for your needs.

If you are designing for high-availability, learn about con�guring clusters in multiple zones.

Will you be using a hosted Kubernetes cluster, such as Google Container Engine (GKE), or

hosting your own cluster?

Will your cluster be on-premises, or in the cloud (IaaS)? Kubernetes does not directly support

hybrid clusters. Instead, you can set up multiple clusters.

If you are con�guring Kubernetes on-premises, consider which networking model �ts best. One

option for custom networking is OpenVSwitch GRE/VxLAN networking, which uses OpenVSwitch

to set up networking between pods across Kubernetes nodes.

Will you be running Kubernetes on “bare metal” hardware or on virtual machines (VMs)?

Do you just want to run a cluster, or do you expect to do active development of Kubernetes

project code? If the latter, choose a actively-developed distro. Some distros only use binary

Planning a cluster
Managing a cluster
Securing a cluster

Securing the kubelet
Optional Cluster Services

http://localhost:4000/docs/user-guide/
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/admin/multi-cluster/
https://cloud.google.com/container-engine/
http://localhost:4000/docs/admin/networking/
http://localhost:4000/docs/admin/ovs-networking/

10/23/2017 Cluster Administration Overview - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/cluster-administration-overview/ 2/3

releases, but offer a greater variety of choices.

Familiarize yourself with the components needed to run a cluster.

Note: Not all distros are actively maintained. Choose distros which have been tested with a recent

version of Kubernetes.

If you are using a guide involving Salt, see Con�guring Kubernetes with Salt.

Managing a cluster

Managing a cluster describes several topics related to the lifecycle of a cluster: creating a new

cluster, upgrading your cluster’s master and worker nodes, performing node maintenance (e.g.

kernel upgrades), and upgrading the Kubernetes API version of a running cluster.

Learn how to manage nodes.

Learn how to set up and manage the resource quota for shared clusters.

Securing a cluster

Kubernetes Container Environment describes the environment for Kubelet managed containers

on a Kubernetes node.

Controlling Access to the Kubernetes API describes how to set up permissions for users and

service accounts.

Authenticating explains authentication in Kubernetes, including the various authentication

options.

Authorization is separate from authentication, and controls how HTTP calls are handled.

Using Admission Controllers explains plug-ins which intercepts requests to the Kubernetes API

server after authentication and authorization.

Using Sysctls in a Kubernetes Cluster describes to an administrator how to use the sysctl

command-line tool to set kernel parameters .

Auditing describes how to interact with Kubernetes’ audit logs.

http://localhost:4000/docs/admin/cluster-components/
http://localhost:4000/docs/admin/salt/
http://localhost:4000/docs/concepts/cluster-administration/cluster-management/
http://localhost:4000/docs/concepts/nodes/node/
http://localhost:4000/docs/concepts/policy/resource-quotas/
http://localhost:4000/docs/concepts/containers/container-environment-variables/
http://localhost:4000/docs/admin/accessing-the-api/
http://localhost:4000/docs/admin/authentication/
http://localhost:4000/docs/admin/authorization/
http://localhost:4000/docs/admin/admission-controllers/
http://localhost:4000/docs/concepts/cluster-administration/sysctl-cluster/
http://localhost:4000/docs/tasks/debug-application-cluster/audit/

10/23/2017 Cluster Administration Overview - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/cluster-administration-overview/ 3/3

Securing the kubelet

Master-Node communication

TLS bootstrapping

Kubelet authentication/authorization

Optional Cluster Services

DNS Integration with SkyDNS describes how to resolve a DNS name directly to a Kubernetes

service.

Logging and Monitoring Cluster Activity explains how logging in Kubernetes works and how to

implement it.

http://localhost:4000/docs/concepts/architecture/master-node-communication/
http://localhost:4000/docs/admin/kubelet-tls-bootstrapping/
http://localhost:4000/docs/admin/kubelet-authentication-authorization/
http://localhost:4000/docs/concepts/services-networking/dns-pod-service/
http://localhost:4000/docs/concepts/cluster-administration/logging/

10/23/2017 Cloud Providers - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/cloud-providers/ 1/3

Cloud Providers

This page explains how to manage Kubernetes running on a speci�c cloud provider.

AWS

This section describes all the possible con�gurations which can be used when running Kubernetes

on Amazon Web Services.

Load Balancers

You can setup external load balancers to use speci�c features in AWS by con�guring the annotations

as shown below.

AWS
Load Balancers

apiVersion: v1
kind: Service
metadata:
 name: example
 namespace: kube-system
 labels:
 run: example
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:xx-xxxx-x:
 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http
spec:
 type: LoadBalancer
 ports:
 - port: 443
 targetPort: 5556
 protocol: TCP
 selector:
 app: example

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/

10/23/2017 Cloud Providers - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/cloud-providers/ 2/3

Different settings can be applied to a load balancer service in AWS using annotations. The following

describes the annotations supported on AWS ELBs:

service.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval : Used to

specify access log emit interval.

service.beta.kubernetes.io/aws-load-balancer-access-log-enabled : Used on the

service to enable or disable access logs.

service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name : Used to

specify access log s3 bucket name.

service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix : Used

to specify access log s3 bucket pre�x.

service.beta.kubernetes.io/aws-load-balancer-additional-resource-tags : Used on

the service to specify a comma-separated list of key-value pairs which will be recorded as

additional tags in the ELB. For example: "Key1=Val1,Key2=Val2,KeyNoVal1=,KeyNoVal2" .

service.beta.kubernetes.io/aws-load-balancer-backend-protocol : Used on the service

to specify the protocol spoken by the backend (pod) behind a listener. If http (default) or

https , an HTTPS listener that terminates the connection and parses headers is created. If set

to ssl or tcp , a “raw” SSL listener is used. If set to http and aws-load-balancer-ssl-cert

is not used then a HTTP listener is used.

service.beta.kubernetes.io/aws-load-balancer-ssl-cert : Used on the service to

request a secure listener. Value is a valid certi�cate ARN. For more, see ELB Listener Con�g

CertARN is an IAM or CM certi�cate ARN, e.g.

arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-

123456789012

.

service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled : Used

on the service to enable or disable connection draining.

service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout : Used

on the service to specify a connection draining timeout.

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html

10/23/2017 Cloud Providers - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/cloud-providers/ 3/3

service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout : Used on the

service to specify the idle connection timeout.

service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-enabled :

Used on the service to enable or disable cross-zone load balancing.

service.beta.kubernetes.io/aws-load-balancer-extra-security-groups : Used one the

service to specify additional security groups to be added to ELB created

service.beta.kubernetes.io/aws-load-balancer-internal : Used on the service to

indicate that we want an internal ELB.

service.beta.kubernetes.io/aws-load-balancer-proxy-protocol : Used on the service to

enable the proxy protocol on an ELB. Right now we only accept the value * which means enable

the proxy protocol on all ELB backends. In the future we could adjust this to allow setting the

proxy protocol only on certain backends.

service.beta.kubernetes.io/aws-load-balancer-ssl-ports : Used on the service to

specify a comma-separated list of ports that will use SSL/HTTPS listeners. Defaults to * (all)

The information for the annotations for AWS is taken from the comments on aws.go

https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/providers/aws/aws.go

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 1/12

Managing Resources

You’ve deployed your application and exposed it via a service. Now what? Kubernetes provides a

number of tools to help you manage your application deployment, including scaling and updating.

Among the features that we will discuss in more depth are con�guration �les and labels.

You can �nd all the �les for this example in our docs repo here.

Organizing resource con�gurations

Many applications require multiple resources to be created, such as a Deployment and a Service.

Management of multiple resources can be simpli�ed by grouping them together in the same �le

(separated by --- in YAML). For example:

nginx-app.yaml

Organizing resource con�gurations
Bulk operations in kubectl
Using labels effectively
Canary deployments
Updating labels
Updating annotations
Scaling your application
In-place updates of resources

kubectl apply
kubectl edit
kubectl patch

Disruptive updates
Updating your application without a service outage
What’s next?

http://localhost:4000/docs/concepts/configuration/overview/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
https://github.com/kubernetes/kubernetes.github.io/tree/master/docs/user-guide/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/user-guide/nginx-app.yaml

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 2/12

nginx-app.yaml

Multiple resources can be created the same way as a single resource:

The resources will be created in the order they appear in the �le. Therefore, it’s best to specify the

service �rst, since that will ensure the scheduler can spread the pods associated with the service as

they are created by the controller(s), such as Deployment.

kubectl create also accepts multiple -f arguments:

apiVersion: v1
kind: Service
metadata:
 name: my-nginx-svc
 labels:
 app: nginx
spec:
 type: LoadBalancer
 ports:
 - port: 80
 selector:
 app: nginx

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: my-nginx
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

$ kubectl create -f docs/user-guide/nginx-app.yaml
service "my-nginx-svc" created
deployment "my-nginx" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/user-guide/nginx-app.yaml

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 3/12

And a directory can be speci�ed rather than or in addition to individual �les:

kubectl will read any �les with su�xes .yaml , .yml , or .json .

It is a recommended practice to put resources related to the same microservice or application tier

into the same �le, and to group all of the �les associated with your application in the same directory.

If the tiers of your application bind to each other using DNS, then you can then simply deploy all of

the components of your stack en masse.

A URL can also be speci�ed as a con�guration source, which is handy for deploying directly from

con�guration �les checked into github:

Bulk operations in kubectl

Resource creation isn’t the only operation that kubectl can perform in bulk. It can also extract

resource names from con�guration �les in order to perform other operations, in particular to delete

the same resources you created:

In the case of just two resources, it’s also easy to specify both on the command line using the

resource/name syntax:

$ kubectl create -f docs/user-guide/nginx/nginx-svc.yaml -f docs/user-guide/nginx/

$ kubectl create -f docs/user-guide/nginx/

$ kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/master
deployment "nginx-deployment" created

$ kubectl delete -f docs/user-guide/nginx/
deployment "my-nginx" deleted
service "my-nginx-svc" deleted

$ kubectl delete deployments/my-nginx services/my-nginx-svc

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 4/12

For larger numbers of resources, you’ll �nd it easier to specify the selector (label query) speci�ed

using -l or --selector , to �lter resources by their labels:

Because kubectl outputs resource names in the same syntax it accepts, it’s easy to chain

operations using $() or xargs :

With the above commands, we �rst create resources under docs/user-guide/nginx/ and print the

resources created with -o name output format (print each resource as resource/name). Then we

grep only the “service”, and then print it with kubectl get .

If you happen to organize your resources across several subdirectories within a particular directory,

you can recursively perform the operations on the subdirectories also, by specifying --recursive

or -R alongside the --filename,-f �ag.

For instance, assume there is a directory project/k8s/development that holds all of the manifests

needed for the development environment, organized by resource type:

By default, performing a bulk operation on project/k8s/development will stop at the �rst level of

the directory, not processing any subdirectories. If we had tried to create the resources in this

directory using the following command, we would have encountered an error:

$ kubectl delete deployment,services -l app=nginx
deployment "my-nginx" deleted
service "my-nginx-svc" deleted

$ kubectl get $(kubectl create -f docs/user-guide/nginx/ -o name | grep service)
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-nginx-svc 10.0.0.208 <pending> 80/TCP 0s

project/k8s/development
├── configmap
│ └── my-configmap.yaml
├── deployment
│ └── my-deployment.yaml
└── pvc
 └── my-pvc.yaml

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 5/12

Instead, specify the --recursive or -R �ag with the --filename,-f �ag as such:

The --recursive �ag works with any operation that accepts the --filename,-f �ag such as:

kubectl {create,get,delete,describe,rollout} etc.

The --recursive �ag also works when multiple -f arguments are provided:

If you’re interested in learning more about kubectl , go ahead and read kubectl Overview.

Using labels effectively

The examples we’ve used so far apply at most a single label to any resource. There are many

scenarios where multiple labels should be used to distinguish sets from one another.

For instance, different applications would use different values for the app label, but a multi-tier

application, such as the guestbook example, would additionally need to distinguish each tier. The

frontend could carry the following labels:

$ kubectl create -f project/k8s/development
error: you must provide one or more resources by argument or filename (.json|.yaml

$ kubectl create -f project/k8s/development --recursive
configmap "my-config" created
deployment "my-deployment" created
persistentvolumeclaim "my-pvc" created

$ kubectl create -f project/k8s/namespaces -f project/k8s/development --recursive
namespace "development" created
namespace "staging" created
configmap "my-config" created
deployment "my-deployment" created
persistentvolumeclaim "my-pvc" created

 labels:
 app: guestbook
 tier: frontend

http://localhost:4000/docs/user-guide/kubectl-overview
https://github.com/kubernetes/examples/tree/master/guestbook/

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 6/12

while the Redis master and slave would have different tier labels, and perhaps even an additional

role label:

and

The labels allow us to slice and dice our resources along any dimension speci�ed by a label:

Canary deployments

Another scenario where multiple labels are needed is to distinguish deployments of different

releases or con�gurations of the same component. It is common practice to deploy a canary of a

 labels:
 app: guestbook
 tier: backend
 role: master

 labels:
 app: guestbook
 tier: backend
 role: slave

$ kubectl create -f examples/guestbook/all-in-one/guestbook-all-in-one.yaml
$ kubectl get pods -Lapp -Ltier -Lrole
NAME READY STATUS RESTARTS AGE APP
guestbook-fe-4nlpb 1/1 Running 0 1m guestbook
guestbook-fe-ght6d 1/1 Running 0 1m guestbook
guestbook-fe-jpy62 1/1 Running 0 1m guestbook
guestbook-redis-master-5pg3b 1/1 Running 0 1m guestbook
guestbook-redis-slave-2q2yf 1/1 Running 0 1m guestbook
guestbook-redis-slave-qgazl 1/1 Running 0 1m guestbook
my-nginx-divi2 1/1 Running 0 29m nginx
my-nginx-o0ef1 1/1 Running 0 29m nginx
$ kubectl get pods -lapp=guestbook,role=slave
NAME READY STATUS RESTARTS AGE
guestbook-redis-slave-2q2yf 1/1 Running 0 3m
guestbook-redis-slave-qgazl 1/1 Running 0 3m

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 7/12

new application release (speci�ed via image tag in the pod template) side by side with the previous

release so that the new release can receive live production tra�c before fully rolling it out.

For instance, you can use a track label to differentiate different releases.

The primary, stable release would have a track label with value as stable :

and then you can create a new release of the guestbook frontend that carries the track label with

different value (i.e. canary), so that two sets of pods would not overlap:

The frontend service would span both sets of replicas by selecting the common subset of their

labels (i.e. omitting the track label), so that the tra�c will be redirected to both applications:

You can tweak the number of replicas of the stable and canary releases to determine the ratio of

each release that will receive live production tra�c (in this case, 3:1). Once you’re con�dent, you can

update the stable track to the new application release and remove the canary one.

 name: frontend
 replicas: 3
 ...
 labels:
 app: guestbook
 tier: frontend
 track: stable
 ...
 image: gb-frontend:v3

 name: frontend-canary
 replicas: 1
 ...
 labels:
 app: guestbook
 tier: frontend
 track: canary
 ...
 image: gb-frontend:v4

 selector:
 app: guestbook
 tier: frontend

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 8/12

For a more concrete example, check the tutorial of deploying Ghost.

Updating labels

Sometimes existing pods and other resources need to be relabeled before creating new resources.

This can be done with kubectl label . For example, if you want to label all your nginx pods as

frontend tier, simply run:

This �rst �lters all pods with the label “app=nginx”, and then labels them with the “tier=fe”. To see the

pods you just labeled, run:

This outputs all “app=nginx” pods, with an additional label column of pods’ tier (speci�ed with -L or

--label-columns).

For more information, please see labels and kubectl label document.

Updating annotations

Sometimes you would want to attach annotations to resources. Annotations are arbitrary non-

identifying metadata for retrieval by API clients such as tools, libraries, etc. This can be done with

kubectl annotate . For example:

$ kubectl label pods -l app=nginx tier=fe
pod "my-nginx-2035384211-j5fhi" labeled
pod "my-nginx-2035384211-u2c7e" labeled
pod "my-nginx-2035384211-u3t6x" labeled

$ kubectl get pods -l app=nginx -L tier
NAME READY STATUS RESTARTS AGE TIER
my-nginx-2035384211-j5fhi 1/1 Running 0 23m fe
my-nginx-2035384211-u2c7e 1/1 Running 0 23m fe
my-nginx-2035384211-u3t6x 1/1 Running 0 23m fe

https://github.com/kelseyhightower/talks/tree/master/kubecon-eu-2016/demo#deploy-a-canary
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
http://localhost:4000/docs/user-guide/kubectl/v1.8/#label

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 9/12

For more information, please see annotations and kubectl annotate document.

Scaling your application

When load on your application grows or shrinks, it’s easy to scale with kubectl . For instance, to

decrease the number of nginx replicas from 3 to 1, do:

Now you only have one pod managed by the deployment.

To have the system automatically choose the number of nginx replicas as needed, ranging from 1 to

3, do:

Now your nginx replicas will be scaled up and down as needed, automatically.

For more information, please see kubectl scale, kubectl autoscale and horizontal pod autoscaler

document.

$ kubectl annotate pods my-nginx-v4-9gw19 description='my frontend running nginx'
$ kubectl get pods my-nginx-v4-9gw19 -o yaml
apiversion: v1
kind: pod
metadata:
 annotations:
 description: my frontend running nginx
...

$ kubectl scale deployment/my-nginx --replicas=1
deployment "my-nginx" scaled

$ kubectl get pods -l app=nginx
NAME READY STATUS RESTARTS AGE
my-nginx-2035384211-j5fhi 1/1 Running 0 30m

$ kubectl autoscale deployment/my-nginx --min=1 --max=3
deployment "my-nginx" autoscaled

http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/
http://localhost:4000/docs/user-guide/kubectl/v1.8/#annotate
http://localhost:4000/docs/user-guide/kubectl/v1.8/#scale
http://localhost:4000/docs/user-guide/kubectl/v1.6/#autoscale
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 10/12

In-place updates of resources

Sometimes it’s necessary to make narrow, non-disruptive updates to resources you’ve created.

kubectl apply

It is suggested to maintain a set of con�guration �les in source control (see con�guration as code),

so that they can be maintained and versioned along with the code for the resources they con�gure.

Then, you can use kubectl apply to push your con�guration changes to the cluster.

This command will compare the version of the con�guration that you’re pushing with the previous

version and apply the changes you’ve made, without overwriting any automated changes to

properties you haven’t speci�ed.

Note that kubectl apply attaches an annotation to the resource in order to determine the changes

to the con�guration since the previous invocation. When it’s invoked, kubectl apply does a three-

way diff between the previous con�guration, the provided input and the current con�guration of the

resource, in order to determine how to modify the resource.

Currently, resources are created without this annotation, so the �rst invocation of kubectl apply

will fall back to a two-way diff between the provided input and the current con�guration of the

resource. During this �rst invocation, it cannot detect the deletion of properties set when the

resource was created. For this reason, it will not remove them.

All subsequent calls to kubectl apply , and other commands that modify the con�guration, such

as kubectl replace and kubectl edit , will update the annotation, allowing subsequent calls to

kubectl apply to detect and perform deletions using a three-way diff.

Note: To use apply, always create resource initially with either kubectl apply or

kubectl create --save-config .

kubectl edit

$ kubectl apply -f docs/user-guide/nginx/nginx-deployment.yaml
deployment "my-nginx" configured

http://martinfowler.com/bliki/InfrastructureAsCode.html
http://localhost:4000/docs/user-guide/kubectl/v1.8/#apply

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 11/12

Alternatively, you may also update resources with kubectl edit :

This is equivalent to �rst get the resource, edit it in text editor, and then apply the resource with

the updated version:

This allows you to do more signi�cant changes more easily. Note that you can specify the editor with

your EDITOR or KUBE_EDITOR environment variables.

For more information, please see kubectl edit document.

kubectl patch

You can use kubectl patch to update API objects in place. This command supports JSON patch,

JSON merge patch, and strategic merge patch. See Update API Objects in Place Using kubectl patch

and kubectl patch.

Disruptive updates

In some cases, you may need to update resource �elds that cannot be updated once initialized, or

you may just want to make a recursive change immediately, such as to �x broken pods created by a

Deployment. To change such �elds, use replace --force , which deletes and re-creates the

resource. In this case, you can simply modify your original con�guration �le:

$ kubectl edit deployment/my-nginx

$ kubectl get deployment my-nginx -o yaml > /tmp/nginx.yaml
$ vi /tmp/nginx.yaml
do some edit, and then save the file
$ kubectl apply -f /tmp/nginx.yaml
deployment "my-nginx" configured
$ rm /tmp/nginx.yaml

$ kubectl replace -f docs/user-guide/nginx/nginx-deployment.yaml --force
deployment "my-nginx" deleted
deployment "my-nginx" replaced

http://localhost:4000/docs/user-guide/kubectl/v1.8/#edit
http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/
http://localhost:4000/docs/user-guide/kubectl/v1.8/#patch

10/23/2017 Managing Resources - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/ 12/12

Updating your application without a service outage

At some point, you’ll eventually need to update your deployed application, typically by specifying a

new image or image tag, as in the canary deployment scenario above. kubectl supports several

update operations, each of which is applicable to different scenarios.

We’ll guide you through how to create and update applications with Deployments. If your deployed

application is managed by Replication Controllers, you should read how to use

kubectl rolling-update instead.

Let’s say you were running version 1.7.9 of nginx:

To update to version 1.9.1, simply change .spec.template.spec.containers[0].image from

nginx:1.7.9 to nginx:1.9.1 , with the kubectl commands we learned above.

That’s it! The Deployment will declaratively update the deployed nginx application progressively

behind the scene. It ensures that only a certain number of old replicas may be down while they are

being updated, and only a certain number of new replicas may be created above the desired number

of pods. To learn more details about it, visit Deployment page.

What’s next?

Learn about how to use kubectl for application introspection and debugging.

Con�guration Best Practices and Tips

$ kubectl run my-nginx --image=nginx:1.7.9 --replicas=3
deployment "my-nginx" created

$ kubectl edit deployment/my-nginx

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/
http://localhost:4000/docs/concepts/configuration/overview/

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 1/7

Cluster Networking

Kubernetes approaches networking somewhat differently than Docker does by default. There are 4

distinct networking problems to solve:

1. Highly-coupled container-to-container communications: this is solved by pods and localhost

communications.

2. Pod-to-Pod communications: this is the primary focus of this document.

3. Pod-to-Service communications: this is covered by services.

4. External-to-Service communications: this is covered by services.

Summary

Summary
Docker model
Kubernetes model
How to achieve this

Cilium
Contiv
Contrail
Flannel
Google Compute Engine (GCE)
Kube-router
L2 networks and linux bridging
Nuage Networks VCS (Virtualized Cloud Services)
OpenVSwitch
OVN (Open Virtual Networking)
Project Calico
Romana
Weave Net from Weaveworks
CNI-Genie from Huawei

Other reading

http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 2/7

Kubernetes assumes that pods can communicate with other pods, regardless of which host they

land on. We give every pod its own IP address so you do not need to explicitly create links between

pods and you almost never need to deal with mapping container ports to host ports. This creates a

clean, backwards-compatible model where pods can be treated much like VMs or physical hosts

from the perspectives of port allocation, naming, service discovery, load balancing, application

con�guration, and migration.

To achieve this we must impose some requirements on how you set up your cluster networking.

Docker model

Before discussing the Kubernetes approach to networking, it is worthwhile to review the “normal”

way that networking works with Docker. By default, Docker uses host-private networking. It creates a

virtual bridge, called docker0 by default, and allocates a subnet from one of the private address

blocks de�ned in RFC1918 for that bridge. For each container that Docker creates, it allocates a

virtual Ethernet device (called veth) which is attached to the bridge. The veth is mapped to appear

as eth0 in the container, using Linux namespaces. The in-container eth0 interface is given an IP

address from the bridge’s address range.

The result is that Docker containers can talk to other containers only if they are on the same machine

(and thus the same virtual bridge). Containers on different machines can not reach each other - in

fact they may end up with the exact same network ranges and IP addresses.

In order for Docker containers to communicate across nodes, they must be allocated ports on the

machine’s own IP address, which are then forwarded or proxied to the containers. This obviously

means that containers must either coordinate which ports they use very carefully or else be

allocated ports dynamically.

Kubernetes model

Coordinating ports across multiple developers is very di�cult to do at scale and exposes users to

cluster-level issues outside of their control. Dynamic port allocation brings a lot of complications to

the system - every application has to take ports as �ags, the API servers have to know how to insert

dynamic port numbers into con�guration blocks, services have to know how to �nd each other, etc.

Rather than deal with this, Kubernetes takes a different approach.

https://tools.ietf.org/html/rfc1918

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 3/7

Kubernetes imposes the following fundamental requirements on any networking implementation

(barring any intentional network segmentation policies):

all containers can communicate with all other containers without NAT

all nodes can communicate with all containers (and vice-versa) without NAT

the IP that a container sees itself as is the same IP that others see it as

What this means in practice is that you can not just take two computers running Docker and expect

Kubernetes to work. You must ensure that the fundamental requirements are met.

This model is not only less complex overall, but it is principally compatible with the desire for

Kubernetes to enable low-friction porting of apps from VMs to containers. If your job previously ran

in a VM, your VM had an IP and could talk to other VMs in your project. This is the same basic model.

Until now this document has talked about containers. In reality, Kubernetes applies IP addresses at

the Pod scope - containers within a Pod share their network namespaces - including their IP

address. This means that containers within a Pod can all reach each other’s ports on localhost .

This does imply that containers within a Pod must coordinate port usage, but this is no different

than processes in a VM. We call this the “IP-per-pod” model. This is implemented in Docker as a “pod

container” which holds the network namespace open while “app containers” (the things the user

speci�ed) join that namespace with Docker’s --net=container:<id> function.

As with Docker, it is possible to request host ports, but this is reduced to a very niche operation. In

this case a port will be allocated on the host Node and tra�c will be forwarded to the Pod . The Pod

itself is blind to the existence or non-existence of host ports.

How to achieve this

There are a number of ways that this network model can be implemented. This document is not an

exhaustive study of the various methods, but hopefully serves as an introduction to various

technologies and serves as a jumping-off point.

The following networking options are sorted alphabetically - the order does not imply any preferential

status.

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 4/7

Cilium

Cilium is open source software for providing and transparently securing network connectivity

between application containers. Cilium is L7/HTTP aware and can enforce network policies on L3-L7

using an identity based security model that is decoupled from network addressing.

Contiv

Contiv provides con�gurable networking (native l3 using BGP, overlay using vxlan, classic l2, or Cisco-

SDN/ACI) for various use cases. Contiv is all open sourced.

Contrail

Contrail, based on OpenContrail, is a truly open, multi-cloud network virtualization and policy

management platform. Contrail / OpenContrail is integrated with various orchestration systems such

as Kubernetes, OpenShift, OpenStack and Mesos, and provides different isolation modes for virtual

machines, containers/pods and bare metal workloads.

Flannel

Flannel is a very simple overlay network that satis�es the Kubernetes requirements. Many people

have reported success with Flannel and Kubernetes.

Google Compute Engine (GCE)

For the Google Compute Engine cluster con�guration scripts, we use advanced routing to assign

each VM a subnet (default is /24 - 254 IPs). Any tra�c bound for that subnet will be routed directly

to the VM by the GCE network fabric. This is in addition to the “main” IP address assigned to the VM,

which is NAT’ed for outbound internet access. A linux bridge (called cbr0) is con�gured to exist on

that subnet, and is passed to docker’s --bridge �ag.

We start Docker with:

DOCKER_OPTS="--bridge=cbr0 --iptables=false --ip-masq=false"

https://github.com/cilium/cilium
https://github.com/contiv/netplugin
http://contiv.io/
http://www.juniper.net/us/en/products-services/sdn/contrail/contrail-networking/
http://www.opencontrail.org/
https://github.com/coreos/flannel#flannel
https://cloud.google.com/compute/docs/networking#routing

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 5/7

This bridge is created by Kubelet (controlled by the --network-plugin=kubenet �ag) according to

the Node ’s spec.podCIDR .

Docker will now allocate IPs from the cbr-cidr block. Containers can reach each other and Nodes

over the cbr0 bridge. Those IPs are all routable within the GCE project network.

GCE itself does not know anything about these IPs, though, so it will not NAT them for outbound

internet tra�c. To achieve that we use an iptables rule to masquerade (aka SNAT - to make it seem

as if packets came from the Node itself) tra�c that is bound for IPs outside the GCE project network

(10.0.0.0/8).

Lastly we enable IP forwarding in the kernel (so the kernel will process packets for bridged

containers):

The result of all this is that all Pods can reach each other and can egress tra�c to the internet.

Kube-router

Kube-router is a purpose-built networking solution for Kubernetes that aims to provide high

performance and operational simplicity. Kube-router provides a Linux LVS/IPVS-based service proxy,

a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-

based network policy enforcer.

L2 networks and linux bridging

If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you should

be able to do something similar to the above GCE setup. Note that these instructions have only been

tried very casually - it seems to work, but has not been thoroughly tested. If you use this technique

and perfect the process, please let us know.

Follow the “With Linux Bridge devices” section of this very nice tutorial from Lars Kellogg-Stedman.

iptables -t nat -A POSTROUTING ! -d 10.0.0.0/8 -o eth0 -j MASQUERADE

sysctl net.ipv4.ip_forward=1

https://github.com/cloudnativelabs/kube-router
http://www.linuxvirtualserver.org/software/ipvs.html
http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 6/7

Nuage Networks VCS (Virtualized Cloud Services)

Nuage provides a highly scalable policy-based Software-De�ned Networking (SDN) platform. Nuage

uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built

on open standards.

The Nuage platform uses overlays to provide seamless policy-based networking between

Kubernetes Pods and non-Kubernetes environments (VMs and bare metal servers). Nuage’s policy

abstraction model is designed with applications in mind and makes it easy to declare �ne-grained

policies for applications.The platform’s real-time analytics engine enables visibility and security

monitoring for Kubernetes applications.

OpenVSwitch

OpenVSwitch is a somewhat more mature but also complicated way to build an overlay network.

This is endorsed by several of the “Big Shops” for networking.

OVN (Open Virtual Networking)

OVN is an opensource network virtualization solution developed by the Open vSwitch community. It

lets one create logical switches, logical routers, stateful ACLs, load-balancers etc to build different

virtual networking topologies. The project has a speci�c Kubernetes plugin and documentation at

ovn-kubernetes.

Project Calico

Project Calico is an open source container networking provider and network policy engine.

Calico provides a highly scalable networking and network policy solution for connecting Kubernetes

pods based on the same IP networking principles as the internet. Calico can be deployed without

encapsulation or overlays to provide high-performance, high-scale data center networking. Calico

also provides �ne-grained, intent based network security policy for Kubernetes pods via its

distributed �rewall.

Calico can also be run in policy enforcement mode in conjunction with other networking solutions

such as Flannel, aka canal, or native GCE networking.

Romana

http://www.nuagenetworks.net/
http://localhost:4000/docs/admin/ovs-networking
https://github.com/openvswitch/ovn-kubernetes
http://docs.projectcalico.org/
https://github.com/tigera/canal

10/23/2017 Cluster Networking - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/networking/ 7/7

Romana is an open source network and security automation solution that lets you deploy

Kubernetes without an overlay network. Romana supports Kubernetes Network Policy to provide

isolation across network namespaces.

Weave Net from Weaveworks

Weave Net is a resilient and simple to use network for Kubernetes and its hosted applications.

Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any con�guration

or extra code to run, and in both cases, the network provides one IP address per pod - as is standard

for Kubernetes.

CNI-Genie from Huawei

CNI-Genie is a CNI plugin that enables Kubernetes to simultanously have access to different

implementations of the Kubernetes network model in runtime. This includes any implementation

that runs as a CNI plugin, such as Flannel, Calico, Romana, Weave-net.

CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI plugin.

Other reading

The early design of the networking model and its rationale, and some future plans are described in

more detail in the networking design document.

http://romana.io/
http://localhost:4000/docs/concepts/services-networking/network-policies/
https://www.weave.works/products/weave-net/
https://www.weave.works/docs/net/latest/cni-plugin/
https://github.com/Huawei-PaaS/CNI-Genie
https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-cni-plugins/README.md#what-cni-genie-feature-1-multiple-cni-plugins-enables
https://git.k8s.io/kubernetes.github.io/docs/concepts/cluster-administration/networking.md#kubernetes-model
https://github.com/containernetworking/cni#3rd-party-plugins
https://github.com/coreos/flannel#flannel
http://docs.projectcalico.org/
http://romana.io/
https://www.weave.works/products/weave-net/
https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-ips/README.md#feature-2-extension-cni-genie-multiple-ip-addresses-per-pod
https://git.k8s.io/community/contributors/design-proposals/network/networking.md

10/23/2017 Network Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/network-plugins/ 1/4

Network Plugins

Disclaimer: Network plugins are in alpha. Its contents will change rapidly.

Network plugins in Kubernetes come in a few �avors:

CNI plugins: adhere to the appc/CNI speci�cation, designed for interoperability.

Kubenet plugin: implements basic cbr0 using the bridge and host-local CNI plugins

Installation

The kubelet has a single default network plugin, and a default network common to the entire cluster.

It probes for plugins when it starts up, remembers what it found, and executes the selected plugin at

appropriate times in the pod lifecycle (this is only true for docker, as rkt manages its own CNI

plugins). There are two Kubelet command line parameters to keep in mind when using plugins:

network-plugin-dir : Kubelet probes this directory for plugins on startup

network-plugin : The network plugin to use from network-plugin-dir . It must match the

name reported by a plugin probed from the plugin directory. For CNI plugins, this is simply “cni”.

Network Plugin Requirements

Besides providing the NetworkPlugin interface to con�gure and clean up pod networking, the

plugin may also need speci�c support for kube-proxy. The iptables proxy obviously depends on

Installation
Network Plugin Requirements

CNI
kubenet
Customizing the MTU (with kubenet)

Usage Summary

https://github.com/kubernetes/kubernetes/tree/v1.8.0/pkg/kubelet/network/plugins.go

10/23/2017 Network Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/network-plugins/ 2/4

iptables, and the plugin may need to ensure that container tra�c is made available to iptables. For

example, if the plugin connects containers to a Linux bridge, the plugin must set the

net/bridge/bridge-nf-call-iptables sysctl to 1 to ensure that the iptables proxy functions

correctly. If the plugin does not use a Linux bridge (but instead something like Open vSwitch or some

other mechanism) it should ensure container tra�c is appropriately routed for the proxy.

By default if no kubelet network plugin is speci�ed, the noop plugin is used, which sets

net/bridge/bridge-nf-call-iptables=1 to ensure simple con�gurations (like docker with a

bridge) work correctly with the iptables proxy.

CNI

The CNI plugin is selected by passing Kubelet the --network-plugin=cni command-line option.

Kubelet reads a �le from --cni-conf-dir (default /etc/cni/net.d) and uses the CNI

con�guration from that �le to set up each pod’s network. The CNI con�guration �le must match the

CNI speci�cation, and any required CNI plugins referenced by the con�guration must be present in

--cni-bin-dir (default /opt/cni/bin).

If there are multiple CNI con�guration �les in the directory, the �rst one in lexicographic order of �le

name is used.

In addition to the CNI plugin speci�ed by the con�guration �le, Kubernetes requires the standard CNI

lo plugin, at minimum version 0.2.0

Limitation: Due to #31307, HostPort won’t work with CNI networking plugin at the moment. That

means all hostPort attribute in pod would be simply ignored.

kubenet

Kubenet is a very basic, simple network plugin, on Linux only. It does not, of itself, implement more

advanced features like cross-node networking or network policy. It is typically used together with a

cloud provider that sets up routing rules for communication between nodes, or in single-node

environments.

Kubenet creates a Linux bridge named cbr0 and creates a veth pair for each pod with the host end

of each pair connected to cbr0 . The pod end of the pair is assigned an IP address allocated from a

https://github.com/containernetworking/cni/blob/master/SPEC.md#network-configuration
https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback/loopback.go
https://github.com/kubernetes/kubernetes/issues/31307

10/23/2017 Network Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/network-plugins/ 3/4

range assigned to the node either through con�guration or by the controller-manager. cbr0 is

assigned an MTU matching the smallest MTU of an enabled normal interface on the host.

The plugin requires a few things:

The standard CNI bridge , lo and host-local plugins are required, at minimum version

0.2.0. Kubenet will �rst search for them in /opt/cni/bin . Specify network-plugin-dir to

supply additional search path. The �rst found match will take effect.

Kubelet must be run with the --network-plugin=kubenet argument to enable the plugin

Kubelet should also be run with the --non-masquerade-cidr=<clusterCidr> argument to

ensure tra�c to IPs outside this range will use IP masquerade.

The node must be assigned an IP subnet through either the --pod-cidr kubelet command-line

option or the --allocate-node-cidrs=true --cluster-cidr=<cidr> controller-manager

command-line options.

Customizing the MTU (with kubenet)

The MTU should always be con�gured correctly to get the best networking performance. Network

plugins will usually try to infer a sensible MTU, but sometimes the logic will not result in an optimal

MTU. For example, if the Docker bridge or another interface has a small MTU, kubenet will currently

select that MTU. Or if you are using IPSEC encapsulation, the MTU must be reduced, and this

calculation is out-of-scope for most network plugins.

Where needed, you can specify the MTU explicitly with the network-plugin-mtu kubelet option. For

example, on AWS the eth0 MTU is typically 9001, so you might specify

--network-plugin-mtu=9001 . If you’re using IPSEC you might reduce it to allow for encapsulation

overhead e.g. --network-plugin-mtu=8873 .

This option is provided to the network-plugin; currently only kubenet supports

network-plugin-mtu .

Usage Summary

10/23/2017 Network Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/network-plugins/ 4/4

--network-plugin=cni speci�es that we use the cni network plugin with actual CNI plugin

binaries located in --cni-bin-dir (default /opt/cni/bin) and CNI plugin con�guration

located in --cni-conf-dir (default /etc/cni/net.d).

--network-plugin=kubenet speci�es that we use the kubenet network plugin with CNI

bridge and host-local plugins placed in /opt/cni/bin or network-plugin-dir .

--network-plugin-mtu=9001 speci�es the MTU to use, currently only used by the kubenet

network plugin.

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 1/12

Logging Architecture

Application and systems logs can help you understand what is happening inside your cluster. The

logs are particularly useful for debugging problems and monitoring cluster activity. Most modern

applications have some kind of logging mechanism; as such, most container engines are likewise

designed to support some kind of logging. The easiest and most embraced logging method for

containerized applications is to write to the standard output and standard error streams.

However, the native functionality provided by a container engine or runtime is usually not enough for

a complete logging solution. For example, if a container crashes, a pod is evicted, or a node dies,

you’ll usually still want to access your application’s logs. As such, logs should have a separate

storage and lifecycle independent of nodes, pods, or containers. This concept is called cluster-level-

logging. Cluster-level logging requires a separate backend to store, analyze, and query logs.

Kubernetes provides no native storage solution for log data, but you can integrate many existing

logging solutions into your Kubernetes cluster.

Cluster-level logging architectures are described in assumption that a logging backend is present

inside or outside of your cluster. If you’re not interested in having cluster-level logging, you might still

�nd the description of how logs are stored and handled on the node to be useful.

Basic logging in Kubernetes

In this section, you can see an example of basic logging in Kubernetes that outputs data to the

standard output stream. This demonstration uses a pod speci�cation with a container that writes

Basic logging in Kubernetes
Logging at the node level

System component logs
Cluster-level logging architectures

Using a node logging agent
Using a sidecar container with the logging agent

Streaming sidecar container
Sidecar container with a logging agent

Exposing logs directly from the application

http://localhost:4000/docs/concepts/cluster-administration/counter-pod.yaml

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 2/12

some text to standard output once per second.

counter-pod.yaml

To run this pod, use the following command:

To fetch the logs, use the kubectl logs command, as follows:

You can use kubectl logs to retrieve logs from a previous instantiation of a container with

--previous �ag, in case the container has crashed. If your pod has multiple containers, you should

specify which container’s logs you want to access by appending a container name to the command.

See the kubectl logs documentation for more details.

Logging at the node level

apiVersion: v1
kind: Pod
metadata:
 name: counter
spec:
 containers:
 - name: count
 image: busybox
 args: [/bin/sh, -c,
 'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']

$ kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/counter-po
pod "counter" created

$ kubectl logs counter
0: Mon Jan 1 00:00:00 UTC 2001
1: Mon Jan 1 00:00:01 UTC 2001
2: Mon Jan 1 00:00:02 UTC 2001
...

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/counter-pod.yaml
http://localhost:4000/docs/user-guide/kubectl/v1.8/#logs

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 3/12

Everything a containerized application writes to stdout and stderr is handled and redirected

somewhere by a container engine. For example, the Docker container engine redirects those two

streams to a logging driver, which is con�gured in Kubernetes to write to a �le in json format.

Note: The Docker json logging driver treats each line as a separate message. When using the Docker

logging driver, there is no direct support for multi-line messages. You need to handle multi-line

messages at the logging agent level or higher.

By default, if a container restarts, the kubelet keeps one terminated container with its logs. If a pod is

evicted from the node, all corresponding containers are also evicted, along with their logs.

An important consideration in node-level logging is implementing log rotation, so that logs don’t

consume all available storage on the node. Kubernetes currently is not responsible for rotating logs,

but rather a deployment tool should set up a solution to address that. For example, in Kubernetes

clusters, deployed by the kube-up.sh script, there is a logrotate tool con�gured to run each hour.

You can also set up a container runtime to rotate application’s logs automatically, e.g. by using

Docker’s log-opt . In the kube-up.sh script, the latter approach is used for COS image on GCP, and

the former approach is used in any other environment. In both cases, by default rotation is

con�gured to take place when log �le exceeds 10MB.

As an example, you can �nd detailed information about how kube-up.sh sets up logging for COS

image on GCP in the corresponding script.

When you run kubectl logs as in the basic logging example, the kubelet on the node handles the

request and reads directly from the log �le, returning the contents in the response. Note: currently, if

some external system has performed the rotation, only the contents of the latest log �le will be

https://docs.docker.com/engine/admin/logging/overview
https://linux.die.net/man/8/logrotate
https://github.com/kubernetes/kubernetes/blob/master/cluster/gce/gci/configure-helper.sh
http://localhost:4000/docs/user-guide/kubectl/v1.8/#logs

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 4/12

available through kubectl logs . E.g. if there’s a 10MB �le, logrotate performs the rotation and

there are two �les, one 10MB in size and one empty, kubectl logs will return an empty response.

System component logs

There are two types of system components: those that run in a container and those that do not run

in a container. For example:

The Kubernetes scheduler and kube-proxy run in a container.

The kubelet and container runtime, for example Docker, do not run in containers.

On machines with systemd, the kubelet and container runtime write to journald. If systemd is not

present, they write to .log �les in the /var/log directory. System components inside containers

always write to the /var/log directory, bypassing the default logging mechanism. They use the

glog logging library. You can �nd the conventions for logging severity for those components in the

development docs on logging.

Similarly to the container logs, system component logs in the /var/log directory should be rotated.

In Kubernetes clusters brought up by the kube-up.sh script, those logs are con�gured to be rotated

by the logrotate tool daily or once the size exceeds 100MB.

Cluster-level logging architectures

While Kubernetes does not provide a native solution for cluster-level logging, there are several

common approaches you can consider. Here are some options:

Use a node-level logging agent that runs on every node.

Include a dedicated sidecar container for logging in an application pod.

Push logs directly to a backend from within an application.

Using a node logging agent

https://godoc.org/github.com/golang/glog
https://git.k8s.io/community/contributors/devel/logging.md

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 5/12

You can implement cluster-level logging by including a node-level logging agent on each node. The

logging agent is a dedicated tool that exposes logs or pushes logs to a backend. Commonly, the

logging agent is a container that has access to a directory with log �les from all of the application

containers on that node.

Because the logging agent must run on every node, it’s common to implement it as either a

DaemonSet replica, a manifest pod, or a dedicated native process on the node. However the latter

two approaches are deprecated and highly discouraged.

Using a node-level logging agent is the most common and encouraged approach for a Kubernetes

cluster, because it creates only one agent per node, and it doesn’t require any changes to the

applications running on the node. However, node-level logging only works for applications’ standard

output and standard error.

Kubernetes doesn’t specify a logging agent, but two optional logging agents are packaged with the

Kubernetes release: Stackdriver Logging for use with Google Cloud Platform, and Elasticsearch. You

can �nd more information and instructions in the dedicated documents. Both use �uentd with

custom con�guration as an agent on the node.

Using a sidecar container with the logging agent

You can use a sidecar container in one of the following ways:

The sidecar container streams application logs to its own stdout .

http://localhost:4000/docs/user-guide/logging/stackdriver
http://localhost:4000/docs/user-guide/logging/elasticsearch
http://www.fluentd.org/

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 6/12

The sidecar container runs a logging agent, which is con�gured to pick up logs from an

application container.

Streaming sidecar container

By having your sidecar containers stream to their own stdout and stderr streams, you can take

advantage of the kubelet and the logging agent that already run on each node. The sidecar

containers read logs from a �le, a socket, or the journald. Each individual sidecar container prints log

to its own stdout or stderr stream.

This approach allows you to separate several log streams from different parts of your application,

some of which can lack support for writing to stdout or stderr . The logic behind redirecting logs

is minimal, so it’s hardly a signi�cant overhead. Additionally, because stdout and stderr are

handled by the kubelet, you can use built-in tools like kubectl logs .

Consider the following example. A pod runs a single container, and the container writes to two

different log �les, using two different formats. Here’s a con�guration �le for the Pod:

two-files-counter-pod.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/cluster-administration/two-files-counter-pod.yaml

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 7/12

two-files-counter-pod.yaml

It would be a mess to have log entries of different formats in the same log stream, even if you

managed to redirect both components to the stdout stream of the container. Instead, you could

introduce two sidecar containers. Each sidecar container could tail a particular log �le from a shared

volume and then redirect the logs to its own stdout stream.

Here’s a con�guration �le for a pod that has two sidecar containers:

two-files-counter-pod-streaming-sidecar.yaml

apiVersion: v1
kind: Pod
metadata:
 name: counter
spec:
 containers:
 - name: count
 image: busybox
 args:
 - /bin/sh
 - -c
 - >
 i=0;
 while true;
 do
 echo "$i: $(date)" >> /var/log/1.log;
 echo "$(date) INFO $i" >> /var/log/2.log;
 i=$((i+1));
 sleep 1;
 done
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 volumes:
 - name: varlog
 emptyDir: {}

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/cluster-administration/two-files-counter-pod.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/cluster-administration/two-files-counter-pod-streaming-sidecar.yaml

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 8/12

two-files-counter-pod-streaming-sidecar.yaml

Now when you run this pod, you can access each log stream separately by running the following

commands:

apiVersion: v1
kind: Pod
metadata:
 name: counter
spec:
 containers:
 - name: count
 image: busybox
 args:
 - /bin/sh
 - -c
 - >
 i=0;
 while true;
 do
 echo "$i: $(date)" >> /var/log/1.log;
 echo "$(date) INFO $i" >> /var/log/2.log;
 i=$((i+1));
 sleep 1;
 done
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: count-log-1
 image: busybox
 args: [/bin/sh, -c, 'tail -n+1 -f /var/log/1.log']
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: count-log-2
 image: busybox
 args: [/bin/sh, -c, 'tail -n+1 -f /var/log/2.log']
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 volumes:
 - name: varlog
 emptyDir: {}

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/cluster-administration/two-files-counter-pod-streaming-sidecar.yaml

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 9/12

The node-level agent installed in your cluster picks up those log streams automatically without any

further con�guration. If you like, you can con�gure the agent to parse log lines depending on the

source container.

Note, that despite low CPU and memory usage (order of couple of millicores for cpu and order of

several megabytes for memory), writing logs to a �le and then streaming them to stdout can

double disk usage. If you have an application that writes to a single �le, it’s generally better to set

/dev/stdout as destination rather than implementing the streaming sidecar container approach.

Sidecar containers can also be used to rotate log �les that cannot be rotated by the application itself.

An example of this approach is a small container running logrotate periodically. However, it’s

recommended to use stdout and stderr directly and leave rotation and retention policies to the

kubelet.

Sidecar container with a logging agent

$ kubectl logs counter count-log-1
0: Mon Jan 1 00:00:00 UTC 2001
1: Mon Jan 1 00:00:01 UTC 2001
2: Mon Jan 1 00:00:02 UTC 2001
...

$ kubectl logs counter count-log-2
Mon Jan 1 00:00:00 UTC 2001 INFO 0
Mon Jan 1 00:00:01 UTC 2001 INFO 1
Mon Jan 1 00:00:02 UTC 2001 INFO 2
...

https://github.com/samsung-cnct/logrotate

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 10/12

If the node-level logging agent is not �exible enough for your situation, you can create a sidecar

container with a separate logging agent that you have con�gured speci�cally to run with your

application.

Note: Using a logging agent in a sidecar container can lead to signi�cant resource consumption.

Moreover, you won’t be able to access those logs using kubectl logs command, because they are

not controlled by the kubelet.

As an example, you could use Stackdriver, which uses �uentd as a logging agent. Here are two

con�guration �les that you can use to implement this approach. The �rst �le contains a Con�gMap

to con�gure �uentd.

fluentd-sidecar-config.yaml

Note: The con�guration of �uentd is beyond the scope of this article. For information about

con�guring �uentd, see the o�cial �uentd documentation.

apiVersion: v1
data:
 fluentd.conf: |
 <source>
 type tail
 format none
 path /var/log/1.log
 pos_file /var/log/1.log.pos
 tag count.format1
 </source>

 <source>
 type tail
 format none
 path /var/log/2.log
 pos_file /var/log/2.log.pos
 tag count.format2
 </source>

 <match **>
 type google_cloud
 </match>
kind: ConfigMap
metadata:
 name: fluentd-config

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/cluster-administration/fluentd-sidecar-config.yaml
http://docs.fluentd.org/

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 11/12

The second �le describes a pod that has a sidecar container running �uentd. The pod mounts a

volume where �uentd can pick up its con�guration data.

two-files-counter-pod-agent-sidecar.yaml

After some time you can �nd log messages in the Stackdriver interface.

apiVersion: v1
kind: Pod
metadata:
 name: counter
spec:
 containers:
 - name: count
 image: busybox
 args:
 - /bin/sh
 - -c
 - >
 i=0;
 while true;
 do
 echo "$i: $(date)" >> /var/log/1.log;
 echo "$(date) INFO $i" >> /var/log/2.log;
 i=$((i+1));
 sleep 1;
 done
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: count-agent
 image: gcr.io/google_containers/fluentd-gcp:1.30
 env:
 - name: FLUENTD_ARGS
 value: -c /etc/fluentd-config/fluentd.conf
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: config-volume
 mountPath: /etc/fluentd-config
 volumes:
 - name: varlog
 emptyDir: {}
 - name: config-volume
 configMap:
 name: fluentd-config

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/cluster-administration/two-files-counter-pod-agent-sidecar.yaml

10/23/2017 Logging Architecture - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/logging/ 12/12

Remember, that this is just an example and you can actually replace �uentd with any logging agent,

reading from any source inside an application container.

Exposing logs directly from the application

You can implement cluster-level logging by exposing or pushing logs directly from every application;

however, the implementation for such a logging mechanism is outside the scope of Kubernetes.

10/23/2017 Configuring kubelet Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/kubelet-garbage-collection/ 1/3

Con�guring kubelet Garbage Collection

Garbage collection is a helpful function of kubelet that will clean up unused images and unused

containers. Kubelet will perform garbage collection for containers every minute and garbage

collection for images every �ve minutes.

External garbage collection tools are not recommended as these tools can potentially break the

behavior of kubelet by removing containers expected to exist.

Image Collection

Kubernetes manages lifecycle of all images through imageManager, with the cooperation of

cadvisor.

The policy for garbage collecting images takes two factors into consideration:

HighThresholdPercent and LowThresholdPercent . Disk usage above the high threshold will

trigger garbage collection. The garbage collection will delete least recently used images until the low

threshold has been met.

Container Collection

The policy for garbage collecting containers considers three user-de�ned variables. MinAge is the

minimum age at which a container can be garbage collected. MaxPerPodContainer is the

maximum number of dead containers every single pod (UID, container name) pair is allowed to have.

MaxContainers is the maximum number of total dead containers. These variables can be

individually disabled by setting MinAge to zero and setting MaxPerPodContainer and

MaxContainers respectively to less than zero.

Kubelet will act on containers that are unidenti�ed, deleted, or outside of the boundaries set by the

previously mentioned �ags. The oldest containers will generally be removed �rst.

Image Collection
Container Collection
User Con�guration
Deprecation

10/23/2017 Configuring kubelet Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/kubelet-garbage-collection/ 2/3

MaxPerPodContainer and MaxContainer may potentially con�ict with each other in situations

where retaining the maximum number of containers per pod (MaxPerPodContainer) would go

outside the allowable range of global dead containers (MaxContainers). MaxPerPodContainer

would be adjusted in this situation: A worst case scenario would be to downgrade

MaxPerPodContainer to 1 and evict the oldest containers. Additionally, containers owned by pods

that have been deleted are removed once they are older than MinAge .

Containers that are not managed by kubelet are not subject to container garbage collection.

User Con�guration

Users can adjust the following thresholds to tune image garbage collection with the following

kubelet �ags :

1. image-gc-high-threshold , the percent of disk usage which triggers image garbage collection.

Default is 90%.

2. image-gc-low-threshold , the percent of disk usage to which image garbage collection

attempts to free. Default is 80%.

We also allow users to customize garbage collection policy through the following kubelet �ags:

1. minimum-container-ttl-duration , minimum age for a �nished container before it is garbage

collected. Default is 0 minute, which means every �nished container will be garbage collected.

2. maximum-dead-containers-per-container , maximum number of old instances to be retained

per container. Default is 1.

3. maximum-dead-containers , maximum number of old instances of containers to retain globally.

Default is -1, which means there is no global limit.

Containers can potentially be garbage collected before their usefulness has expired. These

containers can contain logs and other data that can be useful for troubleshooting. A su�ciently large

value for maximum-dead-containers-per-container is highly recommended to allow at least 1

dead container to be retained per expected container. A larger value for maximum-dead-containers

is also recommended for a similar reason. See this issue for more details.

https://github.com/kubernetes/kubernetes/issues/13287

10/23/2017 Configuring kubelet Garbage Collection - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/kubelet-garbage-collection/ 3/3

Deprecation

Some kubelet Garbage Collection features in this doc will be replaced by kubelet eviction in the

future.

Including:

Existing Flag New Flag Rationale

--image-gc-high-
threshold

--eviction-hard or

--eviction-soft
existing eviction signals can trigger image
garbage collection

--image-gc-low-threshold --eviction-minimum-
reclaim

eviction reclaims achieve the same
behavior

--maximum-dead-
containers

 deprecated once old logs are stored
outside of container’s context

--maximum-dead-
containers-per-container

 deprecated once old logs are stored
outside of container’s context

--minimum-container-ttl-
duration

 deprecated once old logs are stored
outside of container’s context

--low-diskspace-
threshold-mb

--eviction-hard or

eviction-soft
eviction generalizes disk thresholds to
other resources

--outofdisk-transition-
frequency

--eviction-pressure-
transition-period

eviction generalizes disk pressure
transition to other resources

See Con�guring Out Of Resource Handling for more details.

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/

10/23/2017 Federation - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/federation/ 1/6

Federation

This page explains why and how to manage multiple Kubernetes clusters using federation.

Why federation

Federation makes it easy to manage multiple clusters. It does so by providing 2 major building

blocks:

Sync resources across clusters: Federation provides the ability to keep resources in multiple

clusters in sync. For example, you can ensure that the same deployment exists in multiple

clusters.

Cross cluster discovery: Federation provides the ability to auto-con�gure DNS servers and load

balancers with backends from all clusters. For example, you can ensure that a global VIP or DNS

record can be used to access backends from multiple clusters.

Some other use cases that federation enables are:

High Availability: By spreading load across clusters and auto con�guring DNS servers and load

balancers, federation minimises the impact of cluster failure.

Avoiding provider lock-in: By making it easier to migrate applications across clusters, federation

prevents cluster provider lock-in.

Why federation
Caveats
Hybrid cloud capabilities

Setting up federation
API resources
Cascading deletion
Scope of a single cluster
Selecting the right number of clusters
What’s next

10/23/2017 Federation - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/federation/ 2/6

Federation is not helpful unless you have multiple clusters. Some of the reasons why you might want

multiple clusters are:

Low latency: Having clusters in multiple regions minimises latency by serving users from the

cluster that is closest to them.

Fault isolation: It might be better to have multiple small clusters rather than a single large cluster

for fault isolation (for example: multiple clusters in different availability zones of a cloud

provider). See Multi cluster guide for details.

Scalability: There are scalability limits to a single kubernetes cluster (this should not be the case

for most users. For more details: Kubernetes Scaling and Performance Goals).

Hybrid cloud: You can have multiple clusters on different cloud providers or on-premises data

centers.

Caveats

While there are a lot of attractive use cases for federation, there are also some caveats:

Increased network bandwidth and cost: The federation control plane watches all clusters to

ensure that the current state is as expected. This can lead to signi�cant network cost if the

clusters are running in different regions on a cloud provider or on different cloud providers.

Reduced cross cluster isolation: A bug in the federation control plane can impact all clusters.

This is mitigated by keeping the logic in federation control plane to a minimum. It mostly

delegates to the control plane in kubernetes clusters whenever it can. The design and

implementation also errs on the side of safety and avoiding multi-cluster outage.

Maturity: The federation project is relatively new and is not very mature. Not all resources are

available and many are still alpha. Issue 38893 enumerates known issues with the system that

the team is busy solving.

Hybrid cloud capabilities

Federations of Kubernetes Clusters can include clusters running in different cloud providers (e.g.

Google Cloud, AWS), and on-premises (e.g. on OpenStack). Simply create all of the clusters that you

require, in the appropriate cloud providers and/or locations, and register each cluster’s API endpoint

and credentials with your Federation API Server (See the federation admin guide for details).

http://localhost:4000/docs/admin/multi-cluster
https://git.k8s.io/community/sig-scalability/goals.md
https://github.com/kubernetes/kubernetes/issues/38893
http://localhost:4000/docs/admin/federation/

10/23/2017 Federation - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/federation/ 3/6

Thereafter, your API resources can span different clusters and cloud providers.

Setting up federation

To be able to federate multiple clusters, you �rst need to set up a federation control plane. Follow the

setup guide to set up the federation control plane.

API resources

Once you have the control plane set up, you can start creating federation API resources. The

following guides explain some of the resources in detail:

Cluster

Con�gMap

DaemonSets

Deployment

Events

Hpa

Ingress

Jobs

Namespaces

ReplicaSets

Secrets

Services

API reference docs lists all the resources supported by federation apiserver.

Cascading deletion

http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
http://localhost:4000/docs/tasks/administer-federation/cluster/
http://localhost:4000/docs/tasks/administer-federation/configmap/
http://localhost:4000/docs/tasks/administer-federation/daemonset/
http://localhost:4000/docs/tasks/administer-federation/deployment/
http://localhost:4000/docs/tasks/administer-federation/events/
http://localhost:4000/docs/tasks/administer-federation/hpa/
http://localhost:4000/docs/tasks/administer-federation/ingress/
http://localhost:4000/docs/tasks/administer-federation/job/
http://localhost:4000/docs/tasks/administer-federation/namespaces/
http://localhost:4000/docs/tasks/administer-federation/replicaset/
http://localhost:4000/docs/tasks/administer-federation/secret/
http://localhost:4000/docs/concepts/cluster-administration/federation-service-discovery/
http://localhost:4000/docs/reference/federation/

10/23/2017 Federation - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/federation/ 4/6

Kubernetes version 1.6 includes support for cascading deletion of federated resources. With

cascading deletion, when you delete a resource from the federation control plane, you also delete the

corresponding resources in all underlying clusters.

Cascading deletion is not enabled by default when using the REST API. To enable it, set the option

DeleteOptions.orphanDependents=false when you delete a resource from the federation control

plane using the REST API. Using kubectl delete enables cascading deletion by default. You can

disable it by running kubectl delete --cascade=false

Note: Kubernetes version 1.5 included cascading deletion support for a subset of federation

resources.

Scope of a single cluster

On IaaS providers such as Google Compute Engine or Amazon Web Services, a VM exists in a zone

or availability zone. We suggest that all the VMs in a Kubernetes cluster should be in the same

availability zone, because:

compared to having a single global Kubernetes cluster, there are fewer single-points of failure.

compared to a cluster that spans availability zones, it is easier to reason about the availability

properties of a single-zone cluster.

when the Kubernetes developers are designing the system (e.g. making assumptions about

latency, bandwidth, or correlated failures) they are assuming all the machines are in a single data

center, or otherwise closely connected.

It is okay to have multiple clusters per availability zone, though on balance we think fewer is better.

Reasons to prefer fewer clusters are:

improved bin packing of Pods in some cases with more nodes in one cluster (less resource

fragmentation).

reduced operational overhead (though the advantage is diminished as ops tooling and

processes mature).

reduced costs for per-cluster �xed resource costs, e.g. apiserver VMs (but small as a percentage

of overall cluster cost for medium to large clusters).

https://cloud.google.com/compute/docs/zones
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

10/23/2017 Federation - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/federation/ 5/6

Reasons to have multiple clusters include:

strict security policies requiring isolation of one class of work from another (but, see Partitioning

Clusters below).

test clusters to canary new Kubernetes releases or other cluster software.

Selecting the right number of clusters

The selection of the number of Kubernetes clusters may be a relatively static choice, only revisited

occasionally. By contrast, the number of nodes in a cluster and the number of pods in a service may

change frequently according to load and growth.

To pick the number of clusters, �rst, decide which regions you need to be in to have adequate latency

to all your end users, for services that will run on Kubernetes (if you use a Content Distribution

Network, the latency requirements for the CDN-hosted content need not be considered). Legal issues

might in�uence this as well. For example, a company with a global customer base might decide to

have clusters in US, EU, AP, and SA regions. Call the number of regions to be in R .

Second, decide how many clusters should be able to be unavailable at the same time, while still

being available. Call the number that can be unavailable U . If you are not sure, then 1 is a �ne choice.

If it is allowable for load-balancing to direct tra�c to any region in the event of a cluster failure, then

you need at least the larger of R or U + 1 clusters. If it is not (e.g. you want to ensure low latency

for all users in the event of a cluster failure), then you need to have R * (U + 1) clusters (U + 1 in

each of R regions). In any case, try to put each cluster in a different zone.

Finally, if any of your clusters would need more than the maximum recommended number of nodes

for a Kubernetes cluster, then you may need even more clusters. Kubernetes v1.3 supports clusters

up to 1000 nodes in size.

What’s next

Learn more about the Federation proposal.

See this setup guide for cluster federation.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/federation/federation.md
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/

10/23/2017 Federation - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/federation/ 6/6

See this Kubecon2016 talk on federation

https://www.youtube.com/watch?v=pq9lbkmxpS8

10/23/2017 Using Sysctls in a Kubernetes Cluster - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/sysctl-cluster/ 1/4

Using Sysctls in a Kubernetes Cluster

This document describes how sysctls are used within a Kubernetes cluster.

What is a Sysctl?

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime.

Parameters are available via the /proc/sys/ virtual process �le system. The parameters cover

various subsystems such as:

kernel (common pre�x: kernel.)

networking (common pre�x: net.)

virtual memory (common pre�x: vm.)

MDADM (common pre�x: dev.)

More subsystems are described in Kernel docs.

To get a list of all parameters, you can run

Namespaced vs. Node-Level Sysctls

What is a Sysctl?
Namespaced vs. Node-Level Sysctls
Safe vs. Unsafe Sysctls
Enabling Unsafe Sysctls
Setting Sysctls for a Pod

$ sudo sysctl -a

https://www.kernel.org/doc/Documentation/sysctl/README

10/23/2017 Using Sysctls in a Kubernetes Cluster - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/sysctl-cluster/ 2/4

A number of sysctls are namespaced in today’s Linux kernels. This means that they can be set

independently for each pod on a node. Being namespaced is a requirement for sysctls to be

accessible in a pod context within Kubernetes.

The following sysctls are known to be namespaced:

kernel.shm* ,

kernel.msg* ,

kernel.sem ,

fs.mqueue.* ,

net.* .

Sysctls which are not namespaced are called node-level and must be set manually by the cluster

admin, either by means of the underlying Linux distribution of the nodes (e.g. via

/etc/sysctls.conf) or using a DaemonSet with privileged containers.

Note: it is good practice to consider nodes with special sysctl settings as tainted within a cluster, and

only schedule pods onto them which need those sysctl settings. It is suggested to use the

Kubernetes taints and toleration feature to implement this.

Safe vs. Unsafe Sysctls

Sysctls are grouped into safe and unsafe sysctls. In addition to proper namespacing a safe sysctl

must be properly isolated between pods on the same node. This means that setting a safe sysctl for

one pod

must not have any in�uence on any other pod on the node

must not allow to harm the node’s health

must not allow to gain CPU or memory resources outside of the resource limits of a pod.

By far, most of the namespaced sysctls are not necessarily considered safe.

For Kubernetes 1.4, the following sysctls are supported in the safe set:

http://localhost:4000/docs/user-guide/kubectl/v1.8/#taint

10/23/2017 Using Sysctls in a Kubernetes Cluster - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/sysctl-cluster/ 3/4

kernel.shm_rmid_forced ,

net.ipv4.ip_local_port_range ,

net.ipv4.tcp_syncookies .

This list will be extended in future Kubernetes versions when the kubelet supports better isolation

mechanisms.

All safe sysctls are enabled by default.

All unsafe sysctls are disabled by default and must be allowed manually by the cluster admin on a

per-node basis. Pods with disabled unsafe sysctls will be scheduled, but will fail to launch.

Warning: Due to their nature of being unsafe, the use of unsafe sysctls is at-your-own-risk and can

lead to severe problems like wrong behavior of containers, resource shortage or complete breakage

of a node.

Enabling Unsafe Sysctls

With the warning above in mind, the cluster admin can allow certain unsafe sysctls for very special

situations like e.g. high-performance or real-time application tuning. Unsafe sysctls are enabled on a

node-by-node basis with a �ag of the kubelet, e.g.:

Only namespaced sysctls can be enabled this way.

Setting Sysctls for a Pod

The sysctl feature is an alpha API in Kubernetes 1.4. Therefore, sysctls are set using annotations on

pods. They apply to all containers in the same pod.

Here is an example, with different annotations for safe and unsafe sysctls:

$ kubelet --experimental-allowed-unsafe-sysctls 'kernel.msg*,net.ipv4.route.min_pm

10/23/2017 Using Sysctls in a Kubernetes Cluster - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/sysctl-cluster/ 4/4

Note: a pod with the unsafe sysctls speci�ed above will fail to launch on any node which has not

enabled those two unsafe sysctls explicitly. As with node-level sysctls it is recommended to use

taints and toleration feature or taints on nodes to schedule those pods onto the right nodes.

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
 annotations:
 security.alpha.kubernetes.io/sysctls: kernel.shm_rmid_forced=1
 security.alpha.kubernetes.io/unsafe-sysctls: net.ipv4.route.min_pmtu=1000,kern
spec:
 ...

http://localhost:4000/docs/user-guide/kubectl/v1.6/#taint
http://localhost:4000/docs/concepts/configuration/taint-and-toleration/

10/23/2017 Proxies in Kubernetes - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/proxies/ 1/2

Proxies in Kubernetes

This page explains proxies used with Kubernetes.

Proxies

There are several different proxies you may encounter when using Kubernetes:

1. The kubectl proxy: - runs on a user’s desktop or in a pod - proxies from a localhost address to the

Kubernetes apiserver - client to proxy uses HTTP - proxy to apiserver uses HTTPS - locates

apiserver - adds authentication headers

2. The apiserver proxy: - is a bastion built into the apiserver - connects a user outside of the cluster

to cluster IPs which otherwise might not be reachable - runs in the apiserver processes - client to

proxy uses HTTPS (or http if apiserver so con�gured) - proxy to target may use HTTP or HTTPS

as chosen by proxy using available information - can be used to reach a Node, Pod, or Service -

does load balancing when used to reach a Service

3. The kube proxy: - runs on each node - proxies UDP and TCP - does not understand HTTP -

provides load balancing - is just used to reach services

4. A Proxy/Load-balancer in front of apiserver(s): - existence and implementation varies from

cluster to cluster (e.g. nginx) - sits between all clients and one or more apiservers - acts as load

balancer if there are several apiservers.

5. Cloud Load Balancers on external services: - are provided by some cloud providers (e.g. AWS

ELB, Google Cloud Load Balancer) - are created automatically when the Kubernetes service has

type LoadBalancer - use UDP/TCP only - implementation varies by cloud provider.

Kubernetes users will typically not need to worry about anything other than the �rst two types. The

cluster admin will typically ensure that the latter types are setup correctly.

Proxies
Requesting redirects

http://localhost:4000/docs/concepts/services-networking/service/#ips-and-vips

10/23/2017 Proxies in Kubernetes - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/proxies/ 2/2

Requesting redirects

Proxies have replaced redirect capabilities. Redirects have been deprecated.

10/23/2017 Controller manager metrics - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/controller-metrics/ 1/2

Controller manager metrics

Controller manager metrics provide important insight into the performance and health of the

controller manager.

What are controller manager metrics

Controller manager metrics provide important insight into the performance and health of the

controller manager. These metrics include common Go language runtime metrics such as

go_routine count and controller speci�c metrics such as etcd request latencies or Cloudprovider

(AWS, GCE, Openstack) API latencies that can be used to gauge the health of a cluster.

Starting from Kubernetes 1.7, detailed Cloudprovider metrics are available for storage operations for

GCE, AWS, Vsphere and Openstack. These metrics can be used to monitor health of persistent

volume operations.

For example, for GCE these metrics are called:

Con�guration

In a cluster, controller-manager metrics are available from http://localhost:10252/metrics

from the host where the controller-manager is running.

The metrics are emitted in prometheus format and are human readable.

What are controller manager metrics
Con�guration

cloudprovider_gce_api_request_duration_seconds { request = "instance_list"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"}
cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}

https://prometheus.io/docs/instrumenting/exposition_formats/

10/23/2017 Controller manager metrics - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/controller-metrics/ 2/2

In a production environment you may want to con�gure prometheus or some other metrics scraper

to periodically gather these metrics and make them available in some kind of time series database.

10/23/2017 Device Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/device-plugins/ 1/3

Device Plugins

FEATURE STATE: Kubernetes v1.8 alpha

Starting in version 1.8, Kubernetes provides a device plugin framework for vendors to advertise their

resources to the kubelet without changing Kubernetes core code. Instead of writing custom

Kubernetes code, vendors can implement a device plugin that can be deployed manually or as a

DaemonSet. The targeted devices include GPUs, High-performance NICs, FPGAs, In�niBand, and

other similar computing resources that may require vendor speci�c initialization and setup.

Device plugin registration

The device plugins feature is gated by the DevicePlugins feature gate and is disabled by default.

When the device plugins feature is enabled, the kubelet exports a Registration gRPC service:

A device plugin can register itself with the kubelet through this gRPC service. During the registration,

the device plugin needs to send:

The name of its Unix socket.

The Device Plugin API version against which it was built.

The ResourceName it wants to advertise. Here ResourceName needs to follow the extended

resource naming scheme as vendor-domain/resource . For example, an Nvidia GPU is

advertised as nvidia.com/gpu .

Device plugin registration
Device plugin implementation
Device plugin deployment
Examples

service Registration {
 rpc Register(RegisterRequest) returns (Empty) {}
}

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/device-plugin.md
https://github.com/kubernetes/kubernetes/pull/48922

10/23/2017 Device Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/device-plugins/ 2/3

Following a successful registration, the device plugin sends the kubelet the list of devices it

manages, and the kubelet is then in charge of advertising those resources to the API server as part

of the kubelet node status update. For example, after a device plugin registers vendor-domain/foo

with the kubelet and reports two healthy devices on a node, the node status is updated to advertise 2

vendor-domain/foo .

Then, developers can request devices in a Container speci�cation by using the same process that is

used for opaque integer resources. In version 1.8, extended resources are spported only as integer

resources and must have limit equal to request in the Container speci�cation.

Device plugin implementation

The general work�ow of a device plugin includes the following steps:

Initialization. During this phase, the device plugin performs vendor speci�c initialization and

setup to make sure the devices are in a ready state.

The plugin starts a gRPC service, with a Unix socket under host path

/var/lib/kubelet/device-plugins/ , that implements the following interfaces:

The plugin registers itself with the kubelet through the Unix socket at host path

/var/lib/kubelet/device-plugins/kubelet.sock .

service DevicePlugin {

 // ListAndWatch returns a stream of List of Devices

 // Whenever a Device state change or a Device disapears, ListAndWatch

 // returns the new list

 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device

 // Plugin can run device specific operations and instruct Kubelet

 // of the steps to make the Device available in the container

 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

}

http://localhost:4000/docs/api-reference/v1.8/#container-v1-core
http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/

10/23/2017 Device Plugins - Kubernetes

http://localhost:4000/docs/concepts/cluster-administration/device-plugins/ 3/3

After successfully registering itself, the device plugin runs in serving mode, during which it keeps

monitoring device health and reports back to the kubelet upon any device state changes. It is

also responsible for serving Allocate gRPC requests. During Allocate , the device plugin may

do device-speci�c preparation; for example, GPU cleanup or QRNG initialization. If the operations

succeed, the device plugin returns an AllocateResponse that contains container runtime

con�gurations for accessing the allocated devices. The kubelet passes this information to the

container runtime.

A device plugin is expected to detect kubelet restarts and re-register itself with the new kubelet

instance. In version 1.8, a new kubelet instance cleans up all the existing Unix sockets under

/var/lib/kubelet/device-plugins when it starts. A device plugin can monitor the deletion of its

Unix socket and re-register itself upon such an event.

Device plugin deployment

A device plugin can be deployed manually or as a DaemonSet. Being deployed as a DaemonSet has

the bene�t that Kubernetes can restart the device plugin if it fails. Otherwise, an extra mechanism is

needed to recover from device plugin failures. The canonical directory

/var/lib/kubelet/device-plugins requires privileged access, so a device plugin must run in a

privileged security context. If a device plugin is running as a DaemonSet,

/var/lib/kubelet/device-plugins must be mounted as a Volume in the plugin’s PodSpec.

Examples

For an example device plugin implementation, see nvidia GPU device plugin for COS base OS.

http://localhost:4000/docs/api-reference/v1.8/#volume-v1-core
http://localhost:4000/docs/api-reference//#podspec-v1-core
https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/nvidia_gpu

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 1/8

Resource Quotas

When several users or teams share a cluster with a �xed number of nodes, there is a concern that

one team could use more than its fair share of resources.

Resource quotas are a tool for administrators to address this concern.

A resource quota, de�ned by a ResourceQuota object, provides constraints that limit aggregate

resource consumption per namespace. It can limit the quantity of objects that can be created in a

namespace by type, as well as the total amount of compute resources that may be consumed by

resources in that project.

Resource quotas work like this:

Different teams work in different namespaces. Currently this is voluntary, but support for making

this mandatory via ACLs is planned.

The administrator creates one or more Resource Quota objects for each namespace.

Users create resources (pods, services, etc.) in the namespace, and the quota system tracks

usage to ensure it does not exceed hard resource limits de�ned in a Resource Quota.

If creating or updating a resource violates a quota constraint, the request will fail with HTTP

status code 403 FORBIDDEN with a message explaining the constraint that would have been

violated.

If quota is enabled in a namespace for compute resources like cpu and memory , users must

specify requests or limits for those values; otherwise, the quota system may reject pod creation.

Hint: Use the LimitRange admission controller to force defaults for pods that make no compute

resource requirements. See the walkthrough for an example to avoid this problem.

Examples of policies that could be created using namespaces and quotas are:

In a cluster with a capacity of 32 GiB RAM, and 16 cores, let team A use 20 GiB and 10 cores, let

B use 10GiB and 4 cores, and hold 2GiB and 2 cores in reserve for future allocation.

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 2/8

Limit the “testing” namespace to using 1 core and 1GiB RAM. Let the “production” namespace

use any amount.

In the case where the total capacity of the cluster is less than the sum of the quotas of the

namespaces, there may be contention for resources. This is handled on a �rst-come-�rst-served

basis.

Neither contention nor changes to quota will affect already created resources.

Enabling Resource Quota

Resource Quota support is enabled by default for many Kubernetes distributions. It is enabled when

the apiserver --admission-control= �ag has ResourceQuota as one of its arguments.

Resource Quota is enforced in a particular namespace when there is a ResourceQuota object in

that namespace. There should be at most one ResourceQuota object in a namespace.

Compute Resource Quota

You can limit the total sum of compute resources that can be requested in a given namespace.

The following resource types are supported:

Resource Name Description

cpu Across all pods in a non-terminal state, the sum of CPU requests cannot exceed this value.

limits.cpu Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

limits.memory Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

memory Across all pods in a non-terminal state, the sum of memory requests cannot exceed this value.

requests.cpu Across all pods in a non-terminal state, the sum of CPU requests cannot exceed this value.

requests.memory Across all pods in a non-terminal state, the sum of memory requests cannot exceed this value.

Storage Resource Quota

http://localhost:4000/docs/user-guide/compute-resources

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 3/8

You can limit the total sum of storage resources that can be requested in a given namespace.

In addition, you can limit consumption of storage resources based on associated storage-class.

Resource Name Description

requests.storage
Across all persistent volume
claims, the sum of storage requests
cannot exceed this value.

persistentvolumeclaims
The total number of persistent
volume claims that can exist in the
namespace.

<storage-class-
name>.storageclass.storage.k8s.io/requests.storage

Across all persistent volume claims
associated with the storage-class-
name, the sum of storage requests
cannot exceed this value.

<storage-class-
name>.storageclass.storage.k8s.io/persistentvolumeclaims

Across all persistent volume claims
associated with the storage-class-
name, the total number of
persistent volume claims that can
exist in the namespace.

For example, if an operator wants to quota storage with gold storage class separate from bronze

storage class, the operator can de�ne a quota as follows:

gold.storageclass.storage.k8s.io/requests.storage: 500Gi

bronze.storageclass.storage.k8s.io/requests.storage: 100Gi

In release 1.8, quota support for local ephemeral storage is added as alpha feature

Resource Name Description

requests.ephemeral-
storage

Across all pods in the namespace, the sum of local ephemeral storage requests cannot
exceed this value.

limits.ephemeral-
storage

Across all pods in the namespace, the sum of local ephemeral storage limits cannot
exceed this value.

Object Count Quota

The number of objects of a given type can be restricted. The following types are supported:

http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 4/8

Resource Name Description

configmaps The total number of con�g maps that can exist in the namespace.

persistentvolumeclaims The total number of persistent volume claims that can exist in the namespace.

pods
The total number of pods in a non-terminal state that can exist in the namespace. A pod is

in a terminal state if status.phase in (Failed, Succeeded) is true.

replicationcontrollers The total number of replication controllers that can exist in the namespace.

resourcequotas The total number of resource quotas that can exist in the namespace.

services The total number of services that can exist in the namespace.

services.loadbalancers The total number of services of type load balancer that can exist in the namespace.

services.nodeports The total number of services of type node port that can exist in the namespace.

secrets The total number of secrets that can exist in the namespace.

For example, pods quota counts and enforces a maximum on the number of pods created in a

single namespace.

You might want to set a pods quota on a namespace to avoid the case where a user creates many

small pods and exhausts the cluster’s supply of Pod IPs.

Quota Scopes

Each quota can have an associated set of scopes. A quota will only measure usage for a resource if

it matches the intersection of enumerated scopes.

When a scope is added to the quota, it limits the number of resources it supports to those that

pertain to the scope. Resources speci�ed on the quota outside of the allowed set results in a

validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds >= 0

NotTerminating Match pods where spec.activeDeadlineSeconds is nil

http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://localhost:4000/docs/admin/admission-controllers/#resourcequota

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 5/8

Scope Description

BestEffort Match pods that have best effort quality of service.

NotBestEffort Match pods that do not have best effort quality of service.

The BestEffort scope restricts a quota to tracking the following resource: pods

The Terminating , NotTerminating , and NotBestEffort scopes restrict a quota to tracking the

following resources:

cpu

limits.cpu

limits.memory

memory

pods

requests.cpu

requests.memory

Requests vs Limits

When allocating compute resources, each container may specify a request and a limit value for

either CPU or memory. The quota can be con�gured to quota either value.

If the quota has a value speci�ed for requests.cpu or requests.memory , then it requires that

every incoming container makes an explicit request for those resources. If the quota has a value

speci�ed for limits.cpu or limits.memory , then it requires that every incoming container

speci�es an explicit limit for those resources.

Viewing and Setting Quotas

Kubectl supports creating, updating, and viewing quotas:

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 6/8

$ kubectl create namespace myspace

$ cat <<EOF > compute-resources.yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4"
 requests.cpu: "1"
 requests.memory: 1Gi
 limits.cpu: "2"
 limits.memory: 2Gi
EOF
$ kubectl create -f ./compute-resources.yaml --namespace=myspace

$ cat <<EOF > object-counts.yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-counts
spec:
 hard:
 configmaps: "10"
 persistentvolumeclaims: "4"
 replicationcontrollers: "20"
 secrets: "10"
 services: "10"
 services.loadbalancers: "2"
EOF
$ kubectl create -f ./object-counts.yaml --namespace=myspace

$ kubectl get quota --namespace=myspace
NAME AGE
compute-resources 30s
object-counts 32s

$ kubectl describe quota compute-resources --namespace=myspace
Name: compute-resources
Namespace: myspace
Resource Used Hard
-------- ---- ----
limits.cpu 0 2
limits.memory 0 2Gi
pods 0 4
requests.cpu 0 1
requests.memory 0 1Gi

$ kubectl describe quota object-counts --namespace=myspace
Name: object-counts

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 7/8

Quota and Cluster Capacity

Resource Quota objects are independent of the Cluster Capacity. They are expressed in absolute

units. So, if you add nodes to your cluster, this does not automatically give each namespace the

ability to consume more resources.

Sometimes more complex policies may be desired, such as:

Proportionally divide total cluster resources among several teams.

Allow each tenant to grow resource usage as needed, but have a generous limit to prevent

accidental resource exhaustion.

Detect demand from one namespace, add nodes, and increase quota.

Such policies could be implemented using ResourceQuota as a building-block, by writing a

‘controller’ which watches the quota usage and adjusts the quota hard limits of each namespace

according to other signals.

Note that resource quota divides up aggregate cluster resources, but it creates no restrictions

around nodes: pods from several namespaces may run on the same node.

Example

See a detailed example for how to use resource quota.

Read More

j
Namespace: myspace
Resource Used Hard
-------- ---- ----
configmaps 0 10
persistentvolumeclaims 0 4
replicationcontrollers 0 20
secrets 1 10
services 0 10
services.loadbalancers 0 2

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/

10/23/2017 Resource Quotas - Kubernetes

http://localhost:4000/docs/concepts/policy/resource-quotas/ 8/8

See ResourceQuota design doc for more information.

https://git.k8s.io/community/contributors/design-proposals/resource-management/admission_control_resource_quota.md

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 1/8

Pod Security Policies

Objects of type PodSecurityPolicy govern the ability to make requests on a pod that affect the

SecurityContext that will be applied to a pod and container.

See PodSecurityPolicy proposal for more information.

What is a Pod Security Policy?

A Pod Security Policy is a cluster-level resource that controls the actions that a pod can perform and

what it has the ability to access. The PodSecurityPolicy objects de�ne a set of conditions that a

pod must run with in order to be accepted into the system. They allow an administrator to control the

following:

Control Aspect Field Name

Running of privileged containers privileged

What is a Pod Security Policy?
Strategies

RunAsUser
SELinux
SupplementalGroups
FSGroup
Controlling Volumes
Host Network
AllowPrivilegeEscalation
DefaultAllowPrivilegeEscalation

Admission
Creating a Pod Security Policy
Getting a list of Pod Security Policies
Editing a Pod Security Policy
Deleting a Pod Security Policy
Enabling Pod Security Policies
Working With RBAC

https://git.k8s.io/community/contributors/design-proposals/auth/pod-security-policy.md

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 2/8

Control Aspect Field Name

Default set of capabilities that will be added to a container defaultAddCapabilities

Capabilities that will be dropped from a container requiredDropCapabilities

Capabilities a container can request to be added allowedCapabilities

Controlling the usage of volume types volumes

The use of host networking hostNetwork

The use of host ports hostPorts

The use of host’s PID namespace hostPID

The use of host’s IPC namespace hostIPC

The SELinux context of the container seLinux

The user ID runAsUser

Con�guring allowable supplemental groups supplementalGroups

Allocating an FSGroup that owns the pod’s volumes fsGroup

Requiring the use of a read only root �le system readOnlyRootFilesystem

Running of a container that allow privilege escalation from its parent allowPrivilegeEscalation

Control whether a process can gain more privileges than its parent process defaultAllowPrivilegeEscalation

Pod Security Policies are comprised of settings and strategies that control the security features a

pod has access to. These settings fall into three categories:

Controlled by a Boolean: Fields of this type default to the most restrictive value.

Controlled by an allowable set: Fields of this type are checked against the set to ensure their

values are allowed.

Controlled by a strategy: Items that have a strategy to provide a mechanism to generate the

value and a mechanism to ensure that a speci�ed value falls into the set of allowable values.

Strategies

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 3/8

RunAsUser

MustRunAs - Requires a range to be con�gured. Uses the �rst value of the range as the default.

Validates against the con�gured range.

MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have

the USER directive de�ned in the image. No default provided.

RunAsAny - No default provided. Allows any runAsUser to be speci�ed.

SELinux

MustRunAs - Requires seLinuxOptions to be con�gured if not using pre-allocated values. Uses

seLinuxOptions as the default. Validates against seLinuxOptions .

RunAsAny - No default provided. Allows any seLinuxOptions to be speci�ed.

SupplementalGroups

MustRunAs - Requires at least one range to be speci�ed. Uses the minimum value of the �rst

range as the default. Validates against all ranges.

RunAsAny - No default provided. Allows any supplementalGroups to be speci�ed.

FSGroup

MustRunAs - Requires at least one range to be speci�ed. Uses the minimum value of the �rst

range as the default. Validates against the �rst ID in the �rst range.

RunAsAny - No default provided. Allows any fsGroup ID to be speci�ed.

Controlling Volumes

The usage of speci�c volume types can be controlled by setting the volumes �eld of the PSP. The

allowable values of this �eld correspond to the volume sources that are de�ned when creating a

volume:

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 4/8

1. azureFile

2. azureDisk

3. �ocker

4. �exVolume

5. hostPath

6. emptyDir

7. gcePersistentDisk

8. awsElasticBlockStore

9. gitRepo

10. secret

11. nfs

12. iscsi

13. glusterfs

14. persistentVolumeClaim

15. rbd

16. cinder

17. cephFS

18. downwardAPI

19. fc

20. con�gMap

21. vsphereVolume

22. quobyte

23. photonPersistentDisk

24. projected

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 5/8

25. portworxVolume

26. scaleIO

27. storageos

28. * (allow all volumes)

The recommended minimum set of allowed volumes for new PSPs are con�gMap, downwardAPI,

emptyDir, persistentVolumeClaim, secret, and projected.

Host Network

HostPorts, default empty . List of HostPortRange , de�ned by min (inclusive) and max

(inclusive), which de�ne the allowed host ports.

AllowPrivilegeEscalation

Gates whether or not a user is allowed to set the security context of a container to

allowPrivilegeEscalation=true . This �eld defaults to false .

DefaultAllowPrivilegeEscalation

Sets the default for the security context AllowPrivilegeEscalation of a container. This bool

directly controls whether the no_new_privs �ag gets set on the container process. It defaults to

nil . The default behavior of nil allows privilege escalation so as to not break setuid binaries.

Setting it to false ensures that no child process of a container can gain more privileges than its

parent.

Admission

Admission control with PodSecurityPolicy allows for control over the creation and modi�cation of

resources based on the capabilities allowed in the cluster.

Admission uses the following approach to create the �nal security context for the pod:

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 6/8

1. Retrieve all PSPs available for use.

2. Generate �eld values for security context settings that were not speci�ed on the request.

3. Validate the �nal settings against the available policies.

If a matching policy is found, then the pod is accepted. If the request cannot be matched to a PSP,

the pod is rejected.

A pod must validate every �eld against the PSP.

Creating a Pod Security Policy

Here is an example Pod Security Policy. It has permissive settings for all �elds

psp.yaml

Create the policy by downloading the example �le and then running this command:

apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
 name: permissive
spec:
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 hostPorts:
 - min: 8000
 max: 8080
 volumes:
 - '*'
 allowedCapabilities:
 - '*'

$ kubectl create -f ./psp.yaml
podsecuritypolicy "permissive" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/concepts/policy/psp.yaml

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 7/8

Getting a list of Pod Security Policies

To get a list of existing policies, use kubectl get :

Editing a Pod Security Policy

To modify policy interactively, use kubectl edit :

This command will open a default text editor where you will be able to modify policy.

Deleting a Pod Security Policy

Once you don’t need a policy anymore, simply delete it with kubectl :

Enabling Pod Security Policies

In order to use Pod Security Policies in your cluster you must ensure the following

$ kubectl get psp
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYR
permissive false [] RunAsAny RunAsAny RunAsAny RunAsAny false
privileged true [] RunAsAny RunAsAny RunAsAny RunAsAny false
restricted false [] RunAsAny MustRunAsNonRoot RunAsAny RunAsAny false

$ kubectl edit psp permissive

$ kubectl delete psp permissive
podsecuritypolicy "permissive" deleted

10/23/2017 Pod Security Policies - Kubernetes

http://localhost:4000/docs/concepts/policy/pod-security-policy/ 8/8

1. You have enabled the API type extensions/v1beta1/podsecuritypolicy (only for versions

prior 1.6)

2. You have enabled the admission controller PodSecurityPolicy

3. You have de�ned your policies

Working With RBAC

In Kubernetes 1.5 and newer, you can use PodSecurityPolicy to control access to privileged

containers based on user role and groups. Access to different PodSecurityPolicy objects can be

controlled via authorization.

Note that Controller Manager must be run against the secured API port, and must not have

superuser permissions. Otherwise requests would bypass authentication and authorization modules,

all PodSecurityPolicy objects would be allowed, and user will be able to create privileged containers.

PodSecurityPolicy authorization uses the union of all policies available to the user creating the pod

and the service account speci�ed on the pod.

Access to given PSP policies for a user will be effective only when creating Pods directly.

For pods created on behalf of a user, in most cases by Controller Manager, access should be given to

the service account speci�ed on the pod spec template. Examples of resources that create pods on

behalf of a user are Deployments, ReplicaSets, etc.

For more details, see the PodSecurityPolicy RBAC example of applying PodSecurityPolicy to control

access to privileged containers based on role and groups when deploying Pods directly.

http://localhost:4000/docs/admin/kube-controller-manager/
http://localhost:4000/docs/admin/accessing-the-api/
http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/
https://git.k8s.io/examples/staging/podsecuritypolicy/rbac/README.md

10/23/2017 Tasks - Kubernetes

http://localhost:4000/docs/tasks/ 1/2

Tasks

This section of the Kubernetes documentation contains pages that show how to do individual tasks.

A task page shows how to do a single thing, typically by giving a short sequence of steps.

Web UI (Dashboard)

Deploy and access the Dashboard web user interface to help you manage and monitor containerized

applications in a Kubernetes cluster.

Using the kubectl Command-line

Install and setup the kubectl command-line tool used to directly manage Kubernetes clusters.

Con�guring Pods and Containers

Perform common con�guration tasks for Pods and Containers.

Running Applications

Perform common application management tasks, such as rolling updates, injecting information into

pods, and horizontal Pod autoscaling.

Running Jobs

Run Jobs using parallel processing.

Accessing Applications in a Cluster

Con�gure load balancing, port forwarding, or setup �rewall or DNS con�gurations to access

applications in a cluster.

Monitoring, Logging, and Debugging

Setup monitoring and logging to troubleshoot a cluster or debug a containerized application.

Accessing the Kubernetes API

10/23/2017 Tasks - Kubernetes

http://localhost:4000/docs/tasks/ 2/2

Learn various methods to directly access the Kubernetes API.

Using TLS

Con�gure your application to trust and use the cluster root Certi�cate Authority (CA).

Administering a Cluster

Learn common tasks for administering a cluster.

Administering Federation

Con�gure components in a cluster federation.

Managing Stateful Applications

Perform common tasks for managing Stateful applications, including scaling, deleting, and

debugging StatefulSets.

Cluster Daemons

Perform common tasks for managing a DaemonSet, such as performing a rolling update.

Managing GPUs

Con�gure and schedule NVIDIA GPUs for use as a resource by nodes in a cluster.

Managing HugePages

Con�gure and schedule huge pages as a schedulable resource in a cluster.

What’s next

If you would like to write a task page, see Creating a Documentation Pull Request.

http://localhost:4000/docs/home/contribute/create-pull-request/

10/23/2017 Install and Set Up kubectl - Kubernetes

http://localhost:4000/docs/tasks/tools/install-kubectl/ 1/6

Install and Set Up kubectl

Here are a few methods to install kubectl.

Use the Kubernetes command-line tool, kubectl, to deploy and manage applications on Kubernetes.

Using kubectl, you can inspect cluster resources; create, delete, and update components; and look at

your new cluster and bring up example apps.

Before you begin

Use a version of kubectl that is the same version as your server or later. Using an older kubectl with a

newer server might produce validation errors.

Install kubectl binary via curl

Before you begin
Install kubectl binary via curl
Download as part of the Google Cloud SDK
Install with snap on Ubuntu
Install with Homebrew on macOS
Install with Chocolatey on Windows
Con�gure kubectl
Check the kubectl con�guration
Enabling shell autocompletion

On Linux, using bash
On macOS, using bash
Using Oh-My-Zsh

What’s next

1. Download the latest release with the command:

macOS Linux Windows

http://localhost:4000/docs/user-guide/kubectl

10/23/2017 Install and Set Up kubectl - Kubernetes

http://localhost:4000/docs/tasks/tools/install-kubectl/ 2/6

Download as part of the Google Cloud SDK

kubectl can be installed as part of the Google Cloud SDK.

1. Install the Google Cloud SDK.

2. Run the following command to install kubectl :

3. Run kubectl version to verify that the version you’ve installed is su�ciently up-to-date.

Install with snap on Ubuntu

To download a speci�c version, replace the

$(curl -s https://storage.googleapis.com/kubernetes-

release/release/stable.txt)

portion of the command with the speci�c version.

For example, to download version v1.8.0 on MacOS, type:

2. Make the kubectl binary executable.

chmod +x ./kubectl

3. Move the binary in to your PATH.

sudo mv ./kubectl /usr/local/bin/kubectl

curl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s

curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.8.0/bi

gcloud components install kubectl

https://cloud.google.com/sdk/

10/23/2017 Install and Set Up kubectl - Kubernetes

http://localhost:4000/docs/tasks/tools/install-kubectl/ 3/6

kubectl is available as a snap application.

1. If you are on Ubuntu or one of other Linux distributions that support snap package manager, you

can install with:

2. Run kubectl version to verify that the version you’ve installed is su�ciently up-to-date.

Install with Homebrew on macOS

1. If you are on macOS and using Homebrew package manager, you can install with:

2. Run kubectl version to verify that the version you’ve installed is su�ciently up-to-date.

Install with Chocolatey on Windows

1. If you are on Windows and using Chocolatey package manager, you can install with:

2. Run kubectl version to verify that the version you’ve installed is su�ciently up-to-date.

3. Con�gure kubectl to use a remote Kubernetes cluster:

sudo snap install kubectl --classic

brew install kubectl

choco install kubernetes-cli

cd C:\users\yourusername (Or wherever your %HOME% directory is)

mkdir .kube

cd .kube

touch config

https://snapcraft.io/
https://snapcraft.io/docs/core/install
https://brew.sh/
https://chocolatey.org/

10/23/2017 Install and Set Up kubectl - Kubernetes

http://localhost:4000/docs/tasks/tools/install-kubectl/ 4/6

Edit the con�g �le with a text editor of your choice, such as Notepad for example.

Con�gure kubectl

In order for kubectl to �nd and access a Kubernetes cluster, it needs a kubecon�g �le, which is

created automatically when you create a cluster using kube-up.sh or successfully deploy a Minikube

cluster. See the getting started guides for more about creating clusters. If you need access to a

cluster you didn’t create, see the Sharing Cluster Access document. By default, kubectl con�guration

is located at ~/.kube/config .

Check the kubectl con�guration

Check that kubectl is properly con�gured by getting the cluster state:

If you see a URL response, kubectl is correctly con�gured to access your cluster.

If you see a message similar to the following, kubectl is not correctly con�gured:

Enabling shell autocompletion

kubectl includes autocompletion support, which can save a lot of typing!

The completion script itself is generated by kubectl, so you typically just need to invoke it from your

pro�le.

Common examples are provided here. For more details, consult kubectl completion -h .

On Linux, using bash

kubectl cluster-info

The connection to the server <server-name:port> was refused - did you specify the

http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/tasks/administer-cluster/share-configuration/

10/23/2017 Install and Set Up kubectl - Kubernetes

http://localhost:4000/docs/tasks/tools/install-kubectl/ 5/6

To add kubectl autocompletion to your current shell, run source <(kubectl completion bash) .

To add kubectl autocompletion to your pro�le, so it is automatically loaded in future shells run:

On macOS, using bash

On macOS, you will need to install bash-completion support via Homebrew �rst:

Follow the “caveats” section of brew’s output to add the appropriate bash completion path to your

local .bashrc.

If you’ve installed kubectl using the Homebrew instructions then kubectl completion should start

working immediately.

If you have installed kubectl manually, you need to add kubectl autocompletion to the bash-

completion:

The Homebrew project is independent from Kubernetes, so the bash-completion packages are not

guaranteed to work.

Using Oh-My-Zsh

When using Oh-My-Zsh, edit the ~/.zshrc �le and update the plugins= line to include the kubectl

plugin.

echo "source <(kubectl completion bash)" >> ~/.bashrc

If running Bash 3.2 included with macOS
brew install bash-completion
or, if running Bash 4.1+
brew install bash-completion@2

kubectl completion bash > $(brew --prefix)/etc/bash_completion.d/kubectl

plugins=(git zsh-completions kubectl)

https://brew.sh/
http://ohmyz.sh/

10/23/2017 Install and Set Up kubectl - Kubernetes

http://localhost:4000/docs/tasks/tools/install-kubectl/ 6/6

What’s next

Learn how to launch and expose your application.

http://localhost:4000/docs/user-guide/quick-start

10/23/2017 Install Minikube - Kubernetes

http://localhost:4000/docs/tasks/tools/install-minikube/ 1/2

Install Minikube

This page shows how to use install Minikube.

Before you begin

VT-x or AMD-v virtualization must be enabled in your computer’s BIOS.

Install a Hypervisor

If you do not already have a hypervisor installed, install one now.

For OS X, install xhyve driver, VirtualBox, or VMware Fusion.

For Linux, install VirtualBox or KVM.

For Windows, install VirtualBox or Hyper-V.

Install kubectl

Install kubectl.

Install Minikube

Install Minikube according to the instructions for the latest release.

Before you begin
Install a Hypervisor
Install kubectl
Install Minikube
What’s next

https://git.k8s.io/minikube/docs/drivers.md#xhyve-driver
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/fusion
https://www.virtualbox.org/wiki/Downloads
http://www.linux-kvm.org/
https://www.virtualbox.org/wiki/Downloads
https://msdn.microsoft.com/en-us/virtualization/hyperv_on_windows/quick_start/walkthrough_install
http://localhost:4000/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube/releases

10/23/2017 Install Minikube - Kubernetes

http://localhost:4000/docs/tasks/tools/install-minikube/ 2/2

What’s next

Running Kubernetes Locally via Minikube

http://localhost:4000/docs/getting-started-guides/minikube/

10/23/2017 Installing kubeadm - Kubernetes

http://localhost:4000/docs/setup/independent/install-kubeadm/ 1/4

Installing kubeadm

This page shows how to use install kubeadm.

Before you begin

One or more machines running Ubuntu 16.04+, Debian 9, CentOS 7, RHEL 7, Fedora 25/26 (best-

effort) or HypriotOS v1.0.1+

1GB or more of RAM per machine (any less will leave little room for your apps)

Full network connectivity between all machines in the cluster (public or private network is �ne)

Unique MAC address and product_uuid for every node

Certain ports are open on your machines. See the section below for more details

Swap disabled. You must disable swap in order for the kubelet to work properly.

Check required ports

Master node(s)

Port Range Purpose

6443* Kubernetes API server

2379-2380 etcd server client API

Before you begin
Check required ports

Master node(s)
Worker node(s)

Installing Docker
Installing kubeadm, kubelet and kubectl
What’s next

10/23/2017 Installing kubeadm - Kubernetes

http://localhost:4000/docs/setup/independent/install-kubeadm/ 2/4

Port Range Purpose

10250 Kubelet API

10251 kube-scheduler

10252 kube-controller-manager

10255 Read-only Kubelet API (Heapster)

Worker node(s)

Port
Range Purpose

10250 Kubelet API

10255 Read-only Kubelet API (Heapster)

30000-
32767

Default port range for NodePort Services. Typically, these ports would need to be exposed to external load-balancers,
or other external consumers of the application itself.

Any port numbers marked with * are overridable, so you will need to ensure any custom ports you

provide are also open.

Although etcd ports are included in master nodes, you can also host your own etcd cluster externally

on custom ports.

The pod network plugin you use (see below) may also require certain ports to be open. Since this

differs with each pod network plugin, please see the documentation for the plugins about what

port(s) those need.

Installing Docker

On each of your machines, install Docker. Version v1.12 is recommended, but v1.11, v1.13 and 17.03

are known to work as well. Versions 17.06+ might work, but have not yet been tested and veri�ed by

the Kubernetes node team.

You can use the following commands to install Docker on your system:

Ubuntu, Debian or HypriotOS CentOS, RHEL or Fedora

http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Installing kubeadm - Kubernetes

http://localhost:4000/docs/setup/independent/install-kubeadm/ 3/4

Installing kubeadm, kubelet and kubectl

You will install these packages on all of your machines:

kubeadm : the command to bootstrap the cluster.

kubelet : the component that runs on all of the machines in your cluster and does things like

starting pods and containers.

kubectl : the command line util to talk to your cluster.

Please proceed with executing the following commands based on your OS as root . You may

become the root user by executing sudo -i after SSH-ing to each host.

Install Docker from Ubuntu’s repositories:

or install Docker CE 17.03 from Docker’s repositories for Ubuntu or Debian:

apt-get update
apt-get install -y docker.io

apt-get update && apt-get install -y curl apt-transport-https
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/docker.list
deb https://download.docker.com/linux/$(lsb_release -si | tr '[:upper:]' '[:l
EOF
apt-get update && apt-get install -y docker-ce=$(apt-cache madison docker-ce

Ubuntu, Debian or HypriotOS CentOS, RHEL or Fedora

10/23/2017 Installing kubeadm - Kubernetes

http://localhost:4000/docs/setup/independent/install-kubeadm/ 4/4

The kubelet is now restarting every few seconds, as it waits in a crashloop for kubeadm to tell it what

to do.

What’s next

Using kubeadm to Create a Cluster

apt-get update && apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubelet kubeadm kubectl

http://localhost:4000/docs/setup/independent/create-cluster-kubeadm/

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 1/11

Assign Memory Resources to Containers
and Pods

This page shows how to assign a memory request and a memory limit to a Container. A Container is

guaranteed to have as much memory as it requests, but is not allowed to use more memory than its

limit.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Each node in your cluster must have at least 300 MiB of memory.

A few of the steps on this page require that the Heapster service is running in your cluster. But if you

don’t have Heapster running, you can do most of the steps, and it won’t be a problem if you skip the

Heapster steps.

Before you begin
Create a namespace
Specify a memory request and a memory limit
Exceed a Container’s memory limit
Specify a memory request that is too big for your Nodes
Memory units
If you don’t specify a memory limit
Motivation for memory requests and limits
Clean up
What’s next

For app developers
For cluster administrators

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes/heapster

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 2/11

To see whether the Heapster service is running, enter this command:

If the Heapster service is running, it shows in the output:

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Specify a memory request and a memory limit

To specify a memory request for a Container, include the resources:requests �eld in the

Container’s resource manifest. To specify a memory limit, include resources:limits .

In this exercise, you create a Pod that has one Container. The Container has a memory request of

100 MiB and a memory limit of 200 MiB. Here’s the con�guration �le for the Pod:

memory-request-limit.yaml

kubectl get services --namespace=kube-system

NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-system heapster 10.11.240.9 <none> 80/TCP 6d

kubectl create namespace mem-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/memory-request-limit.yaml

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 3/11

memory-request-limit.yaml

In the con�guration �le, the args section provides arguments for the Container when it starts. The

-mem-total 150Mi argument tells the Container to attempt to allocate 150 MiB of memory.

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: memory-demo
spec:
 containers:
 - name: memory-demo-ctr
 image: vish/stress
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"
 args:
 - -mem-total
 - 150Mi
 - -mem-alloc-size
 - 10Mi
 - -mem-alloc-sleep
 - 1s

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request

kubectl get pod memory-demo --namespace=mem-example

kubectl get pod memory-demo --output=yaml --namespace=mem-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/memory-request-limit.yaml

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 4/11

The output shows that the one Container in the Pod has a memory request of 100 MiB and a

memory limit of 200 MiB.

Start a proxy so that you can call the Heapster service:

In another command window, get the memory usage from the Heapster service:

The output shows that the Pod is using about 162,900,000 bytes of memory, which is about 150

MiB. This is greater than the Pod’s 100 MiB request, but within the Pod’s 200 MiB limit.

Delete your Pod:

Exceed a Container’s memory limit

A Container can exceed its memory request if the Node has memory available. But a Container is not

allowed to use more than its memory limit. If a Container allocates more memory than its limit, the

...
resources:
 limits:
 memory: 200Mi
 requests:
 memory: 100Mi
...

kubectl proxy

curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/a

{
 "timestamp": "2017-06-20T18:54:00Z",
 "value": 162856960
}

kubectl delete pod memory-demo --namespace=mem-example

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 5/11

Container becomes a candidate for termination. If the Container continues to consume memory

beyond its limit, the Container is terminated. If a terminated Container is restartable, the kubelet will

restart it, as with any other type of runtime failure.

In this exercise, you create a Pod that attempts to allocate more memory than its limit. Here is the

con�guration �le for a Pod that has one Container. The Container has a memory request of 50 MiB

and a memory limit of 100 MiB.

memory-request-limit-2.yaml

In the con�guration �le, in the args section, you can see that the Container will attempt to allocate

250 MiB of memory, which is well above the 100 MiB limit.

Create the Pod:

View detailed information about the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: memory-demo-2
spec:
 containers:
 - name: memory-demo-2-ctr
 image: vish/stress
 resources:
 requests:
 memory: 50Mi
 limits:
 memory: "100Mi"
 args:
 - -mem-total
 - 250Mi
 - -mem-alloc-size
 - 10Mi
 - -mem-alloc-sleep
 - 1s

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/memory-request-limit-2.yaml

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 6/11

At this point, the Container might be running, or it might have been killed. If the Container has not yet

been killed, repeat the preceding command until you see that the Container has been killed:

Get a more detailed view of the Container’s status:

The output shows that the Container has been killed because it is out of memory (OOM).

The Container in this exercise is restartable, so the kubelet will restart it. Enter this command several

times to see that the Container gets repeatedly killed and restarted:

The output shows that the Container gets killed, restarted, killed again, restarted again, and so on:

kubectl get pod memory-demo-2 --namespace=mem-example

NAME READY STATUS RESTARTS AGE
memory-demo-2 0/1 OOMKilled 1 24s

kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example

lastState:
 terminated:
 containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd229
 exitCode: 137
 finishedAt: 2017-06-20T20:52:19Z
 reason: OOMKilled
 startedAt: null

kubectl get pod memory-demo-2 --namespace=mem-example

stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namesp
NAME READY STATUS RESTARTS AGE
memory-demo-2 0/1 OOMKilled 1 37s
stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namesp
NAME READY STATUS RESTARTS AGE
memory-demo-2 1/1 Running 2 40s

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 7/11

View detailed information about the Pod’s history:

The output shows that the Container starts and fails repeatedly:

View detailed information about your cluster’s Nodes:

The output includes a record of the Container being killed because of an out-of-memory condition:

Delete your Pod:

Specify a memory request that is too big for your Nodes

Memory requests and limits are associated with Containers, but it is useful to think of a Pod as

having a memory request and limit. The memory request for the Pod is the sum of the memory

requests for all the Containers in the Pod. Likewise, the memory limit for the Pod is the sum of the

limits of all the Containers in the Pod.

Pod scheduling is based on requests. A Pod is scheduled to run on a Node only if the Node has

enough available memory to satisfy the Pod’s memory request.

In this exercise, you create a Pod that has a memory request so big that it exceeds the capacity of

any Node in your cluster. Here is the con�guration �le for a Pod that has one Container. The

kubectl describe pod memory-demo-2 --namespace=mem-example

... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a

... Warning BackOff Back-off restarting failed container

kubectl describe nodes

Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score

kubectl delete pod memory-demo-2 --namespace=mem-example

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 8/11

Container requests 1000 GiB of memory, which is likely to exceed the capacity of any Node in your

cluster.

memory-request-limit-3.yaml

Create the Pod:

View the Pod’s status:

The output shows that the Pod’s status is PENDING. That is, the Pod has not been scheduled to run

on any Node, and it will remain in the PENDING state inde�nitely:

apiVersion: v1
kind: Pod
metadata:
 name: memory-demo-3
spec:
 containers:
 - name: memory-demo-3-ctr
 image: vish/stress
 resources:
 limits:
 memory: "1000Gi"
 requests:
 memory: "1000Gi"
 args:
 - -mem-total
 - 150Mi
 - -mem-alloc-size
 - 10Mi
 - -mem-alloc-sleep
 - 1s

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request

kubectl get pod memory-demo-3 --namespace=mem-example

kubectl get pod memory-demo-3 --namespace=mem-example
NAME READY STATUS RESTARTS AGE
memory-demo-3 0/1 Pending 0 25s

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/memory-request-limit-3.yaml

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 9/11

View detailed information about the Pod, including events:

The output shows that the Container cannot be scheduled because of insu�cient memory on the

Nodes:

Memory units

The memory resource is measured in bytes. You can express memory as a plain integer or a �xed-

point integer with one of these su�xes: E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki. For example, the following

represent approximately the same value:

Delete your Pod:

If you don’t specify a memory limit

If you don’t specify a memory limit for a Container, then one of these situations applies:

The Container has no upper bound on the amount of memory it uses. The Container could use

all of the memory available on the Node where it is running.

kubectl describe pod memory-demo-3 --namespace=mem-example

Events:
 ... Reason Message
 ------ -------
 ... FailedScheduling No nodes are available that match all of the following pr

128974848, 129e6, 129M , 123Mi

kubectl delete pod memory-demo-3 --namespace=mem-example

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 10/11

The Container is running in a namespace that has a default memory limit, and the Container is

automatically assigned the default limit. Cluster administrators can use a LimitRange to specify

a default value for the memory limit.

Motivation for memory requests and limits

By con�guring memory requests and limits for the Containers that run in your cluster, you can make

e�cient use of the memory resources available on your cluster’s Nodes. By keeping a Pod’s memory

request low, you give the Pod a good chance of being scheduled. By having a memory limit that is

greater than the memory request, you accomplish two things:

The Pod can have bursts of activity where it makes use of memory that happens to be available.

The amount of memory a Pod can use during a burst is limited to some reasonable amount.

Clean up

Delete your namespace. This deletes all the Pods that you created for this task:

What’s next

For app developers

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

kubectl delete namespace mem-example

https://kubernetes.io/docs/api-reference/v1.7/#limitrange-v1-core
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/
http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/

10/23/2017 Assign Memory Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/ 11/11

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 1/8

Assign CPU Resources to Containers and
Pods

This page shows how to assign a CPU request and a CPU limit to a Container. A Container is

guaranteed to have as much CPU as it requests, but is not allowed to use more CPU than its limit.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Each node in your cluster must have at least 1 cpu.

A few of the steps on this page require that the Heapster service is running in your cluster. But if you

don’t have Heapster running, you can do most of the steps, and it won’t be a problem if you skip the

Heapster steps.

To see whether the Heapster service is running, enter this command:

Before you begin
Create a namespace
Specify a CPU request and a CPU limit
CPU units
Specify a CPU request that is too big for your Nodes
If you don’t specify a CPU limit
Motivation for CPU requests and limits
Clean up
What’s next

For app developers
For cluster administrators

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes/heapster

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 2/8

If the heapster service is running, it shows in the output:

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Specify a CPU request and a CPU limit

To specify a CPU request for a Container, include the resources:requests �eld in the Container’s

resource manifest. To specify a CPU limit, include resources:limits .

In this exercise, you create a Pod that has one Container. The Container has a CPU request of 0.5 cpu

and a CPU limit of 1 cpu. Here’s the con�guration �le for the Pod:

cpu-request-limit.yaml

kubectl get services --namespace=kube-system

NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-system heapster 10.11.240.9 <none> 80/TCP 6d

kubectl create namespace cpu-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/cpu-request-limit.yaml

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 3/8

cpu-request-limit.yaml

In the con�guration �le, the args section provides arguments for the Container when it starts. The

-cpus "2" argument tells the Container to attempt to use 2 cpus.

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the one Container in the Pod has a CPU request of 500 millicpu and a CPU

limit of 1 cpu.

apiVersion: v1
kind: Pod
metadata:
 name: cpu-demo
spec:
 containers:
 - name: cpu-demo-ctr
 image: vish/stress
 resources:
 limits:
 cpu: "1"
 requests:
 cpu: "0.5"
 args:
 - -cpus
 - "2"

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/cpu-request-li

kubectl get pod cpu-demo --namespace=cpu-example

kubectl get pod cpu-demo --output=yaml --namespace=cpu-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/cpu-request-limit.yaml

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 4/8

Start a proxy so that you can call the heapster service:

In another command window, get the CPU usage rate from the heapster service:

The output shows that the Pod is using 974 millicpu, which is just a bit less than the limit of 1 cpu

speci�ed in the Pod’s con�guration �le.

Recall that by setting -cpu "2" , you con�gured the Container to attempt to use 2 cpus. But the

Container is only being allowed to use about 1 cpu. The Container’s CPU use is being throttled,

because the Container is attempting to use more CPU resources than its limit.

Note: There’s another possible explanation for the CPU throttling. The Node might not have

enough CPU resources available. Recall that the prerequisites for this exercise require that

each of your Nodes has at least 1 cpu. If your Container is running on a Node that has only 1

cpu, the Container cannot use more than 1 cpu regardless of the CPU limit speci�ed for the

Container.

CPU units

resources:
 limits:
 cpu: "1"
 requests:
 cpu: 500m

kubectl proxy

curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/a

{
 "timestamp": "2017-06-22T18:48:00Z",
 "value": 974
}

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 5/8

The CPU resource is measured in cpu units. One cpu, in Kubernetes, is equivalent to:

1 AWS vCPU

1 GCP Core

1 Azure vCore

1 Hyperthread on a bare-metal Intel processor with Hyperthreading

Fractional values are allowed. A Container that requests 0.5 cpu is guaranteed half as much CPU as

a Container that requests 1 cpu. You can use the su�x m to mean milli. For example 100m cpu, 100

millicpu, and 0.1 cpu are all the same. Precision �ner than 1m is not allowed.

CPU is always requested as an absolute quantity, never as a relative quantity; 0.1 is the same

amount of CPU on a single-core, dual-core, or 48-core machine.

Delete your Pod:

Specify a CPU request that is too big for your Nodes

CPU requests and limits are associated with Containers, but it is useful to think of a Pod as having a

CPU request and limit. The CPU request for a Pod is the sum of the CPU requests for all the

Containers in the Pod. Likewise, the CPU limit for a Pod is the sum of the CPU limits for all the

Containers in the Pod.

Pod scheduling is based on requests. A Pod is scheduled to run on a Node only if the Node has

enough CPU resources available to satisfy the Pod’s CPU request.

In this exercise, you create a Pod that has a CPU request so big that it exceeds the capacity of any

Node in your cluster. Here is the con�guration �le for a Pod that has one Container. The Container

requests 100 cpu, which is likely to exceed the capacity of any Node in your cluster.

cpu-request-limit-2.yaml

kubectl delete pod cpu-demo --namespace=cpu-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/cpu-request-limit-2.yaml

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 6/8

cpu-request-limit-2.yaml

Create the Pod:

View the Pod’s status:

The output shows that the Pod’s status is Pending. That is, the Pod has not been scheduled to run on

any Node, and it will remain in the Pending state inde�nitely:

View detailed information about the Pod, including events:

apiVersion: v1
kind: Pod
metadata:
 name: cpu-demo-2
spec:
 containers:
 - name: cpu-demo-ctr-2
 image: vish/stress
 resources:
 limits:
 cpu: "100"
 requests:
 cpu: "100"
 args:
 - -cpus
 - "2"

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/cpu-request-li

kubectl get pod cpu-demo-2 --namespace=cpu-example

kubectl get pod cpu-demo-2 --namespace=cpu-example
NAME READY STATUS RESTARTS AGE
cpu-demo-2 0/1 Pending 0 7m

kubectl describe pod cpu-demo-2 --namespace=cpu-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/cpu-request-limit-2.yaml

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 7/8

The output shows that the Container cannot be scheduled because of insu�cient CPU resources on

the Nodes:

Delete your Pod:

If you don’t specify a CPU limit

If you don’t specify a CPU limit for a Container, then one of these situations applies:

The Container has no upper bound on the CPU resources it can use. The Container could use all

of the CPU resources available on the Node where it is running.

The Container is running in a namespace that has a default CPU limit, and the Container is

automatically assigned the default limit. Cluster administrators can use a LimitRange to specify

a default value for the CPU limit.

Motivation for CPU requests and limits

By con�guring the CPU requests and limits of the Containers that run in your cluster, you can make

e�cient use of the CPU resources available on your cluster’s Nodes. By keeping a Pod’s CPU request

low, you give the Pod a good chance of being scheduled. By having a CPU limit that is greater than

the CPU request, you accomplish two things:

The Pod can have bursts of activity where it makes use of CPU resources that happen to be

available.

The amount of CPU resources a Pod can use during a burst is limited to some reasonable

amount.

Events:
 Reason Message
 ------ -------
 FailedScheduling No nodes are available that match all of the following pre

kubectl delete pod cpu-demo-2 --namespace=cpu-example

https://kubernetes.io/docs/api-reference/v1.7/#limitrange-v1-core/

10/23/2017 Assign CPU Resources to Containers and Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/ 8/8

Clean up

Delete your namespace:

What’s next

For app developers

Assign Memory Resources to Containers and Pods

Con�gure Quality of Service for Pods

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

kubectl delete namespace cpu-example

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/
http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 1/9

Con�gure Quality of Service for Pods

This page shows how to con�gure Pods so that they will be assigned particular Quality of Service

(QoS) classes. Kubernetes uses QoS classes to make decisions about scheduling and evicting Pods.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

QoS classes

When Kubernetes creates a Pod it assigns one of these QoS classes to the Pod:

Guaranteed

Burstable

Before you begin
QoS classes
Create a namespace
Create a Pod that gets assigned a QoS class of Guaranteed
Create a Pod that gets assigned a QoS class of Burstable
Create a Pod that gets assigned a QoS class of BestEffort
Create a Pod that has two Containers
Clean up
What’s next

For app developers
For cluster administrators

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 2/9

BestEffort

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Create a Pod that gets assigned a QoS class of
Guaranteed

For a Pod to be given a QoS class of Guaranteed:

Every Container in the Pod must have a memory limit and a memory request, and they must be

the same.

Every Container in the Pod must have a cpu limit and a cpu request, and they must be the same.

Here is the con�guration �le for a Pod that has one Container. The Container has a memory limit and

a memory request, both equal to 200 MiB. The Container has a cpu limit and a cpu request, both

equal to 700 millicpu:

qos-pod.yaml

kubectl create namespace qos-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/qos-pod.yaml

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 3/9

qos-pod.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of Guaranteed. The output also veri�es

that the Pod’s Container has a memory request that matches its memory limit, and it has a cpu

request that matches its cpu limit.

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo
spec:
 containers:
 - name: qos-demo-ctr
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "700m"
 requests:
 memory: "200Mi"
 cpu: "700m"

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/qos-pod.yaml -

kubectl get pod qos-demo --namespace=qos-example --output=yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/qos-pod.yaml

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 4/9

Note: If a Container speci�es its own memory limit, but does not specify a memory request,

Kubernetes automatically assigns a memory request that matches the limit. Similarly, if a

Container speci�es its own cpu limit, but does not specify a cpu request, Kubernetes

automatically assigns a cpu request that matches the limit.

Delete your Pod:

Create a Pod that gets assigned a QoS class of
Burstable

A Pod is given a QoS class of Burstable if:

The Pod does not meet the criteria for QoS class Guaranteed.

At least one Container in the Pod has a memory or cpu request.

Here is the con�guration �le for a Pod that has one Container. The Container has a memory limit of

200 MiB and a memory request of 100 MiB.

qos-pod-2.yaml

spec:
 containers:
 ...
 resources:
 limits:
 cpu: 700m
 memory: 200Mi
 requests:
 cpu: 700m
 memory: 200Mi
...
 qosClass: Guaranteed

kubectl delete pod qos-demo --namespace=qos-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/qos-pod-2.yaml

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 5/9

qos-pod-2.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of Burstable.

Delete your Pod:

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo-2
spec:
 containers:
 - name: qos-demo-2-ctr
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/qos-pod-2.yaml

kubectl get pod qos-demo-2 --namespace=qos-example --output=yaml

spec:
 containers:
 - image: nginx
 imagePullPolicy: Always
 name: qos-demo-2-ctr
 resources:
 limits:
 memory: 200Mi
 requests:
 memory: 100Mi
...
 qosClass: Burstable

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/qos-pod-2.yaml

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 6/9

Create a Pod that gets assigned a QoS class of
BestEffort

For a Pod to be given a QoS class of BestEffort, the Containers in the Pod must not have any

memory or cpu limits or requests.

Here is the con�guration �le for a Pod that has one Container. The Container has no memory or cpu

limits or requests:

qos-pod-3.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of BestEffort.

kubectl delete pod qos-demo-2 --namespace=qos-example

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo-3
spec:
 containers:
 - name: qos-demo-3-ctr
 image: nginx

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/qos-pod-3.yaml

kubectl get pod qos-demo-3 --namespace=qos-example --output=yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/qos-pod-3.yaml

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 7/9

Delete your Pod:

Create a Pod that has two Containers

Here is the con�guration �le for a Pod that has two Containers. One container speci�es a memory

request of 200 MiB. The other Container does not specify any requests or limits.

qos-pod-4.yaml

Notice that this Pod meets the criteria for QoS class Burstable. That is, it does not meet the criteria

for QoS class Guaranteed, and one of its Containers has a memory request.

Create the Pod:

spec:
 containers:
 ...
 resources: {}
 ...
 qosClass: BestEffort

kubectl delete pod qos-demo-3 --namespace=qos-example

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo-4
spec:
 containers:

 - name: qos-demo-4-ctr-1
 image: nginx
 resources:
 requests:
 memory: "200Mi"

 - name: qos-demo-4-ctr-2
 image: redis

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/qos-pod-4.yaml

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 8/9

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of Burstable:

Delete your Pod:

Clean up

Delete your namespace:

What’s next

For app developers

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/qos-pod-4.yaml

kubectl get pod qos-demo-4 --namespace=qos-example --output=yaml

spec:
 containers:
 ...
 name: qos-demo-4-ctr-1
 resources:
 requests:
 memory: 200Mi
 ...
 name: qos-demo-4-ctr-2
 resources: {}
 ...
 qosClass: Burstable

kubectl delete pod qos-demo-4 --namespace=qos-example

kubectl delete namespace qos-example

10/23/2017 Configure Quality of Service for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/ 9/9

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/

10/23/2017 Assign Opaque Integer Resources to a Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/ 1/4

Assign Opaque Integer Resources to a
Container

This page shows how to assign opaque integer resources to a Container.

DEPRECATION NOTICE: As of Kubernetes v1.8 , this has been deprecated

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Before you do this exercise, do the exercise in Advertise Opaque Integer Resources for a Node. That

will con�gure one of your Nodes to advertise a dongle resource.

Assign an opaque integer resource to a Pod

To request an opaque integer resource, include the resources:requests �eld in your Container

manifest. Opaque integer resources have the pre�x

pod.alpha.kubernetes.io/opaque-int-resource- .

Before you begin
Assign an opaque integer resource to a Pod
Attempt to create a second Pod
Clean up
What’s next

For application developers
For cluster administrators

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/

10/23/2017 Assign Opaque Integer Resources to a Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/ 2/4

Here is the con�guration �le for a Pod that has one Container:

oir-pod.yaml

In the con�guration �le, you can see that the Container requests 3 dongles.

Create a Pod:

Verify that the Pod is running:

Describe the Pod:

The output shows dongle requests:

Attempt to create a second Pod

apiVersion: v1
kind: Pod
metadata:
 name: oir-demo
spec:
 containers:
 - name: oir-demo-ctr
 image: nginx
 resources:
 requests:
 pod.alpha.kubernetes.io/opaque-int-resource-dongle: 3

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/oir-pod.yaml

kubectl get pod oir-demo

kubectl describe pod oir-demo

Requests:
 pod.alpha.kubernetes.io/opaque-int-resource-dongle: 3

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/oir-pod.yaml

10/23/2017 Assign Opaque Integer Resources to a Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/ 3/4

Here is the con�guration �le for a Pod that has one Container. The Container requests two dongles.

oir-pod-2.yaml

Kubernetes will not be able to satisfy the request for two dongles, because the �rst Pod used three of

the four available dongles.

Attempt to create a Pod:

Describe the Pod

The output shows that the Pod cannot be scheduled, because there is no Node that has 2 dongles

available:

apiVersion: v1
kind: Pod
metadata:
 name: oir-demo-2
spec:
 containers:
 - name: oir-demo-2-ctr
 image: nginx
 resources:
 requests:
 pod.alpha.kubernetes.io/opaque-int-resource-dongle: 2

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/oir-pod-2.yaml

kubectl describe pod oir-demo-2

Conditions:
 Type Status
 PodScheduled False
...
Events:
 ...
 ... Warning FailedScheduling pod (oir-demo-2) failed to fit in any node
fit failure summary on nodes : Insufficient pod.alpha.kubernetes.io/opaque-int-res

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/oir-pod-2.yaml

10/23/2017 Assign Opaque Integer Resources to a Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/ 4/4

View the Pod status:

The output shows that the Pod was created, but not scheduled to run on a Node. It has a status of

Pending:

Clean up

Delete the Pod that you created for this exercise:

What’s next

For application developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

For cluster administrators

Advertise Opaque Integer Resources for a Node

kubectl get pod oir-demo-2

NAME READY STATUS RESTARTS AGE
oir-demo-2 0/1 Pending 0 6m

kubectl delete pod oir-demo

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/

10/23/2017 Configure a Pod to Use a Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-volume-storage/ 1/4

Con�gure a Pod to Use a Volume for Storage

This page shows how to con�gure a Pod to use a Volume for storage.

A Container’s �le system lives only as long as the Container does, so when a Container terminates

and restarts, changes to the �lesystem are lost. For more consistent storage that is independent of

the Container, you can use a Volume. This is especially important for stateful applications, such as

key-value stores and databases. For example, Redis is a key-value cache and store.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Con�gure a volume for a Pod

In this exercise, you create a Pod that runs one Container. This Pod has a Volume of type emptyDir

that lasts for the life of the Pod, even if the Container terminates and restarts. Here is the

con�guration �le for the Pod:

pod-redis.yaml

Before you begin
Con�gure a volume for a Pod
What’s next

http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/concepts/storage/volumes/#emptydir
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/pod-redis.yaml

10/23/2017 Configure a Pod to Use a Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-volume-storage/ 2/4

pod-redis.yaml

1. Create the Pod:

2. Verify that the Pod’s Container is running, and then watch for changes to the Pod:

The output looks like this:

3. In another terminal, get a shell to the running Container:

4. In your shell, go to /data/redis , and create a �le:

apiVersion: v1
kind: Pod
metadata:
 name: redis
spec:
 containers:
 - name: redis
 image: redis
 volumeMounts:
 - name: redis-storage
 mountPath: /data/redis
 volumes:
 - name: redis-storage
 emptyDir: {}

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/pod-redis.y

kubectl get pod redis --watch

NAME READY STATUS RESTARTS AGE

redis 1/1 Running 0 13s

kubectl exec -it redis -- /bin/bash

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/pod-redis.yaml

10/23/2017 Configure a Pod to Use a Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-volume-storage/ 3/4

5. In your shell, list the running processes:

The output is similar to this:

6. In your shell, kill the redis process:

where <pid> is the redis process ID (PID).

7. In your original terminal, watch for changes to the redis Pod. Eventually, you will see something

like this:

At this point, the Container has terminated and restarted. This is because the redis Pod has a

restartPolicy of Always .

1. Get a shell into the restarted Container:

root@redis:/data/redis# echo Hello > test-file

root@redis:/data/redis# ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

redis 1 0.1 0.1 33308 3828 ? Ssl 00:46 0:00 redis-server *

root 12 0.0 0.0 20228 3020 ? Ss 00:47 0:00 /bin/bash

root 15 0.0 0.0 17500 2072 ? R+ 00:48 0:00 ps aux

root@redis:/data/redis# kill <pid>

NAME READY STATUS RESTARTS AGE

redis 1/1 Running 0 13s

redis 0/1 Completed 0 6m

redis 1/1 Running 1 6m

http://localhost:4000/docs/api-reference/v1.8/#podspec-v1-core

10/23/2017 Configure a Pod to Use a Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-volume-storage/ 4/4

2. In your shell, goto /data/redis , and verify that test-file is still there.

What’s next

See Volume.

See Pod.

In addition to the local disk storage provided by emptyDir , Kubernetes supports many different

network-attached storage solutions, including PD on GCE and EBS on EC2, which are preferred

for critical data, and will handle details such as mounting and unmounting the devices on the

nodes. See Volumes for more details.

kubectl exec -it redis -- /bin/bash

http://localhost:4000/docs/api-reference/v1.8/#volume-v1-core
http://localhost:4000/docs/api-reference/v1.8/#pod-v1-core
http://localhost:4000/docs/concepts/storage/volumes/

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 1/8

Con�gure a Pod to Use a PersistentVolume
for Storage

This page shows how to con�gure a Pod to use a PersistentVolumeClaim for storage. Here is a

summary of the process:

1. A cluster administrator creates a PersistentVolume that is backed by physical storage. The

administrator does not associate the volume with any Pod.

2. A cluster user creates a PersistentVolumeClaim, which gets automatically bound to a suitable

PersistentVolume.

3. The user creates a Pod that uses the PersistentVolumeClaim as storage.

Before you begin

You need to have a Kubernetes cluster that has only one Node, and the kubectl command-line

tool must be con�gured to communicate with your cluster. If you do not already have a single-

node cluster, you can create one by using Minikube.

Familiarize yourself with the material in Persistent Volumes.

Create an index.html �le on your Node

Before you begin
Create an index.html �le on your Node
Create a PersistentVolume
Create a PersistentVolumeClaim
Create a Pod
Access control
What’s next

Reference

http://localhost:4000/docs/getting-started-guides/minikube
http://localhost:4000/docs/concepts/storage/persistent-volumes/

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 2/8

Open a shell to the Node in your cluster. How you open a shell depends on how you set up your

cluster. For example, if you are using Minikube, you can open a shell to your Node by entering

minikube ssh .

In your shell, create a /tmp/data directory:

In the /tmp/data directory, create an index.html �le:

Create a PersistentVolume

In this exercise, you create a hostPath PersistentVolume. Kubernetes supports hostPath for

development and testing on a single-node cluster. A hostPath PersistentVolume uses a �le or

directory on the Node to emulate network-attached storage.

In a production cluster, you would not use hostPath. Instead a cluster administrator would provision

a network resource like a Google Compute Engine persistent disk, an NFS share, or an Amazon

Elastic Block Store volume. Cluster administrators can also use StorageClasses to set up dynamic

provisioning.

Here is the con�guration �le for the hostPath PersistentVolume:

task-pv-volume.yaml

mkdir /tmp/data

echo 'Hello from Kubernetes storage' > /tmp/data/index.html

http://localhost:4000/docs/resources-reference/v1.8/#storageclass-v1-storage
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/task-pv-volume.yaml

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 3/8

task-pv-volume.yaml

The con�guration �le speci�es that the volume is at /tmp/data on the the cluster’s Node. The

con�guration also speci�es a size of 10 gibibytes and an access mode of ReadWriteOnce , which

means the volume can be mounted as read-write by a single Node. It de�nes the StorageClass name

manual for the PersistentVolume, which will be used to bind PersistentVolumeClaim requests to this

PersistentVolume.

Create the PersistentVolume:

View information about the PersistentVolume:

The output shows that the PersistentVolume has a STATUS of Available . This means it has not

yet been bound to a PersistentVolumeClaim.

kind: PersistentVolume
apiVersion: v1
metadata:
 name: task-pv-volume
 labels:
 type: local
spec:
 storageClassName: manual
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/tmp/data"

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-volume

kubectl get pv task-pv-volume

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM ST
task-pv-volume 10Gi RWO Retain Available ma

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/task-pv-volume.yaml
http://localhost:4000/docs/concepts/storage/persistent-volumes/#class

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 4/8

Create a PersistentVolumeClaim

The next step is to create a PersistentVolumeClaim. Pods use PersistentVolumeClaims to request

physical storage. In this exercise, you create a PersistentVolumeClaim that requests a volume of at

least three gibibytes that can provide read-write access for at least one Node.

Here is the con�guration �le for the PersistentVolumeClaim:

task-pv-claim.yaml

Create the PersistentVolumeClaim:

After you create the PersistentVolumeClaim, the Kubernetes control plane looks for a

PersistentVolume that satis�es the claim’s requirements. If the control plane �nds a suitable

PersistentVolume with the same StorageClass, it binds the claim to the volume.

Look again at the PersistentVolume:

Now the output shows a STATUS of Bound .

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: task-pv-claim
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 3Gi

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-claim.

kubectl get pv task-pv-volume

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/task-pv-claim.yaml

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 5/8

Look at the PersistentVolumeClaim:

The output shows that the PersistentVolumeClaim is bound to your PersistentVolume,

task-pv-volume .

Create a Pod

The next step is to create a Pod that uses your PersistentVolumeClaim as a volume.

Here is the con�guration �le for the Pod:

task-pv-pod.yaml

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM
task-pv-volume 10Gi RWO Retain Bound default/task-p

kubectl get pvc task-pv-claim

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS
task-pv-claim Bound task-pv-volume 10Gi RWO manual

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/task-pv-pod.yaml

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 6/8

task-pv-pod.yaml

Notice that the Pod’s con�guration �le speci�es a PersistentVolumeClaim, but it does not specify a

PersistentVolume. From the Pod’s point of view, the claim is a volume.

Create the Pod:

Verify that the Container in the Pod is running;

Get a shell to the Container running in your Pod:

In your shell, verify that nginx is serving the index.html �le from the hostPath volume:

kind: Pod
apiVersion: v1
metadata:
 name: task-pv-pod
spec:

 volumes:
 - name: task-pv-storage
 persistentVolumeClaim:
 claimName: task-pv-claim

 containers:
 - name: task-pv-container
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: task-pv-storage

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-pod.ya

kubectl get pod task-pv-pod

kubectl exec -it task-pv-pod -- /bin/bash

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/task-pv-pod.yaml

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 7/8

The output shows the text that you wrote to the index.html �le on the hostPath volume:

Access control

Storage con�gured with a group ID (GID) allows writing only by Pods using the same GID.

Mismatched or missing GIDs cause permission denied errors. To reduce the need for coordination

with users, an administrator can annotate a PersistentVolume with a GID. Then the GID is

automatically added to any Pod that uses the PersistentVolume.

Use the pv.beta.kubernetes.io/gid annotation as follows:

When a Pod consumes a PersistentVolume that has a GID annotation, the annotated GID is applied

to all Containers in the Pod in the same way that GIDs speci�ed in the Pod’s security context are.

Every GID, whether it originates from a PersistentVolume annotation or the Pod’s speci�cation, is

applied to the �rst process run in each Container.

Note: When a Pod consumes a PersistentVolume, the GIDs associated with the

PersistentVolume are not present on the Pod resource itself.

What’s next

root@task-pv-pod:/# apt-get update
root@task-pv-pod:/# apt-get install curl
root@task-pv-pod:/# curl localhost

Hello from Kubernetes storage

kind: PersistentVolume
apiVersion: v1
metadata:
 name: pv1
 annotations:
 pv.beta.kubernetes.io/gid: "1234"

10/23/2017 Configure a Pod to Use a PersistentVolume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-persistent-volume-storage/ 8/8

Learn more about PersistentVolumes.

Read the Persistent Storage design document.

Reference

PersistentVolume

PersistentVolumeSpec

PersistentVolumeClaim

PersistentVolumeClaimSpec

http://localhost:4000/docs/concepts/storage/persistent-volumes/
https://git.k8s.io/community/contributors/design-proposals/storage/persistent-storage.md
http://localhost:4000/docs/resources-reference/v1.8/#persistentvolume-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#persistentvolumespec-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#persistentvolumeclaim-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#persistentvolumeclaimspec-v1-core

10/23/2017 Configure a Pod to Use a Projected Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-projected-volume-storage/ 1/3

Con�gure a Pod to Use a Projected Volume
for Storage

This page shows how to use a projected volume to mount several existing volume sources into

the same directory. Currently, secret , configMap , and downwardAPI volumes can be projected.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Con�gure a projected volume for a pod

In this exercise, you create username and password Secrets from local �les. You then create a Pod

that runs one Container, using a projected Volume to mount the Secrets into the same shared

directory.

Here is the con�guration �le for the Pod:

projected-volume.yaml

Before you begin
Con�gure a projected volume for a pod
What’s next

http://localhost:4000/docs/concepts/storage/volumes/#projected
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/concepts/storage/volumes/#projected
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/projected-volume.yaml

10/23/2017 Configure a Pod to Use a Projected Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-projected-volume-storage/ 2/3

projected-volume.yaml

1. Create the Secrets:

2. Create the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: test-projected-volume
spec:
 containers:
 - name: test-projected-volume
 image: busybox
 args:
 - sleep
 - "86400"
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: user
 - secret:
 name: pass

Create files containing the username and password:

echo -n "admin" > ./username.txt

echo -n "1f2d1e2e67df" > ./password.txt

Package these files into secrets:

kubectl create secret generic user --from-file=./username.txt

kubectl create secret generic pass --from-file=./password.txt

kubectl create -f projected-volume.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/projected-volume.yaml

10/23/2017 Configure a Pod to Use a Projected Volume for Storage - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-projected-volume-storage/ 3/3

3. Verify that the Pod’s Container is running, and then watch for changes to the Pod:

The output looks like this:

4. In another terminal, get a shell to the running Container:

5. In your shell, verify that the projected-volume directory contains your projected sources:

What’s next

Learn more about projected volumes.

Read the the all-in-one volume design document.

kubectl get --watch pod test-projected-volume

NAME READY STATUS RESTARTS AGE

test-projected-volume 1/1 Running 0 14s

kubectl exec -it test-projected-volume -- /bin/sh

/ # ls /projected-volume/

http://localhost:4000/docs/concepts/storage/volumes/#projected
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/all-in-one-volume.md

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 1/10

Con�gure a Security Context for a Pod or
Container

A security context de�nes privilege and access control settings for a Pod or Container. Security

context settings include:

Discretionary Access Control: Permission to access an object, like a �le, is based on user ID

(UID) and group ID (GID).

Security Enhanced Linux (SELinux): Objects are assigned security labels.

Running as privileged or unprivileged.

Linux Capabilities: Give a process some privileges, but not all the privileges of the root user.

AppArmor: Use program pro�les to restrict the capabilities of individual programs.

Seccomp: Limit a process’s access to open �le descriptors.

AllowPrivilegeEscalation: Controls whether a process can gain more privileges than its parent

process. This bool directly controls whether the no_new_privs �ag gets set on the container

process. AllowPrivilegeEscalation is true always when the container is: 1) run as Privileged OR 2)

has CAP_SYS_ADMIN .

For more information about security mechanisms in Linux, see Overview of Linux Kernel Security

Features

Before you begin

Before you begin
Set the security context for a Pod
Set the security context for a Container
Set capabilities for a Container
Assign SELinux labels to a Container
Discussion
What’s next

https://wiki.archlinux.org/index.php/users_and_groups
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://linux-audit.com/linux-capabilities-hardening-linux-binaries-by-removing-setuid/
http://localhost:4000/docs/tutorials/clusters/apparmor/
https://en.wikipedia.org/wiki/Seccomp
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
https://www.linux.com/learn/overview-linux-kernel-security-features

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 2/10

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Set the security context for a Pod

To specify security settings for a Pod, include the securityContext �eld in the Pod speci�cation.

The securityContext �eld is a PodSecurityContext object. The security settings that you specify

for a Pod apply to all Containers in the Pod. Here is a con�guration �le for a Pod that has a

securityContext and an emptyDir volume:

security-context.yaml

In the con�guration �le, the runAsUser �eld speci�es that for any Containers in the Pod, the �rst

process runs with user ID 1000. The fsGroup �eld speci�es that group ID 2000 is associated with

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000
 fsGroup: 2000
 volumes:
 - name: sec-ctx-vol
 emptyDir: {}
 containers:
 - name: sec-ctx-demo
 image: gcr.io/google-samples/node-hello:1.0
 volumeMounts:
 - name: sec-ctx-vol
 mountPath: /data/demo
 allowPrivilegeEscalation: false

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/api-reference/v1.8/#podsecuritycontext-v1-core
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/security-context.yaml

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 3/10

all Containers in the Pod. Group ID 2000 is also associated with the volume mounted at

/data/demo and with any �les created in that volume.

Create the Pod:

Verify that the Pod’s Container is running:

Get a shell to the running Container:

In your shell, list the running processes:

The output shows that the processes are running as user 1000, which is the value of runAsUser :

In your shell, navigate to /data , and list the one directory:

The output shows that the /data/demo directory has group ID 2000, which is the value of fsGroup .

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/security-conte

kubectl get pod security-context-demo

kubectl exec -it security-context-demo -- sh

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
1000 1 0.0 0.0 4336 724 ? Ss 18:16 0:00 /bin/sh -c node server.j
1000 5 0.2 0.6 772124 22768 ? Sl 18:16 0:00 node server.js
...

cd /data
ls -l

drwxrwsrwx 2 root 2000 4096 Jun 6 20:08 demo

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 4/10

In your shell, navigate to /data/demo , and create a �le:

List the �le in the /data/demo directory:

The output shows that testfile has group ID 2000, which is the value of fsGroup .

Exit your shell:

Set the security context for a Container

To specify security settings for a Container, include the securityContext �eld in the Container

manifest. The securityContext �eld is a SecurityContext object. Security settings that you specify

for a Container apply only to the individual Container, and they override settings made at the Pod

level when there is overlap. Container settings do not affect the Pod’s Volumes.

Here is the con�guration �le for a Pod that has one Container. Both the Pod and the Container have a

securityContext �eld:

security-context-2.yaml

cd demo
echo hello > testfile

ls -l

-rw-r--r-- 1 1000 2000 6 Jun 6 20:08 testfile

exit

http://localhost:4000/docs/api-reference/v1.8/#securitycontext-v1-core
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/security-context-2.yaml

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 5/10

security-context-2.yaml

Create the Pod:

Verify that the Pod’s Container is running:

Get a shell into the running Container:

In your shell, list the running processes:

The output shows that the processes are running as user 2000. This is the value of runAsUser

speci�ed for the Container. It overrides the value 1000 that is speci�ed for the Pod.

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo-2
spec:
 securityContext:
 runAsUser: 1000
 containers:
 - name: sec-ctx-demo-2
 image: gcr.io/google-samples/node-hello:1.0
 securityContext:
 runAsUser: 2000
 allowPrivilegeEscalation: false

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/security-conte

kubectl get pod security-context-demo-2

kubectl exec -it security-context-demo-2 -- sh

ps aux

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/security-context-2.yaml

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 6/10

Exit your shell:

Set capabilities for a Container

With Linux capabilities, you can grant certain privileges to a process without granting all the

privileges of the root user. To add or remove Linux capabilities for a Container, include the

capabilities �eld in the securityContext section of the Container manifest.

First, see what happens when you don’t include a capabilities �eld. Here is con�guration �le that

does not add or remove any Container capabilities:

security-context-3.yaml

Create the Pod:

Verify that the Pod’s Container is running:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
2000 1 0.0 0.0 4336 764 ? Ss 20:36 0:00 /bin/sh -c node s
2000 8 0.1 0.5 772124 22604 ? Sl 20:36 0:00 node server.js
...

exit

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo-3
spec:
 containers:
 - name: sec-ctx-3
 image: gcr.io/google-samples/node-hello:1.0

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/security-conte

http://man7.org/linux/man-pages/man7/capabilities.7.html
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/security-context-3.yaml

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 7/10

Get a shell into the running Container:

In your shell, list the running processes:

The output shows the process IDs (PIDs) for the Container:

In your shell, view the status for process 1:

The output shows the capabilities bitmap for the process:

Make a note of the capabilities bitmap, and then exit your shell:

Next, run a Container that is the same as the preceding container, except that it has additional

capabilities set.

kubectl get pod security-context-demo-3

kubectl exec -it security-context-demo-3 -- sh

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 4336 796 ? Ss 18:17 0:00 /bin/sh -c node server.js
root 5 0.1 0.5 772124 22700 ? Sl 18:17 0:00 node server.js

cd /proc/1
cat status

...
CapPrm: 00000000a80425fb
CapEff: 00000000a80425fb
...

exit

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 8/10

Here is the con�guration �le for a Pod that runs one Container. The con�guration adds the

CAP_NET_ADMIN and CAP_SYS_TIME capabilities:

security-context-4.yaml

Create the Pod:

Get a shell into the running Container:

In your shell, view the capabilities for process 1:

The output shows capabilities bitmap for the process:

apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo-4
spec:
 containers:
 - name: sec-ctx-4
 image: gcr.io/google-samples/node-hello:1.0
 securityContext:
 capabilities:
 add: ["NET_ADMIN", "SYS_TIME"]

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/security-conte

kubectl exec -it security-context-demo-4 -- sh

cd /proc/1
cat status

...
CapPrm: 00000000aa0435fb
CapEff: 00000000aa0435fb
...

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/security-context-4.yaml

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 9/10

Compare the capabilities of the two Containers:

In the capability bitmap of the �rst container, bits 12 and 25 are clear. In the second container, bits 12

and 25 are set. Bit 12 is CAP_NET_ADMIN , and bit 25 is CAP_SYS_TIME . See capability.h for

de�nitions of the capability constants.

Note: Linux capability constants have the form CAP_XXX . But when you list capabilities in

your Container manifest, you must omit the CAP_ portion of the constant. For example, to

add CAP_SYS_TIME , include SYS_TIME in your list of capabilities.

Assign SELinux labels to a Container

To assign SELinux labels to a Container, include the seLinuxOptions �eld in the securityContext

section of your Pod or Container manifest. The seLinuxOptions �eld is an SELinuxOptions object.

Here’s an example that applies an SELinux level:

Note: To assign SELinux labels, the SELinux security module must be loaded on the host

operating system.

Discussion

The security context for a Pod applies to the Pod’s Containers and also to the Pod’s Volumes when

applicable. Speci�cally fsGroup and seLinuxOptions are applied to Volumes as follows:

00000000a80425fb
00000000aa0435fb

...
securityContext:
 seLinuxOptions:
 level: "s0:c123,c456"

https://github.com/torvalds/linux/blob/master/include/uapi/linux/capability.h
http://localhost:4000/docs/api-reference/v1.8/#selinuxoptions-v1-core

10/23/2017 Configure a Security Context for a Pod or Container - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/security-context/ 10/10

fsGroup : Volumes that support ownership management are modi�ed to be owned and writable

by the GID speci�ed in fsGroup . See the Ownership Management design document for more

details.

seLinuxOptions : Volumes that support SELinux labeling are relabeled to be accessible by the

label speci�ed under seLinuxOptions . Usually you only need to set the level section. This

sets the Multi-Category Security (MCS) label given to all Containers in the Pod as well as the

Volumes.

Warning: After you specify an MCS label for a Pod, all Pods with the same label can access

the Volume. If you need inter-Pod protection, you must assign a unique MCS label to each

Pod.

What’s next

PodSecurityContext

SecurityContext

Tuning Docker with the newest security enhancements

Security Contexts design document

Ownership Management design document

Pod Security Policies

AllowPrivilegeEscalation design document

https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md
https://selinuxproject.org/page/NB_MLS
http://localhost:4000/docs/api-reference/v1.8/#podsecuritycontext-v1-core
http://localhost:4000/docs/api-reference/v1.8/#securitycontext-v1-core
https://opensource.com/business/15/3/docker-security-tuning
https://git.k8s.io/community/contributors/design-proposals/auth/security_context.md
https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md
http://localhost:4000/docs/concepts/policy/pod-security-policy/
https://git.k8s.io/community/contributors/design-proposals/auth/no-new-privs.md

10/23/2017 Configure Service Accounts for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/ 1/6

Con�gure Service Accounts for Pods

A service account provides an identity for processes that run in a Pod.

This is a user introduction to Service Accounts. See also the Cluster Admin Guide to Service Accounts.

Note: This document describes how service accounts behave in a cluster set up as

recommended by the Kubernetes project. Your cluster administrator may have customized

the behavior in your cluster, in which case this documentation may not apply.

When you (a human) access the cluster (e.g. using kubectl), you are authenticated by the apiserver

as a particular User Account (currently this is usually admin , unless your cluster administrator has

customized your cluster). Processes in containers inside pods can also contact the apiserver. When

they do, they are authenticated as a particular Service Account (e.g. default).

Use the Default Service Account to access the API
server.

When you create a pod, if you do not specify a service account, it is automatically assigned the

default service account in the same namespace. If you get the raw json or yaml for a pod you

have created (e.g. kubectl get pods/podname -o yaml), you can see the

spec.serviceAccountName �eld has been automatically set.

You can access the API from inside a pod using automatically mounted service account credentials,

as described in Accessing the Cluster. The API permissions a service account has depend on the

authorization plugin and policy in use.

In version 1.6+, you can opt out of automounting API credentials for a service account by setting

automountServiceAccountToken: false on the service account:

http://localhost:4000/docs/admin/service-accounts-admin/
http://localhost:4000/docs/user-guide/working-with-resources/#resources-are-automatically-modified
http://localhost:4000/docs/user-guide/accessing-the-cluster/#accessing-the-api-from-a-pod
http://localhost:4000/docs/admin/authorization/#a-quick-note-on-service-accounts

10/23/2017 Configure Service Accounts for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/ 2/6

In version 1.6+, you can also opt out of automounting API credentials for a particular pod:

The pod spec takes precedence over the service account if both specify a

automountServiceAccountToken value.

Use Multiple Service Accounts.

Every namespace has a default service account resource called default . You can list this and any

other serviceAccount resources in the namespace with this command:

You can create additional ServiceAccount objects like this:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: build-robot
automountServiceAccountToken: false
...

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 serviceAccountName: build-robot
 automountServiceAccountToken: false
 ...

$ kubectl get serviceAccounts
NAME SECRETS AGE
default 1 1d

$ cat > /tmp/serviceaccount.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
 name: build-robot
EOF
$ kubectl create -f /tmp/serviceaccount.yaml
serviceaccount "build-robot" created

10/23/2017 Configure Service Accounts for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/ 3/6

If you get a complete dump of the service account object, like this:

then you will see that a token has automatically been created and is referenced by the service

account.

You may use authorization plugins to set permissions on service accounts.

To use a non-default service account, simply set the spec.serviceAccountName �eld of a pod to

the name of the service account you wish to use.

The service account has to exist at the time the pod is created, or it will be rejected.

You cannot update the service account of an already created pod.

You can clean up the service account from this example like this:

Manually create a service account API token.

Suppose we have an existing service account named “build-robot” as mentioned above, and we

create a new secret manually.

$ kubectl get serviceaccounts/build-robot -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: 2015-06-16T00:12:59Z
 name: build-robot
 namespace: default
 resourceVersion: "272500"
 selfLink: /api/v1/namespaces/default/serviceaccounts/build-robot
 uid: 721ab723-13bc-11e5-aec2-42010af0021e
secrets:
- name: build-robot-token-bvbk5

$ kubectl delete serviceaccount/build-robot

http://localhost:4000/docs/admin/authorization/#a-quick-note-on-service-accounts

10/23/2017 Configure Service Accounts for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/ 4/6

Now you can con�rm that the newly built secret is populated with an API token for the “build-robot”

service account.

Any tokens for non-existent service accounts will be cleaned up by the token controller.

Note: The content of token is elided here.

Add ImagePullSecrets to a service account

First, create an imagePullSecret, as described here. Next, verify it has been created. For example:

$ cat > /tmp/build-robot-secret.yaml <<EOF
apiVersion: v1
kind: Secret
metadata:
 name: build-robot-secret
 annotations:
 kubernetes.io/service-account.name: build-robot
type: kubernetes.io/service-account-token
EOF
$ kubectl create -f /tmp/build-robot-secret.yaml
secret "build-robot-secret" created

$ kubectl describe secrets/build-robot-secret
Name: build-robot-secret
Namespace: default
Labels: <none>
Annotations: kubernetes.io/service-account.name=build-robot
 kubernetes.io/service-account.uid=da68f9c6-9d26-11e7-b84e-002dc528

Type: kubernetes.io/service-account-token

Data
====
ca.crt: 1338 bytes
namespace: 7 bytes
token: ...

http://localhost:4000/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

10/23/2017 Configure Service Accounts for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/ 5/6

Next, modify the default service account for the namespace to use this secret as an

imagePullSecret.

Interactive version requiring manual edit:

$ kubectl get secrets myregistrykey
NAME TYPE DATA AGE
myregistrykey kubernetes.io/.dockerconfigjson 1 1d

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "myregistr

$ kubectl get serviceaccounts default -o yaml > ./sa.yaml
$ cat sa.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: 2015-08-07T22:02:39Z
 name: default
 namespace: default
 resourceVersion: "243024"
 selfLink: /api/v1/namespaces/default/serviceaccounts/default
 uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6
secrets:
- name: default-token-uudge
$ vi sa.yaml
[editor session not shown]
[delete line with key "resourceVersion"]
[add lines with "imagePullSecret:"]
$ cat sa.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: 2015-08-07T22:02:39Z
 name: default
 namespace: default
 selfLink: /api/v1/namespaces/default/serviceaccounts/default
 uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6
secrets:
- name: default-token-uudge
imagePullSecrets:
- name: myregistrykey
$ kubectl replace serviceaccount default -f ./sa.yaml
serviceaccounts/default

10/23/2017 Configure Service Accounts for Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/ 6/6

Now, any new pods created in the current namespace will have this added to their spec:

spec:
 imagePullSecrets:
 - name: myregistrykey

10/23/2017 Pull an Image from a Private Registry - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/pull-image-private-registry/ 1/5

Pull an Image from a Private Registry

This page shows how to create a Pod that uses a Secret to pull an image from a private Docker

registry or repository.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To do this exercise, you need a Docker ID and password.

Log in to Docker

When prompted, enter your Docker username and password.

The login process creates or updates a config.json �le that holds an authorization token.

View the config.json �le:

Before you begin
Log in to Docker
Create a Secret that holds your authorization token
Understanding your Secret
Create a Pod that uses your Secret
What’s next

docker login

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://docs.docker.com/docker-id/

10/23/2017 Pull an Image from a Private Registry - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/pull-image-private-registry/ 2/5

The output contains a section similar to this:

Note: If you use a Docker credentials store, you won’t see that auth entry but a credsStore

entry with the name of the store as value.

Create a Secret that holds your authorization token

Create a Secret named regsecret :

where:

<your-registry-server> is your Private Docker Registry FQDN.

<your-name> is your Docker username.

<your-pword> is your Docker password.

<your-email> is your Docker email.

Understanding your Secret

cat ~/.docker/config.json

{
 "auths": {
 "https://index.docker.io/v1/": {
 "auth": "c3R...zE2"
 }
 }
}

kubectl create secret docker-registry regsecret --docker-server=<your-registry-ser

10/23/2017 Pull an Image from a Private Registry - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/pull-image-private-registry/ 3/5

To understand what’s in the Secret you just created, start by viewing the Secret in YAML format:

The output is similar to this:

The value of the .dockercfg �eld is a base64 representation of your secret data.

Copy the base64 representation of the secret data into a �le named secret64 .

Important: Make sure there are no line breaks in your secret64 �le.

To understand what is in the .dockercfg �eld, convert the secret data to a readable format:

The output is similar to this:

Notice that the secret data contains the authorization token from your config.json �le.

Create a Pod that uses your Secret

Here is a con�guration �le for a Pod that needs access to your secret data:

kubectl get secret regsecret --output=yaml

apiVersion: v1
data:
 .dockercfg: eyJodHRwczovL2luZGV4L ... J0QUl6RTIifX0=
kind: Secret
metadata:
 ...
 name: regsecret
 ...
type: kubernetes.io/dockercfg

base64 -d secret64

{"yourprivateregistry.com":{"username":"janedoe","password":"xxxxxxxxxxx","email":

10/23/2017 Pull an Image from a Private Registry - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/pull-image-private-registry/ 4/5

private-reg-pod.yaml

Copy the contents of private-reg-pod.yaml to your own �le named my-private-reg-pod.yaml .

In your �le, replace <your-private-image> with the path to an image in a private repository.

Example Docker Hub private image:

To pull the image from the private repository, Kubernetes needs credentials. The

imagePullSecrets �eld in the con�guration �le speci�es that Kubernetes should get the

credentials from a Secret named regsecret .

Create a Pod that uses your Secret, and verify that the Pod is running:

What’s next

Learn more about Secrets.

Learn more about using a private registry.

See kubectl create secret docker-registry.

See Secret

apiVersion: v1
kind: Pod
metadata:
 name: private-reg
spec:
 containers:
 - name: private-reg-container
 image: <your-private-image>
 imagePullSecrets:
 - name: regsecret

janedoe/jdoe-private:v1

kubectl create -f my-private-reg-pod.yaml
kubectl get pod private-reg

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/private-reg-pod.yaml
http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/concepts/containers/images/#using-a-private-registry
http://localhost:4000/docs/user-guide/kubectl/v1.6/#-em-secret-docker-registry-em-
http://localhost:4000/docs/api-reference/v1.8/#secret-v1-core

10/23/2017 Pull an Image from a Private Registry - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/pull-image-private-registry/ 5/5

See the imagePullSecrets �eld of PodSpec.

http://localhost:4000/docs/api-reference/v1.8/#podspec-v1-core

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 1/10

Con�gure Liveness and Readiness Probes

This page shows how to con�gure liveness and readiness probes for Containers.

The kubelet uses liveness probes to know when to restart a Container. For example, liveness probes

could catch a deadlock, where an application is running, but unable to make progress. Restarting a

Container in such a state can help to make the application more available despite bugs.

The kubelet uses readiness probes to know when a Container is ready to start accepting tra�c. A

Pod is considered ready when all of its Containers are ready. One use of this signal is to control

which Pods are used as backends for Services. When a Pod is not ready, it is removed from Service

load balancers.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

De�ne a liveness command

Before you begin
De�ne a liveness command
De�ne a liveness HTTP request
De�ne a TCP liveness probe
Use a named port
De�ne readiness probes
Con�gure Probes
What’s next

Reference

http://localhost:4000/docs/admin/kubelet/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 2/10

Many applications running for long periods of time eventually transition to broken states, and cannot

recover except by being restarted. Kubernetes provides liveness probes to detect and remedy such

situations.

In this exercise, you create a Pod that runs a Container based on the

gcr.io/google_containers/busybox image. Here is the con�guration �le for the Pod:

exec-liveness.yaml

In the con�guration �le, you can see that the Pod has a single Container. The periodSeconds �eld

speci�es that the kubelet should perform a liveness probe every 5 seconds. The

initialDelaySeconds �eld tells the kubelet that it should wait 5 second before performing the �rst

probe. To perform a probe, the kubelet executes the command cat /tmp/healthy in the Container.

If the command succeeds, it returns 0, and the kubelet considers the Container to be alive and

healthy. If the command returns a non-zero value, the kubelet kills the Container and restarts it.

When the Container starts, it executes this command:

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: gcr.io/google_containers/busybox
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

/bin/sh -c "touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600"

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/exec-liveness.yaml

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 3/10

For the �rst 30 seconds of the Container’s life, there is a /tmp/healthy �le. So during the �rst 30

seconds, the command cat /tmp/healthy returns a success code. After 30 seconds,

cat /tmp/healthy returns a failure code.

Create the Pod:

Within 30 seconds, view the Pod events:

The output indicates that no liveness probes have failed yet:

After 35 seconds, view the Pod events again:

At the bottom of the output, there are messages indicating that the liveness probes have failed, and

the containers have been killed and recreated.

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/exec-liveness.

kubectl describe pod liveness-exec

FirstSeen LastSeen Count From SubobjectPath Type
--------- -------- ----- ---- ------------- --------
24s 24s 1 {default-scheduler } Normal Schedule
23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal
23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal
23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal
23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal

kubectl describe pod liveness-exec

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 4/10

Wait another 30 seconds, and verify that the Container has been restarted:

The output shows that RESTARTS has been incremented:

De�ne a liveness HTTP request

Another kind of liveness probe uses an HTTP GET request. Here is the con�guration �le for a Pod

that runs a container based on the gcr.io/google_containers/liveness image.

http-liveness.yaml

FirstSeen LastSeen Count From SubobjectPath Type
--------- -------- ----- ---- ------------- --------
37s 37s 1 {default-scheduler } Normal Schedule
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal
2s 2s 1 {kubelet worker0} spec.containers{liveness} Warning

kubectl get pod liveness-exec

NAME READY STATUS RESTARTS AGE
liveness-exec 1/1 Running 1 1m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/http-liveness.yaml

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 5/10

http-liveness.yaml

In the con�guration �le, you can see that the Pod has a single Container. The livenessProbe �eld

speci�es that the kubelet should perform a liveness probe every 3 seconds. The

initialDelaySeconds �eld tells the kubelet that it should wait 3 seconds before performing the

�rst probe. To perform a probe, the kubelet sends an HTTP GET request to the server that is running

in the Container and listening on port 8080. If the handler for the server’s /healthz path returns a

success code, the kubelet considers the Container to be alive and healthy. If the handler returns a

failure code, the kubelet kills the Container and restarts it.

Any code greater than or equal to 200 and less than 400 indicates success. Any other code indicates

failure.

You can see the source code for the server in server.go.

For the �rst 10 seconds that the Container is alive, the /healthz handler returns a status of 200.

After that, the handler returns a status of 500.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: gcr.io/google_containers/liveness
 args:
 - /server
 livenessProbe:
 httpGet:
 path: /healthz
 port: 8080
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 initialDelaySeconds: 3
 periodSeconds: 3

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/http-liveness.yaml
https://github.com/kubernetes/kubernetes/blob/master/test/images/liveness/server.go

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 6/10

The kubelet starts performing health checks 3 seconds after the Container starts. So the �rst couple

of health checks will succeed. But after 10 seconds, the health checks will fail, and the kubelet will kill

and restart the Container.

To try the HTTP liveness check, create a Pod:

After 10 seconds, view Pod events to verify that liveness probes have failed and the Container has

been restarted:

De�ne a TCP liveness probe

A third type of liveness probe uses a TCP Socket. With this con�guration, the kubelet will attempt to

open a socket to your container on the speci�ed port. If it can establish a connection, the container is

considered healthy, if it can’t it is considered a failure.

tcp-liveness-readiness.yaml

http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {
 duration := time.Now().Sub(started)
 if duration.Seconds() > 10 {
 w.WriteHeader(500)
 w.Write([]byte(fmt.Sprintf("error: %v", duration.Seconds())))
 } else {
 w.WriteHeader(200)
 w.Write([]byte("ok"))
 }
})

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/http-liveness.

kubectl describe pod liveness-http

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/tcp-liveness-readiness.yaml

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 7/10

tcp-liveness-readiness.yaml

As you can see, con�guration for a TCP check is quite similar to an HTTP check. This example uses

both readiness and liveness probes. The kubelet will send the �rst readiness probe 5 seconds after

the container starts. This will attempt to connect to the goproxy container on port 8080. If the

probe succeeds, the pod will be marked as ready. The kubelet will continue to run this check every 10

seconds.

In addition to the readiness probe, this con�guration includes a liveness probe. The kubelet will run

the �rst liveness probe 15 seconds after the container starts. Just like the readiness probe, this will

attempt to connect to the goproxy container on port 8080. If the liveness probe fails, the container

will be restarted.

Use a named port

You can use a named ContainerPort for HTTP or TCP liveness checks:

apiVersion: v1
kind: Pod
metadata:
 name: goproxy
 labels:
 app: goproxy
spec:
 containers:
 - name: goproxy
 image: gcr.io/google_containers/goproxy:0.1
 ports:
 - containerPort: 8080
 readinessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 10
 livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 periodSeconds: 20

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/tcp-liveness-readiness.yaml
http://localhost:4000/docs/api-reference/v1.8/#containerport-v1-core

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 8/10

De�ne readiness probes

Sometimes, applications are temporarily unable to serve tra�c. For example, an application might

need to load large data or con�guration �les during startup. In such cases, you don’t want to kill the

application, but you don’t want to send it requests either. Kubernetes provides readiness probes to

detect and mitigate these situations. A pod with containers reporting that they are not ready does

not receive tra�c through Kubernetes Services.

Readiness probes are con�gured similarly to liveness probes. The only difference is that you use the

readinessProbe �eld instead of the livenessProbe �eld.

Con�guration for HTTP and TCP readiness probes also remains identical to liveness probes.

Readiness and liveness probes can be used in parallel for the same container. Using both can ensure

that tra�c does not reach a container that is not ready for it, and that containers are restarted when

they fail.

Con�gure Probes

ports:
- name: liveness-port
 containerPort: 8080
 hostPort: 8080

livenessProbe:
 httpGet:
 path: /healthz
 port: liveness-port

readinessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 9/10

Probes have a number of �elds that you can use to more precisely control the behavior of liveness

and readiness checks:

initialDelaySeconds : Number of seconds after the container has started before liveness

probes are initiated.

periodSeconds : How often (in seconds) to perform the probe. Default to 10 seconds. Minimum

value is 1.

timeoutSeconds : Number of seconds after which the probe times out. Defaults to 1 second.

Minimum value is 1.

successThreshold : Minimum consecutive successes for the probe to be considered

successful after having failed. Defaults to 1. Must be 1 for liveness. Minimum value is 1.

failureThreshold : Minimum consecutive failures for the probe to be considered failed after

having succeeded. Defaults to 3. Minimum value is 1.

HTTP probes have additional �elds that can be set on httpGet :

host : Host name to connect to, defaults to the pod IP. You probably want to set “Host” in

httpHeaders instead.

scheme : Scheme to use for connecting to the host (HTTP or HTTPS). Defaults to HTTP.

path : Path to access on the HTTP server.

httpHeaders : Custom headers to set in the request. HTTP allows repeated headers.

port : Name or number of the port to access on the container. Number must be in the range 1

to 65535.

For an HTTP probe, the kubelet sends an HTTP request to the speci�ed path and port to perform the

check. The kubelet sends the probe to the container’s IP address, unless the address is overridden by

the optional host �eld in httpGet . If scheme �eld is set to HTTPS , the kubelet sends an HTTPS

request skipping the certi�cate veri�cation. In most scenarios, you do not want to set the host �eld.

Here’s one scenario where you would set it. Suppose the Container listens on 127.0.0.1 and the Pod’s

hostNetwork �eld is true. Then host , under httpGet , should be set to 127.0.0.1. If your pod relies

http://localhost:4000/docs/api-reference/v1.8/#probe-v1-core
http://localhost:4000/docs/api-reference/v1.8/#httpgetaction-v1-core

10/23/2017 Configure Liveness and Readiness Probes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/ 10/10

on virtual hosts, which is probably the more common case, you should not use host , but rather set

the Host header in httpHeaders .

What’s next

Learn more about Container Probes.

Reference

Pod

Container

Probe

http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
http://localhost:4000/docs/api-reference/v1.8/#pod-v1-core
http://localhost:4000/docs/api-reference/v1.8/#container-v1-core
http://localhost:4000/docs/api-reference/v1.8/#probe-v1-core

10/23/2017 Assign Pods to Nodes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-pods-nodes/ 1/3

Assign Pods to Nodes

This page shows how to assign a Kubernetes Pod to a particular node in a Kubernetes cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Add a label to a node

1. List the nodes in your cluster:

The output is similar to this:

Before you begin
Add a label to a node
Create a pod that gets scheduled to your chosen node
What’s next

kubectl get nodes

 NAME STATUS AGE VERSION

 worker0 Ready 1d v1.6.0+fff5156

 worker1 Ready 1d v1.6.0+fff5156

 worker2 Ready 1d v1.6.0+fff5156

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Assign Pods to Nodes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-pods-nodes/ 2/3

2. Chose one of your nodes, and add a label to it:

where <your-node-name> is the name of your chosen node.

3. Verify that your chosen node has a disktype=ssd label:

The output is similar to this:

In the preceding output, you can see that the worker0 node has a disktype=ssd label.

Create a pod that gets scheduled to your chosen node

This pod con�guration �le describes a pod that has a node selector, disktype: ssd . This means

that the pod will get scheduled on a node that has a disktype=ssd label.

pod.yaml

kubectl label nodes <your-node-name> disktype=ssd

kubectl get nodes --show-labels

 NAME STATUS AGE VERSION LABELS

 worker0 Ready 1d v1.6.0+fff5156 ...,disktype=ssd,kubernetes.io

 worker1 Ready 1d v1.6.0+fff5156 ...,kubernetes.io/hostname=work

 worker2 Ready 1d v1.6.0+fff5156 ...,kubernetes.io/hostname=work

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/pod.yaml

10/23/2017 Assign Pods to Nodes - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/assign-pods-nodes/ 3/3

pod.yaml

1. Use the con�guration �le to create a pod that will get scheduled on your chosen node:

2. Verify that the pod is running on your chosen node:

The output is similar to this:

What’s next

Learn more about labels and selectors.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 nodeSelector:
 disktype: ssd

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/pod.yaml

kubectl get pods --output=wide

 NAME READY STATUS RESTARTS AGE IP NODE

 nginx 1/1 Running 0 13s 10.200.0.4 worker0

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/pod.yaml
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/

10/23/2017 Configure Pod Initialization - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-initialization/ 1/4

Con�gure Pod Initialization

This page shows how to use an Init Container to initialize a Pod before an application Container runs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Create a Pod that has an Init Container

In this exercise you create a Pod that has one application Container and one Init Container. The init

container runs to completion before the application container starts.

Here is the con�guration �le for the Pod:

init-containers.yaml

Before you begin
Create a Pod that has an Init Container
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/init-containers.yaml

10/23/2017 Configure Pod Initialization - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-initialization/ 2/4

init-containers.yaml

In the con�guration �le, you can see that the Pod has a Volume that the init container and the

application container share.

The init container mounts the shared Volume at /work-dir , and the application container mounts

the shared Volume at /usr/share/nginx/html . The init container runs the following command and

then terminates:

Notice that the init container writes the index.html �le in the root directory of the nginx server.

Create the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: init-demo
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: workdir
 mountPath: /usr/share/nginx/html
 # These containers are run during pod initialization
 initContainers:
 - name: install
 image: busybox
 command:
 - wget
 - "-O"
 - "/work-dir/index.html"
 - http://kubernetes.io
 volumeMounts:
 - name: workdir
 mountPath: "/work-dir"
 dnsPolicy: Default
 volumes:
 - name: workdir
 emptyDir: {}

wget -O /work-dir/index.html http://kubernetes.io

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/init-containers.yaml

10/23/2017 Configure Pod Initialization - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-initialization/ 3/4

Verify that the nginx container is running:

The output shows that the nginx container is running:

Get a shell into the nginx container running in the init-demo Pod:

In your shell, send a GET request to the nginx server:

The output shows that nginx is serving the web page that was written by the init container:

What’s next

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/init-container

kubectl get pod init-demo

NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 43m

kubectl exec -it init-demo -- /bin/bash

root@nginx:~# apt-get update
root@nginx:~# apt-get install curl
root@nginx:~# curl localhost

<!Doctype html>
<html id="home">

<head>
...
"url": "http://kubernetes.io/"}</script>
</head>
<body>
 ...
 <p>Kubernetes is open source giving you the freedom to take advantage ...</p>
 ...

10/23/2017 Configure Pod Initialization - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-initialization/ 4/4

Learn more about communicating between Containers running in the same Pod.

Learn more about Init Containers.

Learn more about Volumes.

Learn more about Debugging Init Containers

http://localhost:4000/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/
http://localhost:4000/docs/concepts/workloads/pods/init-containers/
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/tasks/debug-application-cluster/debug-init-containers/

10/23/2017 Attach Handlers to Container Lifecycle Events - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/ 1/3

Attach Handlers to Container Lifecycle
Events

This page shows how to attach handlers to Container lifecycle events. Kubernetes supports the

postStart and preStop events. Kubernetes sends the postStart event immediately after a Container is

started, and it sends the preStop event immediately before the Container is terminated.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

De�ne postStart and preStop handlers

In this exercise, you create a Pod that has one Container. The Container has handlers for the

postStart and preStop events.

Here is the con�guration �le for the Pod:

lifecycle-events.yaml

Before you begin
De�ne postStart and preStop handlers
Discussion
What’s next

Reference

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/lifecycle-events.yaml

10/23/2017 Attach Handlers to Container Lifecycle Events - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/ 2/3

lifecycle-events.yaml

In the con�guration �le, you can see that the postStart command writes a message �le to the

Container’s /usr/share directory. The preStop command shuts down nginx gracefully. This is

helpful if the Container is being terminated because of a failure.

Create the Pod:

Verify that the Container in the Pod is running:

Get a shell into the Container running in your Pod:

In your shell, verify that the postStart handler created the message �le:

apiVersion: v1
kind: Pod
metadata:
 name: lifecycle-demo
spec:
 containers:
 - name: lifecycle-demo-container
 image: nginx

 lifecycle:
 postStart:
 exec:
 command: ["/bin/sh", "-c", "echo Hello from the postStart handler > /usr
 preStop:
 exec:
 command: ["/usr/sbin/nginx","-s","quit"]

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/lifecycle-even

kubectl get pod lifecycle-demo

kubectl exec -it lifecycle-demo -- /bin/bash

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/configure-pod-container/lifecycle-events.yaml

10/23/2017 Attach Handlers to Container Lifecycle Events - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/ 3/3

The output shows the text written by the postStart handler:

Discussion

Kubernetes sends the postStart event immediately after the Container is created. There is no

guarantee, however, that the postStart handler is called before the Container’s entrypoint is called.

The postStart handler runs asynchronously relative to the Container’s code, but Kubernetes’

management of the container blocks until the postStart handler completes. The Container’s status is

not set to RUNNING until the postStart handler completes.

Kubernetes sends the preStop event immediately before the Container is terminated. Kubernetes’

management of the Container blocks until the preStop handler completes, unless the Pod’s grace

period expires. For more details, see Termination of Pods.

What’s next

Learn more about Container lifecycle hooks.

Learn more about the lifecycle of a Pod.

Reference

Lifecycle

Container

See terminationGracePeriodSeconds in PodSpec

root@lifecycle-demo:/# cat /usr/share/message

Hello from the postStart handler

http://localhost:4000/docs/user-guide/pods/#termination-of-pods
http://localhost:4000/docs/concepts/containers/container-lifecycle-hooks/
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
http://localhost:4000/docs/resources-reference/v1.8/#lifecycle-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#container-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#podspec-v1-core

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 1/7

Con�gure Containers Using a Con�gMap

This page shows you how to con�gure an application using a Con�gMap. Con�gMaps allow you to

decouple con�guration artifacts from image content to keep containerized applications portable.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Use kubectl to create a Con�gMap

Use the kubectl create configmap command to create con�gmaps from directories, �les, or

literal values:

where <map-name> is the name you want to assign to the Con�gMap and <data-source> is the

directory, �le, or literal value to draw the data from.

Before you begin
Use kubectl to create a Con�gMap

Create Con�gMaps from directories
Create Con�gMaps from �les

De�ne the key to use when creating a Con�gMap from a �le
Create Con�gMaps from literal values

Understanding Con�gMaps
What’s next

kubectl create configmap <map-name> <data-source>

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 2/7

The data source corresponds to a key-value pair in the Con�gMap, where

key = the �le name or the key you provided on the command line, and

value = the �le contents or the literal value you provided on the command line.

You can use kubectl describe or kubectl get to retrieve information about a Con�gMap. The

former shows a summary of the Con�gMap, while the latter returns the full contents of the

Con�gMap.

Create Con�gMaps from directories

You can use kubectl create configmap to create a Con�gMap from multiple �les in the same

directory.

For example:

combines the contents of the docs/user-guide/configmap/kubectl/ directory

into the following Con�gMap:

kubectl create configmap game-config --from-file=docs/user-guide/configmap/kubectl

ls docs/user-guide/configmap/kubectl/
game.properties
ui.properties

kubectl describe configmaps game-config
Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
game.properties: 158 bytes
ui.properties: 83 bytes

http://localhost:4000/docs/user-guide/kubectl/v1.6/#describe
http://localhost:4000/docs/user-guide/kubectl/v1.6/#get

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 3/7

The game.properties and ui.properties �les in the docs/user-guide/configmap/kubectl/

directory are represented in the data section of the Con�gMap.

Create Con�gMaps from �les

You can use kubectl create configmap to create a Con�gMap from an individual �le, or from

multiple �les.

For example,

would produce the following Con�gMap:

kubectl get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config
 namespace: default
 resourceVersion: "516"
 selfLink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

kubectl create configmap game-config-2 --from-file=docs/user-guide/configmap/kubec

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 4/7

You can pass in the --from-file argument multiple times to create a Con�gMap from multiple

data sources.

De�ne the key to use when creating a Con�gMap from a �le

You can de�ne a key other than the �le name to use in the data section of your Con�gMap when

using the --from-file argument:

where <my-key-name> is the key you want to use in the Con�gMap and <path-to-file> is the

location of the data source �le you want the key to represent.

For example:

kubectl describe configmaps game-config-2
Name: game-config-2
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
game.properties: 158 bytes

kubectl create configmap game-config-2 --from-file=docs/user-guide/configmap/kubec

kubectl describe configmaps game-config-2
Name: game-config-2
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
game.properties: 158 bytes
ui.properties: 83 bytes

kubectl create configmap game-config-3 --from-file=<my-key-name>=<path-to-file>

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 5/7

Create Con�gMaps from literal values

You can use kubectl create configmap with the --from-literal argument to de�ne a literal

value from the command line:

You can pass in multiple key-value pairs. Each pair provided on the command line is represented as a

separate entry in the data section of the Con�gMap.

kubectl create configmap game-config-3 --from-file=game-special-key=docs/user-guid

kubectl get configmaps game-config-3 -o yaml

apiVersion: v1
data:
 game-special-key: |
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default
 resourceVersion: "530"
 selfLink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

kubectl create configmap special-config --from-literal=special.how=very --from-lit

kubectl get configmaps special-config -o yaml

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 6/7

Understanding Con�gMaps

Con�gMaps allow you to decouple con�guration artifacts from image content to keep containerized

applications portable. The Con�gMap API resource stores con�guration data as key-value pairs. The

data can be consumed in pods or provide the con�gurations for system components such as

controllers. Con�gMap is similar to Secrets, but provides a means of working with strings that don’t

contain sensitive information. Users and system components alike can store con�guration data in

Con�gMap.

Note: Con�gMaps should reference properties �les, not replace them. Think of the Con�gMap

as representing something similar to the Linux /etc directory and its contents. For example,

if you create a Kubernetes Volume from a Con�gMap, each data item in the Con�gMap is

represented by an individual �le in the volume.

The Con�gMap’s data �eld contains the con�guration data. As shown in the example below, this

can be simple – like individual properties de�ned using --from-literal – or complex – like

con�guration �les or JSON blobs de�ned using --from-file .

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default
 resourceVersion: "651"
 selfLink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/concepts/storage/volumes/

10/23/2017 Configure Containers Using a ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configmap/ 7/7

What’s next

See Using Con�gMap Data in Pods.

Follow a real world example of Con�guring Redis using a Con�gMap.

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default
data:
 # example of a simple property defined using --from-literal
 example.property.1: hello
 example.property.2: world
 # example of a complex property defined using --from-file
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap
http://localhost:4000/docs/tutorials/configuration/configure-redis-using-configmap/

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 1/10

Use Con�gMap Data in Pods

This page provides a series of usage examples demonstrating how to con�gure Pods using data

stored in Con�gMaps.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Create a Con�gMap

De�ne Pod environment variables using Con�gMap
data

Before you begin
De�ne Pod environment variables using Con�gMap data

De�ne a Pod environment variable with data from a single Con�gMap
De�ne Pod environment variables with data from multiple Con�gMaps

Con�gure all key-value pairs in a Con�gMap as Pod environment variables
Use Con�gMap-de�ned environment variables in Pod commands
Add Con�gMap data to a Volume

Populate a Volume with data stored in a Con�gMap
Add Con�gMap data to a speci�c path in the Volume
Project keys to speci�c paths and �le permissions
Mounted Con�gMaps are updated automatically

Understanding Con�gMaps and Pods
Restrictions

What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 2/10

De�ne a Pod environment variable with data from a single
Con�gMap

1. De�ne an environment variable as a key-value pair in a Con�gMap:

2. Assign the special.how value de�ned in the Con�gMap to the SPECIAL_LEVEL_KEY

environment variable in the Pod speci�cation.

kubectl create configmap special-config --from-literal=special.how=very

kubectl edit pod dapi-test-pod

apiVersion: v1

kind: Pod

metadata:

 name: dapi-test-pod

spec:

 containers:

 - name: test-container

 image: gcr.io/google_containers/busybox

 command: ["/bin/sh", "-c", "env"]

 env:

 # Define the environment variable

 - name: SPECIAL_LEVEL_KEY

 valueFrom:

 configMapKeyRef:

 # The ConfigMap containing the value you want to assign to SPECIA

 name: special-config

 # Specify the key associated with the value

 key: special.how

 restartPolicy: Never

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 3/10

3. Save the changes to the Pod speci�cation. Now, the Pod’s output includes

SPECIAL_LEVEL_KEY=very .

De�ne Pod environment variables with data from multiple
Con�gMaps

1. As with the previous example, create the Con�gMaps �rst.

2. De�ne the environment variables in the Pod speci�cation.

apiVersion: v1

kind: ConfigMap

metadata:

 name: special-config

 namespace: default

data:

 special.how: very

apiVersion: v1

kind: ConfigMap

metadata:

 name: env-config

 namespace: default

data:

 log_level: INFO

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 4/10

3. Save the changes to the Pod speci�cation. Now, the Pod’s output includes

SPECIAL_LEVEL_KEY=very and LOG_LEVEL=info .

Con�gure all key-value pairs in a Con�gMap as Pod
environment variables

Note: This functionality is available to users running Kubernetes v1.6 and later.

1. Create a Con�gMap containing multiple key-value pairs.

apiVersion: v1

kind: Pod

metadata:

 name: dapi-test-pod

spec:

 containers:

 - name: test-container

 image: gcr.io/google_containers/busybox

 command: ["/bin/sh", "-c", "env"]

 env:

 - name: SPECIAL_LEVEL_KEY

 valueFrom:

 configMapKeyRef:

 name: special-config

 key: special.how

 - name: LOG_LEVEL

 valueFrom:

 configMapKeyRef:

 name: env-config

 key: log_level

 restartPolicy: Never

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 5/10

2. Use envFrom to de�ne all of the Con�gMap’s data as Pod environment variables. The key from

the Con�gMap becomes the environment variable name in the Pod.

3. Save the changes to the Pod speci�cation. Now, the Pod’s output includes

SPECIAL_LEVEL=very and SPECIAL_TYPE=charm .

Use Con�gMap-de�ned environment variables in Pod
commands

apiVersion: v1

kind: ConfigMap

metadata:

 name: special-config

 namespace: default

data:

 SPECIAL_LEVEL: very

 SPECIAL_TYPE: charm

apiVersion: v1

kind: Pod

metadata:

 name: dapi-test-pod

spec:

 containers:

 - name: test-container

 image: gcr.io/google_containers/busybox

 command: ["/bin/sh", "-c", "env"]

 envFrom:

 - configMapRef:

 name: special-config

 restartPolicy: Never

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 6/10

You can use Con�gMap-de�ned environment variables in the command section of the Pod

speci�cation using the $(VAR_NAME) Kubernetes substitution syntax.

For example:

The following Pod speci�cation

produces the following output in the test-container container:

Add Con�gMap data to a Volume

As explained in Con�gure Containers Using a Con�gMap, when you create a Con�gMap using

--from-file , the �lename becomes a key stored in the data section of the Con�gMap. The �le

contents become the key’s value.

The examples in this section refer to a Con�gMap named special-con�g, shown below.

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special_level
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special_type
 restartPolicy: Never

very charm

http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 7/10

Populate a Volume with data stored in a Con�gMap

Add the Con�gMap name under the volumes section of the Pod speci�cation. This adds the

Con�gMap data to the directory speci�ed as volumeMounts.mountPath (in this case, /etc/config

). The command section references the special.level item stored in the Con�gMap.

When the pod runs, the command ("ls /etc/config/") produces the output below:

Add Con�gMap data to a speci�c path in the Volume

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.level: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "ls /etc/config/"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 # Provide the name of the ConfigMap containing the files you want
 # to add to the container
 name: special-config
 restartPolicy: Never

special.level
special.type

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 8/10

Use the path �eld to specify the desired �le path for speci�c Con�gMap items. In this case, the

special.level item will be mounted in the config-volume volume at /etc/config/keys .

When the pod runs, the command ("cat /etc/config/keys") produces the output below:

Project keys to speci�c paths and �le permissions

You can project keys to speci�c paths and speci�c permissions on a per-�le basis. The Secrets user

guide explains the syntax.

Mounted Con�gMaps are updated automatically

When a Con�gMap already being consumed in a volume is updated, projected keys are eventually

updated as well. Kubelet is checking whether the mounted Con�gMap is fresh on every periodic

sync. However, it is using its local ttl-based cache for getting the current value of the Con�gMap. As

a result, the total delay from the moment when the Con�gMap is updated to the moment when new

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh","-c","cat /etc/config/keys"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.level
 path: keys
 restartPolicy: Never

very

http://localhost:4000/docs/concepts/configuration/secret#using-secrets-as-files-from-a-pod

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 9/10

keys are projected to the pod can be as long as kubelet sync period + ttl of Con�gMaps cache in

kubelet.

Understanding Con�gMaps and Pods

Restrictions

1. You must create a Con�gMap before referencing it in a Pod speci�cation (unless you mark the

Con�gMap as “optional”). If you reference a Con�gMap that doesn’t exist, the Pod won’t start.

Likewise, references to keys that don’t exist in the Con�gMap will prevent the pod from starting.

2. If you use envFrom to de�ne environment variables from Con�gMaps, keys that are considered

invalid will be skipped. The pod will be allowed to start, but the invalid names will be recorded in

the event log (InvalidVariableNames). The log message lists each skipped key. For example:

3. Con�gMaps reside in a speci�c namespace. A Con�gMap can only be referenced by pods

residing in the same namespace.

4. Kubelet doesn’t support the use of Con�gMaps for pods not found on the API server. This

includes every pod created using kubectl or indirectly via a replication controller. It does not

include pods created via the Kubelet’s --manifest-url �ag, --config �ag, or the Kubelet

REST API.

Note: These are not commonly-used ways to create pods.

What’s next

Learn more about Con�gMaps.

kubectl get events

LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON

0s 0s 1 dapi-test-pod Pod Warning InvalidEnviro

http://localhost:4000/docs/user-guide/namespaces/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Use ConfigMap Data in Pods - Kubernetes

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/ 10/10

Follow a real world example of Con�guring Redis using a Con�gMap.

http://localhost:4000/docs/tutorials/configuration/configure-redis-using-configmap/

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 1/16

Translate a Docker Compose File to
Kubernetes Resources

Kubernetes + Compose = Kompose

What’s Kompose? It’s a conversion tool for all things compose (namely Docker Compose) to

container orchestrators (Kubernetes or OpenShift).

More information can be found our website at http://kompose.io

In three simple steps, we’ll take you from Docker Compose to Kubernetes.

1. Take a sample docker-compose.yaml �le

Kubernetes + Compose = Kompose
Installation

GitHub release
Go
CentOS
Fedora
macOS

User Guide
kompose convert

Kubernetes
OpenShift

kompose up

Kubernetes
OpenShift

kompose down

Build and Push Docker Images
Alternative Conversions
Labels
Restart

Warning about Deployment Con�g’s
Docker Compose Versions

http://kompose.io/

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 2/16

2. Run kompose up in the same directory

Alternatively, you can run kompose convert and deploy with kubectl

2.1. Run kompose convert in the same directory

version: "2"

services:

 redis-master:
 image: gcr.io/google_containers/redis:e2e
 ports:
 - "6379"

 redis-slave:
 image: gcr.io/google_samples/gb-redisslave:v1
 ports:
 - "6379"
 environment:
 - GET_HOSTS_FROM=dns

 frontend:
 image: gcr.io/google-samples/gb-frontend:v4
 ports:
 - "80:80"
 environment:
 - GET_HOSTS_FROM=dns
 labels:
 kompose.service.type: LoadBalancer

$ kompose up
We are going to create Kubernetes Deployments, Services and PersistentVolumeClaims
If you need different kind of resources, use the 'kompose convert' and 'kubectl cr

INFO Successfully created Service: redis
INFO Successfully created Service: web
INFO Successfully created Deployment: redis
INFO Successfully created Deployment: web

Your application has been deployed to Kubernetes. You can run 'kubectl get deploym

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 3/16

2.2. And start it on Kubernetes!

3. View the newly deployed service

Now that your service has been deployed, let’s access it.

If you’re already using minikube for your development process:

Otherwise, let’s look up what IP your service is using!

$ kompose convert
INFO Kubernetes file "frontend-service.yaml" created
INFO Kubernetes file "redis-master-service.yaml" created
INFO Kubernetes file "redis-slave-service.yaml" created
INFO Kubernetes file "frontend-deployment.yaml" created
INFO Kubernetes file "redis-master-deployment.yaml" created
INFO Kubernetes file "redis-slave-deployment.yaml" created

$ kubectl create -f frontend-service.yaml,redis-master-service.yaml,redis-slave-se
service "frontend" created
service "redis-master" created
service "redis-slave" created
deployment "frontend" created
deployment "redis-master" created
deployment "redis-slave" created

$ minikube service frontend

$ kubectl describe svc frontend
Name: frontend
Namespace: default
Labels: service=frontend
Selector: service=frontend
Type: LoadBalancer
IP: 10.0.0.183
LoadBalancer Ingress: 123.45.67.89
Port: 80 80/TCP
NodePort: 80 31144/TCP
Endpoints: 172.17.0.4:80
Session Affinity: None
No events.

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 4/16

If you’re using a cloud provider, your IP will be listed next to LoadBalancer Ingress .

Installation

We have multiple ways to install Kompose. Our prefered method is downloading the binary from the

latest GitHub release.

GitHub release

Kompose is released via GitHub on a three-week cycle, you can see all current releases on the

GitHub release page.

Alternatively, you can download the tarball.

Go

Installing using go get pulls from the master branch with the latest development changes.

CentOS

$ curl http://123.45.67.89

Linux
curl -L https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-lin

macOS
curl -L https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-dar

Windows
curl -L https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-win

chmod +x kompose
sudo mv ./kompose /usr/local/bin/kompose

go get -u github.com/kubernetes/kompose

https://github.com/kubernetes/kompose/releases
https://github.com/kubernetes/kompose/releases

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 5/16

Kompose is in EPEL CentOS repository. If you don’t have EPEL repository already installed and

enabled you can do it by running sudo yum install epel-release

If you have EPEL enabled in your system, you can install Kompose like any other package.

Fedora

Kompose is in Fedora 24, 25 and 26 repositories. You can install it just like any other package.

macOS

On macOS you can install latest release via Homebrew:

User Guide

CLI

kompose convert

kompose up

kompose down

Documentation

Build and Push Docker Images

Alternative Conversions

Labels

Restart

sudo yum -y install kompose

sudo dnf -y install kompose

brew install kompose

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://brew.sh/

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 6/16

Docker Compose Versions

Kompose has support for two providers: OpenShift and Kubernetes. You can choose a targeted

provider using global option --provider . If no provider is speci�ed, Kubernetes is set by default.

kompose convert

Kompose supports conversion of V1, V2, and V3 Docker Compose �les into Kubernetes and

OpenShift objects.

Kubernetes

You can also provide multiple docker-compose �les at the same time:

$ kompose --file docker-voting.yml convert
WARN Unsupported key networks - ignoring
WARN Unsupported key build - ignoring
INFO Kubernetes file "worker-svc.yaml" created
INFO Kubernetes file "db-svc.yaml" created
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "result-svc.yaml" created
INFO Kubernetes file "vote-svc.yaml" created
INFO Kubernetes file "redis-deployment.yaml" created
INFO Kubernetes file "result-deployment.yaml" created
INFO Kubernetes file "vote-deployment.yaml" created
INFO Kubernetes file "worker-deployment.yaml" created
INFO Kubernetes file "db-deployment.yaml" created

$ ls
db-deployment.yaml docker-compose.yml docker-gitlab.yml redis-deployment
db-svc.yaml docker-voting.yml redis-svc.yaml result-svc.yaml

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 7/16

When multiple docker-compose �les are provided the con�guration is merged. Any con�guration that

is common will be over ridden by subsequent �le.

OpenShift

It also supports creating buildcon�g for build directive in a service. By default, it uses the remote

repo for the current git branch as the source repo, and the current branch as the source branch for

$ kompose -f docker-compose.yml -f docker-guestbook.yml convert
INFO Kubernetes file "frontend-service.yaml" created
INFO Kubernetes file "mlbparks-service.yaml" created
INFO Kubernetes file "mongodb-service.yaml" created
INFO Kubernetes file "redis-master-service.yaml" created
INFO Kubernetes file "redis-slave-service.yaml" created
INFO Kubernetes file "frontend-deployment.yaml" created
INFO Kubernetes file "mlbparks-deployment.yaml" created
INFO Kubernetes file "mongodb-deployment.yaml" created
INFO Kubernetes file "mongodb-claim0-persistentvolumeclaim.yaml" created
INFO Kubernetes file "redis-master-deployment.yaml" created
INFO Kubernetes file "redis-slave-deployment.yaml" created

$ ls
mlbparks-deployment.yaml mongodb-service.yaml redis-slave-s
frontend-deployment.yaml mongodb-claim0-persistentvolumeclaim.yaml redis-master-
frontend-service.yaml mongodb-deployment.yaml redis-slave-d
redis-master-deployment.yaml

$ kompose --provider openshift --file docker-voting.yml convert
WARN [worker] Service cannot be created because of missing port.
INFO OpenShift file "vote-service.yaml" created
INFO OpenShift file "db-service.yaml" created
INFO OpenShift file "redis-service.yaml" created
INFO OpenShift file "result-service.yaml" created
INFO OpenShift file "vote-deploymentconfig.yaml" created
INFO OpenShift file "vote-imagestream.yaml" created
INFO OpenShift file "worker-deploymentconfig.yaml" created
INFO OpenShift file "worker-imagestream.yaml" created
INFO OpenShift file "db-deploymentconfig.yaml" created
INFO OpenShift file "db-imagestream.yaml" created
INFO OpenShift file "redis-deploymentconfig.yaml" created
INFO OpenShift file "redis-imagestream.yaml" created
INFO OpenShift file "result-deploymentconfig.yaml" created
INFO OpenShift file "result-imagestream.yaml" created

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 8/16

the build. You can specify a different source repo and branch using --build-repo and

--build-branch options respectively.

Note: If you are manually pushing the Openshift artifacts using oc create -f , you need to ensure

that you push the imagestream artifact before the buildcon�g artifact, to workaround this Openshift

issue: https://github.com/openshift/origin/issues/4518 .

kompose up

Kompose supports a straightforward way to deploy your “composed” application to Kubernetes or

OpenShift via kompose up .

Kubernetes

$ kompose --provider openshift --file buildconfig/docker-compose.yml convert
WARN [foo] Service cannot be created because of missing port.
INFO OpenShift Buildconfig using git@github.com:rtnpro/kompose.git::master as sour
INFO OpenShift file "foo-deploymentconfig.yaml" created
INFO OpenShift file "foo-imagestream.yaml" created
INFO OpenShift file "foo-buildconfig.yaml" created

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 9/16

Note: - You must have a running Kubernetes cluster with a pre-con�gured kubectl context. - Only

deployments and services are generated and deployed to Kubernetes. If you need different kind of

resources, use the ‘kompose convert’ and ‘kubectl create -f’ commands instead.

OpenShift

$ kompose --file ./examples/docker-guestbook.yml up
We are going to create Kubernetes deployments and services for your Dockerized app
If you need different kind of resources, use the 'kompose convert' and 'kubectl cr

INFO Successfully created service: redis-master
INFO Successfully created service: redis-slave
INFO Successfully created service: frontend
INFO Successfully created deployment: redis-master
INFO Successfully created deployment: redis-slave
INFO Successfully created deployment: frontend

Your application has been deployed to Kubernetes. You can run 'kubectl get deploym

$ kubectl get deployment,svc,pods
NAME DESIRED CURRENT UP-TO-DATE AVAILA
deploy/frontend 1 1 1 1
deploy/redis-master 1 1 1 1
deploy/redis-slave 1 1 1 1

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/frontend 10.0.174.12 <none> 80/TCP 4m
svc/kubernetes 10.0.0.1 <none> 443/TCP 13d
svc/redis-master 10.0.202.43 <none> 6379/TCP 4m
svc/redis-slave 10.0.1.85 <none> 6379/TCP 4m

NAME READY STATUS RESTARTS AGE
po/frontend-2768218532-cs5t5 1/1 Running 0 4m
po/redis-master-1432129712-63jn8 1/1 Running 0 4m
po/redis-slave-2504961300-nve7b 1/1 Running 0 4m

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 10/16

Note: - You must have a running OpenShift cluster with a pre-con�gured oc context (oc login)

kompose down

Once you have deployed “composed” application to Kubernetes, $ kompose down will help you to

take the application out by deleting its deployments and services. If you need to remove other

resources, use the ‘kubectl’ command.

$ kompose --file ./examples/docker-guestbook.yml --provider openshift up
We are going to create OpenShift DeploymentConfigs and Services for your Dockerize
If you need different kind of resources, use the 'kompose convert' and 'oc create

INFO Successfully created service: redis-slave
INFO Successfully created service: frontend
INFO Successfully created service: redis-master
INFO Successfully created deployment: redis-slave
INFO Successfully created ImageStream: redis-slave
INFO Successfully created deployment: frontend
INFO Successfully created ImageStream: frontend
INFO Successfully created deployment: redis-master
INFO Successfully created ImageStream: redis-master

Your application has been deployed to OpenShift. You can run 'oc get dc,svc,is' fo

$ oc get dc,svc,is
NAME REVISION DESIRED CURRENT
dc/frontend 0 1 0
dc/redis-master 0 1 0
dc/redis-slave 0 1 0
NAME CLUSTER-IP EXTERNAL-IP PORT(S)
svc/frontend 172.30.46.64 <none> 80/TCP
svc/redis-master 172.30.144.56 <none> 6379/TCP
svc/redis-slave 172.30.75.245 <none> 6379/TCP
NAME DOCKER REPO TAGS UPDATED
is/frontend 172.30.12.200:5000/fff/frontend
is/redis-master 172.30.12.200:5000/fff/redis-master
is/redis-slave 172.30.12.200:5000/fff/redis-slave v1

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 11/16

Note: - You must have a running Kubernetes cluster with a pre-con�gured kubectl context.

Build and Push Docker Images

Kompose supports both building and pushing Docker images. When using the build key within

your Docker Compose �le, your image will:

Automatically be built with Docker using the image key speci�ed within your �le

Be pushed to the correct Docker repository using local credentials (located at .docker/config)

Using an example Docker Compose �le:

Using kompose up with a build key:

$ kompose --file docker-guestbook.yml down
INFO Successfully deleted service: redis-master
INFO Successfully deleted deployment: redis-master
INFO Successfully deleted service: redis-slave
INFO Successfully deleted deployment: redis-slave
INFO Successfully deleted service: frontend
INFO Successfully deleted deployment: frontend

version: "2"

services:
 foo:
 build: "./build"
 image: docker.io/foo/bar

https://raw.githubusercontent.com/kubernetes/kompose/master/examples/buildconfig/docker-compose.yml

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 12/16

In order to disable the functionality, or choose to use BuildCon�g generation (with OpenShift)

--build (local|build-config|none) can be passed.

Alternative Conversions

The default kompose transformation will generate Kubernetes Deployments and Services, in yaml

format. You have alternative option to generate json with -j . Also, you can alternatively generate

Replication Controllers objects, Deamon Sets, or Helm charts.

The *-deployment.json �les contain the Deployment objects.

$ kompose up
INFO Build key detected. Attempting to build and push image 'docker.io/foo/bar'
INFO Building image 'docker.io/foo/bar' from directory 'build'
INFO Image 'docker.io/foo/bar' from directory 'build' built successfully
INFO Pushing image 'foo/bar:latest' to registry 'docker.io'
INFO Attempting authentication credentials 'https://index.docker.io/v1/
INFO Successfully pushed image 'foo/bar:latest' to registry 'docker.io'
INFO We are going to create Kubernetes Deployments, Services and PersistentVolumeC

INFO Deploying application in "default" namespace
INFO Successfully created Service: foo
INFO Successfully created Deployment: foo

Your application has been deployed to Kubernetes. You can run 'kubectl get deploym

Disable building/pushing Docker images
$ kompose up --build none

Generate Build Config artifacts for OpenShift
$ kompose up --provider openshift --build build-config

$ kompose convert -j
INFO Kubernetes file "redis-svc.json" created
INFO Kubernetes file "web-svc.json" created
INFO Kubernetes file "redis-deployment.json" created
INFO Kubernetes file "web-deployment.json" created

http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/concepts/services-networking/service/
http://kubernetes.io/docs/user-guide/replication-controller/
http://kubernetes.io/docs/admin/daemons/
https://github.com/helm/helm

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 13/16

The *-replicationcontroller.yaml �les contain the Replication Controller objects. If you want to

specify replicas (default is 1), use --replicas �ag:

$ kompose convert --replication-controller --replicas 3

The *-daemonset.yaml �les contain the Daemon Set objects

If you want to generate a Chart to be used with Helm simply do:

The chart structure is aimed at providing a skeleton for building your Helm charts.

Labels

$ kompose convert --replication-controller
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "web-svc.yaml" created
INFO Kubernetes file "redis-replicationcontroller.yaml" created
INFO Kubernetes file "web-replicationcontroller.yaml" created

$ kompose convert --daemon-set
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "web-svc.yaml" created
INFO Kubernetes file "redis-daemonset.yaml" created
INFO Kubernetes file "web-daemonset.yaml" created

$ kompose convert -c
INFO Kubernetes file "web-svc.yaml" created
INFO Kubernetes file "redis-svc.yaml" created
INFO Kubernetes file "web-deployment.yaml" created
INFO Kubernetes file "redis-deployment.yaml" created
chart created in "./docker-compose/"

$ tree docker-compose/
docker-compose
├── Chart.yaml
├── README.md
└── templates
 ├── redis-deployment.yaml
 ├── redis-svc.yaml
 ├── web-deployment.yaml
 └── web-svc.yaml

https://github.com/kubernetes/helm

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 14/16

kompose supports Kompose-speci�c labels within the docker-compose.yml �le in order to

explicitly de�ne a service’s behavior upon conversion.

kompose.service.type de�nes the type of service to be created.

For example:

kompose.service.expose de�nes if the service needs to be made accessible from outside the

cluster or not. If the value is set to “true”, the provider sets the endpoint automatically, and for

any other value, the value is set as the hostname. If multiple ports are de�ned in a service, the

�rst one is chosen to be the exposed.

For the Kubernetes provider, an ingress resource is created and it is assumed that an

ingress controller has already been con�gured.

For the OpenShift provider, a route is created.

For example:

version: "2"
services:
 nginx:
 image: nginx
 dockerfile: foobar
 build: ./foobar
 cap_add:
 - ALL
 container_name: foobar
 labels:
 kompose.service.type: nodeport

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 15/16

The currently supported options are:

Key Value

kompose.service.type nodeport / clusterip / loadbalancer

kompose.service.expose true / hostname

Note: kompose.service.type label should be de�ned with ports only, otherwise kompose will

fail.

Restart

If you want to create normal pods without controllers you can use restart construct of docker-

compose to de�ne that. Follow table below to see what heppens on the restart value.

docker-compose restart object created Pod restartPolicy

"" controller object Always

always controller object Always

on-failure Pod OnFailure

no Pod Never

version: "2"
services:
 web:
 image: tuna/docker-counter23
 ports:
 - "5000:5000"
 links:
 - redis
 labels:
 kompose.service.expose: "counter.example.com"
 redis:
 image: redis:3.0
 ports:
 - "6379"

10/23/2017 Translate a Docker Compose File to Kubernetes Resources - Kubernetes

http://localhost:4000/docs/tools/kompose/user-guide/ 16/16

Note: controller object could be deployment or replicationcontroller , etc.

For e.g. pival service will become pod down here. This container calculated value of pi .

Warning about Deployment Con�g’s

If the Docker Compose �le has a volume speci�ed for a service, the Deployment (Kubernetes) or

DeploymentCon�g (OpenShift) strategy is changed to “Recreate” instead of “RollingUpdate” (default).

This is done to avoid multiple instances of a service from accessing a volume at the same time.

If the Docker Compose �le has service name with _ in it (eg. web_service), then it will be replaced

by - and the service name will be renamed accordingly (eg. web-service). Kompose does this

because “Kubernetes” doesn’t allow _ in object name.

Please note that changing service name might break some docker-compose �les.

Docker Compose Versions

Kompose supports Docker Compose versions: 1, 2 and 3. We have limited support on versions 2.1

and 3.2 due to their experimental nature.

A full list on compatibility between all three versions is listed in our conversion document including a

list of all incompatible Docker Compose keys.

version: '2'

services:
 pival:
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restart: "on-failure"

https://github.com/kubernetes/kompose/blob/master/docs/conversion.md

10/23/2017 Define a Command and Arguments for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-command-argument-container/ 1/5

De�ne a Command and Arguments for a
Container

This page shows how to de�ne commands and arguments when you run a container in a

Kubernetes Pod.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

De�ne a command and arguments when you create a
Pod

When you create a Pod, you can de�ne a command and arguments for the containers that run in the

Pod. To de�ne a command, include the command �eld in the con�guration �le. To de�ne arguments

for the command, include the args �eld in the con�guration �le. The command and arguments that

you de�ne cannot be changed after the Pod is created.

Before you begin
De�ne a command and arguments when you create a Pod
Use environment variables to de�ne arguments
Run a command in a shell
Notes
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Define a Command and Arguments for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-command-argument-container/ 2/5

The command and arguments that you de�ne in the con�guration �le override the default command

and arguments provided by the container image. If you de�ne args, but do not de�ne a command,

the default command is used with your new arguments.

In this exercise, you create a Pod that runs one container. The con�guration �le for the Pod de�nes a

command and two arguments:

commands.yaml

1. Create a Pod based on the YAML con�guration �le:

2. List the running Pods:

The output shows that the container that ran in the command-demo Pod has completed.

3. To see the output of the command that ran in the container, view the logs from the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: command-demo
 labels:
 purpose: demonstrate-command
spec:
 containers:
 - name: command-demo-container
 image: debian
 command: ["printenv"]
 args: ["HOSTNAME", "KUBERNETES_PORT"]

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/commands.ya

kubectl get pods

kubectl logs command-demo

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/commands.yaml

10/23/2017 Define a Command and Arguments for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-command-argument-container/ 3/5

The output shows the values of the HOSTNAME and KUBERNETES_PORT environment

variables:

Use environment variables to de�ne arguments

In the preceding example, you de�ned the arguments directly by providing strings. As an alternative

to providing strings directly, you can de�ne arguments by using environment variables:

This means you can de�ne an argument for a Pod using any of the techniques available for de�ning

environment variables, including Con�gMaps and Secrets.

Note: The environment variable appears in parentheses, "$(VAR)" . This is required for the

variable to be expanded in the command or args �eld.

Run a command in a shell

In some cases, you need your command to run in a shell. For example, your command might consist

of several commands piped together, or it might be a shell script. To run your command in a shell,

wrap it like this:

 command-demo

 tcp://10.3.240.1:443

env:
- name: MESSAGE
 value: "hello world"
command: ["/bin/echo"]
args: ["$(MESSAGE)"]

command: ["/bin/sh"]
args: ["-c", "while true; do echo hello; sleep 10;done"]

http://localhost:4000/docs/tasks/configure-pod-container/configmap/
http://localhost:4000/docs/concepts/configuration/secret/

10/23/2017 Define a Command and Arguments for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-command-argument-container/ 4/5

Notes

This table summarizes the �eld names used by Docker and Kubernetes.

Description Docker �eld name Kubernetes �eld name

The command run by the container Entrypoint command

The arguments passed to the command Cmd args

When you override the default Entrypoint and Cmd, these rules apply:

If you do not supply command or args for a Container, the defaults de�ned in the Docker image

are used.

If you supply a command but no args for a Container, only the supplied command is used. The

default EntryPoint and the default Cmd de�ned in the Docker image are ignored.

If you supply only args for a Container, the default Entrypoint de�ned in the Docker image is run

with the args that you supplied.

If you supply a command and args , the default Entrypoint and the default Cmd de�ned in the

Docker image are ignored. Your command is run with your args .

Here are some examples:

Image Entrypoint Image Cmd Container command Container args Command run

[/ep-1] [foo bar] <not set> <not set> [ep-1 foo bar]

[/ep-1] [foo bar] [/ep-2] <not set> [ep-2]

[/ep-1] [foo bar] <not set> [zoo boo] [ep-1 zoo boo]

[/ep-1] [foo bar] [/ep-2] [zoo boo] [ep-2 zoo boo]

What’s next

10/23/2017 Define a Command and Arguments for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-command-argument-container/ 5/5

Learn more about containers and commands.

Learn more about con�guring pods and containers.

Learn more about running commands in a container.

See Container.

http://localhost:4000/docs/user-guide/containers/
http://localhost:4000/docs/tasks/
http://localhost:4000/docs/tasks/debug-application-cluster/get-shell-running-container/
http://localhost:4000/docs/api-reference/v1.8/#container-v1-core

10/23/2017 Define Environment Variables for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-environment-variable-container/ 1/3

De�ne Environment Variables for a
Container

This page shows how to de�ne environment variables when you run a container in a Kubernetes

Pod.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

De�ne an environment variable for a container

When you create a Pod, you can set environment variables for the containers that run in the Pod. To

set environment variables, include the env or envFrom �eld in the con�guration �le.

In this exercise, you create a Pod that runs one container. The con�guration �le for the Pod de�nes

an environment variable with name DEMO_GREETING and value "Hello from the environment" .

Here is the con�guration �le for the Pod:

envars.yaml

Before you begin
De�ne an environment variable for a container
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/envars.yaml

10/23/2017 Define Environment Variables for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-environment-variable-container/ 2/3

envars.yaml

1. Create a Pod based on the YAML con�guration �le:

2. List the running Pods:

The output is similar to this:

3. Get a shell to the container running in your Pod:

4. In your shell, run the printenv command to list the environment variables.

apiVersion: v1
kind: Pod
metadata:
 name: envar-demo
 labels:
 purpose: demonstrate-envars
spec:
 containers:
 - name: envar-demo-container
 image: gcr.io/google-samples/node-hello:1.0
 env:
 - name: DEMO_GREETING
 value: "Hello from the environment"

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/envars.yaml

kubectl get pods -l purpose=demonstrate-envars

 NAME READY STATUS RESTARTS AGE

 envar-demo 1/1 Running 0 9s

kubectl exec -it envar-demo -- /bin/bash

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/envars.yaml

10/23/2017 Define Environment Variables for a Container - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/define-environment-variable-container/ 3/3

The output is similar to this:

5. To exit the shell, enter exit .

What’s next

Learn more about environment variables.

Learn about using secrets as environment variables.

See EnvVarSource.

root@envar-demo:/# printenv

 NODE_VERSION=4.4.2

 EXAMPLE_SERVICE_PORT_8080_TCP_ADDR=10.3.245.237

 HOSTNAME=envar-demo

 ...

 DEMO_GREETING=Hello from the environment

http://localhost:4000/docs/tasks/configure-pod-container/environment-variable-expose-pod-information/
http://localhost:4000/docs/user-guide/secrets/#using-secrets-as-environment-variables
http://localhost:4000/docs/api-reference/v1.8/#envvarsource-v1-core

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 1/8

Expose Pod Information to Containers
Through Environment Variables

This page shows how a Pod can use environment variables to expose information about itself to

Containers running in the Pod. Environment variables can expose Pod �elds and Container �elds.

There are two ways to expose Pod and Container �elds to a running Container: environment

variables and DownwardAPIVolumeFiles. Together, these two ways of exposing Pod and Container

�elds are called the Downward API.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

The Downward API

There are two ways to expose Pod and Container �elds to a running Container:

Environment variables

DownwardAPIVolumeFiles

Before you begin
The Downward API
Use Pod �elds as values for environment variables
Use Container �elds as values for environment variables
What’s next

http://localhost:4000/docs/resources-reference/v1.8/#downwardapivolumefile-v1-core
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/resources-reference/v1.8/#downwardapivolumefile-v1-core

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 2/8

Together, these two ways of exposing Pod and Container �elds are called the Downward API.

Use Pod �elds as values for environment variables

In this exercise, you create a Pod that has one Container. Here is the con�guration �le for the Pod:

dapi-envars-pod.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-envars-pod.yaml

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 3/8

dapi-envars-pod.yaml

In the con�guration �le, you can see �ve environment variables. The env �eld is an array of EnvVars.

The �rst element in the array speci�es that the MY_NODE_NAME environment variable gets its value

from the Pod’s spec.nodeName �eld. Similarly, the other environment variables get their names from

Pod �elds.

apiVersion: v1
kind: Pod
metadata:
 name: dapi-envars-fieldref
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c"]
 args:
 - while true; do
 echo -en '\n';
 printenv MY_NODE_NAME MY_POD_NAME MY_POD_NAMESPACE;
 printenv MY_POD_IP MY_POD_SERVICE_ACCOUNT;
 sleep 10;
 done;
 env:
 - name: MY_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: MY_POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: MY_POD_SERVICE_ACCOUNT
 valueFrom:
 fieldRef:
 fieldPath: spec.serviceAccountName
 restartPolicy: Never

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-envars-pod.yaml
http://localhost:4000/docs/resources-reference/v1.8/#envvar-v1-core

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 4/8

Note: The �elds in this example are Pod �elds. They are not �elds of the Container in the Pod.

Create the Pod:

Verify that the Container in the Pod is running:

View the Container’s logs:

The output shows the values of selected environment variables:

To see why these values are in the log, look at the command and args �elds in the con�guration �le.

When the Container starts, it writes the values of �ve environment variables to stdout. It repeats this

every ten seconds.

Next, get a shell into the Container that is running in your Pod:

In your shell, view the environment variables:

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/dapi-envars-po

kubectl get pods

kubectl logs dapi-envars-fieldref

minikube
dapi-envars-fieldref
default
172.17.0.4
default

kubectl exec -it dapi-envars-fieldref -- sh

/# printenv

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 5/8

The output shows that certain environment variables have been assigned the values of Pod �elds:

Use Container �elds as values for environment
variables

In the preceding exercise, you used Pod �elds as the values for environment variables. In this next

exercise, you use Container �elds as the values for environment variables. Here is the con�guration

�le for a Pod that has one container:

dapi-envars-container.yaml

MY_POD_SERVICE_ACCOUNT=default
...
MY_POD_NAMESPACE=default
MY_POD_IP=172.17.0.4
...
MY_NODE_NAME=minikube
...
MY_POD_NAME=dapi-envars-fieldref

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-envars-container.yaml

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 6/8

dapi-envars-container.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dapi-envars-resourcefieldref
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c"]
 args:
 - while true; do
 echo -en '\n';
 printenv MY_CPU_REQUEST MY_CPU_LIMIT;
 printenv MY_MEM_REQUEST MY_MEM_LIMIT;
 sleep 10;
 done;
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 env:
 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 containerName: test-container
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: test-container
 resource: limits.cpu
 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 containerName: test-container
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: test-container
 resource: limits.memory
 restartPolicy: Never

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-envars-container.yaml

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 7/8

In the con�guration �le, you can see four environment variables. The env �eld is an array of

EnvVars. The �rst element in the array speci�es that the MY_CPU_REQUEST environment variable gets

its value from the requests.cpu �eld of a Container named test-container . Similarly, the other

environment variables get their values from Container �elds.

Create the Pod:

Verify that the Container in the Pod is running:

View the Container’s logs:

The output shows the values of selected environment variables:

What’s next

De�ning Environment Variables for a Container

PodSpec

Container

EnvVar

EnvVarSource

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/dapi-envars-co

kubectl get pods

kubectl logs dapi-envars-resourcefieldref

1
1
33554432
67108864

http://localhost:4000/docs/resources-reference/v1.8/#envvar-v1-core
http://localhost:4000/docs/tasks/inject-data-application/define-environment-variable-container/
http://localhost:4000/docs/resources-reference/v1.8/#podspec-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#container-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#envvar-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#envvarsource-v1-core

10/23/2017 Expose Pod Information to Containers Through Environment Variables - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ 8/8

ObjectFieldSelector

ResourceFieldSelector

http://localhost:4000/docs/resources-reference/v1.8/#objectfieldselector-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#resourcefieldselector-v1-core

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 1/9

Expose Pod Information to Containers
Through Files

This page shows how a Pod can use a DownwardAPIVolumeFile to expose information about itself

to Containers running in the Pod. A DownwardAPIVolumeFile can expose Pod �elds and Container

�elds.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

The Downward API

There are two ways to expose Pod and Container �elds to a running Container:

Environment variables

DownwardAPIVolumeFiles

Before you begin
The Downward API
Store Pod �elds
Store Container �elds
Capabilities of the Downward API
Project keys to speci�c paths and �le permissions
Motivation for the Downward API
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/tasks/configure-pod-container/environment-variable-expose-pod-information/

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 2/9

Together, these two ways of exposing Pod and Container �elds are called the Downward API.

Store Pod �elds

In this exercise, you create a Pod that has one Container. Here is the con�guration �le for the Pod:

dapi-volume.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-volume.yaml

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 3/9

dapi-volume.yaml

In the con�guration �le, you can see that the Pod has a downwardAPI Volume, and the Container

mounts the Volume at /etc .

Look at the items array under downwardAPI . Each element of the array is a

DownwardAPIVolumeFile. The �rst element speci�es that the value of the Pod’s metadata.labels

apiVersion: v1
kind: Pod
metadata:
 name: kubernetes-downwardapi-volume-example
 labels:
 zone: us-est-coast
 cluster: test-cluster1
 rack: rack-22
 annotations:
 build: two
 builder: john-doe
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c"]
 args:
 - while true; do
 if [[-e /etc/labels]]; then
 echo -en '\n\n'; cat /etc/labels; fi;
 if [[-e /etc/annotations]]; then
 echo -en '\n\n'; cat /etc/annotations; fi;
 sleep 5;
 done;
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "annotations"
 fieldRef:
 fieldPath: metadata.annotations

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-volume.yaml
http://localhost:4000/docs/resources-reference/v1.8/#downwardapivolumefile-v1-core

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 4/9

�eld should be stored in a �le named labels . The second element speci�es that the value of the

Pod’s annotations �eld should be stored in a �le named annotations .

Note: The �elds in this example are Pod �elds. They are not �elds of the Container in the Pod.

Create the Pod:

Verify that Container in the Pod is running:

View the Container’s logs:

The output shows the contents of the labels �le and the annotations �le:

Get a shell into the Container that is running in your Pod:

In your shell, view the labels �le:

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/dapi-volume.ya

kubectl get pods

kubectl logs kubernetes-downwardapi-volume-example

cluster="test-cluster1"
rack="rack-22"
zone="us-est-coast"

build="two"
builder="john-doe"

kubectl exec -it kubernetes-downwardapi-volume-example -- sh

/# cat /etc/labels

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 5/9

The output shows that all of the Pod’s labels have been written to the labels �le:

Similarly, view the annotations �le:

View the �les in the /etc directory:

In the output, you can see that the labels and annotations �les are in a temporary subdirectory:

in this example, ..2982_06_02_21_47_53.299460680 . In the /etc directory, ..data is a symbolic

link to the temporary subdirectory. Also in the /etc directory, labels and annotations are

symbolic links.

Using symbolic links enables dynamic atomic refresh of the metadata; updates are written to a new

temporary directory, and the ..data symlink is updated atomically using rename(2).

Exit the shell:

cluster="test-cluster1"
rack="rack-22"
zone="us-est-coast"

/# cat /etc/annotations

/# ls -laR /etc

drwxr-xr-x ... Feb 6 21:47 ..2982_06_02_21_47_53.299460680
lrwxrwxrwx ... Feb 6 21:47 ..data -> ..2982_06_02_21_47_53.299460680
lrwxrwxrwx ... Feb 6 21:47 annotations -> ..data/annotations
lrwxrwxrwx ... Feb 6 21:47 labels -> ..data/labels

/etc/..2982_06_02_21_47_53.299460680:
total 8
-rw-r--r-- ... Feb 6 21:47 annotations
-rw-r--r-- ... Feb 6 21:47 labels

/# exit

http://man7.org/linux/man-pages/man2/rename.2.html

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 6/9

Store Container �elds

The preceding exercise, you stored Pod �elds in a DownwardAPIVolumeFile. In this next exercise, you

store Container �elds. Here is the con�guration �le for a Pod that has one Container:

dapi-volume-resources.yaml

apiVersion: v1
kind: Pod
metadata:
 name: kubernetes-downwardapi-volume-example-2
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c"]
 args:
 - while true; do
 echo -en '\n';
 if [[-e /etc/cpu_limit]]; then
 echo -en '\n'; cat /etc/cpu_limit; fi;
 if [[-e /etc/cpu_request]]; then
 echo -en '\n'; cat /etc/cpu_request; fi;
 if [[-e /etc/mem_limit]]; then
 echo -en '\n'; cat /etc/mem_limit; fi;
 if [[-e /etc/mem_request]]; then
 echo -en '\n'; cat /etc/mem_request; fi;
 sleep 5;
 done;
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:

containerName: client-container

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-volume-resources.yaml

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 7/9

dapi-volume-resources.yaml

In the con�guration �le, you can see that the Pod has a downwardAPI Volume, and the Container

mounts the Volume at /etc .

Look at the items array under downwardAPI . Each element of the array is a

DownwardAPIVolumeFile.

The �rst element speci�es that in the Container named client-container , the value of the

limits.cpu �eld should be stored in a �le named cpu_limit .

Create the Pod:

Get a shell into the Container that is running in your Pod:

In your shell, view the cpu_limit �le:

You can use similar commands to view the cpu_request , mem_limit and mem_request �les.

Capabilities of the Downward API

 containerName: client container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu
 - path: "mem_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/dapi-volume-re

kubectl exec -it kubernetes-downwardapi-volume-example-2 -- sh

/# cat /etc/cpu_limit

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/dapi-volume-resources.yaml

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 8/9

The following information is available to Containers through environment variables and

DownwardAPIVolumeFiles:

The Node’s name

The Node’s IP

The Pod’s name

The Pod’s namespace

The Pod’s IP address

The Pod’s service account name

The Pod’s UID

A Container’s CPU limit

A Container’s CPU request

A Container’s memory limit

A Container’s memory request

In addition, the following information is available through DownwardAPIVolumeFiles.

The Pod’s labels

The Pod’s annotations

Note: If CPU and memory limits are not speci�ed for a Container, the Downward API defaults

to the node allocatable value for CPU and memory.

Project keys to speci�c paths and �le permissions

You can project keys to speci�c paths and speci�c permissions on a per-�le basis. For more

information, see Secrets.

http://localhost:4000/docs/concepts/configuration/secret/

10/23/2017 Expose Pod Information to Containers Through Files - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/ 9/9

Motivation for the Downward API

It is sometimes useful for a Container to have information about itself, without being overly coupled

to Kubernetes. The Downward API allows containers to consume information about themselves or

the cluster without using the Kubernetes client or API server.

An example is an existing application that assumes a particular well-known environment variable

holds a unique identi�er. One possibility is to wrap the application, but that is tedious and error prone,

and it violates the goal of low coupling. A better option would be to use the Pod’s name as an

identi�er, and inject the Pod’s name into the well-known environment variable.

What’s next

PodSpec

Volume

DownwardAPIVolumeSource

DownwardAPIVolumeFile

ResourceFieldSelector

http://localhost:4000/docs/resources-reference/v1.8/#podspec-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#volume-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#downwardapivolumesource-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#downwardapivolumefile-v1-core
http://localhost:4000/docs/resources-reference/v1.8/#resourcefieldselector-v1-core

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 1/7

Distribute Credentials Securely Using
Secrets

This page shows how to securely inject sensitive data, such as passwords and encryption keys, into

Pods.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Convert your secret data to a base-64 representation

Suppose you want to have two pieces of secret data: a username my-app and a password

39528$vdg7Jb . First, use Base64 encoding to convert your username and password to a base-64

representation. Here’s a Linux example:

Before you begin
Convert your secret data to a base-64 representation
Create a Secret
Create a Pod that has access to the secret data through a Volume
Create a Pod that has access to the secret data through environment variables
What’s next

Reference

echo -n 'my-app' | base64
echo -n '39528$vdg7Jb' | base64

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://www.base64encode.org/

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 2/7

The output shows that the base-64 representation of your username is bXktYXBw , and the base-64

representation of your password is Mzk1MjgkdmRnN0pi .

Create a Secret

Here is a con�guration �le you can use to create a Secret that holds your username and password:

secret.yaml

1. Create the Secret

Note: If you want to skip the Base64 encoding step, you can create a Secret by using the

kubectl create secret command:

2. View information about the Secret:

Output:

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: bXktYXBwCg==
 password: Mzk1MjgkdmRnN0piCg==

kubectl create -f secret.yaml

kubectl create secret generic test-secret --from-literal=username='my-app' --f

kubectl get secret test-secret

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/secret.yaml

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 3/7

3. View more detailed information about the Secret:

Output:

Create a Pod that has access to the secret data through
a Volume

Here is a con�guration �le you can use to create a Pod:

secret-pod.yaml

 NAME TYPE DATA AGE

 test-secret Opaque 2 1m

kubectl describe secret test-secret

 Name: test-secret

 Namespace: default

 Labels: <none>

 Annotations: <none>

 Type: Opaque

 Data

 ====

 password: 13 bytes

 username: 7 bytes

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/secret-pod.yaml

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 4/7

secret-pod.yaml

1. Create the Pod:

2. Verify that your Pod is running:

Output:

3. Get a shell into the Container that is running in your Pod:

apiVersion: v1
kind: Pod
metadata:
 name: secret-test-pod
spec:
 containers:
 - name: test-container
 image: nginx
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 # The secret data is exposed to Containers in the Pod through a Volume.
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret

kubectl create -f secret-pod.yaml

kubectl get pod secret-test-pod

 NAME READY STATUS RESTARTS AGE

 secret-test-pod 1/1 Running 0 42m

kubectl exec -it secret-test-pod -- /bin/bash

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/secret-pod.yaml

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 5/7

4. The secret data is exposed to the Container through a Volume mounted under

/etc/secret-volume . In your shell, go to the directory where the secret data is exposed:

5. In your shell, list the �les in the /etc/secret-volume directory:

The output shows two �les, one for each piece of secret data:

6. In your shell, display the contents of the username and password �les:

The output is your username and password:

Create a Pod that has access to the secret data through
environment variables

Here is a con�guration �le you can use to create a Pod:

secret-envars-pod.yaml

 root@secret-test-pod:/# cd /etc/secret-volume

 root@secret-test-pod:/etc/secret-volume# ls

 password username

 root@secret-test-pod:/etc/secret-volume# cat username; echo; cat password; ech

 my-app

 39528$vdg7Jb

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/secret-envars-pod.yaml

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 6/7

secret-envars-pod.yaml

1. Create the Pod:

2. Verify that your Pod is running:

Output:

3. Get a shell into the Container that is running in your Pod:

apiVersion: v1
kind: Pod
metadata:
 name: secret-envars-test-pod
spec:
 containers:
 - name: envars-test-container
 image: nginx
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: password

kubectl create -f secret-envars-pod.yaml

kubectl get pod secret-envars-test-pod

 NAME READY STATUS RESTARTS AGE

 secret-envars-test-pod 1/1 Running 0 4m

kubectl exec -it secret-envars-test-pod -- /bin/bash

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/inject-data-application/secret-envars-pod.yaml

10/23/2017 Distribute Credentials Securely Using Secrets - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/distribute-credentials-secure/ 7/7

4. In your shell, display the environment variables:

The output includes your username and password:

What’s next

Learn more about Secrets.

Learn about Volumes.

Reference

Secret

Volume

Pod

 root@secret-envars-test-pod:/# printenv

 ...

 SECRET_USERNAME=my-app

 ...

 SECRET_PASSWORD=39528$vdg7Jb

http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/api-reference/v1.8/#secret-v1-core
http://localhost:4000/docs/api-reference/v1.8/#volume-v1-core
http://localhost:4000/docs/api-reference/v1.8/#pod-v1-core

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 1/15

Inject Information into Pods Using a
PodPreset

You can use a podpreset object to inject certain information into pods at creation time. This

information can include secrets, volumes, volume mounts, and environment variables.

See PodPreset proposal for more information.

What is a Pod Preset?

A Pod Preset is an API resource that you can use to inject additional runtime requirements into a Pod

at creation time. You use label selectors to specify the Pods to which a given Pod Preset applies.

Check out more information on label selectors.

Using a Pod Preset allows pod template authors to not have to explicitly set information for every

pod. This way, authors of pod templates consuming a speci�c service do not need to know all the

details about that service.

Admission Control

What is a Pod Preset?
Admission Control

Behavior
Enable Pod Preset
Disable Pod Preset for a pod
Create a Pod Preset

Simple Pod Spec Example
Pod Spec with ConfigMap Example
ReplicaSet with Pod Spec Example
Multiple PodPreset Example
Con�ict Example

Deleting a Pod Preset

https://git.k8s.io/community/contributors/design-proposals/service-catalog/pod-preset.md
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#label-selectors

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 2/15

Admission control is how Kubernetes applies Pod Presets to incoming pod creation requests. When

a pod creation request occurs, the system does the following:

1. Retrieve all PodPresets available for use.

2. Match the label selector of the PodPreset to the pod being created.

3. Attempt to merge the various de�ned resources for the PodPreset into the Pod being created.

4. On error, throw an event documenting the merge error on the pod, and create the pod without

any injected resources from the PodPreset .

Behavior

When a PodPreset is applied to one or more Pods, Kubernetes modi�es the pod spec. For changes

to Env , EnvFrom , and VolumeMounts , Kubernetes modi�es the container spec for all containers in

the Pod; for changes to Volume, Kubernetes modi�es the Pod Spec.

Kubernetes annotates the resulting modi�ed pod spec to show that it was modi�ed by a PodPreset

. The annotation is of the form

podpreset.admission.kubernetes.io/podpreset-<pod-preset name>": "<resource

version>"

.

Enable Pod Preset

In order to use Pod Presets in your cluster you must ensure the following

1. You have enabled the api type settings.k8s.io/v1alpha1/podpreset

2. You have enabled the admission controller PodPreset

3. You have de�ned your pod presets

Disable Pod Preset for a pod

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 3/15

There may be instances where you wish for a pod to not be altered by any pod preset mutations. For

these events, one can add an annotation in the pod spec of the form:

podpreset.admission.kubernetes.io/exclude: "true" .

Create a Pod Preset

Simple Pod Spec Example

This is a simple example to show how a Pod spec is modi�ed by the Pod Preset.

User submitted pod spec:

Example Pod Preset:

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
spec:
 containers:
 - name: website
 image: ecorp/website
 ports:
 - containerPort: 80

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 4/15

Pod spec after admission controller:

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database
 namespace: myns
spec:
 selector:
 matchLabels:
 role: frontend
 env:
 - name: DB_PORT
 value: "6379"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/podpreset-allow-database: "resource version"
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 ports:
 - containerPort: 80
 env:
 - name: DB_PORT
 value: "6379"
 volumes:
 - name: cache-volume
 emptyDir: {}

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 5/15

Pod Spec with Con�gMap Example

This is an example to show how a Pod spec is modi�ed by the Pod Preset that de�nes a ConfigMap

for Environment Variables.

User submitted pod spec:

User submitted ConfigMap :

Example Pod Preset:

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
spec:
 containers:
 - name: website
 image: ecorp/website
 ports:
 - containerPort: 80

apiVersion: v1
kind: ConfigMap
metadata:
 name: etcd-env-config
data:
 number_of_members: "1"
 initial_cluster_state: new
 initial_cluster_token: DUMMY_ETCD_INITIAL_CLUSTER_TOKEN
 discovery_token: DUMMY_ETCD_DISCOVERY_TOKEN
 discovery_url: http://etcd_discovery:2379
 etcdctl_peers: http://etcd:2379
 duplicate_key: FROM_CONFIG_MAP
 REPLACE_ME: "a value"

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 6/15

Pod spec after admission controller:

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database
 namespace: myns
spec:
 selector:
 matchLabels:
 role: frontend
 env:
 - name: DB_PORT
 value: 6379
 - name: duplicate_key
 value: FROM_ENV
 - name: expansion
 value: $(REPLACE_ME)
 envFrom:
 - configMapRef:
 name: etcd-env-config
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 - mountPath: /etc/app/config.json
 readOnly: true
 name: secret-volume
 volumes:
 - name: cache-volume
 emptyDir: {}
 - name: secret-volume
 secret:
 secretName: config-details

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 7/15

ReplicaSet with Pod Spec Example

The following example shows that only the pod spec is modi�ed by the Pod Preset.

User submitted ReplicaSet:

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/podpreset-allow-database: "resource version"
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 - mountPath: /etc/app/config.json
 readOnly: true
 name: secret-volume
 ports:
 - containerPort: 80
 env:
 - name: DB_PORT
 value: "6379"
 - name: duplicate_key
 value: FROM_ENV
 - name: expansion
 value: $(REPLACE_ME)
 envFrom:
 - configMapRef:
 name: etcd-env-config
 volumes:
 - name: cache-volume
 emptyDir: {}
 - name: secret-volume
 secret:
 secretName: config-details

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 8/15

Example Pod Preset:

apiVersion: settings.k8s.io/v1alpha1
kind: ReplicaSet
metadata:
 name: frontend
spec:
 replicas: 3
 selector:
 matchLabels:
 tier: frontend
 matchExpressions:
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 app: guestbook
 tier: frontend
 spec:
 containers:
 - name: php-redis
 image: gcr.io/google_samples/gb-frontend:v3
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 ports:
 - containerPort: 80

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 9/15

Pod spec after admission controller:

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database
 namespace: myns
spec:
 selector:
 matchLabels:
 tier: frontend
 env:
 - name: DB_PORT
 value: "6379"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 10/15

Multiple PodPreset Example

This is an example to show how a Pod spec is modi�ed by multiple Pod Injection Policies.

User submitted pod spec:

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: guestbook
 tier: frontend
 annotations:
 podpreset.admission.kubernetes.io/podpreset-allow-database: "resource version"
spec:
 containers:
 - name: php-redis
 image: gcr.io/google_samples/gb-frontend:v3
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 env:
 - name: GET_HOSTS_FROM
 value: dns
 - name: DB_PORT
 value: "6379"
 ports:
 - containerPort: 80
 volumes:
 - name: cache-volume
 emptyDir: {}

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 11/15

Example Pod Preset:

Another Pod Preset:

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
spec:
 containers:
 - name: website
 image: ecorp/website
 ports:
 - containerPort: 80

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database
 namespace: myns
spec:
 selector:
 matchLabels:
 role: frontend
 env:
 - name: DB_PORT
 value: "6379"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 12/15

Pod spec after admission controller:

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: proxy
 namespace: myns
spec:
 selector:
 matchLabels:
 role: frontend
 volumeMounts:
 - mountPath: /etc/proxy/configs
 name: proxy-volume
 volumes:
 - name: proxy-volume
 emptyDir: {}

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
 annotations:
 podpreset.admission.kubernetes.io/podpreset-allow-database: "resource version"
 podpreset.admission.kubernetes.io/podpreset-proxy: "resource version"
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 - mountPath: /etc/proxy/configs
 name: proxy-volume
 ports:
 - containerPort: 80
 env:
 - name: DB_PORT
 value: "6379"
 volumes:
 - name: cache-volume
 emptyDir: {}
 - name: proxy-volume
 emptyDir: {}

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 13/15

Con�ict Example

This is an example to show how a Pod spec is not modi�ed by the Pod Preset when there is a

con�ict.

User submitted pod spec:

Example Pod Preset:

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 ports:
 volumes:
 - name: cache-volume
 emptyDir: {}
 - containerPort: 80

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 14/15

Pod spec after admission controller will not change because of the con�ict:

If we run kubectl describe... we can see the event:

kind: PodPreset
apiVersion: settings.k8s.io/v1alpha1
metadata:
 name: allow-database
 namespace: myns
spec:
 selector:
 matchLabels:
 role: frontend
 env:
 - name: DB_PORT
 value: "6379"
 volumeMounts:
 - mountPath: /cache
 name: other-volume
 volumes:
 - name: other-volume
 emptyDir: {}

apiVersion: v1
kind: Pod
metadata:
 name: website
 labels:
 app: website
 role: frontend
spec:
 containers:
 - name: website
 image: ecorp/website
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 ports:
 - containerPort: 80
 volumes:
 - name: cache-volume
 emptyDir: {}

10/23/2017 Inject Information into Pods Using a PodPreset - Kubernetes

http://localhost:4000/docs/tasks/inject-data-application/podpreset/ 15/15

Deleting a Pod Preset

Once you don’t need a pod preset anymore, you can delete it with kubectl :

$ kubectl describe ...
....
Events:
 FirstSeen LastSeen Count From Subobj
 Tue, 07 Feb 2017 16:56:12 -0700 Tue, 07 Feb 2017 16:56:12 -0700 1 {podpreset

$ kubectl delete podpreset allow-database
podpreset "allow-database" deleted

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 1/7

Update API Objects in Place Using kubectl
patch

This task shows how to use kubectl patch to update an API object in place. The exercises in this

task demonstrate a strategic merge patch and a JSON merge patch.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Use a strategic merge patch to update a Deployment

Here’s the con�guration �le for a Deployment that has two replicas. Each replica is a Pod that has

one container:

deployment-patch-demo.yaml

Before you begin
Use a strategic merge patch to update a Deployment

Notes on the strategic merge patch
Use a JSON merge patch to update a Deployment
Alternate forms of the kubectl patch command
Summary
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/deployment-patch-demo.yaml

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 2/7

deployment-patch-demo.yaml

Create the Deployment:

View the Pods associated with your Deployment:

The output shows that the Deployment has two Pods. The 1/1 indicates that each Pod has one

container:

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: patch-demo
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: patch-demo-ctr
 image: nginx

kubectl create -f https://k8s.io/docs/tasks/run-application/deployment-patch-demo.

kubectl get pods

NAME READY STATUS RESTARTS AGE
patch-demo-28633765-670qr 1/1 Running 0 23s
patch-demo-28633765-j5qs3 1/1 Running 0 23s

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/deployment-patch-demo.yaml

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 3/7

Make a note of the names of the running Pods. Later, you will see that these Pods get terminated

and replaced by new ones.

At this point, each Pod has one Container that runs the nginx image. Now suppose you want each

Pod to have two containers: one that runs nginx and one that runs redis.

Create a �le named patch-file.yaml that has this content:

Patch your Deployment:

View the patched Deployment:

The output shows that the PodSpec in the Deployment has two Containers:

View the Pods associated with your patched Deployment:

spec:
 template:
 spec:
 containers:
 - name: patch-demo-ctr-2
 image: redis

kubectl patch deployment patch-demo --patch "$(cat patch-file.yaml)"

kubectl get deployment patch-demo --output yaml

containers:
- image: redis
 imagePullPolicy: Always
 name: patch-demo-ctr-2
 ...
- image: nginx
 imagePullPolicy: Always
 name: patch-demo-ctr
 ...

kubectl get pods

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 4/7

The output shows that the running Pods have different names from the Pods that were running

previously. The Deployment terminated the old Pods and created two new Pods that comply with the

updated Deployment spec. The 2/2 indicates that each Pod has two Containers:

Take a closer look at one of the patch-demo Pods:

The output shows that the Pod has two Containers: one running nginx and one running redis:

Notes on the strategic merge patch

With a patch, you do not have to specify an entire object; you specify only the portion of the object

that you want to change. For example, in the preceding exercise, you speci�ed one Container in the

containers list in a PodSpec .

The patch you did in the preceding exercise is called a strategic merge patch. With a strategic merge

patch, you can update a list by specifying only the elements that you want to add to the list. The

existing list elements remain, and the new elements are merged with the existing elements. In the

preceding exercise, the resulting containers list has both the original nginx Container and the new

redis Container.

Use a JSON merge patch to update a Deployment

A strategic merge patch is different from a JSON merge patch. With a JSON merge patch, if you

want to update a list, you have to specify the entire new list. And the new list completely replaces the

NAME READY STATUS RESTARTS AGE
patch-demo-1081991389-2wrn5 2/2 Running 0 1m
patch-demo-1081991389-jmg7b 2/2 Running 0 1m

kubectl get pod <your-pod-name> --output yaml

containers:
- image: redis
 ...
- image: nginx
 ...

https://tools.ietf.org/html/rfc6902

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 5/7

existing list.

The kubectl patch command has a type parameter that you can set to one of these values:

Parameter value Merge type

json JSON Patch, RFC 6902

merge JSON Merge Patch, RFC 7386

strategic Strategic merge patch

For a comparison of JSON patch and JSON merge patch, see JSON Patch and JSON Merge Patch.

The default value for the type parameter is strategic . So in the preceding exercise, you did a

strategic merge patch.

Next, do a JSON merge patch on your same Deployment. Create a �le named patch-file-2.yaml

that has this content:

In your patch command, set type to merge :

View the patched Deployment:

The containers list that you speci�ed in the patch has only one Container. The output shows that

your list of one Container replaced the existing containers list.

spec:
 template:
 spec:
 containers:
 - name: patch-demo-ctr-3
 image: gcr.io/google-samples/node-hello:1.0

kubectl patch deployment patch-demo --type merge --patch "$(cat patch-file-2.yaml)

kubectl get deployment patch-demo --output yaml

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7386
http://erosb.github.io/post/json-patch-vs-merge-patch/

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 6/7

List the running Pods:

In the output, you can see that the existing Pods were terminated, and new Pods were created. The

1/1 indicates that each new Pod is running only one Container.

Alternate forms of the kubectl patch command

The kubectl patch command takes YAML or JSON. It can take the patch as a �le or directly on the

command line.

Create a �le named patch-file.json that has this content:

spec:
 containers:
 - image: gcr.io/google-samples/node-hello:1.0
 ...
 name: patch-demo-ctr-3

kubectl get pods

NAME READY STATUS RESTARTS AGE
patch-demo-1307768864-69308 1/1 Running 0 1m
patch-demo-1307768864-c86dc 1/1 Running 0 1m

{
 "spec": {
 "template": {
 "spec": {
 "containers": [
 {
 "name": "patch-demo-ctr-2",
 "image": "redis"
 }
]
 }
 }
 }
}

10/23/2017 Update API Objects in Place Using kubectl patch - Kubernetes

http://localhost:4000/docs/tasks/run-application/update-api-object-kubectl-patch/ 7/7

The following commands are equivalent:

Summary

In this exercise, you kubectl patch to change the live con�guration of a Deployment object. You

did not change the con�guration �le that you originally used to create the Deployment object. Other

commands for updating API objects include kubectl annotate, kubectl edit, kubectl replace, kubectl

scale, kubectl update. and kubectl apply.

What’s next

Kubernetes Object Management

Managing Kubernetes Objects Using Imperative Commands

Imperative Management of Kubernetes Objects Using Con�guration Files

Declarative Management of Kubernetes Objects Using Con�guration Files

kubectl patch deployment patch-demo --patch "$(cat patch-file.yaml)"
kubectl patch deployment patch-demo --patch $'spec:\n template:\n spec:\n conta

kubectl patch deployment patch-demo --patch "$(cat patch-file.json)"
kubectl patch deployment patch-demo --patch '{"spec": {"template": {"spec": {"cont

http://localhost:4000/docs/user-guide/kubectl/v1.8/#annotate
http://localhost:4000/docs/user-guide/kubectl/v1.7/#edit
http://localhost:4000/docs/user-guide/kubectl/v1.7/#replace
http://localhost:4000/docs/user-guide/kubectl/v1.7/#scale
http://localhost:4000/docs/user-guide/kubectl/v1.7/#update
http://localhost:4000/docs/user-guide/kubectl/v1.7/#apply
http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/
http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/

10/23/2017 Upgrade from PetSets to StatefulSets - Kubernetes

http://localhost:4000/docs/tasks/run-application/upgrade-pet-set-to-stateful-set/ 1/5

Upgrade from PetSets to StatefulSets

This page shows how to upgrade from PetSets (Kubernetes version 1.3 or 1.4) to StatefulSets

(Kubernetes version 1.5 or later).

Before you begin

If you don’t have PetSets in your current cluster, or you don’t plan to upgrade your master to

Kubernetes 1.5 or later, you can skip this task.

Differences between alpha PetSets and beta
StatefulSets

PetSet was introduced as an alpha resource in Kubernetes release 1.3, and was renamed to

StatefulSet as a beta resource in 1.5. Here are some notable changes:

StatefulSet is the new PetSet: PetSet is no longer available in Kubernetes release 1.5 or later. It

becomes beta StatefulSet. To understand why the name was changed, see this discussion

thread.

Before you begin
Differences between alpha PetSets and beta StatefulSets
Upgrading from PetSets to StatefulSets

Find all PetSets and their manifests
Prepare StatefulSet manifests
Delete all PetSets without cascading
Upgrade your master to Kubernetes version 1.5 or later
Upgrade kubectl to Kubernetes version 1.5 or later
Create StatefulSets
Upgrade nodes to Kubernetes version 1.5 or later (optional)

What’s next

https://github.com/kubernetes/kubernetes/issues/27430

10/23/2017 Upgrade from PetSets to StatefulSets - Kubernetes

http://localhost:4000/docs/tasks/run-application/upgrade-pet-set-to-stateful-set/ 2/5

StatefulSet guards against split brain: StatefulSets guarantee at most one Pod for a given

ordinal index can be running anywhere in a cluster, to guard against split brain scenarios with

distributed applications. TODO: Link to doc about fencing.

Flipped debug annotation behavior: The default value of the debug annotation (

pod.alpha.kubernetes.io/initialized) is true in 1.5 through 1.7. The annotation is

completely ignored in 1.8 and above, which always behave as if it were true .

The absence of this annotation will pause PetSet operations, but will NOT pause StatefulSet

operations. In most cases, you no longer need this annotation in your StatefulSet manifests.

Upgrading from PetSets to StatefulSets

Note that these steps need to be done in the speci�ed order. You should NOT upgrade your

Kubernetes master, nodes, or kubectl to Kubernetes version 1.5 or later, until told to do so.

Find all PetSets and their manifests

First, �nd all existing PetSets in your cluster:

If you don’t �nd any existing PetSets, you can safely upgrade your cluster to Kubernetes version 1.5

or later.

If you �nd existing PetSets and you have all their manifests at hand, you can continue to the next

step to prepare StatefulSet manifests.

Otherwise, you need to save their manifests so that you can recreate them as StatefulSets later.

Here’s an example command for you to save all existing PetSets as one �le.

Prepare StatefulSet manifests

kubectl get petsets --all-namespaces

Save all existing PetSets in all namespaces into a single file. Only needed when
kubectl get petsets --all-namespaces -o yaml > all-petsets.yaml

10/23/2017 Upgrade from PetSets to StatefulSets - Kubernetes

http://localhost:4000/docs/tasks/run-application/upgrade-pet-set-to-stateful-set/ 3/5

Now, for every PetSet manifest you have, prepare a corresponding StatefulSet manifest:

1. Change apiVersion from apps/v1alpha1 to apps/v1beta1 .

2. Change kind from PetSet to StatefulSet .

3. If you have the debug hook annotation pod.alpha.kubernetes.io/initialized set to true ,

you can remove it because it’s redundant. If you don’t have this annotation or have it set to

false , be aware that StatefulSet operations might resume after the upgrade.

If you are upgrading to 1.6 or 1.7, you can set the annotation explicitly to false to maintain the

paused behavior. If you are upgrading to 1.8 or above, there’s no longer any debug annotation to

pause StatefulSets.

It’s recommended that you keep both PetSet manifests and StatefulSet manifests, so that you can

safely roll back and recreate your PetSets, if you decide not to upgrade your cluster.

Delete all PetSets without cascading

If you �nd existing PetSets in your cluster in the previous step, you need to delete all PetSets without

cascading. You can do this from kubectl with --cascade=false . Note that if the �ag isn’t set,

cascading deletion will be performed by default, and all Pods managed by your PetSets will be

gone.

Delete those PetSets by specifying �le names. This only works when the �les contain only PetSets,

but not other resources such as Services:

Alternatively, delete them by specifying resource names:

Make sure you’ve deleted all PetSets in the system:

Delete all existing PetSets without cascading
Note that <pet-set-file> should only contain PetSets that you want to delete, bu
kubectl delete -f <pet-set-file> --cascade=false

Alternatively, delete them by name and namespace without cascading
kubectl delete petsets <pet-set-name> -n=<pet-set-namespace> --cascade=false

10/23/2017 Upgrade from PetSets to StatefulSets - Kubernetes

http://localhost:4000/docs/tasks/run-application/upgrade-pet-set-to-stateful-set/ 4/5

At this moment, you’ve deleted all PetSets in your cluster, but not their Pods, Persistent Volumes, or

Persistent Volume Claims. However, since the Pods are not managed by PetSets anymore, they will

be vulnerable to node failures until you �nish the master upgrade and recreate StatefulSets.

Upgrade your master to Kubernetes version 1.5 or later

Now, you can upgrade your Kubernetes master to Kubernetes version 1.5 or later. Note that you

should NOT upgrade Nodes at this time, because the Pods (that were once managed by PetSets)

are now vulnerable to node failures.

Upgrade kubectl to Kubernetes version 1.5 or later

Upgrade kubectl to Kubernetes version 1.5 or later, following the steps for installing and setting up

kubectl.

Create StatefulSets

Make sure you have both master and kubectl upgraded to Kubernetes version 1.5 or later before

continuing:

The output is similar to this:

If both Client Version (kubectl version) and Server Version (master version) are 1.5 or later,

you are good to go.

Create StatefulSets to adopt the Pods belonging to the deleted PetSets with the StatefulSet

manifests generated in the previous step:

Get all PetSets again to make sure you deleted them all
This should return nothing
kubectl get petsets --all-namespaces

kubectl version

Client Version: version.Info{Major:"1", Minor:"5", GitVersion:"v1.5.0", GitCommit:
Server Version: version.Info{Major:"1", Minor:"5", GitVersion:"v1.5.0", GitCommit:

http://localhost:4000/docs/admin/cluster-management/#upgrading-a-cluster
http://localhost:4000/docs/tasks/kubectl/install/

10/23/2017 Upgrade from PetSets to StatefulSets - Kubernetes

http://localhost:4000/docs/tasks/run-application/upgrade-pet-set-to-stateful-set/ 5/5

Make sure all StatefulSets are created and running as expected in the newly-upgraded cluster:

Upgrade nodes to Kubernetes version 1.5 or later (optional)

You can now upgrade Kubernetes nodes to Kubernetes version 1.5 or later. This step is optional, but

needs to be done after all StatefulSets are created to adopt PetSets’ Pods.

You should be running Node version >= 1.1.0 to run StatefulSets safely. Older versions do not

support features which allow the StatefulSet to guarantee that at any time, there is at most one Pod

with a given identity running in a cluster.

What’s next

Learn more about scaling a StatefulSet.

kubectl create -f <stateful-set-file>

kubectl get statefulsets --all-namespaces

http://localhost:4000/docs/admin/cluster-management/#upgrading-a-cluster
http://localhost:4000/docs/tasks/manage-stateful-set/scale-stateful-set/

10/23/2017 Scale a StatefulSet - Kubernetes

http://localhost:4000/docs/tasks/run-application/scale-stateful-set/ 1/3

Scale a StatefulSet

This page shows how to scale a StatefulSet.

Before you begin

StatefulSets are only available in Kubernetes version 1.5 or later.

Not all stateful applications scale nicely. You need to understand your StatefulSets well before

continuing. If you’re unsure, remember that it might not be safe to scale your StatefulSets.

You should perform scaling only when you’re sure that your stateful application cluster is

completely healthy.

Use kubectl to scale StatefulSets

Make sure you have kubectl upgraded to Kubernetes version 1.5 or later before continuing. If

you’re unsure, run kubectl version and check Client Version for which kubectl you’re using.

kubectl scale

First, �nd the StatefulSet you want to scale. Remember, you need to �rst understand if you can scale

it or not.

Before you begin
Use kubectl to scale StatefulSets

kubectl scale

Alternative: kubectl apply / kubectl edit / kubectl patch
Troubleshooting

Scaling down doesn’t work right
What’s next

10/23/2017 Scale a StatefulSet - Kubernetes

http://localhost:4000/docs/tasks/run-application/scale-stateful-set/ 2/3

Change the number of replicas of your StatefulSet:

Alternative: kubectl apply / kubectl edit / kubectl patch

Alternatively, you can do in-place updates on your StatefulSets.

If your StatefulSet was initially created with kubectl apply or kubectl create --save-config ,

update .spec.replicas of the StatefulSet manifests, and then do a kubectl apply :

Otherwise, edit that �eld with kubectl edit :

Or use kubectl patch :

Troubleshooting

Scaling down doesn’t work right

You cannot scale down a StatefulSet when any of the stateful Pods it manages is unhealthy. Scaling

down only takes place after those stateful Pods become running and ready.

With a StatefulSet of size > 1, if there is an unhealthy Pod, there is no way for Kubernetes to know

(yet) if it is due to a permanent fault or a transient one (upgrade/maintenance/node reboot). If the

Pod is unhealthy due to a permanent fault, scaling without correcting the fault may lead to a state

kubectl get statefulsets <stateful-set-name>

kubectl scale statefulsets <stateful-set-name> --replicas=<new-replicas>

kubectl apply -f <stateful-set-file-updated>

kubectl edit statefulsets <stateful-set-name>

kubectl patch statefulsets <stateful-set-name> -p '{"spec":{"replicas":<new-replic

http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/#in-place-updates-of-resources

10/23/2017 Scale a StatefulSet - Kubernetes

http://localhost:4000/docs/tasks/run-application/scale-stateful-set/ 3/3

where the StatefulSet membership drops below a certain minimum number of “replicas” that are

needed to function correctly. This may cause your StatefulSet to become unavailable.

If the Pod is unhealthy due to a transient fault and the Pod might become available again, the

transient error may interfere with your scale-up/scale-down operation. Some distributed databases

have issues when nodes join and leave at the same time. It is better to reason about scaling

operations at the application level in these cases, and perform scaling only when you’re sure that

your stateful application cluster is completely healthy.

What’s next

Learn more about deleting a StatefulSet.

http://localhost:4000/docs/tasks/manage-stateful-set/deleting-a-statefulset/

10/23/2017 Delete a Stateful Set - Kubernetes

http://localhost:4000/docs/tasks/run-application/delete-stateful-set/ 1/3

Delete a Stateful Set

This task shows you how to delete a StatefulSet.

Before you begin

This task assumes you have an application running on your cluster represented by a StatefulSet.

Deleting a StatefulSet

You can delete a StatefulSet in the same way you delete other resources in Kubernetes: use the

kubectl delete command, and specify the StatefulSet either by �le or by name.

You may need to delete the associated headless service separately after the StatefulSet itself is

deleted.

Deleting a StatefulSet through kubectl will scale it down to 0, thereby deleting all pods that are a part

of it. If you want to delete just the StatefulSet and not the pods, use --cascade=false .

Before you begin
Deleting a StatefulSet

Persistent Volumes
Complete deletion of a StatefulSet
Force deletion of StatefulSet pods

What’s next

kubectl delete -f <file.yaml>

kubectl delete statefulsets <statefulset-name>

kubectl delete service <service-name>

10/23/2017 Delete a Stateful Set - Kubernetes

http://localhost:4000/docs/tasks/run-application/delete-stateful-set/ 2/3

By passing --cascade=false to kubectl delete , the Pods managed by the StatefulSet are left

behind even after the StatefulSet object itself is deleted. If the pods have a label app=myapp , you can

then delete them as follows:

Persistent Volumes

Deleting the Pods in a StatefulSet will not delete the associated volumes. This is to ensure that you

have the chance to copy data off the volume before deleting it. Deleting the PVC after the pods have

left the terminating state might trigger deletion of the backing Persistent Volumes depending on the

storage class and reclaim policy. You should never assume ability to access a volume after claim

deletion.

Note: Use caution when deleting a PVC, as it may lead to data loss.

Complete deletion of a StatefulSet

To simply delete everything in a StatefulSet, including the associated pods, you can run a series of

commands similar to the following:

In the example above, the Pods have the label app=myapp ; substitute your own label as appropriate.

Force deletion of StatefulSet pods

If you �nd that some pods in your StatefulSet are stuck in the ‘Terminating’ or ‘Unknown’ states for

an extended period of time, you may need to manually intervene to forcefully delete the pods from

the apiserver. This is a potentially dangerous task. Refer to Deleting StatefulSet Pods for details.

kubectl delete -f <file.yaml> --cascade=false

kubectl delete pods -l app=myapp

grace=$(kubectl get pods <stateful-set-pod> --template '{{.spec.terminationGracePe
kubectl delete statefulset -l app=myapp
sleep $grace
kubectl delete pvc -l app=myapp

http://localhost:4000/docs/concepts/workloads/pods/pod/#termination-of-pods
http://localhost:4000/docs/tasks/manage-stateful-set/delete-pods/

10/23/2017 Delete a Stateful Set - Kubernetes

http://localhost:4000/docs/tasks/run-application/delete-stateful-set/ 3/3

What’s next

Learn more about force deleting StatefulSet Pods.

http://localhost:4000/docs/tasks/run-application/force-delete-stateful-set-pod/

10/23/2017 Force Delete StatefulSet Pods - Kubernetes

http://localhost:4000/docs/tasks/run-application/force-delete-stateful-set-pod/ 1/3

Force Delete StatefulSet Pods

This page shows how to delete Pods which are part of a stateful set, and explains the considerations

to keep in mind when doing so.

Before you begin

This is a fairly advanced task and has the potential to violate some of the properties inherent to

StatefulSet.

Before proceeding, make yourself familiar with the considerations enumerated below.

StatefulSet considerations

In normal operation of a StatefulSet, there is never a need to force delete a StatefulSet Pod. The

StatefulSet controller is responsible for creating, scaling and deleting members of the StatefulSet. It

tries to ensure that the speci�ed number of Pods from ordinal 0 through N-1 are alive and ready.

StatefulSet ensures that, at any time, there is at most one Pod with a given identity running in a

cluster. This is referred to as at most one semantics provided by a StatefulSet.

Manual force deletion should be undertaken with caution, as it has the potential to violate the at

most one semantics inherent to StatefulSet. StatefulSets may be used to run distributed and

clustered applications which have a need for a stable network identity and stable storage. These

applications often have con�guration which relies on an ensemble of a �xed number of members

with �xed identities. Having multiple members with the same identity can be disastrous and may

lead to data loss (e.g. split brain scenario in quorum-based systems).

Before you begin
StatefulSet considerations
Delete Pods

Force Deletion
What’s next

10/23/2017 Force Delete StatefulSet Pods - Kubernetes

http://localhost:4000/docs/tasks/run-application/force-delete-stateful-set-pod/ 2/3

Delete Pods

You can perform a graceful pod deletion with the following command:

For the above to lead to graceful termination, the Pod must not specify a

pod.Spec.TerminationGracePeriodSeconds of 0. The practice of setting a

pod.Spec.TerminationGracePeriodSeconds of 0 seconds is unsafe and strongly discouraged for

StatefulSet Pods. Graceful deletion is safe and will ensure that the Pod shuts down gracefully before

the kubelet deletes the name from the apiserver.

Kubernetes (versions 1.5 or newer) will not delete Pods just because a Node is unreachable. The

Pods running on an unreachable Node enter the ‘Terminating’ or ‘Unknown’ state after a timeout.

Pods may also enter these states when the user attempts graceful deletion of a Pod on an

unreachable Node. The only ways in which a Pod in such a state can be removed from the apiserver

are as follows:

The Node object is deleted (either by you, or by the Node Controller).

The kubelet on the unresponsive Node starts responding, kills the Pod and removes the entry

from the apiserver.

Force deletion of the Pod by the user.

The recommended best practice is to use the �rst or second approach. If a Node is con�rmed to be

dead (e.g. permanently disconnected from the network, powered down, etc), then delete the Node

object. If the Node is suffering from a network partition, then try to resolve this or wait for it to

resolve. When the partition heals, the kubelet will complete the deletion of the Pod and free up its

name in the apiserver.

Normally, the system completes the deletion once the Pod is no longer running on a Node, or the

Node is deleted by an administrator. You may override this by force deleting the Pod.

Force Deletion

kubectl delete pods <pod>

http://localhost:4000/docs/user-guide/pods/#termination-of-pods
http://localhost:4000/docs/admin/node/#node-condition
http://localhost:4000/docs/admin/node

10/23/2017 Force Delete StatefulSet Pods - Kubernetes

http://localhost:4000/docs/tasks/run-application/force-delete-stateful-set-pod/ 3/3

Force deletions do not wait for con�rmation from the kubelet that the Pod has been terminated.

Irrespective of whether a force deletion is successful in killing a Pod, it will immediately free up the

name from the apiserver. This would let the StatefulSet controller create a replacement Pod with that

same identity; this can lead to the duplication of a still-running Pod, and if said Pod can still

communicate with the other members of the StatefulSet, will violate the at most one semantics that

StatefulSet is designed to guarantee.

When you force delete a StatefulSet pod, you are asserting that the Pod in question will never again

make contact with other Pods in the StatefulSet and its name can be safely freed up for a

replacement to be created.

If you want to delete a Pod forcibly using kubectl version >= 1.5, do the following:

If you’re using any version of kubectl <= 1.4, you should omit the --force option and use:

Always perform force deletion of StatefulSet Pods carefully and with complete knowledge of the

risks involved.

What’s next

Learn more about debugging a StatefulSet.

kubectl delete pods <pod> --grace-period=0 --force

kubectl delete pods <pod> --grace-period=0

http://localhost:4000/docs/tasks/manage-stateful-set/debugging-a-statefulset/

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 1/8

Perform Rolling Update Using a Replication
Controller

Overview

Note: The preferred way to create a replicated application is to use a Deployment, which in turn uses

a ReplicaSet. For more information, see Running a Stateless Application Using a Deployment.

To update a service without an outage, kubectl supports what is called ‘rolling update’, which

updates one pod at a time, rather than taking down the entire service at the same time. See the

rolling update design document and the example of rolling update for more information.

Note that kubectl rolling-update only supports Replication Controllers. However, if you deploy

applications with Replication Controllers, consider switching them to Deployments. A Deployment is

a higher-level controller that automates rolling updates of applications declaratively, and therefore is

recommended. If you still want to keep your Replication Controllers and use

kubectl rolling-update , keep reading:

A rolling update applies changes to the con�guration of pods being managed by a replication

controller. The changes can be passed as a new replication controller con�guration �le; or, if only

updating the image, a new container image can be speci�ed directly.

A rolling update works by:

1. Creating a new replication controller with the updated con�guration.

Overview
Passing a con�guration �le

Examples
Updating the container image

Examples
Required and optional �elds
Walkthrough
Troubleshooting

http://localhost:4000/docs/api-reference/v1.8/#deployment-v1beta1-apps
http://localhost:4000/docs/api-reference/v1.8/#replicaset-v1beta1-extensions
http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/
http://localhost:4000/docs/user-guide/kubectl/v1.6/#rolling-update
https://git.k8s.io/community/contributors/design-proposals/cli/simple-rolling-update.md
http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 2/8

2. Increasing/decreasing the replica count on the new and old controllers until the correct number

of replicas is reached.

3. Deleting the original replication controller.

Rolling updates are initiated with the kubectl rolling-update command:

Passing a con�guration �le

To initiate a rolling update using a con�guration �le, pass the new �le to kubectl rolling-update :

The con�guration �le must:

Specify a different metadata.name value.

Overwrite at least one common label in its spec.selector �eld.

Use the same metadata.namespace .

Replication controller con�guration �les are described in Creating Replication Controllers.

Examples

Updating the container image

$ kubectl rolling-update NAME \
 ([NEW_NAME] --image=IMAGE | -f FILE)

$ kubectl rolling-update NAME -f FILE

// Update pods of frontend-v1 using new replication controller data in frontend-v2
$ kubectl rolling-update frontend-v1 -f frontend-v2.json

// Update pods of frontend-v1 using JSON data passed into stdin.
$ cat frontend-v2.json | kubectl rolling-update frontend-v1 -f -

http://localhost:4000/docs/tutorials/stateless-application/run-stateless-ap-replication-controller/

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 3/8

To update only the container image, pass a new image name and tag with the --image �ag and

(optionally) a new controller name:

The --image �ag is only supported for single-container pods. Specifying --image with multi-

container pods returns an error.

If no NEW_NAME is speci�ed, a new replication controller is created with a temporary name. Once the

rollout is complete, the old controller is deleted, and the new controller is updated to use the original

name.

The update will fail if IMAGE:TAG is identical to the current value. For this reason, we recommend the

use of versioned tags as opposed to values such as :latest . Doing a rolling update from

image:latest to a new image:latest will fail, even if the image at that tag has changed.

Moreover, the use of :latest is not recommended, see Best Practices for Con�guration for more

information.

Examples

Required and optional �elds

Required �elds are:

NAME : The name of the replication controller to update.

as well as either:

$ kubectl rolling-update NAME [NEW_NAME] --image=IMAGE:TAG

// Update the pods of frontend-v1 to frontend-v2
$ kubectl rolling-update frontend-v1 frontend-v2 --image=image:v2

// Update the pods of frontend, keeping the replication controller name
$ kubectl rolling-update frontend --image=image:v2

http://localhost:4000/docs/concepts/configuration/overview/#container-images

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 4/8

-f FILE : A replication controller con�guration �le, in either JSON or YAML format. The

con�guration �le must specify a new top-level id value and include at least one of the existing

spec.selector key:value pairs. See the Run Stateless AP Replication Controller page for

details.

or:

--image IMAGE:TAG : The name and tag of the image to update to. Must be different than the

current image:tag currently speci�ed.

Optional �elds are:

NEW_NAME : Only used in conjunction with --image (not with -f FILE). The name to assign to

the new replication controller.

--poll-interval DURATION : The time between polling the controller status after update. Valid

units are ns (nanoseconds), us or µs (microseconds), ms (milliseconds), s (seconds), m

(minutes), or h (hours). Units can be combined (e.g. 1m30s). The default is 3s .

--timeout DURATION : The maximum time to wait for the controller to update a pod before

exiting. Default is 5m0s . Valid units are as described for --poll-interval above.

--update-period DURATION : The time to wait between updating pods. Default is 1m0s . Valid

units are as described for --poll-interval above.

Additional information about the kubectl rolling-update command is available from the

kubectl reference.

Walkthrough

Let’s say you were running version 1.7.9 of nginx:

http://localhost:4000/docs/tutorials/stateless-application/run-stateless-ap-replication-controller/#replication-controller-configuration-file
http://localhost:4000/docs/user-guide/kubectl/v1.8/#rolling-update

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 5/8

To update to version 1.9.1, you can use kubectl rolling-update --image to specify the new

image:

In another window, you can see that kubectl added a deployment label to the pods, whose value

is a hash of the con�guration, to distinguish the new pods from the old:

kubectl rolling-update reports progress as it progresses:

apiVersion: v1
kind: ReplicationController
metadata:
 name: my-nginx
spec:
 replicas: 5
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

$ kubectl rolling-update my-nginx --image=nginx:1.9.1
Created my-nginx-ccba8fbd8cc8160970f63f9a2696fc46

$ kubectl get pods -l app=nginx -L deployment
NAME READY STATUS RESTARTS A
my-nginx-ccba8fbd8cc8160970f63f9a2696fc46-k156z 1/1 Running 0 1
my-nginx-ccba8fbd8cc8160970f63f9a2696fc46-v95yh 1/1 Running 0 3
my-nginx-divi2 1/1 Running 0 2
my-nginx-o0ef1 1/1 Running 0 2
my-nginx-q6all 1/1 Running 0 8

https://git.k8s.io/community/contributors/design-proposals/cli/simple-rolling-update.md

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 6/8

If you encounter a problem, you can stop the rolling update midway and revert to the previous

version using --rollback :

This is one example where the immutability of containers is a huge asset.

If you need to update more than just the image (e.g., command arguments, environment variables),

you can create a new replication controller, with a new name and distinguishing label value, such as:

Scaling up my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 from 0 to 3, scaling down my-
Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 1
Scaling my-nginx down to 2
Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 2
Scaling my-nginx down to 1
Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 3
Scaling my-nginx down to 0
Update succeeded. Deleting old controller: my-nginx
Renaming my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 to my-nginx
replicationcontroller "my-nginx" rolling updated

$ kubectl rolling-update my-nginx --rollback
Setting "my-nginx" replicas to 1
Continuing update with existing controller my-nginx.
Scaling up nginx from 1 to 1, scaling down my-nginx-ccba8fbd8cc8160970f63f9a2696fc
Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 down to 0
Update succeeded. Deleting my-nginx-ccba8fbd8cc8160970f63f9a2696fc46
replicationcontroller "my-nginx" rolling updated

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 7/8

and roll it out:

Troubleshooting

If the timeout duration is reached during a rolling update, the operation will fail with some pods

belonging to the new replication controller, and some to the original controller.

apiVersion: v1
kind: ReplicationController
metadata:
 name: my-nginx-v4
spec:
 replicas: 5
 selector:
 app: nginx
 deployment: v4
 template:
 metadata:
 labels:
 app: nginx
 deployment: v4
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.2
 args: ["nginx", "-T"]
 ports:
 - containerPort: 80

$ kubectl rolling-update my-nginx -f ./nginx-rc.yaml
Created my-nginx-v4
Scaling up my-nginx-v4 from 0 to 5, scaling down my-nginx from 4 to 0 (keep 4 pods
Scaling my-nginx-v4 up to 1
Scaling my-nginx down to 3
Scaling my-nginx-v4 up to 2
Scaling my-nginx down to 2
Scaling my-nginx-v4 up to 3
Scaling my-nginx down to 1
Scaling my-nginx-v4 up to 4
Scaling my-nginx down to 0
Scaling my-nginx-v4 up to 5
Update succeeded. Deleting old controller: my-nginx
replicationcontroller "my-nginx-v4" rolling updated

10/23/2017 Perform Rolling Update Using a Replication Controller - Kubernetes

http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/ 8/8

To continue the update from where it failed, retry using the same command.

To roll back to the original state before the attempted update, append the --rollback=true �ag to

the original command. This will revert all changes.

10/23/2017 Horizontal Pod Autoscaling - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/ 1/6

Horizontal Pod Autoscaling

This document describes the current state of Horizontal Pod Autoscaling in Kubernetes.

What is Horizontal Pod Autoscaling?

With Horizontal Pod Autoscaling, Kubernetes automatically scales the number of pods in a

replication controller, deployment or replica set based on observed CPU utilization (or, with beta

support, on some other, application-provided metrics). Note that Horizontal Pod Autoscaling does

not apply to objects that can’t be scaled, for example, DaemonSet.

The Horizontal Pod Autoscaler is implemented as a Kubernetes API resource and a controller. The

resource determines the behavior of the controller. The controller periodically adjusts the number of

replicas in a replication controller or deployment to match the observed average CPU utilization to

the target speci�ed by user.

How does the Horizontal Pod Autoscaler work?

10/23/2017 Horizontal Pod Autoscaling - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/ 2/6

The Horizontal Pod Autoscaler is implemented as a control loop, with a period controlled by the

controller manager’s --horizontal-pod-autoscaler-sync-period �ag (with a default value of 30

seconds).

During each period, the controller manager queries the resource utilization against the metrics

speci�ed in each HorizontalPodAutoscaler de�nition. The controller manager obtains the metrics

from either the resource metrics API (for per-pod resource metrics), or the custom metrics API (for

all other metrics).

For per-pod resource metrics (like CPU), the controller fetches the metrics from the resource

metrics API for each pod targeted by the HorizontalPodAutoscaler. Then, if a target utilization

value is set, the controller calculates the utilization value as a percentage of the equivalent

resource request on the containers in each pod. If a target raw value is set, the raw metric values

are used directly. The controller then takes the mean of the utilization or the raw value

(depending on the type of target speci�ed) across all targeted pods, and produces a ratio used

to scale the number of desired replicas.

10/23/2017 Horizontal Pod Autoscaling - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/ 3/6

Please note that if some of the pod’s containers do not have the relevant resource request set,

CPU utilization for the pod will not be de�ned and the autoscaler will not take any action for that

metric. See the autoscaling algorithm design document for further details about how the

autoscaling algorithm works.

For per-pod custom metrics, the controller functions similarly to per-pod resource metrics,

except that it works with raw values, not utilization values.

For object metrics, a single metric is fetched (which describes the object in question), and

compared to the target value, to produce a ratio as above.

The HorizontalPodAutoscaler controller can fetch metrics in two different ways: direct Heapster

access, and REST client access.

When using direct Heapster access, the HorizontalPodAutoscaler queries Heapster directly through

the API server’s service proxy subresource. Heapster needs to be deployed on the cluster and

running in the kube-system namespace.

See Support for custom metrics for more details on REST client access.

The autoscaler accesses corresponding replication controller, deployment or replica set by scale

sub-resource. Scale is an interface that allows you to dynamically set the number of replicas and

examine each of their current states. More details on scale sub-resource can be found here.

API Object

The Horizontal Pod Autoscaler is an API resource in the Kubernetes autoscaling API group. The

current stable version, which only includes support for CPU autoscaling, can be found in the

autoscaling/v1 API version.

The beta version, which includes support for scaling on memory and custom metrics, can be found

in autoscaling/v2beta1 . The new �elds introduced in autoscaling/v2beta1 are preserved as

annotations when working with autoscaling/v1 .

More details about the API object can be found at HorizontalPodAutoscaler Object.

Support for Horizontal Pod Autoscaler in kubectl

https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#autoscaling-algorithm
https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#scale-subresource
https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#horizontalpodautoscaler-object

10/23/2017 Horizontal Pod Autoscaling - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/ 4/6

Horizontal Pod Autoscaler, like every API resource, is supported in a standard way by kubectl . We

can create a new autoscaler using kubectl create command. We can list autoscalers by

kubectl get hpa and get detailed description by kubectl describe hpa . Finally, we can delete

an autoscaler using kubectl delete hpa .

In addition, there is a special kubectl autoscale command for easy creation of a Horizontal Pod

Autoscaler. For instance, executing

kubectl autoscale rc foo --min=2 --max=5 --cpu-percent=80 will create an autoscaler for

replication controller foo, with target CPU utilization set to 80% and the number of replicas between

2 and 5. The detailed documentation of kubectl autoscale can be found here.

Autoscaling during rolling update

Currently in Kubernetes, it is possible to perform a rolling update by managing replication controllers

directly, or by using the deployment object, which manages the underlying replication controllers for

you. Horizontal Pod Autoscaler only supports the latter approach: the Horizontal Pod Autoscaler is

bound to the deployment object, it sets the size for the deployment object, and the deployment is

responsible for setting sizes of underlying replication controllers.

Horizontal Pod Autoscaler does not work with rolling update using direct manipulation of replication

controllers, i.e. you cannot bind a Horizontal Pod Autoscaler to a replication controller and do rolling

update (e.g. using kubectl rolling-update). The reason this doesn’t work is that when rolling

update creates a new replication controller, the Horizontal Pod Autoscaler will not be bound to the

new replication controller.

Support for multiple metrics

Kubernetes 1.6 adds support for scaling based on multiple metrics. You can use the

autoscaling/v2beta1 API version to specify multiple metrics for the Horizontal Pod Autoscaler to

scale on. Then, the Horizontal Pod Autoscaler controller will evaluate each metric, and propose a

new scale based on that metric. The largest of the proposed scales will be used as the new scale.

Support for custom metrics

http://localhost:4000/docs/user-guide/kubectl/v1.6/#autoscale
http://localhost:4000/docs/tasks/run-application/rolling-update-replication-controller/

10/23/2017 Horizontal Pod Autoscaling - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/ 5/6

Note: Kubernetes 1.2 added alpha support for scaling based on application-speci�c metrics using

special annotations. Support for these annotations was removed in Kubernetes 1.6 in favor of the

new autoscaling API. While the old method for collecting custom metrics is still available, these

metrics will not be available for use by the Horizontal Pod Autoscaler, and the former annotations for

specifying which custom metrics to scale on are no longer honored by the Horizontal Pod Autoscaler

controller.

Kubernetes 1.6 adds support for making use of custom metrics in the Horizontal Pod Autoscaler.

You can add custom metrics for the Horizontal Pod Autoscaler to use in the autoscaling/v2beta1

API. Kubernetes then queries the new custom metrics API to fetch the values of the appropriate

custom metrics.

Requirements

To use custom metrics with your Horizontal Pod Autoscaler, you must set the necessary

con�gurations when deploying your cluster:

Enable the API aggregation layer if you have not already done so.

Register your resource metrics API and your custom metrics API with the API aggregation layer.

Both of these API servers must be running on your cluster.

Resource Metrics API: You can use Heapster’s implementation of the resource metrics API,

by running Heapster with its --api-server �ag set to true.

Custom Metrics API: This must be provided by a separate component. To get started with

boilerplate code, see the kubernetes-incubator/custom-metrics-apiserver and the

k8s.io/metrics repositories.

Set the appropriate �ags for kube-controller-manager:

--horizontal-pod-autoscaler-use-rest-clients should be true.

--kubeconfig <path-to-kubeconfig> OR --master <ip-address-of-apiserver>

Note that either the --master or --kubeconfig �ag can be used; --master will override

--kubeconfig if both are speci�ed. These �ags specify the location of the API aggregation

layer, allowing the controller manager to communicate to the API server.

http://localhost:4000/docs/tasks/access-kubernetes-api/configure-aggregation-layer/
https://github.com/kubernetes-incubator/custom-metrics-apiserver
https://github.com/kubernetes/metrics

10/23/2017 Horizontal Pod Autoscaling - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/ 6/6

In Kubernetes 1.7, the standard aggregation layer that Kubernetes provides runs in-process

with the kube-apiserver, so the target IP address can be found with

kubectl get pods --selector k8s-app=kube-apiserver --namespace kube-system

-o jsonpath='{.items[0].status.podIP}'

.

Further reading

Design documentation: Horizontal Pod Autoscaling.

kubectl autoscale command: kubectl autoscale.

Usage example of Horizontal Pod Autoscaler.

https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md
http://localhost:4000/docs/user-guide/kubectl/v1.6/#autoscale
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 1/9

Horizontal Pod Autoscaling Walkthrough

Horizontal Pod Autoscaling automatically scales the number of pods in a replication controller,

deployment or replica set based on observed CPU utilization (or, with beta support, on some other,

application-provided metrics).

This document walks you through an example of enabling Horizontal Pod Autoscaling for the php-

apache server. For more information on how Horizontal Pod Autoscaling behaves, see the Horizontal

Pod Autoscaling user guide.

Prerequisites

This example requires a running Kubernetes cluster and kubectl, version 1.2 or later. Heapster

monitoring needs to be deployed in the cluster as Horizontal Pod Autoscaler uses it to collect

metrics (if you followed getting started on GCE guide, heapster monitoring will be turned-on by

default).

To specify multiple resource metrics for a Horizontal Pod Autoscaler, you must have a Kubernetes

cluster and kubectl at version 1.6 or later. Furthermore, in order to make use of custom metrics, your

cluster must be able to communicate with the API server providing the custom metrics API. See the

Horizontal Pod Autoscaling user guide for more details.

Step One: Run & expose php-apache server

To demonstrate Horizontal Pod Autoscaler we will use a custom docker image based on the php-

apache image. The Docker�le can be found here. It de�nes an index.php page which performs some

CPU intensive computations.

First, we will start a deployment running the image and expose it as a service:

$ kubectl run php-apache --image=gcr.io/google_containers/hpa-example --requests=c
service "php-apache" created
deployment "php-apache" created

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/heapster
http://localhost:4000/docs/getting-started-guides/gce/
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics
http://localhost:4000/docs/user-guide/horizontal-pod-autoscaling/image/Dockerfile
http://localhost:4000/docs/user-guide/horizontal-pod-autoscaling/image/index.php

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 2/9

Step Two: Create Horizontal Pod Autoscaler

Now that the server is running, we will create the autoscaler using kubectl autoscale. The following

command will create a Horizontal Pod Autoscaler that maintains between 1 and 10 replicas of the

Pods controlled by the php-apache deployment we created in the �rst step of these instructions.

Roughly speaking, HPA will increase and decrease the number of replicas (via the deployment) to

maintain an average CPU utilization across all Pods of 50% (since each pod requests 200 milli-cores

by kubectl run, this means average CPU usage of 100 milli-cores). See here for more details on the

algorithm.

We may check the current status of autoscaler by running:

Please note that the current CPU consumption is 0% as we are not sending any requests to the

server (the CURRENT column shows the average across all the pods controlled by the corresponding

deployment).

Step Three: Increase load

Now, we will see how the autoscaler reacts to increased load. We will start a container, and send an

in�nite loop of queries to the php-apache service (please run it in a different terminal):

$ kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10
deployment "php-apache" autoscaled

$ kubectl get hpa
NAME REFERENCE TARGET MINPODS MAXPODS REPLICAS
php-apache Deployment/php-apache/scale 0% / 50% 1 10 1

https://github.com/kubernetes/kubernetes/blob/master/docs/user-guide/kubectl/kubectl_autoscale.md
https://github.com/kubernetes/kubernetes/blob/master/docs/user-guide/kubectl/kubectl_run.md
https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#autoscaling-algorithm

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 3/9

Within a minute or so, we should see the higher CPU load by executing:

Here, CPU consumption has increased to 305% of the request. As a result, the deployment was

resized to 7 replicas:

Note Sometimes it may take a few minutes to stabilize the number of replicas. Since the amount of

load is not controlled in any way it may happen that the �nal number of replicas will differ from this

example.

Step Four: Stop load

We will �nish our example by stopping the user load.

In the terminal where we created the container with busybox image, terminate the load generation

by typing <Ctrl> + C .

Then we will verify the result state (after a minute or so):

$ kubectl run -i --tty load-generator --image=busybox /bin/sh

Hit enter for command prompt

$ while true; do wget -q -O- http://php-apache.default.svc.cluster.local; done

$ kubectl get hpa
NAME REFERENCE TARGET CURRENT MINPODS MAXPODS
php-apache Deployment/php-apache/scale 305% / 50% 305% 1 10

$ kubectl get deployment php-apache
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
php-apache 7 7 7 7 19m

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 4/9

Here CPU utilization dropped to 0, and so HPA autoscaled the number of replicas back down to 1.

Note autoscaling the replicas may take a few minutes.

Autoscaling on multiple metrics and custom metrics

You can introduce additional metrics to use when autoscaling the php-apache Deployment by

making use of the autoscaling/v2beta1 API version.

First, get the YAML of your HorizontalPodAutoscaler in the autoscaling/v2beta1 form:

Open the /tmp/hpa-v2.yaml �le in an editor, and you should see YAML which looks like this:

$ kubectl get hpa
NAME REFERENCE TARGET MINPODS MAXPODS REPLIC
php-apache Deployment/php-apache/scale 0% / 50% 1 10 1

$ kubectl get deployment php-apache
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
php-apache 1 1 1 1 27m

$ kubectl get hpa.v2beta1.autoscaling -o yaml > /tmp/hpa-v2.yaml

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 5/9

Notice that the targetCPUUtilizationPercentage �eld has been replaced with an array called

metrics . The CPU utilization metric is a resource metric, since it is represented as a percentage of a

resource speci�ed on pod containers. Notice that you can specify other resource metrics besides

CPU. By default, the only other supported resource metric is memory. These resources do not

change names from cluster to cluster, and should always be available, as long as Heapster is

deployed.

You can also specify resource metrics in terms of direct values, instead of as percentages of the

requested value. To do so, use the targetAverageValue �eld instead of the

targetAverageUtilization �eld.

There are two other types of metrics, both of which are considered custom metrics: pod metrics and

object metrics. These metrics may have names which are cluster speci�c, and require a more

advanced cluster monitoring setup.

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: php-apache
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1beta1
 kind: Deployment
 name: php-apache
 minReplicas: 1
 maxReplicas: 10
 metrics:
 - type: Resource
 resource:
 name: cpu
 targetAverageUtilization: 50
status:
 observedGeneration: 1
 lastScaleTime: <some-time>
 currentReplicas: 1
 desiredReplicas: 1
 currentMetrics:
 - type: Resource
 resource:
 name: cpu
 currentAverageUtilization: 0
 currentAverageValue: 0

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 6/9

The �rst of these alternative metric types is pod metrics. These metrics describe pods, and are

averaged together across pods and compared with a target value to determine the replica count.

They work much like resource metrics, except that they only have the targetAverageValue �eld.

Pod metrics are speci�ed using a metric block like this:

The second alternative metric type is object metrics. These metrics describe a different object in the

same namespace, instead of describing pods. Note that the metrics are not fetched from the object

– they simply describe it. Object metrics do not involve averaging, and look like this:

If you provide multiple such metric blocks, the HorizontalPodAutoscaler will consider each metric in

turn. The HorizontalPodAutoscaler will calculate proposed replica counts for each metric, and then

choose the one with the highest replica count.

For example, if you had your monitoring system collecting metrics about network tra�c, you could

update the de�nition above using kubectl edit to look like this:

type: Pods
pods:
 metricName: packets-per-second
 targetAverageValue: 1k

type: Object
object:
 metricName: requests-per-second
 target:
 apiVersion: extensions/v1beta1
 kind: Ingress
 name: main-route
 targetValue: 2k

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 7/9

Then, your HorizontalPodAutoscaler would attempt to ensure that each pod was consuming roughly

50% of its requested CPU, serving 1000 packets per second, and that all pods behind the main-route

Ingress were serving a total of 10000 requests per second.

Appendix: Horizontal Pod Autoscaler Status Conditions

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: php-apache
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1beta1
 kind: Deployment
 name: php-apache
 minReplicas: 1
 maxReplicas: 10
 metrics:
 - type: Resource
 resource:
 name: cpu
 targetAverageUtilization: 50
 - type: Pods
 pods:
 metricName: packets-per-second
 targetAverageValue: 1k
 - type: Object
 object:
 metricName: requests-per-second
 target:
 apiVersion: extensions/v1beta1
 kind: Ingress
 name: main-route
 targetValue: 10k
status:
 observedGeneration: 1
 lastScaleTime: <some-time>
 currentReplicas: 1
 desiredReplicas: 1
 currentMetrics:
 - type: Resource
 resource:
 name: cpu
 currentAverageUtilization: 0
 currentAverageValue: 0

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 8/9

When using the autoscaling/v2beta1 form of the HorizontalPodAutoscaler, you will be able to see

status conditions set by Kubernetes on the HorizontalPodAutoscaler. These status conditions

indicate whether or not the HorizontalPodAutoscaler is able to scale, and whether or not it is

currently restricted in any way.

The conditions appear in the status.conditions �eld. To see the conditions affecting a

HorizontalPodAutoscaler, we can use kubectl describe hpa :

For this HorizontalPodAutoscaler, we can see several conditions in a healthy state. The �rst,

AbleToScale , indicates whether or not the HPA is able to fetch and update scales, as well as

whether or not any backoff-related conditions would prevent scaling. The second, ScalingActive ,

indicates whether or not the HPA is enabled (i.e. the replica count of the target is not zero) and is able

to calculate desired scales. When it is False , it generally indicates problems with fetching metrics.

Finally, the last condition, ScalingLimitted , indicates that the desired scale was capped by the

maximum or minimum of the HorizontalPodAutoscaler. This is an indication that you may wish to

raise or lower the minimum or maximum replica count constraints on your HorizontalPodAutoscaler.

Appendix: Other possible scenarios

$ kubectl describe hpa cm-test
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was su
 ScalingActive True ValidMetricFound the HPA was able to succes
 ScalingLimited False DesiredWithinRange the desired replica count
Events:

10/23/2017 Horizontal Pod Autoscaling Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 9/9

Creating the autoscaler from a .yaml �le

Instead of using kubectl autoscale command we can use the hpa-php-apache.yaml �le, which

looks like this:

We will create the autoscaler by executing the following command:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: php-apache
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1beta1
 kind: Deployment
 name: php-apache
 minReplicas: 1
 maxReplicas: 10
 targetCPUUtilizationPercentage: 50

$ kubectl create -f docs/user-guide/horizontal-pod-autoscaling/hpa-php-apache.yaml
horizontalpodautoscaler "php-apache" created

http://localhost:4000/docs/user-guide/horizontal-pod-autoscaling/hpa-php-apache.yaml

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 1/7

Specifying a Disruption Budget for your
Application

This page shows how to limit the number of concurrent disruptions that your application

experiences, allowing for higher availability while permitting the cluster administrator to manage the

clusters nodes.

Before you begin

You are the owner of an application running on a Kubernetes cluster that requires high

availability.

You should know how to deploy Replicated Stateless Applications and/or Replicated Stateful

Applications.

You should have read about Pod Disruptions.

You should con�rm with your cluster owner or service provider that they respect Pod Disruption

Budgets.

Protecting an Application with a PodDisruptionBudget

1. Identify what application you want to protect with a PodDisruptionBudget (PDB).

2. Think about how your application reacts to disruptions.

Before you begin
Protecting an Application with a PodDisruptionBudget
Identify an Application to Protect
Think about how your application reacts to disruptions
Specifying a PodDisruptionBudget
Create the PDB object
Check the status of the PDB
Arbitrary Controllers and Selectors

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/
http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/
http://localhost:4000/docs/concepts/workloads/pods/disruptions/

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 2/7

3. Create a PDB de�nition as a YAML �le.

4. Create the PDB object from the YAML �le.

Identify an Application to Protect

The most common use case when you want to protect an application speci�ed by one of the built-in

Kubernetes controllers:

Deployment

ReplicationController

ReplicaSet

StatefulSet

In this case, make a note of the controller’s .spec.selector ; the same selector goes into the PDBs

.spec.selector .

You can also use PDBs with pods which are not controlled by one of the above controllers, or

arbitrary groups of pods, but there are some restrictions, described in Arbitrary Controllers and

Selectors.

Think about how your application reacts to disruptions

Decide how many instances can be down at the same time for a short period due to a voluntary

disruption.

Stateless frontends:

Concern: don’t reduce serving capacity by more than 10%.

Solution: use PDB with minAvailable 90% for example.

Single-instance Stateful Application:

Concern: do not terminate this application without talking to me.

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 3/7

Possible Solution 1: Do not use a PDB and tolerate occasional downtime.

Possible Solution 2: Set PDB with maxUnavailable=0. Have an understanding (outside of

Kubernetes) that the cluster operator needs to consult you before termination. When

the cluster operator contacts you, prepare for downtime, and then delete the PDB to

indicate readiness for disruption. Recreate afterwards.

Multiple-instance Stateful application such as Consul, ZooKeeper, or etcd:

Concern: Do not reduce number of instances below quorum, otherwise writes fail.

Possible Solution 1: set maxUnavailable to 1 (works with varying scale of application).

Possible Solution 2: set minAvailable to quorum-size (e.g. 3 when scale is 5). (Allows

more disruptions at once).

Restartable Batch Job:

Concern: Job needs to complete in case of voluntary disruption.

Possible solution: Do not create a PDB. The Job controller will create a replacement

pod.

Specifying a PodDisruptionBudget

A PodDisruptionBudget has three �elds:

A label selector .spec.selector to specify the set of pods to which it applies. This �eld is

required.

.spec.minAvailable which is a description of the number of pods from that set that must still

be available after the eviction, even in the absence of the evicted pod. minAvailable can be

either an absolute number or a percentage.

.spec.maxUnavailable (available in Kubernetes 1.7 and higher) which is a description of the

number of pods from that set that can be unavailable after the eviction. It can be either an

absolute number or a percentage.

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 4/7

You can specify only one of maxUnavailable and minAvailable in a single

PodDisruptionBudget . maxUnavailable can only be used to control the eviction of pods that

have an associated controller managing them. In the examples below, “desired replicas” is the

scale of the controller managing the pods being selected by the PodDisruptionBudget .

Example 1: With a minAvailable of 5, evictions are be allowed as long as they leave behind 5 or

more healthy pods among those selected by the PodDisruptionBudget’s selector .

Example 2: With a minAvailable of 30%, evictions are allowed as long as at least 30% of the

number of desired replicas are healthy.

Example 3: With a maxUnavailable of 5, evictions are allowed as long as there are at most 5

unhealthy replicas among the total number of desired replicas.

Example 4: With a maxUnavailable of 30%, evictions are allowed as long as no more than 30% of

the desired replicas are unhealthy.

In typical usage, a single budget would be used for a collection of pods managed by a controller—for

example, the pods in a single ReplicaSet or StatefulSet.

Note: A disruption budget does not truly guarantee that the speci�ed number/percentage of pods

will always be up. For example, a node that hosts a pod from the collection may fail when the

collection is at the minimum size speci�ed in the budget, thus bringing the number of available pods

from the collection below the speci�ed size. The budget can only protect against voluntary evictions,

not all causes of unavailability.

A maxUnavailable of 0% (or 0) or a minAvailable of 100% (or equal to the number of replicas)

may block node drains entirely. This is permitted as per the semantics of PodDisruptionBudget .

You can �nd examples of pod disruption budgets de�ned below. They match pods with the label

app: zookeeper .

Example PDB Using minAvailable:

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 5/7

Example PDB Using maxUnavailable (Kubernetes 1.7 or higher):

For example, if the above zk-pdb object selects the pods of a StatefulSet of size 3, both

speci�cations have the exact same meaning. The use of maxUnavailable is recommended as it

automatically responds to changes in the number of replicas of the corresponding controller.

Create the PDB object

You can create the PDB object with a command like kubectl create -f mypdb.yaml .

You cannot update PDB objects. They must be deleted and re-created.

Check the status of the PDB

Use kubectl to check that your PDB is created.

Assuming you don’t actually have pods matching app: zookeeper in your namespace, then you’ll

see something like this:

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: zk-pdb
spec:
 minAvailable: 2
 selector:
 matchLabels:
 app: zookeeper

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: zk-pdb
spec:
 maxUnavailable: 1
 selector:
 matchLabels:
 app: zookeeper

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 6/7

If there are matching pods (say, 3), then you would see something like this:

The non-zero value for ALLOWED-DISRUPTIONS means that the disruption controller has seen the

pods, counted the matching pods, and update the status of the PDB.

You can get more information about the status of a PDB with this command:

Arbitrary Controllers and Selectors

You can skip this section if you only use PDBs with the built-in application controllers (Deployment,

ReplicationController, ReplicaSet, and StatefulSet), with the PDB selector matching the controller’s

selector.

You can use a PDB with pods controlled by another type of controller, by an “operator”, or bare pods,

but with these restrictions:

$ kubectl get poddisruptionbudgets
NAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGE
zk-pdb 2 0 7s

$ kubectl get poddisruptionbudgets
NAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGE
zk-pdb 2 1 7s

$ kubectl get poddisruptionbudgets zk-pdb -o yaml
apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 creationTimestamp: 2017-08-28T02:38:26Z
 generation: 1
 name: zk-pdb
...
status:
 currentHealthy: 3
 desiredHealthy: 3
 disruptedPods: null
 disruptionsAllowed: 1
 expectedPods: 3
 observedGeneration: 1

10/23/2017 Specifying a Disruption Budget for your Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/configure-pdb/ 7/7

only .spec.minAvailable can be used, not .spec.maxUnavailable .

only an integer value can be used with .spec.minAvailable , not a percentage.

You can use a selector which selects a subset or superset of the pods belonging to a built-in

controller. However, when there are multiple PDBs in a namespace, you must be careful not to create

PDBs whose selectors overlap.

10/23/2017 Parallel Processing using Expansions - Kubernetes

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/ 1/6

Parallel Processing using Expansions

Example: Multiple Job Objects from
Template Expansion

In this example, we will run multiple Kubernetes Jobs created from a common template. You may

want to be familiar with the basic, non-parallel, use of Jobs �rst.

Basic Template Expansion

First, download the following template of a job to a �le called job.yaml

job.yaml

Example: Multiple Job Objects from Template Expansion
Basic Template Expansion
Multiple Template Parameters
Alternatives

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/parallel-processing-expansion/job.yaml

10/23/2017 Parallel Processing using Expansions - Kubernetes

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/ 2/6

job.yaml

Unlike a pod template, our job template is not a Kubernetes API type. It is just a yaml representation

of a Job object that has some placeholders that need to be �lled in before it can be used. The $ITEM

syntax is not meaningful to Kubernetes.

In this example, the only processing the container does is to echo a string and sleep for a bit. In a

real use case, the processing would be some substantial computation, such as rendering a frame of

a movie, or processing a range of rows in a database. The “$ITEM” parameter would specify for

example, the frame number or the row range.

This Job and its Pod template have a label: jobgroup=jobexample . There is nothing special to the

system about this label. This label makes it convenient to operate on all the jobs in this group at

once. We also put the same label on the pod template so that we can check on all Pods of these

Jobs with a single command. After the job is created, the system will add more labels that

distinguish one Job’s pods from another Job’s pods. Note that the label key jobgroup is not special

to Kubernetes. You can pick your own label scheme.

Next, expand the template into multiple �les, one for each item to be processed.

apiVersion: batch/v1
kind: Job
metadata:
 name: process-item-$ITEM
 labels:
 jobgroup: jobexample
spec:
 template:
 metadata:
 name: jobexample
 labels:
 jobgroup: jobexample
 spec:
 containers:
 - name: c
 image: busybox
 command: ["sh", "-c", "echo Processing item $ITEM && sleep 5"]
 restartPolicy: Never

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/parallel-processing-expansion/job.yaml

10/23/2017 Parallel Processing using Expansions - Kubernetes

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/ 3/6

Check if it worked:

Here, we used sed to replace the string $ITEM with the loop variable. You could use any type of

template language (jinja2, erb) or write a program to generate the Job objects.

Next, create all the jobs with one kubectl command:

Now, check on the jobs:

Here we use the -l option to select all jobs that are part of this group of jobs. (There might be other

unrelated jobs in the system that we do not care to see.)

We can check on the pods as well using the same label selector:

Expand files into a temporary directory
mkdir ./jobs
for i in apple banana cherry
do
 cat job.yaml.txt | sed "s/\$ITEM/$i/" > ./jobs/job-$i.yaml
done

$ ls jobs/
job-apple.yaml
job-banana.yaml
job-cherry.yaml

$ kubectl create -f ./jobs
job "process-item-apple" created
job "process-item-banana" created
job "process-item-cherry" created

$ kubectl get jobs -l jobgroup=jobexample
JOB CONTAINER(S) IMAGE(S) SELECTOR
process-item-apple c busybox app in (jobexample),item in (apple
process-item-banana c busybox app in (jobexample),item in (banan
process-item-cherry c busybox app in (jobexample),item in (cherr

10/23/2017 Parallel Processing using Expansions - Kubernetes

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/ 4/6

There is not a single command to check on the output of all jobs at once, but looping over all the

pods is pretty easy:

Multiple Template Parameters

In the �rst example, each instance of the template had one parameter, and that parameter was also

used as a label. However label keys are limited in what characters they can contain.

This slightly more complex example uses the jinja2 template language to generate our objects. We

will use a one-line python script to convert the template to a �le.

First, copy and paste the following template of a Job object, into a �le called job.yaml.jinja2 :

$ kubectl get pods -l jobgroup=jobexample --show-all
NAME READY STATUS RESTARTS AGE
process-item-apple-kixwv 0/1 Completed 0 4m
process-item-banana-wrsf7 0/1 Completed 0 4m
process-item-cherry-dnfu9 0/1 Completed 0 4m

$ for p in $(kubectl get pods -l jobgroup=jobexample --show-all -o name)
do
 kubectl logs $p
done
Processing item apple
Processing item banana
Processing item cherry

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

10/23/2017 Parallel Processing using Expansions - Kubernetes

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/ 5/6

The above template de�nes parameters for each job object using a list of python dicts (lines 1-4).

Then a for loop emits one job yaml object for each set of parameters (remaining lines). We take

advantage of the fact that multiple yaml documents can be concatenated with the --- separator

(second to last line). .) We can pipe the output directly to kubectl to create the objects.

You will need the jinja2 package if you do not already have it: pip install --user jinja2 . Now,

use this one-line python program to expand the template:

The output can be saved to a �le, like this:

{%- set params = [{ "name": "apple", "url": "http://www.orangepippin.com/apples",
 { "name": "banana", "url": "https://en.wikipedia.org/wiki/Banana
 { "name": "raspberry", "url": "https://www.raspberrypi.org/" }]
%}
{%- for p in params %}
{%- set name = p["name"] %}
{%- set url = p["url"] %}
apiVersion: batch/v1
kind: Job
metadata:
 name: jobexample-{{ name }}
 labels:
 jobgroup: jobexample
spec:
 template:
 metadata:
 name: jobexample
 labels:
 jobgroup: jobexample
 spec:
 containers:
 - name: c
 image: busybox
 command: ["sh", "-c", "echo Processing URL {{ url }} && sleep 5"]
 restartPolicy: Never

{%- endfor %}

alias render_template='python -c "from jinja2 import Template; import sys; print(T

cat job.yaml.jinja2 | render_template > jobs.yaml

10/23/2017 Parallel Processing using Expansions - Kubernetes

http://localhost:4000/docs/tasks/job/parallel-processing-expansion/ 6/6

Or sent directly to kubectl, like this:

Alternatives

If you have a large number of job objects, you may �nd that:

Even using labels, managing so many Job objects is cumbersome.

You exceed resource quota when creating all the Jobs at once, and do not want to wait to create

them incrementally.

You need a way to easily scale the number of pods running concurrently. One reason would be to

avoid using too many compute resources. Another would be to limit the number of concurrent

requests to a shared resource, such as a database, used by all the pods in the job.

Very large numbers of jobs created at once overload the Kubernetes apiserver, controller, or

scheduler.

In this case, you can consider one of the other job patterns.

cat job.yaml.jinja2 | render_template | kubectl create -f -

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 1/9

Coarse Parallel Processing Using a Work
Queue

Example: Job with Work Queue with Pod Per
Work Item

In this example, we will run a Kubernetes Job with multiple parallel worker processes. You may want

to be familiar with the basic, non-parallel, use of Job �rst.

In this example, as each pod is created, it picks up one unit of work from a task queue, completes it,

deletes it from the queue, and exits.

Here is an overview of the steps in this example:

1. Start a message queue service. In this example, we use RabbitMQ, but you could use another

one. In practice you would set up a message queue service once and reuse it for many jobs.

2. Create a queue, and �ll it with messages. Each message represents one task to be done. In this

example, a message is just an integer that we will do a lengthy computation on.

3. Start a Job that works on tasks from the queue. The Job starts several pods. Each pod takes

one task from the message queue, processes it, and repeats until the end of the queue is

reached.

Example: Job with Work Queue with Pod Per Work Item
Starting a message queue service
Testing the message queue service
Filling the Queue with tasks
Create an Image
De�ning a Job
Running the Job
Alternatives
Caveats

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 2/9

Starting a message queue service

This example uses RabbitMQ, but it should be easy to adapt to another AMQP-type message service.

In practice you could set up a message queue service once in a cluster and reuse it for many jobs, as

well as for long-running services.

Start RabbitMQ as follows:

We will only use the rabbitmq part from the celery-rabbitmq example.

Testing the message queue service

Now, we can experiment with accessing the message queue. We will create a temporary interactive

pod, install some tools on it, and experiment with queues.

First create a temporary interactive Pod.

Note that your pod name and command prompt will be different.

Next install the amqp-tools so we can work with message queues.

$ kubectl create -f examples/celery-rabbitmq/rabbitmq-service.yaml
service "rabbitmq-service" created
$ kubectl create -f examples/celery-rabbitmq/rabbitmq-controller.yaml
replicationController "rabbitmq-controller" created

Create a temporary interactive container
$ kubectl run -i --tty temp --image ubuntu:14.04
Waiting for pod default/temp-loe07 to be running, status is Pending, pod ready: fa
... [previous line repeats several times .. hit return when it stops] ...

Install some tools
root@temp-loe07:/# apt-get update
.... [lots of output]
root@temp-loe07:/# apt-get install -y curl ca-certificates amqp-tools python dnsut
.... [lots of output]

https://github.com/kubernetes/kubernetes/tree/release-1.3/examples/celery-rabbitmq

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 3/9

Later, we will make a docker image that includes these packages.

Next, we will check that we can discover the rabbitmq service:

If Kube-DNS is not setup correctly, the previous step may not work for you. You can also �nd the

service IP in an env var:

Next we will verify we can create a queue, and publish and consume messages.

Note the rabbitmq-service has a DNS name, provided by Kubernetes:

root@temp-loe07:/# nslookup rabbitmq-service
Server: 10.0.0.10
Address: 10.0.0.10#53

Name: rabbitmq-service.default.svc.cluster.local
Address: 10.0.147.152

Your address will vary.

env | grep RABBIT | grep HOST
RABBITMQ_SERVICE_SERVICE_HOST=10.0.147.152
Your address will vary.

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 4/9

In the last command, the amqp-consume tool takes one message (-c 1) from the queue, and

passes that message to the standard input of an arbitrary command. In this case, the program cat

is just printing out what it gets on the standard input, and the echo is just to add a carriage return so

the example is readable.

Filling the Queue with tasks

Now lets �ll the queue with some “tasks”. In our example, our tasks are just strings to be printed.

In a practice, the content of the messages might be:

names of �les to that need to be processed

extra �ags to the program

ranges of keys in a database table

con�guration parameters to a simulation

frame numbers of a scene to be rendered

In the next line, rabbitmq-service is the hostname where the rabbitmq-service
can be reached. 5672 is the standard port for rabbitmq.

root@temp-loe07:/# export BROKER_URL=amqp://guest:guest@rabbitmq-service:5672
If you could not resolve "rabbitmq-service" in the previous step,
then use this command instead:
root@temp-loe07:/# BROKER_URL=amqp://guest:guest@$RABBITMQ_SERVICE_SERVICE_HOST:

Now create a queue:

root@temp-loe07:/# /usr/bin/amqp-declare-queue --url=$BROKER_URL -q foo -d
foo

Publish one message to it:

root@temp-loe07:/# /usr/bin/amqp-publish --url=$BROKER_URL -r foo -p -b Hello

And get it back.

root@temp-loe07:/# /usr/bin/amqp-consume --url=$BROKER_URL -q foo -c 1 cat && echo
Hello
root@temp-loe07:/#

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 5/9

In practice, if there is large data that is needed in a read-only mode by all pods of the Job, you will

typically put that in a shared �le system like NFS and mount that readonly on all the pods, or the

program in the pod will natively read data from a cluster �le system like HDFS.

For our example, we will create the queue and �ll it using the amqp command line tools. In practice,

you might write a program to �ll the queue using an amqp client library.

So, we �lled the queue with 8 messages.

Create an Image

Now we are ready to create an image that we will run as a job.

We will use the amqp-consume utility to read the message from the queue and run our actual

program. Here is a very simple example program:

worker.py

Now, build an image. If you are working in the source tree, then change directory to

examples/job/work-queue-1 . Otherwise, make a temporary directory, change to it, download the

Docker�le, and worker.py. In either case, build the image with this command:

$ /usr/bin/amqp-declare-queue --url=$BROKER_URL -q job1 -d
job1
$ for f in apple banana cherry date fig grape lemon melon
do
 /usr/bin/amqp-publish --url=$BROKER_URL -r job1 -p -b $f
done

#!/usr/bin/env python

Just prints standard out and sleeps for 10 seconds.
import sys
import time
print("Processing " + sys.stdin.lines())
time.sleep(10)

$ docker build -t job-wq-1 .

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/coarse-parallel-processing-work-queue/worker.py
http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/Dockerfile?raw=true
http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/worker.py?raw=true

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 6/9

For the Docker Hub, tag your app image with your username and push to the Hub with the below

commands. Replace <username> with your Hub username.

If you are using Google Container Registry, tag your app image with your project ID, and push to GCR.

Replace <project> with your project ID.

De�ning a Job

Here is a job de�nition. You’ll need to make a copy of the Job and edit the image to match the name

you used, and call it ./job.yaml .

job.yaml

docker tag job-wq-1 <username>/job-wq-1
docker push <username>/job-wq-1

docker tag job-wq-1 gcr.io/<project>/job-wq-1
gcloud docker -- push gcr.io/<project>/job-wq-1

https://hub.docker.com/
https://cloud.google.com/tools/container-registry/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/coarse-parallel-processing-work-queue/job.yaml

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 7/9

job.yaml

In this example, each pod works on one item from the queue and then exits. So, the completion

count of the Job corresponds to the number of work items done. So we set,

.spec.completions: 8 for the example, since we put 8 items in the queue.

Running the Job

So, now run the Job:

Now wait a bit, then check on the job.

apiVersion: batch/v1
kind: Job
metadata:
 name: job-wq-1
spec:
 completions: 8
 parallelism: 2
 template:
 metadata:
 name: job-wq-1
 spec:
 containers:
 - name: c
 image: gcr.io/<project>/job-wq-1
 env:
 - name: BROKER_URL
 value: amqp://guest:guest@rabbitmq-service:5672
 - name: QUEUE
 value: job1
 restartPolicy: OnFailure

kubectl create -f ./job.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/coarse-parallel-processing-work-queue/job.yaml

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 8/9

All our pods succeeded. Yay.

Alternatives

This approach has the advantage that you do not need to modify your “worker” program to be aware

that there is a work queue.

It does require that you run a message queue service. If running a queue service is inconvenient, you

may want to consider one of the other job patterns.

$ kubectl describe jobs/job-wq-1
Name: job-wq-1
Namespace: default
Selector: controller-uid=41d75705-92df-11e7-b85e-fa163ee3c11f
Labels: controller-uid=41d75705-92df-11e7-b85e-fa163ee3c11f
 job-name=job-wq-1
Annotations: <none>
Parallelism: 2
Completions: 8
Start Time: Wed, 06 Sep 2017 16:42:02 +0800
Pods Statuses: 0 Running / 8 Succeeded / 0 Failed
Pod Template:
 Labels: controller-uid=41d75705-92df-11e7-b85e-fa163ee3c11f
 job-name=job-wq-1
 Containers:
 c:
 Image: gcr.io/causal-jigsaw-637/job-wq-1
 Port:
 Environment:
 BROKER_URL: amqp://guest:guest@rabbitmq-service:5672
 QUEUE: job1
 Mounts: <none>
 Volumes: <none>
Events:
 FirstSeen LastSeen Count From SubobjectPath Type Reason
 ───────── ──────── ───── ──── ───────────── ────── ──────
 27s 27s 1 {job } Normal SuccessfulCrea
 27s 27s 1 {job } Normal SuccessfulCrea
 27s 27s 1 {job } Normal SuccessfulCrea
 27s 27s 1 {job } Normal SuccessfulCrea
 26s 26s 1 {job } Normal SuccessfulCrea
 15s 15s 1 {job } Normal SuccessfulCrea
 14s 14s 1 {job } Normal SuccessfulCrea
 14s 14s 1 {job } Normal SuccessfulCrea

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns

10/23/2017 Coarse Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/coarse-parallel-processing-work-queue/ 9/9

This approach creates a pod for every work item. If your work items only take a few seconds, though,

creating a Pod for every work item may add a lot of overhead. Consider another example, that

executes multiple work items per Pod.

In this example, we used use the amqp-consume utility to read the message from the queue and run

our actual program. This has the advantage that you do not need to modify your program to be

aware of the queue. A different example, shows how to communicate with the work queue using a

client library.

Caveats

If the number of completions is set to less than the number of items in the queue, then not all items

will be processed.

If the number of completions is set to more than the number of items in the queue, then the Job will

not appear to be completed, even though all items in the queue have been processed. It will start

additional pods which will block waiting for a message.

There is an unlikely race with this pattern. If the container is killed in between the time that the

message is acknowledged by the amqp-consume command and the time that the container exits

with success, or if the node crashes before the kubelet is able to post the success of the pod back to

the api-server, then the Job will not appear to be complete, even though all items in the queue have

been processed.

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 1/8

Fine Parallel Processing Using a Work Queue

Example: Job with Work Queue with Pod Per
Work Item

In this example, we will run a Kubernetes Job with multiple parallel worker processes. You may want

to be familiar with the basic, non-parallel, use of Job �rst.

In this example, as each pod is created, it picks up one unit of work from a task queue, completes it,

deletes it from the queue, and exits.

Here is an overview of the steps in this example:

1. Start a storage service to hold the work queue. In this example, we use Redis to store our work

items. In the previous example, we used RabbitMQ. In this example, we use Redis and a custom

work-queue client library because AMQP does not provide a good way for clients to detect when

a �nite-length work queue is empty. In practice you would set up a store such as Redis once and

reuse it for the work queues of many jobs, and other things.

2. Create a queue, and �ll it with messages. Each message represents one task to be done. In this

example, a message is just an integer that we will do a lengthy computation on.

3. Start a Job that works on tasks from the queue. The Job starts several pods. Each pod takes

one task from the message queue, processes it, and repeats until the end of the queue is

reached.

Example: Job with Work Queue with Pod Per Work Item
Starting Redis
Filling the Queue with tasks
Create an Image

Push the image
De�ning a Job
Running the Job
Alternatives

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 2/8

Starting Redis

For this example, for simplicity, we will start a single instance of Redis. See the Redis Example for an

example of deploying Redis scalably and redundantly.

Start a temporary Pod running Redis and a service so we can �nd it.

If you’re not working from the source tree, you could also download redis-pod.yaml and

redis-service.yaml directly.

Filling the Queue with tasks

Now let’s �ll the queue with some “tasks”. In our example, our tasks are just strings to be printed.

Start a temporary interactive pod for running the Redis CLI.

Now hit enter, start the redis CLI, and create a list with some work items in it.

$ kubectl create -f docs/tasks/job/fine-parallel-processing-work-queue/redis-pod.y
pod "redis-master" created
$ kubectl create -f docs/tasks/job/fine-parallel-processing-work-queue/redis-servi
service "redis" created

$ kubectl run -i --tty temp --image redis --command "/bin/sh"
Waiting for pod default/redis2-c7h78 to be running, status is Pending, pod ready:
Hit enter for command prompt

https://github.com/kubernetes/examples/tree/master/guestbook
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/redis-pod.yaml?raw=true
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/redis-service.yaml?raw=true

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 3/8

So, the list with key job2 will be our work queue.

Note: if you do not have Kube DNS setup correctly, you may need to change the �rst step of the

above block to redis-cli -h $REDIS_SERVICE_HOST .

Create an Image

Now we are ready to create an image that we will run.

We will use a python worker program with a redis client to read the messages from the message

queue.

A simple Redis work queue client library is provided, called rediswq.py (Download).

redis-cli -h redis
redis:6379> rpush job2 "apple"
(integer) 1
redis:6379> rpush job2 "banana"
(integer) 2
redis:6379> rpush job2 "cherry"
(integer) 3
redis:6379> rpush job2 "date"
(integer) 4
redis:6379> rpush job2 "fig"
(integer) 5
redis:6379> rpush job2 "grape"
(integer) 6
redis:6379> rpush job2 "lemon"
(integer) 7
redis:6379> rpush job2 "melon"
(integer) 8
redis:6379> rpush job2 "orange"
(integer) 9
redis:6379> lrange job2 0 -1
1) "apple"
2) "banana"
3) "cherry"
4) "date"
5) "fig"
6) "grape"
7) "lemon"
8) "melon"
9) "orange"

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/rediswq.py?raw=true

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 4/8

The “worker” program in each Pod of the Job uses the work queue client library to get work. Here it

is:

worker.py

If you are working from the source tree, change directory to the

docs/tasks/job/fine-parallel-processing-work-queue/ directory. Otherwise, download

worker.py , rediswq.py , and Dockerfile using above links. Then build the image:

Push the image

For the Docker Hub, tag your app image with your username and push to the Hub with the below

commands. Replace <username> with your Hub username.

#!/usr/bin/env python

import time
import rediswq

host="redis"
Uncomment next two lines if you do not have Kube-DNS working.
import os
host = os.getenv("REDIS_SERVICE_HOST")

q = rediswq.RedisWQ(name="job2", host="redis")
print("Worker with sessionID: " + q.sessionID())
print("Initial queue state: empty=" + str(q.empty()))
while not q.empty():
 item = q.lease(lease_secs=10, block=True, timeout=2)
 if item is not None:
 itemstr = item.decode("utf=8")
 print("Working on " + itemstr)
 time.sleep(10) # Put your actual work here instead of sleep.
 q.complete(item)
 else:
 print("Waiting for work")
print("Queue empty, exiting")

docker build -t job-wq-2 .

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/fine-parallel-processing-work-queue/worker.py
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/worker.py?raw=true
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/rediswq.py?raw=true
http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/Dockerfile?raw=true
https://hub.docker.com/

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 5/8

You need to push to a public repository or con�gure your cluster to be able to access your private

repository.

If you are using Google Container Registry, tag your app image with your project ID, and push to GCR.

Replace <project> with your project ID.

De�ning a Job

Here is the job de�nition:

job.yaml

Be sure to edit the job template to change gcr.io/myproject to your own path.

In this example, each pod works on several items from the queue and then exits when there are no

more items. Since the workers themselves detect when the workqueue is empty, and the Job

controller does not know about the workqueue, it relies on the workers to signal when they are done

docker tag job-wq-2 <username>/job-wq-2
docker push <username>/job-wq-2

docker tag job-wq-2 gcr.io/<project>/job-wq-2
gcloud docker -- push gcr.io/<project>/job-wq-2

apiVersion: batch/v1
kind: Job
metadata:
 name: job-wq-2
spec:
 parallelism: 2
 template:
 metadata:
 name: job-wq-2
 spec:
 containers:
 - name: c
 image: gcr.io/myproject/job-wq-2
 restartPolicy: OnFailure

http://localhost:4000/docs/concepts/containers/images/
https://cloud.google.com/tools/container-registry/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/job/fine-parallel-processing-work-queue/job.yaml

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 6/8

working. The workers signal that the queue is empty by exiting with success. So, as soon as any

worker exits with success, the controller knows the work is done, and the Pods will exit soon. So, we

set the completion count of the Job to 1. The job controller will wait for the other pods to complete

too.

Running the Job

So, now run the Job:

Now wait a bit, then check on the job.

kubectl create -f ./job.yaml

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 7/8

As you can see, one of our pods worked on several work units.

Alternatives

If running a queue service or modifying your containers to use a work queue is inconvenient, you

may want to consider one of the other job patterns.

If you have a continuous stream of background processing work to run, then consider running your

background workers with a replicationController instead, and consider running a background

processing library such as https://github.com/resque/resque.

$ kubectl describe jobs/job-wq-2
Name: job-wq-2
Namespace: default
Selector: controller-uid=b1c7e4e3-92e1-11e7-b85e-fa163ee3c11f
Labels: controller-uid=b1c7e4e3-92e1-11e7-b85e-fa163ee3c11f
 job-name=job-wq-2
Annotations: <none>
Parallelism: 2
Completions: <unset>
Start Time: Mon, 11 Jan 2016 17:07:59 -0800
Pods Statuses: 1 Running / 0 Succeeded / 0 Failed
Pod Template:
 Labels: controller-uid=b1c7e4e3-92e1-11e7-b85e-fa163ee3c11f
 job-name=job-wq-2
 Containers:
 c:
 Image: gcr.io/exampleproject/job-wq-2
 Port:
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 FirstSeen LastSeen Count From SubobjectPath Type R
 --------- -------- ----- ---- ------------- -------- -
 33s 33s 1 {job-controller } Normal S

$ kubectl logs pods/job-wq-2-7r7b2
Worker with sessionID: bbd72d0a-9e5c-4dd6-abf6-416cc267991f
Initial queue state: empty=False
Working on banana
Working on date
Working on lemon

http://localhost:4000/docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns
https://github.com/resque/resque

10/23/2017 Fine Parallel Processing Using a Work Queue - Kubernetes

http://localhost:4000/docs/tasks/job/fine-parallel-processing-work-queue/ 8/8

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 1/13

Web UI (Dashboard)

Dashboard is a web-based Kubernetes user interface. You can use Dashboard to deploy

containerized applications to a Kubernetes cluster, troubleshoot your containerized application, and

manage the cluster itself along with its attendant resources. You can use Dashboard to get an

overview of applications running on your cluster, as well as for creating or modifying individual

Kubernetes resources (such as Deployments, Jobs, DaemonSets, etc). For example, you can scale a

Deployment, initiate a rolling update, restart a pod or deploy new applications using a deploy wizard.

Dashboard also provides information on the state of Kubernetes resources in your cluster, and on

any errors that may have occurred.

Deploying the Dashboard UI
Accessing the Dashboard UI

Command line proxy
Master server

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 2/13

Deploying the Dashboard UI

The Dashboard UI is not deployed by default. To deploy it, run the following command:

Accessing the Dashboard UI

There are multiple ways you can access the Dashboard UI; either by using the kubectl command-line

interface, or by accessing the Kubernetes master apiserver using your web browser.

Command line proxy

You can access Dashboard using the kubectl command-line tool by running the following command:

Kubectl will handle authentication with apiserver and make Dashboard available at

http://localhost:8001/ui.

Welcome view
Deploying containerized applications

Specifying application details
Uploading a YAML or JSON �le

Using Dashboard
Navigation

Admin
Workloads
Services and discovery
Storage
Con�g
Logs viewer

More information

kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/sr

$ kubectl proxy

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 3/13

The UI can only be accessed from the machine where the command is executed. See

kubectl proxy --help for more options.

Master server

You may access the UI directly via the Kubernetes master apiserver. Open a browser and navigate to

https://<kubernetes-master>/ui , where <kubernetes-master> is IP address or domain name

of the Kubernetes master.

Please note, this works only if the apiserver is set up to allow authentication with username and

password. This is not currently the case with some setup tools (e.g., kubeadm). Refer to the

authentication admin documentation for information on how to con�gure authentication manually.

If the username and password are con�gured but unknown to you, then use kubectl config view

to �nd it.

Welcome view

When you access Dashboard on an empty cluster, you’ll see the welcome page. This page contains a

link to this document as well as a button to deploy your �rst application. In addition, you can view

which system applications are running by default in the kube-system namespace of your cluster,

for example the Dashboard itself.

http://localhost:4000/docs/admin/authentication/
http://localhost:4000/docs/tasks/administer-cluster/namespaces/

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 4/13

Deploying containerized applications

Dashboard lets you create and deploy a containerized application as a Deployment and optional

Service with a simple wizard. You can either manually specify application details, or upload a YAML

or JSON �le containing application con�guration.

To access the deploy wizard from the Welcome page, click the respective button. To access the

wizard at a later point in time, click the CREATE button in the upper right corner of any page.

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 5/13

Specifying application details

The deploy wizard expects that you provide the following information:

App name (mandatory): Name for your application. A label with the name will be added to the

Deployment and Service, if any, that will be deployed.

The application name must be unique within the selected Kubernetes namespace. It must start

with a lowercase character, and end with a lowercase character or a number, and contain only

lowercase letters, numbers and dashes (-). It is limited to 24 characters. Leading and trailing

spaces are ignored.

Container image (mandatory): The URL of a public Docker container image on any registry, or a

private image (commonly hosted on the Google Container Registry or Docker Hub). The

container image speci�cation must end with a colon.

http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
http://localhost:4000/docs/tasks/administer-cluster/namespaces/
http://localhost:4000/docs/concepts/containers/images/

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 6/13

Number of pods (mandatory): The target number of Pods you want your application to be

deployed in. The value must be a positive integer.

A Deployment will be created to maintain the desired number of Pods across your cluster.

Service (optional): For some parts of your application (e.g. frontends) you may want to expose a

Service onto an external, maybe public IP address outside of your cluster (external Service). For

external Services, you may need to open up one or more ports to do so. Find more details here.

Other Services that are only visible from inside the cluster are called internal Services.

Irrespective of the Service type, if you choose to create a Service and your container listens on a

port (incoming), you need to specify two ports. The Service will be created mapping the port

(incoming) to the target port seen by the container. This Service will route to your deployed Pods.

Supported protocols are TCP and UDP. The internal DNS name for this Service will be the value

you speci�ed as application name above.

If needed, you can expand the Advanced options section where you can specify more settings:

Description: The text you enter here will be added as an annotation to the Deployment and

displayed in the application’s details.

Labels: Default labels to be used for your application are application name and version. You can

specify additional labels to be applied to the Deployment, Service (if any), and Pods, such as

release, environment, tier, partition, and release track.

Example:

Namespace: Kubernetes supports multiple virtual clusters backed by the same physical cluster.

These virtual clusters are called namespaces. They let you partition resources into logically

named groups.

Dashboard offers all available namespaces in a dropdown list, and allows you to create a new

namespace. The namespace name may contain a maximum of 63 alphanumeric characters and

release=1.0

tier=frontend

environment=pod

track=stable

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/
http://localhost:4000/docs/concepts/overview/working-with-objects/annotations/
http://localhost:4000/docs/concepts/overview/working-with-objects/labels/
http://localhost:4000/docs/tasks/administer-cluster/namespaces/

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 7/13

dashes (-) but can not contain capital letters. Namespace names should not consist of only

numbers. If the name is set as a number, such as 10, the pod will be put in the default

namespace.

In case the creation of the namespace is successful, it is selected by default. If the creation fails,

the �rst namespace is selected.

Image Pull Secret: In case the speci�ed Docker container image is private, it may require pull

secret credentials.

Dashboard offers all available secrets in a dropdown list, and allows you to create a new secret.

The secret name must follow the DNS domain name syntax, e.g. new.image-pull.secret . The

content of a secret must be base64-encoded and speci�ed in a .dockercfg �le. The secret

name may consist of a maximum of 253 characters.

In case the creation of the image pull secret is successful, it is selected by default. If the creation

fails, no secret is applied.

CPU requirement (cores) and Memory requirement (MiB): You can specify the minimum

resource limits for the container. By default, Pods run with unbounded CPU and memory limits.

Run command and Run command arguments: By default, your containers run the speci�ed

Docker image’s default entrypoint command. You can use the command options and arguments

to override the default.

Run as privileged: This setting determines whether processes in privileged containers are

equivalent to processes running as root on the host. Privileged containers can make use of

capabilities like manipulating the network stack and accessing devices.

Environment variables: Kubernetes exposes Services through environment variables. You can

compose environment variable or pass arguments to your commands using the values of

environment variables. They can be used in applications to �nd a Service. Values can reference

other variables using the $(VAR_NAME) syntax.

Uploading a YAML or JSON �le

Kubernetes supports declarative con�guration. In this style, all con�guration is stored in YAML or

JSON con�guration �les using the Kubernetes API resource schemas.

http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
http://localhost:4000/docs/tasks/configure-pod-container/limit-range/
http://localhost:4000/docs/user-guide/containers/#containers-and-commands
http://localhost:4000/docs/user-guide/pods/#privileged-mode-for-pod-containers
http://localhost:4000/docs/tasks/inject-data-application/environment-variable-expose-pod-information/
http://localhost:4000/docs/concepts/overview/kubernetes-api/

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 8/13

As an alternative to specifying application details in the deploy wizard, you can de�ne your

application in YAML or JSON �les, and upload the �les using Dashboard:

Using Dashboard

Following sections describe views of the Kubernetes Dashboard UI; what they provide and how can

they be used.

Navigation

When there are Kubernetes objects de�ned in the cluster, Dashboard shows them in the initial view.

By default only objects from the default namespace are shown and this can be changed using the

namespace selector located in the navigation menu.

Dashboard shows most Kubernetes object kinds and groups them in a few menu categories.

Admin

View for cluster and namespace administrators. It lists Nodes, Namespaces and Persistent Volumes

and has detail views for them. Node list view contains CPU and memory usage metrics aggregated

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 9/13

across all Nodes. The details view shows the metrics for a Node, its speci�cation, status, allocated

resources, events and pods running on the node.

Workloads

Entry point view that shows all applications running in the selected namespace. The view lists

applications by workload kind (e.g., Deployments, Replica Sets, Stateful Sets, etc.) and each workload

kind can be viewed separately. The lists summarize actionable information about the workloads,

such as the number of ready pods for a Replica Set or current memory usage for a Pod.

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 10/13

Detail views for workloads show status and speci�cation information and surface relationships

between objects. For example, Pods that Replica Set is controlling or New Replica Sets and

Horizontal Pod Autoscalers for Deployments.

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 11/13

Services and discovery

Services and discovery view shows Kubernetes resources that allow for exposing services to

external world and discovering them within a cluster. For that reason, Service and Ingress views

show Pods targeted by them, internal endpoints for cluster connections and external endpoints for

external users.

Storage

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 12/13

Storage view shows Persistent Volume Claim resources which are used by applications for storing

data.

Con�g

Con�g view show all Kubernetes resources that are used for live con�guration of applications

running in clusters. This is now Con�g Maps and Secrets. The view allows for editing and managing

con�g objects and displays secrets hidden by default.

Logs viewer

Pod lists and detail pages link to logs viewer that is built into Dashboard. The viewer allows for

drilling down logs from containers belonging to a single Pod.

10/23/2017 Web UI (Dashboard) - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/web-ui-dashboard/ 13/13

More information

For more information, see the Kubernetes Dashboard project page.

https://github.com/kubernetes/dashboard

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 1/10

Accessing Clusters

Accessing the cluster API

Accessing for the �rst time with kubectl

When accessing the Kubernetes API for the �rst time, we suggest using the Kubernetes CLI,

kubectl .

To access a cluster, you need to know the location of the cluster and have credentials to access it.

Typically, this is automatically set-up when you work through a Getting started guide, or someone

else setup the cluster and provided you with credentials and a location.

Check the location and credentials that kubectl knows about with this command:

Accessing the cluster API
Accessing for the �rst time with kubectl
Directly accessing the REST API

Using kubectl proxy
Without kubectl proxy (before v1.3.x)
Without kubectl proxy (post v1.3.x)

Programmatic access to the API
Go client
Python client
Other languages

Accessing the API from a Pod
Accessing services running on the cluster

Ways to connect
Discovering builtin services

Manually constructing apiserver proxy URLs
Examples

Using web browsers to access services running on the cluster
Requesting redirects
So Many Proxies

$ kubectl config view

http://localhost:4000/docs/getting-started-guides/

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 2/10

Many of the examples provide an introduction to using kubectl and complete documentation is

found in the kubectl manual.

Directly accessing the REST API

Kubectl handles locating and authenticating to the apiserver. If you want to directly access the REST

API with an http client like curl or wget, or a browser, there are several ways to locate and

authenticate:

Run kubectl in proxy mode.

Recommended approach.

Uses stored apiserver location.

Veri�es identity of apiserver using self-signed cert. No MITM possible.

Authenticates to apiserver.

In future, may do intelligent client-side load-balancing and failover.

Provide the location and credentials directly to the http client.

Alternate approach.

Works with some types of client code that are confused by using a proxy.

Need to import a root cert into your browser to protect against MITM.

Using kubectl proxy

The following command runs kubectl in a mode where it acts as a reverse proxy. It handles locating

the apiserver and authenticating. Run it like this:

See kubectl proxy for more details.

Then you can explore the API with curl, wget, or a browser, like so:

$ kubectl proxy --port=8080 &

https://github.com/kubernetes/examples/tree/master/
http://localhost:4000/docs/user-guide/kubectl/index
http://localhost:4000/docs/user-guide/kubectl/v1.6/#proxy

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 3/10

Without kubectl proxy (before v1.3.x)

It is possible to avoid using kubectl proxy by passing an authentication token directly to the apiserver,

like this:

Without kubectl proxy (post v1.3.x)

In Kubernetes version 1.3 or later, kubectl config view no longer displays the token. Use

kubectl describe secret... to get the token for the default service account, like this:

$ curl http://localhost:8080/api/
{
 "versions": [
 "v1"
]
}

$ APISERVER=$(kubectl config view | grep server | cut -f 2- -d ":" | tr -d " ")
$ TOKEN=$(kubectl config view | grep token | cut -f 2 -d ":" | tr -d " ")
$ curl $APISERVER/api --header "Authorization: Bearer $TOKEN" --insecure
{
 "versions": [
 "v1"
]
}

$ APISERVER=$(kubectl config view | grep server | cut -f 2- -d ":" | tr -d " ")
$ TOKEN=$(kubectl describe secret $(kubectl get secrets | grep default | cut -f1 -
$ curl $APISERVER/api --header "Authorization: Bearer $TOKEN" --insecure
{
 "kind": "APIVersions",
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "10.0.1.149:443"
 }
]
}

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 4/10

The above examples use the --insecure �ag. This leaves it subject to MITM attacks. When kubectl

accesses the cluster it uses a stored root certi�cate and client certi�cates to access the server.

(These are installed in the ~/.kube directory). Since cluster certi�cates are typically self-signed, it

may take special con�guration to get your http client to use root certi�cate.

On some clusters, the apiserver does not require authentication; it may serve on localhost, or be

protected by a �rewall. There is not a standard for this. Con�guring Access to the API describes how

a cluster admin can con�gure this. Such approaches may con�ict with future high-availability

support.

Programmatic access to the API

Kubernetes o�cially supports Go and Python client libraries.

Go client

To get the library, run the following command:

go get k8s.io/client-go/<version number>/kubernetes . See

https://github.com/kubernetes/client-go to see which versions are supported.

Write an application atop of the client-go clients. Note that client-go de�nes its own API objects,

so if needed, please import API de�nitions from client-go rather than from the main repository,

e.g., import "k8s.io/client-go/1.4/pkg/api/v1" is correct.

The Go client can use the same kubecon�g �le as the kubectl CLI does to locate and authenticate to

the apiserver. See this example.

If the application is deployed as a Pod in the cluster, please refer to the next section.

Python client

To use Python client, run the following command: pip install kubernetes . See Python Client

Library page for more installation options.

The Python client can use the same kubecon�g �le as the kubectl CLI does to locate and

authenticate to the apiserver. See this example.

Other languages

http://localhost:4000/docs/admin/accessing-the-api
https://github.com/kubernetes/client-go
http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://git.k8s.io/client-go/examples/out-of-cluster-client-configuration/main.go
https://github.com/kubernetes-incubator/client-python
https://github.com/kubernetes-incubator/client-python
http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://github.com/kubernetes-incubator/client-python/tree/master/examples/example1.py

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 5/10

There are client libraries for accessing the API from other languages. See documentation for other

libraries for how they authenticate.

Accessing the API from a Pod

When accessing the API from a pod, locating and authenticating to the apiserver are somewhat

different.

The recommended way to locate the apiserver within the pod is with the kubernetes DNS name,

which resolves to a Service IP which in turn will be routed to an apiserver.

The recommended way to authenticate to the apiserver is with a service account credential. By kube-

system, a pod is associated with a service account, and a credential (token) for that service account

is placed into the �lesystem tree of each container in that pod, at

/var/run/secrets/kubernetes.io/serviceaccount/token .

If available, a certi�cate bundle is placed into the �lesystem tree of each container at

/var/run/secrets/kubernetes.io/serviceaccount/ca.crt , and should be used to verify the

serving certi�cate of the apiserver.

Finally, the default namespace to be used for namespaced API operations is placed in a �le at

/var/run/secrets/kubernetes.io/serviceaccount/namespace in each container.

From within a pod the recommended ways to connect to API are:

run a kubectl proxy as one of the containers in the pod, or as a background process within a

container. This proxies the Kubernetes API to the localhost interface of the pod, so that other

processes in any container of the pod can access it. See this example of using kubectl proxy in a

pod.

use the Go client library, and create a client using the rest.InClusterConfig() and

kubernetes.NewForConfig() functions. They handle locating and authenticating to the

apiserver. example

In each case, the credentials of the pod are used to communicate securely with the apiserver.

Accessing services running on the cluster

http://localhost:4000/docs/reference/client-libraries/
http://localhost:4000/docs/tasks/configure-pod-container/configure-service-account/
https://github.com/kubernetes/examples/tree/master/staging/kubectl-container/
https://git.k8s.io/client-go/examples/in-cluster-client-configuration/main.go

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 6/10

The previous section was about connecting the Kubernetes API server. This section is about

connecting to other services running on Kubernetes cluster. In Kubernetes, the nodes, pods and

services all have their own IPs. In many cases, the node IPs, pod IPs, and some service IPs on a

cluster will not be routable, so they will not be reachable from a machine outside the cluster, such as

your desktop machine.

Ways to connect

You have several options for connecting to nodes, pods and services from outside the cluster:

Access services through public IPs.

Use a service with type NodePort or LoadBalancer to make the service reachable outside

the cluster. See the services and kubectl expose documentation.

Depending on your cluster environment, this may just expose the service to your corporate

network, or it may expose it to the internet. Think about whether the service being exposed

is secure. Does it do its own authentication?

Place pods behind services. To access one speci�c pod from a set of replicas, such as for

debugging, place a unique label on the pod and create a new service which selects this

label.

In most cases, it should not be necessary for application developer to directly access nodes

via their nodeIPs.

Access services, nodes, or pods using the Proxy Verb.

Does apiserver authentication and authorization prior to accessing the remote service. Use

this if the services are not secure enough to expose to the internet, or to gain access to

ports on the node IP, or for debugging.

Proxies may cause problems for some web applications.

Only works for HTTP/HTTPS.

Described here.

Access from a node or pod in the cluster.

http://localhost:4000/docs/admin/node
http://localhost:4000/docs/user-guide/pods
http://localhost:4000/docs/user-guide/services
http://localhost:4000/docs/user-guide/services
http://localhost:4000/docs/user-guide/kubectl/v1.6/#expose

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 7/10

Run a pod, and then connect to a shell in it using kubectl exec. Connect to other nodes,

pods, and services from that shell.

Some clusters may allow you to ssh to a node in the cluster. From there you may be able to

access cluster services. This is a non-standard method, and will work on some clusters but

not others. Browsers and other tools may or may not be installed. Cluster DNS may not

work.

Discovering builtin services

Typically, there are several services which are started on a cluster by kube-system. Get a list of these

with the kubectl cluster-info command:

This shows the proxy-verb URL for accessing each service. For example, this cluster has cluster-level

logging enabled (using Elasticsearch), which can be reached at

https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/

if suitable credentials are passed. Logging can also be reached through a kubectl proxy, for example

at:

http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/

. (See above for how to pass credentials or use kubectl proxy.)

Manually constructing apiserver proxy URLs

As mentioned above, you use the kubectl cluster-info command to retrieve the service’s proxy

URL. To create proxy URLs that include service endpoints, su�xes, and parameters, you simply

$ kubectl cluster-info

 Kubernetes master is running at https://104.197.5.247
 elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube
 kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system
 kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/servi
 grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/servic
 heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/servi

http://localhost:4000/docs/user-guide/kubectl/v1.6/#exec

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 8/10

append to the service’s proxy URL: http:// kubernetes_master_address /api/v1/namespaces/

namespace_name /services/ service_name[:port_name] /proxy

If you haven’t speci�ed a name for your port, you don’t have to specify port_name in the URL.

By default, the API server proxies to your service using http. To use https, pre�x the service name

with https: : http:// kubernetes_master_address /api/v1/namespaces/ namespace_name

/services/ https:service_name:[port_name] /proxy

The supported formats for the name segment of the URL are:

<service_name> - proxies to the default or unnamed port using http

<service_name>:<port_name> - proxies to the speci�ed port using http

https:<service_name>: - proxies to the default or unnamed port using https (note the trailing

colon)

https:<service_name>:<port_name> - proxies to the speci�ed port using https

Examples

To access the Elasticsearch service endpoint _search?q=user:kimchy , you would use:

http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/_search?q=user:kimchy

To access the Elasticsearch cluster health information _cluster/health?pretty=true , you

would use:

https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/_cluster/health?pretty=true

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 9/10

Using web browsers to access services running on the cluster

You may be able to put an apiserver proxy url into the address bar of a browser. However:

Web browsers cannot usually pass tokens, so you may need to use basic (password) auth.

Apiserver can be con�gured to accept basic auth, but your cluster may not be con�gured to

accept basic auth.

Some web apps may not work, particularly those with client side javascript that construct urls in

a way that is unaware of the proxy path pre�x.

Requesting redirects

The redirect capabilities have been deprecated and removed. Please use a proxy (see below) instead.

So Many Proxies

There are several different proxies you may encounter when using Kubernetes:

1. The kubectl proxy: - runs on a user’s desktop or in a pod - proxies from a localhost address to the

Kubernetes apiserver - client to proxy uses HTTP - proxy to apiserver uses HTTPS - locates

apiserver - adds authentication headers

2. The apiserver proxy: - is a bastion built into the apiserver - connects a user outside of the cluster

to cluster IPs which otherwise might not be reachable - runs in the apiserver processes - client to

 {
 "cluster_name" : "kubernetes_logging",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5
 }

10/23/2017 Accessing Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/access-cluster/ 10/10

proxy uses HTTPS (or http if apiserver so con�gured) - proxy to target may use HTTP or HTTPS

as chosen by proxy using available information - can be used to reach a Node, Pod, or Service -

does load balancing when used to reach a Service

3. The kube proxy: - runs on each node - proxies UDP and TCP - does not understand HTTP -

provides load balancing - is just used to reach services

4. A Proxy/Load-balancer in front of apiserver(s): - existence and implementation varies from

cluster to cluster (e.g. nginx) - sits between all clients and one or more apiservers - acts as load

balancer if there are several apiservers.

5. Cloud Load Balancers on external services: - are provided by some cloud providers (e.g. AWS

ELB, Google Cloud Load Balancer) - are created automatically when the Kubernetes service has

type LoadBalancer - use UDP/TCP only - implementation varies by cloud provider.

Kubernetes users will typically not need to worry about anything other than the �rst two types. The

cluster admin will typically ensure that the latter types are setup correctly.

http://localhost:4000/docs/concepts/services-networking/service/#ips-and-vips

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 1/9

Con�gure Access to Multiple Clusters

This page shows how to con�gure access to multiple clusters by using con�guration �les. After your

clusters, users, and contexts are de�ned in one or more con�guration �les, you can quickly switch

between clusters by using the kubectl config use-context command.

Note: A �le that is used to con�gure access to a cluster is sometimes called a kubecon�g �le.

This is a generic way of referring to con�guration �les. It does not mean that there is a �le

named kubeconfig .

Before you begin

You need to have the kubectl command-line tool installed.

De�ne clusters, users, and contexts

Suppose you have two clusters, one for development work and one for scratch work. In the

development cluster, your frontend developers work in a namespace called frontend , and your

storage developers work in a namespace called storage . In your scratch cluster, developers work

in the default namespace, or they create auxiliary namespaces as they see �t. Access to the

Before you begin
De�ne clusters, users, and contexts
Create a second con�guration �le
Set the KUBECONFIG environment variable
Explore the $HOME/.kube directory
Append $HOME/.kube/con�g to your KUBECONFIG environment variable
Clean up
What’s next

http://localhost:4000/docs/tasks/tools/install-kubectl/

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 2/9

development cluster requires authentication by certi�cate. Access to the scratch cluster requires

authentication by username and password.

Create a directory named config-exercise . In your config-exercise directory, create a �le

named config-demo with this content:

A con�guration �le describes clusters, users, and contexts. Your config-demo �le has the

framework to describe two clusters, two users, and three contexts.

Go to your config-exercise directory. Enter these commands to add cluster details to your

con�guration �le:

Add user details to your con�guration �le:

apiVersion: v1
kind: Config
preferences: {}

clusters:
- cluster:
 name: development
- cluster:
 name: scratch

users:
- name: developer
- name: experimenter

contexts:
- context:
 name: dev-frontend
- context:
 name: dev-storage
- context:
 name: exp-scratch

kubectl config --kubeconfig=config-demo set-cluster development --server=https://1
kubectl config --kubeconfig=config-demo set-cluster scratch --server=https://5.6.7

kubectl config --kubeconfig=config-demo set-credentials developer --client-certifi
kubectl config --kubeconfig=config-demo set-credentials experimenter --username=ex

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 3/9

Add context details to your con�guration �le:

Open your config-demo �le to see the added details. As an alternative to opening the config-demo

�le, you can use the config view command.

The output shows the two clusters, two users, and three contexts:

kubectl config --kubeconfig=config-demo set-context dev-frontend --cluster=develop
kubectl config --kubeconfig=config-demo set-context dev-storage --cluster=developm
kubectl config --kubeconfig=config-demo set-context exp-scratch --cluster=scratch

kubectl config --kubeconfig=config-demo view

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 4/9

Each context is a triple (cluster, user, namespace). For example, the dev-frontend context says,

Use the credentials of the developer user to access the frontend namespace of the

development cluster.

Set the current context:

apiVersion: v1
clusters:
- cluster:
 certificate-authority: fake-ca-file
 server: https://1.2.3.4
 name: development
- cluster:
 insecure-skip-tls-verify: true
 server: https://5.6.7.8
 name: scratch
contexts:
- context:
 cluster: development
 namespace: frontend
 user: developer
 name: dev-frontend
- context:
 cluster: development
 namespace: storage
 user: developer
 name: dev-storage
- context:
 cluster: scratch
 namespace: default
 user: experimenter
 name: exp-scratch
current-context: ""
kind: Config
preferences: {}
users:
- name: developer
 user:
 client-certificate: fake-cert-file
 client-key: fake-key-file
- name: experimenter
 user:
 password: some-password
 username: exp

kubectl config --kubeconfig=config-demo use-context dev-frontend

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 5/9

Now whenever you enter a kubectl command, the action will apply to the cluster, and namespace

listed in the dev-frontend context. And the command will use the credentials of the user listed in

the dev-frontend context.

To see only the con�guration information associated with the current context, use the --minify

�ag.

The output shows con�guration information associated with the dev-frontend context:

Now suppose you want to work for a while in the scratch cluster.

Change the current context to exp-scratch :

Now any kubectl command you give will apply to the default namespace of the scratch cluster.

And the command will use the credentials of the user listed in the exa-scratch context.

kubectl config --kubeconfig=config-demo view --minify

apiVersion: v1
clusters:
- cluster:
 certificate-authority: fake-ca-file
 server: https://1.2.3.4
 name: development
contexts:
- context:
 cluster: development
 namespace: frontend
 user: developer
 name: dev-frontend
current-context: dev-frontend
kind: Config
preferences: {}
users:
- name: developer
 user:
 client-certificate: fake-cert-file
 client-key: fake-key-file

kubectl config --kubeconfig=config-demo use-context exp-scratch

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 6/9

View con�guration associated with the new current context, exp-scratch .

Finally, suppose you want to work for a while in the storage namespace of the development

cluster.

Change the current context to dev-storage :

View con�guration associated with the new current context, `dev-storage.

Create a second con�guration �le

In your config-exercise directory, create a �le named config-demo-2 with this content:

The preceding con�guration �le de�nes a new context named dev-ramp-up .

Set the KUBECONFIG environment variable

kubectl config --kubeconfig=config-demo view --minify

kubectl config --kubeconfig=config-demo use-context dev-storage

kubectl config --kubeconfig=config-demo view --minify

apiVersion: v1
kind: Config
preferences: {}

contexts:
- context:
 cluster: development
 namespace: ramp
 user: developer
 name: dev-ramp-up

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 7/9

See whether you have an environment variable named KUBECONFIG . If so, save the current value of

your KUBECONFIG environment variable, so you can restore it later. For example, on Linux:

The KUBECONFIG environment variable is a list of paths to con�guration �les. The list is colon-

delimited for Linux and Mac, and semicolon-delimited for Windows. If you have a KUBECONFIG

environment variable, familiarize yourself with the con�guration �les in the list.

Temporarily append two paths to your KUBECONFIG environment variable. For example, on Linux:

In your config-exercise directory, enter this command:

The output shows merged information from all the �les listed in your KUBECONFIG environment

variable. In particular, notice that the merged information has the dev-ramp-up context from the

config-demo-2 �le and the three contexts from the config-demo �le:

export KUBECONFIG_SAVED=$KUBECONFIG

export KUBECONFIG=$KUBECONFIG:config-demo:config-demo-2

kubectl config view

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 8/9

For more information about how kubecon�g �les are merged, see Organizing Cluster Access Using

kubecon�g Files

Explore the $HOME/.kube directory

If you already have a cluster, and you can use kubectl to interact with the cluster, then you probably

have a �le named config in the $HOME/.kube directory.

Go to $HOME/.kube , and see what �les are there. Typically, there is a �le named config . There

might also be other con�guration �les in this directory. Brie�y familiarize yourself with the contents

of these �les.

Append $HOME/.kube/con�g to your KUBECONFIG
environment variable

If you have a $HOME/.kube/config �le, and it’s not already listed in your KUBECONFIG environment

variable, append it to your KUBECONFIG environment variable now. For example, on Linux:

contexts:
- context:
 cluster: development
 namespace: frontend
 user: developer
 name: dev-frontend
- context:
 cluster: development
 namespace: ramp
 user: developer
 name: dev-ramp-up
- context:
 cluster: development
 namespace: storage
 user: developer
 name: dev-storage
- context:
 cluster: scratch
 namespace: default
 user: experimenter
 name: exp-scratch

http://localhost:4000/docs/concepts/configuration/organize-cluster-access-kubeconfig/

10/23/2017 Configure Access to Multiple Clusters - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-access-multiple-clusters/ 9/9

View con�guration information merged from all the �les that are now listed in your KUBECONFIG

environment variable. In your con�g-exercise directory, enter:

Clean up

Return your KUBECONFIG environment variable to its original value. For example, on Linux:

What’s next

Organizing Cluster Access Using kubecon�g Files

kubectl con�g

export KUBECONFIG=$KUBECONFIG:$HOME/.kube/config

kubectl config view

export KUBECONFIG=$KUBECONFIG_SAVED

http://localhost:4000/docs/concepts/configuration/organize-cluster-access-kubeconfig/
http://localhost:4000/docs/user-guide/kubectl/v1.8/

10/23/2017 Use Port Forwarding to Access Applications in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/port-forward-access-application-cluster/ 1/3

Use Port Forwarding to Access Applications
in a Cluster

This page shows how to use kubectl port-forward to connect to a Redis server running in a

Kubernetes cluster. This type of connection can be useful for database debugging.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Install redis-cli.

Creating a pod to run a Redis server

1. Create a pod:

The output of a successful command veri�es that the pod was created:

Before you begin
Creating a pod to run a Redis server
Forward a local port to a port on the pod
Discussion
What’s next

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/redis-ma

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://redis.io/topics/rediscli

10/23/2017 Use Port Forwarding to Access Applications in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/port-forward-access-application-cluster/ 2/3

2. Check to see whether the pod is running and ready:

When the pod is ready, the output displays a STATUS of Running:

3. Verify that the Redis server is running in the pod and listening on port 6379:

The output displays the port:

Forward a local port to a port on the pod

1. Forward port 6379 on the local workstation to port 6379 of redis-master pod:

The output is similar to this:

 pod "redis-master" created

kubectl get pods

 NAME READY STATUS RESTARTS AGE

 redis-master 2/2 Running 0 41s

kubectl get pods redis-master --template='{{(index (index .spec.containers 0).p

 6379

kubectl port-forward redis-master 6379:6379

 I0710 14:43:38.274550 3655 portforward.go:225] Forwarding from 127.0.0.1:63

 I0710 14:43:38.274797 3655 portforward.go:225] Forwarding from [::1]:6379 -

10/23/2017 Use Port Forwarding to Access Applications in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/port-forward-access-application-cluster/ 3/3

2. Start the Redis command line interface:

3. At the Redis command line prompt, enter the ping command:

A successful ping request returns PONG.

Discussion

Connections made to local port 6379 are forwarded to port 6379 of the pod that is running the Redis

server. With this connection in place you can use your local workstation to debug the database that

is running in the pod.

What’s next

Learn more about kubectl port-forward.

redis-cli

127.0.0.1:6379>ping

http://localhost:4000/docs/user-guide/kubectl/v1.6/#port-forward

10/23/2017 Provide Load-Balanced Access to an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/load-balance-access-application-cluster/ 1/4

Provide Load-Balanced Access to an
Application in a Cluster

This page shows how to create a Kubernetes Service object that provides load-balanced access to

an application running in a cluster.

Objectives

Run two instances of a Hello World application

Create a Service object

Use the Service object to access the running application

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Creating a Service for an application running in two
pods

Objectives
Before you begin
Creating a Service for an application running in two pods
Using a service con�guration �le
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Provide Load-Balanced Access to an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/load-balance-access-application-cluster/ 2/4

1. Run a Hello World application in your cluster:

2. List the pods that are running the Hello World application:

The output is similar to this:

3. List the replica set for the two Hello World pods:

The output is similar to this:

4. Create a Service object that exposes the replica set:

where <your-replica-set-name> is the name of your replica set.

5. Display the IP addresses for your service:

kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --ima

kubectl get pods --selector="run=load-balancer-example"

NAME READY STATUS RESTARTS AGE

hello-world-2189936611-8fyp0 1/1 Running 0 6m

hello-world-2189936611-9isq8 1/1 Running 0 6m

kubectl get replicasets --selector="run=load-balancer-example"

NAME DESIRED CURRENT AGE

hello-world-2189936611 2 2 12m

kubectl expose rs <your-replica-set-name> --type="LoadBalancer" --name="example

10/23/2017 Provide Load-Balanced Access to an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/load-balance-access-application-cluster/ 3/4

The output shows the internal IP address and the external IP address of your service. If the

external IP address shows as <pending> , repeat the command.

Note: If you are using Minikube, you don’t get an external IP address. The external IP address

remains in the pending state.

6. Use your Service object to access the Hello World application:

where <your-external-ip-address> is the external IP address of your service.

The output is a hello message from the application:

Note: If you are using Minikube, enter these commands:

The output displays the IP address of your Minikube node and the NodePort value for your

service. Then enter this command to access the Hello World application:

kubectl get services example-service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

example-service 10.0.0.160 <pending> 8080/TCP 40s

curl <your-external-ip-address>:8080

Hello Kubernetes!

kubectl cluster-info

kubectl describe services example-service

curl <minikube-node-ip-address>:<service-node-port>

10/23/2017 Provide Load-Balanced Access to an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/load-balance-access-application-cluster/ 4/4

where <minikube-node-ip-address> us the IP address of your Minikube node, and

<service-node-port> is the NodePort value for your service.

Using a service con�guration �le

As an alternative to using kubectl expose , you can use a service con�guration �le to create a

Service.

What’s next

Learn more about connecting applications with services.

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/services-networking/connect-applications-service/

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 1/8

Connect a Front End to a Back End Using a
Service

This task shows how to create a frontend and a backend microservice. The backend microservice is

a hello greeter. The frontend and backend are connected using a Kubernetes Service object.

Objectives

Create and run a microservice using a Deployment object.

Route tra�c to the backend using a frontend.

Use a Service object to connect the frontend application to the backend application.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Objectives
Before you begin

Creating the backend using a Deployment
Creating the backend Service object
Creating the frontend
Interact with the frontend Service
Send tra�c through the frontend

What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 2/8

This task uses Services with external load balancers, which require a supported environment. If

your environment does not support this, you can use a Service of type NodePort instead.

Creating the backend using a Deployment

The backend is a simple hello greeter microservice. Here is the con�guration �le for the backend

Deployment:

hello.yaml

Create the backend Deployment:

View information about the backend Deployment:

The output is similar to this:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: hello
spec:
 replicas: 7
 template:
 metadata:
 labels:
 app: hello
 tier: backend
 track: stable
 spec:
 containers:
 - name: hello
 image: "gcr.io/google-samples/hello-go-gke:1.0"
 ports:
 - name: http
 containerPort: 80

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/hello.yaml

kubectl describe deployment hello

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/
http://localhost:4000/docs/concepts/services-networking/service/#type-nodeport
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/hello.yaml

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 3/8

Creating the backend Service object

The key to connecting a frontend to a backend is the backend Service. A Service creates a persistent

IP address and DNS name entry so that the backend microservice can always be reached. A Service

uses selector labels to �nd the Pods that it routes tra�c to.

First, explore the Service con�guration �le:

hello-service.yaml

Name: hello
Namespace: default
CreationTimestamp: Mon, 24 Oct 2016 14:21:02 -0700
Labels: app=hello
 tier=backend
 track=stable
Annotations: deployment.kubernetes.io/revision=1
Selector: app=hello,tier=backend,track=stable
Replicas: 7 desired | 7 updated | 7 total | 7 available | 0
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
 Labels: app=hello
 tier=backend
 track=stable
 Containers:
 hello:
 Image: "gcr.io/google-samples/hello-go-gke:1.0"
 Port: 80/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: hello-3621623197 (7/7 replicas created)
Events:
...

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/hello-service.yaml

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 4/8

hello-service.yaml

In the con�guration �le, you can see that the Service routes tra�c to Pods that have the labels

app: hello and tier: backend .

Create the hello Service:

At this point, you have a backend Deployment running, and you have a Service that can route tra�c

to it.

Creating the frontend

Now that you have your backend, you can create a frontend that connects to the backend. The

frontend connects to the backend worker Pods by using the DNS name given to the backend Service.

The DNS name is “hello”, which is the value of the name �eld in the preceding Service con�guration

�le.

The Pods in the frontend Deployment run an nginx image that is con�gured to �nd the hello backend

Service. Here is the nginx con�guration �le:

frontend/frontend.conf

kind: Service
apiVersion: v1
metadata:
 name: hello
spec:
 selector:
 app: hello
 tier: backend
 ports:
 - protocol: TCP
 port: 80
 targetPort: http

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/hello-servi

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/hello-service.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/frontend/frontend.conf

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 5/8

frontend/frontend.conf

Similar to the backend, the frontend has a Deployment and a Service. The con�guration for the

Service has type: LoadBalancer , which means that the Service uses the default load balancer of

your cloud provider.

frontend.yaml

upstream hello {
 server hello;
}

server {
 listen 80;

 location / {
 proxy_pass http://hello;
 }
}

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/frontend/frontend.conf
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/frontend.yaml

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 6/8

frontend.yaml

Create the frontend Deployment and Service:

The output veri�es that both resources were created:

kind: Service
apiVersion: v1
metadata:
 name: frontend
spec:
 selector:
 app: hello
 tier: frontend
 ports:
 - protocol: "TCP"
 port: 80
 targetPort: 80
 type: LoadBalancer

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: frontend
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: hello
 tier: frontend
 track: stable
 spec:
 containers:
 - name: nginx
 image: "gcr.io/google-samples/hello-frontend:1.0"
 lifecycle:
 preStop:
 exec:
 command: ["/usr/sbin/nginx","-s","quit"]

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/frontend.ya

deployment "frontend" created
service "frontend" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/frontend.yaml

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 7/8

Note: The nginx con�guration is baked into the container image. A better way to do this would be to

use a Con�gMap, so that you can change the con�guration more easily.

Interact with the frontend Service

Once you’ve created a Service of type LoadBalancer, you can use this command to �nd the external

IP:

The external IP �eld may take some time to populate. If this is the case, the external IP is listed as

<pending> .

Repeat the same command again until it shows an external IP address:

Send tra�c through the frontend

The frontend and backends are now connected. You can hit the endpoint by using the curl command

on the external IP of your frontend Service.

The output shows the message generated by the backend:

What’s next

kubectl get service frontend

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
frontend 10.51.252.116 <pending> 80/TCP 10s

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
frontend 10.51.252.116 XXX.XXX.XXX.XXX 80/TCP 1m

curl http://<EXTERNAL-IP>

{"message":"Hello"}

http://localhost:4000/docs/tasks/access-application-cluster/frontend/Dockerfile
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Connect a Front End to a Back End Using a Service - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/connecting-frontend-backend/ 8/8

Learn more about Services

Learn more about Con�gMaps

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Create an External Load Balancer - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/ 1/6

Create an External Load Balancer

This page shows how to create an External Load Balancer.

When creating a service, you have the option of automatically creating a cloud network load

balancer. This provides an externally-accessible IP address that sends tra�c to the correct port on

your cluster nodes provided your cluster runs in a supported environment and is con�gured with the

correct cloud load balancer provider package.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Con�guration �le

To create an external load balancer, add the following line to your service con�guration �le:

Before you begin
Con�guration �le
Using kubectl
Finding your IP address
Preserving the client source IP

Feature availability
External Load Balancer Providers
Caveats and Limitations when preserving source IPs

 "type": "LoadBalancer"

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/concepts/services-networking/service/#type-loadbalancer

10/23/2017 Create an External Load Balancer - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/ 2/6

Your con�guration �le might look like:

Using kubectl

You can alternatively create the service with the kubectl expose command and its

--type=LoadBalancer �ag:

This command creates a new service using the same selectors as the referenced resource (in the

case of the example above, a replication controller named example).

For more information, including optional �ags, refer to the kubectl expose reference.

Finding your IP address

You can �nd the IP address created for your service by getting the service information through

kubectl :

 {
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "example-service"
 },
 "spec": {
 "ports": [{
 "port": 8765,
 "targetPort": 9376
 }],
 "selector": {
 "app": "example"
 },
 "type": "LoadBalancer"
 }
 }

kubectl expose rc example --port=8765 --target-port=9376 \
 --name=example-service --type=LoadBalancer

http://localhost:4000/docs/user-guide/kubectl/v1.8/#expose

10/23/2017 Create an External Load Balancer - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/ 3/6

which should produce output like this:

The IP address is listed next to LoadBalancer Ingress .

Preserving the client source IP

Due to the implementation of this feature, the source IP seen in the target container will not be the

original source IP of the client. To enable preservation of the client IP, the following �elds can be

con�gured in the service spec (supported in GCE/GKE environments):

service.spec.externalTrafficPolicy - denotes if this Service desires to route external

tra�c to node-local or cluster-wide endpoints. There are two available options: “Cluster” (default)

and “Local”. “Cluster” obscures the client source IP and may cause a second hop to another

node, but should have good overall load-spreading. “Local” preserves the client source IP and

avoids a second hop for LoadBalancer and NodePort type services, but risks potentially

imbalanced tra�c spreading.

service.spec.healthCheckNodePort - speci�es the healthcheck nodePort (numeric port

number) for the service. If not speci�ed, healthCheckNodePort is created by the service API

backend with the allocated nodePort. It will use the user-speci�ed nodePort value if speci�ed by

kubectl describe services example-service

 Name: example-service
 Namespace: default
 Labels: <none>
 Annotations: <none>
 Selector: app=example
 Type: LoadBalancer
 IP: 10.67.252.103
 LoadBalancer Ingress: 123.45.678.9
 Port: <unnamed> 80/TCP
 NodePort: <unnamed> 32445/TCP
 Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80
 Session Affinity: None
 Events: <none>

10/23/2017 Create an External Load Balancer - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/ 4/6

the client. It only has an effect when type is set to “LoadBalancer” and externalTra�cPolicy is set

to “Local”.

This feature can be activated by setting externalTrafficPolicy to “Local” in the Service

Con�guration �le.

Feature availability

k8s version Feature support

1.7+ Supports the full API �elds

1.5 - 1.6 Supports Beta Annotations

<1.5 Unsupported

Below you could �nd the deprecated Beta annotations used to enable this feature prior to its stable

version. Newer Kubernetes versions may stop supporting these after v1.7. Please update existing

applications to use the �elds directly.

service.beta.kubernetes.io/external-traffic annotation <->

service.spec.externalTrafficPolicy �eld

 {
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "example-service"
 },
 "spec": {
 "ports": [{
 "port": 8765,
 "targetPort": 9376
 }],
 "selector": {
 "app": "example"
 },
 "type": "LoadBalancer",
 "externalTrafficPolicy": "Local"
 }
 }

10/23/2017 Create an External Load Balancer - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/ 5/6

service.beta.kubernetes.io/healthcheck-nodeport annotation <->

service.spec.healthCheckNodePort �eld

service.beta.kubernetes.io/external-traffic annotation has a different set of values

compared to the service.spec.externalTrafficPolicy �eld. The values match as follows:

“OnlyLocal” for annotation <-> “Local” for �eld

“Global” for annotation <-> “Cluster” for �eld

Note that this feature is not currently implemented for all cloudproviders/environments.

Known issues:

AWS: kubernetes/kubernetes#35758

Weave-Net: weaveworks/weave/#2924

External Load Balancer Providers

It is important to note that the datapath for this functionality is provided by a load balancer external

to the Kubernetes cluster.

When the service type is set to LoadBalancer , Kubernetes provides functionality equivalent to

type=<ClusterIP> to pods within the cluster and extends it by programming the (external to

Kubernetes) load balancer with entries for the Kubernetes VMs. The Kubernetes service controller

automates the creation of the external load balancer, health checks (if needed), �rewall rules (if

needed) and retrieves the external IP allocated by the cloud provider and populates it in the service

object.

Caveats and Limitations when preserving source IPs

GCE/AWS load balancers do not provide weights for their target pools. This was not an issue with

the old LB kube-proxy rules which would correctly balance across all endpoints.

https://github.com/kubernetes/kubernetes/issues/35758
https://github.com/weaveworks/weave/issues/2924

10/23/2017 Create an External Load Balancer - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/ 6/6

With the new functionality, the external tra�c will not be equally load balanced across pods, but

rather equally balanced at the node level (because GCE/AWS and other external LB implementations

do not have the ability for specifying the weight per node, they balance equally across all target

nodes, disregarding the number of pods on each node).

We can, however, state that for NumServicePods « NumNodes or NumServicePods » NumNodes, a

fairly close-to-equal distribution will be seen, even without weights.

Once the external load balancers provide weights, this functionality can be added to the LB

programming path. Future Work: No support for weights is provided for the 1.4 release, but may be

added at a future date

Internal pod to pod tra�c should behave similar to ClusterIP services, with equal probability across

all pods.

10/23/2017 Configure Your Cloud Provider’s Firewalls - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/ 1/3

Con�gure Your Cloud Provider's Firewalls

Many cloud providers (e.g. Google Compute Engine) de�ne �rewalls that help prevent inadvertent

exposure to the internet. When exposing a service to the external world, you may need to open up

one or more ports in these �rewalls to serve tra�c. This document describes this process, as well as

any provider speci�c details that may be necessary.

Restrict Access For LoadBalancer Service

When using a Service with spec.type: LoadBalancer , you can specify the IP ranges that are

allowed to access the load balancer by using spec.loadBalancerSourceRanges . This �eld takes a

list of IP CIDR ranges, which Kubernetes will use to con�gure �rewall exceptions. This feature is

currently supported on Google Compute Engine, Google Container Engine and AWS. This �eld will be

ignored if the cloud provider does not support the feature.

Assuming 10.0.0.0/8 is the internal subnet. In the following example, a load balancer will be created

that is only accessible to cluster internal IPs. This will not allow clients from outside of your

Kubernetes cluster to access the load balancer.

In the following example, a load balancer will be created that is only accessible to clients with IP

addresses from 130.211.204.1 and 130.211.204.2.

apiVersion: v1
kind: Service
metadata:
 name: myapp
spec:
 ports:
 - port: 8765
 targetPort: 9376
 selector:
 app: example
 type: LoadBalancer
 loadBalancerSourceRanges:
 - 10.0.0.0/8

10/23/2017 Configure Your Cloud Provider’s Firewalls - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/ 2/3

Google Compute Engine

When using a Service with spec.type: LoadBalancer , the �rewall will be opened automatically.

When using spec.type: NodePort , however, the �rewall is not opened by default.

Google Compute Engine �rewalls are documented elsewhere.

You can add a �rewall with the gcloud command line tool:

Note There is one important security note when using �rewalls on Google Compute Engine:

as of Kubernetes v1.0.0, GCE �rewalls are de�ned per-vm, rather than per-ip address. This means

that when you open a �rewall for a service’s ports, anything that serves on that port on that VM’s

host IP address may potentially serve tra�c. Note that this is not a problem for other Kubernetes

services, as they listen on IP addresses that are different than the host node’s external IP address.

Consider:

You create a Service with an external load balancer (IP Address 1.2.3.4) and port 80

You open the �rewall for port 80 for all nodes in your cluster, so that the external Service actually

can deliver packets to your Service

You start an nginx server, running on port 80 on the host virtual machine (IP Address 2.3.4.5).

This nginx is also exposed to the internet on the VM’s external IP address.

apiVersion: v1
kind: Service
metadata:
 name: myapp
spec:
 ports:
 - port: 8765
 targetPort: 9376
 selector:
 app: example
 type: LoadBalancer
 loadBalancerSourceRanges:
 - 130.211.204.1/32
 - 130.211.204.2/32

$ gcloud compute firewall-rules create my-rule --allow=tcp:<port>

https://cloud.google.com/compute/docs/networking#firewalls_1

10/23/2017 Configure Your Cloud Provider’s Firewalls - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/configure-cloud-provider-firewall/ 3/3

Consequently, please be careful when opening �rewalls in Google Compute Engine or Google

Container Engine. You may accidentally be exposing other services to the wilds of the internet.

This will be �xed in an upcoming release of Kubernetes.

Other cloud providers

Coming soon.

10/23/2017 List All Container Images Running in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/list-all-running-container-images/ 1/4

List All Container Images Running in a
Cluster

This page shows how to use kubectl to list all of the Container images for Pods running in a cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

In this exercise you will use kubectl to fetch all of the Pods running in a cluster, and format the output

to pull out the list of Containers for each.

List all Containers in all namespaces

Fetch all Pods in all namespaces using kubectl get pods --all-namespaces

Format the output to include only the list of Container image names using

-o jsonpath={..image} . This will recursively parse out the image �eld from the returned

Before you begin
List all Containers in all namespaces
List Containers by Pod
List Containers �ltering by Pod label
List Containers �ltering by Pod namespace
List Containers using a go-template instead of jsonpath
What’s next

Reference

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 List All Container Images Running in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/list-all-running-container-images/ 2/4

json.

See the jsonpath reference for further information on how to use jsonpath.

Format the output using standard tools: tr , sort , uniq

Use tr to replace spaces with newlines

Use sort to sort the results

Use uniq to aggregate image counts

The above command will recursively return all �elds named image for all items returned.

As an alternative, it is possible to use the absolute path to the image �eld within the Pod. This

ensures the correct �eld is retrieved even when the �eld name is repeated, e.g. many �elds are called

name within a given item:

The jsonpath is interpreted as follows:

.items[*] : for each returned value

.spec : get the spec

.containers[*] : for each container

.image : get the image

Note: When fetching a single Pod by name, e.g. kubectl get pod nginx , the .items[*] portion

of the path should be omitted because a single Pod is returned instead of a list of items.

List Containers by Pod

kubectl get pods --all-namespaces -o jsonpath="{..image}" |\
tr -s '[[:space:]]' '\n' |\
sort |\
uniq -c

kubectl get pods --all-namespaces -o jsonpath="{.items[*].spec.containers[*].image

http://localhost:4000/docs/user-guide/jsonpath/

10/23/2017 List All Container Images Running in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/list-all-running-container-images/ 3/4

The formatting can be controlled further by using the range operation to iterate over elements

individually.

List Containers �ltering by Pod label

To target only Pods matching a speci�c label, use the -l �ag. The following matches only Pods with

labels matching app=nginx .

List Containers �ltering by Pod namespace

To target only pods in a speci�c namespace, use the namespace �ag. The following matches only

Pods in the kube-system namespace.

List Containers using a go-template instead of jsonpath

As an alternative to jsonpath, Kubectl supports using go-templates for formatting the output:

What’s next

kubectl get pods --all-namespaces -o=jsonpath='{range .items[*]}{"\n"}{.metadata.n
sort

kubectl get pods --all-namespaces -o=jsonpath="{..image}" -l app=nginx

kubectl get pods --namespace kube-system -o jsonpath="{..image}"

kubectl get pods --all-namespaces -o go-template --template="{{range .items}}{{ran

https://golang.org/pkg/text/template/

10/23/2017 List All Container Images Running in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/list-all-running-container-images/ 4/4

Reference

Jsonpath reference guide

Go template reference guide

http://localhost:4000/docs/user-guide/jsonpath/
https://golang.org/pkg/text/template/

10/23/2017 Communicate Between Containers in the Same Pod Using a Shared Volume - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/ 1/5

Communicate Between Containers in the
Same Pod Using a Shared Volume

This page shows how to use a Volume to communicate between two Containers running in the

same Pod.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Creating a Pod that runs two Containers

In this exercise, you create a Pod that runs two Containers. The two containers share a Volume that

they can use to communicate. Here is the con�guration �le for the Pod:

two-container-pod.yaml

Before you begin
Creating a Pod that runs two Containers
Discussion
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/two-container-pod.yaml

10/23/2017 Communicate Between Containers in the Same Pod Using a Shared Volume - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/ 2/5

two-container-pod.yaml

In the con�guration �le, you can see that the Pod has a Volume named shared-data .

The �rst container listed in the con�guration �le runs an nginx server. The mount path for the shared

Volume is /usr/share/nginx/html . The second container is based on the debian image, and has a

mount path of /pod-data . The second container runs the following command and then terminates.

Notice that the second container writes the index.html �le in the root directory of the nginx server.

Create the Pod and the two Containers:

apiVersion: v1
kind: Pod
metadata:
 name: two-containers
spec:

 restartPolicy: Never

 volumes:
 - name: shared-data
 emptyDir: {}

 containers:

 - name: nginx-container
 image: nginx
 volumeMounts:
 - name: shared-data
 mountPath: /usr/share/nginx/html

 - name: debian-container
 image: debian
 volumeMounts:
 - name: shared-data
 mountPath: /pod-data
 command: ["/bin/sh"]
 args: ["-c", "echo Hello from the debian container > /pod-data/index.html"]

echo Hello from the debian container > /pod-data/index.html

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/two-contain

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/access-application-cluster/two-container-pod.yaml

10/23/2017 Communicate Between Containers in the Same Pod Using a Shared Volume - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/ 3/5

View information about the Pod and the Containers:

Here is a portion of the output:

You can see that the debian Container has terminated, and the nginx Container is still running.

Get a shell to nginx Container:

In your shell, verify that nginx is running:

kubectl get pod two-containers --output=yaml

apiVersion: v1
kind: Pod
metadata:
 ...
 name: two-containers
 namespace: default
 ...
spec:
 ...
 containerStatuses:

 - containerID: docker://c1d8abd1 ...
 image: debian
 ...
 lastState:
 terminated:
 ...
 name: debian-container
 ...

 - containerID: docker://96c1ff2c5bb ...
 image: nginx
 ...
 name: nginx-container
 ...
 state:
 running:
 ...

kubectl exec -it two-containers -c nginx-container -- /bin/bash

10/23/2017 Communicate Between Containers in the Same Pod Using a Shared Volume - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/ 4/5

The output is similar to this:

Recall that the debian Container created the index.html �le in the nginx root directory. Use curl

to send a GET request to the nginx server:

The output shows that nginx serves a web page written by the debian container:

Discussion

The primary reason that Pods can have multiple containers is to support helper applications that

assist a primary application. Typical examples of helper applications are data pullers, data pushers,

and proxies. Helper and primary applications often need to communicate with each other. Typically

this is done through a shared �lesystem, as shown in this exercise, or through the loopback network

interface, localhost. An example of this pattern is a web server along with a helper program that polls

a Git repository for new updates.

The Volume in this exercise provides a way for Containers to communicate during the life of the Pod.

If the Pod is deleted and recreated, any data stored in the shared Volume is lost.

What’s next

Learn more about patterns for composite containers.

root@two-containers:/# ps aux

USER PID ... STAT START TIME COMMAND
root 1 ... Ss 21:12 0:00 nginx: master process nginx -g daemon off;

root@two-containers:/# apt-get update
root@two-containers:/# apt-get install curl
root@two-containers:/# curl localhost

Hello from the debian container

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

10/23/2017 Communicate Between Containers in the Same Pod Using a Shared Volume - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/ 5/5

Learn about composite containers for modular architecture.

See Con�guring a Pod to Use a Volume for Storage.

See Volume.

See Pod.

http://www.slideshare.net/Docker/slideshare-burns
http://localhost:4000/docs/tasks/configure-pod-container/configure-volume-storage/
http://localhost:4000/docs/api-reference/v1.8/#volume-v1-core
http://localhost:4000/docs/api-reference/v1.8/#pod-v1-core

10/23/2017 Core metrics pipeline - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/core-metrics-pipeline/ 1/2

Core metrics pipeline

Starting from Kubernetes 1.8, resource usage metrics, such as container CPU and memory usage,

are available in Kubernetes through the Metrics API. These metrics can be either accessed directly

by user, for example by using kubectl top command, or used by a controller in the cluster, e.g.

Horizontal Pod Autoscaler, to make decisions.

The Metrics API

Through the Metrics API you can get the amount of resource currently used by a given node or a

given pod. This API doesn’t store the metric values, so it’s not possible for example to get the amount

of resources used by a given node 10 minutes ago.

The API no different from any other API:

it is discoverable through the same endpoint as the other Kubernetes APIs under

/apis/metrics.k8s.io/ path

it offers the same security, scalability and reliability guarantees

The API is de�ned in k8s.io/metrics repository. You can �nd more information about the API there.

Note: The API requires metrics server to be deployed in the cluster. Otherwise it will be not available.

Metrics Server

Metrics Server is a cluster-wide aggregator of resource usage data. Starting from Kubernetes 1.8 it’s

deployed by default in clusters created by kube-up.sh script as a Deployment object. If you use a

different Kubernetes setup mechanism you can deploy it using the provided deployment yamls. It’s

supported in Kubernetes 1.7+ (see details below).

Metric server collects metrics from the Summary API, exposed by Kubelet on each node.

https://github.com/kubernetes/metrics/blob/master/pkg/apis/metrics/v1beta1/types.go
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server/tree/master/deploy
http://localhost:4000/docs/admin/kubelet/

10/23/2017 Core metrics pipeline - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/core-metrics-pipeline/ 2/2

Metrics Server registered in the main API server through Kubernetes aggregator, which was

introduced in Kubernetes 1.7.

Learn more about the metrics server in the design doc.

https://kubernetes.io/docs/concepts/api-extension/apiserver-aggregation/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md

10/23/2017 Tools for Monitoring Compute, Storage, and Network Resources - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/ 1/6

Tools for Monitoring Compute, Storage, and
Network Resources

Understanding how an application behaves when deployed is crucial to scaling the application and

providing a reliable service. In a Kubernetes cluster, application performance can be examined at

many different levels: containers, pods, services, and whole clusters. As part of Kubernetes we want

to provide users with detailed resource usage information about their running applications at all

these levels. This will give users deep insights into how their applications are performing and where

possible application bottlenecks may be found. In comes Heapster, a project meant to provide a

base monitoring platform on Kubernetes.

Overview

Heapster is a cluster-wide aggregator of monitoring and event data. It currently supports Kubernetes

natively and works on all Kubernetes setups. Heapster runs as a pod in the cluster, similar to how

any Kubernetes application would run. The Heapster pod discovers all nodes in the cluster and

queries usage information from the nodes’ Kubelets, the on-machine Kubernetes agent. The Kubelet

itself fetches the data from cAdvisor. Heapster groups the information by pod along with the relevant

labels. This data is then pushed to a con�gurable backend for storage and visualization. Currently

supported backends include In�uxDB (with Grafana for visualization), Google Cloud Monitoring and

many others described in more details here. The overall architecture of the service can be seen

below:

http://localhost:4000/docs/user-guide/pods
http://localhost:4000/docs/user-guide/services
https://github.com/kubernetes/heapster
http://localhost:4000/docs/admin/kubelet/
https://github.com/google/cadvisor
http://influxdb.com/
http://grafana.org/
https://cloud.google.com/monitoring/
https://git.k8s.io/heapster/docs/sink-configuration.md

10/23/2017 Tools for Monitoring Compute, Storage, and Network Resources - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/ 2/6

Let’s look at some of the other components in more detail.

cAdvisor

cAdvisor is an open source container resource usage and performance analysis agent. It is purpose-

built for containers and supports Docker containers natively. In Kubernetes, cAdvisor is integrated

into the Kubelet binary. cAdvisor auto-discovers all containers in the machine and collects CPU,

memory, �lesystem, and network usage statistics. cAdvisor also provides the overall machine usage

by analyzing the ‘root’ container on the machine.

On most Kubernetes clusters, cAdvisor exposes a simple UI for on-machine containers on port 4194.

Here is a snapshot of part of cAdvisor’s UI that shows the overall machine usage:

10/23/2017 Tools for Monitoring Compute, Storage, and Network Resources - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/ 3/6

Kubelet

The Kubelet acts as a bridge between the Kubernetes master and the nodes. It manages the pods

and containers running on a machine. Kubelet translates each pod into its constituent containers

and fetches individual container usage statistics from cAdvisor. It then exposes the aggregated pod

resource usage statistics via a REST API.

Storage Backends

In�uxDB and Grafana

A Grafana setup with In�uxDB is a very popular combination for monitoring in the open source world.

In�uxDB exposes an easy to use API to write and fetch time series data. Heapster is setup to use this

storage backend by default on most Kubernetes clusters. A detailed setup guide can be found here.

In�uxDB and Grafana run in Pods. The pod exposes itself as a Kubernetes service which is how

Heapster discovers it.

https://github.com/GoogleCloudPlatform/heapster/blob/master/docs/influxdb.md

10/23/2017 Tools for Monitoring Compute, Storage, and Network Resources - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/ 4/6

The Grafana container serves Grafana’s UI which provides an easy to con�gure dashboard interface.

The default dashboard for Kubernetes contains an example dashboard that monitors resource

usage of the cluster and the pods inside of it. This dashboard can easily be customized and

expanded. Take a look at the storage schema for In�uxDB here.

Here is a video showing how to monitor a Kubernetes cluster using heapster, In�uxDB and Grafana:

Here is a snapshot of the default Kubernetes Grafana dashboard that shows the CPU and Memory

usage of the entire cluster, individual pods and containers:

https://github.com/GoogleCloudPlatform/heapster/blob/master/docs/storage-schema.md#metrics
http://www.youtube.com/watch?v=SZgqjMrxo3g

10/23/2017 Tools for Monitoring Compute, Storage, and Network Resources - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/ 5/6

Google Cloud Monitoring

Google Cloud Monitoring is a hosted monitoring service that allows you to visualize and alert on

important metrics in your application. Heapster can be setup to automatically push all collected

metrics to Google Cloud Monitoring. These metrics are then available in the Cloud Monitoring

Console. This storage backend is the easiest to setup and maintain. The monitoring console allows

you to easily create and customize dashboards using the exported data.

Here is a video showing how to setup and run a Google Cloud Monitoring backed Heapster:

Here is a snapshot of the Google Cloud Monitoring dashboard showing cluster-wide resource usage.

https://app.google.stackdriver.com/
http://www.youtube.com/watch?v=xSMNR2fcoLs

10/23/2017 Tools for Monitoring Compute, Storage, and Network Resources - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/resource-usage-monitoring/ 6/6

Try it out!

Now that you’ve learned a bit about Heapster, feel free to try it out on your own clusters! The

Heapster repository is available on GitHub. It contains detailed instructions to setup Heapster and its

storage backends. Heapster runs by default on most Kubernetes clusters, so you may already have

it! Feedback is always welcome. Please let us know if you run into any issues via the troubleshooting

channels.

Authors: Vishnu Kannan and Victor Marmol, Google Software Engineers. This article was originally

posted in Kubernetes blog.

https://github.com/kubernetes/heapster
http://localhost:4000/docs/troubleshooting/
http://blog.kubernetes.io/2015/05/resource-usage-monitoring-kubernetes.html

10/23/2017 Get a Shell to a Running Container - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/get-shell-running-container/ 1/4

Get a Shell to a Running Container

This page shows how to use kubectl exec to get a shell to a running Container.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Getting a shell to a Container

In this exercise, you create a Pod that has one Container. The Container runs the nginx image. Here is

the con�guration �le for the Pod:

shell-demo.yaml

Before you begin
Getting a shell to a Container
Writing the root page for nginx
Running individual commands in a Container
Opening a shell when a Pod has more than one Container
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/shell-demo.yaml

10/23/2017 Get a Shell to a Running Container - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/get-shell-running-container/ 2/4

shell-demo.yaml

Create the Pod:

Verify that the Container is running:

Get a shell to the running Container:

In your shell, list the running processes:

In your shell, list the nginx processes:

apiVersion: v1
kind: Pod
metadata:
 name: shell-demo
spec:
 volumes:
 - name: shared-data
 emptyDir: {}
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - name: shared-data
 mountPath: /usr/share/nginx/html

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/shell-demo.y

kubectl get pod shell-demo

kubectl exec -it shell-demo -- /bin/bash

root@shell-demo:/# ps aux

root@shell-demo:/# ps aux | grep nginx

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/shell-demo.yaml

10/23/2017 Get a Shell to a Running Container - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/get-shell-running-container/ 3/4

In your shell, experiment with other commands. Here are some examples:

Writing the root page for nginx

Look again at the con�guration �le for your Pod. The Pod has an emptyDir volume, and the

Container mounts the volume at /usr/share/nginx/html .

In your shell, create an index.html �le in the /usr/share/nginx/html directory:

In your shell, send a GET request to the nginx server:

The output shows the text that you wrote to the index.html �le:

When you are �nished with your shell, enter exit .

Running individual commands in a Container

root@shell-demo:/# ls /
root@shell-demo:/# cat /proc/mounts
root@shell-demo:/# cat /proc/1/maps
root@shell-demo:/# apt-get update
root@shell-demo:/# apt-get install tcpdump
root@shell-demo:/# tcpdump
root@shell-demo:/# apt-get install lsof
root@shell-demo:/# lsof

root@shell-demo:/# echo Hello shell demo > /usr/share/nginx/html/index.html

root@shell-demo:/# apt-get update
root@shell-demo:/# apt-get install curl
root@shell-demo:/# curl localhost

Hello shell demo

10/23/2017 Get a Shell to a Running Container - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/get-shell-running-container/ 4/4

In an ordinary command window, not your shell, list the environment variables in the running

Container:

Experiment running other commands. Here are some examples:

Opening a shell when a Pod has more than one
Container

If a Pod has more than one Container, use --container or -c to specify a Container in the

kubectl exec command. For example, suppose you have a Pod named my-pod, and the Pod has

two containers named main-app and helper-app. The following command would open a shell to the

main-app Container.

What’s next

kubectl exec

kubectl exec shell-demo env

kubectl exec shell-demo ps aux
kubectl exec shell-demo ls /
kubectl exec shell-demo cat /proc/1/mounts

kubectl exec -it my-pod --container main-app -- /bin/bash

http://localhost:4000/docs/user-guide/kubectl/v1.6/#exec

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 1/7

Monitor Node Health

Node Problem Detector

Node problem detector is a DaemonSet monitoring the node health. It collects node problems from

various daemons and reports them to the apiserver as NodeCondition and Event.

It supports some known kernel issue detection now, and will detect more and more node problems

over time.

Currently Kubernetes won’t take any action on the node conditions and events generated by node

problem detector. In the future, a remedy system could be introduced to deal with node problems.

See more information here.

Limitations

The kernel issue detection of node problem detector only supports �le based kernel log now. It

doesn’t support log tools like journald.

Node Problem Detector
Limitations
Enable/Disable in GCE cluster
Use in Other Environment

Kubectl
Addon Pod

Overwrite the Con�guration
Kernel Monitor

Add New NodeConditions
Detect New Problems
Change Log Path
Support Other Log Format

Caveats

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/concepts/architecture/nodes/#condition
http://localhost:4000/docs/api-reference/v1.8/#event-v1-core
https://github.com/kubernetes/node-problem-detector

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 2/7

The kernel issue detection of node problem detector has assumption on kernel log format, and

now it only works on Ubuntu and Debian. However, it is easy to extend it to support other log

format.

Enable/Disable in GCE cluster

Node problem detector is running as a cluster addon enabled by default in the gce cluster.

You can enable/disable it by setting the environment variable

KUBE_ENABLE_NODE_PROBLEM_DETECTOR before kube-up.sh .

Use in Other Environment

To enable node problem detector in other environment outside of GCE, you can use either kubectl

or addon pod.

Kubectl

This is the recommended way to start node problem detector outside of GCE. It provides more

�exible management, such as overwriting the default con�guration to �t it into your environment or

detect customized node problems.

Step 1: Create node-problem-detector.yaml :

http://localhost:4000/docs/admin/node-problem/#support-other-log-format
http://localhost:4000/docs/admin/cluster-large/#addon-resources

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 3/7

Notice that you should make sure the system log directory is right for your OS distro.

Step 2: Start node problem detector with kubectl :

Addon Pod

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: node-problem-detector-v0.1
 namespace: kube-system
 labels:
 k8s-app: node-problem-detector
 version: v0.1
 kubernetes.io/cluster-service: "true"
spec:
 template:
 metadata:
 labels:
 k8s-app: node-problem-detector
 version: v0.1
 kubernetes.io/cluster-service: "true"
 spec:
 hostNetwork: true
 containers:
 - name: node-problem-detector
 image: gcr.io/google_containers/node-problem-detector:v0.1
 securityContext:
 privileged: true
 resources:
 limits:
 cpu: "200m"
 memory: "100Mi"
 requests:
 cpu: "20m"
 memory: "20Mi"
 volumeMounts:
 - name: log
 mountPath: /log
 readOnly: true
 volumes:
 - name: log
 hostPath:
 path: /var/log/

kubectl create -f node-problem-detector.yaml

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 4/7

This is for those who have their own cluster bootstrap solution, and don’t need to overwrite the

default con�guration. They could leverage the addon pod to further automate the deployment.

Just create node-problem-detector.yaml , and put it under the addon pods directory

/etc/kubernetes/addons/node-problem-detector on master node.

Overwrite the Con�guration

The default con�guration is embedded when building the docker image of node problem detector.

However, you can use Con�gMap to overwrite it following the steps:

Step 1: Change the con�g �les in config/ .

Step 2: Create the Con�gMap node-problem-detector-config with

kubectl create configmap node-problem-detector-config --from-file=config/ .

Step 3: Change the node-problem-detector.yaml to use the Con�gMap:

https://github.com/kubernetes/node-problem-detector/tree/v0.1/config
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 5/7

Step 4: Re-create the node problem detector with the new yaml �le:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: node-problem-detector-v0.1
 namespace: kube-system
 labels:
 k8s-app: node-problem-detector
 version: v0.1
 kubernetes.io/cluster-service: "true"
spec:
 template:
 metadata:
 labels:
 k8s-app: node-problem-detector
 version: v0.1
 kubernetes.io/cluster-service: "true"
 spec:
 hostNetwork: true
 containers:
 - name: node-problem-detector
 image: gcr.io/google_containers/node-problem-detector:v0.1
 securityContext:
 privileged: true
 resources:
 limits:
 cpu: "200m"
 memory: "100Mi"
 requests:
 cpu: "20m"
 memory: "20Mi"
 volumeMounts:
 - name: log
 mountPath: /log
 readOnly: true
 - name: config # Overwrite the config/ directory with ConfigMap volume
 mountPath: /config
 readOnly: true
 volumes:
 - name: log
 hostPath:
 path: /var/log/
 - name: config # Define ConfigMap volume
 configMap:
 name: node-problem-detector-config

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 6/7

Notice that this approach only applies to node problem detector started with kubectl .

For node problem detector running as cluster addon, because addon manager doesn’t support

Con�gMap, con�guration overwriting is not supported now.

Kernel Monitor

Kernel Monitor is a problem daemon in node problem detector. It monitors kernel log and detects

known kernel issues following prede�ned rules.

The Kernel Monitor matches kernel issues according to a set of prede�ned rule list in

config/kernel-monitor.json . The rule list is extensible, and you can always extend it by

overwriting the con�guration.

Add New NodeConditions

To support new node conditions, you can extend the conditions �eld in

config/kernel-monitor.json with new condition de�nition:

Detect New Problems

To detect new problems, you can extend the rules �eld in config/kernel-monitor.json with

new rule de�nition:

kubectl delete -f node-problem-detector.yaml # If you have a node-problem-detector
kubectl create -f node-problem-detector.yaml

{
 "type": "NodeConditionType",
 "reason": "CamelCaseDefaultNodeConditionReason",
 "message": "arbitrary default node condition message"
}

https://github.com/kubernetes/node-problem-detector/blob/v0.1/config/kernel-monitor.json

10/23/2017 Monitor Node Health - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/monitor-node-health/ 7/7

Change Log Path

Kernel log in different OS distros may locate in different path. The log �eld in

config/kernel-monitor.json is the log path inside the container. You can always con�gure it to

match your OS distro.

Support Other Log Format

Kernel monitor uses Translator plugin to translate kernel log the internal data structure. It is easy

to implement a new translator for a new log format.

Caveats

It is recommended to run the node problem detector in your cluster to monitor the node health.

However, you should be aware that this will introduce extra resource overhead on each node. Usually

this is �ne, because:

The kernel log is generated relatively slowly.

Resource limit is set for node problem detector.

Even under high load, the resource usage is acceptable. (see benchmark result)

{
 "type": "temporary/permanent",
 "condition": "NodeConditionOfPermanentIssue",
 "reason": "CamelCaseShortReason",
 "message": "regexp matching the issue in the kernel log"
}

https://github.com/kubernetes/node-problem-detector/blob/v0.1/pkg/kernelmonitor/translator/translator.go
https://github.com/kubernetes/node-problem-detector/issues/2#issuecomment-220255629

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 1/8

Logging Using Stackdriver

Before reading this page, it’s highly recommended to familiarize yourself with the overview of logging

in Kubernetes.

Note: By default, Stackdriver logging collects only your container’s standard output and standard

error streams. To collect any logs your application writes to a �le (for example), see the sidecar

approach in the Kubernetes logging overview.

Deploying

To ingest logs, you must deploy the Stackdriver Logging agent to each node in your cluster. The

agent is a con�gured fluentd instance, where the con�guration is stored in a ConfigMap and the

instances are managed using a Kubernetes DaemonSet . The actual deployment of the ConfigMap

and DaemonSet for your cluster depends on your individual cluster setup.

Deploying to a new cluster

Google Container Engine

Stackdriver is the default logging solution for clusters deployed on Google Container Engine.

Stackdriver Logging is deployed to a new cluster by default unless you explicitly opt-out.

Other platforms

To deploy Stackdriver Logging on a new cluster that you’re creating using kube-up.sh , do the

following:

1. Set the KUBE_LOGGING_DESTINATION environment variable to gcp .

2. If not running on GCE, include the beta.kubernetes.io/fluentd-ds-ready=true in the

KUBE_NODE_LABELS variable.

http://localhost:4000/docs/concepts/cluster-administration/logging
http://localhost:4000/docs/concepts/cluster-administration/logging#using-a-sidecar-container-with-the-logging-agent

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 2/8

Once your cluster has started, each node should be running the Stackdriver Logging agent. The

DaemonSet and ConfigMap are con�gured as addons. If you’re not using kube-up.sh , consider

starting a cluster without a pre-con�gured logging solution and then deploying Stackdriver Logging

agents to the running cluster.

Deploying to an existing cluster

1. Apply a label on each node, if not already present.

The Stackdriver Logging agent deployment uses node labels to determine to which nodes it

should be allocated. These labels were introduced to distinguish nodes with the Kubernetes

version 1.6 or higher. If the cluster was created with Stackdriver Logging con�gured and node

has version 1.5.X or lower, it will have �uentd as static pod. Node cannot have more than one

instance of �uentd, therefore only apply labels to the nodes that don’t have �uentd pod allocated

already. You can ensure that your node is labelled properly by running kubectl describe as

follows:

kubectl describe node $NODE_NAME

The output should be similar to this:

Name: NODE_NAME Role: Labels: beta.kubernetes.io/fluentd-ds-ready=true ...

Ensure that the output contains the label beta.kubernetes.io/fluentd-ds-ready=true . If it

is not present, you can add it using the kubectl label command as follows:

kubectl label node $NODE_NAME beta.kubernetes.io/fluentd-ds-ready=true

Note: If a node fails and has to be recreated, you must re-apply the label to the recreated node.

To make this easier, you can use Kubelet’s command-line parameter for applying node labels in

your node startup script.

2. Deploy a ConfigMap with the logging agent con�guration by running the following command:

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/fluentd-

gcp-configmap.yaml

The command creates the ConfigMap in the default namespace. You can download the �le

manually and change it before creating the ConfigMap object.

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 3/8

3. Deploy the logging agent DaemonSet by running the following command:

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/fluentd-

gcp-ds.yaml

You can download and edit this �le before using it as well.

Verifying your Logging Agent Deployment

After Stackdriver DaemonSet is deployed, you can discover logging agent deployment status by

running the following command:

If you have 3 nodes in the cluster, the output should looks similar to this:

To understand how logging with Stackdriver works, consider the following synthetic log generator

pod speci�cation counter-pod.yaml:

counter-pod.yaml

kubectl get ds --all-namespaces

NAMESPACE NAME DESIRED CURRENT READY NODE-SELECTOR
...
kube-system fluentd-gcp-v2.0 3 3 3 beta.kubernetes.io/
...

apiVersion: v1
kind: Pod
metadata:
 name: counter
spec:
 containers:
 - name: count
 image: busybox
 args: [/bin/sh, -c,
 'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']

http://localhost:4000/docs/tasks/debug-application-cluster/counter-pod.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/counter-pod.yaml

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 4/8

This pod speci�cation has one container that runs a bash script that writes out the value of a

counter and the date once per second, and runs inde�nitely. Let’s create this pod in the default

namespace.

You can observe the running pod:

For a short period of time you can observe the ‘Pending’ pod status, because the kubelet has to

download the container image �rst. When the pod status changes to Running you can use the

kubectl logs command to view the output of this counter pod.

As described in the logging overview, this command fetches log entries from the container log �le. If

the container is killed and then restarted by Kubernetes, you can still access logs from the previous

container. However, if the pod is evicted from the node, log �les are lost. Let’s demonstrate this by

deleting the currently running counter container:

and then recreating it:

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
counter 1/1 Running 0 5m

$ kubectl logs counter
0: Mon Jan 1 00:00:00 UTC 2001
1: Mon Jan 1 00:00:01 UTC 2001
2: Mon Jan 1 00:00:02 UTC 2001
...

$ kubectl delete pod counter
pod "counter" deleted

$ kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/counter-po
pod "counter" created

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 5/8

After some time, you can access logs from the counter pod again:

As expected, only recent log lines are present. However, for a real-world application you will likely

want to be able to access logs from all containers, especially for the debug purposes. This is exactly

when the previously enabled Stackdriver Logging can help.

Viewing logs

Stackdriver Logging agent attaches metadata to each log entry, for you to use later in queries to

select only the messages you’re interested in: for example, the messages from a particular pod.

The most important pieces of metadata are the resource type and log name. The resource type of a

container log is container , which is named GKE Containers in the UI (even if the Kubernetes

cluster is not on GKE). The log name is the name of the container, so that if you have a pod with two

containers, named container_1 and container_2 in the spec, their logs will have log names

container_1 and container_2 respectively.

System components have resource type compute , which is named GCE VM Instance in the

interface. Log names for system components are �xed. For a GKE node, every log entry from a

system component has one of the following log names:

docker

kubelet

kube-proxy

You can learn more about viewing logs on the dedicated Stackdriver page.

One of the possible ways to view logs is using the gcloud logging command line interface from

the Google Cloud SDK. It uses Stackdriver Logging �ltering syntax to query speci�c logs. For

example, you can run the following command:

$ kubectl logs counter
0: Mon Jan 1 00:01:00 UTC 2001
1: Mon Jan 1 00:01:01 UTC 2001
2: Mon Jan 1 00:01:02 UTC 2001
...

https://cloud.google.com/logging/docs/view/logs_viewer
https://cloud.google.com/logging/docs/api/gcloud-logging
https://cloud.google.com/sdk/
https://cloud.google.com/logging/docs/view/advanced_filters

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 6/8

As you can see, it outputs messages for the count container from both the �rst and second runs,

despite the fact that the kubelet already deleted the logs for the �rst container.

Exporting logs

You can export logs to Google Cloud Storage or to BigQuery to run further analysis. Stackdriver

Logging offers the concept of sinks, where you can specify the destination of log entries. More

information is available on the Stackdriver Exporting Logs page.

Con�guring Stackdriver Logging Agents

Sometimes the default installation of Stackdriver Logging may not suit your needs, for example:

You may want to add more resources because default performance doesn’t suit your needs.

You may want to introduce additional parsing to extract more metadata from your log

messages, like severity or source code reference.

You may want to send logs not only to Stackdriver or send it to Stackdriver only partially.

In this case you need to be able to change the parameters of DaemonSet and ConfigMap .

Prerequisites

If you’re using GKE and Stackdriver Logging is enabled in your cluster, you cannot change its

con�guration, because it’s managed and supported by GKE. However, you can disable the default

integration and deploy your own. Note, that you will have to support and maintain a newly deployed

$ gcloud beta logging read 'logName="projects/$YOUR_PROJECT_ID/logs/count"' --form
...
"2: Mon Jan 1 00:01:02 UTC 2001\n"
"1: Mon Jan 1 00:01:01 UTC 2001\n"
"0: Mon Jan 1 00:01:00 UTC 2001\n"
...
"2: Mon Jan 1 00:00:02 UTC 2001\n"
"1: Mon Jan 1 00:00:01 UTC 2001\n"
"0: Mon Jan 1 00:00:00 UTC 2001\n"

https://cloud.google.com/storage/
https://cloud.google.com/bigquery/
https://cloud.google.com/logging/docs/export/configure_export_v2

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 7/8

con�guration yourself: update the image and con�guration, adjust the resources and so on. To

disable the default logging integration, use the following command:

You can �nd notes on how to then install Stackdriver Logging agents into a running cluster in the

Deploying section.

Changing DaemonSet parameters

When you have the Stackdriver Logging DaemonSet in your cluster, you can just modify the

template �eld in its spec, daemonset controller will update the pods for you. For example, let’s

assume you’ve just installed the Stackdriver Logging as described above. Now you want to change

the memory limit to give �uentd more memory to safely process more logs.

Get the spec of DaemonSet running in your cluster:

Then edit resource requirements in the spec �le and update the DaemonSet object in the apiserver

using the following command:

After some time, Stackdriver Logging agent pods will be restarted with the new con�guration.

Changing �uentd parameters

Fluentd con�guration is stored in the ConfigMap object. It is effectively a set of con�guration �les

that are merged together. You can learn about �uentd con�guration on the o�cial site.

Imagine you want to add a new parsing logic to the con�guration, so that �uentd can understand

default Python logging format. An appropriate �uentd �lter looks similar to this:

gcloud beta container clusters update --logging-service=none CLUSTER

kubectl get ds fluentd-gcp-v2.0 --namespace kube-system -o yaml > fluentd-gcp-ds.y

kubectl replace -f fluentd-gcp-ds.yaml

http://docs.fluentd.org/

10/23/2017 Logging Using Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/ 8/8

Now you have to put it in the con�guration and make Stackdriver Logging agents pick it up. Get the

current version of the Stackdriver Logging ConfigMap in your cluster by running the following

command:

Then in the value for the key containers.input.conf insert a new �lter right after the source

section. Note: order is important.

Updating ConfigMap in the apiserver is more complicated than updating DaemonSet . It’s better to

consider ConfigMap to be immutable. Then, in order to update the con�guration, you should create

ConfigMap with a new name and then change DaemonSet to point to it using guide above.

Adding �uentd plugins

Fluentd is written in Ruby and allows to extend its capabilities using plugins. If you want to use a

plugin, which is not included in the default Stackdriver Logging container image, you have to build a

custom image. Imagine you want to add Kafka sink for messages from a particular container for

additional processing. You can re-use the default container image sources with minor changes:

Change Make�le to point to your container repository, e.g.

PREFIX=gcr.io/<your-project-id> .

Add your dependency to the Gem�le, for example gem 'fluent-plugin-kafka' .

Then run make build push from this directory. After updating DaemonSet to pick up the new

image, you can use the plugin you installed in the �uentd con�guration.

<filter reform.**>
 type parser
 format /^(?<severity>\w):(?<logger_name>\w):(?<log>.*)/
 reserve_data true
 suppress_parse_error_log true
 key_name log
</filter>

kubectl get cm fluentd-gcp-config --namespace kube-system -o yaml > fluentd-gcp-co

http://www.fluentd.org/plugins
https://git.k8s.io/contrib/fluentd/fluentd-gcp-image

10/23/2017 Events in Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/events-stackdriver/ 1/5

Events in Stackdriver

Kubernetes events are objects that provide insight into what is happening inside a cluster, such as

what decisions were made by scheduler or why some pods were evicted from the node. You can

read more about using events for debugging your application in the Application Introspection and

Debugging section.

Since events are API objects, they are stored in the apiserver on master. To avoid �lling up master’s

disk, a retention policy is enforced: events are removed one hour after the last occurrence. To provide

longer history and aggregation capabilities, a third party solution should be installed to capture

events.

This article describes a solution that exports Kubernetes events to Stackdriver Logging, where they

can be processed and analyzed.

Note: it is not guaranteed that all events happening in a cluster will be exported to Stackdriver. One

possible scenario when events will not be exported is when event exporter is not running (e.g. during

restart or upgrade). In most cases it’s �ne to use events for purposes like setting up metrics and

alerts, but you should be aware of the potential inaccuracy.

Deployment

Google Container Engine

In Google Container Engine (GKE), if cloud logging is enabled, event exporter is deployed by default

to the clusters with master running version 1.7 and higher. To prevent disturbing your workloads,

event exporter does not have resources set and is in the best effort QOS class, which means that it

will be the �rst to be killed in the case of resource starvation. If you want your events to be exported,

Deployment
Google Container Engine
Deploying to the Existing Cluster

User Guide

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/
https://cloud.google.com/logging/docs/view/logs_based_metrics
https://cloud.google.com/logging/docs/view/logs_based_metrics#creating_an_alerting_policy

10/23/2017 Events in Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/events-stackdriver/ 2/5

make sure you have enough resources to facilitate the event exporter pod. This may vary depending

on the workload, but on average, approximately 100Mb RAM and 100m CPU is needed.

Deploying to the Existing Cluster

Deploy event exporter to your cluster using the following command:

Since event exporter accesses the Kubernetes API, it requires permissions to do so. The following

deployment is con�gured to work with RBAC authorization. It sets up a service account and a cluster

role binding to allow event exporter to read events. To make sure that event exporter pod will not be

evicted from the node, you can additionally set up resource requests. As mentioned earlier, 100Mb

RAM and 100m CPU should be enough.

event-exporter-deploy.yaml

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/event-export

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/event-exporter-deploy.yaml

10/23/2017 Events in Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/events-stackdriver/ 3/5

event-exporter-deploy.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: event-exporter-sa
 namespace: default
 labels:
 app: event-exporter

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: event-exporter-rb
 namespace: default
 labels:
 app: event-exporter
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: view
subjects:
- kind: ServiceAccount
 name: event-exporter-sa
 namespace: default

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: event-exporter-v0.1.0
 namespace: default
 labels:
 app: event-exporter
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: event-exporter
 spec:
 serviceAccountName: event-exporter-sa
 containers:
 - name: event-exporter
 image: gcr.io/google-containers/event-exporter:v0.1.0
 command:
 - '/event-exporter'
 terminationGracePeriodSeconds: 30

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/event-exporter-deploy.yaml

10/23/2017 Events in Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/events-stackdriver/ 4/5

User Guide

Events are exported to the GKE Cluster resource in Stackdriver Logging. You can �nd them by

selecting an appropriate option from a drop-down menu of available resources:

You can �lter based on the event object �elds using Stackdriver Logging �ltering mechanism. For

example, the following query will show events from the scheduler about pods from deployment

nginx-deployment :

resource.type="gke_cluster"
jsonPayload.kind="Event"
jsonPayload.source.component="default-scheduler"
jsonPayload.involvedObject.name:"nginx-deployment"

https://cloud.google.com/logging/docs/view/advanced_filters

10/23/2017 Events in Stackdriver - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/events-stackdriver/ 5/5

10/23/2017 Logging Using Elasticsearch and Kibana - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/ 1/3

Logging Using Elasticsearch and Kibana

On the Google Compute Engine (GCE) platform, the default logging support targets Stackdriver

Logging, which is described in detail in the Logging With Stackdriver Logging.

This article describes how to set up a cluster to ingest logs into Elasticsearch and view them using

Kibana, as an alternative to Stackdriver Logging when running on GCE. Note that Elasticsearch and

Kibana cannot be setup automatically in the Kubernetes cluster hosted on Google Container Engine,

you have to deploy it manually.

To use Elasticsearch and Kibana for cluster logging, you should set the following environment

variable as shown below when creating your cluster with kube-up.sh:

You should also ensure that KUBE_ENABLE_NODE_LOGGING=true (which is the default for the GCE

platform).

Now, when you create a cluster, a message will indicate that the Fluentd log collection daemons that

run on each node will target Elasticsearch:

KUBE_LOGGING_DESTINATION=elasticsearch

$ cluster/kube-up.sh
...
Project: kubernetes-satnam
Zone: us-central1-b
... calling kube-up
Project: kubernetes-satnam
Zone: us-central1-b
+++ Staging server tars to Google Storage: gs://kubernetes-staging-e6d0e81793/deve
+++ kubernetes-server-linux-amd64.tar.gz uploaded (sha1 = 6987c098277871b6d6962314
+++ kubernetes-salt.tar.gz uploaded (sha1 = bdfc83ed6b60fa9e3bff9004b542cfc643464c
Looking for already existing resources
Starting master and configuring firewalls
Created [https://www.googleapis.com/compute/v1/projects/kubernetes-satnam/zones/us
NAME ZONE SIZE_GB TYPE STATUS
kubernetes-master-pd us-central1-b 20 pd-ssd READY
Created [https://www.googleapis.com/compute/v1/projects/kubernetes-satnam/regions/
+++ Logging using Fluentd to elasticsearch

https://cloud.google.com/logging/
http://localhost:4000/docs/user-guide/logging/stackdriver
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

10/23/2017 Logging Using Elasticsearch and Kibana - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/ 2/3

The per-node Fluentd pods, the Elasticsearch pods, and the Kibana pods should all be running in the

kube-system namespace soon after the cluster comes to life.

The fluentd-elasticsearch pods gather logs from each node and send them to the

elasticsearch-logging pods, which are part of a service named elasticsearch-logging .

These Elasticsearch pods store the logs and expose them via a REST API. The kibana-logging

pod provides a web UI for reading the logs stored in Elasticsearch, and is part of a service named

kibana-logging .

The Elasticsearch and Kibana services are both in the kube-system namespace and are not directly

exposed via a publicly reachable IP address. To reach them, follow the instructions for Accessing

services running in a cluster.

If you try accessing the elasticsearch-logging service in your browser, you’ll see a status page

that looks something like this:

$ kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS AGE
elasticsearch-logging-v1-78nog 1/1 Running 0 2h
elasticsearch-logging-v1-nj2nb 1/1 Running 0 2h
fluentd-elasticsearch-kubernetes-node-5oq0 1/1 Running 0 2h
fluentd-elasticsearch-kubernetes-node-6896 1/1 Running 0 2h
fluentd-elasticsearch-kubernetes-node-l1ds 1/1 Running 0 2h
fluentd-elasticsearch-kubernetes-node-lz9j 1/1 Running 0 2h
kibana-logging-v1-bhpo8 1/1 Running 0 2h
kube-dns-v3-7r1l9 3/3 Running 0 2h
monitoring-heapster-v4-yl332 1/1 Running 1 2h
monitoring-influx-grafana-v1-o79xf 2/2 Running 0 2h

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/cluster-administration/access-cluster/#accessing-services-running-on-the-cluster

10/23/2017 Logging Using Elasticsearch and Kibana - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/ 3/3

You can now type Elasticsearch queries directly into the browser, if you’d like. See Elasticsearch’s

documentation for more details on how to do so.

Alternatively, you can view your cluster’s logs using Kibana (again using the instructions for

accessing a service running in the cluster). The �rst time you visit the Kibana URL you will be

presented with a page that asks you to con�gure your view of the ingested logs. Select the option for

timeseries values and select @timestamp . On the following page select the Discover tab and then

you should be able to see the ingested logs. You can set the refresh interval to 5 seconds to have the

logs regularly refreshed.

Here is a typical view of ingested logs from the Kibana viewer:

Kibana opens up all sorts of powerful options for exploring your logs! For some ideas on how to dig

into it, check out Kibana’s documentation.

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html
http://localhost:4000/docs/user-guide/accessing-the-cluster/#accessing-services-running-on-the-cluster
https://www.elastic.co/guide/en/kibana/current/discover.html

10/23/2017 Determine the Reason for Pod Failure - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/determine-reason-pod-failure/ 1/4

Determine the Reason for Pod Failure

This page shows how to write and read a Container termination message.

Termination messages provide a way for containers to write information about fatal events to a

location where it can be easily retrieved and surfaced by tools like dashboards and monitoring

software. In most cases, information that you put in a termination message should also be written to

the general Kubernetes logs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Writing and reading a termination message

In this exercise, you create a Pod that runs one container. The con�guration �le speci�es a command

that runs when the container starts.

termination.yaml

Before you begin
Writing and reading a termination message
Setting the termination log �le
What’s next

http://localhost:4000/docs/concepts/cluster-administration/logging/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/termination.yaml

10/23/2017 Determine the Reason for Pod Failure - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/determine-reason-pod-failure/ 2/4

termination.yaml

1. Create a Pod based on the YAML con�guration �le:

In the YAML �le, in the cmd and args �elds, you can see that the container sleeps for 10

seconds and then writes “Sleep expired” to the /dev/termination-log �le. After the container

writes the “Sleep expired” message, it terminates.

2. Display information about the Pod:

Repeat the preceding command until the Pod is no longer running.

3. Display detailed information about the Pod:

The output includes the “Sleep expired” message:

apiVersion: v1
kind: Pod
metadata:
 name: termination-demo
spec:
 containers:
 - name: termination-demo-container
 image: debian
 command: ["/bin/sh"]
 args: ["-c", "sleep 10 && echo Sleep expired > /dev/termination-log"]

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/terminati

kubectl get pod termination-demo

kubectl get pod --output=yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/debug-application-cluster/termination.yaml

10/23/2017 Determine the Reason for Pod Failure - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/determine-reason-pod-failure/ 3/4

4. Use a Go template to �lter the output so that it includes only the termination message:

Setting the termination log �le

By default Kubernetes retrieves termination messages from /dev/termination-log . To change

this to a different �le, specify a terminationMessagePath �eld for your Container.

For example, suppose your Container writes termination messages to /tmp/my-log , and you want

Kubernetes to retrieve those messages. Set terminationMessagePath as shown here:

 apiVersion: v1

 kind: Pod

 ...

 lastState:

 terminated:

 containerID: ...

 exitCode: 0

 finishedAt: ...

 message: |

 Sleep expired

 ...

 kubectl get pod termination-demo -o go-template="{{range .status.containerStatus

apiVersion: v1
kind: Pod
metadata:
 name: msg-path-demo
spec:
 containers:
 - name: msg-path-demo-container
 image: debian
 terminationMessagePath: "/tmp/my-log"

10/23/2017 Determine the Reason for Pod Failure - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/determine-reason-pod-failure/ 4/4

What’s next

See the terminationMessagePath �eld in Container.

Learn about retrieving logs.

Learn about Go templates.

http://localhost:4000/docs/api-reference/v1.8/#container-v1-core
http://localhost:4000/docs/concepts/cluster-administration/logging/
https://golang.org/pkg/text/template/

10/23/2017 Debug Init Containers - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-init-containers/ 1/3

Debug Init Containers

This page shows how to investigate problems related to the execution of Init Containers. The

example command lines below refer to the Pod as <pod-name> and the Init Containers as

<init-container-1> and <init-container-2> .

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

You should be familiar with the basics of Init Containers.

You should have Con�gured an Init Container.

Checking the status of Init Containers

Display the status of your pod:

Before you begin
Checking the status of Init Containers
Getting details about Init Containers
Accessing logs from Init Containers
Understanding Pod status

kubectl get pod <pod-name>

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/concepts/abstractions/init-containers/
http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-initialization/#creating-a-pod-that-has-an-init-container/

10/23/2017 Debug Init Containers - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-init-containers/ 2/3

For example, a status of Init:1/2 indicates that one of two Init Containers has completed

successfully:

See Understanding Pod status for more examples of status values and their meanings.

Getting details about Init Containers

View more detailed information about Init Container execution:

For example, a Pod with two Init Containers might show the following:

NAME READY STATUS RESTARTS AGE
<pod-name> 0/1 Init:1/2 0 7s

kubectl describe pod <pod-name>

Init Containers:
 <init-container-1>:
 Container ID: ...
 ...
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: ...
 Finished: ...
 Ready: True
 Restart Count: 0
 ...
 <init-container-2>:
 Container ID: ...
 ...
 State: Waiting
 Reason: CrashLoopBackOff
 Last State: Terminated
 Reason: Error
 Exit Code: 1
 Started: ...
 Finished: ...
 Ready: False
 Restart Count: 3
 ...

10/23/2017 Debug Init Containers - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-init-containers/ 3/3

You can also access the Init Container statuses programmatically by reading the

status.initContainerStatuses �eld on the Pod Spec:

This command will return the same information as above in raw JSON.

Accessing logs from Init Containers

Pass the Init Container name along with the Pod name to access its logs.

Init Containers that run a shell script print commands as they’re executed. For example, you can do

this in Bash by running set -x at the beginning of the script.

Understanding Pod status

A Pod status beginning with Init: summarizes the status of Init Container execution. The table

below describes some example status values that you might see while debugging Init Containers.

Status Meaning

Init:N/M The Pod has M Init Containers, and N have completed so far.

Init:Error An Init Container has failed to execute.

Init:CrashLoopBackOff An Init Container has failed repeatedly.

Pending The Pod has not yet begun executing Init Containers.

PodInitializing or Running The Pod has already �nished executing Init Containers.

kubectl get pod nginx --template '{{.status.initContainerStatuses}}'

kubectl logs <pod-name> -c <init-container-2>

10/23/2017 Debug Pods and Replication Controllers - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-pod-replication-controller/ 1/3

Debug Pods and Replication Controllers

Debugging pods

The �rst step in debugging a pod is taking a look at it. Check the current state of the pod and recent

events with the following command:

Look at the state of the containers in the pod. Are they all Running ? Have there been recent

restarts?

Continue debugging depending on the state of the pods.

My pod stays pending

If a pod is stuck in Pending it means that it can not be scheduled onto a node. Generally this is

because there are insu�cient resources of one type or another that prevent scheduling. Look at the

output of the kubectl describe ... command above. There should be messages from the

scheduler about why it can not schedule your pod. Reasons include:

Insu�cient resources

You may have exhausted the supply of CPU or Memory in your cluster. In this case you can try

several things:

Debugging pods
My pod stays pending

Insu�cient resources
Using hostPort

My pod stays waiting
My pod is crashing or otherwise unhealthy

Debugging Replication Controllers

$ kubectl describe pods ${POD_NAME}

10/23/2017 Debug Pods and Replication Controllers - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-pod-replication-controller/ 2/3

Add more nodes to the cluster.

Terminate unneeded pods to make room for pending pods.

Check that the pod is not larger than your nodes. For example, if all nodes have a capacity of

cpu:1 , then a pod with a request of cpu: 1.1 will never be scheduled.

You can check node capacities with the kubectl get nodes -o <format> command. Here

are some example command lines that extract just the necessary information:

The resource quota feature can be con�gured to limit the total amount of resources that can be

consumed. If used in conjunction with namespaces, it can prevent one team from hogging all

the resources.

Using hostPort

When you bind a pod to a hostPort there are a limited number of places that the pod can be

scheduled. In most cases, hostPort is unnecessary; try using a service object to expose your pod.

If you do require hostPort then you can only schedule as many pods as there are nodes in your

container cluster.

My pod stays waiting

If a pod is stuck in the Waiting state, then it has been scheduled to a worker node, but it can’t run

on that machine. Again, the information from kubectl describe ... should be informative. The

most common cause of Waiting pods is a failure to pull the image. There are three things to check:

Make sure that you have the name of the image correct.

Have you pushed the image to the repository?

Run a manual docker pull <image> on your machine to see if the image can be pulled.

kubectl get nodes -o yaml | grep '\sname\|cpu\|memory'

kubectl get nodes -o json | jq '.items[] | {name: .metadata.name, cap: .status

http://localhost:4000/docs/admin/cluster-management/#resizing-a-cluster
http://localhost:4000/docs/user-guide/pods/single-container/#deleting_a_pod
http://localhost:4000/docs/concepts/policy/resource-quotas/

10/23/2017 Debug Pods and Replication Controllers - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-pod-replication-controller/ 3/3

My pod is crashing or otherwise unhealthy

First, take a look at the logs of the current container:

If your container has previously crashed, you can access the previous container’s crash log with:

Alternately, you can run commands inside that container with exec :

Note that -c ${CONTAINER_NAME} is optional and can be omitted for pods that only contain a single

container.

As an example, to look at the logs from a running Cassandra pod, you might run:

If none of these approaches work, you can �nd the host machine that the pod is running on and SSH

into that host.

Debugging Replication Controllers

Replication controllers are fairly straightforward. They can either create pods or they can’t. If they

can’t create pods, then please refer to the instructions above to debug your pods.

You can also use kubectl describe rc ${CONTROLLER_NAME} to inspect events related to the

replication controller.

$ kubectl logs ${POD_NAME} ${CONTAINER_NAME}

$ kubectl logs --previous ${POD_NAME} ${CONTAINER_NAME}

$ kubectl exec ${POD_NAME} -c ${CONTAINER_NAME} -- ${CMD} ${ARG1} ${ARG2} ... ${AR

$ kubectl exec cassandra -- cat /var/log/cassandra/system.log

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 1/16

Debug Services

An issue that comes up rather frequently for new installations of Kubernetes is that Services are

not working properly. You’ve run all your Pods and Deployments , but you get no response when

you try to access them. This document will hopefully help you to �gure out what’s going wrong.

Conventions

Throughout this doc you will see various commands that you can run. Some commands need to be

run within a Pod , others on a Kubernetes Node , and others can run anywhere you have kubectl

and credentials for the cluster. To make it clear what is expected, this document will use the

following conventions.

Conventions
Running commands in a Pod
Setup
Does the Service exist?
Does the Service work by DNS?

Does any Service exist in DNS?
Does the Service work by IP?
Is the Service correct?
Does the Service have any Endpoints?
Are the Pods working?
Is the kube-proxy working?

Is kube-proxy running?
Is kube-proxy writing iptables rules?

Userspace
Iptables

Is kube-proxy proxying?
My service is missing endpoints
Network tra�c is not forwarded
A Pod cannot reach itself via Service IP

Seek help
More information

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 2/16

If the command “COMMAND” is expected to run in a Pod and produce “OUTPUT”:

If the command “COMMAND” is expected to run on a Node and produce “OUTPUT”:

If the command is “kubectl ARGS”:

Running commands in a Pod

For many steps here you will want to see what a Pod running in the cluster sees. You can start a

busybox Pod and run commands in it:

If you already have a running Pod , run a command in it using:

or run an interactive shell with:

u@pod$ COMMAND
OUTPUT

u@node$ COMMAND
OUTPUT

$ kubectl ARGS
OUTPUT

$ kubectl run -i --tty busybox --image=busybox --generator="run-pod/v1"
Waiting for pod default/busybox to be running, status is Pending, pod ready: false

Hit enter for command prompt

/ #

$ kubectl exec <POD-NAME> -c <CONTAINER-NAME> -- <COMMAND>

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 3/16

Setup

For the purposes of this walk-through, let’s run some Pods . Since you’re probably debugging your

own Service you can substitute your own details, or you can follow along and get a second data

point.

kubectl commands will print the type and name of the resource created or mutated, which can

then be used in subsequent commands. Note that this is the same as if you had started the

Deployment with the following YAML:

$ kubectl exec -ti <POD-NAME> -c <CONTAINER-NAME> sh
/ #

$ kubectl run hostnames --image=gcr.io/google_containers/serve_hostname \
 --labels=app=hostnames \
 --port=9376 \
 --replicas=3
deployment "hostnames" created

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hostnames
spec:
 selector:
 app: hostnames
 replicas: 3
 template:
 metadata:
 labels:
 app: hostnames
 spec:
 containers:
 - name: hostnames
 image: gcr.io/google_containers/serve_hostname
 ports:
 - containerPort: 9376
 protocol: TCP

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 4/16

Con�rm your Pods are running:

Does the Service exist?

The astute reader will have noticed that we did not actually create a Service yet - that is intentional.

This is a step that sometimes gets forgotten, and is the �rst thing to check.

So what would happen if I tried to access a non-existent Service ? Assuming you have another

Pod that consumes this Service by name you would get something like:

or:

So the �rst thing to check is whether that Service actually exists:

So we have a culprit, let’s create the Service . As before, this is for the walk-through - you can use

your own Service ’s details here.

And read it back, just to be sure:

$ kubectl get pods -l app=hostnames
NAME READY STATUS RESTARTS AGE
hostnames-632524106-bbpiw 1/1 Running 0 2m
hostnames-632524106-ly40y 1/1 Running 0 2m
hostnames-632524106-tlaok 1/1 Running 0 2m

u@pod$ wget -qO- hostnames
wget: bad address 'hostname'

u@pod$ echo $HOSTNAMES_SERVICE_HOST

$ kubectl get svc hostnames
Error from server (NotFound): services "hostnames" not found

$ kubectl expose deployment hostnames --port=80 --target-port=9376
service "hostnames" exposed

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 5/16

As before, this is the same as if you had started the Service with YAML:

Now you can con�rm that the Service exists.

Does the Service work by DNS?

From a Pod in the same Namespace :

If this fails, perhaps your Pod and Service are in different Namespaces , try a namespace-quali�ed

name:

$ kubectl get svc hostnames
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hostnames 10.0.0.226 <none> 80/TCP 5s

apiVersion: v1
kind: Service
metadata:
 name: hostnames
spec:
 selector:
 app: hostnames
 ports:
 - name: default
 protocol: TCP
 port: 80
 targetPort: 9376

u@pod$ nslookup hostnames
Server: 10.0.0.10
Address: 10.0.0.10#53

Name: hostnames
Address: 10.0.1.175

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 6/16

If this works, you’ll need to ensure that Pods and Services run in the same Namespace . If this still

fails, try a fully-quali�ed name:

Note the su�x here: “default.svc.cluster.local”. The “default” is the Namespace we’re operating in. The

“svc” denotes that this is a Service . The “cluster.local” is your cluster domain.

You can also try this from a Node in the cluster (note: 10.0.0.10 is my DNS Service):

If you are able to do a fully-quali�ed name lookup but not a relative one, you need to check that your

kubelet is running with the right �ags. The --cluster-dns �ag needs to point to your DNS

Service ’s IP and the --cluster-domain �ag needs to be your cluster’s domain - we assumed

“cluster.local” in this document, but yours might be different, in which case you should change that in

all of the commands above.

Does any Service exist in DNS?

u@pod$ nslookup hostnames.default
Server: 10.0.0.10
Address: 10.0.0.10#53

Name: hostnames.default
Address: 10.0.1.175

u@pod$ nslookup hostnames.default.svc.cluster.local
Server: 10.0.0.10
Address: 10.0.0.10#53

Name: hostnames.default.svc.cluster.local
Address: 10.0.1.175

u@node$ nslookup hostnames.default.svc.cluster.local 10.0.0.10
Server: 10.0.0.10
Address: 10.0.0.10#53

Name: hostnames.default.svc.cluster.local
Address: 10.0.1.175

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 7/16

If the above still fails - DNS lookups are not working for your Service - we can take a step back and

see what else is not working. The Kubernetes master Service should always work:

If this fails, you might need to go to the kube-proxy section of this doc, or even go back to the top of

this document and start over, but instead of debugging your own Service , debug DNS.

Does the Service work by IP?

The next thing to test is whether your Service works at all. From a Node in your cluster, access the

Service ’s IP (from kubectl get above).

If your Service is working, you should get correct responses. If not, there are a number of things

that could be going wrong. Read on.

Is the Service correct?

It might sound silly, but you should really double and triple check that your Service is correct and

matches your Pods . Read back your Service and verify it:

u@pod$ nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10

Name: kubernetes
Address 1: 10.0.0.1

u@node$ curl 10.0.1.175:80
hostnames-0uton

u@node$ curl 10.0.1.175:80
hostnames-yp2kp

u@node$ curl 10.0.1.175:80
hostnames-bvc05

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 8/16

Is the port you are trying to access in spec.ports[] ? Is the targetPort correct for your Pods ? If

you meant it to be a numeric port, is it a number (9376) or a string “9376”? If you meant it to be a

named port, do your Pods expose a port with the same name? Is the port’s protocol the same as

the Pod ’s?

Does the Service have any Endpoints?

$ kubectl get service hostnames -o json
{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "hostnames",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/services/hostnames",
 "uid": "428c8b6c-24bc-11e5-936d-42010af0a9bc",
 "resourceVersion": "347189",
 "creationTimestamp": "2015-07-07T15:24:29Z",
 "labels": {
 "app": "hostnames"
 }
 },
 "spec": {
 "ports": [
 {
 "name": "default",
 "protocol": "TCP",
 "port": 80,
 "targetPort": 9376,
 "nodePort": 0
 }
],
 "selector": {
 "app": "hostnames"
 },
 "clusterIP": "10.0.1.175",
 "type": "ClusterIP",
 "sessionAffinity": "None"
 },
 "status": {
 "loadBalancer": {}
 }
}

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 9/16

If you got this far, we assume that you have con�rmed that your Service exists and is resolved by

DNS. Now let’s check that the Pods you ran are actually being selected by the Service .

Earlier we saw that the Pods were running. We can re-check that:

The “AGE” column says that these Pods are about an hour old, which implies that they are running

�ne and not crashing.

The -l app=hostnames argument is a label selector - just like our Service has. Inside the

Kubernetes system is a control loop which evaluates the selector of every Service and saves the

results into an Endpoints object.

This con�rms that the control loop has found the correct Pods for your Service . If the hostnames

row is blank, you should check that the spec.selector �eld of your Service actually selects for

metadata.labels values on your Pods .

Are the Pods working?

At this point, we know that your Service exists and has selected your Pods . Let’s check that the

Pods are actually working - we can bypass the Service mechanism and go straight to the Pods .

$ kubectl get pods -l app=hostnames
NAME READY STATUS RESTARTS AGE
hostnames-0uton 1/1 Running 0 1h
hostnames-bvc05 1/1 Running 0 1h
hostnames-yp2kp 1/1 Running 0 1h

$ kubectl get endpoints hostnames
NAME ENDPOINTS
hostnames 10.244.0.5:9376,10.244.0.6:9376,10.244.0.7:9376

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 10/16

We expect each Pod in the Endpoints list to return its own hostname. If this is not what happens

(or whatever the correct behavior is for your own Pods), you should investigate what’s happening

there. You might �nd kubectl logs to be useful or kubectl exec directly to your Pods and check

service from there.

Is the kube-proxy working?

If you get here, your Service is running, has Endpoints , and your Pods are actually serving. At

this point, the whole Service proxy mechanism is suspect. Let’s con�rm it, piece by piece.

Is kube-proxy running?

Con�rm that kube-proxy is running on your Nodes . You should get something like the below:

Next, con�rm that it is not failing something obvious, like contacting the master. To do this, you’ll

have to look at the logs. Accessing the logs depends on your Node OS. On some OSes it is a �le,

such as /var/log/kube-proxy.log, while other OSes use journalctl to access logs. You should see

something like:

u@pod$ wget -qO- 10.244.0.5:9376
hostnames-0uton

pod $ wget -qO- 10.244.0.6:9376
hostnames-bvc05

u@pod$ wget -qO- 10.244.0.7:9376
hostnames-yp2kp

u@node$ ps auxw | grep kube-proxy
root 4194 0.4 0.1 101864 17696 ? Sl Jul04 25:43 /usr/local/bin/kube-proxy -

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 11/16

If you see error messages about not being able to contact the master, you should double-check your

Node con�guration and installation steps.

Is kube-proxy writing iptables rules?

One of the main responsibilities of kube-proxy is to write the iptables rules which implement

Services . Let’s check that those rules are getting written.

The kube-proxy can run in either “userspace” mode or “iptables” mode. Hopefully you are using the

newer, faster, more stable “iptables” mode. You should see one of the following cases.

Userspace

There should be 2 rules for each port on your Service (just one in this example) - a “KUBE-

PORTALS-CONTAINER” and a “KUBE-PORTALS-HOST”. If you do not see these, try restarting

kube-proxy with the -V �ag set to 4, and then look at the logs again.

Iptables

I1027 22:14:53.995134 5063 server.go:200] Running in resource-only container "/
I1027 22:14:53.998163 5063 server.go:247] Using iptables Proxier.
I1027 22:14:53.999055 5063 server.go:255] Tearing down userspace rules. Errors
I1027 22:14:54.038140 5063 proxier.go:352] Setting endpoints for "kube-system/k
I1027 22:14:54.038164 5063 proxier.go:352] Setting endpoints for "kube-system/k
I1027 22:14:54.038209 5063 proxier.go:352] Setting endpoints for "default/kuber
I1027 22:14:54.038238 5063 proxier.go:429] Not syncing iptables until Services
I1027 22:14:54.040048 5063 proxier.go:294] Adding new service "default/kubernet
I1027 22:14:54.040154 5063 proxier.go:294] Adding new service "kube-system/kube
I1027 22:14:54.040223 5063 proxier.go:294] Adding new service "kube-system/kube

u@node$ iptables-save | grep hostnames
-A KUBE-PORTALS-CONTAINER -d 10.0.1.175/32 -p tcp -m comment --comment "default/ho
-A KUBE-PORTALS-HOST -d 10.0.1.175/32 -p tcp -m comment --comment "default/hostnam

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 12/16

There should be 1 rule in KUBE-SERVICES , 1 or 2 rules per endpoint in KUBE-SVC-(hash)

(depending on SessionAffinity), one KUBE-SEP-(hash) chain per endpoint, and a few rules in

each KUBE-SEP-(hash) chain. The exact rules will vary based on your exact con�g (including node-

ports and load-balancers).

Is kube-proxy proxying?

Assuming you do see the above rules, try again to access your Service by IP:

If this fails and you are using the userspace proxy, you can try accessing the proxy directly. If you are

using the iptables proxy, skip this section.

Look back at the iptables-save output above, and extract the port number that kube-proxy is

using for your Service . In the above examples it is “48577”. Now connect to that:

If this still fails, look at the kube-proxy logs for speci�c lines like:

u@node$ iptables-save | grep hostnames
-A KUBE-SEP-57KPRZ3JQVENLNBR -s 10.244.3.6/32 -m comment --comment "default/hostna
-A KUBE-SEP-57KPRZ3JQVENLNBR -p tcp -m comment --comment "default/hostnames:" -m t
-A KUBE-SEP-WNBA2IHDGP2BOBGZ -s 10.244.1.7/32 -m comment --comment "default/hostna
-A KUBE-SEP-WNBA2IHDGP2BOBGZ -p tcp -m comment --comment "default/hostnames:" -m t
-A KUBE-SEP-X3P2623AGDH6CDF3 -s 10.244.2.3/32 -m comment --comment "default/hostna
-A KUBE-SEP-X3P2623AGDH6CDF3 -p tcp -m comment --comment "default/hostnames:" -m t
-A KUBE-SERVICES -d 10.0.1.175/32 -p tcp -m comment --comment "default/hostnames:
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -m statisti
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -m statisti
-A KUBE-SVC-NWV5X2332I4OT4T3 -m comment --comment "default/hostnames:" -j KUBE-SEP

u@node$ curl 10.0.1.175:80
hostnames-0uton

u@node$ curl localhost:48577
hostnames-yp2kp

Setting endpoints for default/hostnames:default to [10.244.0.5:9376 10.244.0.6:937

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 13/16

If you don’t see those, try restarting kube-proxy with the -V �ag set to 4, and then look at the logs

again.

Services provide load balancing across a set of pods. There are several common problems that can

make services not work properly. The following instructions should help debug service problems.

First, verify that there are endpoints for the service. For every service object, the apiserver makes an

endpoints resource available.

You can view this resource with:

Make sure that the endpoints match up with the number of containers that you expect to be a

member of your service. For example, if your service is for an nginx container with 3 replicas, you

would expect to see three different IP addresses in the service’s endpoints.

My service is missing endpoints

If you are missing endpoints, try listing pods using the labels that service uses. Imagine that you

have a service where the labels are:

You can use:

to list pods that match this selector. Verify that the list matches the pods that you expect to provide

your service.

If the list of pods matches expectations, but your endpoints are still empty, it’s possible that you don’t

have the right ports exposed. If your service has a containerPort speci�ed, but the pods that are

selected don’t have that port listed, then they won’t be added to the endpoints list.

$ kubectl get endpoints ${SERVICE_NAME}

...
spec:
 - selector:
 name: nginx
 type: frontend

$ kubectl get pods --selector=name=nginx,type=frontend

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 14/16

Verify that the pod’s containerPort matches up with the service’s containerPort .

Network tra�c is not forwarded

If you can connect to the service, but the connection is immediately dropped, and there are

endpoints in the endpoints list, it’s likely that the proxy can’t contact your pods.

There are three things to check:

Are your pods working correctly? Look for restart count, and debug pods.

Can you connect to your pods directly? Get the IP address for the pod, and try to connect directly

to that IP.

Is your application serving on the port that you con�gured? Container Engine doesn’t do port

remapping, so if your application serves on 8080, the containerPort �eld needs to be 8080.

A Pod cannot reach itself via Service IP

This mostly happens when kube-proxy is running in iptables mode and Pods are connected with

bridge network. The Kubelet exposes a hairpin-mode �ag that allows endpoints of a Service to

loadbalance back to themselves if they try to access their own Service VIP. The hairpin-mode �ag

must either be set to hairpin-veth or promiscuous-bridge .

The common steps to trouble shoot this are as follows:

Con�rm hairpin-mode is set to hairpin-veth or promiscuous-bridge . You should see

something like the below. hairpin-mode is set to promiscuous-bridge in the following

example.

Con�rm the effective hairpin-mode . To do this, you’ll have to look at kubelet log. Accessing the

logs depends on your Node OS. On some OSes it is a �le, such as /var/log/kubelet.log, while

other OSes use journalctl to access logs. Please be noted that the effective hairpin mode

u@node$ ps auxw|grep kubelet
root 3392 1.1 0.8 186804 65208 ? Sl 00:51 11:11 /usr/local/bin/ku

http://localhost:4000/docs/tasks/debug-application-cluster/debug-pod-replication-controller/#debugging-pods
http://localhost:4000/docs/admin/kubelet/

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 15/16

may not match --hairpin-mode �ag due to compatibility. Check if there is any log lines with

key word hairpin in kubelet.log. There should be log lines indicating the effective hairpin mode,

like something below.

If the effective hairpin mode is hairpin-veth , ensure the Kubelet has the permission to

operate in /sys on node. If everything works properly, you should see something like:

If the effective hairpin mode is promiscuous-bridge , ensure Kubelet has the permission to

manipulate linux bridge on node. If cbr0` bridge is used and con�gured properly, you should see:

Seek help if none of above works out.

Seek help

If you get this far, something very strange is happening. Your Service is running, has Endpoints ,

and your Pods are actually serving. You have DNS working, iptables rules installed, and

kube-proxy does not seem to be misbehaving. And yet your Service is not working. You should

probably let us know, so we can help investigate!

Contact us on Slack or email or GitHub.

I0629 00:51:43.648698 3252 kubelet.go:380] Hairpin mode set to "promiscuous-bri

u@node$ for intf in /sys/devices/virtual/net/cbr0/brif/*; do cat $intf/hairpin_mod
1
1
1
1

u@node$ ifconfig cbr0 |grep PROMISC
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1460 Metric:1

http://localhost:4000/docs/troubleshooting/#slack
https://groups.google.com/forum/#!forum/kubernetes-users
https://github.com/kubernetes/kubernetes

10/23/2017 Debug Services - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/ 16/16

More information

Visit troubleshooting document for more information.

http://localhost:4000/docs/troubleshooting/

10/23/2017 Troubleshoot Clusters - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-cluster/ 1/5

Troubleshoot Clusters

This doc is about cluster troubleshooting; we assume you have already ruled out your application as

the root cause of the problem you are experiencing. See the application troubleshooting guide for

tips on application debugging. You may also visit troubleshooting document for more information.

Listing your cluster

The �rst thing to debug in your cluster is if your nodes are all registered correctly.

Run

And verify that all of the nodes you expect to see are present and that they are all in the Ready state.

Looking at logs

For now, digging deeper into the cluster requires logging into the relevant machines. Here are the

locations of the relevant log �les. (note that on systemd-based systems, you may need to use

journalctl instead)

Master

/var/log/kube-apiserver.log - API Server, responsible for serving the API

/var/log/kube-scheduler.log - Scheduler, responsible for making scheduling decisions

/var/log/kube-controller-manager.log - Controller that manages replication controllers

Worker Nodes

kubectl get nodes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application
http://localhost:4000/docs/troubleshooting/

10/23/2017 Troubleshoot Clusters - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-cluster/ 2/5

/var/log/kubelet.log - Kubelet, responsible for running containers on the node

/var/log/kube-proxy.log - Kube Proxy, responsible for service load balancing

A general overview of cluster failure modes

This is an incomplete list of things that could go wrong, and how to adjust your cluster setup to

mitigate the problems.

Root causes:

VM(s) shutdown

Network partition within cluster, or between cluster and users

Crashes in Kubernetes software

Data loss or unavailability of persistent storage (e.g. GCE PD or AWS EBS volume)

Operator error, e.g. miscon�gured Kubernetes software or application software

Speci�c scenarios:

Apiserver VM shutdown or apiserver crashing

Results

unable to stop, update, or start new pods, services, replication controller

existing pods and services should continue to work normally, unless they depend on the

Kubernetes API

Apiserver backing storage lost

Results

apiserver should fail to come up

kubelets will not be able to reach it but will continue to run the same pods and provide

the same service proxying

manual recovery or recreation of apiserver state necessary before apiserver is restarted

10/23/2017 Troubleshoot Clusters - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-cluster/ 3/5

Supporting services (node controller, replication controller manager, scheduler, etc) VM

shutdown or crashes

currently those are colocated with the apiserver, and their unavailability has similar

consequences as apiserver

in future, these will be replicated as well and may not be co-located

they do not have their own persistent state

Individual node (VM or physical machine) shuts down

Results

pods on that Node stop running

Network partition

Results

partition A thinks the nodes in partition B are down; partition B thinks the apiserver is

down. (Assuming the master VM ends up in partition A.)

Kubelet software fault

Results

crashing kubelet cannot start new pods on the node

kubelet might delete the pods or not

node marked unhealthy

replication controllers start new pods elsewhere

Cluster operator error

Results

loss of pods, services, etc

lost of apiserver backing store

users unable to read API

etc.

10/23/2017 Troubleshoot Clusters - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-cluster/ 4/5

Mitigations:

Action: Use IaaS provider’s automatic VM restarting feature for IaaS VMs

Mitigates: Apiserver VM shutdown or apiserver crashing

Mitigates: Supporting services VM shutdown or crashes

Action: Use IaaS providers reliable storage (e.g. GCE PD or AWS EBS volume) for VMs with

apiserver+etcd

Mitigates: Apiserver backing storage lost

Action: Use (experimental) high-availability con�guration

Mitigates: Master VM shutdown or master components (scheduler, API server, controller-

managing) crashing

Will tolerate one or more simultaneous node or component failures

Mitigates: Apiserver backing storage (i.e., etcd’s data directory) lost

Assuming you used clustered etcd.

Action: Snapshot apiserver PDs/EBS-volumes periodically

Mitigates: Apiserver backing storage lost

Mitigates: Some cases of operator error

Mitigates: Some cases of Kubernetes software fault

Action: use replication controller and services in front of pods

Mitigates: Node shutdown

Mitigates: Kubelet software fault

Action: applications (containers) designed to tolerate unexpected restarts

Mitigates: Node shutdown

Mitigates: Kubelet software fault

Action: Multiple independent clusters (and avoid making risky changes to all clusters at once)

Mitigates: Everything listed above.

http://localhost:4000/docs/admin/high-availability
http://localhost:4000/docs/admin/multi-cluster

10/23/2017 Troubleshoot Clusters - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-cluster/ 5/5

10/23/2017 Troubleshoot Applications - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/ 1/6

Troubleshoot Applications

This guide is to help users debug applications that are deployed into Kubernetes and not behaving

correctly. This is not a guide for people who want to debug their cluster. For that you should check

out this guide.

Diagnosing the problem

The �rst step in troubleshooting is triage. What is the problem? Is it your Pods, your Replication

Controller or your Service?

Debugging Pods

Debugging Replication Controllers

Debugging Services

Debugging Pods

The �rst step in debugging a Pod is taking a look at it. Check the current state of the Pod and recent

events with the following command:

Diagnosing the problem
Debugging Pods

My pod stays pending
My pod stays waiting
My pod is crashing or otherwise unhealthy
My pod is running but not doing what I told it to do

Debugging Replication Controllers
Debugging Services

My service is missing endpoints
Network tra�c is not forwarded
More information

$ kubectl describe pods ${POD_NAME}

http://localhost:4000/docs/admin/cluster-troubleshooting

10/23/2017 Troubleshoot Applications - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/ 2/6

Look at the state of the containers in the pod. Are they all Running ? Have there been recent

restarts?

Continue debugging depending on the state of the pods.

My pod stays pending

If a Pod is stuck in Pending it means that it can not be scheduled onto a node. Generally this is

because there are insu�cient resources of one type or another that prevent scheduling. Look at the

output of the kubectl describe ... command above. There should be messages from the

scheduler about why it can not schedule your pod. Reasons include:

You don’t have enough resources: You may have exhausted the supply of CPU or Memory in

your cluster, in this case you need to delete Pods, adjust resource requests, or add new nodes to

your cluster. See Compute Resources document for more information.

You are using hostPort : When you bind a Pod to a hostPort there are a limited number of

places that pod can be scheduled. In most cases, hostPort is unnecessary, try using a Service

object to expose your Pod. If you do require hostPort then you can only schedule as many

Pods as there are nodes in your Kubernetes cluster.

My pod stays waiting

If a Pod is stuck in the Waiting state, then it has been scheduled to a worker node, but it can’t run

on that machine. Again, the information from kubectl describe ... should be informative. The

most common cause of Waiting pods is a failure to pull the image. There are three things to check:

Make sure that you have the name of the image correct.

Have you pushed the image to the repository?

Run a manual docker pull <image> on your machine to see if the image can be pulled.

My pod is crashing or otherwise unhealthy

First, take a look at the logs of the current container:

http://localhost:4000/docs/user-guide/compute-resources/#my-pods-are-pending-with-event-message-failedscheduling

10/23/2017 Troubleshoot Applications - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/ 3/6

If your container has previously crashed, you can access the previous container’s crash log with:

Alternately, you can run commands inside that container with exec :

Note that -c ${CONTAINER_NAME} is optional and can be omitted for Pods that only contain a single

container.

As an example, to look at the logs from a running Cassandra pod, you might run

If none of these approaches work, you can �nd the host machine that the pod is running on and SSH

into that host, but this should generally not be necessary given tools in the Kubernetes API.

Therefore, if you �nd yourself needing to ssh into a machine, please �le a feature request on GitHub

describing your use case and why these tools are insu�cient.

My pod is running but not doing what I told it to do

If your pod is not behaving as you expected, it may be that there was an error in your pod description

(e.g. mypod.yaml �le on your local machine), and that the error was silently ignored when you

created the pod. Often a section of the pod description is nested incorrectly, or a key name is typed

incorrectly, and so the key is ignored. For example, if you misspelled command as commnd then the

pod will be created but will not use the command line you intended it to use.

The �rst thing to do is to delete your pod and try creating it again with the --validate option. For

example, run kubectl create --validate -f mypod.yaml . If you misspelled command as

commnd then will give an error like this:

$ kubectl logs ${POD_NAME} ${CONTAINER_NAME}

$ kubectl logs --previous ${POD_NAME} ${CONTAINER_NAME}

$ kubectl exec ${POD_NAME} -c ${CONTAINER_NAME} -- ${CMD} ${ARG1} ${ARG2} ... ${AR

$ kubectl exec cassandra -- cat /var/log/cassandra/system.log

10/23/2017 Troubleshoot Applications - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/ 4/6

The next thing to check is whether the pod on the apiserver matches the pod you meant to create

(e.g. in a yaml �le on your local machine). For example, run

kubectl get pods/mypod -o yaml > mypod-on-apiserver.yaml and then manually compare

the original pod description, mypod.yaml with the one you got back from apiserver,

mypod-on-apiserver.yaml . There will typically be some lines on the “apiserver” version that are not

on the original version. This is expected. However, if there are lines on the original that are not on the

apiserver version, then this may indicate a problem with your pod spec.

Debugging Replication Controllers

Replication controllers are fairly straightforward. They can either create Pods or they can’t. If they

can’t create pods, then please refer to the instructions above to debug your pods.

You can also use kubectl describe rc ${CONTROLLER_NAME} to introspect events related to the

replication controller.

Debugging Services

Services provide load balancing across a set of pods. There are several common problems that can

make Services not work properly. The following instructions should help debug Service problems.

First, verify that there are endpoints for the service. For every Service object, the apiserver makes an

endpoints resource available.

You can view this resource with:

Make sure that the endpoints match up with the number of containers that you expect to be a

member of your service. For example, if your Service is for an nginx container with 3 replicas, you

would expect to see three different IP addresses in the Service’s endpoints.

I0805 10:43:25.129850 46757 schema.go:126] unknown field: commnd
I0805 10:43:25.129973 46757 schema.go:129] this may be a false alarm, see https:
pods/mypod

$ kubectl get endpoints ${SERVICE_NAME}

10/23/2017 Troubleshoot Applications - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/ 5/6

My service is missing endpoints

If you are missing endpoints, try listing pods using the labels that Service uses. Imagine that you

have a Service where the labels are:

You can use:

to list pods that match this selector. Verify that the list matches the Pods that you expect to provide

your Service.

If the list of pods matches expectations, but your endpoints are still empty, it’s possible that you don’t

have the right ports exposed. If your service has a containerPort speci�ed, but the Pods that are

selected don’t have that port listed, then they won’t be added to the endpoints list.

Verify that the pod’s containerPort matches up with the Service’s containerPort

Network tra�c is not forwarded

If you can connect to the service, but the connection is immediately dropped, and there are

endpoints in the endpoints list, it’s likely that the proxy can’t contact your pods.

There are three things to check:

Are your pods working correctly? Look for restart count, and debug pods.

Can you connect to your pods directly? Get the IP address for the Pod, and try to connect directly

to that IP.

Is your application serving on the port that you con�gured? Kubernetes doesn’t do port

remapping, so if your application serves on 8080, the containerPort �eld needs to be 8080.

More information

...
spec:
 - selector:
 name: nginx
 type: frontend

$ kubectl get pods --selector=name=nginx,type=frontend

10/23/2017 Troubleshoot Applications - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application/ 6/6

If none of the above solves your problem, follow the instructions in Debugging Service document to

make sure that your Service is running, has Endpoints , and your Pods are actually serving; you

have DNS working, iptables rules installed, and kube-proxy does not seem to be misbehaving.

You may also visit troubleshooting document for more information.

http://localhost:4000/docs/user-guide/debugging-services
http://localhost:4000/docs/troubleshooting/

10/23/2017 Debug a StatefulSet - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-stateful-set/ 1/1

Debug a StatefulSet

This task shows you how to debug a StatefulSet.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster.

You should have a StatefulSet running that you want to investigate.

Debugging a StatefulSet

In order to list all the pods which belong to a StatefulSet, which have a label app=myapp set on them,

you can use the following:

If you �nd that any Pods listed are in Unknown or Terminating state for an extended period of time,

refer to the Deleting StatefulSet Pods task for instructions on how to deal with them. You can debug

individual Pods in a StatefulSet using the Debugging Pods guide.

What’s next

Learn more about debugging an init-container.

Before you begin
Debugging a StatefulSet
What’s next

kubectl get pods -l app=myapp

http://localhost:4000/docs/tasks/manage-stateful-set/delete-pods/
http://localhost:4000/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
http://localhost:4000/docs/tasks/troubleshoot/debug-init-containers/

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 1/10

Application Introspection and Debugging

Once your application is running, you’ll inevitably need to debug problems with it. Earlier we

described how you can use kubectl get pods to retrieve simple status information about your

pods. But there are a number of ways to get even more information about your application.

Using kubectl describe pod to fetch details about pods

For this example we’ll use a Deployment to create two pods, similar to the earlier example.

Copy this to a �le ./my-nginx-dep.yaml

Using kubectl describe pod to fetch details about pods
Example: debugging Pending Pods
Example: debugging a down/unreachable node
What’s next?

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 80

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 2/10

We can retrieve a lot more information about each of these pods using kubectl describe pod . For

example:

$ kubectl create -f ./my-nginx-dep.yaml
deployment "nginx-deployment" created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-1006230814-6winp 1/1 Running 0 11s
nginx-deployment-1006230814-fmgu3 1/1 Running 0 11s

$ kubectl describe pod nginx-deployment-1006230814-6winp
Name: nginx-deployment-1006230814-6winp
Namespace: default
Node: kubernetes-node-wul5/10.240.0.9
Start Time: Thu, 24 Mar 2016 01:39:49 +0000
Labels: app=nginx,pod-template-hash=1006230814
Annotations: kubernetes.io/created-by={"kind":"SerializedReference","apiVersion
Status: Running
IP: 10.244.0.6
Controllers: ReplicaSet/nginx-deployment-1006230814
Containers:
 nginx:
 Container ID: docker://90315cc9f513c724e9957a4788d3e625a078de84750f244a4
 Image: nginx
 Image ID: docker://6f62f48c4e55d700cf3eb1b5e33fa051802986b77b874cc35
 Port: 80/TCP
 QoS Tier:
 cpu: Guaranteed
 memory: Guaranteed
 Limits:
 cpu: 500m
 memory: 128Mi
 Requests:
 memory: 128Mi
 cpu: 500m
 State: Running
 Started: Thu, 24 Mar 2016 01:39:51 +0000
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5kdvl (ro)
Conditions:
 Type Status
 Initialized True

R d T

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 3/10

Here you can see con�guration information about the container(s) and Pod (labels, resource

requirements, etc.), as well as status information about the container(s) and Pod (state, readiness,

restart count, events, etc.).

The container state is one of Waiting, Running, or Terminated. Depending on the state, additional

information will be provided – here you can see that for a container in Running state, the system tells

you when the container started.

Ready tells you whether the container passed its last readiness probe. (In this case, the container

does not have a readiness probe con�gured; the container is assumed to be ready if no readiness

probe is con�gured.)

Restart Count tells you how many times the container has been restarted; this information can be

useful for detecting crash loops in containers that are con�gured with a restart policy of ‘always.’

Currently the only Condition associated with a Pod is the binary Ready condition, which indicates

that the pod is able to service requests and should be added to the load balancing pools of all

matching services.

Lastly, you see a log of recent events related to your Pod. The system compresses multiple identical

events by indicating the �rst and last time it was seen and the number of times it was seen. “From”

indicates the component that is logging the event, “SubobjectPath” tells you which object (e.g.

container within the pod) is being referred to, and “Reason” and “Message” tell you what happened.

 Ready True
 PodScheduled True
Volumes:
 default-token-4bcbi:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-4bcbi
 Optional: false
QoS Class: Guaranteed
Node-Selectors: <none>
Tolerations: <none>
Events:
 FirstSeen LastSeen Count From Su
 --------- -------- ----- ---- --
 54s 54s 1 {default-scheduler }
 54s 54s 1 {kubelet kubernetes-node-wul5} spec.conta
 53s 53s 1 {kubelet kubernetes-node-wul5} spec.conta
 53s 53s 1 {kubelet kubernetes-node-wul5} spec.conta
 53s 53s 1 {kubelet kubernetes-node-wul5} spec.conta

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 4/10

Example: debugging Pending Pods

A common scenario that you can detect using events is when you’ve created a Pod that won’t �t on

any node. For example, the Pod might request more resources than are free on any node, or it might

specify a label selector that doesn’t match any nodes. Let’s say we created the previous Deployment

with 5 replicas (instead of 2) and requesting 600 millicores instead of 500, on a four-node cluster

where each (virtual) machine has 1 CPU. In that case one of the Pods will not be able to schedule.

(Note that because of the cluster addon pods such as �uentd, skydns, etc., that run on each node, if

we requested 1000 millicores then none of the Pods would be able to schedule.)

To �nd out why the nginx-deployment-1370807587-fz9sd pod is not running, we can use

kubectl describe pod on the pending Pod and look at its events:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-1006230814-6winp 1/1 Running 0 7m
nginx-deployment-1006230814-fmgu3 1/1 Running 0 7m
nginx-deployment-1370807587-6ekbw 1/1 Running 0 1m
nginx-deployment-1370807587-fg172 0/1 Pending 0 1m
nginx-deployment-1370807587-fz9sd 0/1 Pending 0 1m

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 5/10

Here you can see the event generated by the scheduler saying that the Pod failed to schedule for

reason FailedScheduling (and possibly others). The message tells us that there were not enough

resources for the Pod on any of the nodes.

To correct this situation, you can use kubectl scale to update your Deployment to specify four or

fewer replicas. (Or you could just leave the one Pod pending, which is harmless.)

Events such as the ones you saw at the end of kubectl describe pod are persisted in etcd and

provide high-level information on what is happening in the cluster. To list all events you can use

$ kubectl describe pod nginx-deployment-1370807587-fz9sd
 Name: nginx-deployment-1370807587-fz9sd
 Namespace: default
 Node: /
 Labels: app=nginx,pod-template-hash=1370807587
 Status: Pending
 IP:
 Controllers: ReplicaSet/nginx-deployment-1370807587
 Containers:
 nginx:
 Image: nginx
 Port: 80/TCP
 QoS Tier:
 memory: Guaranteed
 cpu: Guaranteed
 Limits:
 cpu: 1
 memory: 128Mi
 Requests:
 cpu: 1
 memory: 128Mi
 Environment Variables:
 Volumes:
 default-token-4bcbi:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-4bcbi
 Events:
 FirstSeen LastSeen Count From SubobjectP
 --------- -------- ----- ---- ----------
 1m 48s 7 {default-scheduler }
 fit failure on node (kubernetes-node-6ta5): Node didn't have enough resource: CP
 fit failure on node (kubernetes-node-wul5): Node didn't have enough resource: CP

kubectl get events

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 6/10

but you have to remember that events are namespaced. This means that if you’re interested in

events for some namespaced object (e.g. what happened with Pods in namespace my-namespace)

you need to explicitly provide a namespace to the command:

To see events from all namespaces, you can use the --all-namespaces argument.

In addition to kubectl describe pod , another way to get extra information about a pod (beyond

what is provided by kubectl get pod) is to pass the -o yaml output format �ag to

kubectl get pod . This will give you, in YAML format, even more information than

kubectl describe pod –essentially all of the information the system has about the Pod. Here you

will see things like annotations (which are key-value metadata without the label restrictions, that is

used internally by Kubernetes system components), restart policy, ports, and volumes.

kubectl get events --namespace=my-namespace

$kubectl get pod nginx-deployment-1006230814-6winp -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 kubernetes.io/created-by: |
 {"kind":"SerializedReference","apiVersion":"v1","reference":{"kind":"Replica
 creationTimestamp: 2016-03-24T01:39:50Z
 generateName: nginx-deployment-1006230814-
 labels:
 app: nginx
 pod-template-hash: "1006230814"
 name: nginx-deployment-1006230814-6winp
 namespace: default
 resourceVersion: "133447"
 selfLink: /api/v1/namespaces/default/pods/nginx-deployment-1006230814-6winp
 uid: 4c879808-f161-11e5-9a78-42010af00005
spec:
 containers:
 - image: nginx
 imagePullPolicy: Always
 name: nginx
 ports:
 - containerPort: 80
 protocol: TCP
 resources:
 limits:
 cpu: 500m

memory: 128Mi

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 7/10

Example: debugging a down/unreachable node

Sometimes when debugging it can be useful to look at the status of a node – for example, because

you’ve noticed strange behavior of a Pod that’s running on the node, or to �nd out why a Pod won’t

 memory: 128Mi
 requests:
 cpu: 500m
 memory: 128Mi
 terminationMessagePath: /dev/termination-log
 volumeMounts:
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-4bcbi
 readOnly: true
 dnsPolicy: ClusterFirst
 nodeName: kubernetes-node-wul5
 restartPolicy: Always
 securityContext: {}
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: default-token-4bcbi
 secret:
 secretName: default-token-4bcbi
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: 2016-03-24T01:39:51Z
 status: "True"
 type: Ready
 containerStatuses:
 - containerID: docker://90315cc9f513c724e9957a4788d3e625a078de84750f244a40f97ae3
 image: nginx
 imageID: docker://6f62f48c4e55d700cf3eb1b5e33fa051802986b77b874cc351cce539e516
 lastState: {}
 name: nginx
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-03-24T01:39:51Z
 hostIP: 10.240.0.9
 phase: Running
 podIP: 10.244.0.6
 startTime: 2016-03-24T01:39:49Z

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 8/10

schedule onto the node. As with Pods, you can use kubectl describe node and

kubectl get node -o yaml to retrieve detailed information about nodes. For example, here’s what

you’ll see if a node is down (disconnected from the network, or kubelet dies and won’t restart, etc.).

Notice the events that show the node is NotReady, and also notice that the pods are no longer

running (they are evicted after �ve minutes of NotReady status).

$ kubectl get nodes
NAME STATUS AGE VERSION
kubernetes-node-861h NotReady 1h v1.6.0+fff5156
kubernetes-node-bols Ready 1h v1.6.0+fff5156
kubernetes-node-st6x Ready 1h v1.6.0+fff5156
kubernetes-node-unaj Ready 1h v1.6.0+fff5156

$ kubectl describe node kubernetes-node-861h
Name: kubernetes-node-861h
Role
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 kubernetes.io/hostname=kubernetes-node-861h
Annotations: node.alpha.kubernetes.io/ttl=0
 volumes.kubernetes.io/controller-managed-attach-detach=true
Taints: <none>
CreationTimestamp: Mon, 04 Sep 2017 17:13:23 +0800
Phase:
Conditions:
 Type Status LastHeartbeatTime LastTransi
 ---- ------ ----------------- ------------------ ------
 OutOfDisk Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fr
 MemoryPressure Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fr
 DiskPressure Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fr
 Ready Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fr
Addresses: 10.240.115.55,104.197.0.26
Capacity:
 cpu: 2
 hugePages: 0
 memory: 4046788Ki
 pods: 110
Allocatable:
 cpu: 1500m
 hugePages: 0
 memory: 1479263Ki
 pods: 110
System Info:
 Machine ID: 8e025a21a4254e11b028584d9d8b12c4
 System UUID: 349075D1-D169-4F25-9F2A-E886850C47E3
 Boot ID: 5cd18b37-c5bd-4658-94e0-e436d3f110e0
 Kernel Version: 4.4.0-31-generic
 OS Image: Debian GNU/Linux 8 (jessie)

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 9/10

 Operating System: linux
 Architecture: amd64
 Container Runtime Version: docker://1.12.5
 Kubelet Version: v1.6.9+a3d1dfa6f4335
 Kube-Proxy Version: v1.6.9+a3d1dfa6f4335
ExternalID: 15233045891481496305
Non-terminated Pods: (9 in total)
 Namespace Name CP
 --------- ---- --
......
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 900m (60%) 2200m (146%) 1009286400 (66%) 5681286400 (375%)
Events: <none>

$ kubectl get node kubernetes-node-861h -o yaml
apiVersion: v1
kind: Node
metadata:
 creationTimestamp: 2015-07-10T21:32:29Z
 labels:
 kubernetes.io/hostname: kubernetes-node-861h
 name: kubernetes-node-861h
 resourceVersion: "757"
 selfLink: /api/v1/nodes/kubernetes-node-861h
 uid: 2a69374e-274b-11e5-a234-42010af0d969
spec:
 externalID: "15233045891481496305"
 podCIDR: 10.244.0.0/24
 providerID: gce://striped-torus-760/us-central1-b/kubernetes-node-861h
status:
 addresses:
 - address: 10.240.115.55
 type: InternalIP
 - address: 104.197.0.26
 type: ExternalIP
 capacity:
 cpu: "1"
 memory: 3800808Ki
 pods: "100"
 conditions:
 - lastHeartbeatTime: 2015-07-10T21:34:32Z
 lastTransitionTime: 2015-07-10T21:35:15Z
 reason: Kubelet stopped posting node status.
 status: Unknown
 type: Ready
 nodeInfo:
 bootID: 4e316776-b40d-4f78-a4ea-ab0d73390897
 containerRuntimeVersion: docker://Unknown

kernelVersion: 3 16 0-0 bpo 4-amd64

10/23/2017 Application Introspection and Debugging - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/ 10/10

What’s next?

Learn about additional debugging tools, including:

Logging

Monitoring

Getting into containers via exec

Connecting to containers via proxies

Connecting to containers via port forwarding

 kernelVersion: 3.16.0 0.bpo.4 amd64
 kubeProxyVersion: v0.21.1-185-gffc5a86098dc01
 kubeletVersion: v0.21.1-185-gffc5a86098dc01
 machineID: ""
 osImage: Debian GNU/Linux 7 (wheezy)
 systemUUID: ABE5F6B4-D44B-108B-C46A-24CCE16C8B6E

http://localhost:4000/docs/user-guide/logging/overview
http://localhost:4000/docs/user-guide/monitoring
http://localhost:4000/docs/user-guide/getting-into-containers
http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api/
http://localhost:4000/docs/user-guide/connecting-to-applications-port-forward

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 1/14

Auditing

Kubernetes Audit provides a security-relevant chronological set of records documenting the

sequence of activities that have affected system by individual users, administrators or other

components of the system. It allows cluster administrator to answer the following questions:

what happened?

when did it happen?

who initiated it?

on what did it happen?

where was it observed?

from where was it initiated?

to where was it going?

Legacy Audit

Kubernetes audit is part of Kube-apiserver logging all requests processed by the server. Each audit

log entry contains two lines:

Legacy Audit
Con�guration

Advanced audit
Audit Policy
Audit backends

Log backend
Webhook backend

Audit-Id
Log Collector Examples

Use �uentd to collect and distribute audit events from log �le
Use logstash to collect and distribute audit events from webhook backend

http://localhost:4000/docs/admin/kube-apiserver

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 2/14

1. The request line containing a unique ID to match the response and request metadata, such as

the source IP, requesting user, impersonation information, resource being requested, etc.

2. The response line containing a unique ID matching the request line and the response code.

Example output for admin user listing pods in the default namespace:

Note that Kubernetes 1.8 has switched to use the advanced structured audit log by default. To

fallback to this legacy audit, disable the advanced auditing feature using the AdvancedAuditing

feature gate on the kube-apiserver:

Con�guration

Kube-apiserver provides the following options which are responsible for con�guring where and how

audit logs are handled:

audit-log-path - enables the audit log pointing to a �le where the requests are being logged

to, ‘-‘ means standard out.

audit-log-maxage - speci�es maximum number of days to retain old audit log �les based on

the timestamp encoded in their �lename.

audit-log-maxbackup - speci�es maximum number of old audit log �les to retain.

audit-log-maxsize - speci�es maximum size in megabytes of the audit log �le before it gets

rotated. Defaults to 100MB.

If an audit log �le already exists, Kubernetes appends new audit logs to that �le. Otherwise,

Kubernetes creates an audit log �le at the location you speci�ed in audit-log-path . If the audit log

�le exceeds the size you specify in audit-log-maxsize , Kubernetes will rename the current log �le

by appending the current timestamp on the �le name (before the �le extension) and create a new

2017-03-21T03:57:09.106841886-04:00 AUDIT: id="c939d2a7-1c37-4ef1-b2f7-4ba9b1e43b5
2017-03-21T03:57:09.108403639-04:00 AUDIT: id="c939d2a7-1c37-4ef1-b2f7-4ba9b1e43b5

--feature-gates=AdvancedAuditing=false

http://localhost:4000/docs/admin/kube-apiserver
http://localhost:4000/docs/admin/kube-apiserver

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 3/14

audit log �le. Kubernetes may delete old log �les when creating a new log �le; you can con�gure how

many �les are retained and how old they can be by specifying the audit-log-maxbackup and

audit-log-maxage options.

Advanced audit

Kubernetes 1.7 expands auditing with experimental functionality such as event �ltering and a

webhook for integration with external systems. Kubernetes 1.8 upgrades the advanced audit feature

to beta, and some backward incompatible changes have been committed.

AdvancedAuditing is customizable in two ways. Policy, which determines what’s recorded, and

backends, which persist records. Backend implementations include logs �les and webhooks.

The structure of audit events changes when enabling the AdvancedAuditing feature �ag. This

includes some cleanups, such as the method re�ecting the verb evaluated by the authorization layer

instead of the HTTP verb. Also, instead of always generating two events per request, events are

recorded with an associated “stage”. The known stages are:

RequestReceived - The stage for events generated as soon as the audit handler receives the

request.

ResponseStarted - Once the response headers are sent, but before the response body is sent.

This stage is only generated for long-running requests (e.g. watch).

ResponseComplete - Once the response body has been completed.

Panic - Events generated when a panic occurred.

Audit Policy

Audit policy is a document de�ning rules about what events should be recorded. The policy is passed

to the kube-apiserver using the --audit-policy-file �ag.

If AdvancedAuditing is enabled and this �ag is omitted, no events are logged.

--audit-policy-file=/etc/kubernetes/audit-policy.yaml

http://localhost:4000/docs/admin/authorization/
http://localhost:4000/docs/admin/authorization/#determine-the-request-verb
http://localhost:4000/docs/admin/kube-apiserver

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 4/14

The policy �le holds rules that determine the level of an event. Known audit levels are:

None - don’t log events that match this rule.

Metadata - log request metadata (requesting user, timestamp, resource, verb, etc.) but not

request or response body.

Request - log event metadata and request body but not response body.

RequestResponse - log event metadata, request and response bodies.

When an event is processed, it’s compared against the list of rules in order. The �rst matching rule

sets the audit level of the event. The audit policy is de�ned by the audit.k8s.io API group. Some

new �elds are supported in beta version, like resourceNames and omitStages .

In Kubernetes 1.8 kind and apiVersion along with rules must be provided in the audit policy

�le. A policy �le with 0 rules, or a policy �le that doesn’t provide a valid apiVersion and kind value

will be treated as illgal.

Some example audit policy �les:

https://github.com/kubernetes/kubernetes/blob/v1.8.0-beta.1/staging/src/k8s.io/apiserver/pkg/apis/audit/v1beta1/types.go

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 5/14

The next audit policy �le shows new features introduced in Kubernetes 1.8:

apiVersion: audit.k8s.io/v1beta1 #this is required in Kubernetes 1.8
kind: Policy
rules:
 # Don't log watch requests by the "system:kube-proxy" on endpoints or services
 - level: None
 users: ["system:kube-proxy"]
 verbs: ["watch"]
 resources:
 - group: "" # core API group
 resources: ["endpoints", "services"]

 # Don't log authenticated requests to certain non-resource URL paths.
 - level: None
 userGroups: ["system:authenticated"]
 nonResourceURLs:
 - "/api*" # Wildcard matching.
 - "/version"

 # Log the request body of configmap changes in kube-system.
 - level: Request
 resources:
 - group: "" # core API group
 resources: ["configmaps"]
 # This rule only applies to resources in the "kube-system" namespace.
 # The empty string "" can be used to select non-namespaced resources.
 namespaces: ["kube-system"]

 # Log configmap and secret changes in all other namespaces at the Metadata level
 - level: Metadata
 resources:
 - group: "" # core API group
 resources: ["secrets", "configmaps"]

 # Log all other resources in core and extensions at the Request level.
 - level: Request
 resources:
 - group: "" # core API group
 - group: "extensions" # Version of group should NOT be included.

 # A catch-all rule to log all other requests at the Metadata level.
 - level: Metadata

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 6/14

You can use a minimal audit policy �le to log all requests at the Metadata level:

The audit pro�le used by GCE should be used as reference by admins constructing their own audit

pro�les.

Audit backends

apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:
 # Log pod changes at Request level
 - level: Request
 resources:
 - group: ""
 # Resource "pods" no longer matches requests to any subresource of pods,
 # This behavior is consistent with the RBAC policy.
 resources: ["pods"]
 # Log "pods/log", "pods/status" at Metadata level
 - level: Metadata
 resources:
 - group: ""
 resources: ["pods/log", "pods/status"]

 # Don't log requests to a configmap called "controller-leader"
 - level: None
 resources:
 - group: ""
 resources: ["configmaps"]
 resourceNames: ["controller-leader"]

 # A catch-all rule to log all other requests at the Metadata level.
 # For this rule we use "omitStages" to omit events at "ReqeustReceived" stage.
 # Events in this stage will not be sent to backend.
 - level: Metadata
 omitStages:
 - "RequestReceived"

Log all requests at the Metadata level.
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:
- level: Metadata

https://github.com/kubernetes/kubernetes/blob/v1.8.0-beta.0/cluster/gce/gci/configure-helper.sh#L532

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 7/14

Audit backends implement strategies for emitting events. The kube-apiserver provides a logging and

webhook backend.

Each request to the API server can generate multiple events, one when the request is received,

another when the response is sent, and additional events for long running requests (such as

watches). The ID of events will be the same if they were generated from the same request.

The event format is de�ned by the audit.k8s.io API group. The v1alpha1 format of this API can

be found here with more details about the exact �elds captured.

Log backend

The behavior of the --audit-log-path �ag changes when enabling the AdvancedAuditing

feature �ag. All generated events de�ned by --audit-policy-file are recorded in structured json

format:

In alpha version, objectRef.apiVersion holds both the api group and version. In beta version these

were break out into objectRef.apiGroup and objectRef.apiVersion.

Starting from Kubernetes 1.8, structured json format is used for log backend by default. Use the

following option to switch log to legacy format:

With legacy format, events are formatted as follows:

Logged events omit the request and response bodies. The Request and RequestResponse levels

are equivalent to Metadata for legacy format. This legacy format of advanced audit is different from

the Legacy Audit discussed above, such as changes to the method values and the introduction of a

“stage” for each event.

{"kind":"Event","apiVersion":"audit.k8s.io/v1beta1","metadata":{"creationTimestamp
{"kind":"Event","apiVersion":"audit.k8s.io/v1beta1","metadata":{"creationTimestamp

--audit-log-format=legacy

2017-09-05T06:08:19.885328047-04:00 AUDIT: id="c28a95ad-f9dd-47e1-a617-b6dc152db95
2017-09-05T06:08:19.885328047-04:00 AUDIT: id="c28a95ad-f9dd-47e1-a617-b6dc152db95

http://localhost:4000/docs/admin/kube-apiserver
https://github.com/kubernetes/kubernetes/blob/v1.8.0-beta.1/staging/src/k8s.io/apiserver/pkg/apis/audit/v1beta1/types.go

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 8/14

Webhook backend

The audit webhook backend can be used to have kube-apiserver send audit events to a remote

service. The webhook requires the AdvancedAuditing feature �ag and is con�gured using the

following command line �ags:

audit-webhook-mode controls buffering strategies used by the webhook. Known modes are:

batch - buffer events and asynchronously send the set of events to the external service.

blocking - block API server responses on sending each event to the external service.

The webhook con�g �le uses the kubecon�g format to specify the remote address of the service and

credentials used to connect to it.

Events are POSTed as a JSON serialized EventList . An example payload:

--audit-webhook-config-file=/etc/kubernetes/audit-webhook-kubeconfig
--audit-webhook-mode=batch

clusters refers to the remote service.
clusters:
 - name: name-of-remote-audit-service
 cluster:
 certificate-authority: /path/to/ca.pem # CA for verifying the remote servic
 server: https://audit.example.com/audit # URL of remote service to query. Mu

users refers to the API server's webhook configuration.
users:
 - name: name-of-api-server
 user:
 client-certificate: /path/to/cert.pem # cert for the webhook plugin to use
 client-key: /path/to/key.pem # key matching the cert

kubeconfig files require a context. Provide one for the API server.
current-context: webhook
contexts:
- context:
 cluster: name-of-remote-audit-service
 user: name-of-api-sever
 name: webhook

http://localhost:4000/docs/admin/kube-apiserver

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 9/14

Audit-Id

Audit-Id is a unique ID for each http request to kube-apiserver. The ID of events will be the same if

they were generated from the same request. Starting from Kubernetes 1.8, if an audit event is

generated for the request, kube-apiserver will respond with an Audit-Id in the HTTP header. Note that

{
 "apiVersion": "audit.k8s.io/v1beta1",
 "items": [
 {
 "auditID": "24f30caf-d7d4-45d5-b7bd-e7af300d7886",
 "level": "Metadata",
 "metadata": {
 "creationTimestamp": null
 },
 "objectRef": {
 "apiGroup": "rbac.authorization.k8s.io",
 "apiVersion": "v1",
 "name": "jane",
 "namespace": "default",
 "resource": "roles"
 },
 "requestURI": "/apis/rbac.authorization.k8s.io/v1/namespaces/default/r
 "responseStatus": {
 "code": 200,
 "metadata": {}
 },
 "sourceIPs": [
 "172.16.116.128"
],
 "stage": "ResponseComplete",
 "timestamp": "2017-09-05T10:20:24Z",
 "user": {
 "groups": [
 "system:masters",
 "system:authenticated"
],
 "username": "kubecfg"
 },
 "verb": "get"
 }
],
 "kind": "EventList",
 "metadata": {}
}

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 10/14

for some special requests like kubectl exec , kubectl attach , kube-apiserver works like a proxy,

no Audit-Id will be returned even if audit events are recorded.

Log Collector Examples

Use �uentd to collect and distribute audit events from log �le

Fluentd is an open source data collector for uni�ed logging layer. In this example, we will use �uentd

to split audit events by different namespaces. Note that this example requries json format output

support in Kubernetes 1.8.

1. install �uentd, �uent-plugin-forest and �uent-plugin-rewrite-tag-�lter in the kube-apiserver node

2. create a con�g �le for �uentd

 $ cat <<EOF > /etc/fluentd/config

 # fluentd conf runs in the same host with kube-apiserver

 <source>

 @type tail

 # audit log path of kube-apiserver

 path /var/log/audit

 pos_file /var/log/audit.pos

 format json

 time_key time

 time_format %Y-%m-%dT%H:%M:%S.%N%z

 tag audit

 </source>

 <filter audit>

 #https://github.com/fluent/fluent-plugin-rewrite-tag-filter/issues/13

 type record_transformer

 enable_ruby

 <record>

 namespace ${record["objectRef"].nil? ? "none":(record["objectRef"]["nam

 </record>

 </filter>

http://www.fluentd.org/
http://docs.fluentd.org/v0.12/articles/quickstart#step1-installing-fluentd

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 11/14

3. start �uentd

4. start kube-apiserver with the following options:

 <match audit>

 # route audit according to namespace element in context

 @type rewrite_tag_filter

 rewriterule1 namespace ^(.+) ${tag}.$1

 </match>

 <filter audit.**>

 @type record_transformer

 remove_keys namespace

 </filter>

 <match audit.**>

 @type forest

 subtype file

 remove_prefix audit

 <template>

 time_slice_format %Y%m%d%H

 compress gz

 path /var/log/audit-${tag}.*.log

 format json

 include_time_key true

 </template>

 </match>

 $ fluentd -c /etc/fluentd/config -vv

 --audit-policy-file=/etc/kubernetes/audit-policy.yaml --audit-log-path=/var

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 12/14

5. check audits for different namespaces in /var/log/audit-*.log

Use logstash to collect and distribute audit events from webhook backend

Logstash is an open source, server-side data processing tool. In this example, we will use logstash to

collect audit events from webhook backend, and save events of different users into different �les.

1. install logstash

2. create con�g �le for logstash

https://www.elastic.co/products/logstash
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 13/14

3. start logstash

4. create a kubecon�g �le for kube-apiserver webhook audit backend

 $ cat <<EOF > /etc/logstash/config

 input{

 http{

 #TODO, figure out a way to use kubeconfig file to authenticate to lo

 #https://www.elastic.co/guide/en/logstash/current/plugins-inputs-htt

 port=>8888

 }

 }

 filter{

 split{

 # Webhook audit backend sends several events together with EventList

 # split each event here.

 field=>[items]

 # We only need event subelement, remove others.

 remove_field=>[headers, metadata, apiVersion, "@timestamp", kind, "@

 }

 mutate{

 rename => {items=>event}

 }

 }

 output{

 file{

 # Audit events from different users will be saved into different fil

 path=>"/var/log/kube-audit-%{[event][user][username]}/audit"

 }

 }

 $ bin/logstash -f /etc/logstash/config --path.settings /etc/logstash/

http://localhost:4000/docs/tasks/access-application-cluster/authenticate-across-clusters-kubeconfig/

10/23/2017 Auditing - Kubernetes

http://localhost:4000/docs/tasks/debug-application-cluster/audit/ 14/14

5. start kube-apiserver with the following options:

6. check audits in logstash node’s directories /var/log/kube-audit-*/audit

Note that in addition to �le output plugin, logstash has a variety of outputs that let users route data

where they want. For example, users can emit audit events to elasticsearch plugin which supports

full-text search and analytics.

 $ cat <<EOF > /etc/kubernetes/audit-webhook-kubeconfig

 apiVersion: v1

 clusters:

 - cluster:

 server: http://<ip_of_logstash>:8888

 name: logstash

 contexts:

 - context:

 cluster: logstash

 user: ""

 name: default-context

 current-context: default-context

 kind: Config

 preferences: {}

 users: []

 EOF

 --audit-policy-file=/etc/kubernetes/audit-policy.yaml --audit-webhook-config

10/23/2017 Use an HTTP Proxy to Access the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api/ 1/3

Use an HTTP Proxy to Access the
Kubernetes API

This page shows how to use an HTTP proxy to access the Kubernetes API.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

If you do not already have an application running in your cluster, start a Hello world application

by entering this command:

Using kubectl to start a proxy server

This command starts a proxy to the Kubernetes API server:

Before you begin
Using kubectl to start a proxy server
Exploring the Kubernetes API
What’s next

kubectl run node-hello --image=gcr.io/google-samples/node-hello:1.0 --port=8080

kubectl proxy --port=8080

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Use an HTTP Proxy to Access the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api/ 2/3

Exploring the Kubernetes API

When the proxy server is running, you can explore the API using curl , wget , or a browser.

Get the API versions:

Get a list of pods:

curl http://localhost:8080/api/

{
 "kind": "APIVersions",
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "10.0.2.15:8443"
 }
]
}

10/23/2017 Use an HTTP Proxy to Access the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/http-proxy-access-api/ 3/3

What’s next

Learn more about kubectl proxy.

curl http://localhost:8080/api/v1/namespaces/default/pods

{
 "kind": "PodList",
 "apiVersion": "v1",
 "metadata": {
 "selfLink": "/api/v1/namespaces/default/pods",
 "resourceVersion": "33074"
 },
 "items": [
 {
 "metadata": {
 "name": "kubernetes-bootcamp-2321272333-ix8pt",
 "generateName": "kubernetes-bootcamp-2321272333-",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/pods/kubernetes-bootcamp-232127233
 "uid": "ba21457c-6b1d-11e6-85f7-1ef9f1dab92b",
 "resourceVersion": "33003",
 "creationTimestamp": "2016-08-25T23:43:30Z",
 "labels": {
 "pod-template-hash": "2321272333",
 "run": "kubernetes-bootcamp"
 },
 ...
}

http://localhost:4000/docs/user-guide/kubectl/v1.6/#proxy

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 1/8

Extend the Kubernetes API with
CustomResourceDe�nitions

This page shows how to install a custom resource into the Kubernetes API by creating a

CustomResourceDe�nition.

Before you begin

Read about custom resources.

Make sure your Kubernetes cluster has a master version of 1.7.0 or higher.

Create a CustomResourceDe�nition

When you create a new CustomResourceDe�nition (CRD), the Kubernetes API Server reacts by

creating a new RESTful resource path, either namespaced or cluster-scoped, as speci�ed in the

CRD’s scope �eld. As with existing built-in objects, deleting a namespace deletes all custom objects

in that namespace. CustomResourceDe�nitions themselves are non-namespaced and are available

to all namespaces.

For example, if you save the following CustomResourceDe�nition to resourcedefinition.yaml :

Before you begin
Create a CustomResourceDe�nition
Create custom objects
Advanced topics

Finalizers
Validation

What’s next

http://localhost:4000/docs/concepts/api-extension/custom-resources/
http://localhost:4000/docs/concepts/api-extension/custom-resources/

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 2/8

And create it:

Then a new namespaced RESTful API endpoint is created at:

This endpoint URL can then be used to create and manage custom objects. The kind of these

objects will be CronTab from the spec of the CustomResourceDe�nition object you created above.

Create custom objects

After the CustomResourceDe�nition object has been created, you can create custom objects.

Custom objects can contain custom �elds. These �elds can contain arbitrary JSON. In the following

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 # name must match the spec fields below, and be in the form: <plural>.<group>
 name: crontabs.stable.example.com
spec:
 # group name to use for REST API: /apis/<group>/<version>
 group: stable.example.com
 # version name to use for REST API: /apis/<group>/<version>
 version: v1
 # either Namespaced or Cluster
 scope: Namespaced
 names:
 # plural name to be used in the URL: /apis/<group>/<version>/<plural>
 plural: crontabs
 # singular name to be used as an alias on the CLI and for display
 singular: crontab
 # kind is normally the CamelCased singular type. Your resource manifests use t
 kind: CronTab
 # shortNames allow shorter string to match your resource on the CLI
 shortNames:
 - ct

kubectl create -f resourcedefinition.yaml

/apis/stable.example.com/v1/namespaces/*/crontabs/...

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 3/8

example, the cronSpec and image custom �elds are set in a custom object of kind CronTab . The

kind CronTab comes from the spec of the CustomResourceDe�nition object you created above.

If you save the following YAML to my-crontab.yaml :

and create it:

You can then manage your CronTab objects using kubectl. For example:

Should print a list like this:

Note that resource names are not case-sensitive when using kubectl, and you can use either the

singular or plural forms de�ned in the CRD, as well as any short names.

You can also view the raw YAML data:

You should see that it contains the custom cronSpec and image �elds from the yaml you used to

create it:

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 name: my-new-cron-object
spec:
 cronSpec: "* * * * */5"
 image: my-awesome-cron-image

kubectl create -f my-crontab.yaml

kubectl get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

kubectl get ct -o yaml

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 4/8

Advanced topics

Finalizers

Finalizers allow controllers to implement asynchronous pre-delete hooks. Custom objects support

�nalizers just like built-in objects.

You can add a �nalizer to a custom object like this:

The �rst delete request on an object with �nalizers merely sets a value for the

metadata.deletionTimestamp �eld instead of deleting it. This triggers controllers watching the

object to execute any �nalizers they handle.

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * */5'
 image: my-awesome-cron-image
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 finalizers:
 - finalizer.stable.example.com

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 5/8

Each controller then removes its �nalizer from the list and issues the delete request again. This

request only deletes the object if the list of �nalizers is now empty, meaning all �nalizers are done.

Validation

Validation of custom objects is possible via OpenAPI v3 schema. Additionally, the following

restrictions are applied to the schema:

The �elds default , nullable , discriminator , readOnly , writeOnly , xml and

deprecated cannot be set.

The �eld uniqueItems cannot be set to true.

The �eld additionalProperties cannot be set to false.

This feature is alpha in v1.8 and may change in backward incompatible ways. Enable this feature

using the CustomResourceValidation feature gate on the kube-apiserver:

The schema is de�ned in the CustomResourceDe�nition. In the following example, the

CustomResourceDe�nition applies the following validations on the custom object:

spec.cronSpec must be a string and must be of the form described by the regular expression.

spec.replicas must be an integer and must have a minimum value of 1 and a maximum

value of 10.

Save the CustomResourceDe�nition to resourcedefinition.yaml :

--feature-gates=CustomResourceValidation=true

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#schemaObject
http://localhost:4000/docs/admin/kube-apiserver

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 6/8

And create it:

A request to create a custom object of kind CronTab will be rejected if there are invalid values in its

�elds. In the following example, the custom object contains �elds with invalid values:

spec.cronSpec does not match the regular expression.

spec.replicas is greater than 10.

If you save the following YAML to my-crontab.yaml :

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com
spec:
 group: stable.example.com
 version: v1
 scope: Namespaced
 names:
 plural: crontabs
 singular: crontab
 kind: CronTab
 shortNames:
 - ct
 validation:
 # openAPIV3Schema is the schema for validating custom objects.
 openAPIV3Schema:
 properties:
 spec:
 properties:
 cronSpec:
 type: string
 pattern: '^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$'
 replicas:
 type: integer
 minimum: 1
 maximum: 10

kubectl create -f resourcedefinition.yaml

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 7/8

and create it:

you will get an error:

If the �elds contain valid values, the object creation request is accepted.

Save the following YAML to my-crontab.yaml :

And create it:

What’s next

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 name: my-new-cron-object
spec:
 cronSpec: "* * * *"
 image: my-awesome-cron-image
 replicas: 15

kubectl create -f my-crontab.yaml

The CronTab "my-new-cron-object" is invalid: []: Invalid value: map[string]interfa
validation failure list:
spec.cronSpec in body should match '^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$'
spec.replicas in body should be less than or equal to 10

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 name: my-new-cron-object
spec:
 cronSpec: "* * * * */5"
 image: my-awesome-cron-image
 replicas: 5

kubectl create -f my-crontab.yaml
crontab "my-new-cron-object" created

10/23/2017 Extend the Kubernetes API with CustomResourceDefinitions - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/ 8/8

Learn how to Migrate a ThirdPartyResource to CustomResourceDe�nition.

http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/

10/23/2017 Extend the Kubernetes API with ThirdPartyResources - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-third-party-resource/ 1/4

Extend the Kubernetes API with
ThirdPartyResources

DEPRECATION NOTICE: As of Kubernetes 1.7 , this has been deprecated

What is ThirdPartyResource?

ThirdPartyResource is deprecated as of Kubernetes 1.7 and has been removed in version 1.8 in

accordance with the deprecation policy for beta features.

To avoid losing data stored in ThirdPartyResources, you must migrate to

CustomResourceDe�nition before upgrading to Kubernetes 1.8 or higher.

Kubernetes comes with many built-in API objects. However, there are often times when you might

need to extend Kubernetes with your own API objects in order to do custom automation.

ThirdPartyResource objects are a way to extend the Kubernetes API with a new API object type.

The new API object type will be given an API endpoint URL and support CRUD operations, and watch

API. You can then create custom objects using this API endpoint. You can think of

ThirdPartyResources as being much like the schema for a database table. Once you have created

the table, you can then start storing rows in the table. Once created, ThirdPartyResources can act

as the data model behind custom controllers or automation programs.

Structure of a ThirdPartyResource

Each ThirdPartyResource has the following:

What is ThirdPartyResource?
Structure of a ThirdPartyResource
Creating a ThirdPartyResource
Creating Custom Objects

http://localhost:4000/docs/reference/deprecation-policy
http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/

10/23/2017 Extend the Kubernetes API with ThirdPartyResources - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-third-party-resource/ 2/4

metadata - Standard Kubernetes object metadata.

kind - The kind of the resources described by this third party resource.

description - A free text description of the resource.

versions - A list of the versions of the resource.

The kind for a ThirdPartyResource takes the form <kind name>.<domain> . You are expected

to provide a unique kind and domain name in order to avoid con�icts with other

ThirdPartyResource objects. Kind names will be converted to CamelCase when creating

instances of the ThirdPartyResource . Hyphens in the kind are assumed to be word breaks. For

instance the kind camel-case would be converted to CamelCase but camelcase would be

converted to Camelcase .

Other �elds on the ThirdPartyResource are treated as custom data �elds. These �elds can hold

arbitrary JSON data and have any structure.

You can view the full documentation about ThirdPartyResources using the explain command in

kubectl.

Creating a ThirdPartyResource

When you create a new ThirdPartyResource , the Kubernetes API Server reacts by creating a new,

namespaced RESTful resource path. For now, non-namespaced objects are not supported. As with

existing built-in objects, deleting a namespace deletes all custom objects in that namespace.

ThirdPartyResources themselves are non-namespaced and are available to all namespaces.

For example, if you save the following ThirdPartyResource to resource.yaml :

$ kubectl explain thirdpartyresource

10/23/2017 Extend the Kubernetes API with ThirdPartyResources - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-third-party-resource/ 3/4

And create it:

Then a new RESTful API endpoint is created at:

/apis/stable.example.com/v1/namespaces/<namespace>/crontabs/...

This endpoint URL can then be used to create and manage custom objects. The kind of these

objects will be CronTab following the camel case rules applied to the metadata.name of this

ThirdPartyResource (cron-tab.stable.example.com)

Creating Custom Objects

After the ThirdPartyResource object has been created you can create custom objects. Custom

objects can contain custom �elds. These �elds can contain arbitrary JSON. In the following example,

a cronSpec and image custom �elds are set to the custom object of kind CronTab . The kind

CronTab is derived from the metadata.name of the ThirdPartyResource object we created

above.

If you save the following YAML to my-crontab.yaml :

apiVersion: extensions/v1beta1
kind: ThirdPartyResource
metadata:
 name: cron-tab.stable.example.com
description: "A specification of a Pod to run on a cron style schedule"
versions:
- name: v1

$ kubectl create -f resource.yaml
thirdpartyresource "cron-tab.stable.example.com" created

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 name: my-new-cron-object
cronSpec: "* * * * /5"
image: my-awesome-cron-image

10/23/2017 Extend the Kubernetes API with ThirdPartyResources - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-third-party-resource/ 4/4

and create it:

You can then manage our CronTab objects using kubectl. Note that resource names are not case-

sensitive when using kubectl:

You can also view the raw JSON data. Here you can see that it contains the custom cronSpec and

image �elds from the yaml you used to create it:

$ kubectl create -f my-crontab.yaml
crontab "my-new-cron-object" created

$ kubectl get crontab
NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ kubectl get crontab -o json
{
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "stable.example.com/v1",
 "cronSpec": "* * * * /5",
 "image": "my-awesome-cron-image",
 "kind": "CronTab",
 "metadata": {
 "creationTimestamp": "2016-09-29T04:59:00Z",
 "name": "my-new-cron-object",
 "namespace": "default",
 "resourceVersion": "12601503",
 "selfLink": "/apis/stable.example.com/v1/namespaces/default/cronta
 "uid": "6f65e7a3-8601-11e6-a23e-42010af0000c"
 }
 }
],
 "kind": "List",
 "metadata": {},
 "resourceVersion": "",
 "selfLink": ""
}

10/23/2017 Migrate a ThirdPartyResource to CustomResourceDefinition - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/ 1/5

Migrate a ThirdPartyResource to
CustomResourceDe�nition

This page shows how to migrate data stored in a ThirdPartyResource (TPR) to a

CustomResourceDe�nition (CRD).

Kubernetes does not automatically migrate existing TPRs. This is due to API changes introduced as

part of graduating to beta under a new name and API group. Instead, both TPR and CRD are available

and operate independently in Kubernetes 1.7. Users must migrate each TPR one by one to preserve

their data before upgrading to Kubernetes 1.8.

The simplest way to migrate is to stop all clients that use a given TPR, then delete the TPR and start

from scratch with a CRD. This page describes an optional process that eases the transition by

migrating existing TPR data for you on a best-effort basis.

Before you begin

Make sure your Kubernetes cluster has a master version of exactly 1.7.x (any patch release), as

this is the only version that supports both TPR and CRD.

If you use a TPR-based custom controller, check with the author of the controller �rst. Some or

all of these steps may be unnecessary if the custom controller handles the migration for you.

Be familiar with the concept of custom resources, which were known as third-party resources

until Kubernetes 1.7.

Be familiar with CustomResourceDe�nitions, which are a simple way to implement custom

resources.

Before performing a migration on real data, conduct a dry run by going through these steps in

a test cluster.

Before you begin
Migrate TPR data
What’s next

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/thirdpartyresources.md
http://localhost:4000/docs/concepts/api-extension/custom-resources/
http://localhost:4000/docs/concepts/api-extension/custom-resources/#customresourcedefinitions

10/23/2017 Migrate a ThirdPartyResource to CustomResourceDefinition - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/ 2/5

Migrate TPR data

1. Rewrite the TPR de�nition

Clients that access the REST API for your custom resource should not need any changes.

However, you will need to rewrite your TPR de�nition as a CRD.

Make sure you specify values for the CRD �elds that match what the server used to �ll in for you

with TPR.

For example, if your ThirdPartyResource looks like this:

A matching CustomResourceDe�nition could look like this:

apiVersion: extensions/v1beta1

kind: ThirdPartyResource

metadata:

 name: cron-tab.stable.example.com

description: "A specification of a Pod to run on a cron style schedule"

versions:

- name: v1

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: crontabs.stable.example.com

spec:

 scope: Namespaced

 group: stable.example.com

 version: v1

 names:

 kind: CronTab

 plural: crontabs

 singular: crontab

10/23/2017 Migrate a ThirdPartyResource to CustomResourceDefinition - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/ 3/5

2. Install the CustomResourceDe�nition

While the source TPR is still active, install the matching CRD with kubectl create . Existing

TPR data remains accessible because TPRs take precedence over CRDs when both try to serve

the same resource.

After you create the CRD, make sure the Established condition goes to True. You can check it

with a command like this:

The output should look like this:

3. Stop all clients that use the TPR

The API server attempts to prevent TPR data for the resource from changing while it copies

objects to the CRD, but it can’t guarantee consistency in all cases, such as with multiple masters.

Stopping clients, such as TPR-based custom controllers, helps to avoid inconsistencies in the

copied data.

In addition, clients that watch TPR data do not receive any more events once the migration

begins. You must restart them after the migration completes so they start watching CRD data

instead.

4. Back up TPR data

In case the data migration fails, save a copy of existing data for the resource:

You should also save a copy of the TPR de�nition if you don’t have one already:

kubectl get crd -o 'custom-columns=NAME:{.metadata.name},ESTABLISHED:{.status.c

NAME ESTABLISHED

crontabs.stable.example.com True

kubectl get crontabs --all-namespaces -o yaml > crontabs.yaml

kubectl get thirdpartyresource cron-tab.stable.example.com -o yaml --export > t

http://localhost:4000/docs/admin/high-availability/

10/23/2017 Migrate a ThirdPartyResource to CustomResourceDefinition - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/ 4/5

5. Delete the TPR de�nition

Normally, when you delete a TPR de�nition, the API server tries to clean up any objects stored in

that resource. Because a matching CRD exists, the server copies objects to the CRD instead of

deleting them.

6. Verify the new CRD data

It can take up to 10 seconds for the TPR controller to notice when you delete the TPR de�nition

and to initiate the migration. The TPR data remains accessible during this time.

Once the migration completes, the resource begins serving through the CRD. Check that all your

objects were correctly copied:

If the copy failed, you can quickly revert to the set of objects that existed just before the

migration by recreating the TPR de�nition:

7. Restart clients

After verifying the CRD data, restart any clients you stopped before the migration, such as

custom controllers and other watchers. These clients now access CRD data when they make

requests on the same API endpoints that the TPR previously served.

What’s next

Learn more about custom resources.

Learn more about using CustomResourceDe�nitions.

kubectl delete thirdpartyresource cron-tab.stable.example.com

kubectl get crontabs --all-namespaces -o yaml

kubectl create -f tpr.yaml

http://localhost:4000/docs/concepts/api-extension/custom-resources/
http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

10/23/2017 Migrate a ThirdPartyResource to CustomResourceDefinition - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/migrate-third-party-resource/ 5/5

10/23/2017 Configure the aggregation layer - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/configure-aggregation-layer/ 1/2

Con�gure the aggregation layer

Con�guring the aggregation layer allows the Kubernetes apiserver to be extended with additional

APIs, which are not part of the core Kubernetes APIs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Note: There are a few setup requirements for getting the aggregation layer working in your

environment to support mutual TLS auth between the proxy and extension apiservers. Kubernetes

and the kube-apiserver have multiple CAs, so make sure that the proxy is signed by the aggregation

layer CA and not by something else, like the master CA.

Enable apiserver �ags

Enable the aggregation layer via the following kube-apiserver �ags. They may have already been

taken care of by your provider.

Before you begin
Enable apiserver �ags
What’s next

http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure the aggregation layer - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/configure-aggregation-layer/ 2/2

If you are not running kube-proxy on a host running the API server, then you must make sure that the

system is enabled with the following apiserver �ag:

What’s next

Setup an extension api-server to work with the aggregation layer.

For a high level overview, see Extending the Kubernetes API with the aggregation layer.

Learn how to Extend the Kubernetes API Using Custom Resource De�nitions.

--requestheader-client-ca-file=<path to aggregator CA cert>
--requestheader-allowed-names=aggregator
--requestheader-extra-headers-prefix=X-Remote-Extra-
--requestheader-group-headers=X-Remote-Group
--requestheader-username-headers=X-Remote-User
--proxy-client-cert-file=<path to aggregator proxy cert>
--proxy-client-key-file=<path to aggregator proxy key>

--enable-aggregator-routing=true

http://localhost:4000/docs/tasks/access-kubernetes-api/setup-extension-api-server/
http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/
http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

10/23/2017 Setup an extension API server - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/setup-extension-api-server/ 1/2

Setup an extension API server

Setting up an extension API server to work the aggregation layer allows the Kubernetes apiserver to

be extended with additional APIs, which are not part of the core Kubernetes APIs.

Before you begin

You need to have a Kubernetes cluster running.

You must con�gure the aggregation layer and enable the apiserver �ags.

Setup an extension api-server to work with the
aggregation layer

The following steps describe how to set up an extension-apiserver at a high level. For a concrete

example of how they can be implemented, you can look at the sample-apiserver in the Kubernetes

repo.

Alternatively, you can use an existing 3rd party solution, such as apiserver-builder, which should

generate a skeleton and automate all of the following steps for you.

1. Make sure the APIService API is enabled (check --runtime-config). It should be on by default,

unless it’s been deliberately turned off in your cluster.

2. You may need to make an RBAC rule allowing you to add APIService objects, or get your cluster

administrator to make one. (Since API extensions affect the entire cluster, it is not recommended

to do testing/development/debug of an API extension in a live cluster.)

3. Create the Kubernetes namespace you want to run your extension api-service in.

Before you begin
Setup an extension api-server to work with the aggregation layer
What’s next

http://localhost:4000/docs/tasks/access-kubernetes-api/configure-aggregation-layer/
https://github.com/kubernetes/sample-apiserver/blob/master/README.md
https://github.com/Kubernetes-incubator/apiserver-builder/blob/master/README.md

10/23/2017 Setup an extension API server - Kubernetes

http://localhost:4000/docs/tasks/access-kubernetes-api/setup-extension-api-server/ 2/2

4. Create/get a CA cert to be used to sign the server cert the extension api-server uses for HTTPS.

5. Create a server cert/key for the api-server to use for HTTPS. This cert should be signed by the

above CA. It should also have a CN of the Kube DNS name. This is derived from the Kubernetes

service and be of the form ..svc

6. Create a Kubernetes secret with the server cert/key in your namespace.

7. Create a Kubernetes deployment for the extension api-server and make sure you are loading the

secret as a volume. It should contain a reference to a working image of your extension api-

server. The deployment should also be in your namespace.

8. Make sure that your extension-apiserver loads those certs from that volume and that they are

used in the HTTPS handshake.

9. Create a Kubernetes service account in your namespace.

10. Create a Kubernetes cluster role for the operations you want to allow on your resources.

11. Create a Kubernetes cluster role binding from the default service account in your namespace to

the cluster role you just created.

12. Create a Kubernetes apiservice. The CA cert above should be base 64 encoded, stripped of new

lines and used as the spec.caBundle in the apiservce. This should not be namespaced.

13. Use kubectl to get your resource. It should return “No resources found.” Which means that

everything worked but you currently have no objects of that resource type created yet.

What’s next

If you haven’t already, con�gure the aggregation layer and enable the apiserver �ags.

For a high level overview, see Extending the Kubernetes API with the aggregation layer.

Learn how to Extend the Kubernetes API Using Custom Resource De�nitions.

http://localhost:4000/docs/tasks/access-kubernetes-api/configure-aggregation-layer/
http://localhost:4000/docs/concepts/api-extension/apiserver-aggregation/
http://localhost:4000/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

10/23/2017 Manage TLS Certificates in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/tls/managing-tls-in-a-cluster/ 1/5

Manage TLS Certi�cates in a Cluster

Overview

Every Kubernetes cluster has a cluster root Certi�cate Authority (CA). The CA is generally used by

cluster components to validate the API server’s certi�cate, by the API server to validate kubelet client

certi�cates, etc. To support this, the CA certi�cate bundle is distributed to every node in the cluster

and is distributed as a secret attached to default service accounts. Optionally, your workloads can

use this CA to establish trust. Your application can request a certi�cate signing using the

certificates.k8s.io API using a protocol that is similar to the ACME draft.

Trusting TLS in a Cluster

Trusting the cluster root CA from an application running as a pod usually requires some extra

application con�guration. You will need to add the CA certi�cate bundle to the list of CA certi�cates

that the TLS client or server trusts. For example, you would do this with a golang TLS con�g by

parsing the certi�cate chain and adding the parsed certi�cates to the Certificates �eld in the

tls.Config struct.

Overview
Trusting TLS in a Cluster
Requesting a Certi�cate

Step 0. Download and install CFSSL
Step 1. Create a Certi�cate Signing Request
Step 2. Create a Certi�cate Signing Request object to send to the Kubernetes API
Step 3. Get the Certi�cate Signing Request Approved
Step 4. Download the Certi�cate and Use It

Approving Certi�cate Signing Requests
A Word of Warning on the Approval Permission
A Note to Cluster Administrators

https://github.com/ietf-wg-acme/acme/
https://godoc.org/crypto/tls#Config

10/23/2017 Manage TLS Certificates in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/tls/managing-tls-in-a-cluster/ 2/5

The CA certi�cate bundle is automatically mounted into pods using the default service account at

the path /var/run/secrets/kubernetes.io/serviceaccount/ca.crt . If you are not using the

default service account, ask a cluster administrator to build a con�gmap containing the certi�cate

bundle that you have access to use.

Requesting a Certi�cate

The following section demonstrates how to create a TLS certi�cate for a Kubernetes service

accessed through DNS.

Step 0. Download and install CFSSL

The cfssl tools used in this example can be downloaded at https://pkg.cfssl.org/.

Step 1. Create a Certi�cate Signing Request

Generate a private key and certi�cate signing request (or CSR) by running the following command:

Where 172.168.0.24 is the service’s cluster IP, my-svc.my-namespace.svc.cluster.local is the

service’s DNS name, 10.0.34.2 is the pod’s IP and my-pod.my-namespace.pod.cluster.local is

the pod’s DNS name. You should see the following output:

$ cat <<EOF | cfssl genkey - | cfssljson -bare server
{
 "hosts": [
 "my-svc.my-namespace.svc.cluster.local",
 "my-pod.my-namespace.pod.cluster.local",
 "172.168.0.24",
 "10.0.34.2"
],
 "CN": "my-pod.my-namespace.pod.cluster.local",
 "key": {
 "algo": "ecdsa",
 "size": 256
 }
}
EOF

https://pkg.cfssl.org/

10/23/2017 Manage TLS Certificates in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/tls/managing-tls-in-a-cluster/ 3/5

This command generates two �les; it generates server.csr containing the PEM encoded pkcs#10

certi�cation request, and server-key.pem containing the PEM encoded key to the certi�cate that is

still to be created.

Step 2. Create a Certi�cate Signing Request object to send to the
Kubernetes API

Generate a CSR yaml blob and send it to the apiserver by running the following command:

Notice that the server.csr �le created in step 1 is base64 encoded and stashed in the

.spec.request �eld. We are also requesting a certi�cate with the “digital signature”, “key

encipherment”, and “server auth” key usages. We support all key usages and extended key usages

listed here so you can request client certi�cates and other certi�cates using this same API.

The CSR should now be visible from the API in a Pending state. You can see it by running:

2017/03/21 06:48:17 [INFO] generate received request
2017/03/21 06:48:17 [INFO] received CSR
2017/03/21 06:48:17 [INFO] generating key: ecdsa-256
2017/03/21 06:48:17 [INFO] encoded CSR

$ cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
 name: my-svc.my-namespace
spec:
 groups:
 - system:authenticated
 request: $(cat server.csr | base64 | tr -d '\n')
 usages:
 - digital signature
 - key encipherment
 - server auth
EOF

https://tools.ietf.org/html/rfc2986
https://godoc.org/k8s.io/api/certificates/v1beta1#KeyUsage

10/23/2017 Manage TLS Certificates in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/tls/managing-tls-in-a-cluster/ 4/5

Step 3. Get the Certi�cate Signing Request Approved

Approving the certi�cate signing request is either done by an automated approval process or on a

one off basis by a cluster administrator. More information on what this involves is covered below.

Step 4. Download the Certi�cate and Use It

Once the CSR is signed and approved you should see the following:

You can download the issued certi�cate and save it to a server.crt �le by running the following:

Now you can use server.crt and server-key.pem as the keypair to start your HTTPS server.

Approving Certi�cate Signing Requests

$ kubectl describe csr my-svc.my-namespace
Name: my-svc.my-namespace
Labels: <none>
Annotations: <none>
CreationTimestamp: Tue, 21 Mar 2017 07:03:51 -0700
Requesting User: yourname@example.com
Status: Pending
Subject:
 Common Name: my-svc.my-namespace.svc.cluster.local
 Serial Number:
Subject Alternative Names:
 DNS Names: my-svc.my-namespace.svc.cluster.local
 IP Addresses: 172.168.0.24
 10.0.34.2
Events: <none>

$ kubectl get csr
NAME AGE REQUESTOR CONDITION
my-svc.my-namespace 10m yourname@example.com Approved,Issued

$ kubectl get csr my-svc.my-namespace -o jsonpath='{.status.certificate}' \
 | base64 -d > server.crt

10/23/2017 Manage TLS Certificates in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/tls/managing-tls-in-a-cluster/ 5/5

A Kubernetes administrator (with appropriate permissions) can manually approve (or deny)

Certi�cate Signing Requests by using the kubectl certificate approve and

kubectl certificate deny commands. However if you intend to make heavy usage of this API,

you might consider writing an automated certi�cates controller.

Whether a machine or a human using kubectl as above, the role of the approver is to verify that the

CSR satis�es two requirements:

1. The subject of the CSR controls the private key used to sign the CSR. This addresses the threat

of a third party masquerading as an authorized subject. In the above example, this step would be

to verify that the pod controls the private key used to generate the CSR.

2. The subject of the CSR is authorized to act in the requested context. This addresses the threat

of an undesired subject joining the cluster. In the above example, this step would be to verify that

the pod is allowed to participate in the requested service.

If and only if these two requirements are met, the approver should approve the CSR and otherwise

should deny the CSR.

A Word of Warning on the Approval Permission

The ability to approve CSRs decides who trusts who within the cluster. This includes who the

Kubernetes API trusts. The ability to approve CSRs should not be granted broadly or lightly. The

requirements of the challenge noted in the previous section and the repercussions of issuing a

speci�c certi�cate should be fully understood before granting this permission. See here for

information on how certi�cates interact with authentication.

A Note to Cluster Administrators

This tutorial assumes that a signer is setup to serve the certi�cates API. The Kubernetes controller

manager provides a default implementation of a signer. To enable it, pass the

--cluster-signing-cert-file and --cluster-signing-key-file parameters to the controller

manager with paths to your Certi�cate Authority’s keypair.

http://localhost:4000/docs/admin/authentication#x509-client-certs

10/23/2017 Certificate Rotation - Kubernetes

http://localhost:4000/docs/tasks/tls/certificate-rotation/ 1/2

Certi�cate Rotation

This page shows how to enable and con�gure certi�cate rotation for the kubelet.

Before you begin

Kubernetes version 1.8.0 or later is required

Kubelet certi�cate rotation is beta in 1.8.0 which means it may change without notice.

Overview

The kubelet uses certi�cates for authenticating to the Kubernetes API. By default, these certi�cates

are issued with one year expiration so that they do not need to be renewed too frequently.

Kubernetes 1.8 contains kubelet certi�cate rotation, a beta feature that will automatically generate a

new key and request a new certi�cate from the Kubernetes API as the current certi�cate approaches

expiration. Once the new certi�cate is available, it will be used for authenticating connections to the

Kubernetes API.

Enabling client certi�cate rotation

The kubelet process accepts an argument --rotate-certificates that controls if the kubelet

will automatically request a new certi�cate as the expiration of the certi�cate currently in use

approaches. Since certi�cate rotation is a beta feature, the feature �ag must also be enabled with

--feature-gates=RotateKubeletClientCertificate=true .

Before you begin
Overview
Enabling client certi�cate rotation
Understanding the certi�cate rotation con�guration

http://localhost:4000/docs/tasks/administer-cluster/certificate-rotation/

10/23/2017 Certificate Rotation - Kubernetes

http://localhost:4000/docs/tasks/tls/certificate-rotation/ 2/2

The kube-controller-manager process accepts an argument

--experimental-cluster-signing-duration that controls how long certi�cates will be issued for.

Understanding the certi�cate rotation con�guration

When a kubelet starts up, if it is con�gured to bootstrap (using the --bootstrap-kubeconfig �ag),

it will use its initial certi�cate to connect to the Kubernetes API and issue a certi�cate signing

request. You can view the status of certi�cate signing requests using:

Initially a certi�cate signing request from the kubelet on a node will have a status of Pending . If the

certi�cate signing requests meets speci�c criteria, it will be auto approved by the controller manager,

then it will have a status of Approved . Next, the controller manager will sign a certi�cate, issued for

the duration speci�ed by the --experimental-cluster-signing-duration parameter, and the

signed certi�cate will be attached to the certi�cate signing requests.

The kubelet will retrieve the signed certi�cate from the Kubernetes API and write that to disk, in the

location speci�ed by --cert-dir . Then the kubelet will use the new certi�cate to connect to the

Kubernetes API.

As the expiration of the signed certi�cate approaches, the kubelet will automatically issue a new

certi�cate signing request, using the Kubernetes API. Again, the controller manager will automatically

approve the certi�cate request and attach a signed certi�cate to the certi�cate signing request. The

kubelet will retrieve the new signed certi�cate from the Kubernetes API and write that to disk. Then it

will update the connections it has to the Kubernetes API to reconnect using the new certi�cate.

kubectl get csr

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 1/7

Con�gure Default Memory Requests and
Limits for a Namespace

This page shows how to con�gure default memory requests and limits for a namespace. If a

Container is created in a namespace that has a default memory limit, and the Container does not

specify its own memory limit, then the Container is assigned the default memory limit. Kubernetes

assigns a default memory request under certain conditions that are explained later in this topic.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Each node in your cluster must have at least 300 GiB of memory.

Create a namespace

Before you begin
Create a namespace
Create a LimitRange and a Pod
What if you specify a Container’s limit, but not its request?
What if you specify a Container’s request, but not its limit?
Motivation for default memory limits and requests
What’s next

For cluster administrators
For app developers

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 2/7

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Create a LimitRange and a Pod

Here’s the con�guration �le for a LimitRange object. The con�guration speci�es a default memory

request and a default memory limit.

memory-defaults.yaml

Create the LimitRange in the default-mem-example namespace:

Now if a Container is created in the default-mem-example namespace, and the Container does not

specify its own values for memory request and memory limit, the Container is given a default

memory request of 256 MiB and a default memory limit of 512 MiB.

Here’s the con�guration �le for a Pod that has one Container. The Container does not specify a

memory request and limit.

kubectl create namespace default-mem-example

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-limit-range
spec:
 limits:
 - default:
 memory: 512Mi
 defaultRequest:
 memory: 256Mi
 type: Container

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-defaults.yam

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-defaults.yaml

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 3/7

memory-defaults-pod.yaml

Create the Pod.

View detailed information about the Pod:

The output shows that the Pod’s Container has a memory request of 256 MiB and a memory limit of

512 MiB. These are the default values speci�ed by the LimitRange.

Delete your Pod:

apiVersion: v1
kind: Pod
metadata:
 name: default-mem-demo
spec:
 containers:
 - name: default-mem-demo-ctr
 image: nginx

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod

kubectl get pod default-mem-demo --output=yaml --namespace=default-mem-example

containers:
- image: nginx
 imagePullPolicy: Always
 name: default-mem-demo-ctr
 resources:
 limits:
 memory: 512Mi
 requests:
 memory: 256Mi

kubectl delete pod default-mem-demo --namespace=default-mem-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-defaults-pod.yaml

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 4/7

What if you specify a Container’s limit, but not its
request?

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a memory

limit, but not a request:

memory-defaults-pod-2.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that the Container’s memory request is set to match its memory limit. Notice that

the Container was not assigned the default memory request value of 256Mi.

apiVersion: v1
kind: Pod
metadata:
 name: default-mem-demo-2
spec:
 containers:
 - name: defalt-mem-demo-2-ctr
 image: nginx
 resources:
 limits:
 memory: "1Gi"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod

kubectl get pod default-mem-demo-2 --output=yaml --namespace=default-mem-example

resources:
 limits:
 memory: 1Gi
 requests:
 memory: 1Gi

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-defaults-pod-2.yaml

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 5/7

What if you specify a Container’s request, but not its
limit?

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a memory

request, but not a limit:

memory-defaults-pod-3.yaml

Create the Pod:

View the Pod’s speci�cation:

The output shows that the Container’s memory request is set to the value speci�ed in the Container’s

con�guration �le. The Container’s memory limit is set to 512Mi, which is the default memory limit for

the namespace.

apiVersion: v1
kind: Pod
metadata:
 name: default-mem-demo-3
spec:
 containers:
 - name: default-mem-demo-3-ctr
 image: nginx
 resources:
 requests:
 memory: "128Mi"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod

kubectl get pod default-mem-demo-3 --output=yaml --namespace=default-mem-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-defaults-pod-3.yaml

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 6/7

Motivation for default memory limits and requests

If your namespace has a resource quota, it is helpful to have a default value in place for memory

limit. Here are two of the restrictions that a resource quota imposes on a namespace:

Every Container that runs in the namespace must have its own memory limit.

The total amount of memory used by all Containers in the namespace must not exceed a

speci�ed limit.

If a Container does not specify its own memory limit, it is given the default limit, and then it can be

allowed to run in a namespace that is restricted by a quota.

What’s next

For cluster administrators

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

For app developers

resources:
 limits:
 memory: 512Mi
 requests:
 memory: 128Mi

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/

10/23/2017 Configure Default Memory Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/ 7/7

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Configure Default CPU Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/ 1/6

Con�gure Default CPU Requests and Limits
for a Namespace

This page shows how to con�gure default CPU requests and limits for a namespace. A Kubernetes

cluster can be divided into namespaces. If a Container is created in a namespace that has a default

CPU limit, and the Container does not specify its own CPU limit, then the Container is assigned the

default CPU limit. Kubernetes assigns a default CPU request under certain conditions that are

explained later in this topic.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Before you begin
Create a namespace
Create a LimitRange and a Pod
What if you specify a Container’s limit, but not its request?
What if you specify a Container’s request, but not its limit?
Motivation for default CPU limits and requests
What’s next

For cluster administrators
For app developers

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Default CPU Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/ 2/6

Create a LimitRange and a Pod

Here’s the con�guration �le for a LimitRange object. The con�guration speci�es a default CPU

request and a default CPU limit.

cpu-defaults.yaml

Create the LimitRange in the default-cpu-example namespace:

Now if a Container is created in the default-cpu-example namespace, and the Container does not

specify its own values for CPU request and CPU limit, the Container is given a default CPU request of

0.5 and a default CPU limit of 1.

Here’s the con�guration �le for a Pod that has one Container. The Container does not specify a CPU

request and limit.

cpu-defaults-pod.yaml

kubectl create namespace default-cpu-example

apiVersion: v1
kind: LimitRange
metadata:
 name: cpu-limit-range
spec:
 limits:
 - default:
 cpu: 1
 defaultRequest:
 cpu: 0.5
 type: Container

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults.yaml -

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-defaults.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-defaults-pod.yaml

10/23/2017 Configure Default CPU Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/ 3/6

cpu-defaults-pod.yaml

Create the Pod.

View the Pod’s speci�cation:

The output shows that the Pod’s Container has a CPU request of 500 millicpus and a CPU limit of 1

cpu. These are the default values speci�ed by the LimitRange.

What if you specify a Container’s limit, but not its
request?

apiVersion: v1
kind: Pod
metadata:
 name: default-cpu-demo
spec:
 containers:
 - name: default-cpu-demo-ctr
 image: nginx

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod.ya

kubectl get pod default-cpu-demo --output=yaml --namespace=default-cpu-example

containers:
- image: nginx
 imagePullPolicy: Always
 name: default-cpu-demo-ctr
 resources:
 limits:
 cpu: "1"
 requests:
 cpu: 500m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-defaults-pod.yaml

10/23/2017 Configure Default CPU Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/ 4/6

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a CPU limit, but

not a request:

cpu-defaults-pod-2.yaml

Create the Pod:

View the Pod speci�cation:

The output shows that the Container’s CPU request is set to match its CPU limit. Notice that the

Container was not assigned the default CPU request value of 0.5 cpu.

What if you specify a Container’s request, but not its
limit?

apiVersion: v1
kind: Pod
metadata:
 name: default-cpu-demo-2
spec:
 containers:
 - name: default-cpu-demo-2-ctr
 image: nginx
 resources:
 limits:
 cpu: "1"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod-2.

kubectl get pod cpu-limit-no-request --output=yaml --namespace=default-cpu-example

resources:
 limits:
 cpu: "1"
 requests:
 cpu: "1"

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-defaults-pod-2.yaml

10/23/2017 Configure Default CPU Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/ 5/6

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a CPU request,

but not a limit:

cpu-defaults-pod-3.yaml

Create the Pod:

The output shows that the Container’s CPU request is set to the value speci�ed in the Container’s

con�guration �le. The Container’s CPU limit is set to 1 cpu, which is the default CPU limit for the

namespace.

Motivation for default CPU limits and requests

If your namespace has a resource quota, it is helpful to have a default value in place for CPU limit.

Here are two of the restrictions that a resource quota imposes on a namespace:

Every Container that runs in the namespace must have its own CPU limit.

apiVersion: v1
kind: Pod
metadata:
 name: default-cpu-demo-3
spec:
 containers:
 - name: default-cpu-demo-3-ctr
 image: nginx
 resources:
 requests:
 cpu: "0.75"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod-3.

resources:
 limits:
 cpu: "1"
 requests:
 cpu: 750m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-defaults-pod-3.yaml
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/

10/23/2017 Configure Default CPU Requests and Limits for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/ 6/6

The total amount of CPU used by all Containers in the namespace must not exceed a speci�ed

limit.

If a Container does not specify its own CPU limit, it is given the default limit, and then it can be

allowed to run in a namespace that is restricted by a quota.

What’s next

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/
http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 1/9

Con�gure Minimum and Maximum Memory
Constraints for a Namespace

This page shows how to set minimum and maximum values for memory used by Containers running

in a namespace. You specify minimum and maximum memory values in a LimitRange object. If a

Pod does not meet the constraints imposed by the LimitRange, it cannot be created in the

namespace.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Each node in your cluster must have at least 1 GiB of memory.

Create a namespace

Before you begin
Create a namespace
Create a LimitRange and a Pod
Attempt to create a Pod that exceeds the maximum memory constraint
Attempt to create a Pod that does not meet the minimum memory request
Create a Pod that does not specify any memory request or limit
Enforcement of minimum and maximum memory constraints
Motivation for minimum and maximum memory constraints
Clean up
What’s next

For cluster administrators
For app developers

http://localhost:4000/docs/api-reference/v1.6/#limitrange-v1-core
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 2/9

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Create a LimitRange and a Pod

Here’s the con�guration �le for a LimitRange:

memory-constraints.yaml

Create the LimitRange:

View detailed information about the LimitRange:

The output shows the minimum and maximum memory constraints as expected. But notice that

even though you didn’t specify default values in the con�guration �le for the LimitRange, they were

kubectl create namespace constraints-mem-example

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-min-max-demo-lr
spec:
 limits:
 - max:
 memory: 1Gi
 min:
 memory: 500Mi
 type: Container

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-constraints.

kubectl get limitrange cpu-min-max-demo --namespace=constraints-mem-example --outp

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints.yaml

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 3/9

created automatically.

Now whenever a Container is created in the constraints-mem-example namespace, Kubernetes

performs these steps:

If the Container does not specify its own memory request and limit, assign the default memory

request and limit to the Container.

Verify that the Container has a memory request that is greater than or equal to 500 MiB.

Verify that the Container has a memory limit that is less than or equal to 1 GiB.

Here’s the con�guration �le for a Pod that has one Container. The Container manifest speci�es a

memory request of 600 MiB and a memory limit of 800 MiB. These satisfy the minimum and

maximum memory constraints imposed by the LimitRange.

memory-constraints-pod.yaml

 limits:
 - default:
 memory: 1Gi
 defaultRequest:
 memory: 1Gi
 max:
 memory: 1Gi
 min:
 memory: 500Mi
 type: Container

apiVersion: v1
kind: Pod
metadata:
 name: constraints-mem-demo
spec:
 containers:
 - name: constraints-mem-demo-ctr
 image: nginx
 resources:
 limits:
 memory: "800Mi"
 requests:
 memory: "600Mi"

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod.yaml

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 4/9

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the Container has a memory request of 600 MiB and a memory limit of 800

MiB. These satisfy the constraints imposed by the LimitRange.

Delete your Pod:

Attempt to create a Pod that exceeds the maximum
memory constraint

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a memory

request of 800 MiB and a memory limit of 1.5 GiB.

memory-constraints-pod-2.yaml

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-

kubectl get pod constraints-mem-demo --namespace=constraints-mem-example

kubectl get pod constraints-mem-demo --output=yaml --namespace=constraints-mem-exa

resources:
 limits:
 memory: 800Mi
 requests:
 memory: 600Mi

kubectl delete pod constraints-mem-demo --namespace=constraints-mem-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod-2.yaml

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 5/9

memory-constraints-pod-2.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container speci�es a memory limit

that is too large:

Attempt to create a Pod that does not meet the
minimum memory request

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a memory

request of 200 MiB and a memory limit of 800 MiB.

memory-constraints-pod-3.yaml

apiVersion: v1
kind: Pod
metadata:
 name: constraints-mem-demo-2
spec:
 containers:
 - name: constraints-mem-demo-2-ctr
 image: nginx
 resources:
 limits:
 memory: "1.5Gi"
 requests:
 memory: "800Mi"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/
pods "constraints-mem-demo-2" is forbidden: maximum memory usage per Container is

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod-2.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod-3.yaml

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 6/9

memory-constraints-pod-3.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container speci�es a memory

request that is too small:

Create a Pod that does not specify any memory request
or limit

Here’s the con�guration �le for a Pod that has one Container. The Container does not specify a

memory request, and it does not specify a memory limit.

memory-constraints-pod-4.yaml

apiVersion: v1
kind: Pod
metadata:
 name: constraints-mem-demo-3
spec:
 containers:
 - name: constraints-mem-demo-3-ctr
 image: nginx
 resources:
 limits:
 memory: "800Mi"
 requests:
 memory: "100Mi"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/
pods "constraints-mem-demo-3" is forbidden: minimum memory usage per Container is

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod-3.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod-4.yaml

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 7/9

memory-constraints-pod-4.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that the Pod’s Container has a memory request of 1 GiB and a memory limit of 1

GiB. How did the Container get those values?

Because your Container did not specify its own memory request and limit, it was given the default

memory request and limit from the LimitRange.

At this point, your Container might be running or it might not be running. Recall that a prerequisite for

this task is that your Nodes have at least 1 GiB of memory. If each of your Nodes has only 1 GiB of

memory, then there is not enough allocatable memory on any Node to accommodate a memory

request of 1 GiB. If you happen to be using Nodes with 2 GiB of memory, then you probably have

enough space to accommodate the 1 GiB request.

apiVersion: v1
kind: Pod
metadata:
 name: constraints-mem-demo-4
spec:
 containers:
 - name: constraints-mem-demo-4-ctr
 image: nginx

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-

kubectl get pod constraints-mem-demo-4 --namespace=constraints-mem-example --outpu

resources:
 limits:
 memory: 1Gi
 requests:
 memory: 1Gi

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/memory-constraints-pod-4.yaml
http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 8/9

Delete your Pod:

Enforcement of minimum and maximum memory
constraints

The maximum and minimum memory constraints imposed on a namespace by a LimitRange are

enforced only when a Pod is created or updated. If you change the LimitRange, it does not affect

Pods that were created previously.

Motivation for minimum and maximum memory
constraints

As a cluster administrator, you might want to impose restrictions on the amount of memory that

Pods can use. For example:

Each Node in a cluster has 2 GB of memory. You do not want to accept any Pod that requests

more than 2 GB of memory, because no Node in the cluster can support the request.

A cluster is shared by your production and development departments. You want to allow

production workloads to consume up to 8 GB of memory, but you want development workloads

to be limited to 512 MB. You create separate namespaces for production and development, and

you apply memory constraints to each namespace.

Clean up

Delete your namespace:

What’s next

kubectl delete pod constraints-mem-demo-4 --namespace=constraints-mem-example

kubectl delete namespace constraints-mem-example

10/23/2017 Configure Minimum and Maximum Memory Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/ 9/9

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/
http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 1/9

Con�gure Minimum and Maximum CPU
Constraints for a Namespace

This page shows how to set minimum and maximum values for the CPU resources used by

Containers and Pods in a namespace. You specify minimum and maximum CPU values in a

LimitRange object. If a Pod does not meet the constraints imposed by the LimitRange, it cannot be

created in the namespace.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Each node in your cluster must have at least 1 CPU.

Before you begin
Create a namespace
Create a LimitRange and a Pod
Delete the Pod
Attempt to create a Pod that exceeds the maximum CPU constraint
Attempt to create a Pod that does not meet the minimum CPU request
Create a Pod that does not specify any CPU request or limit
Enforcement of minimum and maximum CPU constraints
Motivation for minimum and maximum CPU constraints
Clean up
What’s next

For cluster administrators
For app developers

http://localhost:4000/docs/api-reference/v1.6/#limitrange-v1-core
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 2/9

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Create a LimitRange and a Pod

Here’s the con�guration �le for a LimitRange:

cpu-constraints.yaml

Create the LimitRange:

View detailed information about the LimitRange:

kubectl create namespace constraints-cpu-example

apiVersion: v1
kind: LimitRange
metadata:
 name: cpu-min-max-demo-lr
spec:
 limits:
 - max:
 cpu: "800m"
 min:
 cpu: "200m"
 type: Container

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints.yam

kubectl get limitrange cpu-min-max-demo-lr --output=yaml --namespace=constraints-c

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-constraints.yaml

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 3/9

The output shows the minimum and maximum CPU constraints as expected. But notice that even

though you didn’t specify default values in the con�guration �le for the LimitRange, they were created

automatically.

Now whenever a Container is created in the constraints-cpu-example namespace, Kubernetes

performs these steps:

If the Container does not specify its own CPU request and limit, assign the default CPU request

and limit to the Container.

Verify that the Container speci�es a CPU request that is greater than or equal to 200 millicpu.

Verify that the Container speci�es a CPU limit that is less than or equal to 800 millicpu.

Here’s the con�guration �le for a Pod that has one Container. The Container manifest speci�es a

CPU request of 500 millicpu and a CPU limit of 800 millicpu. These satisfy the minimum and

maximum CPU constraints imposed by the LimitRange.

cpu-constraints-pod.yaml

limits:
- default:
 cpu: 800m
 defaultRequest:
 cpu: 800m
 max:
 cpu: 800m
 min:
 cpu: 200m
 type: Container

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-constraints-pod.yaml

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 4/9

cpu-constraints-pod.yaml

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the Container has a CPU request of 500 millicpu and CPU limit of 800

millicpu. These satisfy the constraints imposed by the LimitRange.

apiVersion: v1
kind: Pod
metadata:
 name: constraints-cpu-demo
spec:
 containers:
 - name: constraints-cpu-demo-ctr
 image: nginx
 resources:
 limits:
 cpu: "800m"
 requests:
 cpu: "500m"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod

kubectl get pod constraints-cpu-demo --namespace=constraints-cpu-example

kubectl get pod constraints-cpu-demo --output=yaml --namespace=constraints-cpu-exa

resources:
 limits:
 cpu: 800m
 requests:
 cpu: 500m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-constraints-pod.yaml

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 5/9

Delete the Pod

Attempt to create a Pod that exceeds the maximum
CPU constraint

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a CPU request

of 500 millicpu and a cpu limit of 1.5 cpu.

cpu-constraints-pod-2.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container speci�es a CPU limit

that is too large:

kubectl delete pod constraints-cpu-demo --namespace=constraints-cpu-example

apiVersion: v1
kind: Pod
metadata:
 name: constraints-cpu-demo-2
spec:
 containers:
 - name: constraints-cpu-demo-2-ctr
 image: nginx
 resources:
 limits:
 cpu: "1.5"
 requests:
 cpu: "500m"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/
pods "constraints-cpu-demo-2" is forbidden: maximum cpu usage per Container is 800

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-constraints-pod-2.yaml

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 6/9

Attempt to create a Pod that does not meet the
minimum CPU request

Here’s the con�guration �le for a Pod that has one Container. The Container speci�es a CPU request

of 100 millicpu and a CPU limit of 800 millicpu.

cpu-constraints-pod-3.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container speci�es a CPU request

that is too small:

apiVersion: v1
kind: Pod
metadata:
 name: constraints-cpu-demo-4
spec:
 containers:
 - name: constraints-cpu-demo-4-ctr
 image: nginx
 resources:
 limits:
 cpu: "800m"
 requests:
 cpu: "100m"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/
pods "constraints-cpu-demo-4" is forbidden: minimum cpu usage per Container is 200

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-constraints-pod-3.yaml

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 7/9

Create a Pod that does not specify any CPU request or
limit

Here’s the con�guration �le for a Pod that has one Container. The Container does not specify a CPU

request, and it does not specify a CPU limit.

cpu-constraints-pod-4.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that the Pod’s Container has a CPU request of 800 millicpu and a CPU limit of 800

millicpu. How did the Container get those values?

apiVersion: v1
kind: Pod
metadata:
 name: constraints-cpu-demo-4
spec:
 containers:
 - name: constraints-cpu-demo-4-ctr
 image: vish/stress

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod

kubectl get pod constraints-cpu-demo-4 --namespace=constraints-cpu-example --outpu

resources:
 limits:
 cpu: 800m
 requests:
 cpu: 800m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cpu-constraints-pod-4.yaml

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 8/9

Because your Container did not specify its own CPU request and limit, it was given the default CPU

request and limit from the LimitRange.

At this point, your Container might be running or it might not be running. Recall that a prerequisite for

this task is that your Nodes have at least 1 CPU. If each of your Nodes has only 1 CPU, then there

might not be enough allocatable CPU on any Node to accommodate a request of 800 millicpu. If you

happen to be using Nodes with 2 CPU, then you probably have enough CPU to accommodate the

800 millicpu request.

Delete your Pod:

Enforcement of minimum and maximum CPU
constraints

The maximum and minimum CPU constraints imposed on a namespace by a LimitRange are

enforced only when a Pod is created or updated. If you change the LimitRange, it does not affect

Pods that were created previously.

Motivation for minimum and maximum CPU constraints

As a cluster administrator, you might want to impose restrictions on the CPU resources that Pods

can use. For example:

Each Node in a cluster has 2 CPU. You do not want to accept any Pod that requests more than 2

CPU, because no Node in the cluster can support the request.

A cluster is shared by your production and development departments. You want to allow

production workloads to consume up to 3 CPU, but you want development workloads to be

limited to 1 CPU. You create separate namespaces for production and development, and you

apply CPU constraints to each namespace.

Clean up

kubectl delete pod constraints-cpu-demo-4 --namespace=constraints-cpu-example

http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/

10/23/2017 Configure Minimum and Maximum CPU Constraints for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/ 9/9

Delete your namespace:

What’s next

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

kubectl delete namespace constraints-cpu-example

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/
http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Configure Memory and CPU Quotas for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/ 1/6

Con�gure Memory and CPU Quotas for a
Namespace

This page shows how to set quotas for the total amount memory and CPU that can be used by all

Containers running in a namespace. You specify quotas in a ResourceQuota object.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Each node in your cluster must have at least 1 GiB of memory.

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Before you begin
Create a namespace
Create a ResourceQuota
Create a Pod
Attempt to create a second Pod
Discussion
Clean up
What’s next

For cluster administrators
For app developers

http://localhost:4000/docs/api-reference/v1.7/#resourcequota-v1-core
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Memory and CPU Quotas for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/ 2/6

Create a ResourceQuota

Here is the con�guration �le for a ResourceQuota object:

quota-mem-cpu.yaml

Create the ResourceQuota:

View detailed information about the ResourceQuota:

The ResourceQuota places these requirements on the quota-mem-cpu-example namespace:

Every Container must have a memory request, memory limit, cpu request, and cpu limit.

The memory request total for all Containers must not exceed 1 GiB.

The memory limit total for all Containers must not exceed 2 GiB.

The CPU request total for all Containers must not exceed 1 cpu.

kubectl create namespace quota-mem-cpu-example

apiVersion: v1
kind: ResourceQuota
metadata:
 name: mem-cpu-demo
spec:
 hard:
 requests.cpu: "1"
 requests.memory: 1Gi
 limits.cpu: "2"
 limits.memory: 2Gi

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu.yaml

kubectl get resourcequota mem-cpu-demo --namespace=quota-mem-cpu-example --output=

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-mem-cpu.yaml

10/23/2017 Configure Memory and CPU Quotas for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/ 3/6

The CPU limit total for all Containers must not exceed 2 cpu.

Create a Pod

Here is the con�guration �le for a Pod:

quota-mem-cpu-pod.yaml

Create the Pod:

Verify that the Pod’s Container is running:

Once again, view detailed information about the ResourceQuota:

apiVersion: v1
kind: Pod
metadata:
 name: quota-mem-cpu-demo
spec:
 containers:
 - name: quota-mem-cpu-demo-ctr
 image: nginx
 resources:
 limits:
 memory: "800Mi"
 cpu: "800m"
 requests:
 memory: "600Mi"
 cpu: "400m"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu-pod.y

kubectl get pod quota-mem-cpu-demo --namespace=quota-mem-cpu-example

kubectl get resourcequota mem-cpu-demo --namespace=quota-mem-cpu-example --output=

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-mem-cpu-pod.yaml

10/23/2017 Configure Memory and CPU Quotas for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/ 4/6

The output shows the quota along with how much of the quota has been used. You can see that the

memory and CPU requests and limits for your Pod do not exceed the quota.

Attempt to create a second Pod

Here is the con�guration �le for a second Pod:

quota-mem-cpu-pod-2.yaml

In the con�guration �le, you can see that the Pod has a memory request of 700 MiB. Notice that the

sum of the used memory request and this new memory request exceeds the memory request quota.

600 MiB + 700 MiB > 1 GiB.

status:
 hard:
 limits.cpu: "2"
 limits.memory: 2Gi
 requests.cpu: "1"
 requests.memory: 1Gi
 used:
 limits.cpu: 800m
 limits.memory: 800Mi
 requests.cpu: 400m
 requests.memory: 600Mi

apiVersion: v1
kind: Pod
metadata:
 name: quota-mem-cpu-demo-2
spec:
 containers:
 - name: quota-mem-cpu-demo-2-ctr
 image: redis
 resources:
 limits:
 memory: "1Gi"
 cpu: "800m"
 requests:
 memory: "700Mi"
 cpu: "400m"

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-mem-cpu-pod-2.yaml

10/23/2017 Configure Memory and CPU Quotas for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/ 5/6

Attempt to create the Pod:

The second Pod does not get created. The output shows that creating the second Pod would cause

the memory request total to exceed the memory request quota.

Discussion

As you have seen in this exercise, you can use a ResourceQuota to restrict the memory request total

for all Containers running in a namespace. You can also restrict the totals for memory limit, cpu

request, and cpu limit.

If you want to restrict individual Containers, instead of totals for all Containers, use a LimitRange.

Clean up

Delete your namespace:

What’s next

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu-pod-2

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/
pods "quota-mem-cpu-demo-2" is forbidden: exceeded quota: mem-cpu-demo,
requested: requests.memory=700Mi,used: requests.memory=600Mi, limited: requests.me

kubectl delete namespace quota-mem-cpu-example

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/

10/23/2017 Configure Memory and CPU Quotas for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/ 6/6

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure a Pod Quota for a Namespace

Con�gure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/
http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Configure a Pod Quota for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/ 1/5

Con�gure a Pod Quota for a Namespace

This page shows how to set a quota for the total number of Pods that can run in a namespace. You

specify quotas in a ResourceQuota object.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Create a ResourceQuota

Before you begin
Create a namespace
Create a ResourceQuota
Clean up
What’s next

For cluster administrators
For app developers

kubectl create namespace quota-pod-example

http://localhost:4000/docs/api-reference/v1.7/#resourcequota-v1-core
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure a Pod Quota for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/ 2/5

Here is the con�guration �le for a ResourceQuota object:

quota-pod.yaml

Create the ResourceQuota:

View detailed information about the ResourceQuota:

The output shows that the namespace has a quota of two Pods, and that currently there are no

Pods; that is, none of the quota is used.

Here is the con�guration �le for a Deployment:

quota-pod-deployment.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: pod-demo
spec:
 hard:
 pods: "2"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-pod.yaml --na

kubectl get resourcequota pod-demo --namespace=quota-pod-example --output=yaml

spec:
 hard:
 pods: "2"
status:
 hard:
 pods: "2"
 used:
 pods: "0"

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-pod.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-pod-deployment.yaml

10/23/2017 Configure a Pod Quota for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/ 3/5

quota-pod-deployment.yaml

In the con�guration �le, replicas: 3 tells Kubernetes to attempt to create three Pods, all running

the same application.

Create the Deployment:

View detailed information about the Deployment:

The output shows that even though the Deployment speci�es three replicas, only two Pods were

created because of the quota.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: pod-quota-demo
spec:
 replicas: 3
 template:
 metadata:
 labels:
 purpose: quota-demo
 spec:
 containers:
 - name: pod-quota-demo
 image: nginx

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-pod-deploymen

kubectl get deployment pod-quota-demo --namespace=quota-pod-example --output=yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-pod-deployment.yaml

10/23/2017 Configure a Pod Quota for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/ 4/5

Clean up

Delete your namespace:

What’s next

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

spec:
 ...
 replicas: 3
...
status:
 availableReplicas: 2
...
lastUpdateTime: 2017-07-07T20:57:05Z
 message: 'unable to create pods: pods "pod-quota-demo-1650323038-" is forbidde
 exceeded quota: pod-demo, requested: pods=1, used: pods=2, limited: pods=2'

kubectl delete namespace quota-pod-example

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/
http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/

10/23/2017 Configure a Pod Quota for a Namespace - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/ 5/5

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Configure Quotas for API Objects - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/ 1/6

Con�gure Quotas for API Objects

This page shows how to con�gure quotas for API objects, including PersistentVolumeClaims and

Services. A quota restricts the number of objects, of a particular type, that can be created in a

namespace. You specify quotas in a ResourceQuota object.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest of

your cluster.

Before you begin
Create a namespace
Create a ResourceQuota
Create a PersistentVolumeClaim:
Attempt to create a second PersistentVolumeClaim:
Notes
Clean up
What’s next

For cluster administrators
For app developers

kubectl create namespace quota-object-example

http://localhost:4000/docs/api-reference/v1.7/#resourcequota-v1-core
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure Quotas for API Objects - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/ 2/6

Create a ResourceQuota

Here is the con�guration �le for a ResourceQuota object:

quota-objects.yaml

Create the ResourceQuota:

View detailed information about the ResourceQuota:

The output shows that in the quota-object-example namespace, there can be at most one

PersistentVolumeClaim, at most two Services of type LoadBalancer, and no Services of type

NodePort.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-quota-demo
spec:
 hard:
 persistentvolumeclaims: "1"
 services.loadbalancers: "2"
 services.nodeports: "0"

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-objects.yaml

kubectl get resourcequota object-quota-demo --namespace=quota-object-example --out

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-objects.yaml

10/23/2017 Configure Quotas for API Objects - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/ 3/6

Create a PersistentVolumeClaim:

Here is the con�guration �le for a PersistentVolumeClaim object:

quota-objects-pvc.yaml

Create the PersistentVolumeClaim:

Verify that the PersistentVolumeClaim was created:

The output shows that the PersistentVolumeClaim exists and has status Pending:

status:
 hard:
 persistentvolumeclaims: "1"
 services.loadbalancers: "2"
 services.nodeports: "0"
 used:
 persistentvolumeclaims: "0"
 services.loadbalancers: "0"
 services.nodeports: "0"

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc-quota-demo
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 3Gi

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-objects-pvc.y

kubectl get persistentvolumeclaims --namespace=quota-object-example

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-objects-pvc.yaml

10/23/2017 Configure Quotas for API Objects - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/ 4/6

Attempt to create a second PersistentVolumeClaim:

Here is the con�guration �le for a second PersistentVolumeClaim:

quota-objects-pvc-2.yaml

Attempt to create the second PersistentVolumeClaim:

The output shows that the second PersistentVolumeClaim was not created, because it would have

exceeded the quota for the namespace.

Notes

These are the strings used to identify API resources that can be constrained by quotas:

NAME STATUS
pvc-quota-demo Pending

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc-quota-demo-2
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 4Gi

kubectl create -f https://k8s.io/docs/tasks/administer-cluster/quota-objects-pvc-2

persistentvolumeclaims "pvc-quota-demo-2" is forbidden:
exceeded quota: object-quota-demo, requested: persistentvolumeclaims=1,
used: persistentvolumeclaims=1, limited: persistentvolumeclaims=1

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/quota-objects-pvc-2.yaml

10/23/2017 Configure Quotas for API Objects - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/ 5/6

String API Object

"pods" Pod

"services Service

"replicationcontrollers" ReplicationController

"resourcequotas" ResourceQuota

"secrets" Secret

"con�gmaps" Con�gMap

"persistentvolumeclaims" PersistentVolumeClaim

"services.nodeports" Service of type NodePort

"services.loadbalancers" Service of type LoadBalancer

Clean up

Delete your namespace:

What’s next

For cluster administrators

Con�gure Default Memory Requests and Limits for a Namespace

Con�gure Default CPU Requests and Limits for a Namespace

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

Con�gure Memory and CPU Quotas for a Namespace

Con�gure a Pod Quota for a Namespace

For app developers

kubectl delete namespace quota-object-example

http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-default-namespace/
http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-memory-cpu-namespace/
http://localhost:4000/docs/tasks/administer-cluster/quota-pod-namespace/

10/23/2017 Configure Quotas for API Objects - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/quota-api-object/ 6/6

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Con�gure Quality of Service for Pods

http://localhost:4000/docs/tasks/configure-pod-container/assign-memory-resource/
http://localhost:4000/docs/tasks/configure-pod-container/assign-cpu-resource/
http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/

10/23/2017 Advertise Opaque Integer Resources for a Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/ 1/6

Advertise Opaque Integer Resources for a
Node

This page shows how to specify opaque integer resources for a Node. Opaque integer resources

allow cluster administrators to advertise node-level resources that would otherwise be unknown to

Kubernetes.

DEPRECATION NOTICE: As of Kubernetes v1.8 , this has been deprecated

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Get the names of your Nodes

Before you begin
Get the names of your Nodes
Advertise a new opaque integer resource on one of your Nodes
Discussion

Storage example
Clean up
What’s next

For application developers
For cluster administrators

kubectl get nodes

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Advertise Opaque Integer Resources for a Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/ 2/6

Choose one of your Nodes to use for this exercise.

Advertise a new opaque integer resource on one of your
Nodes

To advertise a new opaque integer resource on a Node, send an HTTP PATCH request to the

Kubernetes API server. For example, suppose one of your Nodes has four dongles attached. Here’s

an example of a PATCH request that advertises four dongle resources for your Node.

Note that Kubernetes does not need to know what a dongle is or what a dongle is for. The preceding

PATCH request just tells Kubernetes that your Node has four things that you call dongles.

Start a proxy, so that you can easily send requests to the Kubernetes API server:

In another command window, send the HTTP PATCH request. Replace <your-node-name> with the

name of your Node:

PATCH /api/v1/nodes/<your-node-name>/status HTTP/1.1
Accept: application/json
Content-Type: application/json-patch+json
Host: k8s-master:8080

[
 {
 "op": "add",
 "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-dongle"
 "value": "4"
 }
]

kubectl proxy

curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "add", "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-i
http://localhost:8001/api/v1/nodes/<your-node-name>/status

10/23/2017 Advertise Opaque Integer Resources for a Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/ 3/6

Note: In the preceding request, ~1 is the encoding for the character / in the patch path. The

operation path value in JSON-Patch is interpreted as a JSON-Pointer. For more details, see IETF RFC

6901, section 3.

The output shows that the Node has a capacity of 4 dongles:

Describe your Node:

Once again, the output shows the dongle resource:

Now, application developers can create Pods that request a certain number of dongles. See Assign

Opaque Integer Resources to a Container.

Discussion

Opaque integer resources are similar to memory and CPU resources. For example, just as a Node

has a certain amount of memory and CPU to be shared by all components running on the Node, it

can have a certain number of dongles to be shared by all components running on the Node. And just

as application developers can create Pods that request a certain amount of memory and CPU, they

can create Pods that request a certain number of dongles.

Opaque integer resources are called opaque because Kubernetes does not know anything about

what they are. Kubernetes knows only that a Node has a certain number of them. They are called

"capacity": {
 "alpha.kubernetes.io/nvidia-gpu": "0",
 "cpu": "2",
 "memory": "2049008Ki",
 "pod.alpha.kubernetes.io/opaque-int-resource-dongle": "4",

kubectl describe node <your-node-name>

Capacity:
 alpha.kubernetes.io/nvidia-gpu: 0
 cpu: 2
 memory: 2049008Ki
 pod.alpha.kubernetes.io/opaque-int-resource-dongle: 4

https://tools.ietf.org/html/rfc6901
http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/

10/23/2017 Advertise Opaque Integer Resources for a Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/ 4/6

integer resources because they must be advertised in integer amounts. For example, a Node can

advertise four dongles, but not 4.5 dongles.

Storage example

Suppose a Node has 800 GiB of a special kind of disk storage. You could create a name for the

special storage, say opaque-int-resource-special-storage. Then you could advertise it in chunks of a

certain size, say 100 GiB. In that case, your Node would advertise that it has eight resources of type

opaque-int-resource-special-storage.

If you want to allow arbitrary requests for special storage, you could advertise special storage in

chunks of size 1 byte. In that case, you would advertise 800Gi resources of type opaque-int-resource-

special-storage.

Then a Container could request any number of bytes of special storage, up to 800Gi.

Clean up

Here is a PATCH request that removes the dongle advertisement from a Node.

Capacity:
 ...
 pod.alpha.kubernetes.io/opaque-int-resource-special-storage: 8

Capacity:
 ...
 pod.alpha.kubernetes.io/opaque-int-resource-special-storage: 800Gi

10/23/2017 Advertise Opaque Integer Resources for a Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/ 5/6

Start a proxy, so that you can easily send requests to the Kubernetes API server:

In another command window, send the HTTP PATCH request. Replace <your-node-name> with the

name of your Node:

Verify that the dongle advertisement has been removed:

What’s next

For application developers

Assign Opaque Integer Resources to a Container

For cluster administrators

PATCH /api/v1/nodes/<your-node-name>/status HTTP/1.1
Accept: application/json
Content-Type: application/json-patch+json
Host: k8s-master:8080

[
 {
 "op": "remove",
 "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-dongle"
 }
]

kubectl proxy

curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "remove", "path": "/status/capacity/pod.alpha.kubernetes.io~1opaqu
http://localhost:8001/api/v1/nodes/<your-node-name>/status

kubectl describe node <your-node-name> | grep dongle

http://localhost:4000/docs/tasks/configure-pod-container/opaque-integer-resource/

10/23/2017 Advertise Opaque Integer Resources for a Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/opaque-integer-resource-node/ 6/6

Con�gure Minimum and Maximum Memory Constraints for a Namespace

Con�gure Minimum and Maximum CPU Constraints for a Namespace

http://localhost:4000/docs/tasks/administer-cluster/memory-constraint-namespace/
http://localhost:4000/docs/tasks/administer-cluster/cpu-constraint-namespace/

10/23/2017 Control CPU Management Policies on the Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-management-policies/ 1/5

Control CPU Management Policies on the
Node

Kubernetes keeps many aspects of how pods execute on nodes abstracted from the user. This is by

design. However, some workloads require stronger guarantees in terms of latency and/or

performance in order to operate acceptably. The kubelet provides methods to enable more complex

workload placement policies while keeping the abstraction free from explicit placement directives.

CPU Management Policies

By default, the kubelet uses CFS quota to enforce pod CPU limits. When the node runs many CPU-

bound pods, the workload can move to different CPU cores depending on whether the pod is

throttled and which CPU cores are available at scheduling time. Many workloads are not sensitive to

this migration and thus work �ne without any intervention.

However, in workloads where CPU cache a�nity and scheduling latency signi�cantly affect workload

performance, the kubelet allows alternative CPU management policies to determine some

placement preferences on the node.

Con�guration

The CPU Manager is introduced as an alpha feature in Kubernetes v1.8. It must be explicitly enabled

in the kubelet feature gates: --feature-gates=CPUManager=true .

The CPU Manager policy is set with the --cpu-manager-policy kubelet option. There are two

supported policies:

none : the default, which represents the existing scheduling behavior.

CPU Management Policies
Con�guration
None policy
Static policy

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

10/23/2017 Control CPU Management Policies on the Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-management-policies/ 2/5

static : allows pods with certain resource characteristics to be granted increased CPU a�nity

and exclusivity on the node.

The CPU manager periodically writes resource updates through the CRI in order to reconcile in-

memory CPU assignments with cgroupfs. The reconcile frequency is set through a new Kubelet

con�guration value --cpu-manager-reconcile-period . If not speci�ed, it defaults to the same

duration as --node-status-update-frequency .

None policy

The none policy explicitly enables the existing default CPU a�nity scheme, providing no a�nity

beyond what the OS scheduler does automatically. Limits on CPU usage for Guaranteed pods are

enforced using CFS quota.

Static policy

The static policy allows containers in Guaranteed pods with integer CPU requests access to

exclusive CPUs on the node. This exclusivity is enforced using the cpuset cgroup controller.

Note: System services such as the container runtime and the kubelet itself can continue to

run on these exclusive CPUs. The exclusivity only extends to other pods.

Note: The alpha version of this policy does not guarantee static exclusive allocations across

Kubelet restarts.

This policy manages a shared pool of CPUs that initially contains all CPUs in the node. The amount

of exclusively allocatable CPUs is equal to the total number of CPUs in the node minus any CPU

reservations by the kubelet --kube-reserved or --system-reserved options. CPUs reserved by

these options are taken, in integer quantity, from the initial shared pool in ascending order by

physical core ID. This shared pool is the set of CPUs on which any containers in BestEffort and

Burstable pods run. Containers in Guaranteed pods with fractional CPU requests also run on

http://localhost:4000/docs/tasks/configure-pod-container/quality-service-pod/
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

10/23/2017 Control CPU Management Policies on the Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-management-policies/ 3/5

CPUs in the shared pool. Only containers that are both part of a Guaranteed pod and have integer

CPU requests are assigned exclusive CPUs.

Note: The kubelet requires a CPU reservation greater than zero be made using either

--kube-reserved and/or --system-reserved when the static policy is enabled. This is

because zero CPU reservation would allow the shared pool to become empty.

As Guaranteed pods whose containers �t the requirements for being statically assigned are

scheduled to the node, CPUs are removed from the shared pool and placed in the cpuset for the

container. CFS quota is not used to bound the CPU usage of these containers as their usage is

bound by the scheduling domain itself. In others words, the number of CPUs in the container cpuset

is equal to the integer CPU limit speci�ed in the pod spec. This static assignment increases CPU

a�nity and decreases context switches due to throttling for the CPU-bound workload.

Consider the containers in the following pod specs:

This pod runs in the BestEffort QoS class because no resource requests or limits are

speci�ed. It runs in the shared pool.

This pod runs in the Burstable QoS class because resource requests do not equal limits and

the cpu quantity is not speci�ed. It runs in the shared pool.

spec:
 containers:
 - name: nginx
 image: nginx

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

10/23/2017 Control CPU Management Policies on the Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-management-policies/ 4/5

This pod runs in the Burstable QoS class because resource requests do not equal limits . It

runs in the shared pool.

This pod runs in the Guaranteed QoS class because requests are equal to limits . And the

container’s resource limit for the CPU resource is an integer greater than or equal to one. The nginx

container is granted 2 exclusive CPUs.

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 requests:
 memory: "100Mi"
 cpu: "1"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 requests:
 memory: "200Mi"
 cpu: "2"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "1.5"
 requests:
 memory: "200Mi"
 cpu: "1.5"

10/23/2017 Control CPU Management Policies on the Node - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cpu-management-policies/ 5/5

This pod runs in the Guaranteed QoS class because requests are equal to limits . But the

container’s resource limit for the CPU resource is a fraction. It runs in the shared pool.

This pod runs in the Guaranteed QoS class because only limits are speci�ed and requests are

set equal to limits when not explicitly speci�ed. And the container’s resource limit for the CPU

resource is an integer greater than or equal to one.The nginx container is granted 2 exclusive CPUs.

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"

10/23/2017 Access Clusters Using the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/ 1/6

Access Clusters Using the Kubernetes API

This page shows how to access clusters using the Kubernetes API.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Accessing the cluster API

Accessing for the �rst time with kubectl

When accessing the Kubernetes API for the �rst time, use the Kubernetes command-line tool,

kubectl .

Before you begin
Accessing the cluster API

Accessing for the �rst time with kubectl
Directly accessing the REST API

Using kubectl proxy
Without kubectl proxy

Programmatic access to the API
Go client
Python client
Other languages

Accessing the API from a Pod

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Access Clusters Using the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/ 2/6

To access a cluster, you need to know the location of the cluster and have credentials to access it.

Typically, this is automatically set-up when you work through a Getting started guide, or someone

else setup the cluster and provided you with credentials and a location.

Check the location and credentials that kubectl knows about with this command:

Many of the examples provide an introduction to using kubectl. Complete documentation is found in

the kubectl manual.

Directly accessing the REST API

Kubectl handles locating and authenticating to the apiserver. If you want to directly access the REST

API with an http client like curl or wget , or a browser, there are multiple ways you can locate and

authenticate against the apiserver:

1. Run kubectl in proxy mode (recommended). This method is recommended, since it uses the

stored apiserver location abd veri�es the identity of the apiserver using a self-signed cert. No

Man-in-the-middle (MITM) attack is possible using this method .

2. Alternatively, you can provide the location and credentials directly to the http client. This works

with for client code that is confused by proxies. To protect against man in the middle attacks,

you’ll need to import a root cert into your browser.

Using the Go or Python client libraries provides accessing kubectl in proxy mode.

Using kubectl proxy

The following command runs kubectl in a mode where it acts as a reverse proxy. It handles locating

the apiserver and authenticating.

Run it like this:

See kubectl proxy for more details.

$ kubectl config view

$ kubectl proxy --port=8080 &

http://localhost:4000/docs/getting-started-guides/
https://github.com/kubernetes/examples/tree/master/
http://localhost:4000/docs/user-guide/kubectl/index
http://localhost:4000/docs/user-guide/kubectl/v1.6/#proxy

10/23/2017 Access Clusters Using the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/ 3/6

Then you can explore the API with curl, wget, or a browser, like so:

Without kubectl proxy

It is possible to avoid using kubectl proxy by passing an authentication token directly to the apiserver,

like this:

The above example uses the --insecure �ag. This leaves it subject to MITM attacks. When kubectl

accesses the cluster it uses a stored root certi�cate and client certi�cates to access the server.

(These are installed in the ~/.kube directory). Since cluster certi�cates are typically self-signed, it

may take special con�guration to get your http client to use root certi�cate.

$ curl http://localhost:8080/api/
{
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "10.0.1.149:443"
 }
]
}

$ APISERVER=$(kubectl config view | grep server | cut -f 2- -d ":" | tr -d " ")
$ TOKEN=$(kubectl describe secret $(kubectl get secrets | grep default | cut -f1 -
$ curl $APISERVER/api --header "Authorization: Bearer $TOKEN" --insecure
{
 "kind": "APIVersions",
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "10.0.1.149:443"
 }
]
}

10/23/2017 Access Clusters Using the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/ 4/6

On some clusters, the apiserver does not require authentication; it may serve on localhost, or be

protected by a �rewall. There is not a standard for this. Con�guring Access to the API describes how

a cluster admin can con�gure this. Such approaches may con�ict with future high-availability

support.

Programmatic access to the API

Kubernetes o�cially supports client libraries for Go and Python.

Go client

To get the library, run the following command:

go get k8s.io/client-go/<version number>/kubernetes See

https://github.com/kubernetes/client-go to see which versions are supported.

Write an application atop of the client-go clients. Note that client-go de�nes its own API objects,

so if needed, please import API de�nitions from client-go rather than from the main repository,

e.g., import "k8s.io/client-go/1.4/pkg/api/v1" is correct.

The Go client can use the same kubecon�g �le as the kubectl CLI does to locate and authenticate to

the apiserver. See this example:

If the application is deployed as a Pod in the cluster, please refer to the next section.

import (
 "fmt"
 "k8s.io/client-go/1.4/kubernetes"
 "k8s.io/client-go/1.4/pkg/api/v1"
 "k8s.io/client-go/1.4/tools/clientcmd"
)
...
 // uses the current context in kubeconfig
 config, _ := clientcmd.BuildConfigFromFlags("", "path to kubeconfig")
 // creates the clientset
 clientset, _:= kubernetes.NewForConfig(config)
 // access the API to list pods
 pods, _:= clientset.Core().Pods("").List(v1.ListOptions{})
 fmt.Printf("There are %d pods in the cluster\n", len(pods.Items))
...

http://localhost:4000/docs/admin/accessing-the-api
https://github.com/kubernetes/client-go
http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://git.k8s.io/client-go/examples/out-of-cluster-client-configuration/main.go

10/23/2017 Access Clusters Using the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/ 5/6

Python client

To use Python client, run the following command: pip install kubernetes See Python Client

Library page for more installation options.

The Python client can use the same kubecon�g �le as the kubectl CLI does to locate and

authenticate to the apiserver. See this example:

Other languages

There are client libraries for accessing the API from other languages. See documentation for other

libraries for how they authenticate.

Accessing the API from a Pod

When accessing the API from a pod, locating and authenticating to the API server are somewhat

different.

The recommended way to locate the apiserver within the pod is with the kubernetes DNS name,

which resolves to a Service IP which in turn will be routed to an apiserver.

The recommended way to authenticate to the apiserver is with a service account credential. By kube-

system, a pod is associated with a service account, and a credential (token) for that service account

is placed into the �lesystem tree of each container in that pod, at

/var/run/secrets/kubernetes.io/serviceaccount/token .

If available, a certi�cate bundle is placed into the �lesystem tree of each container at

/var/run/secrets/kubernetes.io/serviceaccount/ca.crt , and should be used to verify the

serving certi�cate of the apiserver.

from kubernetes import client, config

config.load_kube_config()

v1=client.CoreV1Api()
print("Listing pods with their IPs:")
ret = v1.list_pod_for_all_namespaces(watch=False)
for i in ret.items:
 print("%s\t%s\t%s" % (i.status.pod_ip, i.metadata.namespace, i.metadata.name))

https://github.com/kubernetes-incubator/client-python
https://github.com/kubernetes-incubator/client-python
http://localhost:4000/docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://github.com/kubernetes-incubator/client-python/tree/master/examples/example1.py
http://localhost:4000/docs/reference/client-libraries/
http://localhost:4000/docs/user-guide/service-accounts

10/23/2017 Access Clusters Using the Kubernetes API - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/ 6/6

Finally, the default namespace to be used for namespaced API operations is placed in a �le at

/var/run/secrets/kubernetes.io/serviceaccount/namespace in each container.

From within a pod the recommended ways to connect to API are:

run a kubectl proxy as one of the containers in the pod, or as a background process within a

container. This proxies the Kubernetes API to the localhost interface of the pod, so that other

processes in any container of the pod can access it. See this example of using kubectl proxy in a

pod.

use the Go client library, and create a client using the rest.InClusterConfig() and

kubernetes.NewForConfig() functions. They handle locating and authenticating to the

apiserver. example

In each case, the credentials of the pod are used to communicate securely with the apiserver.

https://github.com/kubernetes/examples/tree/master/staging/kubectl-container/
https://git.k8s.io/client-go/examples/in-cluster-client-configuration/main.go

10/23/2017 Access Services Running on Clusters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-services/ 1/4

Access Services Running on Clusters

This page shows how to connect to services running on the Kubernetes cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Accessing services running on the cluster

In Kubernetes, nodes, pods and services all have their own IPs. In many cases, the node IPs, pod IPs,

and some service IPs on a cluster will not be routable, so they will not be reachable from a machine

outside the cluster, such as your desktop machine.

Ways to connect

You have several options for connecting to nodes, pods and services from outside the cluster:

Access services through public IPs.

Before you begin
Accessing services running on the cluster

Ways to connect
Discovering builtin services

Manually constructing apiserver proxy URLs
Examples

Using web browsers to access services running on the cluster

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/admin/node
http://localhost:4000/docs/user-guide/pods
http://localhost:4000/docs/user-guide/services

10/23/2017 Access Services Running on Clusters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-services/ 2/4

Use a service with type NodePort or LoadBalancer to make the service reachable outside

the cluster. See the services and kubectl expose documentation.

Depending on your cluster environment, this may just expose the service to your corporate

network, or it may expose it to the internet. Think about whether the service being exposed

is secure. Does it do its own authentication?

Place pods behind services. To access one speci�c pod from a set of replicas, such as for

debugging, place a unique label on the pod it and create a new service which selects this

label.

In most cases, it should not be necessary for application developer to directly access nodes

via their nodeIPs.

Access services, nodes, or pods using the Proxy Verb.

Does apiserver authentication and authorization prior to accessing the remote service. Use

this if the services are not secure enough to expose to the internet, or to gain access to

ports on the node IP, or for debugging.

Proxies may cause problems for some web applications.

Only works for HTTP/HTTPS.

Described here.

Access from a node or pod in the cluster.

Run a pod, and then connect to a shell in it using kubectl exec. Connect to other nodes,

pods, and services from that shell.

Some clusters may allow you to ssh to a node in the cluster. From there you may be able to

access cluster services. This is a non-standard method, and will work on some clusters but

not others. Browsers and other tools may or may not be installed. Cluster DNS may not

work.

Discovering builtin services

Typically, there are several services which are started on a cluster by kube-system. Get a list of these

with the kubectl cluster-info command:

http://localhost:4000/docs/user-guide/services
http://localhost:4000/docs/user-guide/kubectl/v1.6/#expose
http://localhost:4000/docs/user-guide/kubectl/v1.6/#exec

10/23/2017 Access Services Running on Clusters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-services/ 3/4

This shows the proxy-verb URL for accessing each service. For example, this cluster has cluster-level

logging enabled (using Elasticsearch), which can be reached at

https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/

if suitable credentials are passed, or through a kubectl proxy at, for example:

http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/

. (See above for how to pass credentials or use kubectl proxy.)

Manually constructing apiserver proxy URLs

As mentioned above, you use the kubectl cluster-info command to retrieve the service’s proxy

URL. To create proxy URLs that include service endpoints, su�xes, and parameters, you simply

append to the service’s proxy URL: http:// kubernetes_master_address /api/v1/namespaces/

namespace_name /services/ service_name[:port_name] /proxy

If you haven’t speci�ed a name for your port, you don’t have to specify port_name in the URL

Examples

To access the Elasticsearch service endpoint _search?q=user:kimchy , you would use:

http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/_search?q=user:kimchy

To access the Elasticsearch cluster health information _cluster/health?pretty=true , you

would use:

$ kubectl cluster-info

 Kubernetes master is running at https://104.197.5.247
 elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube
 kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system
 kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/servi
 grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/servic
 heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/servi

10/23/2017 Access Services Running on Clusters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/access-cluster-services/ 4/4

https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/_cluster/health?pretty=true

Using web browsers to access services running on the cluster

You may be able to put an apiserver proxy URL into the address bar of a browser. However:

Web browsers cannot usually pass tokens, so you may need to use basic (password) auth.

Apiserver can be con�gured to accept basic auth, but your cluster may not be con�gured to

accept basic auth.

Some web apps may not work, particularly those with client side javascript that construct URLs

in a way that is unaware of the proxy path pre�x.

 {
 "cluster_name" : "kubernetes_logging",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5
 }

10/23/2017 Securing a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/securing-a-cluster/ 1/6

Securing a Cluster

This document covers topics related to protecting a cluster from accidental or malicious access and

provides recommendations on overall security.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Controlling access to the Kubernetes API

Before you begin
Controlling access to the Kubernetes API

Use Transport Level Security (TLS) for all API tra�c
API Authentication
API Authorization

Controlling the capabilities of a workload or user at runtime
Limiting resource usage on a cluster
Controlling what privileges containers run with
Restricting network access
Controlling which nodes pods may access

Protecting cluster components from compromise
Restrict access to etcd
Enable audit logging
Restrict access to alpha or beta features
Rotate infrastructure credentials frequently
Review third party integrations before enabling them
Encrypt secrets at rest
Receiving alerts for security updates and reporting vulnerabilities

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Securing a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/securing-a-cluster/ 2/6

As Kubernetes is entirely API driven, controlling and limiting who can access the cluster and what

actions they are allowed to perform is the �rst line of defense.

Use Transport Level Security (TLS) for all API tra�c

Kubernetes expects that all API communication in the cluster is encrypted by default with TLS, and

the majority of installation methods will allow the necessary certi�cates to be created and

distributed to the cluster components. Note that some components and installation methods may

enable local ports over HTTP and administrators should familiarize themselves with the settings of

each component to identify potentially unsecured tra�c.

API Authentication

Choose an authentication mechanism for the API servers to use that matches the common access

patterns when you install a cluster. For instance, small single user clusters may wish to use a simple

certi�cate or static Bearer token approach. Larger clusters may wish to integrate an existing or OIDC

or LDAP server that allow users to be subdivided into groups.

All API clients must be authenticated, even those that are part of the infrastructure like nodes,

proxies, the scheduler, and volume plugins. These clients are typically service accounts or use x509

client certi�cates, and they are created automatically at cluster startup or are setup as part of the

cluster installation.

Consult the authentication reference document for more information.

API Authorization

Once authenticated, every API call is also expected to pass an authorization check. Kubernetes ships

an integrated Role-Based Access Control (RBAC) component that matches an incoming user or

group to a set of permissions bundled into roles. These permissions combine verbs (get, create,

delete) with resources (pods, services, nodes) and can be namespace or cluster scoped. A set of out

of the box roles are provided that offer reasonable default separation of responsibility depending on

what actions a client might want to perform. It is recommended that you use the Node and RBAC

authorizers together, in combination with the NodeRestriction admission plugin.

As with authentication, simple and broad roles may be appropriate for smaller clusters, but as more

users interact with the cluster, it may become necessary to separate teams into separate

namespaces with more limited roles.

http://localhost:4000/docs/admin/service-accounts-admin/
http://localhost:4000/docs/admin/authentication/
http://localhost:4000/docs/admin/authorization/rbac/
http://localhost:4000/docs/admin/authorization/node/
http://localhost:4000/docs/admin/authorization/rbac/
http://localhost:4000/docs/admin/admission-controllers/#noderestriction

10/23/2017 Securing a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/securing-a-cluster/ 3/6

With authorization, it is important to understand how updates on one object may cause actions in

other places. For instance, a user may not be able to create pods directly, but allowing them to create

a deployment, which creates pods on their behalf, will let them create those pods indirectly. Likewise,

deleting a node from the API will result in the pods scheduled to that node being terminated and

recreated on other nodes. The out of the box roles represent a balance between �exibility and the

common use cases, but more limited roles should be carefully reviewed to prevent accidental

escalation. You can make roles speci�c to your use case if the out-of-box ones don’t meet your

needs.

Consult the authorization reference section for more information.

Controlling the capabilities of a workload or user at
runtime

Authorization in Kubernetes is intentionally high level, focused on coarse actions on resources. More

powerful controls exist as policies to limit by use case how those objects act on the cluster,

themselves, and other resources.

Limiting resource usage on a cluster

Resource quota limits the number or capacity of resources granted to a namespace. This is most

often used to limit the amount of CPU, memory, or persistent disk a namespace can allocate, but can

also control how many pods, services, or volumes exist in each namespace.

Limit ranges restrict the maximum or minimum size of some of the resources above, to prevent

users from requesting unreasonably high or low values for commonly reserved resources like

memory, or to provide default limits when none are speci�ed.

Controlling what privileges containers run with

A pod de�nition contains a security context that allows it to request access to running as a speci�c

Linux user on a node (like root), access to run privileged or access the host network, and other

controls that would otherwise allow it to run unfettered on a hosting node. Pod security policies can

limit which users or service accounts can provide dangerous security context settings. For example,

pod security policies can limit volume mounts, especially hostPath , which are aspects of a pod that

should be controlled.

http://localhost:4000/docs/admin/authorization/
http://localhost:4000/docs/concepts/policy/resource-quotas/
http://localhost:4000/docs/tasks/administer-cluster/memory-default-namespace/
http://localhost:4000/docs/tasks/configure-pod-container/security-context/
http://localhost:4000/docs/concepts/policy/pod-security-policy/

10/23/2017 Securing a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/securing-a-cluster/ 4/6

Generally, most application workloads need limited access to host resources so they can

successfully run as a root process (uid 0) without access to host information. However, considering

the privileges associated with the root user, you should write application containers to run as a non-

root user. Similarly, administrators who wish to prevent client applications from escaping their

containers should use a restrictive pod security policy.

Restricting network access

The network policies for a namespace allows application authors to restrict which pods in other

namespaces may access pods and ports within their namespaces. Many of the supported

Kubernetes networking providers now respect network policy.

Quota and limit ranges can also be used to control whether users may request node ports or load

balanced services, which on many clusters can control whether those users applications are visible

outside of the cluster.

Additional protections may be available that control network rules on a per plugin or per environment

basis, such as per-node �rewalls, physically separating cluster nodes to prevent cross talk, or

advanced networking policy.

Controlling which nodes pods may access

By default, there are no restrictions on which nodes may run a pod. Kubernetes offers a rich set of

policies for controlling placement of pods onto nodes and the taint based pod placement and

eviction that are available to end users. For many clusters use of these policies to separate

workloads can be a convention that authors adopt or enforce via tooling.

As an administrator, a beta admission plugin PodNodeSelector can be used to force pods within a

namespace to default or require a speci�c node selector, and if end users cannot alter namespaces,

this can strongly limit the placement of all of the pods in a speci�c workload.

Protecting cluster components from compromise

This section describes some common patterns for protecting clusters from compromise.

Restrict access to etcd

http://localhost:4000/docs/tasks/administer-cluster/declare-network-policy/
http://localhost:4000/docs/concepts/cluster-administration/networking/
http://localhost:4000/docs/concepts/configuration/assign-pod-node/
http://localhost:4000/docs/concepts/configuration/taint-and-toleration

10/23/2017 Securing a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/securing-a-cluster/ 5/6

Write access to the etcd backend for the API is equivalent to gaining root on the entire cluster, and

read access can be used to escalate fairly quickly. Administrators should always use strong

credentials from the API servers to their etcd server, such as mutual auth via TLS client certi�cates,

and it is often recommended to isolate the etcd servers behind a �rewall that only the API servers

may access.

CAUTION: Allowing other components within the cluster to access the master etcd instance with

read or write access to the full keyspace is equivalent to granting cluster-admin access. Using

separate etcd instances for non-master components or using etcd ACLs to restrict read and write

access to a subset of the keyspace is strongly recommended.

Enable audit logging

The audit logger is an alpha feature that records actions taken by the API for later analysis in the

event of a compromise. It is recommended to enable audit logging and archive the audit �le on a

secure server.

Restrict access to alpha or beta features

Alpha and beta Kubernetes features are in active development and may have limitations or bugs that

result in security vulnerabilities. Always assess the value an alpha or beta feature may provide

against the possible risk to your security posture. When in doubt, disable features you do not use.

Rotate infrastructure credentials frequently

The shorter the lifetime of a secret or credential the harder it is for an attacker to make use of that

credential. Set short lifetimes on certi�cates and automate their rotation. Use an authentication

provider that can control how long issued tokens are available and use short lifetimes where

possible. If you use service account tokens in external integrations, plan to rotate those tokens

frequently. For example, once the bootstrap phase is complete, a bootstrap token used for setting up

nodes should be revoked or its authorization removed.

Review third party integrations before enabling them

Many third party integrations to Kubernetes may alter the security pro�le of your cluster. When

enabling an integration, always review the permissions that an extension requests before granting it

access. For example, many security integrations may request access to view all secrets on your

http://localhost:4000/docs/admin/audit/

10/23/2017 Securing a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/securing-a-cluster/ 6/6

cluster which is effectively making that component a cluster admin. When in doubt, restrict the

integration to functioning in a single namespace if possible.

Components that create pods may also be unexpectedly powerful if they can do so inside

namespaces like the kube-system namespace, because those pods can gain access to service

account secrets or run with elevated permissions if those service accounts are granted access to

permissive pod security policies.

Encrypt secrets at rest

In general, the etcd database will contain any information accessible via the Kubernetes API and may

grant an attacker signi�cant visibility into the state of your cluster. Always encrypt your backups

using a well reviewed backup and encryption solution, and consider using full disk encryption where

possible.

Kubernetes 1.7 contains encryption at rest, an alpha feature that will encrypt Secret resources in

etcd, preventing parties that gain access to your etcd backups from viewing the content of those

secrets. While this feature is currently experimental, it may offer an additional level of defense when

backups are not encrypted or an attacker gains read access to etcd.

Receiving alerts for security updates and reporting vulnerabilities

Join the kubernetes-announce group for emails about security announcements. See the security

reporting page for more on how to report vulnerabilities.

http://localhost:4000/docs/concepts/policy/pod-security-policy/
http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/
https://groups.google.com/forum/#!forum/kubernetes-announce
http://localhost:4000/security/

10/23/2017 Encrypting data at rest - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/ 1/6

Encrypting data at rest

This page shows how to enable and con�gure encryption of secret data at rest.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Kubernetes version 1.7.0 or later is required

etcd v3 or later is required

Encryption at rest is alpha in 1.7.0 which means it may change without notice. Users may be

required to decrypt their data prior to upgrading to 1.8.0.

Con�guration and determining whether encryption at
rest is already enabled

Before you begin
Con�guration and determining whether encryption at rest is already enabled
Understanding the encryption at rest con�guration.

Providers:
Encrypting your data
Verifying that data is encrypted
Ensure all secrets are encrypted
Rotating a decryption key
Decrypting all data

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Encrypting data at rest - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/ 2/6

The kube-apiserver process accepts an argument

--experimental-encryption-provider-config that controls how API data is encrypted in etcd.

An example con�guration is provided below.

Understanding the encryption at rest con�guration.

Each resources array item is a separate con�g and contains a complete con�guration. The

resources.resources �eld is an array of Kubernetes resource names (resource or

resource.group) that should be encrypted. The providers array is an ordered list of the possible

encryption providers. Only one provider type may be speci�ed per entry (identity or aescbc may

be provided, but not both in the same item).

The �rst provider in the list is used to encrypt resources going into storage. When reading resources

from storage each provider that matches the stored data attempts to decrypt the data in order. If no

provider can read the stored data due to a mismatch in format or secret key, an error is returned

which prevents clients from accessing that resource.

kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - identity: {}
 - aesgcm:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - aescbc:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - secretbox:
 keys:
 - name: key1
 secret: YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY=

10/23/2017 Encrypting data at rest - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/ 3/6

IMPORTANT: If any resource is not readable via the encryption con�g (because keys were changed),

the only recourse is to delete that key from the underlying etcd directly. Calls that attempt to read

that resource will fail until it is deleted or a valid decryption key is provided.

Providers:

Name Encryption Strength Speed Key
Length Other Considerations

identity None N/A N/A N/A
Resources written as-is without encryption. When set
as the �rst provider, the resource will be decrypted as
new values are written.

aescbc
AES-CBC
with PKCS#7
padding

Strongest Fast 32-byte
The recommended choice for encryption at rest but

may be slightly slower than secretbox .

secretbox
XSalsa20
and
Poly1305

Strong Faster 32-byte
A newer standard and may not be considered
acceptable in environments that require high levels of
review.

aesgcm
AES-GCM
with random
nonce

Must be
rotated every
200k writes

Fastest
16, 24,
or 32-
byte

Is not recommended for use except when an
automated key rotation scheme is implemented.

Each provider supports multiple keys - the keys are tried in order for decryption, and if the provider is

the �rst provider, the �rst key is used for encryption.

Encrypting your data

Create a new encryption con�g �le:

kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - aescbc:
 keys:
 - name: key1
 secret: <BASE 64 ENCODED SECRET>
 - identity: {}

10/23/2017 Encrypting data at rest - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/ 4/6

To create a new secret perform the following steps:

1. Generate a 32 byte random key and base64 encode it. If you’re on Linux or Mac OS X, run the

following command:

head -c 32 /dev/urandom | base64

2. Place that value in the secret �eld.

3. Set the --experimental-encryption-provider-config �ag on the kube-apiserver to point

to the location of the con�g �le.

4. Restart your API server.

IMPORTANT: Your con�g �le contains keys that can decrypt content in etcd, so you must properly

restrict permissions on your masters so only the user who runs the kube-apiserver can read it.

Verifying that data is encrypted

Data is encrypted when written to etcd. After restarting your kube-apiserver , any newly created or

updated secret should be encrypted when stored. To check, you can use the etcdctl command

line program to retrieve the contents of your secret.

1. Create a new secret called secret1 in the default namespace:

kubectl create secret generic secret1 -n default --from-literal=mykey=mydata

2. Using the etcdctl commandline, read that secret out of etcd:

ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] |

hexdump -C

where [...] must be the additional arguments for connecting to the etcd server.

3. Verify the stored secret is pre�xed with k8s:enc:aescbc:v1: which indicates the aescbc

provider has encrypted the resulting data.

4. Verify the secret is correctly decrypted when retrieved via the API:

kubectl describe secret secret1 -n default

10/23/2017 Encrypting data at rest - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/ 5/6

should match mykey: mydata

Ensure all secrets are encrypted

Since secrets are encrypted on write, performing an update on a secret will encrypt that content.

The command above reads all secrets and then updates them to apply server side encryption. If an

error occurs due to a con�icting write, retry the command. For larger clusters, you may wish to

subdivide the secrets by namespace or script an update.

Rotating a decryption key

Changing the secret without incurring downtime requires a multi step operation, especially in the

presence of a highly available deployment where multiple kube-apiserver processes are running.

1. Generate a new key and add it as the second key entry for the current provider on all servers

2. Restart all kube-apiserver processes to ensure each server can decrypt using the new key

3. Make the new key the �rst entry in the keys array so that it is used for encryption in the con�g

4. Restart all kube-apiserver processes to ensure each server now encrypts using the new key

5. Run kubectl get secrets -o json | kubectl replace -f - to encrypt all existing secrets

with the new key

6. Remove the old decryption key from the con�g after you back up etcd with the new key in use

and update all secrets

With a single kube-apiserver , step 2 may be skipped.

Decrypting all data

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

10/23/2017 Encrypting data at rest - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/encrypt-data/ 6/6

To disable encryption at rest place the identity provider as the �rst entry in the con�g:

and restart all kube-apiserver processes. Then run the command

kubectl get secrets -o json | kubectl replace -f - to force all secrets to be decrypted.

kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - identity: {}
 - aescbc:
 keys:
 - name: key1
 secret: <BASE 64 ENCODED SECRET>

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 1/12

Operating etcd clusters for Kubernetes

etcd is a strong, consistent, and highly-available key value store which Kubernetes uses for

persistent storage of all of its API objects. This documentation provides speci�c instruction on

operating, upgrading, and rolling back etcd clusters for Kubernetes. For in-depth information on etcd,

see etcd documentation.

Prerequisites

Run etcd as a cluster of odd members.

etcd is a leader-based distributed system. Ensure that the leader periodically send heartbeats on

time to all followers to keep the cluster stable.

Ensure that no resource starvation occurs.

Performance and stability of the cluster is sensitive to network and disk IO. Any resource

starvation can lead to heartbeat timeout, causing instability of the cluster. An unstable etcd

indicates that no leader is elected. Under such circumstances, a cluster cannot make any

changes to its current state, which implies no new pods can be scheduled.

Keeping stable etcd clusters is critical to the stability of Kubernetes clusters. Therefore, run etcd

clusters on dedicated machines or isolated environments for guaranteed resource requirements.

Resource requirements

Operating etcd with limited resources is suitable only for testing purposes. For deploying in

production, advanced hardware con�guration is required. Before deploying etcd in production, see

resource requirement reference documentation.

Starting Kubernetes API server

https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/hardware.md#hardware-recommendations
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/hardware.md#example-hardware-configurations

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 2/12

This section covers starting a Kubernetes API server with an etcd cluster in the deployment.

Single-node etcd cluster

Use a single-node etcd cluster only for testing purpose.

1. Run the following:

bash ./etcd --client-listen-urls=http://$PRIVATE_IP:2379 --client-advertise-

urls=http://$PRIVATE_IP:2379

2. Start Kubernetes API server with the �ag --etcd-servers=$PRIVATE_IP:2379 .

Replace PRIVATE_IP with your etcd client IP.

Multi-node etcd cluster

For durability and high availability, run etcd as a multi-node cluster in production and back it up

periodically. A �ve-member cluster is recommended in production. For more information, see FAQ

Documentation.

Con�gure an etcd cluster either by static member information or by dynamic discovery. For more

information on clustering, see etcd Clustering Documentation.

For an example, consider a �ve-member etcd cluster running with the following client URLs:

http://$IP1:2379 , http://$IP2:2379 , http://$IP3:2379 , http://$IP4:2379 , and

http://$IP5:2379 . To start a Kubernetes API server:

1. Run the following:

2. Start Kubernetes API servers with the �ag

--etcd-servers=$IP1:2379, $IP2:2379, $IP3:2379, $IP4:2379, $IP5:2379 .

Replace IP with your client IP addresses.

Multi-node etcd cluster with load balancer

./etcd --client-listen-urls=http://$IP1:2379, http://$IP2:2379, http://$IP3:237

https://github.com/coreos/etcd/blob/master/Documentation/faq.md#what-is-failure-tolerance
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering.md

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 3/12

To run a load balancing etcd cluster:

1. Set up an etcd cluster.

2. Con�gure a load balancer in front of the etcd cluster. For example, let the address of the load

balancer be $LB .

3. Start Kubernetes API Servers with the �ag --etcd-servers=$LB:2379 .

Securing etcd clusters

Access to etcd is equivalent to root permission in the cluster so ideally only the API server should

have access to it. Considering the sensitivity of the data, it is recommended to grant permission to

only those nodes that require access to etcd clusters.

To secure etcd, either set up �rewall rules or use the security features provided by etcd. etcd security

features depend on x509 Public Key Infrastructure (PKI). To begin, establish secure communication

channels by generating a key and certi�cate pair. For example, use key pairs peer.key and

peer.cert for securing communication between etcd members, and client.key and

client.cert for securing communication between etcd and its clients. See the example scripts

provided by the etcd project to generate key pairs and CA �les for client authentication.

Securing communication

To con�gure etcd with secure peer communication, specify �ags --peer-key-file=peer.key and

--peer-cert-file=peer.cert , and use https as URL schema.

Similarly, to con�gure etcd with secure client communication, specify �ags --key-file=peer.key

and --cert-file=peer.cert , and use https as URL schema.

Limiting access of etcd clusters

After con�guring secure communication, restrict the access of etcd cluster to only the Kubernetes

API server. Use TLS authentication to do so.

https://github.com/coreos/etcd/tree/master/hack/tls-setup

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 4/12

For example, consider key pairs k8sclient.key and k8sclient.cert that are trusted by the CA

etcd.ca . When etcd is con�gured with --client-cert-auth along with TLS, it veri�es the

certi�cates from clients by using system CAs or the CA passed in by --trusted-ca-file �ag.

Specifying �ags --client-cert-auth=true and --trust-ca-file=etcd.ca will restrict the

access to clients with the certi�cate k8sclient.cert .

Once etcd is con�gured correctly, only clients with valid certi�cates can access it. To give

Kubernetes API server the access, con�gure it with the �ags --etcd-certfile=k8sclient.cert

and --etcd-keyfile=k8sclient.key .

Note: etcd authentication is not currently supported by Kubernetes. For more information, see the

related issue Support Basic Auth for Etcd v2.

Replacing a failed etcd member

etcd cluster achieves high availability by tolerating minor member failures. However, to improve the

overall health of the cluster, replace failed members immediately. When multiple members fail,

replace them one by one. Replacing a failed member involves two steps: removing the failed

member and adding a new member.

Though etcd keeps unique member IDs internally, it is recommended to use a unique name for each

member to avoid human errors. For example, consider a three-member etcd cluster. Let the URLs be,

member1=http://10.0.0.1, member2=http://10.0.0.2, and member3=http://10.0.0.3. When member1

fails, replace it with member4=http://10.0.0.4.

1. Get the member ID of the failed member1:

etcdctl --endpoints=http://10.0.0.2,http://10.0.0.3 member list

The following message is displayed:

 8211f1d0f64f3269, started, member1, http://10.0.0.1:12380, http://10.0.0.1:237

 91bc3c398fb3c146, started, member2, http://10.0.0.1:2380, http://10.0.0.2:2379

 fd422379fda50e48, started, member3, http://10.0.0.1:2380, http://10.0.0.3:2379

https://github.com/kubernetes/kubernetes/issues/23398

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 5/12

2. Remove the failed member:

etcdctl member remove 8211f1d0f64f3269

The following message is displayed:

3. Add the new member:

./etcdctl member add member4 --peer-urls=http://10.0.0.4:2380

The following message is displayed:

4. Start the newly added member on a machine with the IP 10.0.0.4 :

bash export ETCD_NAME="member4" export

ETCD_INITIAL_CLUSTER="member2=http://10.0.0.2:2380,member3=http://10.0.0.3:2380,me

export ETCD_INITIAL_CLUSTER_STATE=existing etcd [flags]

5. Do either of the following:

1. Update its --etcd-servers �ag to make Kubernetes aware of the con�guration changes,

then restart the Kubernetes API server.

2. Update the load balancer con�guration if a load balancer is used in the deployment.

For more information on cluster recon�guration, see etcd Recon�guration Documentation.

Backing up an etcd cluster

All Kubernetes objects are stored on etcd. Periodically backing up the etcd cluster data is important

to recover Kubernetes clusters under disaster scenarios, such as losing all master nodes. The

snapshot �le contains all the Kubernetes states and critical information. In order to keep the

sensitive Kubernetes data safe, encrypt the snapshot �les.

Removed member 8211f1d0f64f3269 from cluster

Member 2be1eb8f84b7f63e added to cluster ef37ad9dc622a7c4

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-configuration.md#remove-a-member

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 6/12

Backing up an etcd cluster can be accomplished in two ways: etcd built-in snapshot and volume

snapshot.

Built-in snapshot

etcd supports built-in snapshot, so backing up an etcd cluster is easy. A snapshot may either be

taken from a live member with the etcdctl snapshot save command or by copying the

member/snap/db �le from an etcd data directory that is not currently used by an etcd process.

datadir is located at $DATA_DIR/member/snap/db . Taking the snapshot will normally not affect

the performance of the member.

Below is an example for taking a snapshot of the keyspace served by $ENDPOINT to the �le

snapshotdb :

Volume snapshot

If etcd is running on a storage volume that supports backup, such as Amazon Elastic Block Store,

back up etcd data by taking a snapshot of the storage volume.

Scaling up etcd clusters

Scaling up etcd clusters increases availability by trading off performance. Scaling does not increase

cluster performance nor capability. A general rule is not to scale up or down etcd clusters. Do not

con�gure any auto scaling groups for etcd clusters. It is highly recommended to always run a static

�ve-member etcd cluster for production Kubernetes clusters at any o�cially supported scale.

ETCDCTL_API=3 etcdctl --endpoints $ENDPOINT snapshot save snapshotdb
exit 0

verify the snapshot
ETCDCTL_API=3 etcdctl --write-out=table snapshot status snapshotdb
+----------+----------+------------+------------+
| HASH | REVISION | TOTAL KEYS | TOTAL SIZE |
+----------+----------+------------+------------+
| fe01cf57 | 10 | 7 | 2.1 MB |
+----------+----------+------------+------------+

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#--data-dir

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 7/12

A reasonable scaling is to upgrade a three-member cluster to a �ve-member one, when more

reliability is desired. See etcd Recon�guration Documentation for information on how to add

members into an existing cluster.

Restoring an etcd cluster

etcd supports restoring from snapshots that are taken from an etcd process of the major.minor

version. Restoring a version from a different patch version of etcd also is supported. A restore

operation is employed to recover the data of a failed cluster.

Before starting the restore operation, a snapshot �le must be present. It can either be a snapshot �le

from a previous backup operation, or from a remaining data directory. datadir is located at

$DATA_DIR/member/snap/db . For more information and examples on restoring a cluster from a

snapshot �le, see etcd disaster recovery documentation.

If the access URLs of the restored cluster is changed from the previous cluster, the Kubernetes API

server must be recon�gured accordingly. In this case, restart Kubernetes API server with the �ag

--etcd-servers=$NEW_ETCD_CLUSTER instead of the �ag --etcd-servers=$OLD_ETCD_CLUSTER .

Replace $NEW_ETCD_CLUSTER and $OLD_ETCD_CLUSTER with the respective IP addresses. If a load

balancer is used in front of an etcd cluster, you might need to update the load balancer instead.

If the majority of etcd members have permanently failed, the etcd cluster is considered failed. In this

scenario, Kubernetes cannot make any changes to its current state. Although the scheduled pods

might continue to run, no new pods can be scheduled. In such cases, recover the etcd cluster and

potentially recon�gure Kubernetes API server to �x the issue.

Upgrading and rolling back etcd clusters

Important assumptions

The upgrade procedure described in this document assumes that either:

1. The etcd cluster has only a single node.

2. The etcd cluster has multiple nodes.

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-configuration.md#remove-a-member
http://semver.org/
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#--data-dir
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/recovery.md#restoring-a-cluster

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 8/12

In this case, the upgrade procedure requires shutting down the etcd cluster. During the time the

etcd cluster is shut down, the Kubernetes API Server will be read only.

Warning: Deviations from the assumptions are untested by continuous integration, and deviations

might create undesirable consequences. Additional information about operating an etcd cluster is

available from the etcd maintainers.

Background

As of Kubernetes version 1.5.1, we are still using etcd from the 2.2.1 release with the v2 API. Also, we

have no pre-existing process for updating etcd, as we have never updated etcd by either minor or

major version.

Note that we need to migrate both the etcd versions that we are using (from 2.2.1 to at least 3.0.x)

as well as the version of the etcd API that Kubernetes talks to. The etcd 3.0.x binaries support both

the v2 and v3 API.

This document describes how to do this migration. If you want to skip the background and cut right

to the procedure, see Upgrade Procedure.

etcd upgrade requirements

There are requirements on how an etcd cluster upgrade can be performed. The primary

considerations are: - Upgrade between one minor release at a time - Rollback supported through

additional tooling

One minor release at a time

Upgrade only one minor release at a time. For example, we cannot upgrade directly from 2.1.x to

2.3.x. Within patch releases it is possible to upgrade and downgrade between arbitrary versions.

Starting a cluster for any intermediate minor release, waiting until the cluster is healthy, and then

shutting down the cluster down will perform the migration. For example, to upgrade from version

2.1.x to 2.3.y, it is enough to start etcd in 2.2.z version, wait until it is healthy, stop it, and then start

the 2.3.y version.

Rollback via additional tooling

https://github.com/coreos/etcd/tree/master/Documentation

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 9/12

Versions 3.0+ of etcd do not support general rollback. That is, after migrating from M.N to M.N+1,

there is no way to go back to M.N. The etcd team has provided a custom rollback tool but the

rollback tool has these limitations:

This custom rollback tool is not part of the etcd repo and does not receive the same testing as

the rest of etcd. We are testing it in a couple of end-to-end tests. There is only community

support here.

The rollback can be done only from the 3.0.x version (that is using the v3 API) to the 2.2.1

version (that is using the v2 API).

The tool only works if the data is stored in application/json format.

Rollback doesn’t preserve resource versions of objects stored in etcd.

Warning: If the data is not kept in application/json format (see Upgrade Procedure), you will lose

the option to roll back to etcd 2.2.

The last bullet means that any component or user that has some logic depending on resource

versions may require restart after etcd rollback. This includes that all clients using the watch API,

which depends on resource versions. Since both the kubelet and kube-proxy use the watch API, a

rollback might require restarting all Kubernetes components on all nodes.

Note: At the time of writing, both Kubelet and KubeProxy are using “resource version” only for

watching (i.e. are not using resource versions for anything else). And both are using re�ector and/or

informer frameworks for watching (i.e. they don’t send watch requests themselves). Both those

frameworks if they can’t renew watch, they will start from “current version” by doing “list + watch

from the resource version returned by list”. That means that if the apiserver will be down for the

period of rollback, all of node components should basically restart their watches and start from

“now” when apiserver is back. And it will be back with new resource version. That would mean that

restarting node components is not needed. But the assumptions here may not hold forever.

Design

This section describes how we are going to do the migration, given the etcd upgrade requirements.

Note that because the code changes in Kubernetes code needed to support the etcd v3 API are local

and straightforward, we do not focus on them at all. We focus only on the upgrade/rollback here.

https://git.k8s.io/kubernetes/cluster/images/etcd/rollback

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 10/12

New etcd Docker image

We decided to completely change the content of the etcd image and the way it works. So far, the

Docker image for etcd in version X has contained only the etcd and etcdctl binaries.

Going forward, the Docker image for etcd in version X will contain multiple versions of etcd. For

example, the 3.0.17 image will contain the 2.2.1, 2.3.7, and 3.0.17 binaries of etcd and etcdctl. This

will allow running etcd in multiple different versions using the same Docker image.

Additionally, the image will contain a custom script, written by the Kubernetes team, for doing

migration between versions. The image will also contain the rollback tool provided by the etcd team.

Migration script

The migration script that will be part of the etcd Docker image is a bash script that works as follows:

1. Detect which version of etcd we were previously running. For that purpose, we have added a

dedicated �le, version.txt , that holds that information and is stored in the etcd-data-speci�c

directory, next to the etcd data. If the �le doesn’t exist, we default it to version 2.2.1.

2. If we are in version 2.2.1 and are supposed to upgrade, backup data.

3. Based on the detected previous etcd version and the desired one (communicated via

environment variable), do the upgrade steps as needed. This means that for every minor etcd

release greater than the detected one and less than or equal to the desired one:

1. Start etcd in that version.

2. Wait until it is healthy. Healthy means that you can write some data to it.

3. Stop this etcd. Note that this etcd will not listen on the default etcd port. It is hard coded to

listen on ports that the API server is not con�gured to connect to, which means that API

server won’t be able to connect to it. Assuming no other client goes out of its way to try to

connect and write to this obscure port, no new data will be written during this period.

4. If the desired API version is v3 and the detected version is v2, do the o�ine migration from the

v2 to v3 data format. For that we use two tools:

1. ./etcdctl migrate: This is the o�cial tool for migration provided by the etcd team.

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 11/12

2. A custom script that is attaching TTLs to events in the etcd. Note that etcdctl migrate

doesn’t support TTLs.

5. After every successful step, update contents of the version �le. This will protect us from the

situation where something crashes in the meantime ,and the version �le gets completely

unsynchronized with the real data. Note that it is safe if the script crashes after the step is done

and before the �le is updated. This will only result in redoing one step in the next try.

All the previous steps are for the case where the detected version is less than or equal to the desired

version. In the opposite case, that is for a rollback, the script works as follows:

1. Verify that the detected version is 3.0.x with the v3 API, and the desired version is 2.2.1 with the

v2 API. We don’t support any other rollback.

2. If so, we run the custom tool provided by etcd team to do the o�ine rollback. This tool reads the

v3 formatted data and writes it back to disk in v2 format.

3. Finally update the contents of the version �le.

Upgrade procedure

Simply modify the command line in the etcd manifest to:

1. Run the migration script. If the previously run version is already in the desired version, this will be

no-op.

2. Start etcd in the desired version.

Starting in Kubernetes version 1.6, this has been done in the manifests for new Google Compute

Engine clusters. You should also specify these environment variables. In particular,you must keep

STORAGE_MEDIA_TYPE set to application/json if you wish to preserve the option to roll back.

To roll back, use these:

TARGET_STORAGE=etcd3
ETCD_IMAGE=3.0.17
TARGET_VERSION=3.0.17
STORAGE_MEDIA_TYPE=application/json

10/23/2017 Operating etcd clusters for Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-upgrade-etcd/ 12/12

Notes for etcd Version 2.2.1

Default con�guration

The default setup scripts use kubelet’s �le-based static pods feature to run etcd in a pod. This

manifest should only be run on master VMs. The default location that kubelet scans for manifests is

/etc/kubernetes/manifests/ .

Kubernetes’s usage of etcd

By default, Kubernetes objects are stored under the /registry key in etcd. This path can be

pre�xed by using the kube-apiserver �ag --etcd-prefix="/foo" .

etcd is the only place that Kubernetes keeps state.

Troubleshooting

To test whether etcd is running correctly, you can try writing a value to a test key. On your master

VM (or somewhere with �rewalls con�gured such that you can talk to your cluster’s etcd), try:

TARGET_STORAGE=etcd2
ETCD_IMAGE=3.0.17
TARGET_VERSION=2.2.1
STORAGE_MEDIA_TYPE=application/json

curl -X PUT "http://${host}:${port}/v2/keys/_test"

http://releases.k8s.io/master/cluster/saltbase/salt/etcd/etcd.manifest
http://localhost:4000/docs/admin/kube-apiserver

10/23/2017 Static Pods - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/static-pod/ 1/4

Static Pods

If you are running clustered Kubernetes and are using static pods to run a pod on every node, you

should probably be using a DaemonSet!

Static pods are managed directly by kubelet daemon on a speci�c node, without API server observing

it. It does not have associated any replication controller, kubelet daemon itself watches it and

restarts it when it crashes. There is no health check though. Static pods are always bound to one

kubelet daemon and always run on the same node with it.

Kubelet automatically creates so-called mirror pod on Kubernetes API server for each static pod, so

the pods are visible there, but they cannot be controlled from the API server.

Static pod creation

Static pod can be created in two ways: either by using con�guration �le(s) or by HTTP.

Con�guration �les

The con�guration �les are just standard pod de�nition in json or yaml format in speci�c directory.

Use kubelet --pod-manifest-path=<the directory> to start kubelet daemon, which

periodically scans the directory and creates/deletes static pods as yaml/json �les appear/disappear

there. Note that kubelet will ignore �les starting with dots when scanning the speci�ed directory.

For example, this is how to start a simple web server as a static pod:

1. Choose a node where we want to run the static pod. In this example, it’s my-node1 .

[joe@host ~] $ ssh my-node1

2. Choose a directory, say /etc/kubelet.d and place a web server pod de�nition there, e.g.

/etc/kubelet.d/static-web.yaml :

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Static Pods - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/static-pod/ 2/4

[root@my-node1 ~] $ mkdir /etc/kubelet.d/ [root@my-node1 ~] $ cat <<EOF

>/etc/kubelet.d/static-web.yaml apiVersion: v1 kind: Pod metadata: name:

static-web labels: role: myrole spec: containers: - name: web image: nginx

ports: - name: web containerPort: 80 protocol: TCP EOF

3. Con�gure your kubelet daemon on the node to use this directory by running it with

--pod-manifest-path=/etc/kubelet.d/ argument. On Fedora edit

/etc/kubernetes/kubelet to include this line:

KUBELET_ARGS="--cluster-dns=10.254.0.10 --cluster-domain=kube.local --pod-

manifest-path=/etc/kubelet.d/"

Instructions for other distributions or Kubernetes installations may vary.

4. Restart kubelet. On Fedora, this is:

[root@my-node1 ~] $ systemctl restart kubelet

Pods created via HTTP

Kubelet periodically downloads a �le speci�ed by --manifest-url=<URL> argument and interprets

it as a json/yaml �le with a pod de�nition. It works the same as

--pod-manifest-path=<directory> , i.e. it’s reloaded every now and then and changes are applied

to running static pods (see below).

Behavior of static pods

When kubelet starts, it automatically starts all pods de�ned in directory speci�ed in

--pod-manifest-path= or --manifest-url= arguments, i.e. our static-web. (It may take some

time to pull nginx image, be patient…):

[joe@my-node1 ~] $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f6d05272b57e nginx:latest "nginx" 8 minutes ago Up 8 minutes k8s_we

10/23/2017 Static Pods - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/static-pod/ 3/4

If we look at our Kubernetes API server (running on host my-master), we see that a new mirror-pod

was created there too:

Labels from the static pod are propagated into the mirror-pod and can be used as usual for �ltering.

Notice we cannot delete the pod with the API server (e.g. via kubectl command), kubelet simply

won’t remove it.

Back to our my-node1 host, we can try to stop the container manually and see, that kubelet

automatically restarts it in a while:

Dynamic addition and removal of static pods

Running kubelet periodically scans the con�gured directory (/etc/kubelet.d in our example) for

changes and adds/removes pods as �les appear/disappear in this directory.

[joe@host ~] $ ssh my-master
[joe@my-master ~] $ kubectl get pods
NAME READY STATUS RESTARTS AGE
static-web-my-node1 1/1 Running 0 2m

[joe@my-master ~] $ kubectl delete pod static-web-my-node1
pod "static-web-my-node1" deleted
[joe@my-master ~] $ kubectl get pods
NAME READY STATUS RESTARTS AGE
static-web-my-node1 1/1 Running 0 12s

[joe@host ~] $ ssh my-node1
[joe@my-node1 ~] $ docker stop f6d05272b57e
[joe@my-node1 ~] $ sleep 20
[joe@my-node1 ~] $ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...
5b920cbaf8b1 nginx:latest "nginx -g 'daemon of 2 seconds ago ...

http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Static Pods - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/static-pod/ 4/4

[joe@my-node1 ~] $ mv /etc/kubelet.d/static-web.yaml /tmp
[joe@my-node1 ~] $ sleep 20
[joe@my-node1 ~] $ docker ps
// no nginx container is running
[joe@my-node1 ~] $ mv /tmp/static-web.yaml /etc/kubelet.d/
[joe@my-node1 ~] $ sleep 20
[joe@my-node1 ~] $ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...
e7a62e3427f1 nginx:latest "nginx -g 'daemon of 27 seconds ago

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 1/7

Cluster Management

This document describes several topics related to the lifecycle of a cluster: creating a new cluster,

upgrading your cluster’s master and worker nodes, performing node maintenance (e.g. kernel

upgrades), and upgrading the Kubernetes API version of a running cluster.

Creating and con�guring a Cluster

To install Kubernetes on a set of machines, consult one of the existing Getting Started guides

depending on your environment.

Upgrading a cluster

The current state of cluster upgrades is provider dependent, and some releases may require special

care when upgrading. It is recommended that administrators consult both the release notes, as well

as the version speci�c upgrade notes prior to upgrading their clusters.

Upgrading to 1.6

Creating and con�guring a Cluster
Upgrading a cluster

Upgrading Google Compute Engine clusters
Upgrading Google Container Engine (GKE) clusters
Upgrading clusters on other platforms

Resizing a cluster
Cluster autoscaling

Maintenance on a Node
Advanced Topics

Upgrading to a different API version
Turn on or off an API version for your cluster
Switching your cluster’s storage API version
Switching your con�g �les to a new API version

http://localhost:4000/docs/getting-started-guides/
https://git.k8s.io/kubernetes/CHANGELOG.md
http://localhost:4000/docs/admin/upgrade-1-6

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 2/7

Upgrading Google Compute Engine clusters

Google Compute Engine Open Source (GCE-OSS) support master upgrades by deleting and

recreating the master, while maintaining the same Persistent Disk (PD) to ensure that data is

retained across the upgrade.

Node upgrades for GCE use a Managed Instance Group, each node is sequentially destroyed and

then recreated with new software. Any Pods that are running on that node need to be controlled by a

Replication Controller, or manually re-created after the roll out.

Upgrades on open source Google Compute Engine (GCE) clusters are controlled by the

cluster/gce/upgrade.sh script.

Get its usage by running cluster/gce/upgrade.sh -h .

For example, to upgrade just your master to a speci�c version (v1.0.2):

Alternatively, to upgrade your entire cluster to the latest stable release:

Upgrading Google Container Engine (GKE) clusters

Google Container Engine automatically updates master components (e.g. kube-apiserver ,

kube-scheduler) to the latest version. It also handles upgrading the operating system and other

components that the master runs on.

The node upgrade process is user-initiated and is described in the GKE documentation.

Upgrading clusters on other platforms

Different providers, and tools, will manage upgrades differently. It is recommended that you consult

their main documentation regarding upgrades.

kops

kubespray

cluster/gce/upgrade.sh -M v1.0.2

cluster/gce/upgrade.sh release/stable

https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/container-engine/docs/clusters/upgrade
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kubespray

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 3/7

CoreOS Tectonic

…

Resizing a cluster

If your cluster runs short on resources you can easily add more machines to it if your cluster is

running in Node self-registration mode. If you’re using GCE or GKE it’s done by resizing Instance

Group managing your Nodes. It can be accomplished by modifying number of instances on

Compute > Compute Engine > Instance groups > your group > Edit group Google Cloud

Console page or using gcloud CLI:

Instance Group will take care of putting appropriate image on new machines and start them, while

Kubelet will register its Node with API server to make it available for scheduling. If you scale the

instance group down, system will randomly choose Nodes to kill.

In other environments you may need to con�gure the machine yourself and tell the Kubelet on which

machine API server is running.

Cluster autoscaling

If you are using GCE or GKE, you can con�gure your cluster so that it is automatically rescaled based

on pod needs.

As described in Compute Resource, users can reserve how much CPU and memory is allocated to

pods. This information is used by the Kubernetes scheduler to �nd a place to run the pod. If there is

no node that has enough free capacity (or doesn’t match other pod requirements) then the pod has

to wait until some pods are terminated or a new node is added.

Cluster autoscaler looks for the pods that cannot be scheduled and checks if adding a new node,

similar to the other in the cluster, would help. If yes, then it resizes the cluster to accommodate the

waiting pods.

Cluster autoscaler also scales down the cluster if it notices that some node is not needed anymore

for an extended period of time (10min but it may change in the future).

gcloud compute instance-groups managed resize kubernetes-minion-group --size=42 --

https://coreos.com/tectonic/docs/latest/admin/upgrade.html
http://localhost:4000/docs/admin/node/#self-registration-of-nodes
https://console.developers.google.com/
http://localhost:4000/docs/concepts/configuration/manage-compute-resources-container/

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 4/7

Cluster autoscaler is con�gured per instance group (GCE) or node pool (GKE).

If you are using GCE then you can either enable it while creating a cluster with kube-up.sh script. To

con�gure cluster autoscaler you have to set three environment variables:

KUBE_ENABLE_CLUSTER_AUTOSCALER - it enables cluster autoscaler if set to true.

KUBE_AUTOSCALER_MIN_NODES - minimum number of nodes in the cluster.

KUBE_AUTOSCALER_MAX_NODES - maximum number of nodes in the cluster.

Example:

On GKE you con�gure cluster autoscaler either on cluster creation or update or when creating a

particular node pool (which you want to be autoscaled) by passing �ags --enable-autoscaling

--min-nodes and --max-nodes to the corresponding gcloud commands.

Examples:

Cluster autoscaler expects that nodes have not been manually modi�ed (e.g. by adding labels via

kubectl) as those properties would not be propagated to the new nodes within the same instance

group.

Maintenance on a Node

If you need to reboot a node (such as for a kernel upgrade, libc upgrade, hardware repair, etc.), and

the downtime is brief, then when the Kubelet restarts, it will attempt to restart the pods scheduled to

it. If the reboot takes longer (the default time is 5 minutes, controlled by --pod-eviction-timeout

KUBE_ENABLE_CLUSTER_AUTOSCALER=true KUBE_AUTOSCALER_MIN_NODES=3 KUBE_AUTOSCALER_MA

gcloud container clusters create mytestcluster --zone=us-central1-b --enable-autos

gcloud container clusters update mytestcluster --enable-autoscaling --min-nodes=1

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 5/7

on the controller-manager), then the node controller will terminate the pods that are bound to the

unavailable node. If there is a corresponding replica set (or replication controller), then a new copy of

the pod will be started on a different node. So, in the case where all pods are replicated, upgrades

can be done without special coordination, assuming that not all nodes will go down at the same

time.

If you want more control over the upgrading process, you may use the following work�ow:

Use kubectl drain to gracefully terminate all pods on the node while marking the node as

unschedulable:

This keeps new pods from landing on the node while you are trying to get them off.

For pods with a replica set, the pod will be replaced by a new pod which will be scheduled to a new

node. Additionally, if the pod is part of a service, then clients will automatically be redirected to the

new pod.

For pods with no replica set, you need to bring up a new copy of the pod, and assuming it is not part

of a service, redirect clients to it.

Perform maintenance work on the node.

Make the node schedulable again:

If you deleted the node’s VM instance and created a new one, then a new schedulable node resource

will be created automatically (if you’re using a cloud provider that supports node discovery; currently

this is only Google Compute Engine, not including CoreOS on Google Compute Engine using kube-

register). See Node for more details.

Advanced Topics

Upgrading to a different API version

kubectl drain $NODENAME

kubectl uncordon $NODENAME

http://localhost:4000/docs/admin/node

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 6/7

When a new API version is released, you may need to upgrade a cluster to support the new API

version (e.g. switching from ‘v1’ to ‘v2’ when ‘v2’ is launched).

This is an infrequent event, but it requires careful management. There is a sequence of steps to

upgrade to a new API version.

1. Turn on the new API version.

2. Upgrade the cluster’s storage to use the new version.

3. Upgrade all con�g �les. Identify users of the old API version endpoints.

4. Update existing objects in the storage to new version by running

cluster/update-storage-objects.sh .

5. Turn off the old API version.

Turn on or off an API version for your cluster

Speci�c API versions can be turned on or off by passing --runtime-config=api/<version> �ag

while bringing up the API server. For example: to turn off v1 API, pass

--runtime-config=api/v1=false . runtime-con�g also supports 2 special keys: api/all and

api/legacy to control all and legacy APIs respectively. For example, for turning off all API versions

except v1, pass --runtime-config=api/all=false,api/v1=true . For the purposes of these �ags,

legacy APIs are those APIs which have been explicitly deprecated (e.g. v1beta3).

Switching your cluster’s storage API version

The objects that are stored to disk for a cluster’s internal representation of the Kubernetes resources

active in the cluster are written using a particular version of the API. When the supported API

changes, these objects may need to be rewritten in the newer API. Failure to do this will eventually

result in resources that are no longer decodable or usable by the Kubernetes API server.

KUBE_API_VERSIONS environment variable for the kube-apiserver binary which controls the API

versions that are supported in the cluster. The �rst version in the list is used as the cluster’s storage

version. Hence, to set a speci�c version as the storage version, bring it to the front of list of versions

in the value of KUBE_API_VERSIONS . You need to restart the kube-apiserver binary for changes to

this variable to take effect.

10/23/2017 Cluster Management - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cluster-management/ 7/7

Switching your con�g �les to a new API version

You can use kubectl convert command to convert con�g �les between different API versions.

For more options, please refer to the usage of kubectl convert command.

kubectl convert -f pod.yaml --output-version v1

http://localhost:4000/docs/user-guide/kubectl/v1.6/#convert

10/23/2017 Cluster Management Guide for Version 1.6 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/upgrade-1-6/ 1/1

Cluster Management Guide for Version 1.6

This document outlines the potentially disruptive changes that exist in the 1.6 release cycle.

Operators, administrators, and developers should take note of the changes below in order to

maintain continuity across their upgrade process.

Cluster defaults set to etcd 3

In the 1.6 release cycle, the default backend storage layer has been upgraded to fully leverage etcd 3

capabilities by default. For new clusters, there is nothing an operator will need to do, it should “just

work”. However, if you are upgrading from a 1.5 cluster, care should be taken to ensure continuity.

It is possible to maintain v2 compatibility mode while running etcd 3 for an interim period of time. To

do this, you will simply need to update an argument passed to your apiserver during startup:

However, for long-term maintenance of the cluster, we recommend that the operator plan an outage

window in order to perform a v2->v3 data upgrade.

Cluster defaults set to etcd 3

$ kube-apiserver --storage-backend='etcd2' $(EXISTING_ARGS)

https://coreos.com/blog/etcd3-a-new-etcd.html
https://coreos.com/etcd/docs/latest/upgrades/upgrade_3_0.html

10/23/2017 Upgrading kubeadm clusters from 1.6 to 1.7 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-7/ 1/3

Upgrading kubeadm clusters from 1.6 to 1.7

This guide is for upgrading kubeadm clusters from version 1.6.x to 1.7.x. Upgrades are not supported

for clusters lower than 1.6, which is when kubeadm became Beta.

WARNING: These instructions will overwrite all of the resources managed by kubeadm (static pod

manifest �les, service accounts and RBAC rules in the kube-system namespace, etc.), so any

customizations you may have made to these resources after cluster setup will need to be reapplied

after the upgrade. The upgrade will not disturb other static pod manifest �les or objects outside the

kube-system namespace.

Before you begin

You need to have a Kubernetes cluster running version 1.6.x.

On the master

1. Upgrade system packages.

Upgrade your OS packages for kubectl, kubeadm, kubelet, and kubernetes-cni.

a. On Debian, this can be accomplished with:

b. On CentOS/Fedora, you would instead run:

Before you begin
On the master
On each node

sudo apt-get update

sudo apt-get upgrade

10/23/2017 Upgrading kubeadm clusters from 1.6 to 1.7 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-7/ 2/3

2. Restart kubelet.

3. Delete the kube-proxy DaemonSet.

Although most components are automatically upgraded by the next step, kube-proxy currently

needs to be manually deleted so it can be recreated at the correct version:

4. Perform kubeadm upgrade.

WARNING: All parameters you passed to the �rst kubeadm init when you bootstrapped your

cluster MUST be speci�ed here in the upgrade- kubeadm init -command. This is a limitation we

plan to address in v1.8.

For instance, if you want to upgrade to 1.7.0 , you would run:

5. Upgrade CNI provider.

Your CNI provider might have its own upgrade instructions to follow now. Check the addons

page to �nd your CNI provider and see if there are additional upgrade steps necessary.

On each node

sudo yum update

systemctl restart kubelet

sudo KUBECONFIG=/etc/kubernetes/admin.conf kubectl delete daemonset kube-proxy

sudo kubeadm init --skip-preflight-checks --kubernetes-version <DESIRED_VERSION

sudo kubeadm init --skip-preflight-checks --kubernetes-version v1.7.0

http://localhost:4000/docs/concepts/cluster-administration/addons/

10/23/2017 Upgrading kubeadm clusters from 1.6 to 1.7 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-7/ 3/3

1. Upgrade system packages.

Upgrade your OS packages for kubectl, kubeadm, kubelet, and kubernetes-cni.

a. On Debian, this can be accomplished with:

b. On CentOS/Fedora, you would instead run:

2. Restart kubelet.

sudo apt-get update

sudo apt-get upgrade

sudo yum update

systemctl restart kubelet

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 1/8

Upgrading kubeadm clusters from 1.7 to 1.8

This guide is for upgrading kubeadm clusters from version 1.7.x to 1.8.x, as well as 1.7.x to 1.7.y and

1.8.x to 1.8.y where y > x . See also upgrading kubeadm clusters from 1.6 to 1.7 if you’re on a 1.6

cluster currently.

Before you begin

Before proceeding:

You need to have a functional kubeadm Kubernetes cluster running version 1.7.0 or higher in

order to use the process described here.

Make sure you read the release notes carefully.

As kubeadm upgrade does not upgrade etcd make sure to back it up. You can, for example, use

etcdctl backup to take care of this.

Note that kubeadm upgrade will not touch any of your workloads, only Kubernetes-internal

components. As a best-practice you should back up what’s important to you. For example, any

app-level state, such as a database an app might depend on (like MySQL or MongoDB) must be

backed up beforehand.

Also, note that only one minor version upgrade is supported. That is, you can only upgrade from, say

1.7 to 1.8, not from 1.7 to 1.9.

Upgrading your control plane

Before you begin
Upgrading your control plane
Upgrading your master and node packages
Recovering from a bad state

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-7/
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md#v180-beta1

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 2/8

You have to carry out the following steps by executing these commands on your master node:

1. Install the most recent version of kubeadm using curl like so:

Verify that this download of kubeadm works, and has the expected version:

1. If this the �rst time you use kubeadm upgrade , in order to preserve the con�guration for future

upgrades, do:

Note that for below you will need to recall what CLI args you passed to kubeadm init the �rst time.

If you used �ags, do:

Where flags can be empty.

If you used a con�g �le, do:

Where the config is mandatory.

1. On the master node, run the following:

$ export VERSION=$(curl -sSL https://dl.k8s.io/release/stable.txt) # or manually s
$ export ARCH=amd64 # or: arm, arm64, ppc64le, s390x
$ curl -sSL https://dl.k8s.io/release/${VERSION}/bin/linux/${ARCH}/kubeadm > /usr/
$ chmod a+rx /usr/bin/kubeadm

$ kubeadm version

$ kubeadm config upload from-flags [flags]

$ kubeadm config upload from-file --config [config]

$ kubeadm upgrade plan
[preflight] Running pre-flight checks
[upgrade] Making sure the cluster is healthy:
[upgrade/health] Checking API Server health: Healthy
[upgrade/health] Checking Node health: All Nodes are healthy
[upgrade/health] Checking Static Pod manifests exists on disk: All manifests exist

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 3/8

[upgrade/health] Checking Static Pod manifests exists on disk: All manifests exist
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration from the cluster...
[upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-syste
[upgrade] Fetching available versions to upgrade to:
[upgrade/versions] Cluster version: v1.7.1
[upgrade/versions] kubeadm version: v1.8.0
[upgrade/versions] Latest stable version: v1.8.0
[upgrade/versions] Latest version in the v1.7 series: v1.7.6

Components that must be upgraded manually after you've upgraded the control plane
COMPONENT CURRENT AVAILABLE
Kubelet 1 x v1.7.1 v1.7.6

Upgrade to the latest version in the v1.7 series:

COMPONENT CURRENT AVAILABLE
API Server v1.7.1 v1.7.6
Controller Manager v1.7.1 v1.7.6
Scheduler v1.7.1 v1.7.6
Kube Proxy v1.7.1 v1.7.6
Kube DNS 1.14.4 1.14.4

You can now apply the upgrade by executing the following command:

 kubeadm upgrade apply v1.7.6

Components that must be upgraded manually after you've upgraded the control plane
COMPONENT CURRENT AVAILABLE
Kubelet 1 x v1.7.1 v1.8.0

Upgrade to the latest experimental version:

COMPONENT CURRENT AVAILABLE
API Server v1.7.1 v1.8.0
Controller Manager v1.7.1 v1.8.0
Scheduler v1.7.1 v1.8.0
Kube Proxy v1.7.1 v1.8.0
Kube DNS 1.14.4 1.14.4

You can now apply the upgrade by executing the following command:

 kubeadm upgrade apply v1.8.0

Note: Before you do can perform this upgrade, you have to update kubeadm to v1.8.0

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 4/8

The kubeadm upgrade plan checks that your cluster is in an upgradeable state and fetches the

versions available to upgrade to in an user-friendly way.

1. Pick a version to upgrade to and run, for example, kubeadm upgrade apply as follows:

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 5/8

$ kubeadm upgrade apply v1.8.0
[preflight] Running pre-flight checks
[upgrade] Making sure the cluster is healthy:
[upgrade/health] Checking API Server health: Healthy
[upgrade/health] Checking Node health: All Nodes are healthy
[upgrade/health] Checking Static Pod manifests exists on disk: All manifests exist
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration from the cluster...
[upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-syste
[upgrade/version] You have chosen to upgrade to version "v1.8.0"
[upgrade/versions] Cluster version: v1.7.1
[upgrade/versions] kubeadm version: v1.8.0
[upgrade/prepull] Will prepull images for components [kube-apiserver kube-controll
[upgrade/prepull] Prepulling image for component kube-scheduler.
[upgrade/prepull] Prepulling image for component kube-apiserver.
[upgrade/prepull] Prepulling image for component kube-controller-manager.
[apiclient] Found 0 Pods for label selector k8s-app=upgrade-prepull-kube-scheduler
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-scheduler
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-apiserver
[apiclient] Found 1 Pods for label selector k8s-app=upgrade-prepull-kube-controlle
[upgrade/prepull] Prepulled image for component kube-apiserver.
[upgrade/prepull] Prepulled image for component kube-controller-manager.
[upgrade/prepull] Prepulled image for component kube-scheduler.
[upgrade/prepull] Successfully prepulled the images for all the control plane comp
[upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.8.0"
[upgrade/staticpods] Writing upgraded Static Pod manifests to "/etc/kubernetes/tmp
[controlplane] Wrote Static Pod manifest for component kube-apiserver to "/etc/kub
[controlplane] Wrote Static Pod manifest for component kube-controller-manager to
[controlplane] Wrote Static Pod manifest for component kube-scheduler to "/etc/kub
[upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-ap
[upgrade/staticpods] Waiting for the kubelet to restart the component
[apiclient] Found 1 Pods for label selector component=kube-apiserver
[upgrade/staticpods] Component "kube-apiserver" upgraded successfully!
[upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-co
[upgrade/staticpods] Waiting for the kubelet to restart the component
[apiclient] Found 1 Pods for label selector component=kube-controller-manager
[upgrade/staticpods] Component "kube-controller-manager" upgraded successfully!
[upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-sc
[upgrade/staticpods] Waiting for the kubelet to restart the component
[apiclient] Found 1 Pods for label selector component=kube-scheduler
[upgrade/staticpods] Component "kube-scheduler" upgraded successfully!
[uploadconfig] Storing the configuration used in ConfigMap "kubeadm-config" in the
[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs
[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automat
[addons] Applied essential addon: kube-dns
[addons] Applied essential addon: kube-proxy

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.8.0". Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, please proceed with upg

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 6/8

kubeadm upgrade apply does the following:

It checks that your cluster is in an upgradeable state, that is:

The API Server is reachable,

All nodes are in the Ready state, and

The control plane is healthy

It enforces the version skew policies.

It makes sure the control plane images are available or available to pull to the machine.

It upgrades the control plane components or rollbacks if any of them fails to come up.

It applies the new kube-dns and kube-proxy manifests and enforces that all necessary RBAC

rules are created.

1. Manually upgrade your Software De�ned Network (SDN).

Your Container Network Interface (CNI) provider might have its own upgrade instructions to

follow now. Check the addons page to �nd your CNI provider and see if there are additional

upgrade steps necessary.

Upgrading your master and node packages

For each host (referred to as $HOST below) in your cluster, upgrade kubelet by executing the

following commands:

1. Prepare the host for maintenance, marking it unschedulable and evicting the workload:

When running this command against the master host, this error is expected and can be safely

ignored (since there are static pods running on the master):

$ kubectl drain $HOST --ignore-daemonsets

http://localhost:4000/docs/concepts/cluster-administration/addons/

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 7/8

1. Upgrade the Kubernetes package versions on the $HOST node by using a Linux distribution-

speci�c package manager:

If the host is running a Debian-based distro such as Ubuntu, run:

If the host is running CentOS or the like, run:

Now the new version of the kubelet should be running on the host. Verify this using the following

command on $HOST :

1. Since certi�cate rotation is enabled by default, you may need to manually approve the new

kubelet’s Certi�cateSigningRequest before it can rejoin the cluster:

If you see any CSRs listed that aren’t already approved, you can manually approve them using

kubectl:

node "master" already cordoned
error: pods not managed by ReplicationController, ReplicaSet, Job, DaemonSet or St

$ apt-get update
$ apt-get upgrade

$ yum update

$ systemctl status kubelet

$ kubectl get csr | grep -v Approved
NAME AGE REQUESTOR
node-csr-czl32tarZb_XYKnvXf0Q0o4spGUXzJhN2p4_ld7k1iM 2h system:bootstrap:

$ kubectl certificate approve node-csr-czl32tarZb_XYKnvXf0Q0o4spGUXzJhN2p4_ld7k1iM
certificatesigningrequest "node-csr-czl32tarZb_XYKnvXf0Q0o4spGUXzJhN2p4_ld7k1iM" a

10/23/2017 Upgrading kubeadm clusters from 1.7 to 1.8 - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kubeadm-upgrade-1-8/ 8/8

1. Bring the host back online by marking it schedulable:

1. After upgrading kubelet on each host in your cluster, verify that all nodes are available again by

executing the following (from anywhere, for example, from outside the cluster):

If the STATUS column of the above command shows Ready for all of your hosts, you are done.

Recovering from a bad state

If kubeadm upgrade somehow fails and fails to roll back, due to an unexpected shutdown during

execution for instance, you may run kubeadm upgrade again as it is idempotent and should

eventually make sure the actual state is the desired state you are declaring.

You can use kubeadm upgrade to change a running cluster with x.x.x --> x.x.x with --force ,

which can be used to recover from a bad state.

$ kubectl uncordon $HOST

$ kubectl get nodes

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 1/10

Share a Cluster with Namespaces

This page shows how to view, work in, and delete namespaces. The page also shows how to use

Kubernetes namespaces to subdivide your cluster.

Before you begin

Have an existing Kubernetes cluster.

Have a basic understanding of Kubernetes Pods, Services, and Deployments.

Viewing namespaces

1. List the current namespaces in a cluster using:

Kubernetes starts with two initial namespaces:

default The default namespace for objects with no other namespace

kube-system The namespace for objects created by the Kubernetes system

Before you begin
Viewing namespaces
Creating a new namespace
Deleting a namespace
Subdividing your cluster using Kubernetes namespaces
Understanding the motivation for using namespaces
Understanding namespaces and DNS
What’s next

$ kubectl get namespaces
NAME STATUS AGE
default Active 11d
kube-system Active 11d

http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 2/10

You can also get the summary of a speci�c namespace using:

Or you can get detailed information with:

Note that these details show both resource quota (if present) as well as resource limit ranges.

Resource quota tracks aggregate usage of resources in the Namespace and allows cluster operators

to de�ne Hard resource usage limits that a Namespace may consume.

A limit range de�nes min/max constraints on the amount of resources a single entity can consume

in a Namespace.

See Admission control: Limit Range

A namespace can be in one of two phases:

Active the namespace is in use

Terminating the namespace is being deleted, and can not be used for new objects

See the design doc for more details.

Creating a new namespace

1. Create a new YAML �le called my-namespace.yaml with the contents:

$ kubectl get namespaces <name>

$ kubectl describe namespaces <name>
Name: default
Labels: <none>
Annotations: <none>
Status: Active

No resource quota.

Resource Limits
 Type Resource Min Max Default
 ---- -------- --- --- ---
 Container cpu - - 100m

https://git.k8s.io/community/contributors/design-proposals/resource-management/admission_control_limit_range.md
https://git.k8s.io/community/contributors/design-proposals/architecture/namespaces.md#phases

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 3/10

Then run:

Note that the name of your namespace must be a DNS compatible label.

There’s an optional �eld finalizers , which allows observables to purge resources whenever the

namespace is deleted. Keep in mind that if you specify a nonexistent �nalizer, the namespace will be

created but will get stuck in the Terminating state if the user tries to delete it.

More information on finalizers can be found in the namespace design doc.

Deleting a namespace

1. Delete a namespace with

WARNING, this deletes everything under the namespace!

This delete is asynchronous, so for a time you will see the namespace in the Terminating state.

Subdividing your cluster using Kubernetes namespaces

1. Understand the default namespace

By default, a Kubernetes cluster will instantiate a default namespace when provisioning the cluster to

hold the default set of Pods, Services, and Deployments used by the cluster.

Assuming you have a fresh cluster, you can introspect the available namespace’s by doing the

following:

apiVersion: v1
kind: Namespace
metadata:
 name: <insert-namespace-name-here>

$ kubectl create -f ./my-namespace.yaml

$ kubectl delete namespaces <insert-some-namespace-name>

https://git.k8s.io/community/contributors/design-proposals/architecture/namespaces.md#finalizers

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 4/10

1. Create new namespaces

For this exercise, we will create two additional Kubernetes namespaces to hold our content.

In a scenario where an organization is using a shared Kubernetes cluster for development and

production use cases:

The development team would like to maintain a space in the cluster where they can get a view on the

list of Pods, Services, and Deployments they use to build and run their application. In this space,

Kubernetes resources come and go, and the restrictions on who can or cannot modify resources are

relaxed to enable agile development.

The operations team would like to maintain a space in the cluster where they can enforce strict

procedures on who can or cannot manipulate the set of Pods, Services, and Deployments that run

the production site.

One pattern this organization could follow is to partition the Kubernetes cluster into two

namespaces: development and production.

Let’s create two new namespaces to hold our work.

Use the �le namespace-dev.json which describes a development namespace:

namespace-dev.json

Create the development namespace using kubectl.

$ kubectl get namespaces
NAME STATUS AGE
default Active 13m

{
 "kind": "Namespace",
 "apiVersion": "v1",
 "metadata": {
 "name": "development",
 "labels": {
 "name": "development"
 }
 }
}

http://localhost:4000/docs/admin/namespaces/namespace-dev.json
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/admin/namespaces/namespace-dev.json

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 5/10

And then let’s create the production namespace using kubectl.

To be sure things are right, list all of the namespaces in our cluster.

1. Create pods in each namespace

A Kubernetes namespace provides the scope for Pods, Services, and Deployments in the cluster.

Users interacting with one namespace do not see the content in another namespace.

To demonstrate this, let’s spin up a simple Deployment and Pods in the development namespace.

We �rst check what is the current context:

$ kubectl create -f docs/admin/namespaces/namespace-dev.json

$ kubectl create -f docs/admin/namespaces/namespace-prod.json

$ kubectl get namespaces --show-labels
NAME STATUS AGE LABELS
default Active 32m <none>
development Active 29s name=development
production Active 23s name=production

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 6/10

The next step is to de�ne a context for the kubectl client to work in each namespace. The values of

“cluster” and “user” �elds are copied from the current context.

The above commands provided two request contexts you can alternate against depending on what

namespace you wish to work against.

Let’s switch to operate in the development namespace.

You can verify your current context by doing the following:

$ kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: REDACTED
 server: https://130.211.122.180
 name: lithe-cocoa-92103_kubernetes
contexts:
- context:
 cluster: lithe-cocoa-92103_kubernetes
 user: lithe-cocoa-92103_kubernetes
 name: lithe-cocoa-92103_kubernetes
current-context: lithe-cocoa-92103_kubernetes
kind: Config
preferences: {}
users:
- name: lithe-cocoa-92103_kubernetes
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED
 token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b
- name: lithe-cocoa-92103_kubernetes-basic-auth
 user:
 password: h5M0FtUUIflBSdI7
 username: admin

$ kubectl config current-context
lithe-cocoa-92103_kubernetes

$ kubectl config set-context dev --namespace=development --cluster=lithe-cocoa-921
$ kubectl config set-context prod --namespace=production --cluster=lithe-cocoa-921

$ kubectl config use-context dev

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 7/10

At this point, all requests we make to the Kubernetes cluster from the command line are scoped to

the development namespace.

Let’s create some contents.

We have just created a deployment whose replica size is 2 that is running the pod called snow�ake

with a basic container that just serves the hostname. Note that kubectl run creates deployments

only on Kubernetes cluster >= v1.2. If you are running older versions, it creates replication controllers

instead. If you want to obtain the old behavior, use --generator=run/v1 to create replication

controllers. See kubectl run for more details.

And this is great, developers are able to do what they want, and they do not have to worry about

affecting content in the production namespace.

Let’s switch to the production namespace and show how resources in one namespace are hidden

from the other.

The production namespace should be empty, and the following commands should return nothing.

$ kubectl config current-context
dev

$ kubectl run snowflake --image=kubernetes/serve_hostname --replicas=2

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
snowflake 2 2 2 2 2m

$ kubectl get pods -l run=snowflake
NAME READY STATUS RESTARTS AGE
snowflake-3968820950-9dgr8 1/1 Running 0 2m
snowflake-3968820950-vgc4n 1/1 Running 0 2m

$ kubectl config use-context prod

$ kubectl get deployment
$ kubectl get pods

http://localhost:4000/docs/user-guide/kubectl/v1.7/#run

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 8/10

Production likes to run cattle, so let’s create some cattle pods.

At this point, it should be clear that the resources users create in one namespace are hidden from

the other namespace.

As the policy support in Kubernetes evolves, we will extend this scenario to show how you can

provide different authorization rules for each namespace.

Understanding the motivation for using namespaces

A single cluster should be able to satisfy the needs of multiple users or groups of users (henceforth

a ‘user community’).

Kubernetes namespaces help different projects, teams, or customers to share a Kubernetes cluster.

It does this by providing the following:

1. A scope for Names.

2. A mechanism to attach authorization and policy to a subsection of the cluster.

Use of multiple namespaces is optional.

Each user community wants to be able to work in isolation from other communities.

Each user community has its own:

1. resources (pods, services, replication controllers, etc.)

$ kubectl run cattle --image=kubernetes/serve_hostname --replicas=5

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
cattle 5 5 5 5 10s

kubectl get pods -l run=cattle
NAME READY STATUS RESTARTS AGE
cattle-2263376956-41xy6 1/1 Running 0 34s
cattle-2263376956-kw466 1/1 Running 0 34s
cattle-2263376956-n4v97 1/1 Running 0 34s
cattle-2263376956-p5p3i 1/1 Running 0 34s
cattle-2263376956-sxpth 1/1 Running 0 34s

http://localhost:4000/docs/concepts/overview/working-with-objects/names/

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 9/10

2. policies (who can or cannot perform actions in their community)

3. constraints (this community is allowed this much quota, etc.)

A cluster operator may create a Namespace for each unique user community.

The Namespace provides a unique scope for:

1. named resources (to avoid basic naming collisions)

2. delegated management authority to trusted users

3. ability to limit community resource consumption

Use cases include:

1. As a cluster operator, I want to support multiple user communities on a single cluster.

2. As a cluster operator, I want to delegate authority to partitions of the cluster to trusted users in

those communities.

3. As a cluster operator, I want to limit the amount of resources each community can consume in

order to limit the impact to other communities using the cluster.

4. As a cluster user, I want to interact with resources that are pertinent to my user community in

isolation of what other user communities are doing on the cluster.

Understanding namespaces and DNS

When you create a Service, it creates a corresponding DNS entry. This entry is of the form

<service-name>.<namespace-name>.svc.cluster.local , which means that if a container just

uses <service-name> it will resolve to the service which is local to a namespace. This is useful for

using the same con�guration across multiple namespaces such as Development, Staging and

Production. If you want to reach across namespaces, you need to use the fully quali�ed domain

name (FQDN).

What’s next

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/admin/dns

10/23/2017 Share a Cluster with Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces/ 10/10

Learn more about setting the namespace preference.

Learn more about setting the namespace for a request

See namespaces design.

http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/#setting-the-namespace-preference
http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/#setting-the-namespace-for-a-request
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/namespaces.md

10/23/2017 Namespaces Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces-walkthrough/ 1/6

Namespaces Walkthrough

Kubernetes namespaces help different projects, teams, or customers to share a Kubernetes cluster.

It does this by providing the following:

1. A scope for Names.

2. A mechanism to attach authorization and policy to a subsection of the cluster.

Use of multiple namespaces is optional.

This example demonstrates how to use Kubernetes namespaces to subdivide your cluster.

Step Zero: Prerequisites

This example assumes the following:

1. You have an existing Kubernetes cluster.

2. You have a basic understanding of Kubernetes Pods, Services, and Deployments.

Step One: Understand the default namespace

By default, a Kubernetes cluster will instantiate a default namespace when provisioning the cluster to

hold the default set of Pods, Services, and Deployments used by the cluster.

Assuming you have a fresh cluster, you can introspect the available namespace’s by doing the

following:

Step Two: Create new namespaces

For this exercise, we will create two additional Kubernetes namespaces to hold our content.

$ kubectl get namespaces
NAME STATUS AGE
default Active 13m

http://localhost:4000/docs/concepts/overview/working-with-objects/names/
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Namespaces Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces-walkthrough/ 2/6

Let’s imagine a scenario where an organization is using a shared Kubernetes cluster for development

and production use cases.

The development team would like to maintain a space in the cluster where they can get a view on the

list of Pods, Services, and Deployments they use to build and run their application. In this space,

Kubernetes resources come and go, and the restrictions on who can or cannot modify resources are

relaxed to enable agile development.

The operations team would like to maintain a space in the cluster where they can enforce strict

procedures on who can or cannot manipulate the set of Pods, Services, and Deployments that run

the production site.

One pattern this organization could follow is to partition the Kubernetes cluster into two

namespaces: development and production.

Let’s create two new namespaces to hold our work.

Use the �le namespace-dev.json which describes a development namespace:

namespace-dev.json

Create the development namespace using kubectl.

And then let’s create the production namespace using kubectl.

{
 "kind": "Namespace",
 "apiVersion": "v1",
 "metadata": {
 "name": "development",
 "labels": {
 "name": "development"
 }
 }
}

$ kubectl create -f docs/admin/namespaces/namespace-dev.json

$ kubectl create -f docs/admin/namespaces/namespace-prod.json

http://localhost:4000/docs/admin/namespaces/namespace-dev.json
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/namespace-dev.json

10/23/2017 Namespaces Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces-walkthrough/ 3/6

To be sure things are right, let’s list all of the namespaces in our cluster.

Step Three: Create pods in each namespace

A Kubernetes namespace provides the scope for Pods, Services, and Deployments in the cluster.

Users interacting with one namespace do not see the content in another namespace.

To demonstrate this, let’s spin up a simple Deployment and Pods in the development namespace.

We �rst check what is the current context:

$ kubectl get namespaces --show-labels
NAME STATUS AGE LABELS
default Active 32m <none>
development Active 29s name=development
production Active 23s name=production

$ kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: REDACTED
 server: https://130.211.122.180
 name: lithe-cocoa-92103_kubernetes
contexts:
- context:
 cluster: lithe-cocoa-92103_kubernetes
 user: lithe-cocoa-92103_kubernetes
 name: lithe-cocoa-92103_kubernetes
current-context: lithe-cocoa-92103_kubernetes
kind: Config
preferences: {}
users:
- name: lithe-cocoa-92103_kubernetes
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED
 token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b
- name: lithe-cocoa-92103_kubernetes-basic-auth
 user:
 password: h5M0FtUUIflBSdI7
 username: admin

$ kubectl config current-context
lithe-cocoa-92103_kubernetes

10/23/2017 Namespaces Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces-walkthrough/ 4/6

The next step is to de�ne a context for the kubectl client to work in each namespace. The value of

“cluster” and “user” �elds are copied from the current context.

The above commands provided two request contexts you can alternate against depending on what

namespace you wish to work against.

Let’s switch to operate in the development namespace.

You can verify your current context by doing the following:

At this point, all requests we make to the Kubernetes cluster from the command line are scoped to

the development namespace.

Let’s create some contents.

We have just created a deployment whose replica size is 2 that is running the pod called snow�ake

with a basic container that just serves the hostname. Note that kubectl run creates deployments

only on Kubernetes cluster >= v1.2. If you are running older versions, it creates replication controllers

instead. If you want to obtain the old behavior, use --generator=run/v1 to create replication

controllers. See kubectl run for more details.

$ kubectl config set-context dev --namespace=development --cluster=lithe-cocoa-921
$ kubectl config set-context prod --namespace=production --cluster=lithe-cocoa-921

$ kubectl config use-context dev

$ kubectl config current-context
dev

$ kubectl run snowflake --image=kubernetes/serve_hostname --replicas=2

http://localhost:4000/docs/user-guide/kubectl/v1.6/#run

10/23/2017 Namespaces Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces-walkthrough/ 5/6

And this is great, developers are able to do what they want, and they do not have to worry about

affecting content in the production namespace.

Let’s switch to the production namespace and show how resources in one namespace are hidden

from the other.

The production namespace should be empty, and the following commands should return nothing.

Production likes to run cattle, so let’s create some cattle pods.

At this point, it should be clear that the resources users create in one namespace are hidden from

the other namespace.

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
snowflake 2 2 2 2 2m

$ kubectl get pods -l run=snowflake
NAME READY STATUS RESTARTS AGE
snowflake-3968820950-9dgr8 1/1 Running 0 2m
snowflake-3968820950-vgc4n 1/1 Running 0 2m

$ kubectl config use-context prod

$ kubectl get deployment
$ kubectl get pods

$ kubectl run cattle --image=kubernetes/serve_hostname --replicas=5

$ kubectl get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
cattle 5 5 5 5 10s

kubectl get pods -l run=cattle
NAME READY STATUS RESTARTS AGE
cattle-2263376956-41xy6 1/1 Running 0 34s
cattle-2263376956-kw466 1/1 Running 0 34s
cattle-2263376956-n4v97 1/1 Running 0 34s
cattle-2263376956-p5p3i 1/1 Running 0 34s
cattle-2263376956-sxpth 1/1 Running 0 34s

10/23/2017 Namespaces Walkthrough - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/namespaces-walkthrough/ 6/6

As the policy support in Kubernetes evolves, we will extend this scenario to show how you can

provide different authorization rules for each namespace.

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 1/8

Autoscale the DNS Service in a Cluster

This page shows how to enable and con�gure autoscaling of the DNS service in a Kubernetes

cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Make sure the DNS feature itself is enabled.

Kubernetes version 1.4.0 or later is recommended.

Determining whether DNS horizontal autoscaling is
already enabled

Before you begin
Determining whether DNS horizontal autoscaling is already enabled
Getting the name of your DNS Deployment or ReplicationController
Determining your scale target
Enabling DNS horizontal autoscaling
Tuning autoscaling parameters
Disable DNS horizontal autoscaling

Option 1: Scale down the kube-dns-autoscaler deployment to 0 replicas
Option 2: Delete the kube-dns-autoscaler deployment
Option 3: Delete the kube-dns-autoscaler manifest �le from the master node

Understanding how DNS horizontal autoscaling works
Future enhancements
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/concepts/services-networking/dns-pod-service/

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 2/8

List the Deployments in your cluster in the kube-system namespace:

The output is similar to this:

If you see “kube-dns-autoscaler” in the output, DNS horizontal autoscaling is already enabled, and

you can skip to Tuning autoscaling parameters.

Getting the name of your DNS Deployment or
ReplicationController

List the Deployments in your cluster in the kube-system namespace:

The output is similar to this:

In Kubernetes versions earlier than 1.5 DNS is implemented using a ReplicationController instead of

a Deployment. So if you don’t see kube-dns, or a similar name, in the preceding output, list the

ReplicationControllers in your cluster in the kube-system namespace:

The output is similar to this:

kubectl get deployment --namespace=kube-system

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
...
kube-dns-autoscaler 1 1 1 1 ...
...

kubectl get deployment --namespace=kube-system

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
...
kube-dns 1 1 1 1 ...
...

kubectl get rc --namespace=kube-system

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 3/8

Determining your scale target

If you have a DNS Deployment, your scale target is:

where is the name of your DNS Deployment. For example, if your DNS Deployment name is kube-dns,

your scale target is Deployment/kube-dns.

If you have a DNS ReplicationController, your scale target is:

where is the name of your DNS ReplicationController. For example, if your DNS ReplicationController

name is kube-dns-v20, your scale target is ReplicationController/kube-dns-v20.

Enabling DNS horizontal autoscaling

In this section, you create a Deployment. The Pods in the Deployment run a container based on the

cluster-proportional-autoscaler-amd64 image.

Create a �le named dns-horizontal-autoscaler.yaml with this content:

dns-horizontal-autoscaler.yaml

NAME DESIRED CURRENT READY AGE
...
kube-dns-v20 1 1 1 ...
...

Deployment/<your-deployment-name>

ReplicationController/<your-rc-name>

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/dns-horizontal-autoscaler.yaml

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 4/8

dns-horizontal-autoscaler.yaml

In the �le, replace <SCALE_TARGET> with your scale target.

Go to the directory that contains your con�guration �le, and enter this command to create the

Deployment:

The output of a successful command is:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: kube-dns-autoscaler
 namespace: kube-system
 labels:
 k8s-app: kube-dns-autoscaler
spec:
 template:
 metadata:
 labels:
 k8s-app: kube-dns-autoscaler
 spec:
 containers:
 - name: autoscaler
 image: gcr.io/google_containers/cluster-proportional-autoscaler-amd64:1.0.
 resources:
 requests:
 cpu: "20m"
 memory: "10Mi"
 command:
 - /cluster-proportional-autoscaler
 - --namespace=kube-system
 - --configmap=kube-dns-autoscaler
 - --target=<SCALE_TARGET>
 # When cluster is using large nodes(with more cores), "coresPerReplica"
 # If using small nodes, "nodesPerReplica" should dominate.
 - --default-params={"linear":{"coresPerReplica":256,"nodesPerReplica":16
 - --logtostderr=true
 - --v=2

kubectl create -f dns-horizontal-autoscaler.yaml

deployment "kube-dns-autoscaler" created

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/dns-horizontal-autoscaler.yaml

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 5/8

DNS horizontal autoscaling is now enabled.

Tuning autoscaling parameters

Verify that the kube-dns-autoscaler Con�gMap exists:

The output is similar to this:

Modify the data in the Con�gMap:

Look for this line:

Modify the �elds according to your needs. The “min” �eld indicates the minimal number of DNS

backends. The actual number of backends number is calculated using this equation:

Note that the values of both coresPerReplica and nodesPerReplica are integers.

The idea is that when a cluster is using nodes that have many cores, coresPerReplica dominates.

When a cluster is using nodes that have fewer cores, nodesPerReplica dominates.

There are other supported scaling patterns. For details, see cluster-proportional-autoscaler.

kubectl get configmap --namespace=kube-system

NAME DATA AGE
...
kube-dns-autoscaler 1 ...
...

kubectl edit configmap kube-dns-autoscaler --namespace=kube-system

linear: '{"coresPerReplica":256,"min":1,"nodesPerReplica":16}'

replicas = max(ceil(cores * 1/coresPerReplica) , ceil(nodes * 1/nodesPerReplic

https://github.com/kubernetes-incubator/cluster-proportional-autoscaler

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 6/8

Disable DNS horizontal autoscaling

There are a few options for turning DNS horizontal autoscaling. Which option to use depends on

different conditions.

Option 1: Scale down the kube-dns-autoscaler deployment to 0
replicas

This option works for all situations. Enter this command:

The output is:

Verify that the replica count is zero:

The output displays 0 in the DESIRED and CURRENT columns:

Option 2: Delete the kube-dns-autoscaler deployment

This option works if kube-dns-autoscaler is under your own control, which means no one will re-

create it:

kubectl scale deployment --replicas=0 kube-dns-autoscaler --namespace=kube-system

deployment "kube-dns-autoscaler" scaled

kubectl get deployment --namespace=kube-system

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
...
kube-dns-autoscaler 0 0 0 0 ...
...

kubectl delete deployment kube-dns-autoscaler --namespace=kube-system

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 7/8

The output is:

Option 3: Delete the kube-dns-autoscaler manifest �le from the
master node

This option works if kube-dns-autoscaler is under control of the Addon Manager’s control, and you

have write access to the master node.

Sign in to the master node and delete the corresponding manifest �le. The common path for this

kube-dns-autoscaler is:

After the manifest �le is deleted, the Addon Manager will delete the kube-dns-autoscaler

Deployment.

Understanding how DNS horizontal autoscaling works

The cluster-proportional-autoscaler application is deployed separately from the DNS service.

An autoscaler Pod runs a client that polls the Kubernetes API server for the number of nodes

and cores in the cluster.

A desired replica count is calculated and applied to the DNS backends based on the current

schedulable nodes and cores and the given scaling parameters.

The scaling parameters and data points are provided via a Con�gMap to the autoscaler, and it

refreshes its parameters table every poll interval to be up to date with the latest desired scaling

parameters.

Changes to the scaling parameters are allowed without rebuilding or restarting the autoscaler

Pod.

The autoscaler provides a controller interface to support two control patterns: linear and ladder.

deployment "kube-dns-autoscaler" deleted

/etc/kubernetes/addons/dns-horizontal-autoscaler/dns-horizontal-autoscaler.yaml

https://git.k8s.io/kubernetes/cluster/addons/README.md

10/23/2017 Autoscale the DNS Service in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-horizontal-autoscaling/ 8/8

Future enhancements

Control patterns, in addition to linear and ladder, that consider custom metrics are under

consideration as a future development.

Scaling of DNS backends based on DNS-speci�c metrics is under consideration as a future

development. The current implementation, which uses the number of nodes and cores in cluster, is

limited.

Support for custom metrics, similar to that provided by Horizontal Pod Autoscaling, is under

consideration as a future development.

What’s next

Learn more about the implementation of cluster-proportional-autoscaler.

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-incubator/cluster-proportional-autoscaler

10/23/2017 Safely Drain a Node while Respecting Application SLOs - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/ 1/4

Safely Drain a Node while Respecting
Application SLOs

This page shows how to safely drain a machine, respecting the application-level disruption SLOs you

have speci�ed using PodDisruptionBudget.

Before you begin

This task assumes that you have met the following prerequisites:

You are using Kubernetes release >= 1.5.

Either:

1. You do not require your applications to be highly available during the node drain, or

2. You have read about the PodDisruptionBudget concept and Con�gured

PodDisruptionBudgets for applications that need them.

Use kubectl drain to remove a node from service

You can use kubectl drain to safely evict all of your pods from a node before you perform

maintenance on the node (e.g. kernel upgrade, hardware maintenance, etc.). Safe evictions allow the

pod’s containers to gracefully terminate and will respect the PodDisruptionBudgets you have

speci�ed.

Before you begin
Use kubectl drain to remove a node from service
Draining multiple nodes in parallel
The Eviction API
What’s next

http://localhost:4000/docs/concepts/workloads/pods/disruptions/
http://localhost:4000/docs/tasks/run-application/configure-pdb/
http://localhost:4000/docs/tasks/#lifecycle-hooks-and-termination-notice

10/23/2017 Safely Drain a Node while Respecting Application SLOs - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/ 2/4

Note: By default kubectl drain will ignore certain system pods on the node that cannot be killed;

see the kubectl drain documentation for more details.

When kubectl drain returns successfully, that indicates that all of the pods (except the ones

excluded as described in the previous paragraph) have been safely evicted (respecting the desired

graceful termination period, and without violating any application-level disruption SLOs). It is then

safe to bring down the node by powering down its physical machine or, if running on a cloud

platform, deleting its virtual machine.

First, identify the name of the node you wish to drain. You can list all of the nodes in your cluster with

Next, tell Kubernetes to drain the node:

Once it returns (without giving an error), you can power down the node (or equivalently, if on a cloud

platform, delete the virtual machine backing the node). If you leave the node in the cluster during the

maintenance operation, you need to run

afterwards to tell Kubernetes that it can resume scheduling new pods onto the node.

Draining multiple nodes in parallel

The kubectl drain command should only be issued to a single node at a time. However, you can

run multiple kubectl drain commands for different node in parallel, in different terminals or in the

background. Multiple drain commands running concurrently will still respect the

PodDisruptionBudget you specify.

For example, if you have a StatefulSet with three replicas and have set a PodDisruptionBudget for

that set specifying minAvailable: 2 . kubectl drain will only evict a pod from the StatefulSet if

kubectl get nodes

kubectl drain <node name>

kubectl uncordon <node name>

http://localhost:4000/docs/user-guide/kubectl/v1.8/#drain

10/23/2017 Safely Drain a Node while Respecting Application SLOs - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/ 3/4

all three pods are ready, and if you issue multiple drain commands in parallel, Kubernetes will respect

the PodDisruptionBudget and ensure that only one pod is unavailable at any given time. Any drains

that would cause the number of ready replicas to fall below the speci�ed budget are blocked.

The Eviction API

If you prefer not to use kubectl drain (such as to avoid calling to an external command, or to get �ner

control over the pod eviction process), you can also programmatically cause evictions using the

eviction API.

You should �rst be familiar with using Kubernetes language clients.

The eviction subresource of a pod can be thought of as a kind of policy-controlled DELETE operation

on the pod itself. To attempt an eviction (perhaps more REST-precisely, to attempt to create an

eviction), you POST an attempted operation. Here’s an example:

You can attempt an eviction using curl :

The API can respond in one of three ways:

If the eviction is granted, then the pod is deleted just as if you had sent a DELETE request to the

pod’s URL and you get back 200 OK .

If the current state of affairs wouldn’t allow an eviction by the rules set forth in the budget, you

get back 429 Too Many Requests . This is typically used for generic rate limiting of any

{
 "apiVersion": "policy/v1beta1",
 "kind": "Eviction",
 "metadata": {
 "name": "quux",
 "namespace": "default"
 }
}

$ curl -v -H 'Content-type: application/json' http://127.0.0.1:8080/api/v1/namespa

http://localhost:4000/docs/user-guide/kubectl/v1.8/#drain
http://localhost:4000/docs/tasks/administer-cluster/access-cluster-api/#programmatic-access-to-the-api

10/23/2017 Safely Drain a Node while Respecting Application SLOs - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/safely-drain-node/ 4/4

requests, but here we mean that this request isn’t allowed right now but it may be allowed later.

Currently, callers do not get any Retry-After advice, but they may in future versions.

If there is some kind of miscon�guration, like multiple budgets pointing at the same pod, you will

get 500 Internal Server Error .

For a given eviction request, there are two cases.

There is no budget that matches this pod. In this case, the server always returns 200 OK .

There is at least one budget. In this case, any of the three above responses may apply.

In some cases, an application may reach a broken state where it will never return anything other than

429 or 500. This can happen, for example, if the replacement pod created by the application’s

controller does not become ready, or if the last pod evicted has a very long termination grace period.

In this case, there are two potential solutions:

Abort or pause the automated operation. Investigate the reason for the stuck application, and

restart the automation.

After a suitably long wait, DELETE the pod instead of using the eviction API.

Kubernetes does not specify what the behavior should be in this case; it is up to the application

owners and cluster owners to establish an agreement on behavior in these cases.

What’s next

Follow steps to protect your application by con�guring a Pod Disruption Budget.

http://localhost:4000/docs/tasks/run-application/configure-pdb/

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 1/12

Con�gure Out Of Resource Handling

The kubelet needs to preserve node stability when available compute resources are low.

This is especially important when dealing with incompressible resources such as memory or disk.

If either resource is exhausted, the node would become unstable.

Eviction Policy

Eviction Policy
Eviction Signals
Eviction Thresholds

Soft Eviction Thresholds
Hard Eviction Thresholds

Eviction Monitoring Interval
Node Conditions
Oscillation of node conditions
Reclaiming node level resources

With Imagefs
Without Imagefs

Evicting end-user pods
With Imagefs
Without Imagefs

Minimum eviction reclaim
Scheduler

Node OOM Behavior
Best Practices

Schedulable resources and eviction policies
DaemonSet

Deprecation of existing feature �ags to reclaim disk
Known issues

kubelet may not observe memory pressure right away
kubelet may evict more pods than needed
How kubelet ranks pods for eviction in response to inode exhaustion

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 2/12

The kubelet can pro-actively monitor for and prevent against total starvation of a compute

resource. In those cases, the kubelet can pro-actively fail one or more pods in order to reclaim the

starved resource. When the kubelet fails a pod, it terminates all containers in the pod, and the

PodPhase is transitioned to Failed .

Eviction Signals

The kubelet can support the ability to trigger eviction decisions on the signals described in the

table below. The value of each signal is described in the description column based on the kubelet

summary API.

Eviction Signal Description

memory.available
memory.available := node.status.capacity[memory] -

node.stats.memory.workingSet

nodefs.available nodefs.available := node.stats.fs.available

nodefs.inodesFree nodefs.inodesFree := node.stats.fs.inodesFree

imagefs.available imagefs.available := node.stats.runtime.imagefs.available

imagefs.inodesFree imagefs.inodesFree := node.stats.runtime.imagefs.inodesFree

Each of the above signals supports either a literal or percentage based value. The percentage based

value is calculated relative to the total capacity associated with each signal.

The value for memory.available is derived from the cgroupfs instead of tools like free -m . This is

important because free -m does not work in a container, and if users use the node allocatable

feature, out of resource decisions are made local to the end user pod part of the cgroup hierarchy as

well as the root node. This script reproduces the same set of steps that the kubelet performs to

calculate memory.available . The kubelet excludes inactive_�le (i.e. # of bytes of �le-backed

memory on inactive LRU list) from its calculation as it assumes that memory is reclaimable under

pressure.

kubelet supports only two �lesystem partitions.

1. The nodefs �lesystem that kubelet uses for volumes, daemon logs, etc.

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/memory-available.sh

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 3/12

2. The imagefs �lesystem that container runtimes uses for storing images and container writable

layers.

imagefs is optional. kubelet auto-discovers these �lesystems using cAdvisor. kubelet does not

care about any other �lesystems. Any other types of con�gurations are not currently supported by

the kubelet. For example, it is not OK to store volumes and logs in a dedicated filesystem .

In future releases, the kubelet will deprecate the existing garbage collection support in favor of

eviction in response to disk pressure.

Eviction Thresholds

The kubelet supports the ability to specify eviction thresholds that trigger the kubelet to reclaim

resources.

Each threshold is of the following form:

<eviction-signal><operator><quantity>

valid eviction-signal tokens as de�ned above.

valid operator tokens are <

valid quantity tokens must match the quantity representation used by Kubernetes

an eviction threshold can be expressed as a percentage if ends with % token.

For example, if a node has 10Gi of memory, and the desire is to induce eviction if available memory

falls below 1Gi , an eviction threshold can be speci�ed as either of the following (but not both).

memory.available<10%

memory.available<1Gi

Soft Eviction Thresholds

A soft eviction threshold pairs an eviction threshold with a required administrator speci�ed grace

period. No action is taken by the kubelet to reclaim resources associated with the eviction signal

http://localhost:4000/docs/concepts/cluster-administration/kubelet-garbage-collection/

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 4/12

until that grace period has been exceeded. If no grace period is provided, the kubelet will error on

startup.

In addition, if a soft eviction threshold has been met, an operator can specify a maximum allowed

pod termination grace period to use when evicting pods from the node. If speci�ed, the kubelet will

use the lesser value among the pod.Spec.TerminationGracePeriodSeconds and the max allowed

grace period. If not speci�ed, the kubelet will kill pods immediately with no graceful termination.

To con�gure soft eviction thresholds, the following �ags are supported:

eviction-soft describes a set of eviction thresholds (e.g. memory.available<1.5Gi) that if

met over a corresponding grace period would trigger a pod eviction.

eviction-soft-grace-period describes a set of eviction grace periods (e.g.

memory.available=1m30s) that correspond to how long a soft eviction threshold must hold

before triggering a pod eviction.

eviction-max-pod-grace-period describes the maximum allowed grace period (in seconds)

to use when terminating pods in response to a soft eviction threshold being met.

Hard Eviction Thresholds

A hard eviction threshold has no grace period, and if observed, the kubelet will take immediate

action to reclaim the associated starved resource. If a hard eviction threshold is met, the kubelet

will kill the pod immediately with no graceful termination.

To con�gure hard eviction thresholds, the following �ag is supported:

eviction-hard describes a set of eviction thresholds (e.g. memory.available<1Gi) that if

met would trigger a pod eviction.

The kubelet has the following default hard eviction threshold:

--eviction-hard=memory.available<100Mi

Eviction Monitoring Interval

The kubelet evaluates eviction thresholds per its con�gured housekeeping interval.

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 5/12

housekeeping-interval is the interval between container housekeepings.

Node Conditions

The kubelet will map one or more eviction signals to a corresponding node condition.

If a hard eviction threshold has been met, or a soft eviction threshold has been met independent of

its associated grace period, the kubelet will report a condition that re�ects the node is under

pressure.

The following node conditions are de�ned that correspond to the speci�ed eviction signal.

Node Condition Eviction Signal Description

MemoryPressure memory.available Available memory on the node has satis�ed an
eviction threshold

DiskPressure

nodefs.available ,

nodefs.inodesFree ,

imagefs.available , or

imagefs.inodesFree

Available disk space and inodes on either the
node’s root �lesytem or image �lesystem has
satis�ed an eviction threshold

The kubelet will continue to report node status updates at the frequency speci�ed by

--node-status-update-frequency which defaults to 10s .

Oscillation of node conditions

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated

grace period, it would cause the corresponding node condition to constantly oscillate between true

and false, and could cause poor scheduling decisions as a consequence.

To protect against this oscillation, the following �ag is de�ned to control how long the kubelet

must wait before transitioning out of a pressure condition.

eviction-pressure-transition-period is the duration for which the kubelet has to wait

before transitioning out of an eviction pressure condition.

The kubelet would ensure that it has not observed an eviction threshold being met for the

speci�ed pressure condition for the period speci�ed before toggling the condition back to false .

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 6/12

Reclaiming node level resources

If an eviction threshold has been met and the grace period has passed, the kubelet will initiate the

process of reclaiming the pressured resource until it has observed the signal has gone below its

de�ned threshold.

The kubelet attempts to reclaim node level resources prior to evicting end-user pods. If disk

pressure is observed, the kubelet reclaims node level resources differently if the machine has a

dedicated imagefs con�gured for the container runtime.

With Imagefs

If nodefs �lesystem has met eviction thresholds, kubelet will free up disk space in the following

order:

1. Delete dead pods/containers

If imagefs �lesystem has met eviction thresholds, kubelet will free up disk space in the following

order:

1. Delete all unused images

Without Imagefs

If nodefs �lesystem has met eviction thresholds, kubelet will free up disk space in the following

order:

1. Delete dead pods/containers

2. Delete all unused images

Evicting end-user pods

If the kubelet is unable to reclaim su�cient resource on the node, it will begin evicting pods.

The kubelet ranks pods for eviction as follows:

by their quality of service.

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 7/12

by the consumption of the starved compute resource relative to the pods scheduling request.

As a result, pod eviction occurs in the following order:

BestEffort pods that consume the most of the starved resource are failed �rst.

Burstable pods that consume the greatest amount of the starved resource relative to their

request for that resource are killed �rst. If no pod has exceeded its request, the strategy targets

the largest consumer of the starved resource.

Guaranteed pods that consume the greatest amount of the starved resource relative to their

request are killed �rst. If no pod has exceeded its request, the strategy targets the largest

consumer of the starved resource.

A Guaranteed pod is guaranteed to never be evicted because of another pod’s resource

consumption. If a system daemon (i.e. kubelet , docker , journald , etc.) is consuming more

resources than were reserved via system-reserved or kube-reserved allocations, and the node

only has Guaranteed pod(s) remaining, then the node must choose to evict a Guaranteed pod in

order to preserve node stability, and to limit the impact of the unexpected consumption to other

Guaranteed pod(s).

Local disk is a BestEffort resource. If necessary, kubelet will evict pods one at a time to reclaim

disk when DiskPressure is encountered. The kubelet will rank pods by quality of service. If the

kubelet is responding to inode starvation, it will reclaim inodes by evicting pods with the lowest

quality of service �rst. If the kubelet is responding to lack of available disk, it will rank pods within a

quality of service that consumes the largest amount of disk and kill those �rst.

With Imagefs

If nodefs is triggering evictions, kubelet will sort pods based on the usage on nodefs - local

volumes + logs of all its containers.

If imagefs is triggering evictions, kubelet will sort pods based on the writable layer usage of all its

containers.

Without Imagefs

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 8/12

If nodefs is triggering evictions, kubelet will sort pods based on their total disk usage - local

volumes + logs & writable layer of all its containers.

Minimum eviction reclaim

In certain scenarios, eviction of pods could result in reclamation of small amount of resources. This

can result in kubelet hitting eviction thresholds in repeated successions. In addition to that,

eviction of resources like disk , is time consuming.

To mitigate these issues, kubelet can have a per-resource minimum-reclaim . Whenever kubelet

observes resource pressure, kubelet will attempt to reclaim at least minimum-reclaim amount of

resource below the con�gured eviction threshold.

For example, with the following con�guration:

If an eviction threshold is triggered for memory.available , the kubelet will work to ensure that

memory.available is at least 500Mi . For nodefs.available , the kubelet will work to ensure

that nodefs.available is at least 1.5Gi , and for imagefs.available it will work to ensure that

imagefs.available is at least 102Gi before no longer reporting pressure on their associated

resources.

The default eviction-minimum-reclaim is 0 for all resources.

Scheduler

The node will report a condition when a compute resource is under pressure. The scheduler views

that condition as a signal to dissuade placing additional pods on the node.

Node Condition Scheduler Behavior

MemoryPressure No new BestEffort pods are scheduled to the node.

DiskPressure No new pods are scheduled to the node.

--eviction-hard=memory.available<500Mi,nodefs.available<1Gi,imagefs.available<100G
--eviction-minimum-reclaim="memory.available=0Mi,nodefs.available=500Mi,imagefs.av

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 9/12

Node OOM Behavior

If the node experiences a system OOM (out of memory) event prior to the kubelet is able to reclaim

memory, the node depends on the oom_killer to respond.

The kubelet sets a oom_score_adj value for each container based on the quality of service for the

pod.

Quality of Service oom_score_adj

Guaranteed -998

BestEffort 1000

Burstable min(max(2, 1000 - (1000 * memoryRequestBytes) / machineMemoryCapacityBytes), 999)

If the kubelet is unable to reclaim memory prior to a node experiencing system OOM, the

oom_killer will calculate an oom_score based on the percentage of memory it’s using on the

node, and then add the oom_score_adj to get an effective oom_score for the container, and then

kills the container with the highest score.

The intended behavior should be that containers with the lowest quality of service that are

consuming the largest amount of memory relative to the scheduling request should be killed �rst in

order to reclaim memory.

Unlike pod eviction, if a pod container is OOM killed, it may be restarted by the kubelet based on its

RestartPolicy .

Best Practices

Schedulable resources and eviction policies

Let’s imagine the following scenario:

Node memory capacity: 10Gi

https://lwn.net/Articles/391222/

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 10/12

Operator wants to reserve 10% of memory capacity for system daemons (kernel, kubelet , etc.)

Operator wants to evict pods at 95% memory utilization to reduce thrashing and incidence of

system OOM.

To facilitate this scenario, the kubelet would be launched as follows:

Implicit in this con�guration is the understanding that “System reserved” should include the amount

of memory covered by the eviction threshold.

To reach that capacity, either some pod is using more than its request, or the system is using more

than 500Mi .

This con�guration will ensure that the scheduler does not place pods on a node that immediately

induce memory pressure and trigger eviction assuming those pods use less than their con�gured

request.

DaemonSet

It is never desired for a kubelet to evict a pod that was derived from a DaemonSet since the pod

will immediately be recreated and rescheduled back to the same node.

At the moment, the kubelet has no ability to distinguish a pod created from DaemonSet versus any

other object. If/when that information is available, the kubelet could pro-actively �lter those pods

from the candidate set of pods provided to the eviction strategy.

In general, it is strongly recommended that DaemonSet not create BestEffort pods to avoid being

identi�ed as a candidate pod for eviction. Instead DaemonSet should ideally launch Guaranteed

pods.

Deprecation of existing feature �ags to reclaim disk

kubelet has been freeing up disk space on demand to keep the node stable.

--eviction-hard=memory.available<500Mi
--system-reserved=memory=1.5Gi

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 11/12

As disk based eviction matures, the following kubelet �ags will be marked for deprecation in favor

of the simpler con�guration supported around eviction.

Existing Flag New Flag

--image-gc-high-threshold --eviction-hard or eviction-soft

--image-gc-low-threshold --eviction-minimum-reclaim

--maximum-dead-containers deprecated

--maximum-dead-containers-per-container deprecated

--minimum-container-ttl-duration deprecated

--low-diskspace-threshold-mb --eviction-hard or eviction-soft

--outofdisk-transition-frequency --eviction-pressure-transition-period

Known issues

kubelet may not observe memory pressure right away

The kubelet currently polls cAdvisor to collect memory usage stats at a regular interval. If

memory usage increases within that window rapidly, the kubelet may not observe

MemoryPressure fast enough, and the OOMKiller will still be invoked. We intend to integrate with

the memcg noti�cation API in a future release to reduce this latency, and instead have the kernel tell

us when a threshold has been crossed immediately.

If you are not trying to achieve extreme utilization, but a sensible measure of overcommit, a viable

workaround for this issue is to set eviction thresholds at approximately 75% capacity. This increases

the ability of this feature to prevent system OOMs, and promote eviction of workloads so cluster

state can rebalance.

kubelet may evict more pods than needed

The pod eviction may evict more pods than needed due to stats collection timing gap. This can be

mitigated by adding the ability to get root container stats on an on-demand basis

(https://github.com/google/cadvisor/issues/1247) in the future.

https://github.com/google/cadvisor/issues/1247

10/23/2017 Configure Out Of Resource Handling - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/ 12/12

How kubelet ranks pods for eviction in response to inode
exhaustion

At this time, it is not possible to know how many inodes were consumed by a particular container. If

the kubelet observes inode exhaustion, it will evict pods by ranking them by quality of service. The

following issue has been opened in cadvisor to track per container inode consumption

(https://github.com/google/cadvisor/issues/1422) which would allow us to rank pods by inode

consumption. For example, this would let us identify a container that created large numbers of 0 byte

�les, and evict that pod over others.

https://github.com/google/cadvisor/issues/1422

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 1/7

Reserve Compute Resources for System
Daemons

Kubernetes nodes can be scheduled to Capacity . Pods can consume all the available capacity on a

node by default. This is an issue because nodes typically run quite a few system daemons that

power the OS and Kubernetes itself. Unless resources are set aside for these system daemons, pods

and system daemons compete for resources and lead to resource starvation issues on the node.

The kubelet exposes a feature named Node Allocatable that helps to reserve compute

resources for system daemons. Kubernetes recommends cluster administrators to con�gure

Node Allocatable based on their workload density on each node.

Node Allocatable

Node Allocatable
Enabling QoS and Pod level cgroups
Con�guring a cgroup driver
Kube Reserved
System Reserved
Eviction Thresholds
Enforcing Node Allocatable

General Guidelines
Example Scenario
Feature Availability

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 2/7

Allocatable on a Kubernetes node is de�ned as the amount of compute resources that are

available for pods. The scheduler does not over-subscribe Allocatable . CPU , memory and

ephemeral-storage are supported as of now.

Node Allocatable is exposed as part of v1.Node object in the API and as part of

kubectl describe node in the CLI.

Resources can be reserved for two categories of system daemons in the kubelet .

Enabling QoS and Pod level cgroups

To properly enforce node allocatable constraints on the node, you must enable the new cgroup

hierarchy via the --cgroups-per-qos �ag. This �ag is enabled by default. When enabled, the

kubelet will parent all end-user pods under a cgroup hierarchy managed by the kubelet .

Con�guring a cgroup driver

The kubelet supports manipulation of the cgroup hierarchy on the host using a cgroup driver. The

driver is con�gured via the --cgroup-driver �ag.

The supported values are the following:

cgroupfs is the default driver that performs direct manipulation of the cgroup �lesystem on the

host in order to manage cgroup sandboxes.

 Node Capacity

| kube-reserved |
|-------------------------|
| system-reserved |
|-------------------------|
| eviction-threshold |
|-------------------------|
| |
| allocatable |
| (available for pods) |
| |
| |

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 3/7

systemd is an alternative driver that manages cgroup sandboxes using transient slices for

resources that are supported by that init system.

Depending on the con�guration of the associated container runtime, operators may have to choose a

particular cgroup driver to ensure proper system behavior. For example, if operators use the

systemd cgroup driver provided by the docker runtime, the kubelet must be con�gured to use

the systemd cgroup driver.

Kube Reserved

Kubelet Flag:

--kube-reserved=[cpu=100m][,][memory=100Mi][,][ephemeral-storage=1Gi]

Kubelet Flag: --kube-reserved-cgroup=

kube-reserved is meant to capture resource reservation for kubernetes system daemons like the

kubelet , container runtime , node problem detector , etc. It is not meant to reserve resources

for system daemons that are run as pods. kube-reserved is typically a function of pod density

on the nodes. This performance dashboard exposes cpu and memory usage pro�les of kubelet

and docker engine at multiple levels of pod density. This blog post explains how the dashboard

can be interpreted to come up with a suitable kube-reserved reservation.

To optionally enforce kube-reserved on system daemons, specify the parent control group for

kube daemons as the value for --kube-reserved-cgroup kubelet �ag.

It is recommended that the kubernetes system daemons are placed under a top level control group (

runtime.slice on systemd machines for example). Each system daemon should ideally run within

its own child control group. Refer to this doc for more details on recommended control group

hierarchy.

Note that Kubelet does not create --kube-reserved-cgroup if it doesn’t exist. Kubelet will fail if an

invalid cgroup is speci�ed.

System Reserved

http://node-perf-dash.k8s.io/#/builds
http://blog.kubernetes.io/2016/11/visualize-kubelet-performance-with-node-dashboard.html
https://git.k8s.io/community/contributors/design-proposals/node/node-allocatable.md#recommended-cgroups-setup

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 4/7

Kubelet Flag:

--system-reserved=[cpu=100mi][,][memory=100Mi][,][ephemeral-storage=1Gi]

Kubelet Flag: --system-reserved-cgroup=

system-reserved is meant to capture resource reservation for OS system daemons like sshd ,

udev , etc. system-reserved should reserve memory for the kernel too since kernel memory is

not accounted to pods in Kubernetes at this time. Reserving resources for user login sessions is also

recommended (user.slice in systemd world).

To optionally enforce system-reserved on system daemons, specify the parent control group for

OS system daemons as the value for --system-reserved-cgroup kubelet �ag.

It is recommended that the OS system daemons are placed under a top level control group (

system.slice on systemd machines for example).

Note that Kubelet does not create --system-reserved-cgroup if it doesn’t exist. Kubelet will fail if

an invalid cgroup is speci�ed.

Eviction Thresholds

Kubelet Flag: --eviction-hard=[memory.available<500Mi]

Memory pressure at the node level leads to System OOMs which affects the entire node and all pods

running on it. Nodes can go o�ine temporarily until memory has been reclaimed. To avoid (or reduce

the probability of) system OOMs kubelet provides Out of Resource management. Evictions are

supported for memory and ephemeral-storage only. By reserving some memory via

--eviction-hard �ag, the kubelet attempts to evict pods whenever memory availability on the

node drops below the reserved value. Hypothetically, if system daemons did not exist on a node,

pods cannot use more than capacity - eviction-hard . For this reason, resources reserved for

evictions are not available for pods.

Enforcing Node Allocatable

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 5/7

Kubelet Flag:

--enforce-node-allocatable=pods[,][system-reserved][,][kube-reserved]

The scheduler treats Allocatable as the available capacity for pods.

kubelet enforce Allocatable across pods by default. Enforcement is performed by evicting pods

whenever the overall usage across all pods exceeds Allocatable . More details on eviction policy

can be found here. This enforcement is controlled by specifying pods value to the kubelet �ag

--enforce-node-allocatable .

Optionally, kubelet can be made to enforce kube-reserved and system-reserved by specifying

kube-reserved & system-reserved values in the same �ag. Note that to enforce kube-reserved

or system-reserved , --kube-reserved-cgroup or --system-reserved-cgroup needs to be

speci�ed respectively.

General Guidelines

System daemons are expected to be treated similar to Guaranteed pods. System daemons can

burst within their bounding control groups and this behavior needs to be managed as part of

kubernetes deployments. For example, kubelet should have its own control group and share

Kube-reserved resources with the container runtime. However, Kubelet cannot burst and use up all

available Node resources if kube-reserved is enforced.

Be extra careful while enforcing system-reserved reservation since it can lead to critical system

services being CPU starved or OOM killed on the node. The recommendation is to enforce

system-reserved only if a user has pro�led their nodes exhaustively to come up with precise

estimates and is con�dent in their ability to recover if any process in that group is oom_killed.

To begin with enforce Allocatable on pods .

Once adequate monitoring and alerting is in place to track kube system daemons, attempt to

enforce kube-reserved based on usage heuristics.

If absolutely necessary, enforce system-reserved over time.

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/out-of-resource.md#eviction-policy

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 6/7

The resource requirements of kube system daemons may grow over time as more and more

features are added. Over time, kubernetes project will attempt to bring down utilization of node

system daemons, but that is not a priority as of now. So expect a drop in Allocatable capacity in

future releases.

Example Scenario

Here is an example to illustrate Node Allocatable computation:

Node has 32Gi of memory , 16 CPUs and 100Gi of Storage

--kube-reserved is set to cpu=1,memory=2Gi,ephemeral-storage=1Gi

--system-reserved is set to cpu=500m,memory=1Gi,ephemeral-storage=1Gi

--eviction-hard is set to memory.available<500Mi,nodefs.available<10%

Under this scenario, Allocatable will be 14.5 CPUs , 28.5Gi of memory and 98Gi of local

storage. Scheduler ensures that the total memory requests across all pods on this node does not

exceed 28.5Gi and storage doesn’t exceed 88Gi . Kubelet evicts pods whenever the overall

memory usage exceeds across pods exceed 28.5Gi , or if overall disk usage exceeds 88Gi If all

processes on the node consume as much CPU as they can, pods together cannot consume more

than 14.5 CPUs .

If kube-reserved and/or system-reserved is not enforced and system daemons exceed their

reservation, kubelet evicts pods whenever the overall node memory usage is higher than 31.5Gi

or storage is greater than 90Gi

Feature Availability

As of Kubernetes version 1.2, it has been possible to optionally specify kube-reserved and

system-reserved reservations. The scheduler switched to using Allocatable instead of

Capacity when available in the same release.

10/23/2017 Reserve Compute Resources for System Daemons - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reserve-compute-resources/ 7/7

As of Kubernetes version 1.6, eviction-thresholds are being considered by computing

Allocatable . To revert to the old behavior set --experimental-allocatable-ignore-eviction

kubelet �ag to true .

As of Kubernetes version 1.6, kubelet enforces Allocatable on pods using control groups. To

revert to the old behavior unset --enforce-node-allocatable kubelet �ag. Note that unless

--kube-reserved , or --system-reserved or --eviction-hard �ags have non-default values,

Allocatable enforcement does not affect existing deployments.

As of Kubernetes version 1.6, kubelet launches pods in their own cgroup sandbox in a dedicated

part of the cgroup hierarchy it manages. Operators are required to drain their nodes prior to upgrade

of the kubelet from prior versions in order to ensure pods and their associated containers are

launched in the proper part of the cgroup hierarchy.

As of Kubernetes version 1.7, kubelet supports specifying storage as a resource for

kube-reserved and system-reserved .

10/23/2017 Guaranteed Scheduling For Critical Add-On Pods - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/ 1/2

Guaranteed Scheduling For Critical Add-On
Pods

Overview

In addition to Kubernetes core components like api-server, scheduler, controller-manager running on

a master machine there are a number of add-ons which, for various reasons, must run on a regular

cluster node (rather than the Kubernetes master). Some of these add-ons are critical to a fully

functional cluster, such as Heapster, DNS, and UI. A cluster may stop working properly if a critical

add-on is evicted (either manually or as a side effect of another operation like upgrade) and becomes

pending (for example when the cluster is highly utilized and either there are other pending pods that

schedule into the space vacated by the evicted critical add-on pod or the amount of resources

available on the node changed for some other reason).

Rescheduler: guaranteed scheduling of critical add-ons

Rescheduler ensures that critical add-ons are always scheduled (assuming the cluster has enough

resources to run the critical add-on pods in the absence of regular pods). If the scheduler determines

that no node has enough free resources to run the critical add-on pod given the pods that are already

running in the cluster (indicated by critical add-on pod’s pod condition PodScheduled set to false, the

reason set to Unschedulable) the rescheduler tries to free up space for the add-on by evicting some

pods; then the scheduler will schedule the add-on pod.

To avoid situation when another pod is scheduled into the space prepared for the critical add-on, the

chosen node gets a temporary taint “CriticalAddonsOnly” before the eviction(s) (see more details).

Overview
Rescheduler: guaranteed scheduling of critical add-ons
Con�g

Marking add-on as critical

https://git.k8s.io/community/contributors/design-proposals/scheduling/taint-toleration-dedicated.md

10/23/2017 Guaranteed Scheduling For Critical Add-On Pods - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/ 2/2

Each critical add-on has to tolerate it, while the other pods shouldn’t tolerate the taint. The taint is

removed once the add-on is successfully scheduled.

Warning: currently there is no guarantee which node is chosen and which pods are being killed in

order to schedule critical pods, so if rescheduler is enabled your pods might be occasionally killed for

this purpose.

Con�g

Rescheduler should be enabled by default as a static pod. It doesn’t have any user facing

con�guration (component con�g) or API and can be disabled:

during cluster setup by setting ENABLE_RESCHEDULER �ag to false

on running cluster by deleting its manifest from master node (default path

/etc/kubernetes/manifests/rescheduler.manifest)

Marking add-on as critical

To be critical an add-on has to run in kube-system namespace (con�gurable via �ag) and

have the scheduler.alpha.kubernetes.io/critical-pod annotation set to empty string, and

have the PodSpec’s tolerations �eld set to

[{"key":"CriticalAddonsOnly", "operator":"Exists"}]

The �rst one marks a pod a critical. The second one is required by Rescheduler algorithm.

https://git.k8s.io/kubernetes/cluster/saltbase/salt/rescheduler/rescheduler.manifest

10/23/2017 Declare Network Policy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/declare-network-policy/ 1/4

Declare Network Policy

This document helps you get started using the Kubernetes NetworkPolicy API to declare network

policies that govern how pods communicate with each other.

Before you begin

You’ll need to have a Kubernetes cluster in place, with network policy support. There are a number of

network providers that support NetworkPolicy, including:

Calico

Cilium

Kube-router

Romana

Weave Net

Note: The above list is sorted alphabetically by product name, not by recommendation or preference.

This example is valid for a Kubernetes cluster using any of these providers.

Create an nginx deployment and expose it via a service

Before you begin
Create an nginx deployment and expose it via a service
Test the service by accessing it from another pod
Limit access to the nginx service
Assign the policy to the service
Test access to the service when access label is not de�ned
De�ne access label and test again

http://localhost:4000/docs/concepts/services-networking/network-policies/
http://localhost:4000/docs/tasks/configure-pod-container/calico-network-policy/
http://localhost:4000/docs/tasks/administer-cluster/cilium-network-policy/
http://localhost:4000/docs/tasks/administer-cluster/kube-router-network-policy/
http://localhost:4000/docs/tasks/configure-pod-container/romana-network-policy/
http://localhost:4000/docs/tasks/administer-cluster/weave-network-policy/

10/23/2017 Declare Network Policy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/declare-network-policy/ 2/4

To see how Kubernetes network policy works, start off by creating an nginx deployment and

exposing it via a service.

This runs two nginx pods in the default namespace, and exposes them through a service called

nginx .

Test the service by accessing it from another pod

You should be able to access the new nginx service from other pods. To test, access the service

from another pod in the default namespace. Make sure you haven’t enabled isolation on the

namespace.

Start a busybox container, and use wget on the nginx service:

$ kubectl run nginx --image=nginx --replicas=2
deployment "nginx" created
$ kubectl expose deployment nginx --port=80
service "nginx" exposed

$ kubectl get svc,pod
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes 10.100.0.1 <none> 443/TCP 46m
svc/nginx 10.100.0.16 <none> 80/TCP 33s

NAME READY STATUS RESTARTS AGE
po/nginx-701339712-e0qfq 1/1 Running 0 35s
po/nginx-701339712-o00ef 1/1 Running 0 35s

$ kubectl run busybox --rm -ti --image=busybox /bin/sh
Waiting for pod default/busybox-472357175-y0m47 to be running, status is Pending,

Hit enter for command prompt

/ # wget --spider --timeout=1 nginx
Connecting to nginx (10.100.0.16:80)
/ #

10/23/2017 Declare Network Policy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/declare-network-policy/ 3/4

Limit access to the nginx service

Let’s say you want to limit access to the nginx service so that only pods with the label

access: true can query it. To do that, create a NetworkPolicy that allows connections only from

those pods:

Assign the policy to the service

Use kubectl to create a NetworkPolicy from the above nginx-policy.yaml �le:

Test access to the service when access label is not
de�ned

If we attempt to access the nginx Service from a pod without the correct labels, the request will now

time out:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
spec:
 podSelector:
 matchLabels:
 run: nginx
 ingress:
 - from:
 - podSelector:
 matchLabels:
 access: "true"

$ kubectl create -f nginx-policy.yaml
networkpolicy "access-nginx" created

10/23/2017 Declare Network Policy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/declare-network-policy/ 4/4

De�ne access label and test again

Create a pod with the correct labels, and you’ll see that the request is allowed:

$ kubectl run busybox --rm -ti --image=busybox /bin/sh
Waiting for pod default/busybox-472357175-y0m47 to be running, status is Pending,

Hit enter for command prompt

/ # wget --spider --timeout=1 nginx
Connecting to nginx (10.100.0.16:80)
wget: download timed out
/ #

$ kubectl run busybox --rm -ti --labels="access=true" --image=busybox /bin/sh
Waiting for pod default/busybox-472357175-y0m47 to be running, status is Pending,

Hit enter for command prompt

/ # wget --spider --timeout=1 nginx
Connecting to nginx (10.100.0.16:80)
/ #

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 1/12

Recon�gure a Node's Kubelet in a Live
Cluster

FEATURE STATE: Kubernetes v1.8 alpha

As of Kubernetes 1.8, the new Dynamic Kubelet Con�guration feature is available in alpha. This

allows you to change the con�guration of Kubelets in a live Kubernetes cluster via �rst-class

Kubernetes concepts. Speci�cally, this feature allows you to con�gure individual Nodes’ Kubelets via

Con�gMaps.

Warning: All Kubelet con�guration parameters may be changed dynamically, but not all parameters

are safe to change dynamically. This feature is intended for system experts who have a strong

understanding of how con�guration changes will affect behavior. No documentation currently exists

which plainly lists “safe to change” �elds, but we plan to add it before this feature graduates from

alpha.

Before you begin
Recon�guring the Kubelet on a Live Node in your Cluster

Basic Work�ow Overview
Node Authorizer Workarounds
Generating a �le that contains the current con�guration
Edit the con�guration �le
Push the con�guration �le to the control plane
Authorize your Node to read the new Con�gMap
Set the Node to use the new con�guration
Observe that the Node begins using the new con�guration
Edit the con�guration �le again
Push the newly edited con�guration to the control plane
Authorize your Node to read the new Con�gMap
Con�gure the Node to use the new con�guration
Observe that the Kubelet is using the new con�guration
Deauthorize your Node fom reading the old Con�gMap
Reset the Node to use its local default con�guration
Observe that the Node is using its local default con�guration
Deauthorize your Node fom reading the old Con�gMap

Kubectl Patch Example

https://github.com/kubernetes/features/issues/281

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 2/12

Before you begin

A live Kubernetes cluster with both Master and Node at v1.8 or higher must be running, with the

DynamicKubeletConfig feature gate enabled and the Kubelet’s --dynamic-config-dir �ag

set to a writeable directory on the Node. This �ag must be set to enable Dynamic Kubelet

Con�guration.

The kubectl command-line tool must be also be v1.8 or higher, and must be con�gured to

communicate with the cluster.

Recon�guring the Kubelet on a Live Node in your
Cluster

Basic Work�ow Overview

The basic work�ow for con�guring a Kubelet in a live cluster is as follows:

1. Write a YAML or JSON con�guration �le containing the Kubelet’s con�guration.

2. Wrap this �le in a Con�gMap and save it to the Kubernetes control plane.

3. Update the Kubelet’s correspoinding Node object to use this Con�gMap.

Each Kubelet watches a con�guration reference on its respective Node object. When this reference

changes, the Kubelet downloads the new con�guration and exits. For the feature to work correctly,

you must be running a process manager (like systemd) which will restart the Kubelet when it exits.

When the Kubelet is restarted, it will begin using the new con�guration.

The new con�guration completely overrides the old con�guration; unspeci�ed �elds in the new

con�guration will receive their canonical default values. Some CLI �ags do not have an associated

con�guration �eld, and will not be affected by the new con�guration. These �elds are de�ned by the

KubeletFlags structure, here.

The status of the Node’s Kubelet con�guration is reported via the ConfigOK condition in the Node

status. Once you have updated a Node to use the new Con�gMap, you can observe this condition to

Understanding Con�gOK Conditions

https://github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/options/options.go

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 3/12

con�rm that the Node is using the intended con�guration. A table describing the possible conditions

can be found at the end of this article.

This document describes editing Nodes using kubectl edit . There are other ways to modify a

Node’s spec, including kubectl patch , for example, which facilitate scripted work�ows.

This document only describes a single Node consuming each Con�gMap. Keep in mind that it is also

valid for multiple Nodes to consume the same Con�gMap.

Node Authorizer Workarounds

The Node Authorizer does not yet pay attention to which Con�gMaps are assigned to which Nodes.

If you currently use the Node authorizer, your Kubelets will not be automatically granted permission

to download their respective Con�gMaps.

The temporary workaround used in this document is to manually create the RBAC Roles and

RoleBindings for each Con�gMap. The Node Authorizer will be extended before the Dynamic Kubelet

Con�guration feature graduates from alpha, so doing this in production should never be necessary.

Generating a �le that contains the current con�guration

The Dynamic Kubelet Con�guration feature allows you to provide an override for the entire

con�guration object, rather than a per-�eld overlay. This is a simpler model that makes it easier to

trace the source of con�guration values and debug issues. The compromise, however, is that you

must start with knowledge of the existing con�guration to ensure that you only change the �elds you

intend to change.

In the future, the Kubelet will be bootstrapped from a �le on disk, and you will simply edit a copy of

this �le (which, as a best practice, should live in version control) while creating the �rst Kubelet

Con�gMap. Today, however, the Kubelet is still bootstrapped with command-line �ags. Fortunately,

there is a dirty trick you can use to generate a con�g �le containing a Node’s current con�guration.

The trick involves hitting the Kubelet server’s configz endpoint via the kubectl proxy. This endpoint,

in its current implementation, is intended to be used only as a debugging aid, which is part of why

this is a dirty trick. There is ongoing work to improve the endpoint, and in the future this will be a less

“dirty” operation. This trick also requires the jq command to be installed on your machine, for

unpacking and editing the JSON response from the endpoint.

Do the following to generate the �le:

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 4/12

1. Pick a Node to recon�gure. We will refer to this Node’s name as NODE_NAME.

2. Start the kubectl proxy in the background with kubectl proxy --port=8001 &

3. Run the following command to download and unpack the con�guration from the con�gz

endpoint:

Note that we have to manually add the kind and apiVersion to the downloaded object, as these

are not reported by the con�gz endpoint. This is one of the limitations of the endpoint that is planned

to be �xed in the future.

Edit the con�guration �le

Using your editor of choice, change one of the parameters in the kubelet_configz_${NODE_NAME}

�le from the previous step. A QPS parameter, eventRecordQPS for example, is a good candidate.

Push the con�guration �le to the control plane

Push the edited con�guration �le to the control plane with the following command:

You should see a response similar to:

$ export NODE_NAME=the-name-of-the-node-you-are-reconfiguring
$ curl -sSL http://localhost:8001/api/v1/proxy/nodes/${NODE_NAME}/configz | jq '.k

$ kubectl -n kube-system create configmap my-node-config --from-file=kubelet=kubel

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 5/12

Note that the con�guration data must appear under the Con�gMap’s kubelet key.

We create the Con�gMap in the kube-system namespace, which is appropriate because this

Con�gMap con�gures a Kubernetes system component - the Kubelet.

The --append-hash option appends a short checksum of the Con�gMap contents to the name.

This is convenient for an edit->push work�ow, as it will automatically, yet deterministically, generate

new names for new Con�gMaps.

We use the -o yaml output format so that the name, namespace, and uid are all reported following

creation. We will need these in the next step. We will refer to the name as CONFIG_MAP_NAME and

the uid as CONFIG_MAP_UID.

Authorize your Node to read the new Con�gMap

Now that you’ve created a new Con�gMap, you need to authorize your node to read it. First, create a

Role for your new Con�gMap with the following commands:

Next, create a RoleBinding to associate your Node with the new Role:

apiVersion: v1
data:
 kubelet: |
 {...}
kind: ConfigMap
metadata:
 creationTimestamp: 2017-09-14T20:23:33Z
 name: my-node-config-gkt4c2m4b2
 namespace: kube-system
 resourceVersion: "119980"
 selfLink: /api/v1/namespaces/kube-system/configmaps/my-node-config-gkt4c2m4b2
 uid: 946d785e-998a-11e7-a8dd-42010a800006

$ export CONFIG_MAP_NAME=name-from-previous-output
$ kubectl -n kube-system create role ${CONFIG_MAP_NAME}-reader --verb=get --resour

$ kubectl -n kube-system create rolebinding ${CONFIG_MAP_NAME}-reader --role=${CON

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 6/12

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Set the Node to use the new con�guration

Edit the Node’s reference to point to the new Con�gMap with the following command:

Once in your editor, add the following YAML under spec :

Be sure to specify all three of name , namespace , and uid .

Observe that the Node begins using the new con�guration

Retrieve the Node with kubectl get node ${NODE_NAME} -o yaml , and look for the ConfigOK

condition in status.conditions . You should see the message

Using current (UID: CONFIG_MAP_UID) when the Kubelet starts using the new con�guration.

For convenience, you can use the following command (using jq) to �lter down to the ConfigOK

condition:

kubectl edit node ${NODE_NAME}

configSource:
 configMapRef:
 name: CONFIG_MAP_NAME
 namespace: kube-system
 uid: CONFIG_MAP_UID

$ kubectl get no ${NODE_NAME} -o json | jq '.status.conditions|map(select(.type=="
[
 {
 "lastHeartbeatTime": "2017-09-20T18:08:29Z",
 "lastTransitionTime": "2017-09-20T18:08:17Z",
 "message": "using current (UID: \"2ebc8d1a-9e2a-11e7-a8dd-42010a800006\")",
 "reason": "passing all checks",
 "status": "True",
 "type": "ConfigOK"
 }
]

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 7/12

If something goes wrong, you may see one of several different error conditions, detailed in the Table

of Con�gOK Conditions, below. When this happens, you should check the Kubelet’s log for more

details.

Edit the con�guration �le again

To change the con�guration again, we simply repeat the above work�ow. Try editing the kubelet

�le, changing the previously changed parameter to a new value.

Push the newly edited con�guration to the control plane

Push the new con�guration to the control plane in a new Con�gMap with the following command:

This new Con�gMap will get a new name, as we have changed the contents. We will refer to the new

name as NEW_CONFIG_MAP_NAME and the new uid as NEW_CONFIG_MAP_UID.

Authorize your Node to read the new Con�gMap

Now that you’ve created a new Con�gMap, you need to authorize your node to read it. First, create a

Role for your new Con�gMap with the following commands:

Next, create a RoleBinding to associate your Node with the new Role:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Con�gure the Node to use the new con�guration

$ kubectl create configmap my-node-config --namespace=kube-system --from-file=kube

$ export NEW_CONFIG_MAP_NAME=name-from-previous-output
$ kubectl -n kube-system create role ${NEW_CONFIG_MAP_NAME}-reader --verb=get --re

$ kubectl -n kube-system create rolebinding ${NEW_CONFIG_MAP_NAME}-reader --role=$

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 8/12

Once more, edit the Node’s spec.configSource with kubectl edit node ${NODE_NAME} . Your

new spec.configSource should look like the following, with name and uid substituted as

necessary:

Observe that the Kubelet is using the new con�guration

Once more, retrieve the Node with kubectl get node ${NODE_NAME} -o yaml , and look for the

ConfigOK condition in status.conditions . You should the message

Using current (UID: NEW_CONFIG_MAP_UID) when the Kubelet starts using the new

con�guration.

Deauthorize your Node fom reading the old Con�gMap

Once you know your Node is using the new con�guration and are con�dent that the new

con�guration has not caused any problems, it is a good idea to deauthorize the node from reading

the old Con�gMap. Run the following commands to remove the RoleBinding and Role:

Note that this does not necessarily prevent the Node from reverting to the old con�guration, as it

may locally cache the old Con�gMap for an inde�nite period of time.

You may optionally also choose to remove the old Con�gMap:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Reset the Node to use its local default con�guration

configSource:
 configMapRef:
 name: NEW_CONFIG_MAP_NAME
 namespace: kube-system
 uid: NEW_CONFIG_MAP_UID

$ kubectl -n kube-system delete rolebinding ${CONFIG_MAP_NAME}-reader
$ kubectl -n kube-system delete role ${CONFIG_MAP_NAME}-reader

$ kubectl -n kube-system delete configmap ${CONFIG_MAP_NAME}

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 9/12

Finally, if you wish to reset the Node to use the con�guration it was provisioned with, simply edit the

Node with kubectl edit node ${NODE_NAME} and remove the spec.configSource sub�eld.

Observe that the Node is using its local default con�guration

After removing this sub�eld, you should eventually observe that the Con�gOK condition’s message

reverts to either using current (default) or using current (init) , depending on how the

Node was provisioned.

Deauthorize your Node fom reading the old Con�gMap

Once you know your Node is using the default con�guraiton again, it is a good idea to deauthorize

the node from reading the old Con�gMap. Run the following commands to remove the RoleBinding

and Role:

Note that this does not necessarily prevent the Node from reverting to the old Con�gMap, as it may

locally cache the old Con�gMap for an inde�nite period of time.

You may optionally also choose to remove the old Con�gMap:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Kubectl Patch Example

As mentioned above, there are many ways to change a Node’s con�gSource. Here is an example

command that uses kubectl patch :

$ kubectl -n kube-system delete rolebinding ${NEW_CONFIG_MAP_NAME}-reader
$ kubectl -n kube-system delete role ${NEW_CONFIG_MAP_NAME}-reader

$ kubectl -n kube-system delete configmap ${NEW_CONFIG_MAP_NAME}

kubectl patch node ${NODE_NAME} -p "{\"spec\":{\"configSource\":{\"configMapRef\":

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 10/12

Possible Messages Possible Reasons Status

using current (default)
current is set to the local default, and

no init con�g was provided
True

using current (init)
current is set to the local default, and

an init con�g was provided
True

using current (UID: CURRENT_CONFIG_MAP_UID) passing all checks True

using last-known-good (default)

failed to load current (UID:

CURRENT_CONFIG_MAP_UID)

failed to parse current (UID:

CURRENT_CONFIG_MAP_UID)

failed to validate current (UID:

CURRENT_CONFIG_MAP_UID)

False

using last-known-good (init)

failed to load current (UID:

CURRENT_CONFIG_MAP_UID)

failed to parse current (UID:

CURRENT_CONFIG_MAP_UID)

failed to validate current (UID:

CURRENT_CONFIG_MAP_UID)

False

Understanding Con�gOK Conditions

The following table describes several of the ConfigOK Node conditions you might encounter in a

cluster that has Dynamic Kubelet Con�g enabled. If you observe a condition with status=False ,

you should check the Kubelet log for more error details by searching for the message or reason text.

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 11/12

using last-known-good (UID:

LAST_KNOWN_GOOD_CONFIG_MAP_UID) failed to load current (UID:

CURRENT_CONFIG_MAP_UID)

failed to parse current (UID:

CURRENT_CONFIG_MAP_UID)

failed to validate current (UID:

CURRENT_CONFIG_MAP_UID)

False

The reasons in the next column could potentially

appear for any of the above messages.

This condition indicates that the Kubelet is having

trouble reconciling `spec.con�gSource`, and thus

no change to the in-use con�guration has

occurred.

The "failed to sync" reasons are speci�c to the

failure that occurred, and the next column does

not necessarily contain all possible failure

reasons.

failed to sync, reason:

failed to read Node from informer

object cache

failed to reset to local (default or

init) con�g

invalid NodeCon�gSource,

exactly one sub�eld must be

non-nil, but all were nil

invalid ObjectReference, all of

UID, Name, and Namespace

must be speci�ed

invalid ObjectReference, UID

SOME_UID does not match UID

of downloaded Con�gMap

SOME_OTHER_UID

failed to determine whether

object with UID SOME_UID was

already checkpointed

failed to download Con�gMap

with name SOME_NAME from

namespace SOME_NAMESPACE

False

10/23/2017 Reconfigure a Node’s Kubelet in a Live Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/reconfigure-kubelet/ 12/12

failed to save con�g checkpoint

for object with UID SOME_UID

failed to set current con�g

checkpoint to default

failed to set current con�g

checkpoint to object with UID

SOME_UID

10/23/2017 Use Calico for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/calico-network-policy/ 1/2

Use Calico for NetworkPolicy

This page shows how to use Calico for NetworkPolicy.

Before you begin

Install Calico for Kubernetes.

Deploying a cluster using Calico

You can deploy a cluster using Calico for network policy in the default GCE deployment using the

following set of commands:

See the Calico documentation for more options to deploy Calico with Kubernetes.

Understanding Calico components

Deploying a cluster with Calico adds Pods that support Kubernetes NetworkPolicy. These Pods run

in the kube-system Namespace.

To see this list of Pods run:

Before you begin
Deploying a cluster using Calico
Understanding Calico components
What’s next

export NETWORK_POLICY_PROVIDER=calico
export KUBE_NODE_OS_DISTRIBUTION=debian
curl -sS https://get.k8s.io | bash

kubectl get pods --namespace=kube-system

https://docs.projectcalico.org/latest/getting-started/kubernetes/installation/
http://localhost:4000/docs/getting-started-guides/gce/
http://docs.projectcalico.org/

10/23/2017 Use Calico for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/calico-network-policy/ 2/2

You’ll see a list of Pods similar to this:

There are two main components to be aware of:

One calico-node Pod runs on each node in your cluster and enforces network policy on the

tra�c to/from Pods on that machine by con�guring iptables.

The calico-policy-controller Pod reads the policy and label information from the

Kubernetes API and con�gures Calico appropriately.

What’s next

Once your cluster is running, you can follow the NetworkPolicy getting started guide to try out

Kubernetes NetworkPolicy.

NAME READY STATUS RESTARTS
calico-node-kubernetes-minion-group-jck6 1/1 Running 0
calico-node-kubernetes-minion-group-k9jy 1/1 Running 0
calico-node-kubernetes-minion-group-szgr 1/1 Running 0
calico-policy-controller-65rw1 1/1 Running 0
...

http://localhost:4000/docs/getting-started-guides/network-policy/walkthrough

10/23/2017 Use Cilium for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cilium-network-policy/ 1/3

Use Cilium for NetworkPolicy

This page shows how to use Cilium for NetworkPolicy.

For background on Cilium, read the Introduction to Cilium.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Deploying Cilium on Minikube for Basic Testing

To get familiar with Cilium easily you can follow the Cilium Kubernetes Getting Started Guide to

perform a basic DaemonSet installation of Cilium in minikube.

Installation in a minikube setup uses a simple ‘‘all-in-one’’ YAML �le that includes DaemonSet

con�gurations for Cilium and a key-value store (consul) as well as appropriate RBAC settings:

Before you begin
Deploying Cilium on Minikube for Basic Testing
Deploying Cilium for Production Use
Understanding Cilium components
What’s next

http://cilium.readthedocs.io/en/latest/intro/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://www.cilium.io/try

10/23/2017 Use Cilium for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cilium-network-policy/ 2/3

The remainder of the Getting Started Guide explains how to enforce both L3/L4 (i.e., IP address +

port) security policies, as well as L7 (e.g., HTTP) security policies using an example application.

Deploying Cilium for Production Use

For detailed instructions around deploying Cilium for production, see: Cilium Administrator Guide

This documentation includes detailed requirements, instructions and example production

DaemonSet �les.

Understanding Cilium components

Deploying a cluster with Cilium adds Pods to the kube-system namespace. To see this list of Pods

run:

You’ll see a list of Pods similar to this:

There are two main components to be aware of:

One cilium Pod runs on each node in your cluster and enforces network policy on the tra�c

to/from Pods on that node using Linux BPF.

$ kubectl create -f https://raw.githubusercontent.com/cilium/cilium/master/example
clusterrole "cilium" created
serviceaccount "cilium" created
clusterrolebinding "cilium" created
daemonset "cilium-consul" created
daemonset "cilium" created

kubectl get pods --namespace=kube-system

NAME DESIRED CURRENT READY NODE-SELECTOR AGE
cilium 1 1 1 <none> 2m
...

http://cilium.readthedocs.io/en/latest/admin/

10/23/2017 Use Cilium for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/cilium-network-policy/ 3/3

For production deployments, Cilium should leverage the key-value store cluster (e.g., etcd) used

by Kubernetes, which typically runs on the Kubernetes master nodes. The Cilium Administrator

Guide includes an example DaemonSet which can be customized to point to this key-value store

cluster. The simple ‘‘all-in-one’’ DaemonSet for minikube requires no such con�guration because

it automatically deploys a cilium-consul Pod to provide a key-value store.

What’s next

Once your cluster is running, you can follow the NetworkPolicy getting started guide to try out

Kubernetes NetworkPolicy with Cilium. Have fun, and if you have questions, contact us using the

Cilium Slack Channel.

http://cilium.readthedocs.io/en/latest/admin/
http://localhost:4000/docs/getting-started-guides/network-policy/walkthrough
https://cilium.herokuapp.com/

10/23/2017 Use Kube-router for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/kube-router-network-policy/ 1/1

Use Kube-router for NetworkPolicy

This page shows how to use Kube-router for NetworkPolicy.

Before you begin

You need to have a Kubernetes cluster running. If you do not already have a cluster, you can create

one by using any of the cluster installers like Kops, Bootkube, Kubeadm etc.

Installing Kube-router addon

The Kube-router Addon comes with a Network Policy Controller that watches Kubernetes API server

for any NetworkPolicy and pods updated and con�gures iptables rules and ipsets to allow or block

tra�c as directed by the policies. Please follow the trying Kube-router with cluster installers guide to

install Kube-router addon.

What’s next

Once you have installed the Kube-router addon, you can follow the NetworkPolicy getting started

guide to try out Kubernetes NetworkPolicy.

Before you begin
Installing Kube-router addon
What’s next

https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router/tree/master/Documentation#try-kube-router-with-cluster-installers
http://localhost:4000/docs/getting-started-guides/network-policy/walkthrough

10/23/2017 Romana for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/romana-network-policy/ 1/1

Romana for NetworkPolicy

This page shows how to use Romana for NetworkPolicy.

Before you begin

Complete steps 1, 2, and 3 of the kubeadm getting started guide.

Installing Romana with kubeadm

Follow the containerized installation guide for kubeadmin.

Applying network policies

To apply network policies use one of the following:

Romana network policies.

Example of Romana network policy.

The NetworkPolicy API.

What’s next

Once your have installed Romana, you can follow the NetworkPolicy getting started guide to try out

Kubernetes NetworkPolicy.

Before you begin
Installing Romana with kubeadm
Applying network policies
What’s next

http://localhost:4000/docs/getting-started-guides/kubeadm/
https://github.com/romana/romana/tree/master/containerize
https://github.com/romana/romana/wiki/Romana-policies
https://github.com/romana/core/tree/master/policy
http://localhost:4000/docs/getting-started-guides/network-policy/walkthrough

10/23/2017 Weave Net for NetworkPolicy - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/weave-network-policy/ 1/1

Weave Net for NetworkPolicy

This page shows how to use Weave Net for NetworkPolicy.

Before you begin

Complete steps 1, 2, and 3 of the kubeadm getting started guide.

Installing Weave Net addon

Follow the Integrating Kubernetes via the Addon guide.

The Weave Net Addon for Kubernetes comes with a Network Policy Controller that automatically

monitors Kubernetes for any NetworkPolicy annotations on all namespaces and con�gures

iptables rules to allow or block tra�c as directed by the policies.

What’s next

Once you have installed the Weave Net addon, you can follow the NetworkPolicy getting started

guide to try out Kubernetes NetworkPolicy.

Before you begin
Installing Weave Net addon
What’s next

http://localhost:4000/docs/getting-started-guides/kubeadm/
https://www.weave.works/docs/net/latest/kube-addon/
https://www.weave.works/docs/net/latest/kube-addon/#npc
http://localhost:4000/docs/getting-started-guides/network-policy/walkthrough

10/23/2017 Change the Reclaim Policy of a PersistentVolume - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/change-pv-reclaim-policy/ 1/3

Change the Reclaim Policy of a
PersistentVolume

This page shows how to change the reclaim policy of a Kubernetes PersistentVolume.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Why change reclaim policy of a PersistentVolume

PersistentVolumes can have various reclaim policies, including “Retain”, “Recycle”, and “Delete”.

For dynamically provisioned PersistentVolumes , the default reclaim policy is “Delete”. This means

that a dynamically provisioned volume is automatically deleted when a user deletes the

corresponding PeristentVolumeClaim . This automatic behavior might be inappropriate if the

volume contains precious data. In that case, it is more appropriate to use the “Retain” policy. With the

“Retain” policy, if a user deletes a PersistentVolumeClaim , the corresponding PersistentVolume

is not be deleted. Instead, it is moved to the Released phase, where all of its data can be manually

recovered.

Before you begin
Why change reclaim policy of a PersistentVolume
Changing the reclaim policy of a PersistentVolume
What’s next

Reference

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Change the Reclaim Policy of a PersistentVolume - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/change-pv-reclaim-policy/ 2/3

Changing the reclaim policy of a PersistentVolume

1. List the PersistentVolumes in your cluster:

The output is similar to this:

This list also includes the name of the claims that are bound to each volume for easier

identi�cation of dynamically provisioned volumes.

2. Choose one of your PersistentVolumes and change its reclaim policy:

where <your-pv-name> is the name of your chosen PersistentVolume.

3. Verify that your chosen PersistentVolume has the right policy:

The output is similar to this:

kubectl get pv

 NAME CAPACITY ACCESSMODES RECLAIMPOL

 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete

 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete

 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete

kubectl patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"R

kubectl get pv

10/23/2017 Change the Reclaim Policy of a PersistentVolume - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/change-pv-reclaim-policy/ 3/3

In the preceding output, you can see that the volume bound to claim default/claim3 has

reclaim policy Retain . It will not be automatically deleted when a user deletes claim

default/claim3 .

What’s next

Learn more about PersistentVolumes.

Learn more about PersistentVolumeClaims.

Reference

PersistentVolume

PersistentVolumeClaim

See the persistentVolumeReclaimPolicy �eld of PersistentVolumeSpec.

 NAME CAPACITY ACCESSMODES RECLAIMPOL

 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete

 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete

 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain

http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://localhost:4000/docs/api-reference/v1.8/#persistentvolume-v1-core
http://localhost:4000/docs/api-reference/v1.8/#persistentvolumeclaim-v1-core
http://localhost:4000/docs/api-reference/v1.8/#persistentvolumeclaim-v1-core

10/23/2017 Limit Storage Consumption - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/limit-storage-consumption/ 1/3

Limit Storage Consumption

This example demonstrates an easy way to limit the amount of storage consumed in a namespace.

The following resources are used in the demonstration: ResourceQuota, LimitRange, and

PersistentVolumeClaim.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Scenario: Limiting Storage Consumption

The cluster-admin is operating a cluster on behalf of a user population and the admin wants to

control how much storage a single namespace can consume in order to control cost.

The admin would like to limit:

1. The number of persistent volume claims in a namespace

2. The amount of storage each claim can request

3. The amount of cumulative storage the namespace can have

Before you begin
Scenario: Limiting Storage Consumption
LimitRange to limit requests for storage
StorageQuota to limit PVC count and cumulative storage capacity
Summary

http://localhost:4000/docs/concepts/policy/resource-quotas/
http://localhost:4000/docs/tasks/configure-pod-container/limit-range/
http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Limit Storage Consumption - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/limit-storage-consumption/ 2/3

LimitRange to limit requests for storage

Adding a LimitRange to a namespace enforces storage request sizes to a minimum and maximum.

Storage is requested via PersistentVolumeClaim . The admission controller that enforces limit

ranges will reject any PVC that is above or below the values set by the admin.

In this example, a PVC requesting 10Gi of storage would be rejected because it exceeds the 2Gi max.

Minimum storage requests are used when the underlying storage provider requires certain

minimums. For example, AWS EBS volumes have a 1Gi minimum requirement.

StorageQuota to limit PVC count and cumulative
storage capacity

Admins can limit the number of PVCs in a namespace as well as the cumulative capacity of those

PVCs. New PVCs that exceed either maximum value will be rejected.

In this example, a 6th PVC in the namespace would be rejected because it exceeds the maximum

count of 5. Alternatively, a 5Gi maximum quota when combined with the 2Gi max limit above, cannot

have 3 PVCs where each has 2Gi. That would be 6Gi requested for a namespace capped at 5Gi.

apiVersion: v1
kind: LimitRange
metadata:
 name: storagelimits
spec:
 limits:
 - type: PersistentVolumeClaim
 max:
 storage: 2Gi
 min:
 storage: 1Gi

10/23/2017 Limit Storage Consumption - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/limit-storage-consumption/ 3/3

Summary

A limit range can put a ceiling on how much storage is requested while a resource quota can

effectively cap the storage consumed by a namespace through claim counts and cumulative storage

capacity. The allows a cluster-admin to plan their cluster’s storage budget without risk of any one

project going over their allotment.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storagequota
spec:
 hard:
 persistentvolumeclaims: "5"
 requests.storage: "5Gi"

10/23/2017 Change the default StorageClass - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/change-default-storage-class/ 1/3

Change the default StorageClass

This page shows how to change the default Storage Class that is used to provision volumes for

PersistentVolumeClaims that have no special requirements.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Why change the default storage class?

Depending on the installation method, your Kubernetes cluster may be deployed with an existing

StorageClass that is marked as default. This default StorageClass is then used to dynamically

provision storage for PersistentVolumeClaims that do not require any speci�c storage class. See

PersistentVolumeClaim documentation for details.

The pre-installed default StorageClass may not �t well with your expected workload; for example, it

might provision storage that is too expensive. If this is the case, you can either change the default

StorageClass or disable it completely to avoid dynamic provisioning of storage.

Simply deleting the default StorageClass may not work, as it may be re-created automatically by the

addon manager running in your cluster. Please consult the docs for your installation for details about

addon manager and how to disable individual addons.

Before you begin
Why change the default storage class?
Changing the default StorageClass
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/concepts/storage/persistent-volumes/#class-1

10/23/2017 Change the default StorageClass - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/change-default-storage-class/ 2/3

Changing the default StorageClass

1. List the StorageClasses in your cluster:

The output is similar to this:

The default StorageClass is marked by (default) .

2. Mark the default StorageClass as non-default:

The default StorageClass has an annotation

storageclass.kubernetes.io/is-default-class set to true . Any other value or absence

of the annotation is interpreted as false .

To mark a StorageClass as non-default, you need to change its value to false :

where <your-class-name> is the name of your chosen StorageClass.

3. Mark a StorageClass as default:

Similarly to the previous step, you need to add/set the annotation

storageclass.kubernetes.io/is-default-class=true .

kubectl get storageclass

 NAME TYPE

 standard (default) kubernetes.io/gce-pd

 gold kubernetes.io/gce-pd

kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{

kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{

10/23/2017 Change the default StorageClass - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/change-default-storage-class/ 3/3

Please note that at most one StorageClass can be marked as default. If two or more of them are

marked as default, Kubernetes ignores the annotation, i.e. it behaves as if there is no default

StorageClass.

4. Verify that your chosen StorageClass is default:

The output is similar to this:

What’s next

Learn more about StorageClasses.

kubectl get storageclass

 NAME TYPE

 standard kubernetes.io/gce-pd

 gold (default) kubernetes.io/gce-pd

http://localhost:4000/docs/concepts/storage/persistent-volumes/

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 1/7

Kubernetes Cloud Controller Manager

Cloud Controller Manager is an alpha feature in 1.8. In upcoming releases it will be the preferred

way to integrate Kubernetes with any cloud. This will ensure cloud providers can develop their

features independantly from the core Kubernetes release cycles.

Cloud Controller Manager

Kubernetes v1.6 contains a new binary called cloud-controller-manager .

cloud-controller-manager is a daemon that embeds cloud-speci�c control loops. These cloud-

speci�c control loops were originally in the kube-controller-manager . Since cloud providers

develop and release at a different pace compared to the Kubernetes project, abstracting the provider-

speci�c code to the cloud-controller-manager binary allows cloud vendors to evolve

independently from the core Kubernetes code.

The cloud-controller-manager can be linked to any cloud provider that satisi�es

cloudprovider.Interface. For backwards compatibility, the cloud-controller-manager provided in the

core Kubernetes project uses the same cloud libraries as kube-controller-manager . Cloud

providers already supported in Kubernetes core are expected to use the in-tree cloud-controller-

manager to transition out of Kubernetes core. In future Kubernetes releases, all cloud controller

managers will be developed outside of the core Kubernetes project managed by sig leads or cloud

vendors.

Cloud Controller Manager
Administration

Requirements
Running cloud-controller-manager

Examples
Limitations

Support for Volumes
Scalability
Chicken and Egg

Developing your own Cloud Controller Manager

https://git.k8s.io/kubernetes/pkg/cloudprovider/cloud.go
https://github.com/kubernetes/kubernetes/tree/master/cmd/cloud-controller-manager

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 2/7

Administration

Requirements

Every cloud has their own set of requirements for running their own cloud provider integration, it

should not be too different from the requirements when running kube-controller-manager . As a

general rule of thumb you’ll need:

cloud authentication/authorization: your cloud may require a token or IAM rules to allow access

to their APIs

kubernetes authentication/authorization: cloud-controller-manager may need RBAC rules set to

speak to the kubernetes apiserver

high availabilty: like kube-controller-manager, you may want a high available setup for cloud

controller manager using leader election (on by default).

Running cloud-controller-manager

Successfully running cloud-controller-manager requires some changes to your cluster con�guration.

kube-apiserver and kube-controller-manager MUST NOT specify the --cloud-provider

�ag. This ensures that it does not run any cloud speci�c loops that would be run by cloud

controller manager. In the future, this �ag will be deprecated and removed.

kubelet must run with --cloud-provider=external . This is to ensure that the kubelet is

aware that it must be initialized by the cloud controller manager before it is scheduled any work.

kube-apiserver SHOULD NOT run the PersistentVolumeLabel admission controller since

the cloud controller manager takes over labeling persistent volumes. To prevent the

PersistentVolumeLabel admission plugin from running, make sure the kube-apiserver has a

--admission-control �ag with a value that does not include PersistentVolumeLabel .

For the cloud-controller-manager to label persistent volumes, initializers will need to be

enabled and an InitializerConifguration needs to be added to the system. Follow these

instructions to enable initializers. Use the following YAML to create the InitializerCon�guration:

http://localhost:4000/docs/admin/extensible-admission-controllers.md#enable-initializers-alpha-feature

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 3/7

persistent-volume-label-initializer-config.yaml

Keep in mind that setting up your cluster to use cloud controller manager will change your cluster

behaviour in a few ways:

kubelets specifying --cloud-provider=external will add a taint

node.cloudprovider.kubernetes.io/uninitialized with an effect NoSchedule during

initialization. This marks the node as needing a second initialization from an external controller

before it can be scheduled work. Note that in the event that cloud controller manager is not

available, new nodes in the cluster will be left unscheduable. The taint is important since the

scheduler may require cloud speci�c information about nodes such as it’s region or type (high

cpu, gpu, high memory, spot instance, etc).

cloud information about nodes in the cluster will no longer be retrieved using local metadata, but

instead all API calls to retreive node information will go through cloud controller manager. This

may mean you can restrict access to your cloud API on the kubelets for better security. For

larger clusters you may want to consider if cloud controller manager will hit rate limits since it is

now responsible for almost all API calls to your cloud from within the cluster.

As of v1.8, cloud controller manager can implement:

node controller - responsible for updating kubernetes nodes using cloud APIs and deleting

kubernetes nodes that were deleted on your cloud.

kind: InitializerConfiguration
apiVersion: admissionregistration.k8s.io/v1alpha1
metadata:
 name: pvlabel.kubernetes.io
initializers:
 - name: pvlabel.kubernetes.io
 rules:
 - apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - persistentvolumes

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/persistent-volume-label-initializer-config.yaml

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 4/7

service controller - responsible for loadbalancers on your cloud against services of type

LoadBalancer.

route controller - responsible for setting up network routes on your cloud

PersistentVolumeLabel Admission Controller - responsible for labeling persistent volumes on

your cloud - ensure that the persistent volume label admission plugin is not enabled on your

kube-apiserver.

any other features you would like to implement if you are running an out-of-tree provider.

Examples

If you are using a cloud that is currently supported in Kubernetes core and would like to adopt cloud

controller manager, see the cloud controller manager in kubernetes core.

For cloud controller managers not in Kubernetes core, you can �nd the respective projects in repos

maintained by cloud vendors or sig leads.

DigitalOcean

keepalived

Rancher

For providers already in Kubernetes core, you can run the in-tree cloud controller manager as a

Daemonset in your cluster, use the following as a guideline:

cloud-controller-manager-daemonset-example.yaml

This is an example of how to setup cloud-controller-manger as a Daemonset in you
It assumes that your masters can run pods and has the role node-role.kubernetes.
Note that this Daemonset will not work straight out of the box for your cloud, t
meant to be a guideline.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: cloud-controller-manager
 namespace: kube-system

http://localhost:4000/docs/admin/admission-controllers#persistentvolumelabel
https://github.com/kubernetes/kubernetes/tree/master/cmd/cloud-controller-manager
https://github.com/digitalocean/digitalocean-cloud-controller-manager
https://github.com/munnerz/keepalived-cloud-provider
https://github.com/rancher/rancher-cloud-controller-manager
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cloud-controller-manager-daemonset-example.yaml

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 5/7

cloud-controller-manager-daemonset-example.yaml

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: system:cloud-controller-manager
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: cloud-controller-manager
 namespace: kube-system

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 labels:
 k8s-app: cloud-controller-manager
 name: cloud-controller-manager
 namespace: kube-system
spec:
 selector:
 matchLabels:
 k8s-app: cloud-controller-manager
 template:
 metadata:
 labels:
 k8s-app: cloud-controller-manager
 spec:
 serviceAccountName: cloud-controller-manager
 containers:
 - name: cloud-controller-manager
 # for in-tree providers we use gcr.io/google_containers/cloud-controller-m
 # this can be replaced with any other image for out-of-tree providers
 image: gcr.io/google_containers/cloud-controller-manager:v1.8.0
 command:
 - /usr/local/bin/cloud-controller-manager
 - --cloud-provider=<YOUR_CLOUD_PROVIDER> # Add your own cloud provider h
 - --leader-elect=true
 - --use-service-account-credentials
 # these flags will vary for every cloud provider
 - --allocate-node-cidrs=true
 - --configure-cloud-routes=true
 - --cluster-cidr=172.17.0.0/16
 tolerations:
 # this is required so CCM can bootstrap itself
 - key: node.cloudprovider.kubernetes.io/uninitialized
 value: "true"
 effect: NoSchedule
 # this is to have the daemonset runnable on master nodes
 # the taint may vary depending on your cluster setup

k d l k b t i / t

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cloud-controller-manager-daemonset-example.yaml

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 6/7

cloud-controller-manager-daemonset-example.yaml

Limitations

Running cloud controller manager comes with a few possible limitations. Although these limitations

are being addressed in upcoming releases, it’s important that you are aware of these limitations for

production workloads.

Support for Volumes

Cloud controller manager does not implement any of the volume controllers found in

kube-controller-manager as the volume integrations also require coordination with kubelets. As

we evolve CSI (container storage interface) and add stronger support for �ex volume plugins,

necessary support will be added to cloud controller manager so that clouds can fully integrate with

volumes. Learn more about out-of-tree CSI volume plugins here.

Scalability

In the previous architecture for cloud providers, we relied on kubelets using a local metadata service

to retreive node information about itself. With this new architecture, we now fully rely on the cloud

controller managers to retrieve information for all nodes. For very larger clusters, you should

consider possible bottle necks such as resource requirements and API rate limiting.

Chicken and Egg

The goal of the cloud controller manager project is to decouple development of cloud features from

the core Kubernetes project. Unforunately, many aspects of the Kubernetes project has assumptions

that cloud provider features are tightly integrated into the project. As a result, adopting this new

architecture can create several situations where a request is being made for information from a

cloud provider, but the cloud controller manager may not be able to return that information without

the original request being complete.

 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 # this is to restrict CCM to only run on master nodes
 # the node selector may vary depending on your cluster setup
 nodeSelector:
 node-role.kubernetes.io/master: ""

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/administer-cluster/cloud-controller-manager-daemonset-example.yaml
https://github.com/kubernetes/features/issues/178

10/23/2017 Kubernetes Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller/ 7/7

A good example of this is the TLS bootstrapping feature in the Kubelet. Currently, TLS bootstraping

assumes that the Kubelet has the ability to ask the cloud provider (or a local metadata service) for all

its address types (private, public, etc) but cloud controller manager cannot set a node’s address

types without being initialzed in the �rst place which requires that the kubelet has TLS certi�cates to

communicate with the apiserver.

As this initiative evolves, changes will be made to address these issues in upcoming releases.

Developing your own Cloud Controller Manager

To build and develop your own cloud controller manager, read the Developing Cloud Controller

Manager doc.

http://localhost:4000/docs/tasks/administer-cluster/developing-cloud-controller-manager.md

10/23/2017 Developing Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/developing-cloud-controller-manager/ 1/2

Developing Cloud Controller Manager

Cloud Controller Manager is an alpha feature in 1.8. In upcoming releases it will be the preferred

way to integrate Kubernetes with any cloud. This will ensure cloud providers can develop their

features independantly from the core Kubernetes release cycles.

Background

Before going into how to build your own cloud controller manager, some background on how it works

under the hood is helpful. The cloud controller manager is code from kube-controller-manager

utilizing Go interfaces to allow implementations from any cloud to be plugged in. Most of the

scaffolding and generic controller implementations will be in core, but it will always exec out to the

cloud interfaces it is provided, so long as the cloud provider interface is satisifed.

To dive a little deeper into implementation details, all cloud controller managers will import packages

from Kubernetes core, the only difference being each project will register their own cloud providers

by calling cloudprovider.RegisterCloudProvier where a global variable of available cloud providers is

updated.

Developing

Out of Tree

To build an out-of-tree cloud-controller-manager for your cloud, follow these steps:

1. Create a go package with an implementation that satis�es cloudprovider.Interface.

Background
Developing

Out of Tree
In Tree

https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/cloud.go#L29-L50
https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/plugins.go#L42-L52
https://git.k8s.io/kubernetes/pkg/cloudprovider/cloud.go

10/23/2017 Developing Cloud Controller Manager - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/developing-cloud-controller-manager/ 2/2

2. Use main.go in cloud-controller-manager from Kubernestes core as a template for your main.go.

As mentioned above, the only difference should be the cloud package that will be imported.

3. Import your cloud package in main.go , ensure your package has an init block to run

cloudprovider.RegisterCloudProvider.

Using existing out-of-tree cloud providers as an example may be helpful. You can �nd the list here.

In Tree

For in-tree cloud providers, you can run the in-tree cloud controller manager as a Daemonset in your

cluster. See the running cloud controller manager docs for more details.

https://github.com/kubernetes/kubernetes/blob/master/cmd/cloud-controller-manager/controller-manager.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/plugins.go#L42-L52
http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller.md#examples
http://localhost:4000/docs/tasks/administer-cluster/cloud-controller-manager-daemonset-example.yaml
http://localhost:4000/docs/tasks/administer-cluster/running-cloud-controller.md

10/23/2017 Set up High-Availability Kubernetes Masters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/highly-available-master/ 1/6

Set up High-Availability Kubernetes Masters

Kubernetes version 1.5 adds alpha support for replicating Kubernetes masters in kube-up or

kube-down scripts for Google Compute Engine. This document describes how to use kube-up/down

scripts to manage highly available (HA) masters and how HA masters are implemented for use with

GCE.

Starting an HA-compatible cluster

To create a new HA-compatible cluster, you must set the following �ags in your kube-up script:

MULTIZONE=true - to prevent removal of master replicas kubelets from zones different than

server’s default zone. Required if you want to run master replicas in different zones, which is

recommended.

ENABLE_ETCD_QUORUM_READS=true - to ensure that reads from all API servers will return most

up-to-date data. If true, reads will be directed to leader etcd replica. Setting this value to true is

optional: reads will be more reliable but will also be slower.

Optionally, you can specify a GCE zone where the �rst master replica is to be created. Set the

following �ag:

Starting an HA-compatible cluster
Adding a new master replica
Removing a master replica
Handling master replica failures
Best practices for replicating masters for HA clusters
Implementation notes

Overview
Load balancing
Master service & kubelets
Master certi�cates
Clustering etcd

Additional reading

10/23/2017 Set up High-Availability Kubernetes Masters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/highly-available-master/ 2/6

KUBE_GCE_ZONE=zone - zone where the �rst master replica will run.

The following sample command sets up a HA-compatible cluster in the GCE zone europe-west1-b:

Note that the commands above create a cluster with one master; however, you can add new master

replicas to the cluster with subsequent commands.

Adding a new master replica

After you have created an HA-compatible cluster, you can add master replicas to it. You add master

replicas by using a kube-up script with the following �ags:

KUBE_REPLICATE_EXISTING_MASTER=true - to create a replica of an existing master.

KUBE_GCE_ZONE=zone - zone where the master replica will run. Must be in the same region as

other replicas’ zones.

You don’t need to set the MULTIZONE or ENABLE_ETCD_QUORUM_READS �ags, as those are inherited

from when you started your HA-compatible cluster.

The following sample command replicates the master on an existing HA-compatible cluster:

Removing a master replica

You can remove a master replica from an HA cluster by using a kube-down script with the following

�ags:

KUBE_DELETE_NODES=false - to restrain deletion of kubelets.

$ MULTIZONE=true KUBE_GCE_ZONE=europe-west1-b ENABLE_ETCD_QUORUM_READS=true ./clu

$ KUBE_GCE_ZONE=europe-west1-c KUBE_REPLICATE_EXISTING_MASTER=true ./cluster/kube-

10/23/2017 Set up High-Availability Kubernetes Masters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/highly-available-master/ 3/6

KUBE_GCE_ZONE=zone - the zone from where master replica will be removed.

KUBE_REPLICA_NAME=replica_name - (optional) the name of master replica to remove. If

empty: any replica from the given zone will be removed.

The following sample command removes a master replica from an existing HA cluster:

Handling master replica failures

If one of the master replicas in your HA cluster fails, the best practice is to remove the replica from

your cluster and add a new replica in the same zone. The following sample commands demonstrate

this process:

1. Remove the broken replica:

2. Add a new replica in place of the old one:

Best practices for replicating masters for HA clusters

Try to place master replicas in different zones. During a zone failure, all masters placed inside

the zone will fail. To survive zone failure, also place nodes in multiple zones (see multiple-zones

for details).

Do not use a cluster with two master replicas. Consensus on a two-replica cluster requires both

replicas running when changing persistent state. As a result, both replicas are needed and a

$ KUBE_DELETE_NODES=false KUBE_GCE_ZONE=europe-west1-c ./cluster/kube-down.sh

$ KUBE_DELETE_NODES=false KUBE_GCE_ZONE=replica_zone KUBE_REPLICA_NAME=replica_nam

$ KUBE_GCE_ZONE=replica-zone KUBE_REPLICATE_EXISTING_MASTER=true ./cluster/kube-up

http://localhost:4000/docs/admin/multiple-zones/

10/23/2017 Set up High-Availability Kubernetes Masters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/highly-available-master/ 4/6

failure of any replica turns cluster into majority failure state. A two-replica cluster is thus inferior,

in terms of HA, to a single replica cluster.

When you add a master replica, cluster state (etcd) is copied to a new instance. If the cluster is

large, it may take a long time to duplicate its state. This operation may be sped up by migrating

etcd data directory, as described here (we are considering adding support for etcd data dir

migration in future).

Implementation notes

Overview

Each of master replicas will run the following components in the following mode:

etcd instance: all instances will be clustered together using consensus;

https://coreos.com/etcd/docs/latest/admin_guide.html#member-migration

10/23/2017 Set up High-Availability Kubernetes Masters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/highly-available-master/ 5/6

API server: each server will talk to local etcd - all API servers in the cluster will be available;

controllers, scheduler, and cluster auto-scaler: will use lease mechanism - only one instance of

each of them will be active in the cluster;

add-on manager: each manager will work independently trying to keep add-ons in sync.

In addition, there will be a load balancer in front of API servers that will route external and internal

tra�c to them.

Load balancing

When starting the second master replica, a load balancer containing the two replicas will be created

and the IP address of the �rst replica will be promoted to IP address of load balancer. Similarly, after

removal of the penultimate master replica, the load balancer will be removed and its IP address will

be assigned to the last remaining replica. Please note that creation and removal of load balancer are

complex operations and it may take some time (~20 minutes) for them to propagate.

Master service & kubelets

Instead of trying to keep an up-to-date list of Kubernetes apiserver in the Kubernetes service, the

system directs all tra�c to the external IP:

in one master cluster the IP points to the single master,

in multi-master cluster the IP points to the load balancer in-front of the masters.

Similarly, the external IP will be used by kubelets to communicate with master.

Master certi�cates

Kubernetes generates Master TLS certi�cates for the external public IP and local IP for each replica.

There are no certi�cates for the ephemeral public IP for replicas; to access a replica via its ephemeral

public IP, you must skip TLS veri�cation.

Clustering etcd

To allow etcd clustering, ports needed to communicate between etcd instances will be opened (for

inside cluster communication). To make such deployment secure, communication between etcd

10/23/2017 Set up High-Availability Kubernetes Masters - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/highly-available-master/ 6/6

instances is authorized using SSL.

Additional reading

Automated HA master deployment - design doc

https://git.k8s.io/community/contributors/design-proposals/cluster-lifecycle/ha_master.md

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 1/7

Con�gure Multiple Schedulers

Kubernetes ships with a default scheduler that is described here. If the default scheduler does not

suit your needs you can implement your own scheduler. Not just that, you can even run multiple

schedulers simultaneously alongside the default scheduler and instruct Kubernetes what scheduler

to use for each of your pods. Let’s learn how to run multiple schedulers in Kubernetes with an

example.

A detailed description of how to implement a scheduler is outside the scope of this document.

Please refer to the kube-scheduler implementation in plugin/pkg/scheduler in the Kubernetes source

directory for a canonical example.

1. Package the scheduler

Package your scheduler binary into a container image. For the purposes of this example, let’s just

use the default scheduler (kube-scheduler) as our second scheduler as well. Clone the Kubernetes

source code from Github and build the source.

Create a container image containing the kube-scheduler binary. Here is the Dockerfile to build the

image:

Save the �le as Dockerfile , build the image and push it to a registry. This example pushes the

image to Google Container Registry (GCR). For more details, please read the GCR documentation.

git clone https://github.com/kubernetes/kubernetes.git
cd kubernetes
make

FROM busybox
ADD ./_output/dockerized/bin/linux/amd64/kube-scheduler /usr/local/bin/kube-schedu

docker build -t my-kube-scheduler:1.0 .
gcloud docker -- push gcr.io/my-gcp-project/my-kube-scheduler:1.0

http://localhost:4000/docs/admin/kube-scheduler/
https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/scheduler
https://github.com/kubernetes/kubernetes
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/docs/

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 2/7

2. De�ne a Kubernetes Deployment for the scheduler

Now that we have our scheduler in a container image, we can just create a pod con�g for it and run it

in our Kubernetes cluster. But instead of creating a pod directly in the cluster, let’s use a Deployment

for this example. A Deployment manages a Replica Set which in turn manages the pods, thereby

making the scheduler resilient to failures. Here is the deployment con�g. Save it as

my-scheduler.yaml :

my-scheduler.yaml

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/my-scheduler.yaml

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 3/7

my-scheduler.yaml

An important thing to note here is that the name of the scheduler speci�ed as an argument to the

scheduler command in the container spec should be unique. This is the name that is matched

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 labels:
 component: scheduler
 tier: control-plane
 name: my-scheduler
 namespace: kube-system
spec:
 replicas: 1
 template:
 metadata:
 labels:
 component: scheduler
 tier: control-plane
 version: second
 spec:
 containers:
 - command:
 - /usr/local/bin/kube-scheduler
 - --address=0.0.0.0
 - --leader-elect=false
 - --scheduler-name=my-scheduler
 image: gcr.io/my-gcp-project/my-kube-scheduler:1.0
 livenessProbe:
 httpGet:
 path: /healthz
 port: 10251
 initialDelaySeconds: 15
 name: kube-second-scheduler
 readinessProbe:
 httpGet:
 path: /healthz
 port: 10251
 resources:
 requests:
 cpu: '0.1'
 securityContext:
 privileged: false
 volumeMounts: []
 hostNetwork: false
 hostPID: false
 volumes: []

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/my-scheduler.yaml

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 4/7

against the value of the optional spec.schedulerName on pods, to determine whether this

scheduler is responsible for scheduling a particular pod.

Please see the kube-scheduler documentation for detailed description of other command line

arguments.

3. Run the second scheduler in the cluster

In order to run your scheduler in a Kubernetes cluster, just create the deployment speci�ed in the

con�g above in a Kubernetes cluster:

Verify that the scheduler pod is running:

You should see a “Running” my-scheduler pod, in addition to the default kube-scheduler pod in this

list.

To run multiple-scheduler with leader election enabled, you must do the following:

First, update the following �elds in your YAML �le:

--leader-elect=true

--lock-object-namespace=lock-object-namespace

--lock-object-name=lock-object-name

If RBAC is enabled on your cluster, you must update the system:kube-scheduler cluster role. Add

you scheduler name to the resourceNames of the rule applied for endpoints resources, as in the

kubectl create -f my-scheduler.yaml

$ kubectl get pods --namespace=kube-system
NAME READY STATUS RESTARTS AGE
....
my-scheduler-lnf4s-4744f 1/1 Running 0 2m
...

http://localhost:4000/docs/admin/kube-scheduler/

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 5/7

following example:

$ kubectl edit clusterrole system:kube-scheduler - apiVersion:

rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: annotations:

rbac.authorization.kubernetes.io/autoupdate: "true" labels:

kubernetes.io/bootstrapping: rbac-defaults name: system:kube-scheduler rules: -

apiGroups: - "" resourceNames: - kube-scheduler - my-scheduler resources: -

endpoints verbs: - delete - get - patch - update

4. Specify schedulers for pods

Now that our second scheduler is running, let’s create some pods, and direct them to be scheduled

by either the default scheduler or the one we just deployed. In order to schedule a given pod using a

speci�c scheduler, we specify the name of the scheduler in that pod spec. Let’s look at three

examples.

Pod spec without any scheduler name

pod1.yaml

When no scheduler name is supplied, the pod is automatically scheduled using the default-scheduler.

Save this �le as pod1.yaml and submit it to the Kubernetes cluster.

Pod spec with default-scheduler

apiVersion: v1
kind: Pod
metadata:
 name: no-annotation
 labels:
 name: multischeduler-example
spec:
 containers:
 - name: pod-with-no-annotation-container
 image: gcr.io/google_containers/pause:2.0

kubectl create -f pod1.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/pod1.yaml

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 6/7

pod2.yaml

A scheduler is speci�ed by supplying the scheduler name as a value to spec.schedulerName . In

this case, we supply the name of the default scheduler which is default-scheduler .

Save this �le as pod2.yaml and submit it to the Kubernetes cluster.

Pod spec with my-scheduler

pod3.yaml

In this case, we specify that this pod should be scheduled using the scheduler that we deployed -

my-scheduler . Note that the value of spec.schedulerName should match the name supplied to

apiVersion: v1
kind: Pod
metadata:
 name: annotation-default-scheduler
 labels:
 name: multischeduler-example
spec:
 schedulerName: default-scheduler
 containers:
 - name: pod-with-default-annotation-container
 image: gcr.io/google_containers/pause:2.0

kubectl create -f pod2.yaml

apiVersion: v1
kind: Pod
metadata:
 name: annotation-second-scheduler
 labels:
 name: multischeduler-example
spec:
 schedulerName: my-scheduler
 containers:
 - name: pod-with-second-annotation-container
 image: gcr.io/google_containers/pause:2.0

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/pod2.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/pod3.yaml

10/23/2017 Configure Multiple Schedulers - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/configure-multiple-schedulers/ 7/7

the scheduler command as an argument in the deployment con�g for the scheduler.

Save this �le as pod3.yaml and submit it to the Kubernetes cluster.

Verify that all three pods are running.

Verifying that the pods were scheduled using the desired
schedulers

In order to make it easier to work through these examples, we did not verify that the pods were

actually scheduled using the desired schedulers. We can verify that by changing the order of pod and

deployment con�g submissions above. If we submit all the pod con�gs to a Kubernetes cluster

before submitting the scheduler deployment con�g, we see that the pod second-scheduler

remains in “Pending” state forever while the other two pods get scheduled. Once we submit the

scheduler deployment con�g and our new scheduler starts running, the second-scheduler pod

gets scheduled as well.

Alternatively, one could just look at the “Scheduled” entries in the event logs to verify that the pods

were scheduled by the desired schedulers.

kubectl create -f pod3.yaml

kubectl get pods

kubectl get events

10/23/2017 IP Masquerade Agent User Guide - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/ip-masq-agent/ 1/5

IP Masquerade Agent User Guide

This page shows how to con�gure and enable the ip-masq-agent.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Create an ip-masq-agent

To create an ip-masq-agent, run the following kubectl command:

kubectl create -f https://raw.githubusercontent.com/kubernetes-incubator/ip-masq-

agent/master/ip-masq-agent.yaml

You must also apply the appropriate node label to any nodes in your cluster that you want the agent

to run on.

kubectl label nodes my-node beta.kubernetes.io/masq-agent-ds-ready=true

More information can be found in the ip-masq-agent documentation here

In most cases, the default set of rules should be su�cient; however, if this is not the case for your

cluster, you can create and apply a Con�gMap to customize the IP ranges that are affected. For

Before you begin
Create an ip-masq-agent
IP Masquerade Agent User Guide

Key Terms

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes-incubator/ip-masq-agent
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 IP Masquerade Agent User Guide - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/ip-masq-agent/ 2/5

example, to allow only 10.0.0.0/8 to be considered by the ip-masq-agent, you can create the

following Con�gMap in a �le called “con�g”. Note: It is important that the �le is called con�g since, by

default, that will be used as the key for lookup by the ip-masq-agent:

Run the following command to add the con�g map to your cluster:

This will update a �le located at /etc/con�g/ip-masq-agent which is periodically checked every

resyscInterval and applied to the cluster node. After the resync interval has expired, you should see

the iptables rules re�ect your changes:

By default, the link local range (169.254.0.0/16) is also handled by the ip-masq agent, which sets up

the appropriate iptables rules. To have the ip-masq-agent ignore link local, you can set

masqLinkLocal to true in the con�g map.

IP Masquerade Agent User Guide

nonMasqueradeCIDRs:
 - 10.0.0.0/8
resyncInterval: 60s

kubectl create configmap ip-masq-agent --from-file=config --namespace=kube-system

iptables -t nat -L IP-MASQ-AGENT
Chain IP-MASQ-AGENT (1 references)
target prot opt source destination
RETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cl
RETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cl
MASQUERADE all -- anywhere anywhere /* ip-masq-agent: o

nonMasqueradeCIDRs:
 - 10.0.0.0/8
resyncInterval: 60s
masqLinkLocal: true

http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 IP Masquerade Agent User Guide - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/ip-masq-agent/ 3/5

The ip-masq-agent con�gures iptables rules to hide a pod’s IP address behind the cluster node’s IP

address. This is typically done when sending tra�c to destinations outside the cluster’s pod CIDR

range.

Key Terms

NAT (Network Address Translation) Is a method of remapping one IP address to another by

modifying either the source and/or destination address information in the IP header. Typically

performed by a device doing IP routing.

Masquerading A form of NAT that is typically used to perform a many to one address

translation, where multiple source IP addresses are masked behind a single address, which is

typically the device doing the IP routing. In Kubernetes this is the Node’s IP address.

CIDR (Classless Inter-Domain Routing) Based on the variable-length subnet masking, allows

specifying arbitrary-length pre�xes. CIDR introduced a new method of representation for IP

addresses, now commonly known as CIDR notation, in which an address or routing pre�x is

written with a su�x indicating the number of bits of the pre�x, such as 192.168.2.0/24.

Link Local A link-local address is a network address that is valid only for communications within

the network segment or the broadcast domain that the host is connected to. Link-local

addresses for IPv4 are de�ned in the address block 169.254.0.0/16 in CIDR notation.

The ip-masq-agent con�gures iptables rules to handle masquerading node/pod IP addresses when

sending tra�c to destinations outside the cluster node’s IP and the Cluster IP range. This essentially

hides pod IP addresses behind the cluster node’s IP address. In some environments, tra�c to

“external” addresses must come from a known machine address. For example, in Google Cloud, any

tra�c to the internet must come from a VM’s IP. When containers are used, as in GKE, the Pod IP will

be rejected for egress. To avoid this, we must hide the Pod IP behind the VM’s own IP address -

generally known as “masquerade”. By default, the agent is con�gured to treat the three private IP

ranges speci�ed by RFC 1918 as non-masquerade CIDR. These ranges are 10.0.0.0/8, 172.16.0.0/12,

and 192.168.0.0/16. The agent will also treat link-local (169.254.0.0/16) as a non-masquerade CIDR

by default. The agent is con�gured to reload its con�guration from the location /etc/con�g/ip-masq-

agent every 60 seconds, which is also con�gurable.

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://tools.ietf.org/html/rfc1918
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

10/23/2017 IP Masquerade Agent User Guide - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/ip-masq-agent/ 4/5

The agent con�guration �le must be written in YAML or JSON syntax, and may contain three optional

keys:

nonMasqueradeCIDRs: A list of strings in CIDR notation that specify the non-masquerade

ranges.

masqLinkLocal: A Boolean (true / false) which indicates whether to masquerade tra�c to the

link local pre�x 169.254.0.0/16. False by default.

resyncInterval: An interval at which the agent attempts to reload con�g from disk. e.g. ’30s’

where ‘s’ is seconds, ‘ms’ is milliseconds etc…

Tra�c to 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16) ranges will NOT be masqueraded. Any other

tra�c (assumed to be internet) will be masqueraded. An example of a local destination from a pod

could be its Node’s IP address as well as another node’s address or one of the IP addresses in

Cluster’s IP range. Any other tra�c will be masqueraded by default. The below entries show the

default set of rules that are applied by the ip-masq-agent:

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

10/23/2017 IP Masquerade Agent User Guide - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/ip-masq-agent/ 5/5

By default, in GCE/GKE starting with Kubernetes version 1.7.0, if network policy is enabled or you are

using a cluster CIDR not in the 10.0.0.0/8 range, the ip-masq-agent will run in your cluster. If you are

running in another environment, you can add the ip-masq-agent DaemonSet to your cluster:

iptables -t nat -L IP-MASQ-AGENT
RETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cl
RETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cl
RETURN all -- anywhere 172.16.0.0/12 /* ip-masq-agent: cl
RETURN all -- anywhere 192.168.0.0/16 /* ip-masq-agent: cl
MASQUERADE all -- anywhere anywhere /* ip-masq-agent: o

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Configure private DNS zones and upstream nameservers in Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-custom-nameservers/ 1/5

Con�gure private DNS zones and upstream
nameservers in Kubernetes

This page shows how to add custom private DNS zones (stub domains) and upstream nameservers.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Kubernetes version 1.6 and above.

The cluster must be con�gured to use the kube-dns addon.

Con�gure stub-domain and upstream DNS servers

Cluster administrators can specify custom stub domains and upstream nameservers by providing a

Con�gMap for kube-dns (kube-system:kube-dns).

Before you begin
Con�gure stub-domain and upstream DNS servers
Understanding name resolution in Kubernetes

“Default” DNS Policy
“ClusterFirst” DNS Policy

Con�gMap options
Additional examples

Example: Stub domain
Example: Upstream nameserver

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Configure private DNS zones and upstream nameservers in Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-custom-nameservers/ 2/5

For example, the following Con�gMap sets up a DNS con�guration with a single stub domain and

two upstream nameservers.

As speci�ed, DNS requests with the “.acme.local” su�x are forwarded to a DNS listening at 1.2.3.4.

Google Public DNS serves the upstream queries.

The table below describes how queries with certain domain names would map to their destination

DNS servers:

Domain name Server answering the query

kubernetes.default.svc.cluster.local kube-dns

foo.acme.local custom DNS (1.2.3.4)

widget.com upstream DNS (one of 8.8.8.8, 8.8.4.4)

See Con�gMap options for details about the con�guration option format.

Understanding name resolution in Kubernetes

DNS policies can be set on a per-pod basis. Currently Kubernetes supports two pod-speci�c DNS

policies: “Default” and “ClusterFirst”. These policies are speci�ed with the dnsPolicy �ag.

NOTE: “Default” is not the default DNS policy. If dnsPolicy is not explicitly speci�ed, then

“ClusterFirst” is used.

“Default” DNS Policy

apiVersion: v1
kind: ConfigMap
metadata:
 name: kube-dns
 namespace: kube-system
data:
 stubDomains: |
 {“acme.local”: [“1.2.3.4”]}
 upstreamNameservers: |
 [“8.8.8.8”, “8.8.4.4”]

10/23/2017 Configure private DNS zones and upstream nameservers in Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-custom-nameservers/ 3/5

If dnsPolicy is set to “Default”, then the name resolution con�guration is inherited from the node

that the pods run on. Custom upstream nameservers and stub domains cannot be used in

conjunction with this policy.

“ClusterFirst” DNS Policy

If the dnsPolicy is set to “ClusterFirst”, name resolution is handled differently, depending on

whether stub-domain and upstream DNS servers are con�gured.

Without custom con�gurations: Any query that does not match the con�gured cluster domain su�x,

such as “www.kubernetes.io”, is forwarded to the upstream nameserver inherited from the node.

With custom con�gurations: If stub domains and upstream DNS servers are con�gured (as in the

previous example), DNS queries will be routed according to the following �ow:

1. The query is �rst sent to the DNS caching layer in kube-dns.

2. From the caching layer, the su�x of the request is examined and then forwarded to the

appropriate DNS, based on the following cases:

1. Names with the cluster su�x (e.g.”.cluster.local”): The request is sent to kube-dns.

2. Names with the stub domain su�x (e.g. “.acme.local”): The request is sent to the con�gured

custom DNS resolver (e.g. listening at 1.2.3.4).

3. Names without a matching su�x (e.g.”widget.com”): The request is forwarded to the

upstream DNS (e.g. Google public DNS servers at 8.8.8.8 and 8.8.4.4).

10/23/2017 Configure private DNS zones and upstream nameservers in Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-custom-nameservers/ 4/5

Con�gMap options

Options for the kube-dns kube-system:kube-dns Con�gMap:

Field Format Description

stubDomains (optional)

A JSON map using a DNS
su�x key (e.g. “acme.local”)
and a value consisting of a
JSON array of DNS IPs.

The target nameserver may itself be a Kubernetes service.
For instance, you can run your own copy of dnsmasq to
export custom DNS names into the ClusterDNS namespace.

upstreamNameservers
(optional)

A JSON array of DNS IPs.

Note: If speci�ed, then the values speci�ed replace the
nameservers taken by default from the node’s

/etc/resolv.conf . Limits: a maximum of three
upstream nameservers can be speci�ed.

Additional examples

Example: Stub domain

In this example, the user has a Consul DNS service discovery system that they wish to integrate with

kube-dns. The consul domain server is located at 10.150.0.1, and all consul names have the su�x

“.consul.local”. To con�gure Kubernetes, the cluster administrator simply creates a Con�gMap object

as shown below.

Note that the cluster administrator did not wish to override the node’s upstream nameservers, so

they did not specify the optional upstreamNameservers �eld.

Example: Upstream nameserver

apiVersion: v1
kind: ConfigMap
metadata:
 name: kube-dns
 namespace: kube-system
 data:
 stubDomains: |
 {“consul.local”: [“10.150.0.1”]}

10/23/2017 Configure private DNS zones and upstream nameservers in Kubernetes - Kubernetes

http://localhost:4000/docs/tasks/administer-cluster/dns-custom-nameservers/ 5/5

In this example the cluster administrator wants to explicitly force all non-cluster DNS lookups to go

through their own nameserver at 172.16.0.1. Again, this is easy to accomplish; they just need to

create a Con�gMap with the upstreamNameservers �eld specifying the desired nameserver.

apiVersion: v1
kind: ConfigMap
metadata:
 name: kube-dns
 namespace: kube-system
 data:
 upstreamNameservers: |
 [“172.16.0.1”]

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 1/11

Cross-cluster Service Discovery using
Federated Services

This guide explains how to use Kubernetes Federated Services to deploy a common Service across

multiple Kubernetes clusters. This makes it easy to achieve cross-cluster service discovery and

availability zone fault tolerance for your Kubernetes applications.

Prerequisites

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not, then

head over to the federation admin guide to learn how to bring up a cluster federation (or have your

Prerequisites
Overview
Hybrid cloud capabilities
Creating a federated service
Adding backend pods
Verifying public DNS records

Some notes about the above example
Discovering a federated service

From pods inside your federated clusters
From other clients outside your federated clusters

Handling failures of backend pods and whole clusters
Troubleshooting

I cannot connect to my cluster federation API
I can create a federated service successfully against the cluster federation API, but no
matching services are created in my underlying clusters
I can create a federated service successfully, but no matching DNS records are created in
my DNS provider.
Matching DNS records are created in my DNS provider, but clients are unable to resolve
against those names
This troubleshooting guide did not help me solve my problem

For more information

http://localhost:4000/docs/admin/federation/

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 2/11

cluster administrator do this for you). Other tutorials, for example this one by Kelsey Hightower, are

also available to help you.

You are also expected to have a basic working knowledge of Kubernetes in general, and Services in

particular.

Overview

Federated Services are created in much that same way as traditional Kubernetes Services by making

an API call which speci�es the desired properties of your service. In the case of Federated Services,

this API call is directed to the Federation API endpoint, rather than a Kubernetes cluster API endpoint.

The API for Federated Services is 100% compatible with the API for traditional Kubernetes Services.

Once created, the Federated Service automatically:

1. Creates matching Kubernetes Services in every cluster underlying your Cluster Federation,

2. Monitors the health of those service “shards” (and the clusters in which they reside), and

3. Manages a set of DNS records in a public DNS provider (like Google Cloud DNS, or AWS Route

53), thus ensuring that clients of your federated service can seamlessly locate an appropriate

healthy service endpoint at all times, even in the event of cluster, availability zone or regional

outages.

Clients inside your federated Kubernetes clusters (i.e. Pods) will automatically �nd the local shard of

the Federated Service in their cluster if it exists and is healthy, or the closest healthy shard in a

different cluster if it does not.

Hybrid cloud capabilities

Federations of Kubernetes Clusters can include clusters running in different cloud providers (e.g.

Google Cloud, AWS), and on-premises (e.g. on OpenStack). Simply create all of the clusters that you

require, in the appropriate cloud providers and/or locations, and register each cluster’s API endpoint

and credentials with your Federation API Server (See the federation admin guide for details).

Thereafter, your applications and services can span different clusters and cloud providers as

described in more detail below.

https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/admin/federation/

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 3/11

Creating a federated service

This is done in the usual way, for example:

The ‘–context=federation-cluster’ �ag tells kubectl to submit the request to the Federation API

endpoint, with the appropriate credentials. If you have not yet con�gured such a context, visit the

federation admin guide or one of the administration tutorials to �nd out how to do so.

As described above, the Federated Service will automatically create and maintain matching

Kubernetes services in all of the clusters underlying your federation.

You can verify this by checking in each of the underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone. The name and namespace of the underlying services will automatically

match those of the Federated Service that you created above (and if you happen to have had

services of the same name and namespace already existing in any of those clusters, they will be

automatically adopted by the Federation and updated to conform with the speci�cation of your

Federated Service - either way, the end result will be the same).

The status of your Federated Service will automatically re�ect the real-time status of the underlying

Kubernetes services, for example:

kubectl --context=federation-cluster create -f services/nginx.yaml

kubectl --context=gce-asia-east1a get services nginx
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx 10.63.250.98 104.199.136.89 80/TCP 9m

http://localhost:4000/docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 4/11

Note the ‘LoadBalancer Ingress’ addresses of your Federated Service correspond with the

‘LoadBalancer Ingress’ addresses of all of the underlying Kubernetes services (once these have been

allocated - this may take a few seconds). For inter-cluster and inter-cloud-provider networking

between service shards to work correctly, your services need to have an externally visible IP address.

Service Type: Loadbalancer is typically used for this, although other options (e.g. External IP’s) exist.

Note also that we have not yet provisioned any backend Pods to receive the network tra�c directed

to these addresses (i.e. ‘Service Endpoints’), so the Federated Service does not yet consider these to

be healthy service shards, and has accordingly not yet added their addresses to the DNS records for

this Federated Service (more on this aspect later).

Adding backend pods

To render the underlying service shards healthy, we need to add backend Pods behind them. This is

currently done directly against the API endpoints of the underlying clusters (although in future the

Federation server will be able to do all this for you with a single command, to save you the trouble).

For example, to create backend Pods in 13 underlying clusters:

$kubectl --context=federation-cluster describe services nginx

Name: nginx
Namespace: default
Labels: run=nginx
Selector: run=nginx
Type: LoadBalancer
IP: 10.63.250.98
LoadBalancer Ingress: 104.197.246.190, 130.211.57.243, 104.196.14.231, 104.199.1
Port: http 80/TCP
Endpoints: <none>
Session Affinity: None
No events.

for CLUSTER in asia-east1-c asia-east1-a asia-east1-b \
 europe-west1-d europe-west1-c europe-west1-b \
 us-central1-f us-central1-a us-central1-b us-central1-c \
 us-east1-d us-east1-c us-east1-b
do
 kubectl --context=$CLUSTER run nginx --image=nginx:1.11.1-alpine --port=80
done

http://localhost:4000/docs/concepts/services-networking/service/#type-loadbalancer
http://localhost:4000/docs/concepts/services-networking/service/#external-ips

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 5/11

Note that kubectl run automatically adds the run=nginx labels required to associate the

backend pods with their services.

Verifying public DNS records

Once the above Pods have successfully started and have begun listening for connections,

Kubernetes will report them as healthy endpoints of the service in that cluster (via automatic health

checks). The Cluster Federation will in turn consider each of these service ‘shards’ to be healthy, and

place them in serving by automatically con�guring corresponding public DNS records. You can use

your preferred interface to your con�gured DNS provider to verify this. For example, if your

Federation is con�gured to use Google Cloud DNS, and a managed DNS domain ‘example.com’:

$ gcloud dns managed-zones describe example-dot-com
creationTime: '2016-06-26T18:18:39.229Z'
description: Example domain for Kubernetes Cluster Federation
dnsName: example.com.
id: '3229332181334243121'
kind: dns#managedZone
name: example-dot-com
nameServers:
- ns-cloud-a1.googledomains.com.
- ns-cloud-a2.googledomains.com.
- ns-cloud-a3.googledomains.com.
- ns-cloud-a4.googledomains.com.

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 6/11

Note: If your Federation is con�gured to use AWS Route53, you can use one of the equivalent AWS

tools, for example:

and

Whatever DNS provider you use, any DNS query tool (for example ‘dig’ or ‘nslookup’) will of course

also allow you to see the records created by the Federation for you. Note that you should either point

these tools directly at your DNS provider (e.g. dig @ns-cloud-e1.googledomains.com...) or

expect delays in the order of your con�gured TTL (180 seconds, by default) before seeing updates,

due to caching by intermediate DNS servers.

Some notes about the above example

1. Notice that there is a normal (‘A’) record for each service shard that has at least one healthy

backend endpoint. For example, in us-central1-a, 104.197.247.191 is the external IP address of

the service shard in that zone, and in asia-east1-a the address is 130.211.56.221.

$ gcloud dns record-sets list --zone example-dot-com
NAME TYPE TTL
example.com. NS 21600
example.com. OA 21600
nginx.mynamespace.myfederation.svc.example.com. A 180
nginx.mynamespace.myfederation.svc.us-central1-a.example.com. A 180
nginx.mynamespace.myfederation.svc.us-central1-b.example.com. A 180
nginx.mynamespace.myfederation.svc.us-central1-c.example.com. A 180
nginx.mynamespace.myfederation.svc.us-central1-f.example.com. CNAME 180
nginx.mynamespace.myfederation.svc.us-central1.example.com. A 180
nginx.mynamespace.myfederation.svc.asia-east1-a.example.com. A 180
nginx.mynamespace.myfederation.svc.asia-east1-b.example.com. CNAME 180
nginx.mynamespace.myfederation.svc.asia-east1-c.example.com. A 180
nginx.mynamespace.myfederation.svc.asia-east1.example.com. A 180
nginx.mynamespace.myfederation.svc.europe-west1.example.com. CNAME 180
nginx.mynamespace.myfederation.svc.europe-west1-d.example.com. CNAME 180
... etc.

$ aws route53 list-hosted-zones

$ aws route53 list-resource-record-sets --hosted-zone-id Z3ECL0L9QLOVBX

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 7/11

2. Similarly, there are regional ‘A’ records which include all healthy shards in that region. For

example, ‘us-central1’. These regional records are useful for clients which do not have a

particular zone preference, and as a building block for the automated locality and failover

mechanism described below.

3. For zones where there are currently no healthy backend endpoints, a CNAME (‘Canonical Name’)

record is used to alias (automatically redirect) those queries to the next closest healthy zone. In

the example, the service shard in us-central1-f currently has no healthy backend endpoints (i.e.

Pods), so a CNAME record has been created to automatically redirect queries to other shards in

that region (us-central1 in this case).

4. Similarly, if no healthy shards exist in the enclosing region, the search progresses further a�eld.

In the europe-west1-d availability zone, there are no healthy backends, so queries are redirected

to the broader europe-west1 region (which also has no healthy backends), and onward to the

global set of healthy addresses (‘ nginx.mynamespace.myfederation.svc.example.com.’).

The above set of DNS records is automatically kept in sync with the current state of health of all

service shards globally by the Federated Service system. DNS resolver libraries (which are invoked by

all clients) automatically traverse the hierarchy of ‘CNAME’ and ‘A’ records to return the correct set of

healthy IP addresses. Clients can then select any one of the returned addresses to initiate a network

connection (and fail over automatically to one of the other equivalent addresses if required).

Discovering a federated service

From pods inside your federated clusters

By default, Kubernetes clusters come pre-con�gured with a cluster-local DNS server (‘KubeDNS’), as

well as an intelligently constructed DNS search path which together ensure that DNS queries like

“myservice”, “myservice.mynamespace”, “bobsservice.othernamespace” etc issued by your software

running inside Pods are automatically expanded and resolved correctly to the appropriate service IP

of services running in the local cluster.

With the introduction of Federated Services and Cross-Cluster Service Discovery, this concept is

extended to cover Kubernetes services running in any other cluster across your Cluster Federation,

globally. To take advantage of this extended range, you use a slightly different DNS name (of the

form “ ..", e.g. myservice.mynamespace.myfederation) to resolve Federated Services. Using a

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 8/11

different DNS name also avoids having your existing applications accidentally traversing cross-zone

or cross-region networks and you incurring perhaps unwanted network charges or latency, without

you explicitly opting in to this behavior.

So, using our NGINX example service above, and the Federated Service DNS name form just

described, let’s consider an example: A Pod in a cluster in the us-central1-f availability zone

needs to contact our NGINX service. Rather than use the service’s traditional cluster-local DNS name

("nginx.mynamespace" , which is automatically expanded to

"nginx.mynamespace.svc.cluster.local") it can now use the service’s Federated DNS name,

which is "nginx.mynamespace.myfederation" . This will be automatically expanded and resolved

to the closest healthy shard of my NGINX service, wherever in the world that may be. If a healthy

shard exists in the local cluster, that service’s cluster-local (typically 10.x.y.z) IP address will be

returned (by the cluster-local KubeDNS). This is almost exactly equivalent to non-federated service

resolution (almost because KubeDNS actually returns both a CNAME and an A record for local

federated services, but applications will be oblivious to this minor technical difference).

But if the service does not exist in the local cluster (or it exists but has no healthy backend pods), the

DNS query is automatically expanded to

"nginx.mynamespace.myfederation.svc.us-central1-f.example.com" (i.e. logically “�nd the

external IP of one of the shards closest to my availability zone”). This expansion is performed

automatically by KubeDNS, which returns the associated CNAME record. This results in automatic

traversal of the hierarchy of DNS records in the above example, and ends up at one of the external

IP’s of the Federated Service in the local us-central1 region (i.e. 104.197.247.191, 104.197.244.180 or

104.197.245.170).

It is of course possible to explicitly target service shards in availability zones and regions other than

the ones local to a Pod by specifying the appropriate DNS names explicitly, and not relying on

automatic DNS expansion. For example, “nginx.mynamespace.myfederation.svc.europe-

west1.example.com” will resolve to all of the currently healthy service shards in Europe, even if the

Pod issuing the lookup is located in the U.S., and irrespective of whether or not there are healthy

shards of the service in the U.S. This is useful for remote monitoring and other similar applications.

From other clients outside your federated clusters

Much of the above discussion applies equally to external clients, except that the automatic DNS

expansion described is no longer possible. So external clients need to specify one of the fully

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 9/11

quali�ed DNS names of the Federated Service, be that a zonal, regional or global name. For

convenience reasons, it is often a good idea to manually con�gure additional static CNAME records

in your service, for example:

That way your clients can always use the short form on the left, and always be automatically routed

to the closest healthy shard on their home continent. All of the required failover is handled for you

automatically by Kubernetes Cluster Federation. Future releases will improve upon this even further.

Handling failures of backend pods and whole clusters

Standard Kubernetes service cluster-IP’s already ensure that non-responsive individual Pod

endpoints are automatically taken out of service with low latency (a few seconds). In addition, as

alluded above, the Kubernetes Cluster Federation system automatically monitors the health of

clusters and the endpoints behind all of the shards of your Federated Service, taking shards in and

out of service as required (e.g. when all of the endpoints behind a service, or perhaps the entire

cluster or availability zone go down, or conversely recover from an outage). Due to the latency

inherent in DNS caching (the cache timeout, or TTL for Federated Service DNS records is con�gured

to 3 minutes, by default, but can be adjusted), it may take up to that long for all clients to completely

fail over to an alternative cluster in the case of catastrophic failure. However, given the number of

discrete IP addresses which can be returned for each regional service endpoint (see e.g. us-central1

above, which has three alternatives) many clients will fail over automatically to one of the alternative

IP’s in less time than that given appropriate con�guration.

Troubleshooting

I cannot connect to my cluster federation API

Check that your

eu.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.europe-west1.exa
us.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.us-central1.exam
nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.example.com.

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 10/11

1. Client (typically kubectl) is correctly con�gured (including API endpoints and login credentials),

and

2. Cluster Federation API server is running and network-reachable.

See the federation admin guide to learn how to bring up a cluster federation correctly (or have your

cluster administrator do this for you), and how to correctly con�gure your client.

I can create a federated service successfully against the cluster federation
API, but no matching services are created in my underlying clusters

Check that:

1. Your clusters are correctly registered in the Cluster Federation API (

kubectl describe clusters).

2. Your clusters are all ‘Active’. This means that the cluster Federation system was able to connect

and authenticate against the clusters’ endpoints. If not, consult the logs of the federation-

controller-manager pod to ascertain what the failure might be. (

kubectl --namespace=federation logs $(kubectl get pods --namespace=federation -

l module=federation-controller-manager -o name

)

3. That the login credentials provided to the Cluster Federation API for the clusters have the correct

authorization and quota to create services in the relevant namespace in the clusters. Again you

should see associated error messages providing more detail in the above log �le if this is not the

case.

4. Whether any other error is preventing the service creation operation from succeeding (look for

service-controller errors in the output of

kubectl logs federation-controller-manager --namespace federation).

I can create a federated service successfully, but no matching DNS records are
created in my DNS provider.

Check that:

1. Your federation name, DNS provider, DNS domain name are con�gured correctly. Consult the

federation admin guide or tutorial to learn how to con�gure your Cluster Federation system’s

http://localhost:4000/docs/admin/federation/
http://localhost:4000/docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

10/23/2017 Cross-cluster Service Discovery using Federated Services - Kubernetes

http://localhost:4000/docs/tasks/federation/federation-service-discovery/ 11/11

DNS provider (or have your cluster administrator do this for you).

2. Con�rm that the Cluster Federation’s service-controller is successfully connecting to and

authenticating against your selected DNS provider (look for service-controller errors or

successes in the output of

kubectl logs federation-controller-manager --namespace federation).

3. Con�rm that the Cluster Federation’s service-controller is successfully creating DNS records in

your DNS provider (or outputting errors in its logs explaining in more detail what’s failing).

Matching DNS records are created in my DNS provider, but clients are unable
to resolve against those names

Check that:

1. The DNS registrar that manages your federation DNS domain has been correctly con�gured to

point to your con�gured DNS provider’s nameservers. See for example Google Domains

Documentation and Google Cloud DNS Documentation, or equivalent guidance from your

domain registrar and DNS provider.

This troubleshooting guide did not help me solve my problem

1. Please use one of our support channels to seek assistance.

For more information

Federation proposal details use cases that motivated this work.

https://support.google.com/domains/answer/3290309?hl=en&ref_topic=3251230
https://cloud.google.com/dns/update-name-servers
http://localhost:4000/docs/tasks/debug-application-cluster/troubleshooting/
https://git.k8s.io/community/contributors/design-proposals/federation/federation.md

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 1/11

Set up Cluster Federation with Kubefed

Kubernetes version 1.5 and above includes a new command line tool called kubefed to help you

administrate your federated clusters. kubefed helps you to deploy a new Kubernetes cluster

federation control plane, and to add clusters to or remove clusters from an existing federation

control plane.

This guide explains how to administer a Kubernetes Cluster Federation using kubefed .

Note: kubefed is a beta feature in Kubernetes 1.6.

Prerequisites

This guide assumes that you have a running Kubernetes cluster. Please see one of the getting

started guides for installation instructions for your platform.

Prerequisites
Getting kubefed

Install with snap on Ubuntu
Choosing a host cluster.
Deploying a federation control plane

Basic and token authentication support
Passing command line arguments to federation components
Con�guring a DNS provider
On-premises host clusters

API server service type
Provisioning storage for etcd
CoreDNS support

Adding a cluster to a federation
Naming rules and customization

Secret name
kube-dns con�guration

Removing a cluster from a federation
Turning down the federation control plane

http://localhost:4000/docs/admin/kubefed/
http://localhost:4000/docs/getting-started-guides/

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 2/11

Getting kubefed

Download the client tarball corresponding to the latest release and extract the binaries in the tarball

with the commands:

Note: The URLs in the curl commands above download the binaries for amd64 . If you are on a

different architecture, please use a URL appropriate for your architecture. You can �nd the list of

available binaries on the release page.

Copy the extracted binaries to one of the directories in your $PATH and set the executable

permission on those binaries.

Install with snap on Ubuntu

kubefed is available as a snap application.

1. If you are on Ubuntu or one of other Linux distributions that support snap package manager, you

can install with:

Linux
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https
tar -xzvf kubernetes-client-linux-amd64.tar.gz

OS X
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https
tar -xzvf kubernetes-client-darwin-amd64.tar.gz

Windows
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https
tar -xzvf kubernetes-client-windows-amd64.tar.gz

sudo cp kubernetes/client/bin/kubefed /usr/local/bin
sudo chmod +x /usr/local/bin/kubefed
sudo cp kubernetes/client/bin/kubectl /usr/local/bin
sudo chmod +x /usr/local/bin/kubectl

sudo snap install kubefed --classic

https://git.k8s.io/kubernetes/CHANGELOG.md#client-binaries-1
https://snapcraft.io/
https://snapcraft.io/docs/core/install

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 3/11

2. Run kubefed version to verify that the version you’ve installed is su�ciently up-to-date.

Choosing a host cluster.

You’ll need to choose one of your Kubernetes clusters to be the host cluster. The host cluster hosts

the components that make up your federation control plane. Ensure that you have a kubeconfig

entry in your local kubeconfig that corresponds to the host cluster. You can verify that you have the

required kubeconfig entry by running:

The output should contain an entry corresponding to your host cluster, similar to the following:

You’ll need to provide the kubeconfig context (called name in the entry above) for your host cluster

when you deploy your federation control plane.

Deploying a federation control plane

To deploy a federation control plane on your host cluster, run kubefed init command. When you

use kubefed init , you must provide the following:

Federation name

--host-cluster-context , the kubeconfig context for the host cluster

--dns-provider , one of 'google-clouddns' , aws-route53 or coredns

--dns-zone-name , a domain name su�x for your federated services

kubectl config get-contexts

CURRENT NAME CLUSTER
* gke_myproject_asia-east1-b_gce-asia-east1 gke_myproject_asia-east1-b

http://localhost:4000/docs/admin/kubefed_version/
http://localhost:4000/docs/admin/kubefed_init/

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 4/11

If your host cluster is running in a non-cloud environment or an environment that doesn’t support

common cloud primitives such as load balancers, you might need additional �ags. Please see the

on-premises host clusters section below.

The following example command deploys a federation control plane with the name fellowship , a

host cluster context rivendell , and the domain su�x example.com. :

The domain su�x speci�ed in --dns-zone-name must be an existing domain that you control, and

that is programmable by your DNS provider. It must also end with a trailing dot.

Once the federation control plane is initialized, query the namespaces:

If you do not see the default namespace listed (this is due to a bug). Create it yourself with the

following command:

The machines in your host cluster must have the appropriate permissions to program the DNS

service that you are using. For example, if your cluster is running on Google Compute Engine, you

must enable the Google Cloud DNS API for your project.

The machines in Google Container Engine (GKE) clusters are created without the Google Cloud DNS

API scope by default. If you want to use a GKE cluster as a Federation host, you must create it using

the gcloud command with the appropriate value in the --scopes �eld. You cannot modify a GKE

cluster directly to add this scope, but you can create a new node pool for your cluster and delete the

old one. Note that this will cause pods in the cluster to be rescheduled.

To add the new node pool, run:

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="google-clouddns" \
 --dns-zone-name="example.com."

kubectl get namespace --context=fellowship

kubectl create namespace default --context=fellowship

https://github.com/kubernetes/kubernetes/issues/33292

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 5/11

To delete the old node pool, run:

kubefed init sets up the federation control plane in the host cluster and also adds an entry for the

federation API server in your local kubecon�g. Note that in the beta release in Kubernetes 1.6,

kubefed init does not automatically set the current context to the newly deployed federation. You

can set the current context manually by running:

where fellowship is the name of your federation.

Basic and token authentication support

kubefed init by default only generates TLS certi�cates and keys to authenticate with the

federation API server and writes them to your local kubecon�g �le. If you wish to enable basic

authentication or token authentication for debugging purposes, you can enable them by passing the

--apiserver-enable-basic-auth �ag or the --apiserver-enable-token-auth �ag.

Passing command line arguments to federation components

scopes="$(gcloud container node-pools describe --cluster=gke-cluster default-pool
gcloud container node-pools create new-np \
 --cluster=gke-cluster \
 --scopes="${scopes},https://www.googleapis.com/auth/ndev.clouddns.readwrite"

gcloud container node-pools delete default-pool --cluster gke-cluster

kubectl config use-context fellowship

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="google-clouddns" \
 --dns-zone-name="example.com." \
 --apiserver-enable-basic-auth=true \
 --apiserver-enable-token-auth=true

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 6/11

kubefed init bootstraps a federation control plane with default arguments to federation API

server and federation controller manager. Some of these arguments are derived from

kubefed init ’s �ags. However, you can override these command line arguments by passing them

via the appropriate override �ags.

You can override the federation API server arguments by passing them to

--apiserver-arg-overrides and override the federation controller manager arguments by

passing them to --controllermanager-arg-overrides .

Con�guring a DNS provider

The Federated service controller programs a DNS provider to expose federated services via DNS

names. Certain cloud providers automatically provide the con�guration required to program the DNS

provider if the host cluster’s cloud provider is same as the DNS provider. In all other cases, you have

to provide the DNS provider con�guration to your federation controller manager which will in-turn be

passed to the federated service controller. You can provide this con�guration to federation controller

manager by storing it in a �le and passing the �le’s local �lesystem path to kubefed init ’s

--dns-provider-config �ag. For example, save the con�g below in

$HOME/coredns-provider.conf .

And then pass this �le to kubefed init :

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="google-clouddns" \
 --dns-zone-name="example.com." \
 --apiserver-arg-overrides="--anonymous-auth=false,--v=4" \
 --controllermanager-arg-overrides="--controllers=services=false"

[Global]
etcd-endpoints = http://etcd-cluster.ns:2379
zones = example.com.

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 7/11

On-premises host clusters

API server service type

kubefed init exposes the federation API server as a Kubernetes service on the host cluster. By

default, this service is exposed as a load balanced service. Most on-premises and bare-metal

environments, and some cloud environments lack support for load balanced services.

kubefed init allows exposing the federation API server as a NodePort service on such

environments. This can be accomplished by passing the --api-server-service-type=NodePort

�ag. You can also specify the preferred address to advertise the federation API server by passing the

--api-server-advertise-address=<IP-address> �ag. Otherwise, one of the host cluster’s node

address is chosen as the default.

Provisioning storage for etcd

Federation control plane stores its state in etcd . etcd data must be stored in a persistent storage

volume to ensure correct operation across federation control plane restarts. On host clusters that

support dynamic provisioning of storage volumes, kubefed init dynamically provisions a

PersistentVolume and binds it to a PersistentVolumeClaim to store etcd data. If your host

cluster doesn’t support dynamic provisioning, you can also statically provision a PersistentVolume

. kubefed init creates a PersistentVolumeClaim that has the following con�guration:

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="coredns" \
 --dns-zone-name="example.com." \
 --dns-provider-config="$HOME/coredns-provider.conf"

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="google-clouddns" \
 --dns-zone-name="example.com." \
 --api-server-service-type="NodePort" \
 --api-server-advertise-address="10.0.10.20"

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/services-networking/service/#type-loadbalancer
http://localhost:4000/docs/concepts/services-networking/service/#type-nodeport
https://coreos.com/etcd/docs/latest/
https://coreos.com/etcd/docs/latest/
http://localhost:4000/docs/concepts/storage/persistent-volumes/#dynamic
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistent-volumes
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://coreos.com/etcd/docs/latest/
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistent-volumes
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 8/11

To statically provision a PersistentVolume , you must ensure that the PersistentVolume that you

create has the matching storage class, access mode and at least as much capacity as the requested

PersistentVolumeClaim .

Alternatively, you can disable persistent storage completely by passing

--etcd-persistent-storage=false to kubefed init . However, we do not recommended this

because your federation control plane cannot survive restarts in this mode.

kubefed init still doesn’t support attaching an existing PersistentVolumeClaim to the

federation control plane that it bootstraps. We are planning to support this in a future version of

kubefed .

CoreDNS support

Federated services now support CoreDNS as one of the DNS providers. If you are running your

clusters and federation in an environment that does not have access to cloud-based DNS providers,

then you can run your own CoreDNS instance and publish the federated service DNS names to that

server.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 volume.alpha.kubernetes.io/storage-class: "yes"
 labels:
 app: federated-cluster
 name: fellowship-federation-apiserver-etcd-claim
 namespace: federation-system
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="google-clouddns" \
 --dns-zone-name="example.com." \
 --etcd-persistent-storage=false

http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistent-volumes
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistent-volumes
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://coredns.io/
https://coredns.io/

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 9/11

You can con�gure your federation to use CoreDNS, by passing appropriate values to kubefed init

’s --dns-provider and --dns-provider-config �ags.

For more information see Setting up CoreDNS as DNS provider for Cluster Federation.

Adding a cluster to a federation

Once you’ve deployed a federation control plane, you’ll need to make that control plane aware of the

clusters it should manage. You can add a cluster to your federation by using the kubefed join

command.

To use kubefed join , you’ll need to provide the name of the cluster you want to add to the

federation, and the --host-cluster-context for the federation control plane’s host cluster.

Note: The name that you provide to the join command is used as the joining cluster’s identity in

federation. This name should adhere to the rules described in the identi�ers doc. If the context

corresponding to your joining cluster conforms to these rules then you can use the same name in

the join command. Otherwise, you will have to choose a different name for your cluster’s identity. For

more information, please see the naming rules and customization section below.

The following example command adds the cluster gondor to the federation running on host cluster

rivendell :

Note: Kubernetes requires that you manually join clusters to a federation because the federation

control plane manages only those clusters that it is responsible for managing. Adding a cluster tells

the federation control plane that it is responsible for managing that cluster.

Naming rules and customization

kubefed init fellowship \
 --host-cluster-context=rivendell \
 --dns-provider="coredns" \
 --dns-zone-name="example.com." \
 --dns-provider-config="$HOME/coredns-provider.conf"

kubefed join gondor --host-cluster-context=rivendell

https://coredns.io/
http://localhost:4000/docs/tutorials/federation/set-up-coredns-provider-federation/
http://localhost:4000/docs/admin/kubefed_join/
http://localhost:4000/docs/user-guide/identifiers/#names

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 10/11

The cluster name you supply to kubefed join must be a valid RFC 1035 label and are enumerated

in the Identi�ers doc.

Furthermore, federation control plane requires credentials of the joined clusters to operate on them.

These credentials are obtained from the local kubecon�g. kubefed join uses the cluster name

speci�ed as the argument to look for the cluster’s context in the local kubecon�g. If it fails to �nd a

matching context, it exits with an error.

This might cause issues in cases where context names for each cluster in the federation don’t follow

RFC 1035 label naming rules. In such cases, you can specify a cluster name that conforms to the

RFC 1035 label naming rules and specify the cluster context using the --cluster-context �ag. For

example, if context of the cluster you are joining is gondor_needs-no_king , then you can join the

cluster by running:

Secret name

Cluster credentials required by the federation control plane as described above are stored as a secret

in the host cluster. The name of the secret is also derived from the cluster name.

However, the name of a secret object in Kubernetes should conform to the DNS subdomain name

speci�cation described in RFC 1123. If this isn’t the case, you can pass the secret name to

kubefed join using the --secret-name �ag. For example, if the cluster name is noldor and the

secret name is 11kingdom , you can join the cluster by running:

Note: If your cluster name does not conform to the DNS subdomain name speci�cation, all you need

to do is supply the secret name via the --secret-name �ag. kubefed join automatically creates

the secret for you.

kube-dns con�guration

kubefed join gondor --host-cluster-context=rivendell --cluster-context=gondor_need

kubefed join noldor --host-cluster-context=rivendell --secret-name=11kingdom

https://www.ietf.org/rfc/rfc1035.txt
http://localhost:4000/docs/user-guide/identifiers/#names
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/rfc1123

10/23/2017 Set up Cluster Federation with Kubefed - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-cluster-federation-kubefed/ 11/11

kube-dns con�guration must be updated in each joining cluster to enable federated service

discovery. If the joining Kubernetes cluster is version 1.5 or newer and your kubefed is version 1.6

or newer, then this con�guration is automatically managed for you when the clusters are joined or

unjoined using kubefed join or unjoin commands.

In all other cases, you must update kube-dns con�guration manually as described in the Updating

KubeDNS section of the admin guide.

Removing a cluster from a federation

To remove a cluster from a federation, run the kubefed unjoin command with the cluster name

and the federation’s --host-cluster-context :

Turning down the federation control plane

Proper cleanup of federation control plane is not fully implemented in this beta release of kubefed .

However, for the time being, deleting the federation system namespace should remove all the

resources except the persistent storage volume dynamically provisioned for the federation control

plane’s etcd. You can delete the federation namespace by running the following command:

kubefed unjoin gondor --host-cluster-context=rivendell

$ kubectl delete ns federation-system

http://localhost:4000/docs/admin/federation/
http://localhost:4000/docs/admin/kubefed_unjoin/

10/23/2017 Set up CoreDNS as DNS provider for Cluster Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-coredns-provider-federation/ 1/4

Set up CoreDNS as DNS provider for Cluster
Federation

This page shows how to con�gure and deploy CoreDNS to be used as the DNS provider for Cluster

Federation.

Objectives

Con�gure and deploy CoreDNS server

Bring up federation with CoreDNS as dns provider

Setup CoreDNS server in nameserver lookup chain

Before you begin

You need to have a running Kubernetes cluster (which is referenced as host cluster). Please see

one of the getting started guides for installation instructions for your platform.

Support for LoadBalancer services in member clusters of federation is mandatory to enable

CoreDNS for service discovery across federated clusters.

Deploying CoreDNS and etcd charts

CoreDNS can be deployed in various con�gurations. Explained below is a reference and can be

tweaked to suit the needs of the platform and the cluster federation.

Objectives
Before you begin
Deploying CoreDNS and etcd charts
Deploying Federation with CoreDNS as DNS provider
Setup CoreDNS server in nameserver resolv.conf chain

http://localhost:4000/docs/getting-started-guides/

10/23/2017 Set up CoreDNS as DNS provider for Cluster Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-coredns-provider-federation/ 2/4

To deploy CoreDNS, we shall make use of helm charts. CoreDNS will be deployed with etcd as the

backend and should be pre-installed. etcd can also be deployed using helm charts. Shown below are

the instructions to deploy etcd.

Note: etcd default deployment con�gurations can be overridden, suiting the host cluster.

After deployment succeeds, etcd can be accessed with the http://etcd-cluster.my-namespace:2379

endpoint within the host cluster.

The CoreDNS default con�guration should be customized to suit the federation. Shown below is the

Values.yaml, which overrides the default con�guration parameters on the CoreDNS chart.

Values.yaml

The above con�guration �le needs some explanation:

isClusterService speci�es whether CoreDNS should be deployed as a cluster-service, which

is the default. You need to set it to false, so that CoreDNS is deployed as a Kubernetes

application service.

serviceType speci�es the type of Kubernetes service to be created for CoreDNS. You need to

choose either “LoadBalancer” or “NodePort” to make the CoreDNS service accessible outside the

Kubernetes cluster.

helm install --namespace my-namespace --name etcd-operator stable/etcd-operator
helm upgrade --namespace my-namespace --set cluster.enabled=true etcd-operator sta

isClusterService: false
serviceType: "LoadBalancer"
middleware:
 kubernetes:
 enabled: false
 etcd:
 enabled: true
 zones:
 - "example.com."
 endpoint: "http://etcd-cluster.my-namespace:2379"

https://coreos.com/etcd
http://etcd-cluster.my-namespace:2379/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/Values.yaml

10/23/2017 Set up CoreDNS as DNS provider for Cluster Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-coredns-provider-federation/ 3/4

Disable middleware.kubernetes , which is enabled by default by setting

middleware.kubernetes.enabled to false.

Enable middleware.etcd by setting middleware.etcd.enabled to true.

Con�gure the DNS zone (federation domain) for which CoreDNS is authoritative by setting

middleware.etcd.zones as shown above.

Con�gure the etcd endpoint which was deployed earlier by setting middleware.etcd.endpoint

Now deploy CoreDNS by running

Verify that both etcd and CoreDNS pods are running as expected.

Deploying Federation with CoreDNS as DNS provider

The Federation control plane can be deployed using kubefed init . CoreDNS can be chosen as the

DNS provider by specifying two additional parameters.

coredns-provider.conf has below format:

etcd-endpoints is the endpoint to access etcd.

zones is the federation domain for which CoreDNS is authoritative and is same as –dns-zone-

name �ag of kubefed init .

helm install --namespace my-namespace --name coredns -f Values.yaml stable/coredns

--dns-provider=coredns
--dns-provider-config=coredns-provider.conf

[Global]
etcd-endpoints = http://etcd-cluster.my-namespace:2379
zones = example.com.
coredns-endpoints = <coredns-server-ip>:<port>

10/23/2017 Set up CoreDNS as DNS provider for Cluster Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-coredns-provider-federation/ 4/4

coredns-endpoints is the endpoint to access CoreDNS server. This is an optional parameter

introduced from v1.7 onwards.

Note: middleware.etcd.zones in CoreDNS con�guration and –dns-zone-name �ag to kubefed init

should match.

Setup CoreDNS server in nameserver resolv.conf chain

Note: The following section applies only to versions prior to v1.7 and will be automatically taken care of

if the coredns-endpoints parameter is con�gured in coredns-provider.conf as described in

section above.

Once the federation control plane is deployed and federated clusters are joined to the federation, you

need to add the CoreDNS server to the pod’s nameserver resolv.conf chain in all the federated

clusters as this self hosted CoreDNS server is not discoverable publicly. This can be achieved by

adding the below line to dnsmasq container’s arg in kube-dns deployment.

Replace example.com above with federation domain.

Now the federated cluster is ready for cross-cluster service discovery!

--server=/example.com./<CoreDNS endpoint>

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 1/9

Set up placement policies in Federation

This page shows how to enforce policy-based placement decisions over Federated resources using

an external policy engine.

Before you begin

You need to have a running Kubernetes cluster (which is referenced as host cluster). Please see one

of the getting started guides for installation instructions for your platform.

Deploying Federation and con�guring an external policy
engine

The Federation control plane can be deployed using kubefed init .

After deploying the Federation control plane, you must con�gure an Admission Controller in the

Federation API server that enforces placement decisions received from the external policy engine.

Shown below is an example Con�gMap for the Admission Controller:

scheduling-policy-admission.yaml

Before you begin
Deploying Federation and con�guring an external policy engine
Deploying an external policy engine
Con�guring placement policies via Con�gMaps
Testing placement policies

kubectl create -f scheduling-policy-admission.yaml

http://localhost:4000/docs/getting-started-guides/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/scheduling-policy-admission.yaml

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 2/9

scheduling-policy-admission.yaml

The Con�gMap contains three �les:

config.yml speci�es the location of the SchedulingPolicy Admission Controller con�g �le.

scheduling-policy-config.yml speci�es the location of the kubecon�g �le required to

contact the external policy engine. This �le can also include a retryBackoff value that controls

the initial retry backoff delay in milliseconds.

opa-kubeconfig is a standard kubecon�g containing the URL and credentials needed to

contact the external policy engine.

apiVersion: v1
kind: ConfigMap
metadata:
 name: admission
 namespace: federation-system
data:
 config.yml: |
 apiVersion: apiserver.k8s.io/v1alpha1
 kind: AdmissionConfiguration
 plugins:
 - name: SchedulingPolicy
 path: /etc/kubernetes/admission/scheduling-policy-config.yml
 scheduling-policy-config.yml: |
 kubeconfig: /etc/kubernetes/admission/opa-kubeconfig
 opa-kubeconfig: |
 clusters:
 - name: opa-api
 cluster:
 server: http://opa.federation-system.svc.cluster.local:8181/v0/data/kube
 users:
 - name: scheduling-policy
 user:
 token: deadbeefsecret
 contexts:
 - name: default
 context:
 cluster: opa-api
 user: scheduling-policy
 current-context: default

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/scheduling-policy-admission.yaml

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 3/9

Edit the Federation API server deployment to enable the SchedulingPolicy Admission Controller.

Update the Federation API server command line arguments to enable the Admission Controller and

mount the Con�gMap into the container. If there’s an existing --admission-control �ag, append

,SchedulingPolicy instead of adding another line.

Add the following volume to the Federation API server pod:

Add the following volume mount the Federation API server apiserver container:

Deploying an external policy engine

The Open Policy Agent (OPA) is an open source, general-purpose policy engine that you can use to

enforce policy-based placement decisions in the Federation control plane.

Create a Service in the host cluster to contact the external policy engine:

Shown below is an example Service for OPA.

kubectl -n federation-system edit deployment federation-apiserver

--admission-control=SchedulingPolicy
--admission-control-config-file=/etc/kubernetes/admission/config.yml

- name: admission-config
 configMap:
 name: admission

volumeMounts:
- name: admission-config
 mountPath: /etc/kubernetes/admission

kubectl create -f policy-engine-service.yaml

http://openpolicyagent.org/

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 4/9

policy-engine-service.yaml

Create a Deployment in the host cluster with the Federation control plane:

Shown below is an example Deployment for OPA.

policy-engine-deployment.yaml

kind: Service
apiVersion: v1
metadata:
 name: opa
 namespace: federation-system
spec:
 selector:
 app: opa
 ports:
 - name: http
 protocol: TCP
 port: 8181
 targetPort: 8181

kubectl create -f policy-engine-deployment.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/policy-engine-service.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/policy-engine-deployment.yaml

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 5/9

policy-engine-deployment.yaml

Con�guring placement policies via Con�gMaps

The external policy engine will discover placement policies created in the

kube-federation-scheduling-policy namespace in the Federation API server.

Create the namespace if it does not already exist:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 app: opa
 name: opa
 namespace: federation-system
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: opa
 name: opa
 spec:
 containers:
 - name: opa
 image: openpolicyagent/opa:0.4.10
 args:
 - "run"
 - "--server"
 - name: kube-mgmt
 image: openpolicyagent/kube-mgmt:0.2
 args:
 - "-kubeconfig=/srv/kubernetes/kubeconfig"
 - "-cluster=federation/v1beta1/clusters"
 volumeMounts:
 - name: federation-kubeconfig
 mountPath: /srv/kubernetes
 readOnly: true
 volumes:
 - name: federation-kubeconfig
 secret:
 secretName: federation-controller-manager-kubeconfig

kubectl --context=federation create namespace kube-federation-scheduling-policy

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/policy-engine-deployment.yaml

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 6/9

Con�gure a sample policy to test the external policy engine:

policy.rego

OPA supports a high-level declarative language named Rego for authoring and
enforcing policies. For more infomration on Rego, visit
http://openpolicyagent.org.

Rego policies are namespaced by the "package" directive.
package kubernetes.placement

Imports provide aliases for data inside the policy engine. In this case, the
policy simply refers to "clusters" below.
import data.kubernetes.clusters

The "annotations" rule generates a JSON object containing the key
"federation.kubernetes.io/replica-set-preferences" mapped to <preferences>.
The preferences values is generated dynamically by OPA when it evaluates the
rule.

The SchedulingPolicy Admission Controller running inside the Federation API
server will merge these annotatiosn into incoming Federated resources. By
setting replica-set-preferences, we can control the placement of Federated
ReplicaSets.

Rules are defined to generate JSON values (booleans, strings, objects, etc.)
When OPA evaluates a rule, it generates a value IF all of the expressions in
the body evaluate successfully. All rules can be understood intuitively as
<head> if <body> where <body> is true if <expr-1> AND <expr-2> AND ...
<expr-N> is true (for some set of data.)
annotations["federation.kubernetes.io/replica-set-preferences"] = preferences {
 input.kind = "ReplicaSet"
 value = {"clusters": cluster_map, "rebalance": true}
 json.marshal(value, preferences)
}

This "annotations" rule generates a value for the "federation.alpha.kubernetes.i
annotation.

In English, the policy asserts that resources in the "production" namespace
that are not annotated with "criticality=low" MUST be placed on clusters
labelled with "on-premises=true".
annotations["federation.alpha.kubernetes.io/cluster-selector"] = selector {
 input.metadata.namespace = "production"
 not input.metadata.annotations.criticality = "low"
 json.marshal([{
 "operator": "=",
 "key": "on-premises",

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/policy.rego

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 7/9

policy.rego

Shown below is the command to create the sample policy:

This sample policy illustrates a few key ideas:

Placement policies can refer to any �eld in Federated resources.

Placement policies can leverage external context (for example, Cluster metadata) to make

decisions.

Administrative policy can be managed centrally.

 "values": "[true]",
 }], selector)
}

Generates a set of cluster names that satisfy the incoming Federated
ReplicaSet's requirements. In this case, just PCI compliance.
replica_set_clusters[cluster_name] {
 clusters[cluster_name]
 not insufficient_pci[cluster_name]
}

Generates a set of clusters that must not be used for Federated ReplicaSets
that request PCI compliance.
insufficient_pci[cluster_name] {
 clusters[cluster_name]
 input.metadata.annotations["requires-pci"] = "true"
 not pci_clusters[cluster_name]
}

Generates a set of clusters that are PCI certified. In this case, we assume
clusters are annotated to indicate if they have passed PCI compliance audits.
pci_clusters[cluster_name] {
 clusters[cluster_name].metadata.annotations["pci-certified"] = "true"
}

Helper rule to generate a mapping of desired clusters to weights. In this
case, weights are static.
cluster_map[cluster_name] = {"weight": 1} {
 replica_set_clusters[cluster_name]
}

kubectl --context=federation -n kube-federation-scheduling-policy create configmap

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/policy.rego

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 8/9

Policies can de�ne simple interfaces (such as the requires-pci annotation) to avoid

duplicating logic in manifests.

Testing placement policies

Annotate one of the clusters to indicate that it is PCI certi�ed.

Deploy a Federated ReplicaSet to test the placement policy.

replicaset-example-policy.yaml

Shown below is the command to deploy a ReplicaSet that does match the policy.

kubectl --context=federation annotate clusters cluster-name-1 pci-certified=true

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 labels:
 app: nginx-pci
 name: nginx-pci
 annotations:
 requires-pci: "true"
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx-pci
 template:
 metadata:
 labels:
 app: nginx-pci
 spec:
 containers:
 - image: nginx
 name: nginx-pci

kubectl --context=federation create -f replicaset-example-policy.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/federation/replicaset-example-policy.yaml

10/23/2017 Set up placement policies in Federation - Kubernetes

http://localhost:4000/docs/tasks/federation/set-up-placement-policies-federation/ 9/9

Inspect the ReplicaSet to con�rm the appropriate annotations have been applied:

kubectl --context=federation get rs nginx-pci -o jsonpath='{.metadata.annotations}

10/23/2017 Federated Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/cluster/ 1/4

Federated Cluster

This guide explains how to use Clusters API resource in a Federation control plane.

Different than other Kubernetes resources, such as Deployments, Services and Con�gMaps, clusters

only exist in the federation context, i.e. those requests must be submitted to the federation api-

server.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You should also have a basic working knowledge of Kubernetes in general.

Listing Clusters

To list the clusters available in your federation, you can use kubectl by running:

The --context=federation �ag tells kubectl to submit the request to the Federation apiserver

instead of sending it to a Kubernetes cluster. If you submit it to a k8s cluster, you will receive an error

Before you begin
Listing Clusters
Creating a Federated Cluster
Deleting a Federated Cluster
Labeling Clusters
ClusterSelector Annotation
Clusters API reference

kubectl --context=federation get clusters

http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Federated Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/cluster/ 2/4

saying the server doesn't have a resource type "clusters"

If you passed the correct Federation context but received a message error saying

No resources found. , it means that you haven’t added any cluster to the Federation yet.

Creating a Federated Cluster

Creating a cluster resource in federation means joining it to the federation. To do so, you can use

kubefed join . Basically, you need to give the new cluster a name and say what is the name of the

context that corresponds to a cluster that hosts the federation. The following example command

adds the cluster gondor to the federation running on host cluster rivendell :

You can �nd more details on how to do that in the respective section in the kubefed guide.

Deleting a Federated Cluster

Converse to creating a cluster, deleting a cluster means unjoining this cluster from the federation.

This can be done with kubefed unjoin command. To remove the gondor cluster, just do:

You can �nd more details on unjoin in the kubefed guide.

Labeling Clusters

You can label clusters the same way as any other Kubernetes object, which can help with grouping

clusters and can also be leveraged by the ClusterSelector.

kubefed join gondor --host-cluster-context=rivendell

kubefed unjoin gondor --host-cluster-context=rivendell

kubectl --context=rivendell label cluster gondor key1=value1 key2=value2

http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/#adding-a-cluster-to-a-federation
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/#removing-a-cluster-from-a-federation

10/23/2017 Federated Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/cluster/ 3/4

ClusterSelector Annotation

Starting in Kubernetes 1.7, there is alpha support for directing objects across the federated clusters

with the annotation federation.alpha.kubernetes.io/cluster-selector . The ClusterSelector is

conceptually similar to nodeSelector , but instead of selecting against labels on nodes, it selects

against labels on federated clusters.

The annotation value must be JSON formatted and must be parsable into the ClusterSelector API

type. For example: [{"key": "load", "operator": "Lt", "values": ["10"]}] . Content that

doesn’t parse correctly will throw an error and prevent distribution of the object to any federated

clusters. Objects of type Con�gMap, Secret, Daemonset, Service and Ingress are included in the

alpha implementation.

Here is an example ClusterSelector annotation, which will only select clusters WITH the label

pci=true and WITHOUT the label environment=test :

The key is matched against label names on the federated clusters.

The values are matched against the label values on the federated clusters.

The possible operators are: In , NotIn , Exists , DoesNotExist , Gt , Lt .

The values �eld is expected to be empty when Exists or DoesNotExist is speci�ed and may

include more than one string when In or NotIn are used.

Currently, only integers are supported with Gt or Lt .

Clusters API reference

 metadata:
 annotations:
 federation.alpha.kubernetes.io/cluster-selector: '[{"key": "pci", "operator"
 "In", "values": ["true"]}, {"key": "environment", "operator": "NotIn", "va
 ["test"]}]'

http://localhost:4000/docs/reference/federation/v1beta1/definitions/#_v1beta1_clusterselector

10/23/2017 Federated Cluster - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/cluster/ 4/4

The full clusters API reference is currently in federation/v1beta1 and more details can be found in

the Federation API reference page.

http://localhost:4000/docs/reference/federation/

10/23/2017 Federated ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/configmap/ 1/3

Federated Con�gMap

This guide explains how to use Con�gMaps in a Federation control plane.

Federated Con�gMaps are very similar to the traditional Kubernetes Con�gMaps and provide the

same functionality. Creating them in the federation control plane ensures that they are synchronized

across all the clusters in federation.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You should also have a basic working knowledge of Kubernetes in general and Con�gMaps in

particular.

Creating a Federated Con�gMap

The API for Federated Con�gMap is 100% compatible with the API for traditional Kubernetes

Con�gMap. You can create a Con�gMap by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin
Creating a Federated Con�gMap
Updating a Federated Con�gMap
Deleting a Federated Con�gMap

kubectl --context=federation-cluster create -f myconfigmap.yaml

http://localhost:4000/docs/tasks/configure-pod-container/configmap/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Federated ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/configmap/ 2/3

The --context=federation-cluster �ag tells kubectl to submit the request to the Federation

apiserver instead of sending it to a Kubernetes cluster.

Once a Federated Con�gMap is created, the federation control plane will create a matching

Con�gMap in all underlying Kubernetes clusters. You can verify this by checking each of the

underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone.

These Con�gMaps in underlying clusters will match the Federated Con�gMap.

Updating a Federated Con�gMap

You can update a Federated Con�gMap as you would update a Kubernetes Con�gMap; however, for

a Federated Con�gMap, you must send the request to the federation apiserver instead of sending it

to a speci�c Kubernetes cluster. The federation control plane ensures that whenever the Federated

Con�gMap is updated, it updates the corresponding Con�gMaps in all underlying clusters to match

it.

Deleting a Federated Con�gMap

You can delete a Federated Con�gMap as you would delete a Kubernetes Con�gMap; however, for a

Federated Con�gMap, you must send the request to the federation apiserver instead of sending it to

a speci�c Kubernetes cluster.

For example, you can do that using kubectl by running:

Note that at this point, deleting a Federated Con�gMap will not delete the corresponding Con�gMaps

from underlying clusters. You must delete the underlying Con�gMaps manually. We intend to �x this

in the future.

kubectl --context=gce-asia-east1a get configmap myconfigmap

kubectl --context=federation-cluster delete configmap

10/23/2017 Federated ConfigMap - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/configmap/ 3/3

10/23/2017 Federated DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/daemonset/ 1/2

Federated DaemonSet

This guide explains how to use DaemonSets in a federation control plane.

DaemonSets in the federation control plane (“Federated Daemonsets” in this guide) are very similar

to the traditional Kubernetes DaemonSets and provide the same functionality. Creating them in the

federation control plane ensures that they are synchronized across all the clusters in federation.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

DaemonSets in particular.

Creating a Federated Daemonset

The API for Federated Daemonset is 100% compatible with the API for traditional Kubernetes

DaemonSet. You can create a DaemonSet by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin
Creating a Federated Daemonset
Updating a Federated Daemonset
Deleting a Federated Daemonset

kubectl --context=federation-cluster create -f mydaemonset.yaml

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Federated DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/daemonset/ 2/2

The --context=federation-cluster �ag tells kubectl to submit the request to the Federation

apiserver instead of sending it to a Kubernetes cluster.

Once a Federated Daemonset is created, the federation control plane will create a matching

DaemonSet in all underlying Kubernetes clusters. You can verify this by checking each of the

underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone.

Updating a Federated Daemonset

You can update a Federated Daemonset as you would update a Kubernetes DaemonSet; however,

for a Federated Daemonset, you must send the request to the federation apiserver instead of

sending it to a speci�c Kubernetes cluster. The federation control plane ensures that whenever the

Federated Daemonset is updated, it updates the corresponding DaemonSets in all underlying

clusters to match it.

Deleting a Federated Daemonset

You can delete a Federated Daemonset as you would delete a Kubernetes DaemonSet; however, for

a Federated Daemonset, you must send the request to the federation apiserver instead of sending it

to a speci�c Kubernetes cluster.

For example, you can do that using kubectl by running:

kubectl --context=gce-asia-east1a get daemonset mydaemonset

kubectl --context=federation-cluster delete daemonset mydaemonset

10/23/2017 Federated Deployment - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/deployment/ 1/3

Federated Deployment

This guide explains how to use Deployments in the Federation control plane.

Deployments in the federation control plane (referred to as “Federated Deployments” in this guide)

are very similar to the traditional Kubernetes Deployment and provide the same functionality.

Creating them in the federation control plane ensures that the desired number of replicas exist

across the registered clusters.

As of Kubernetes version 1.5, Federated Deployment is an Alpha feature. The core functionality of

Deployment is present, but some features (such as full rollout compatibility) are still in

development.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You should also have a basic working knowledge of Kubernetes in general and Deployments in

particular.

Creating a Federated Deployment

The API for Federated Deployment is compatible with the API for traditional Kubernetes Deployment.

You can create a Deployment by sending a request to the federation apiserver.

Before you begin
Creating a Federated Deployment

Spreading Replicas in Underlying Clusters
Updating a Federated Deployment
Deleting a Federated Deployment

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Federated Deployment - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/deployment/ 2/3

You can do that using kubectl by running:

The ‘–context=federation-cluster’ �ag tells kubectl to submit the request to the Federation apiserver

instead of sending it to a Kubernetes cluster.

Once a Federated Deployment is created, the federation control plane will create a Deployment in all

underlying Kubernetes clusters. You can verify this by checking each of the underlying clusters, for

example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone.

These Deployments in underlying clusters will match the federation Deployment except in the

number of replicas and revision-related annotations. Federation control plane ensures that the sum

of replicas in each cluster combined matches the desired number of replicas in the Federated

Deployment.

Spreading Replicas in Underlying Clusters

By default, replicas are spread equally in all the underlying clusters. For example: if you have 3

registered clusters and you create a Federated Deployment with spec.replicas = 9 , then each

Deployment in the 3 clusters will have spec.replicas=3 . To modify the number of replicas in each

cluster, you can specify FederatedReplicaSetPreference as an annotation with key

federation.kubernetes.io/deployment-preferences on Federated Deployment.

Updating a Federated Deployment

You can update a Federated Deployment as you would update a Kubernetes Deployment; however,

for a Federated Deployment, you must send the request to the federation apiserver instead of

sending it to a speci�c Kubernetes cluster. The federation control plane ensures that whenever the

Federated Deployment is updated, it updates the corresponding Deployments in all underlying

kubectl --context=federation-cluster create -f mydeployment.yaml

kubectl --context=gce-asia-east1a get deployment mydep

http://localhost:4000/docs/user-guide/kubectl/
https://github.com/kubernetes/kubernetes/blob/master/federation/apis/federation/types.go

10/23/2017 Federated Deployment - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/deployment/ 3/3

clusters to match it. So if the rolling update strategy was chosen then the underlying cluster will do

the rolling update independently and maxSurge and maxUnavailable will apply only to individual

clusters. This behavior may change in the future.

If your update includes a change in number of replicas, the federation control plane will change the

number of replicas in underlying clusters to ensure that their sum remains equal to the number of

desired replicas in Federated Deployment.

Deleting a Federated Deployment

You can delete a Federated Deployment as you would delete a Kubernetes Deployment; however, for

a Federated Deployment, you must send the request to the federation apiserver instead of sending it

to a speci�c Kubernetes cluster.

For example, you can do that using kubectl by running:

kubectl --context=federation-cluster delete deployment mydep

10/23/2017 Federated Events - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/events/ 1/1

Federated Events

This guide explains how to use events in federation control plane to help in debugging.

Prerequisites

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not, then

head over to the federation admin guide to learn how to bring up a cluster federation (or have your

cluster administrator do this for you). Other tutorials, for example this one by Kelsey Hightower, are

also available to help you.

You are also expected to have a basic working knowledge of Kubernetes in general.

Overview

Events in federation control plane (referred to as “federation events” in this guide) are very similar to

the traditional Kubernetes Events providing the same functionality. Federation Events are stored only

in federation control plane and are not passed on to the underlying Kubernetes clusters.

Federation controllers create events as they process API resources to surface to the user, the state

that they are in. You can get all events from federation apiserver by running:

The standard kubectl get, update, delete commands will all work.

Prerequisites
Overview

kubectl --context=federation-cluster get events

http://localhost:4000/docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/

10/23/2017 Federated Horizontal Pod Autoscalers (HPA) - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/hpa/ 1/5

Federated Horizontal Pod Autoscalers (HPA)

FEATURE STATE: Kubernetes v1.8 alpha

This guide explains how to use federated horizontal pod autoscalers (HPAs) in the federation control

plane.

HPAs in the federation control plane are similar to the traditional Kubernetes HPAs, and provide the

same functionality. Creating an HPA targeting a federated object in the federation control plane

ensures that the desired number of replicas of the target object are scaled across the registered

clusters, instead of a single cluster. Also, the control plane keeps monitoring the status of each

individual HPA in the federated clusters and ensures the workload replicas move where they are

needed most by manipulating the min and max limits of the HPA objects in the federated clusters.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and HPAs in

particular.

The federated HPA is an alpha feature. The API is not enabled by default on the federated API server.

To use this feature, the user or the admin deploying the federation control plane needs to run the

Before you begin
Creating a federated HPA

Spreading HPA min and max replicas in underlying clusters
Updating a federated ReplicaSet
Deleting a federated HPA
Alternative ways to use federated HPA
Conclusion

http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale/

10/23/2017 Federated Horizontal Pod Autoscalers (HPA) - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/hpa/ 2/5

federated API server with option --runtime-config=api/all=true to enable all APIs, including

alpha APIs. Additionally, the federated HPA only works when used with CPU utilization metrics.

Creating a federated HPA

The API for federated HPAs is 100% compatible with the API for traditional Kubernetes HPA. You can

create an HPA by sending a request to the federation API server.

You can do that with kubectl by running:

The --context=federation-cluster �ag tells kubectl to submit the request to the federation

API server instead of sending it to a Kubernetes cluster.

Once a federated HPA is created, the federation control plane partitions and creates the HPA in all

underlying Kubernetes clusters. As of Kubernetes V1.7, cluster selectors can also be used to restrict

any federated object, including the HPAs in a subset of clusters.

You can verify the creation by checking each of the underlying clusters. For example, with a context

named gce-asia-east1a con�gured in your client for your cluster in that zone:

cat <<EOF | kubectl --context=federation-cluster create -f -
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: php-apache
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1beta1
 kind: Deployment
 name: php-apache
 minReplicas: 1
 maxReplicas: 10
 targetCPUUtilizationPercentage: 50
EOF

kubectl --context=gce-asia-east1a get HPA php-apache

http://localhost:4000/docs/user-guide/kubectl/
http://localhost:4000/docs/tasks/administer-federation/cluster/#clusterselector-annotation

10/23/2017 Federated Horizontal Pod Autoscalers (HPA) - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/hpa/ 3/5

The HPA in the underlying clusters will match the federation HPA except in the number of min and

max replicas. The federation control plane ensures that the sum of max replicas in each cluster

matches the speci�ed max replicas on the federated HPA object, and the sum of minimum replicas

will be greater than or equal to the minimum speci�ed on the federated HPA object.

Note: A particular cluster cannot have a minimum replica sum of 0.

Spreading HPA min and max replicas in underlying clusters

By default, �rst max replicas are spread equally in all the underlying clusters, then min replicas are

distributed to those clusters that received their maximum value. This means that each cluster will

get an HPA if the speci�ed max replicas are greater than the total clusters participating in this

federation, and some clusters will be skipped if speci�ed max replicas are less than the total clusters

participating in the federation.

For example: if you have 3 registered clusters and you create a federated HPA with

spec.maxReplicas = 9 , and spec.minReplicas = 2 , then each HPA in the 3 clusters will get

spec.maxReplicas=3 and spec.minReplicas = 1 .

Currently the default distribution is only available on the federated HPA, but in the future, users

preferences could also be speci�ed to control and/or restrict this distribution.

Updating a federated ReplicaSet

You can update a federated HPA as you would update a Kubernetes HPA; however, for a federated

HPA, you must send the request to the federation API server instead of sending it to a speci�c

Kubernetes cluster. The Federation control plane ensures that whenever the federated HPA is

updated, it updates the corresponding HPA in all underlying clusters to match it.

If your update includes a change in the number of replicas, the federation control plane will change

the number of replicas in underlying clusters to ensure that the sum of the max and min replicas

remains matched as speci�ed in the previous section.

Deleting a federated HPA

10/23/2017 Federated Horizontal Pod Autoscalers (HPA) - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/hpa/ 4/5

You can delete a federated HPA as you would delete a Kubernetes HPA; however, for a federated

HPA, you must send the request to the federation API server instead of sending it to a speci�c

Kubernetes cluster. It should also be noted that for the federated resource to be deleted from all

underlying clusters, cascading deletion should be used.

For example, you can do that using kubectl by running:

Alternative ways to use federated HPA

To a federation user interacting with federated control plane (or simply federation), the interaction is

almost identical to interacting with a normal Kubernetes cluster (but with a limited set of APIs that

are federated). As both Deployments and HorizontalPodAutoscalers are now federated, kubectl

commands like kubectl run and kubectl autoscale work on federation. Given this fact, the

mechanism speci�ed in horizontal pod autoscaler walkthrough will also work when used with

federation. Care however will need to be taken that when generating load on a target deployment, it

should be done against a speci�c federated cluster (or multiple clusters) not the federation.

Conclusion

The use of federated HPA is to ensure workload replicas move to the cluster(s) where they are

needed most, or in other words where the load is beyond expected threshold. The federated HPA

feature achieves this by manipulating the min and max replicas on the HPAs it creates in the

federated clusters. It does not directly monitor the target object metrics from the federated clusters.

It actually relies on the in-cluster HPA controllers to monitor the metrics and update relevant �elds.

The in-cluster HPA controller monitors the target pod metrics and updates the �elds like desired

replicas (after metrics based calculations) and current replicas (observing the current status of in

cluster pods). The federated HPA controller, on the other hand, monitors only the cluster-speci�c HPA

object �elds and updates the min replica and max replica �elds of those in cluster HPA objects,

which have replicas matching thresholds.

For example, if a cluster has both desired replicas and current replicas the same as the max replicas,

and averaged current CPU utilization still higher than the target CPU utilization (all of which are �elds

kubectl --context=federation-cluster delete HPA php-apache

http://localhost:4000/docs/concepts/cluster-administration/federation/#cascading-deletion
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough
http://localhost:4000/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#step-three-increase-load

10/23/2017 Federated Horizontal Pod Autoscalers (HPA) - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/hpa/ 5/5

on local HPA object), then the target app in this cluster needs more replicas, and the scaling is

currently restricted by max replicas set on this local HPA object. In such a scenario, the federated

HPA controller scans all clusters and tries to �nd clusters which do not have such a condition

(meaning the the desired replicas are less than the max, and current averaged cpu utilization is lower

then the threshold). If it �nds such a cluster, it reduces the max replica on the HPA in this cluster and

increases the max replicas on the HPA in the cluster which needed the replicas.

There are many other similar conditions which the federated HPA controller checks and moves the

max replicas and min replicas around the local HPAs in federated clusters to eventually ensure that

the replicas move (or remain) in the cluster(s) which need them.

For more information, see “federated HPA design proposal”.

https://github.com/kubernetes/community/pull/593

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 1/8

Federated Ingress

This page explains how to use Kubernetes Federated Ingress to deploy a common HTTP(S) virtual IP

load balancer across a federated service running in multiple Kubernetes clusters. As of v1.4, clusters

hosted in Google Cloud (both GKE and GCE, or both) are supported. This makes it easy to deploy a

service that reliably serves HTTP(S) tra�c originating from web clients around the globe on a single,

static IP address. Low network latency, high fault tolerance and easy administration are ensured

through intelligent request routing and automatic replica relocation (using Federated ReplicaSets.

Clients are automatically routed, via the shortest network path, to the cluster closest to them with

available capacity (despite the fact that all clients use exactly the same static IP address). The load

balancer automatically checks the health of the pods comprising the service, and avoids sending

requests to unresponsive or slow pods (or entire unresponsive clusters).

Federated Ingress is released as an alpha feature, and supports Google Cloud Platform (GKE, GCE

and hybrid scenarios involving both) in Kubernetes v1.4. Work is under way to support other cloud

providers such as AWS, and other hybrid cloud scenarios (e.g. services spanning private on-premises

as well as public cloud Kubernetes clusters).

You create Federated Ingresses in much that same way as traditional Kubernetes Ingresses: by

making an API call which speci�es the desired properties of your logical ingress point. In the case of

Federated Ingress, this API call is directed to the Federation API endpoint, rather than a Kubernetes

cluster API endpoint. The API for Federated Ingress is 100% compatible with the API for traditional

Kubernetes Services.

Once created, the Federated Ingress automatically:

Creates matching Kubernetes Ingress objects in every cluster underlying your Cluster Federation

Ensures that all of these in-cluster ingress objects share the same logical global L7 (that is,

HTTP(S)) load balancer and IP address

Monitors the health and capacity of the service shards (that is, your pods) behind this ingress in

each cluster

Ensures that all client connections are routed to an appropriate healthy backend service

endpoint at all times, even in the event of pod, cluster, availability zone or regional outages

http://localhost:4000/docs/tasks/administer-federation/replicaset/
http://localhost:4000/docs/concepts/services-networking/ingress/

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 2/8

Note that in the case of Google Cloud, the logical L7 load balancer is not a single physical device

(which would present both a single point of failure, and a single global network routing choke point),

but rather a truly global, highly available load balancing managed service, globally reachable via a

single, static IP address.

Clients inside your federated Kubernetes clusters (Pods) will be automatically routed to the cluster-

local shard of the Federated Service backing the Ingress in their cluster if it exists and is healthy, or

the closest healthy shard in a different cluster if it does not. Note that this involves a network trip to

the HTTP(s) load balancer, which resides outside your local Kubernetes cluster but inside the same

GCP region.

Before you begin

This document assumes that you have a running Kubernetes Cluster Federation installation. If not,

then see the federation admin guide to learn how to bring up a cluster federation (or have your

cluster administrator do this for you). Other tutorials, for example this one by Kelsey Hightower, are

also available to help you.

You must also have a basic working knowledge of Kubernetes in general, and Ingress in particular.

Creating a federated ingress

Before you begin
Creating a federated ingress
Adding backend services and pods
Hybrid cloud capabilities
Discovering a federated ingress
Handling failures of backend pods and whole clusters
Troubleshooting

I cannot connect to my cluster federation API.
I can create a Federated Ingress/service/replicaset successfully against the cluster
federation API, but no matching ingresses/services/replicasets are created in my
underlying clusters.
I can create a federated ingress successfully, but request load is not correctly distributed
across the underlying clusters.

What’s next

https://cloud.google.com/load-balancing/
http://localhost:4000/docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/services-networking/ingress/

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 3/8

You can create a federated ingress in any of the usual ways, for example, using kubectl:

For example ingress YAML con�gurations, see the Ingress User Guide. The ‘–context=federation-

cluster’ �ag tells kubectl to submit the request to the Federation API endpoint, with the appropriate

credentials. If you have not yet con�gured such a context, see the federation admin guide or one of

the administration tutorials to �nd out how to do so.

The Federated Ingress automatically creates and maintains matching Kubernetes ingresses in all of

the clusters underlying your federation. These cluster-speci�c ingresses (and their associated

ingress controllers) con�gure and manage the load balancing and health checking infrastructure that

ensures that tra�c is load balanced to each cluster appropriately.

You can verify this by checking in each of the underlying clusters. For example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone. The name and namespace of the underlying ingress automatically matches

those of the Federated Ingress that you created above (and if you happen to have had ingresses of

the same name and namespace already existing in any of those clusters, they will be automatically

adopted by the Federation and updated to conform with the speci�cation of your Federated Ingress.

Either way, the end result will be the same).

The status of your Federated Ingress automatically re�ects the real-time status of the underlying

Kubernetes ingresses. For example:

kubectl --context=federation-cluster create -f myingress.yaml

kubectl --context=gce-asia-east1a get ingress myingress
NAME HOSTS ADDRESS PORTS AGE
myingress * 130.211.5.194 80, 443 1m

http://localhost:4000/docs/concepts/services-networking/ingress/
http://localhost:4000/docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 4/8

Note that:

The address of your Federated Ingress corresponds with the address of all of the underlying

Kubernetes ingresses (once these have been allocated - this may take up to a few minutes).

You have not yet provisioned any backend Pods to receive the network tra�c directed to this

ingress (that is, ‘Service Endpoints’ behind the service backing the Ingress), so the Federated

Ingress does not yet consider these to be healthy shards and will not direct tra�c to any of these

clusters.

The federation control system automatically recon�gures the load balancer controllers in all of

the clusters in your federation to make them consistent, and allows them to share global load

balancers. But this recon�guration can only complete successfully if there are no pre-existing

Ingresses in those clusters (this is a safety feature to prevent accidental breakage of existing

ingresses). So, to ensure that your federated ingresses function correctly, either start with new,

empty clusters, or make sure that you delete (and recreate if necessary) all pre-existing

Ingresses in the clusters comprising your federation.

kubectl --context=federation-cluster describe ingress myingress

Name: myingress
Namespace: default
Address: 130.211.5.194
TLS:
 tls-secret terminates
Rules:
 Host Path Backends
 ---- ---- --------
 * * echoheaders-https:80 (10.152.1.3:8080,10.152.2.4:8080)
Annotations:
 https-target-proxy: k8s-tps-default-myingress--ff1107f83ed600c0
 target-proxy: k8s-tp-default-myingress--ff1107f83ed600c0
 url-map: k8s-um-default-myingress--ff1107f83ed600c0
 backends: {"k8s-be-30301--ff1107f83ed600c0":"Unknown"}
 forwarding-rule: k8s-fw-default-myingress--ff1107f83ed600c0
 https-forwarding-rule: k8s-fws-default-myingress--ff1107f83ed600c0
Events:
 FirstSeen LastSeen Count From SubobjectPath Type Re
 --------- -------- ----- ---- ------------- -------- --
 3m 3m 1 {loadbalancer-controller } Normal ADD defaul
 2m 2m 1 {loadbalancer-controller } Normal CREATE ip

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 5/8

Adding backend services and pods

To render the underlying ingress shards healthy, you need to add backend Pods behind the service

upon which the Ingress is based. There are several ways to achieve this, but the easiest is to create a

Federated Service and Federated ReplicaSet. To create appropriately labelled pods and services in

the 13 underlying clusters of your federation:

Note that in order for your federated ingress to work correctly on Google Cloud, the node ports of all

of the underlying cluster-local services need to be identical. If you’re using a federated service this is

easy to do. Simply pick a node port that is not already being used in any of your clusters, and add

that to the spec of your federated service. If you do not specify a node port for your federated

service, each cluster will choose its own node port for its cluster-local shard of the service, and these

will probably end up being different, which is not what you want.

You can verify this by checking in each of the underlying clusters. For example:

Hybrid cloud capabilities

Federations of Kubernetes Clusters can include clusters running in different cloud providers (for

example, Google Cloud, AWS), and on-premises (for example, on OpenStack). However, in

Kubernetes v1.4, Federated Ingress is only supported across Google Cloud clusters.

Discovering a federated ingress

kubectl --context=federation-cluster create -f services/nginx.yaml

kubectl --context=federation-cluster create -f myreplicaset.yaml

kubectl --context=gce-asia-east1a get services nginx
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx 10.63.250.98 104.199.136.89 80/TCP 9m

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 6/8

Ingress objects (in both plain Kubernets clusters, and in federations of clusters) expose one or more

IP addresses (via the Status.Loadbalancer.Ingress �eld) that remains static for the lifetime of the

Ingress object (in future, automatically managed DNS names might also be added). All clients

(whether internal to your cluster, or on the external network or internet) should connect to one of

these IP or DNS addresses. All client requests are automatically routed, via the shortest network

path, to a healthy pod in the closest cluster to the origin of the request. So for example, HTTP(S)

requests from internet users in Europe will be routed directly to the closest cluster in Europe that has

available capacity. If there are no such clusters in Europe, the request will be routed to the next

closest cluster (typically in the U.S.).

Handling failures of backend pods and whole clusters

Ingresses are backed by Services, which are typically (but not always) backed by one or more

ReplicaSets. For Federated Ingresses, it is common practise to use the federated variants of Services

and ReplicaSets for this purpose.

In particular, Federated ReplicaSets ensure that the desired number of pods are kept running in each

cluster, even in the event of node failures. In the event of entire cluster or availability zone failures,

Federated ReplicaSets automatically place additional replicas in the other available clusters in the

federation to accommodate the tra�c which was previously being served by the now unavailable

cluster. While the Federated ReplicaSet ensures that su�cient replicas are kept running, the

Federated Ingress ensures that user tra�c is automatically redirected away from the failed cluster to

other available clusters.

Troubleshooting

I cannot connect to my cluster federation API.

Check that your:

1. Client (typically kubectl) is correctly con�gured (including API endpoints and login credentials).

2. Cluster Federation API server is running and network-reachable.

See the federation admin guide to learn how to bring up a cluster federation correctly (or have your

cluster administrator do this for you), and how to correctly con�gure your client.

http://localhost:4000/docs/admin/federation/

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 7/8

I can create a Federated Ingress/service/replicaset successfully against the
cluster federation API, but no matching ingresses/services/replicasets are
created in my underlying clusters.

Check that:

1. Your clusters are correctly registered in the Cluster Federation API. (

kubectl describe clusters)

2. Your clusters are all ‘Active’. This means that the cluster Federation system was able to connect

and authenticate against the clusters’ endpoints. If not, consult the event logs of the federation-

controller-manager pod to ascertain what the failure might be. (

kubectl --namespace=federation logs $(kubectl get pods --namespace=federation -

l module=federation-controller-manager -o name

)

3. That the login credentials provided to the Cluster Federation API for the clusters have the correct

authorization and quota to create ingresses/services/replicasets in the relevant namespace in

the clusters. Again you should see associated error messages providing more detail in the above

event log �le if this is not the case.

4. Whether any other error is preventing the service creation operation from succeeding (look for

ingress-controller , service-controller or replicaset-controller , errors in the

output of kubectl logs federation-controller-manager --namespace federation).

I can create a federated ingress successfully, but request load is not correctly
distributed across the underlying clusters.

Check that:

1. The services underlying your federated ingress in each cluster have identical node ports. See

above for further explanation.

2. The load balancer controllers in each of your clusters are of the correct type (“GLBC”) and have

been correctly recon�gured by the federation control plane to share a global GCE load balancer

(this should happen automatically). If they are of the correct type, and have been correctly

recon�gured, the UID data item in the GLBC con�gmap in each cluster will be identical across all

10/23/2017 Federated Ingress - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/ingress/ 8/8

clusters. See the GLBC docs for further details. If this is not the case, check the logs of your

federation controller manager to determine why this automated recon�guration might be failing.

3. No ingresses have been manually created in any of your clusters before the above

recon�guration of the load balancer controller completed successfully. Ingresses created before

the recon�guration of your GLBC will interfere with the behavior of your federated ingresses

created after the recon�guration (see the GLBC docs for further information). To remedy this,

delete any ingresses created before the cluster joined the federation (and had its GLBC

recon�gured), and recreate them if necessary.

What’s next

If you need assistance, use one of the support channels to seek assistance.

For details about use cases that motivated this work, see Federation proposal.

https://github.com/kubernetes/ingress/blob/7dcb4ae17d5def23d3e9c878f3146ac6df61b09d/controllers/gce/README.md
https://github.com/kubernetes/ingress/blob/7dcb4ae17d5def23d3e9c878f3146ac6df61b09d/controllers/gce/README.md
http://localhost:4000/docs/tasks/debug-application-cluster/troubleshooting/
https://git.k8s.io/community/contributors/design-proposals/federation/federation.md

10/23/2017 Federated Jobs - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/job/ 1/3

Federated Jobs

This guide explains how to use jobs in the federation control plane.

Jobs in the federation control plane (referred to as “federated jobs” in this guide) are similar to the

traditional Kubernetes jobs, and provide the same functionality. Creating jobs in the federation

control plane ensures that the desired number of parallelism and completions exist across the

registered clusters.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and jobs in

particular.

Creating a federated job

The API for federated jobs is fully compatible with the API for traditional Kubernetes jobs. You can

create a job by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin
Creating a federated job

Spreading job tasks in underlying clusters
Updating a federated job
Deleting a federated job

kubectl --context=federation-cluster create -f myjob.yaml

http://localhost:4000/docs/concepts/workloads/controllers/job/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Federated Jobs - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/job/ 2/3

The ‘–context=federation-cluster’ �ag tells kubectl to submit the request to the federation API server

instead of sending it to a Kubernetes cluster.

Once a federated job is created, the federation control plane creates a job in all underlying

Kubernetes clusters. You can verify this by checking each of the underlying clusters, for example:

The previous example assumes that you have a context named gce-asia-east1a con�gured in

your client for your cluster in that zone.

The jobs in the underlying clusters match the federated job except in the number of parallelism and

completions. The federation control plane ensures that the sum of the parallelism and completions

in each cluster matches the desired number of parallelism and completions in the federated job.

Spreading job tasks in underlying clusters

By default, parallelism and completions are spread equally in all underlying clusters. For example: if

you have 3 registered clusters and you create a federated job with spec.parallelism = 9 and

spec.completions = 18 , then each job in the 3 clusters has spec.parallelism = 3 and

spec.completions = 6 . To modify the number of parallelism and completions in each cluster, you

can specify ReplicaAllocationPreferences as an annotation with key

federation.kubernetes.io/job-preferences on the federated job.

Updating a federated job

You can update a federated job as you would update a Kubernetes job; however, for a federated job,

you must send the request to the federation API server instead of sending it to a speci�c Kubernetes

cluster. The federation control plane ensures that whenever the federated job is updated, it updates

the corresponding job in all underlying clusters to match it.

If your update includes a change in number of parallelism and completions, the federation control

plane changes the number of parallelism and completions in underlying clusters to ensure that their

sum remains equal to the number of desired parallelism and completions in federated job.

kubectl --context=gce-asia-east1a get job myjob

https://github.com/kubernetes/kubernetes/blob/master/federation/apis/federation/types.go

10/23/2017 Federated Jobs - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/job/ 3/3

Deleting a federated job

You can delete a federated job as you would delete a Kubernetes job; however, for a federated job,

you must send the request to the federation API server instead of sending it to a speci�c Kubernetes

cluster.

For example, with kubectl:

Note: Deleting a federated job will not delete the corresponding jobs from underlying clusters.

You must delete the underlying jobs manually.

kubectl --context=federation-cluster delete job myjob

10/23/2017 Federated Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/namespaces/ 1/3

Federated Namespaces

This guide explains how to use Namespaces in Federation control plane.

Namespaces in federation control plane (referred to as “federated Namespaces” in this guide) are

very similar to the traditional Kubernetes Namespaces providing the same functionality. Creating

them in the federation control plane ensures that they are synchronized across all the clusters in

federation.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

Namespaces in particular.

Creating a Federated Namespace

The API for Federated Namespaces is 100% compatible with the API for traditional Kubernetes

Namespaces. You can create a Namespace by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin
Creating a Federated Namespace
Updating a Federated Namespace
Deleting a Federated Namespace

kubectl --context=federation-cluster create -f myns.yaml

http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/concepts/overview/working-with-objects/namespaces/

10/23/2017 Federated Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/namespaces/ 2/3

The ‘–context=federation-cluster’ �ag tells kubectl to submit the request to the Federation apiserver

instead of sending it to a Kubernetes cluster.

Once a federated Namespace is created, the federation control plane will create a matching

Namespace in all underlying Kubernetes clusters. You can verify this by checking each of the

underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone. The name and spec of the underlying Namespace will match those of the

Federated Namespace that you created above.

Updating a Federated Namespace

You can update a federated Namespace as you would update a Kubernetes Namespace, just send

the request to federation apiserver instead of sending it to a speci�c Kubernetes cluster. Federation

control plan will ensure that whenever the federated Namespace is updated, it updates the

corresponding Namespaces in all underlying clusters to match it.

Deleting a Federated Namespace

You can delete a federated Namespace as you would delete a Kubernetes Namespace, just send the

request to federation apiserver instead of sending it to a speci�c Kubernetes cluster.

For example, you can do that using kubectl by running:

As in Kubernetes, deleting a federated Namespace will delete all resources in that Namespace from

the federation control plane.

Note that at this point, deleting a federated Namespace will not delete the corresponding

Namespace and resources in those Namespaces from underlying clusters. Users are expected to

delete them manually. We intend to �x this in the future.

kubectl --context=gce-asia-east1a get namespaces myns

kubectl --context=federation-cluster delete ns myns

10/23/2017 Federated Namespaces - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/namespaces/ 3/3

10/23/2017 Federated ReplicaSets - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/replicaset/ 1/3

Federated ReplicaSets

This guide explains how to use ReplicaSets in the Federation control plane.

ReplicaSets in the federation control plane (referred to as “federated ReplicaSets” in this guide) are

very similar to the traditional Kubernetes ReplicaSets, and provide the same functionality. Creating

them in the federation control plane ensures that the desired number of replicas exist across the

registered clusters.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, such as Kelsey Hightower’s

Federated Kubernetes Tutorial, might also help you create a Federated Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

ReplicaSets in particular.

Creating a Federated ReplicaSet

The API for Federated ReplicaSet is 100% compatible with the API for traditional Kubernetes

ReplicaSet. You can create a ReplicaSet by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin
Creating a Federated ReplicaSet

Spreading Replicas in Underlying Clusters
Updating a Federated ReplicaSet
Deleting a Federated ReplicaSet

kubectl --context=federation-cluster create -f myrs.yaml

http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Federated ReplicaSets - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/replicaset/ 2/3

The ‘–context=federation-cluster’ �ag tells kubectl to submit the request to the Federation apiserver

instead of sending it to a Kubernetes cluster.

Once a federated ReplicaSet is created, the federation control plane will create a ReplicaSet in all

underlying Kubernetes clusters. You can verify this by checking each of the underlying clusters, for

example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone.

The ReplicaSets in the underlying clusters will match the federation ReplicaSet except in the number

of replicas. The federation control plane will ensure that the sum of the replicas in each cluster

match the desired number of replicas in the federation ReplicaSet.

Spreading Replicas in Underlying Clusters

By default, replicas are spread equally in all the underlying clusters. For example: if you have 3

registered clusters and you create a federated ReplicaSet with spec.replicas = 9 , then each

ReplicaSet in the 3 clusters will have spec.replicas=3 . To modify the number of replicas in each

cluster, you can specify FederatedReplicaSetPreference as an annotation with key

federation.kubernetes.io/replica-set-preferences on the federated ReplicaSet.

Updating a Federated ReplicaSet

You can update a federated ReplicaSet as you would update a Kubernetes ReplicaSet; however, for a

federated ReplicaSet, you must send the request to the federation apiserver instead of sending it to a

speci�c Kubernetes cluster. The Federation control plane ensures that whenever the federated

ReplicaSet is updated, it updates the corresponding ReplicaSet in all underlying clusters to match it.

If your update includes a change in number of replicas, the federation control plane will change the

number of replicas in underlying clusters to ensure that their sum remains equal to the number of

desired replicas in federated ReplicaSet.

Deleting a Federated ReplicaSet

kubectl --context=gce-asia-east1a get rs myrs

https://github.com/kubernetes/kubernetes/blob/master/federation/apis/federation/types.go

10/23/2017 Federated ReplicaSets - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/replicaset/ 3/3

You can delete a federated ReplicaSet as you would delete a Kubernetes ReplicaSet; however, for a

federated ReplicaSet, you must send the request to the federation apiserver instead of sending it to a

speci�c Kubernetes cluster.

For example, you can do that using kubectl by running:

Note that at this point, deleting a federated ReplicaSet will not delete the corresponding ReplicaSets

from underlying clusters. You must delete the underlying ReplicaSets manually. We intend to �x this

in the future.

kubectl --context=federation-cluster delete rs myrs

10/23/2017 Federated Secrets - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/secret/ 1/3

Federated Secrets

This guide explains how to use secrets in Federation control plane.

Prerequisites

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not, then

head over to the federation admin guide to learn how to bring up a cluster federation (or have your

cluster administrator do this for you). Other tutorials, for example this one by Kelsey Hightower, are

also available to help you.

You are also expected to have a basic working knowledge of Kubernetes in general and Secrets in

particular.

Overview

Secrets in federation control plane (referred to as “federated secrets” in this guide) are very similar to

the traditional Kubernetes Secrets providing the same functionality. Creating them in the federation

control plane ensures that they are synchronized across all the clusters in federation.

Creating a Federated Secret

The API for Federated Secret is 100% compatible with the API for traditional Kubernetes Secret. You

can create a secret by sending a request to the federation apiserver.

You can do that using kubectl by running:

Prerequisites
Overview
Creating a Federated Secret
Updating a Federated Secret
Deleting a Federated Secret

http://localhost:4000/docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation
http://localhost:4000/docs/getting-started-guides/
http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/concepts/configuration/secret/
http://localhost:4000/docs/user-guide/kubectl/

10/23/2017 Federated Secrets - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/secret/ 2/3

The ‘–context=federation-cluster’ �ag tells kubectl to submit the request to the Federation apiserver

instead of sending it to a Kubernetes cluster.

Once a federated secret is created, the federation control plane will create a matching secret in all

underlying Kubernetes clusters. You can verify this by checking each of the underlying clusters, for

example:

The above assumes that you have a context named ‘gce-asia-east1a’ con�gured in your client for

your cluster in that zone.

These secrets in underlying clusters will match the federated secret.

Updating a Federated Secret

You can update a federated secret as you would update a Kubernetes secret; however, for a

federated secret, you must send the request to the federation apiserver instead of sending it to a

speci�c Kubernetes cluster. The Federation control plan ensures that whenever the federated secret

is updated, it updates the corresponding secrets in all underlying clusters to match it.

Deleting a Federated Secret

You can delete a federated secret as you would delete a Kubernetes secret; however, for a federated

secret, you must send the request to the federation apiserver instead of sending it to a speci�c

Kubernetes cluster.

For example, you can do that using kubectl by running:

kubectl --context=federation-cluster create -f mysecret.yaml

kubectl --context=gce-asia-east1a get secret mysecret

kubectl --context=federation-cluster delete secret mysecret

10/23/2017 Federated Secrets - Kubernetes

http://localhost:4000/docs/tasks/administer-federation/secret/ 3/3

Note that at this point, deleting a federated secret will not delete the corresponding secrets from

underlying clusters. You must delete the underlying secrets manually. We intend to �x this in the

future.

10/23/2017 Perform a Rolling Update on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/ 1/5

Perform a Rolling Update on a DaemonSet

This page shows how to perform a rolling update on a DaemonSet.

Before you begin

The DaemonSet rolling update feature is only supported in Kubernetes version 1.6 or later.

DaemonSet Update Strategy

DaemonSet has two update strategy types :

OnDelete: This is the default update strategy for backward-compatibility. With OnDelete update

strategy, after you update a DaemonSet template, new DaemonSet pods will only be created

Before you begin
DaemonSet Update Strategy
Caveat: Updating DaemonSet created from Kubernetes version 1.5 or before
Performing a Rolling Update

Step 1: Checking DaemonSet RollingUpdate update strategy

Step 2: Creating a DaemonSet with RollingUpdate update strategy
Step 3: Updating a DaemonSet template

Declarative commands
Imperative commands

Updating only the container image
Step 4: Watching the rolling update status

Troubleshooting
DaemonSet rolling update is stuck

Some nodes run out of resources
Broken rollout
Clock skew

What’s next

10/23/2017 Perform a Rolling Update on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/ 2/5

when you manually delete old DaemonSet pods. This is the same behavior of DaemonSet in

Kubernetes version 1.5 or before.

RollingUpdate: With RollingUpdate update strategy, after you update a DaemonSet template,

old DaemonSet pods will be killed, and new DaemonSet pods will be created automatically, in a

controlled fashion.

Caveat: Updating DaemonSet created from Kubernetes
version 1.5 or before

If you try a rolling update on a DaemonSet that was created from Kubernetes version 1.5 or before, a

rollout will be triggered when you �rst change the DaemonSet update strategy to RollingUpdate ,

no matter if DaemonSet template is modi�ed or not. If the DaemonSet template is not changed, all

existing DaemonSet pods will be restarted (deleted and created).

Therefore, make sure you want to trigger a rollout before you �rst switch the strategy to

RollingUpdate .

Performing a Rolling Update

To enable the rolling update feature of a DaemonSet, you must set its

.spec.updateStrategy.type to RollingUpdate .

You may want to set .spec.updateStrategy.rollingUpdate.maxUnavailable (default to 1) and

.spec.minReadySeconds (default to 0) as well.

Step 1: Checking DaemonSet RollingUpdate update strategy

First, check the update strategy of your DaemonSet, and make sure it’s set to RollingUpdate:

kubectl get ds/<daemonset-name> -o go-template='{{.spec.updateStrategy.type}}{{"\n

10/23/2017 Perform a Rolling Update on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/ 3/5

If you haven’t created the DaemonSet in the system, check your DaemonSet manifest with the

following command instead:

The output from both commands should be:

If the output isn’t RollingUpdate , go back and modify the DaemonSet object or manifest

accordingly.

Step 2: Creating a DaemonSet with RollingUpdate update strategy

If you have already created the DaemonSet, you may skip this step and jump to step 3.

After verifying the update strategy of the DaemonSet manifest, create the DaemonSet:

Alternatively, use kubectl apply to create the same DaemonSet if you plan to update the

DaemonSet with kubectl apply .

Step 3: Updating a DaemonSet template

Any updates to a RollingUpdate DaemonSet .spec.template will trigger a rolling update. This

can be done with several different kubectl commands.

Declarative commands

If you update DaemonSets using con�guration �les, use kubectl apply :

kubectl create -f ds.yaml --dry-run -o go-template='{{.spec.updateStrategy.type}}{

RollingUpdate

kubectl create -f ds.yaml

kubectl apply -f ds.yaml

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/

10/23/2017 Perform a Rolling Update on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/ 4/5

Imperative commands

If you update DaemonSets using imperative commands, use kubectl edit or kubectl patch :

Updating only the container image

If you just need to update the container image in the DaemonSet template, i.e.

.spec.template.spec.containers[*].image , use kubectl set image :

Step 4: Watching the rolling update status

Finally, watch the rollout status of the latest DaemonSet rolling update:

When the rollout is complete, the output is similar to this:

Troubleshooting

DaemonSet rolling update is stuck

Sometimes, a DaemonSet rolling update may be stuck. Here are some possible causes:

kubectl apply -f ds-v2.yaml

kubectl edit ds/<daemonset-name>

kubectl patch ds/<daemonset-name> -p=<strategic-merge-patch>

kubectl set image ds/<daemonset-name> <container-name>=<container-new-image>

kubectl rollout status ds/<daemonset-name>

daemonset "<daemonset-name>" successfully rolled out

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/

10/23/2017 Perform a Rolling Update on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/ 5/5

Some nodes run out of resources

The rollout is stuck because new DaemonSet pods can’t be scheduled on at least one node. This is

possible when the node is running out of resources.

When this happens, �nd the nodes that don’t have the DaemonSet pods scheduled on by comparing

the output of kubectl get nodes and the output of:

Once you’ve found those nodes, delete some non-DaemonSet pods from the node to make room for

new DaemonSet pods. Note that this will cause service disruption if the deleted pods are not

controlled by any controllers, or if the pods aren’t replicated. This doesn’t respect

PodDisruptionBudget either.

Broken rollout

If the recent DaemonSet template update is broken, for example, the container is crash looping, or

the container image doesn’t exist (often due to a typo), DaemonSet rollout won’t progress.

To �x this, just update the DaemonSet template again. New rollout won’t be blocked by previous

unhealthy rollouts.

Clock skew

If .spec.minReadySeconds is speci�ed in the DaemonSet, clock skew between master and nodes

will make DaemonSet unable to detect the right rollout progress.

What’s next

See Task: Performing a rollback on a DaemonSet

See Concepts: Creating a DaemonSet to adopt existing DaemonSet pods

kubectl get pods -l <daemonset-selector-key>=<daemonset-selector-value> -o wide

http://localhost:4000/docs/tasks/administer-cluster/out-of-resource/
http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-disruption-budget/
http://localhost:4000/docs/tasks/manage-daemon/rollback-daemon-set/
http://localhost:4000/docs/concepts/workloads/controllers/daemonset/

10/23/2017 Performing a Rollback on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/rollback-daemon-set/ 1/4

Performing a Rollback on a DaemonSet

This page shows how to perform a rollback on a DaemonSet.

Before you begin

The DaemonSet rollout history and DaemonSet rollback features are only supported in kubectl

in Kubernetes version 1.7 or later.

Make sure you know how to perform a rolling update on a DaemonSet.

Performing a Rollback on a DaemonSet

Step 1: Find the DaemonSet revision you want to roll back to

You can skip this step if you just want to roll back to the last revision.

List all revisions of a DaemonSet:

This returns a list of DaemonSet revisions:

Before you begin
Performing a Rollback on a DaemonSet

Step 1: Find the DaemonSet revision you want to roll back to
Step 2: Roll back to a speci�c revision
Step 3: Watch the progress of the DaemonSet rollback

Understanding DaemonSet Revisions
Troubleshooting

kubectl rollout history daemonset <daemonset-name>

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/

10/23/2017 Performing a Rollback on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/rollback-daemon-set/ 2/4

Change cause is copied from DaemonSet annotation kubernetes.io/change-cause to its

revisions upon creation. You may specify --record=true in kubectl to record the command

executed in the change cause annotation.

To see the details of a speci�c revision:

This returns the details of that revision:

Step 2: Roll back to a speci�c revision

If it succeeds, the command returns:

If --to-revision �ag is not speci�ed, the last revision will be picked.

daemonsets "<daemonset-name>"
REVISION CHANGE-CAUSE
1 ...
2 ...
...

kubectl rollout history daemonset <daemonset-name> --revision=1

daemonsets "<daemonset-name>" with revision #1
Pod Template:
Labels: foo=bar
Containers:
app:
 Image: ...
 Port: ...
 Environment: ...
 Mounts: ...
Volumes: ...

Specify the revision number you get from Step 1 in --to-revision
kubectl rollout undo daemonset <daemonset-name> --to-revision=<revision>

daemonset "<daemonset-name>" rolled back

10/23/2017 Performing a Rollback on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/rollback-daemon-set/ 3/4

Step 3: Watch the progress of the DaemonSet rollback

kubectl rollout undo daemonset tells the server to start rolling back the DaemonSet. The real

rollback is done asynchronously on the server side.

To watch the progress of the rollback:

When the rollback is complete, the output is similar to this:

Understanding DaemonSet Revisions

In the previous kubectl rollout history step, you got a list of DaemonSet revisions. Each

revision is stored in a resource named ControllerRevision . ControllerRevision is a resource

only available in Kubernetes release 1.7 or later.

To see what is stored in each revision, �nd the DaemonSet revision raw resources:

This returns a list of ControllerRevisions :

Each ControllerRevision stores the annotations and template of a DaemonSet revision.

kubectl rollout undo takes a speci�c ControllerRevision and replaces DaemonSet template

with the template stored in the ControllerRevision . kubectl rollout undo is equivalent to

kubectl rollout status ds/<daemonset-name>

daemonset "<daemonset-name>" successfully rolled out

kubectl get controllerrevision -l <daemonset-selector-key>=<daemonset-selector-val

NAME CONTROLLER REVISION AGE
<daemonset-name>-<revision-hash> DaemonSet/<daemonset-name> 1 1h
<daemonset-name>-<revision-hash> DaemonSet/<daemonset-name> 2 1h

10/23/2017 Performing a Rollback on a DaemonSet - Kubernetes

http://localhost:4000/docs/tasks/manage-daemon/rollback-daemon-set/ 4/4

updating DaemonSet template to a previous revision through other commands, such as

kubectl edit or kubectl apply .

Note that DaemonSet revisions only roll forward. That is to say, after a rollback is complete, the

revision number (.revision �eld) of the ControllerRevision being rolled back to will advance.

For example, if you have revision 1 and 2 in the system, and roll back from revision 2 to revision 1, the

ControllerRevision with .revision: 1 will become .revision: 3 .

Troubleshooting

See troubleshooting DaemonSet rolling update.

http://localhost:4000/docs/tasks/manage-daemon/update-daemon-set/#troubleshooting

10/23/2017 Schedule GPUs - Kubernetes

http://localhost:4000/docs/tasks/manage-gpus/scheduling-gpus/ 1/4

Schedule GPUs

Kubernetes includes experimental support for managing NVIDIA GPUs spread across nodes. This

page describes how users can consume GPUs and the current limitations.

Before you begin

1. Kubernetes nodes have to be pre-installed with Nvidia drivers. Kubelet will not detect Nvidia

GPUs otherwise. Try to re-install Nvidia drivers if kubelet fails to expose Nvidia GPUs as part of

Node Capacity. After installing the driver, run nvidia-docker-plugin to con�rm that all drivers

have been loaded.

2. A special alpha feature gate Accelerators has to be set to true across the system:

--feature-gates="Accelerators=true" .

3. Nodes must be using docker engine as the container runtime.

The nodes will automatically discover and expose all Nvidia GPUs as a schedulable resource.

API

Nvidia GPUs can be consumed via container level resource requirements using the resource name

alpha.kubernetes.io/nvidia-gpu .

Before you begin
API

Warning
Access to CUDA libraries
Future

10/23/2017 Schedule GPUs - Kubernetes

http://localhost:4000/docs/tasks/manage-gpus/scheduling-gpus/ 2/4

GPUs can be speci�ed in the limits section only.

Containers (and pods) do not share GPUs.

Each container can request one or more GPUs.

It is not possible to request a portion of a GPU.

Nodes are expected to be homogenous, i.e. run the same GPU hardware.

If your nodes are running different versions of GPUs, then use Node Labels and Node Selectors to

schedule pods to appropriate GPUs. Following is an illustration of this work�ow:

As part of your Node bootstrapping, identify the GPU hardware type on your nodes and expose it as a

node label.

Specify the GPU types a pod can use via Node A�nity rules.

apiVersion: v1
kind: Pod
metadata:
 name: gpu-pod
spec:
 containers:
 -
 name: gpu-container-1
 image: gcr.io/google_containers/pause:2.0
 resources:
 limits:
 alpha.kubernetes.io/nvidia-gpu: 2 # requesting 2 GPUs
 -
 name: gpu-container-2
 image: gcr.io/google_containers/pause:2.0
 resources:
 limits:
 alpha.kubernetes.io/nvidia-gpu: 3 # requesting 3 GPUs

NVIDIA_GPU_NAME=$(nvidia-smi --query-gpu=gpu_name --format=csv,noheader --id=0 | s
source /etc/default/kubelet
KUBELET_OPTS="$KUBELET_OPTS --node-labels='alpha.kubernetes.io/nvidia-gpu-name=$NV
echo "KUBELET_OPTS=$KUBELET_OPTS" > /etc/default/kubelet

http://localhost:4000/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

10/23/2017 Schedule GPUs - Kubernetes

http://localhost:4000/docs/tasks/manage-gpus/scheduling-gpus/ 3/4

This will ensure that the pod will be scheduled to a node that has a Tesla K80 or a Tesla P100

Nvidia GPU.

Warning

The API presented here will change in an upcoming release to better support GPUs, and hardware

accelerators in general, in Kubernetes.

Access to CUDA libraries

As of now, CUDA libraries are expected to be pre-installed on the nodes.

kind: pod
apiVersion: v1
metadata:
 annotations:
 scheduler.alpha.kubernetes.io/affinity: >
 {
 "nodeAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": {
 "nodeSelectorTerms": [
 {
 "matchExpressions": [
 {
 "key": "alpha.kubernetes.io/nvidia-gpu-name",
 "operator": "In",
 "values": ["Tesla K80", "Tesla P100"]
 }
]
 }
]
 }
 }
 }
spec:
 containers:
 -
 name: gpu-container-1
 resources:
 limits:
 alpha.kubernetes.io/nvidia-gpu: 2

10/23/2017 Schedule GPUs - Kubernetes

http://localhost:4000/docs/tasks/manage-gpus/scheduling-gpus/ 4/4

To mitigate this, you can copy the libraries to a more permissive folder in /var/lib/ or change the

permissions directly. (Future releases will automatically perform this operation)

Pods can access the libraries using hostPath volumes.

Future

Support for hardware accelerators is in its early stages in Kubernetes.

GPUs and other accelerators will soon be a native compute resource across the system.

Better APIs will be introduced to provision and consume accelerators in a scalable manner.

Kubernetes will automatically ensure that applications consuming GPUs gets the best possible

performance.

Key usability problems like access to CUDA libraries will be addressed.

kind: Pod
apiVersion: v1
metadata:
 name: gpu-pod
spec:
 containers:
 - name: gpu-container-1
 image: gcr.io/google_containers/pause:2.0
 resources:
 limits:
 alpha.kubernetes.io/nvidia-gpu: 1
 volumeMounts:
 - mountPath: /usr/local/nvidia/bin
 name: bin
 - mountPath: /usr/lib/nvidia
 name: lib
 volumes:
 - hostPath:
 path: /usr/lib/nvidia-375/bin
 name: bin
 - hostPath:
 path: /usr/lib/nvidia-375
 name: lib

10/23/2017 Manage HugePages - Kubernetes

http://localhost:4000/docs/tasks/manage-hugepages/scheduling-hugepages/ 1/2

Manage HugePages

FEATURE STATE: Kubernetes v1.8 alpha

Kubernetes supports the allocation and consumption of pre-allocated huge pages by applications in

a Pod as an alpha feature. This page describes how users can consume huge pages and the current

limitations.

Before you begin

1. Kubernetes nodes must pre-allocate huge pages in order for the node to report its huge page

capacity. A node may only pre-allocate huge pages for a single size.

2. A special alpha feature gate HugePages has to be set to true across the system:

--feature-gates="HugePages=true" .

The nodes will automatically discover and report all huge page resources as a schedulable resource.

API

Huge pages can be consumed via container level resource requirements using the resource name

hugepages-<size> , where size is the most compact binary notation using integer values supported

on a particular node. For example, if a node supports 2048KiB page sizes, it will expose a

schedulable resource hugepages-2Mi . Unlike CPU or memory, huge pages do not support

overcommit.

Before you begin
API
Future

10/23/2017 Manage HugePages - Kubernetes

http://localhost:4000/docs/tasks/manage-hugepages/scheduling-hugepages/ 2/2

Huge page requests must equal the limits. This is the default if limits are speci�ed, but requests

are not.

Huge pages are isolated at a pod scope, container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages may not consume more huge page memory than the

pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a

supplemental group that matches proc/sys/vm/hugetlb_shm_group

Future

Support container isolation of huge pages in addition to pod isolation.

NUMA locality guarnatees as a feature of quality of service.

ResourceQuota support.

LimitRange support.

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - image: fedora:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /hugepages
 name: hugepage
 resources:
 limits:
 hugepages-2Mi: 100Mi
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

10/23/2017 Extend kubectl with plugins - Kubernetes

http://localhost:4000/docs/tasks/extend-kubectl/kubectl-plugins/ 1/5

Extend kubectl with plugins

FEATURE STATE: Kubernetes v1.8 alpha

This guide shows you how to install and write extensions for kubectl. Usually called plugins or binary

extensions, this feature allows you to extend the default set of commands available in kubectl by

adding new subcommands to perform new tasks and extend the set of features available in the main

distribution of kubectl .

Before you begin

You need to have a working kubectl binary installed. Note that plugins were o�cially introduced as

an alpha feature in the v1.8.0 release. So, while some parts of the plugins feature were already

available in previous versions, a kubectl version of 1.8.0 or later is recommended.

Until a GA version is released, plugins will only be available under the kubectl plugin

subcommand.

Installing kubectl plugins

A plugin is nothing more than a set of �les: at least a plugin.yaml descriptor, and likely one or more

binary, script, or assets �les. To install a plugin, copy those �les to one of the locations in the

�lesystem where kubectl searches for plugins.

Before you begin
Installing kubectl plugins

Plugin loader
Search order

Writing kubectl plugins
The plugin.yaml descriptor
Recommended directory structure
Accessing runtime attributes

What’s next

http://localhost:4000/docs/user-guide/kubectl

10/23/2017 Extend kubectl with plugins - Kubernetes

http://localhost:4000/docs/tasks/extend-kubectl/kubectl-plugins/ 2/5

Note that Kubernetes does not provide a package manager or something similar to install or update

plugins, so it’s your responsibility to place the plugin �les in the correct location. We recommend that

each plugin is located on its own directory, so installing a plugin that is distributed as a compressed

�le is as simple as extracting it to one of the locations speci�ed in the Plugin loader section.

Plugin loader

The plugin loader is responsible for searching plugin �les in the �lesystem locations speci�ed below,

and checking if the plugin provides the minimum amount of information required for it to run. Files

placed in the right location that don’t provide the minimum amount of information, for example an

incomplete plugin.yaml descriptor, are ignored.

Search order

The plugin loader uses the following search order:

1. ${KUBECTL_PLUGINS_PATH} If speci�ed, the search stops here.

2. ${XDG_DATA_DIRS}/kubectl/plugins

3. ~/.kube/plugins

If the KUBECTL_PLUGINS_PATH environment variable is present, the loader uses it as the only

location to look for plugins. The KUBECTL_PLUGINS_PATH environment variable is a list of directories.

In Linux and Mac, the list is colon-delimited. In Windows, the list is semicolon-delimited.

If KUBECTL_PLUGINS_PATH is not present, the loader searches these additional locations:

First, one or more directories speci�ed according to the XDG System Directory Structure

speci�cation. Speci�cally, the loader locates the directories speci�ed by the XDG_DATA_DIRS

environment variable, and then searches kubectl/plugins directory inside of those. If

XDG_DATA_DIRS is not speci�ed, it defaults to /usr/local/share:/usr/share .

Second, the plugins directory under the user’s kubecon�g dir. In most cases, this is

~/.kube/plugins .

Loads plugins from both /path/to/dir1 and /path/to/dir2
KUBECTL_PLUGINS_PATH=/path/to/dir1:/path/to/dir2 kubectl plugin -h

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

10/23/2017 Extend kubectl with plugins - Kubernetes

http://localhost:4000/docs/tasks/extend-kubectl/kubectl-plugins/ 3/5

Writing kubectl plugins

You can write a plugin in any programming language or script that allows you to write command-line

commands. A plugin does not necessarily need to have a binary component. It could rely entirely on

operating system utilities like echo , sed , or grep . Or it could rely on the kubectl binary.

The only strong requirement for a kubectl plugin is the plugin.yaml descriptor �le. This �le is

responsible for declaring at least the minimum attributes required to register a plugin and must be

located under one of the locations speci�ed in the Search order section.

The plugin.yaml descriptor

The descriptor �le supports the following attributes:

The preceding descriptor declares the kubectl plugin targaryen plugin, which has one �ag

named -h | --heat . When the plugin is invoked, it calls the dracarys binary or script, which is

located in the same directory as the descriptor �le. The Accessing runtime attributes section

describes how the dracarys command accesses the �ag value and other runtime context.

Recommended directory structure

It is recommended that each plugin has its own subdirectory in the �lesystem, preferably with the

same name as the plugin command. The directory must contain the plugin.yaml descriptor and

name: "targaryen" # REQUIRED: the plugin command name, to be invok
shortDesc: "Dragonized plugin" # REQUIRED: the command short description, for h
longDesc: "" # the command long description, for help
example: "" # command example(s), for help
command: "./dracarys" # REQUIRED: the command, binary, or script to in
flags: # flags supported by the plugin
 - name: "heat" # REQUIRED for each flag: flag name
 shorthand: "h" # short version of the flag name
 desc: "Fire heat" # REQUIRED for each flag: flag description
 defValue: "extreme" # default value of the flag
tree: # allows the declaration of subcommands
 - ... # subcommands support the same set of attributes

10/23/2017 Extend kubectl with plugins - Kubernetes

http://localhost:4000/docs/tasks/extend-kubectl/kubectl-plugins/ 4/5

any binary, script, asset, or other dependency it might require.

For example, the directory structure for the targaryen plugin could look like this:

Accessing runtime attributes

In most use cases, the binary or script �le you write to support the plugin must have access to some

contextual information provided by the plugin framework. For example, if you declared �ags in the

descriptor �le, your plugin must have access to the user-provided �ag values at runtime. The same is

true for global �ags. The plugin framework is responsible for doing that, so plugin writers don’t need

to worry about parsing arguments. This also ensures the best level of consistency between plugins

and regular kubectl commands.

Plugins have access to runtime context attributes through environment variables. So to access the

value provided through a �ag, for example, just look for the value of the proper environment variable

using the appropriate function call for your binary or script.

The supported environment variables are:

KUBECTL_PLUGINS_CALLER : The full path to the kubectl binary that was used in the current

command invocation. As a plugin writer, you don’t have to implement logic to authenticate and

access the Kubernetes API. Instead, you can invoke kubectl to obtain the information you

need, through something like kubectl get --raw=/apis .

KUBECTL_PLUGINS_CURRENT_NAMESPACE : The current namespace that is the context for this

call. This is the actual namespace to be used, meaning it was already processed in terms of the

precedence between what was provided through the kubecon�g, the --namespace global �ag,

environment variables, and so on.

KUBECTL_PLUGINS_DESCRIPTOR_* : One environment variable for every attribute declared in the

plugin.yaml descriptor. For example, KUBECTL_PLUGINS_DESCRIPTOR_NAME ,

KUBECTL_PLUGINS_DESCRIPTOR_COMMAND .

~/.kube/plugins/
└── targaryen
 ├── plugin.yaml
 └── dracarys

10/23/2017 Extend kubectl with plugins - Kubernetes

http://localhost:4000/docs/tasks/extend-kubectl/kubectl-plugins/ 5/5

KUBECTL_PLUGINS_GLOBAL_FLAG_* : One environment variable for every global �ag supported

by kubectl . For example, KUBECTL_PLUGINS_GLOBAL_FLAG_NAMESPACE ,

KUBECTL_PLUGINS_GLOBAL_FLAG_V .

KUBECTL_PLUGINS_LOCAL_FLAG_* : One environment variable for every local �ag declared in the

plugin.yaml descriptor. For example, KUBECTL_PLUGINS_LOCAL_FLAG_HEAT in the preceding

targaryen example.

What’s next

Check the repository for some more examples of plugins.

In case of any questions, feel free to reach out to the CLI SIG team.

Binary plugins is still an alpha feature, so this is the time to contribute ideas and improvements

to the codebase. We’re also excited to hear about what you’re planning to implement with

plugins, so let us know!

https://github.com/kubernetes/kubernetes/tree/master/pkg/kubectl/plugins/examples
https://github.com/kubernetes/community/tree/master/sig-cli
https://github.com/kubernetes/community/tree/master/sig-cli

10/23/2017 Tutorials - Kubernetes

http://localhost:4000/docs/tutorials/ 1/2

Tutorials

This section of the Kubernetes documentation contains tutorials. A tutorial shows how to

accomplish a goal that is larger than a single task. Typically a tutorial has several sections, each of

which has a sequence of steps.

Kubernetes Basics is an in-depth interactive tutorial that helps you understand the Kubernetes

system and try out some basic Kubernetes features.

Scalable Microservices with Kubernetes (Udacity)

Introduction to Kubernetes (edX)

Hello Minikube

Stateless Applications

Running a Stateless Application Using a Deployment

Example: PHP Guestbook application with Redis

Using a Service to Access an Application in a Cluster

Exposing an External IP Address to Access an Application in a Cluster

Stateful Applications

StatefulSet Basics

Running a Single-Instance Stateful Application

Running a Replicated Stateful Application

Example: WordPress and MySQL with Persistent Volumes

Example: Deploying Cassandra with Stateful Sets

Running ZooKeeper, A CP Distributed System

http://localhost:4000/docs/tasks/
http://localhost:4000/docs/tutorials/kubernetes-basics/
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.edx.org/course/introduction-kubernetes-linuxfoundationx-lfs158x#
http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/
http://localhost:4000/docs/tutorials/stateless-application/run-stateless-application-deployment/
http://localhost:4000/docs/tutorials/stateless-application/guestbook/
http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address-service/
http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address/
http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/
http://localhost:4000/docs/tutorials/stateful-application/run-stateful-application/
http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/
http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
http://localhost:4000/docs/tutorials/stateful-application/cassandra/
http://localhost:4000/docs/tutorials/stateful-application/zookeeper/

10/23/2017 Tutorials - Kubernetes

http://localhost:4000/docs/tutorials/ 2/2

CI/CD Pipeline

Set Up a CI/CD Pipeline with Kubernetes Part 1: Overview

Set Up a CI/CD Pipeline with a Jenkins Pod in Kubernetes (Part 2)

Run and Scale a Distributed Crossword Puzzle App with CI/CD on Kubernetes (Part 3)

Set Up CI/CD for a Distributed Crossword Puzzle App on Kubernetes (Part 4)

Connecting Applications

Connecting a Front End to a Back End Using a Service

Services

Using Source IP

What’s next

If you would like to write a tutorial, see Using Page Templates for information about the tutorial page

type and the tutorial template.

https://www.linux.com/blog/learn/chapter/Intro-to-Kubernetes/2017/5/set-cicd-pipeline-kubernetes-part-1-overview
https://www.linux.com/blog/learn/chapter/Intro-to-Kubernetes/2017/6/set-cicd-pipeline-jenkins-pod-kubernetes-part-2
https://www.linux.com/blog/learn/chapter/intro-to-kubernetes/2017/6/run-and-scale-distributed-crossword-puzzle-app-cicd-kubernetes-part-3
https://www.linux.com/blog/learn/chapter/intro-to-kubernetes/2017/6/set-cicd-distributed-crossword-puzzle-app-kubernetes-part-4
http://localhost:4000/docs/tutorials/connecting-apps/connecting-frontend-backend/
http://localhost:4000/docs/tutorials/services/source-ip/
http://localhost:4000/docs/home/contribute/page-templates/

10/23/2017 Overview - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/ 1/6

Overview

asics

walkthrough of the basics of the Kubernetes cluster orchestration system.

ome background information on major Kubernetes features and

an interactive online tutorial. These interactive tutorials let you manage a

ntainerized applications (/docs/concepts/overview/what-is-

ners) for yourself.

orials, you can learn to:

zed application on a cluster

nt

rized application with a new software version

rized application

da to run a virtual terminal in your web browser that runs Minikube, a

ment of Kubernetes that can run anywhere. There's no need to install any

ything; each interactive tutorial runs directly out of your web browser

bernetes do for you?

es, users expect applications to be available 24/7, and developers expect

of those applications several times a day. Containerization helps package

goals, enabling applications to be released and updated in an easy and

me. Kubernetes helps you make sure those containerized applications run

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/#why-containers

10/23/2017 Overview - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/ 2/6

asics Modules

nt, and helps them �nd the resources and tools they need to work.

epts/overview/what-is-kubernetes/) is a production-ready, open source

Google's accumulated experience in container orchestration, combined

from the community.

s-basics/cluster-intro/)

cluster

http://localhost:4000/docs/concepts/overview/what-is-kubernetes/
http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/

10/23/2017 Overview - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/ 3/6

s-basics/deploy-intro/)

s-basics/explore-intro/)

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/

10/23/2017 Overview - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/ 4/6

s-basics/expose-intro/)

icly

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/

10/23/2017 Overview - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/ 5/6

s-basics/scale-intro/)

s-basics/update-intro/)

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/

10/23/2017 Overview - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/ 6/6

(/docs/tutorials/kubernetes-basics/cluster-intro/)

http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/

10/23/2017 Using Minikube to Create a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/ 1/3

Using Minikube to Create a Cluster

netes cluster is.

e is.

cluster using an online terminal.

sters

s a highly available cluster of computers that are connected to work as

ctions in Kubernetes allow you to deploy containerized applications to a

m speci�cally to individual machines. To make use of this new model of

s need to be packaged in a way that decouples them from individual

ontainerized. Containerized applications are more �exible and available

models, where applications were installed directly onto speci�c

deeply integrated into the host. Kubernetes automates the distribution

cation containers across a cluster in a more e�cient way. Kubernetes is

github.com/kubernetes/kubernetes) platform and is production-ready.

nsists of two types of resources:

ates the cluster

ers that run applications

er

https://github.com/kubernetes/kubernetes

10/23/2017 Using Minikube to Create a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/ 2/3

ction-grade, open-source platform that orchestrates the placement

ution of application containers within and across computer clusters.

am

ble for managing the cluster. The master coordinates all activities in your

ng applications, maintaining applications' desired state, scaling

out new updates.

sical computer that serves as a worker machine in a Kubernetes

a Kubelet, which is an agent for managing the node and communicating

ster. The node should also have tools for handling container operations,

www.docker.com/) or rkt (https://coreos.com/rkt/). A Kubernetes cluster

tra�c should have a minimum of three nodes.

https://www.docker.com/
https://coreos.com/rkt/

10/23/2017 Using Minikube to Create a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-intro/ 3/3

cluster and the nodes are used to host the running applications.

ations on Kubernetes, you tell the master to start the application

schedules the containers to run on the cluster's nodes. The nodes

master using the Kubernetes API, which the master exposes. End users

etes API directly to interact with the cluster.

n be deployed on either physical or virtual machines. To get started with

t, you can use Minikube (https://github.com/kubernetes/minikube).

t Kubernetes implementation that creates a VM on your local machine

uster containing only one node. Minikube is available for Linux, macOS,

The Minikube CLI provides basic bootstrapping operations for working

ng start, stop, status, and delete. For this tutorial, however, you'll use a

with Minikube pre-installed.

t Kubernetes is, let's go to the online tutorial and start our �rst cluster!

torial (/docs/tutorials/kubernetes-basics/cluster-interactive/)›

https://github.com/kubernetes/minikube
http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-interactive/

10/23/2017 Interactive Tutorial - Creating a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/cluster-interactive/ 1/1

Interactive Tutorial - Creating a Cluster

2 (/docs/tutorials/kubernetes-basics/deploy-intro/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/

10/23/2017 Using kubectl to Create a Deployment - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/ 1/3

Using kubectl to Create a Deployment

tion Deployments.

p on Kubernetes with kubectl.

loyments

g Kubernetes cluster, you can deploy your containerized applications on

reate a Kubernetes Deployment con�guration. The Deployment instructs

te and update instances of your application. Once you've created a

etes master schedules mentioned application instances onto individual

tances are created, a Kubernetes Deployment Controller continuously

s. If the Node hosting an instance goes down or is deleted, the

eplaces it. This provides a self-healing mechanism to address machine

orld, installation scripts would often be used to start applications, but they

om machine failure. By both creating your application instances and

cross Nodes, Kubernetes Deployments provide a fundamentally different

management.

10/23/2017 Using kubectl to Create a Deployment - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/ 2/3

onsible for creating and updating instances of your application

ur �rst app on Kubernetes

age a Deployment by using the Kubernetes command line interface,

e Kubernetes API to interact with the cluster. In this module, you'll learn

ctl commands needed to create Deployments that run your applications

10/23/2017 Using kubectl to Create a Deployment - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/ 3/3

oyment, you'll need to specify the container image for your application and

hat you want to run. You can change that information later by updating

es 5 (/docs/tutorials/kubernetes-basics/scale-intro/) and 6

etes-basics/update-intro/) of the bootcamp discuss how you can scale

ments.

be packaged into one of the supported container formats in order to be

es

, we'll use a Node.js (https://nodejs.org) application packaged in a Docker

ode and the Docker�le are available in the GitHub repository

ernetes/kubernetes-bootcamp) for the Kubernetes Bootcamp.

t Deployments are, let's go to the online tutorial and deploy our �rst app!

torial (/docs/tutorials/kubernetes-basics/deploy-interactive/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/
http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/
https://nodejs.org/
https://github.com/kubernetes/kubernetes-bootcamp
http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-interactive/

10/23/2017 Interactive Tutorial - Deploying an App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-interactive/ 1/1

Interactive Tutorial - Deploying an App

3 (/docs/tutorials/kubernetes-basics/explore-intro/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/

10/23/2017 Viewing Pods and Nodes - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/ 1/5

Viewing Pods and Nodes

etes Pods.

etes Nodes.

yed applications.

ods

loyment in Module 2 (/docs/tutorials/kubernetes-basics/deploy-intro/),

od to host your application instance. A Pod is a Kubernetes abstraction

of one or more application containers (such as Docker or rkt), and some

ose containers. Those resources include:

Volumes

ique cluster IP address

ow to run each container, such as the container image version or speci�c

ation-speci�c "logical host" and can contain different application

atively tightly coupled. For example, a Pod might include both the

e.js app as well as a different container that feeds the data to be

s webserver. The containers in a Pod share an IP Address and port space,

nd co-scheduled, and run in a shared context on the same Node.

 on the Kubernetes platform. When we create a Deployment on

ment creates Pods with containers inside them (as opposed to creating

h Pod is tied to the Node where it is scheduled, and remains there until

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/

10/23/2017 Viewing Pods and Nodes - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/ 2/5

o restart policy) or deletion. In case of a Node failure, identical Pods are

able Nodes in the cluster.

mmands

ne or more application containers (such as Docker or rkt) and includes

mes), IP address and information about how to run them.

w

10/23/2017 Viewing Pods and Nodes - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/ 3/5

Node. A Node is a worker machine in Kubernetes and may be either a

hine, depending on the cluster. Each Node is managed by the Master. A

pods, and the Kubernetes master automatically handles scheduling the

n the cluster. The Master's automatic scheduling takes into account the

ach Node.

runs at least:

esponsible for communication between the Kubernetes Master and the

he Pods and the containers running on a machine.

(like Docker, rkt) responsible for pulling the container image from a

he container, and running the application.

y be scheduled together in a single Pod if they are tightly coupled and

es such as disk.

w

10/23/2017 Viewing Pods and Nodes - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/ 4/5

ing with kubectl

rials/kubernetes-basics/deploy-intro/), you used Kubectl command-line

 to use it in Module 3 to get information about deployed applications and

most common operations can be done with the following kubectl

ources

how detailed information about a resource

the logs from a container in a pod

http://localhost:4000/docs/tutorials/kubernetes-basics/deploy-intro/

10/23/2017 Viewing Pods and Nodes - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-intro/ 5/5

ute a command on a container in a pod

mands to see when applications were deployed, what their current

are running and what their con�gurations are.

 about our cluster components and the command line, let's explore our

achine in Kubernetes and may be a VM or physical machine, depending

e Pods can run on one Node.

torial (/docs/tutorials/kubernetes-basics/explore-interactive/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-interactive/

10/23/2017 Interactive Tutorial - Exploring Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/explore-interactive/ 1/1

Interactive Tutorial - Exploring Your App

4 (/docs/tutorials/kubernetes-basics/expose-intro/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/

10/23/2017 Using a Service to Expose Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/ 1/5

Using a Service to Expose Your App

ce in Kubernetes

els and LabelSelector objects relate to a Service

on outside a Kubernetes cluster using a Service

ernetes Services

/concepts/workloads/pods/pod-overview/) are mortal. Pods in fact have

pts/workloads/pods/pod-lifecycle/). When a worker node dies, the Pods

also lost. A ReplicationController (/docs/user-guide/replication-

plicationcontroller) might then dynamically drive the cluster back to

n of new Pods to keep your application running. As another example,

essing backend with 3 replicas. Those replicas are fungible; the front-end

about backend replicas or even if a Pod is lost and recreated. That said,

s cluster has a unique IP address, even Pods on the same Node, so there

omatically reconciling changes among Pods so that your applications

is an abstraction which de�nes a logical set of Pods and a policy by

ervices enable a loose coupling between dependent Pods. A Service is

ferred) (/docs/concepts/con�guration/overview/#general-con�g-tips) or

s objects. The set of Pods targeted by a Service is usually determined by a

w for why you might want a Service without including selector in the

a unique IP address, those IPs are not exposed outside the cluster without

w your applications to receive tra�c. Services can be exposed in different

pe in the ServiceSpec:

http://localhost:4000/docs/concepts/workloads/pods/pod-overview/
http://localhost:4000/docs/concepts/workloads/pods/pod-lifecycle/
http://localhost:4000/docs/user-guide/replication-controller/#what-is-a-replicationcontroller
http://localhost:4000/docs/concepts/configuration/overview/#general-config-tips

10/23/2017 Using a Service to Expose Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/ 2/5

Exposes the Service on an internal IP in the cluster. This type makes the

ble from within the cluster.

the Service on the same port of each selected Node in the cluster using

ce accessible from outside the cluster using : . Superset of ClusterIP.

tes an external load balancer in the current cloud (if supported) and

rnal IP to the Service. Superset of NodePort.

oses the Service using an arbitrary name (speci�ed by externalName in

ng a CNAME record with the name. No proxy is used. This type requires

be-dns .

the different types of Services can be found in the Using Source IP

s/source-ip/) tutorial. Also see Connecting Applications with Services

es-networking/connect-applications-service).

ere are some use cases with Services that involve not de�ning selector

eated without selector will also not create the corresponding Endpoints

s to manually map a Service to speci�c endpoints. Another possibility why

r is you are strictly using type: ExternalName .

o external tra�c

ra�c across multiple Pods

is an abstraction layer which de�nes a logical set of Pods and enables

ure, load balancing and service discovery for those Pods.

http://localhost:4000/docs/tutorials/services/source-ip/
http://localhost:4000/docs/concepts/services-networking/connect-applications-service

10/23/2017 Using a Service to Expose Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/ 3/5

bels

Pod

Node

cross a set of Pods. Services are the abstraction that allow pods to die

tes without impacting your application. Discovery and routing among

s the frontend and backend components in an application) is handled by

10/23/2017 Using a Service to Expose Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/ 4/5

Pods using labels and selectors (/docs/concepts/overview/working-with-

ng primitive that allows logical operation on objects in Kubernetes. Labels

hed to objects and can be used in any number of ways:

or development, test, and production

sing tags

ice at the same time you create a Deployment by using

http://localhost:4000/docs/concepts/overview/working-with-objects/labels

10/23/2017 Using a Service to Expose Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-intro/ 5/5

to objects at creation time or later on. They can be modi�ed at any time.

tion now using a Service and apply some labels.

torial (/docs/tutorials/kubernetes-basics/expose-interactive/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-interactive/

10/23/2017 Interactive Tutorial - Exposing Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/expose-interactive/ 1/1

Interactive Tutorial - Exposing Your App

5 (/docs/tutorials/kubernetes-basics/scale-intro/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/

10/23/2017 Running Multiple Instances of Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/ 1/3

Running Multiple Instances of Your App

kubectl.

cation

we created a Deployment

ocs/concepts/workloads/controllers/deployment/), and then exposed it

tps://kubernetes.io/docs/concepts/services-networking/service/). The

y one Pod for running our application. When tra�c increases, we will need

o keep up with user demand.

 by changing the number of replicas in a Deployment

ment

he start a Deployment with multiple instances using the --replicas

ectl run command

iew

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/

10/23/2017 Running Multiple Instances of Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/ 2/3

t will ensure new Pods are created and scheduled to Nodes with available

 will reduce the number of Pods to the new desired state. Kubernetes

ng (http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/) of

the scope of this tutorial. Scaling to zero is also possible, and it will

e speci�ed Deployment.

ces of an application will require a way to distribute the tra�c to all of

ntegrated load-balancer that will distribute network tra�c to all Pods of

. Services will monitor continuously the running Pods using endpoints, to

only to available Pods.

http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/

10/23/2017 Running Multiple Instances of Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-intro/ 3/3

ed by changing the number of replicas in a Deployment.

nstances of an Application running, you would be able to do Rolling

me. We'll cover that in the next module. Now, let's go to the online terminal

n.

torial (/docs/tutorials/kubernetes-basics/scale-interactive/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-interactive/

10/23/2017 Interactive Tutorial - Scaling Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/scale-interactive/ 1/1

Interactive Tutorial - Scaling Your App

6 (/docs/tutorials/kubernetes-basics/update-intro/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/

10/23/2017 Performing a Rolling Update - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/ 1/3

Performing a Rolling Update

date using kubectl.

plication

ns to be available all the time and developers are expected to deploy new

 times a day. In Kubernetes this is done with rolling updates. Rolling

ents' update to take place with zero downtime by incrementally updating

w ones. The new Pods will be scheduled on Nodes with available

we scaled our application to run multiple instances. This is a requirement

without affecting application availability. By default, the maximum number

vailable during the update and the maximum number of new Pods that

oth options can be con�gured to either numbers or percentages (of

dates are versioned and any Deployment update can be reverted to

.

Deployments' update to take place with zero downtime by incrementally

ces with new ones.

10/23/2017 Performing a Rolling Update - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/ 2/3

es overview

aling, if a Deployment is exposed publicly, the Service will load-balance

le Pods during the update. An available Pod is an instance that is

the application.

e following actions:

tion from one environment to another (via container image updates)

10/23/2017 Performing a Rolling Update - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/update-intro/ 3/3

s versions

ion and Continuous Delivery of applications with zero downtime

posed publicly, the Service will load-balance the tra�c only to available

te.

ve tutorial, we'll update our application to a new version, and also perform

torial (/docs/tutorials/kubernetes-basics/update-interactive/)›

http://localhost:4000/docs/tutorials/kubernetes-basics/update-interactive/

10/23/2017 Interactive Tutorial - Updating Your App - Kubernetes

http://localhost:4000/docs/tutorials/kubernetes-basics/update-interactive/ 1/1

Interactive Tutorial - Updating Your App

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 1/8

Hello Minikube

The goal of this tutorial is for you to turn a simple Hello World Node.js app into an application

running on Kubernetes. The tutorial shows you how to take code that you have developed on your

machine, turn it into a Docker container image and then run that image on Minikube. Minikube

provides a simple way of running Kubernetes on your local machine for free.

Objectives

Run a hello world Node.js application.

Deploy the application to Minikube.

View application logs.

Update the application image.

Before you begin

For OS X, you need Homebrew to install the xhyve driver.

NodeJS is required to run the sample application.

Install Docker. On OS X, we recommend Docker for Mac.

Objectives
Before you begin
Create a Minikube cluster
Create your Node.js application
Create a Docker container image
Create a Deployment
Create a Service
Update your app
Clean up
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://brew.sh/
https://nodejs.org/en/
https://docs.docker.com/engine/installation/mac/

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 2/8

Create a Minikube cluster

This tutorial uses Minikube to create a local cluster. This tutorial also assumes you are using Docker

for Mac on OS X. If you are on a different platform like Linux, or using VirtualBox instead of Docker

for Mac, the instructions to install Minikube may be slightly different. For general Minikube

installation instructions, see the Minikube installation guide.

Use curl to download and install the latest Minikube release:

Use Homebrew to install the xhyve driver and set its permissions:

Use Homebrew to download the kubectl command-line tool, which you can use to interact with

Kubernetes clusters:

Determine whether you can access sites like https://cloud.google.com/container-registry/ directly

without a proxy, by opening a new terminal and using

If NO proxy is required, start the Minikube cluster:

curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/minikube
 chmod +x minikube && \
 sudo mv minikube /usr/local/bin/

brew install docker-machine-driver-xhyve
sudo chown root:wheel $(brew --prefix)/opt/docker-machine-driver-xhyve/bin/docker-
sudo chmod u+s $(brew --prefix)/opt/docker-machine-driver-xhyve/bin/docker-machine

brew install kubectl

curl --proxy "" https://cloud.google.com/container-registry/

minikube start --vm-driver=xhyve

https://github.com/kubernetes/minikube
https://docs.docker.com/engine/installation/mac/
http://localhost:4000/docs/getting-started-guides/minikube/
https://cloud.google.com/container-registry/

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 3/8

If a proxy server is required, use the following method to start Minikube cluster with proxy setting:

The --vm-driver=xhyve �ag speci�es that you are using Docker for Mac. The default VM driver is

VirtualBox.

Now set the Minikube context. The context is what determines which cluster kubectl is interacting

with. You can see all your available contexts in the ~/.kube/config �le.

Verify that kubectl is con�gured to communicate with your cluster:

Create your Node.js application

The next step is to write the application. Save this code in a folder named hellonode with the

�lename server.js :

server.js

Run your application:

minikube start --vm-driver=xhyve --docker-env HTTP_PROXY=http://your-http-proxy-ho

kubectl config use-context minikube

kubectl cluster-info

var http = require('http');

var handleRequest = function(request, response) {
 console.log('Received request for URL: ' + request.url);
 response.writeHead(200);
 response.end('Hello World!');
};
var www = http.createServer(handleRequest);
www.listen(8080);

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/server.js

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 4/8

You should be able to see your “Hello World!” message at http://localhost:8080/.

Stop the running Node.js server by pressing Ctrl-C.

The next step is to package your application in a Docker container.

Create a Docker container image

Create a �le, also in the hellonode folder, named Dockerfile . A Docker�le describes the image

that you want to build. You can build a Docker container image by extending an existing image. The

image in this tutorial extends an existing Node.js image.

Dockerfile

This recipe for the Docker image starts from the o�cial Node.js LTS image found in the Docker

registry, exposes port 8080, copies your server.js �le to the image and starts the Node.js server.

Because this tutorial uses Minikube, instead of pushing your Docker image to a registry, you can

simply build the image using the same Docker host as the Minikube VM, so that the images are

automatically present. To do so, make sure you are using the Minikube Docker daemon:

Note: Later, when you no longer wish to use the Minikube host, you can undo this change by running

eval $(minikube docker-env -u) .

Build your Docker image, using the Minikube Docker daemon:

node server.js

FROM node:6.9.2
EXPOSE 8080
COPY server.js .
CMD node server.js

eval $(minikube docker-env)

docker build -t hello-node:v1 .

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/Dockerfile

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 5/8

Now the Minikube VM can run the image you built.

Create a Deployment

A Kubernetes Pod is a group of one or more Containers, tied together for the purposes of

administration and networking. The Pod in this tutorial has only one Container. A Kubernetes

Deployment checks on the health of your Pod and restarts the Pod’s Container if it terminates.

Deployments are the recommended way to manage the creation and scaling of Pods.

Use the kubectl run command to create a Deployment that manages a Pod. The Pod runs a

Container based on your hello-node:v1 Docker image:

View the Deployment:

Output:

View the Pod:

Output:

View cluster events:

kubectl run hello-node --image=hello-node:v1 --port=8080

kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-node 1 1 1 1 3m

kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-node-714049816-ztzrb 1/1 Running 0 6m

http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 6/8

View the kubectl con�guration:

For more information about kubectl commands, see the kubectl overview.

Create a Service

By default, the Pod is only accessible by its internal IP address within the Kubernetes cluster. To

make the hello-node Container accessible from outside the Kubernetes virtual network, you have

to expose the Pod as a Kubernetes Service.

From your development machine, you can expose the Pod to the public internet using the

kubectl expose command:

View the Service you just created:

Output:

The --type=LoadBalancer �ag indicates that you want to expose your Service outside of the

cluster. On cloud providers that support load balancers, an external IP address would be provisioned

to access the Service. On Minikube, the LoadBalancer type makes the Service accessible through

the minikube service command.

kubectl get events

kubectl config view

kubectl expose deployment hello-node --type=LoadBalancer

kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-node 10.0.0.71 <pending> 8080/TCP 6m
kubernetes 10.0.0.1 <none> 443/TCP 14d

http://localhost:4000/docs/user-guide/kubectl-overview/
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 7/8

This automatically opens up a browser window using a local IP address that serves your app and

shows the “Hello World” message.

Assuming you’ve sent requests to your new web service using the browser or curl, you should now

be able to see some logs:

Update your app

Edit your server.js �le to return a new message:

Build a new version of your image:

Update the image of your Deployment:

Run your app again to view the new message:

Clean up

Now you can clean up the resources you created in your cluster:

minikube service hello-node

kubectl logs <POD-NAME>

response.end('Hello World Again!');

docker build -t hello-node:v2 .

kubectl set image deployment/hello-node hello-node=hello-node:v2

minikube service hello-node

10/23/2017 Hello Minikube - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/hello-minikube/ 8/8

Optionally, stop Minikube:

What’s next

Learn more about Deployment objects.

Learn more about Deploying applications.

Learn more about Service objects.

kubectl delete service hello-node
kubectl delete deployment hello-node

minikube stop

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/user-guide/deploying-applications/
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Configuring Redis using a ConfigMap - Kubernetes

http://localhost:4000/docs/tutorials/configuration/configure-redis-using-configmap/ 1/4

Con�guring Redis using a Con�gMap

This page provides a real world example of how to con�gure Redis using a Con�gMap and builds

upon the Using Con�gMap Data in Pods and Con�gure Containers Using a Con�gMap tasks.

Objectives

Create a Con�gMap.

Create a pod speci�cation using the Con�gMap.

Create the pod.

Verify that the con�guration was correctly applied.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Understand Using Con�gMap Data in Pods.

Understand Con�gure Containers Using a Con�gMap.

Objectives
Before you begin
Real World Example: Con�guring Redis using a Con�gMap
What’s next

http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/
http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/

10/23/2017 Configuring Redis using a ConfigMap - Kubernetes

http://localhost:4000/docs/tutorials/configuration/configure-redis-using-configmap/ 2/4

Real World Example: Con�guring Redis using a
Con�gMap

You can follow the steps below to con�gure a Redis cache using data stored in a Con�gMap.

1. Create a Con�gMap from the docs/user-guide/configmap/redis/redis-config �le:

2. Create a pod speci�cation that uses the con�g data stored in the Con�gMap:

kubectl create configmap example-redis-config --from-file=docs/user-guide/confi

kubectl get configmap example-redis-config -o yaml

apiVersion: v1

data:

 redis-config: |

 maxmemory 2mb

 maxmemory-policy allkeys-lru

kind: ConfigMap

metadata:

 creationTimestamp: 2016-03-30T18:14:41Z

 name: example-redis-config

 namespace: default

 resourceVersion: "24686"

 selfLink: /api/v1/namespaces/default/configmaps/example-redis-config

 uid: 460a2b6e-f6a3-11e5-8ae5-42010af00002

10/23/2017 Configuring Redis using a ConfigMap - Kubernetes

http://localhost:4000/docs/tutorials/configuration/configure-redis-using-configmap/ 3/4

3. Create the pod:

apiVersion: v1

kind: Pod

metadata:

 name: redis

spec:

 containers:

 - name: redis

 image: kubernetes/redis:v1

 env:

 - name: MASTER

 value: "true"

 ports:

 - containerPort: 6379

 resources:

 limits:

 cpu: "0.1"

 volumeMounts:

 - mountPath: /redis-master-data

 name: data

 - mountPath: /redis-master

 name: config

 volumes:

 - name: data

 emptyDir: {}

 - name: config

 configMap:

 name: example-redis-config

 items:

 - key: redis-config

 path: redis.conf

kubectl create -f docs/user-guide/configmap/redis/redis-pod.yaml

10/23/2017 Configuring Redis using a ConfigMap - Kubernetes

http://localhost:4000/docs/tutorials/configuration/configure-redis-using-configmap/ 4/4

In the example, the con�g volume is mounted at /redis-master . It uses path to add the

redis-config key to a �le named redis.conf . The �le path for the redis con�g, therefore, is

/redis-master/redis.conf . This is where the image will look for the con�g �le for the redis

master.

4. Use kubectl exec to enter the pod and run the redis-cli tool to verify that the con�guration

was correctly applied:

What’s next

Learn more about Con�gMaps.

See Using Con�gMap Data in Pods.

kubectl exec -it redis redis-cli

127.0.0.1:6379> CONFIG GET maxmemory

1) "maxmemory"

2) "2097152"

127.0.0.1:6379> CONFIG GET maxmemory-policy

1) "maxmemory-policy"

2) "allkeys-lru"

http://localhost:4000/docs/tasks/configure-pod-container/configmap/
http://localhost:4000/docs/tasks/configure-pod-container/configure-pod-configmap

10/23/2017 Kubernetes Object Management - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/ 1/5

Kubernetes Object Management

The kubectl command-line tool supports several different ways to create and manage Kubernetes

objects. This document provides an overview of the different approaches.

Management techniques

Warning: A Kubernetes object should be managed using only one technique. Mixing and matching

techniques for the same object results in unde�ned behavior.

Management technique Operates on Recommended
environment

Supported
writers

Learning
curve

Imperative commands Live objects Development projects 1+ Lowest

Imperative object
con�guration Individual �les Production projects 1 Moderate

Declarative object
con�guration

Directories of
�les Production projects 1+ Highest

Imperative commands

Management techniques
Imperative commands

Examples
Trade-offs

Imperative object con�guration
Examples
Trade-offs

Declarative object con�guration
Examples
Trade-offs

What’s next

10/23/2017 Kubernetes Object Management - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/ 2/5

When using imperative commands, a user operates directly on live objects in a cluster. The user

provides operations to the kubectl command as arguments or �ags.

This is the simplest way to get started or to run a one-off task in a cluster. Because this technique

operates directly on live objects, it provides no history of previous con�gurations.

Examples

Run an instance of the nginx container by creating a Deployment object:

Do the same thing using a different syntax:

Trade-offs

Advantages compared to object con�guration:

Commands are simple, easy to learn and easy to remember.

Commands require only a single step to make changes to the cluster.

Disadvantages compared to object con�guration:

Commands do not integrate with change review processes.

Commands do not provide an audit trail associated with changes.

Commands do not provide a source of records except for what is live.

Commands do not provide a template for creating new objects.

Imperative object con�guration

In imperative object con�guration, the kubectl command speci�es the operation (create, replace,

etc.), optional �ags and at least one �le name. The �le speci�ed must contain a full de�nition of the

kubectl run nginx --image nginx

kubectl create deployment nginx --image nginx

10/23/2017 Kubernetes Object Management - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/ 3/5

object in YAML or JSON format.

See the resource reference for more details on object de�nitions.

Warning: The imperative replace command replaces the existing spec with the newly provided

one, dropping all changes to the object missing from the con�guration �le. This approach should not

be used with resource types whose specs are updated independently of the con�guration �le.

Services of type LoadBalancer , for example, have their externalIPs �eld updated independently

from the con�guration by the cluster.

Examples

Create the objects de�ned in a con�guration �le:

Delete the objects de�ned in two con�guration �les:

Update the objects de�ned in a con�guration �le by overwriting the live con�guration:

Trade-offs

Advantages compared to imperative commands:

Object con�guration can be stored in a source control system such as Git.

Object con�guration can integrate with processes such as reviewing changes before push and

audit trails.

Object con�guration provides a template for creating new objects.

Disadvantages compared to imperative commands:

Object con�guration requires basic understanding of the object schema.

kubectl create -f nginx.yaml

kubectl delete -f nginx.yaml -f redis.yaml

kubectl replace -f nginx.yaml

https://kubernetes.io/docs/resources-reference/v1.8/

10/23/2017 Kubernetes Object Management - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/ 4/5

Object con�guration requires the additional step of writing a YAML �le.

Advantages compared to declarative object con�guration:

Imperative object con�guration behavior is simpler and easier to understand.

As of Kubernetes version 1.5, imperative object con�guration is more mature.

Disadvantages compared to declarative object con�guration:

Imperative object con�guration works best on �les, not directories.

Updates to live objects must be re�ected in con�guration �les, or they will be lost during the next

replacement.

Declarative object con�guration

When using declarative object con�guration, a user operates on object con�guration �les stored

locally, however the user does not de�ne the operations to be taken on the �les. Create, update, and

delete operations are automatically detected per-object by kubectl . This enables working on

directories, where different operations might be needed for different objects.

Note: Declarative object con�guration retains changes made by other writers, even if the changes

are not merged back to the object con�guration �le. This is possible by using the patch API

operation to write only observed differences, instead of using the replace API operation to replace

the entire object con�guration.

Examples

Process all object con�guration �les in the configs directory, and create or patch the live objects:

Recursively process directories:

kubectl apply -f configs/

kubectl apply -R -f configs/

10/23/2017 Kubernetes Object Management - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/ 5/5

Trade-offs

Advantages compared to imperative object con�guration:

Changes made directly to live objects are retained, even if they are not merged back into the

con�guration �les.

Declarative object con�guration has better support for operating on directories and

automatically detecting operation types (create, patch, delete) per-object.

Disadvantages compared to imperative object con�guration:

Declarative object con�guration is harder to debug and understand results when they are

unexpected.

Partial updates using diffs create complex merge and patch operations.

What’s next

Managing Kubernetes Objects Using Imperative Commands

Managing Kubernetes Objects Using Object Con�guration (Imperative)

Managing Kubernetes Objects Using Object Con�guration (Declarative)

Kubectl Command Reference

Kubernetes Object Schema Reference

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/
http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/
http://localhost:4000/docs/user-guide/kubectl/v1.8/
http://localhost:4000/docs/resources-reference/v1.8/

10/23/2017 Managing Kubernetes Objects Using Imperative Commands - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/ 1/5

Managing Kubernetes Objects Using
Imperative Commands

Kubernetes objects can quickly be created, updated, and deleted directly using imperative

commands built into the kubectl command-line tool. This document explains how those

commands are organized and how to use them to manage live objects.

Trade-offs

The kubectl tool supports three kinds of object management:

Imperative commands

Imperative object con�guration

Declarative object con�guration

See Kubernetes Object Management for a discussion of the advantages and disadvantage of each

kind of object management.

How to create objects

The kubectl tool supports verb-driven commands for creating some of the most common object

types. The commands are named to be recognizable to users unfamiliar with the Kubernetes object

Trade-offs
How to create objects
How to update objects
How to delete objects
How to view an object
Using set commands to modify objects before creation

Using --edit to modify objects before creation
What’s next

http://localhost:4000/docs/concepts/tools/kubectl/object-management-overview/

10/23/2017 Managing Kubernetes Objects Using Imperative Commands - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/ 2/5

types.

run : Create a new Deployment object to run Containers in one or more Pods.

expose : Create a new Service object to load balance tra�c across Pods.

autoscale : Create a new Autoscaler object to automatically horizontally scale a controller, such

as a Deployment.

The kubectl tool also supports creation commands driven by object type. These commands

support more object types and are more explicit about their intent, but require users to know the type

of objects they intend to create.

create <objecttype> [<subtype>] <instancename>

Some objects types have subtypes that you can specify in the create command. For example, the

Service object has several subtypes including ClusterIP, LoadBalancer, and NodePort. Here’s an

example that creates a Service with subtype NodePort:

In the preceding example, the create service nodeport command is called a subcommand of

the create service command.

You can use the -h �ag to �nd the arguments and �ags supported by a subcommand:

How to update objects

The kubectl command supports verb-driven commands for some common update operations.

These commands are named to enable users unfamiliar with Kubernetes objects to perform updates

without knowing the speci�c �elds that must be set:

kubectl create service nodeport <myservicename>

kubectl create service nodeport -h

10/23/2017 Managing Kubernetes Objects Using Imperative Commands - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/ 3/5

scale : Horizontally scale a controller to add or remove Pods by updating the replica count of

the controller.

annotate : Add or remove an annotation from an object.

label : Add or remove a label from an object.

The kubectl command also supports update commands driven by an aspect of the object. Setting

this aspect may set different �elds for different object types:

set : Set an aspect of an object.

Note: In Kubernetes version 1.5, not every verb-driven command has an associated aspect-driven

command.

The kubectl tool supports these additional ways to update a live object directly, however they

require a better understanding of the Kubernetes object schema.

edit : Directly edit the raw con�guration of a live object by opening its con�guration in an editor.

patch : Directly modify speci�c �elds of a live object by using a patch string. For more details on

patch strings, see the patch section in API Conventions.

How to delete objects

You can use the delete command to delete an object from a cluster:

delete <type>/<name>

Note: You can use kubectl delete for both imperative commands and imperative object

con�guration. The difference is in the arguments passed to the command. To use kubectl delete

as an imperative command, pass the object to be deleted as an argument. Here’s an example that

passes a Deployment object named nginx:

kubectl delete deployment/nginx

https://git.k8s.io/community/contributors/devel/api-conventions.md#patch-operations

10/23/2017 Managing Kubernetes Objects Using Imperative Commands - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/ 4/5

How to view an object

There are several commands for printing information about an object:

get : Prints basic information about matching objects. Use get -h to see a list of options.

describe : Prints aggregated detailed information about matching objects.

logs : Prints the stdout and stderr for a container running in a Pod.

Using set commands to modify objects before creation

There are some object �elds that don’t have a �ag you can use in a create command. In some of

those cases, you can use a combination of set and create to specify a value for the �eld before

object creation. This is done by piping the output of the create command to the set command,

and then back to the create command. Here’s an example:

1. The kubectl create service -o yaml --dry-run command creates the con�guration for

the Service, but prints it to stdout as YAML instead of sending it to the Kubernetes API server.

2. The kubectl set --local -f - -o yaml command reads the con�guration from stdin, and

writes the updated con�guration to stdout as YAML.

3. The kubectl create -f - command creates the object using the con�guration provided via

stdin.

Using --edit to modify objects before creation

You can use kubectl create --edit to make arbitrary changes to an object before it is created.

Here’s an example:

kubectl create service clusterip <myservicename> -o yaml --dry-run | kubectl set s

10/23/2017 Managing Kubernetes Objects Using Imperative Commands - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/ 5/5

1. The kubectl create service command creates the con�guration for the Service and saves it

to /tmp/srv.yaml .

2. The kubectl create --edit command opens the con�guration �le for editing before it

creates the object.

What’s next

Managing Kubernetes Objects Using Object Con�guration (Imperative)

Managing Kubernetes Objects Using Object Con�guration (Declarative)

Kubectl Command Reference

Kubernetes Object Schema Reference

kubectl create service clusterip my-svc -o yaml --dry-run > /tmp/srv.yaml
kubectl create --edit -f /tmp/srv.yaml

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/
http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/
http://localhost:4000/docs/user-guide/kubectl/v1.6/
http://localhost:4000/docs/resources-reference/v1.8/

10/23/2017 Imperative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/ 1/5

Imperative Management of Kubernetes
Objects Using Con�guration Files

Kubernetes objects can be created, updated, and deleted by using the kubectl command-line tool

along with an object con�guration �le written in YAML or JSON. This document explains how to

de�ne and manage objects using con�guration �les.

Trade-offs

The kubectl tool supports three kinds of object management:

Imperative commands

Imperative object con�guration

Declarative object con�guration

See Kubernetes Object Management for a discussion of the advantages and disadvantage of each

kind of object management.

How to create objects

Trade-offs
How to create objects
How to update objects
How to delete objects
How to view an object
Limitations
Creating and editing an object from a URL without saving the con�guration
Migrating from imperative commands to imperative object con�guration
De�ning controller selectors and PodTemplate labels
What’s next

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/

10/23/2017 Imperative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/ 2/5

You can use kubectl create -f to create an object from a con�guration �le. Refer to the

kubernetes object schema reference for details.

kubectl create -f <filename|url>

How to update objects

Warning: Updating objects with the replace command drops all parts of the spec not speci�ed in

the con�guration �le. This should not be used with objects whose specs are partially managed by

the cluster, such as Services of type LoadBalancer , where the externalIPs �eld is managed

independently from the con�guration �le. Independently managed �elds must be copied to the

con�guration �le to prevent replace from dropping them.

You can use kubectl replace -f to update a live object according to a con�guration �le.

kubectl replace -f <filename|url>

How to delete objects

You can use kubectl delete -f to delete an object that is described in a con�guration �le.

kubectl delete -f <filename|url>

How to view an object

You can use kubectl get -f to view information about an object that is described in a

con�guration �le.

kubectl get -f <filename|url> -o yaml

The -o yaml �ag speci�es that the full object con�guration is printed. Use kubectl get -h to see

a list of options.

http://localhost:4000/docs/resources-reference/v1.8/

10/23/2017 Imperative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/ 3/5

Limitations

The create , replace , and delete commands work well when each object’s con�guration is fully

de�ned and recorded in its con�guration �le. However when a live object is updated, and the updates

are not merged into its con�guration �le, the updates will be lost the next time a replace is

executed. This can happen if a controller, such as a HorizontalPodAutoscaler, makes updates directly

to a live object. Here’s an example:

1. You create an object from a con�guration �le.

2. Another source updates the object by changing some �eld.

3. You replace the object from the con�guration �le. Changes made by the other source in step 2

are lost.

If you need to support multiple writers to the same object, you can use kubectl apply to manage

the object.

Creating and editing an object from a URL without
saving the con�guration

Suppose you have the URL of an object con�guration �le. You can use kubectl create --edit to

make changes to the con�guration before the object is created. This is particularly useful for

tutorials and tasks that point to a con�guration �le that could be modi�ed by the reader.

Migrating from imperative commands to imperative
object con�guration

Migrating from imperative commands to imperative object con�guration involves several manual

steps.

kubectl create -f <url> --edit

10/23/2017 Imperative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/ 4/5

1. Export the live object to a local object con�guration �le:

2. Manually remove the status �eld from the object con�guration �le.

3. For subsequent object management, use replace exclusively.

De�ning controller selectors and PodTemplate labels

Warning: Updating selectors on controllers is strongly discouraged.

The recommended approach is to de�ne a single, immutable PodTemplate label used only by the

controller selector with no other semantic meaning.

Example label:

What’s next

Managing Kubernetes Objects Using Imperative Commands

Managing Kubernetes Objects Using Object Con�guration (Declarative)

Kubectl Command Reference

Kubernetes Object Schema Reference

kubectl get <kind>/<name> -o yaml --export > <kind>_<name>.yaml

kubectl replace -f <kind>_<name>.yaml

selector:
 matchLabels:
 controller-selector: "extensions/v1beta1/deployment/nginx"
template:
 metadata:
 labels:
 controller-selector: "extensions/v1beta1/deployment/nginx"

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/
http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/
http://localhost:4000/docs/user-guide/kubectl/v1.8/
http://localhost:4000/docs/resources-reference/v1.8/

10/23/2017 Imperative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/ 5/5

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 1/27

Declarative Management of Kubernetes
Objects Using Con�guration Files

Kubernetes objects can be created, updated, and deleted by storing multiple object con�guration

�les in a directory and using kubectl apply to recursively create and update those objects as

needed. This method retains writes made to live objects without merging the changes back into the

object con�guration �les.

Trade-offs
Before you begin
How to create objects
How to update objects
How to delete objects

Recommended: kubectl delete -f <filename>

Alternative: kubectl apply -f <directory/> --prune -l your=label
How to view an object
How apply calculates differences and merges changes

Merge patch calculation
How different types of �elds are merged
Merging changes to primitive �elds
Merging changes to map �elds
Merging changes for �elds of type list

Replace the list
Merge individual elements of a list of complex elements:
Merge a list of primitive elements

Default �eld values
How to clear server-defaulted �elds or �elds set by other writers

How to change ownership of a �eld between the con�guration �le and direct imperative
writers

Changing the owner from a direct imperative writer to a con�guration �le
Changing the owner from a con�guration �le to a direct imperative writer

Changing management methods
Migrating from imperative command management to declarative object con�guration
Migrating from imperative object con�guration to declarative object con�guration

De�ning controller selectors and PodTemplate labels

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 2/27

Trade-offs

The kubectl tool supports three kinds of object management:

Imperative commands

Imperative object con�guration

Declarative object con�guration

See Kubernetes Object Management for a discussion of the advantages and disadvantage of each

kind of object management.

Before you begin

Declarative object con�guration requires a �rm understanding of the Kubernetes object de�nitions

and con�guration. Read and complete the following documents if you have not already:

Managing Kubernetes Objects Using Imperative Commands

Imperative Management of Kubernetes Objects Using Con�guration Files

Following are de�nitions for terms used in this document:

object con�guration �le / con�guration �le: A �le that de�nes the con�guration for a Kubernetes

object. This topic shows how to pass con�guration �les to kubectl apply . Con�guration �les

are typically stored in source control, such as Git.

live object con�guration / live con�guration: The live con�guration values of an object, as

observed by the Kubernetes cluster. These are kept in the Kubernetes cluster storage, typically

etcd.

declarative con�guration writer / declarative writer: A person or software component that makes

updates to a live object. The live writers referred to in this topic make changes to object

Known Issues
What’s next

http://localhost:4000/docs/tutorials/object-management-kubectl/object-management/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 3/27

con�guration �les and run kubectl apply to write the changes.

How to create objects

Use kubectl apply to create all objects, except those that already exist, de�ned by con�guration

�les in a speci�ed directory:

This sets the kubectl.kubernetes.io/last-applied-configuration: '{...}' annotation on

each object. The annotation contains the contents of the object con�guration �le that was used to

create the object.

Note: Add the -R �ag to recursively process directories.

Here’s an example of an object con�guration �le:

simple_deployment.yaml

Create the object using kubectl apply :

kubectl apply -f <directory>/

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 minReadySeconds: 5
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/object-management-kubectl/simple_deployment.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 4/27

Print the live con�guration using kubectl get :

The output shows that the kubectl.kubernetes.io/last-applied-configuration annotation

was written to the live con�guration, and it matches the con�guration �le:

kubectl apply -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_de

kubectl get -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_depl

kind: Deployment
metadata:
 annotations:
 # ...
 # This is the json representation of simple_deployment.yaml
 # It was written by kubectl apply when the object was created
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1beta1","kind":"Deployment",
 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"
 "spec":{"minReadySeconds":5,"template":{"metadata":{"labels":{"app":"nginx"}
 "spec":{"containers":[{"image":"nginx:1.7.9","name":"nginx",
 "ports":[{"containerPort":80}]}]}}}}
 # ...
spec:
 # ...
 minReadySeconds: 5
 template:
 metadata:
 # ...
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.7.9
 # ...
 name: nginx
 ports:
 - containerPort: 80
 # ...
 # ...
 # ...
 # ...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 5/27

How to update objects

You can also use kubectl apply to update all objects de�ned in a directory, even if those objects

already exist. This approach accomplishes the following:

1. Sets �elds that appear in the con�guration �le in the live con�guration.

2. Clears �elds removed from the con�guration �le in the live con�guration.

Note: Add the -R �ag to recursively process directories.

Here’s an example con�guration �le:

simple_deployment.yaml

Create the object using kubectl apply :

kubectl apply -f <directory>/

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 minReadySeconds: 5
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

kubectl apply -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_de

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/object-management-kubectl/simple_deployment.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 6/27

Note: For purposes of illustration, the preceding command refers to a single con�guration �le

instead of a directory.

Print the live con�guration using kubectl get :

The output shows that the kubectl.kubernetes.io/last-applied-configuration annotation

was written to the live con�guration, and it matches the con�guration �le:

kubectl get -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_depl

kind: Deployment
metadata:
 annotations:
 # ...
 # This is the json representation of simple_deployment.yaml
 # It was written by kubectl apply when the object was created
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1beta1","kind":"Deployment",
 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"
 "spec":{"minReadySeconds":5,"template":{"metadata":{"labels":{"app":"nginx"}
 "spec":{"containers":[{"image":"nginx:1.7.9","name":"nginx",
 "ports":[{"containerPort":80}]}]}}}}
 # ...
spec:
 # ...
 minReadySeconds: 5
 template:
 metadata:
 # ...
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.7.9
 # ...
 name: nginx
 ports:
 - containerPort: 80
 # ...
 # ...
 # ...
 # ...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 7/27

Directly update the replicas �eld in the live con�guration by using kubectl scale . This does not

use kubectl apply :

Print the live con�guration using kubectl get :

The output shows that the replicas �eld has been set to 2, and the

last-applied-configuration annotation does not contain a replicas �eld:

kubectl scale deployment/nginx-deployment --replicas 2

kubectl get -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_depl

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 annotations:
 # ...
 # note that the annotation does not contain replicas
 # because it was not updated through apply
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1beta1","kind":"Deployment",
 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"
 "spec":{"minReadySeconds":5,"template":{"metadata":{"labels":{"app":"nginx"}
 "spec":{"containers":[{"image":"nginx:1.7.9","name":"nginx",
 "ports":[{"containerPort":80}]}]}}}}
 # ...
spec:
 replicas: 2 # written by scale
 # ...
 minReadySeconds: 5
 template:
 metadata:
 # ...
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.7.9
 # ...
 name: nginx
 ports:
 - containerPort: 80
 # ...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 8/27

Update the simple_deployment.yaml con�guration �le to change the image from nginx:1.7.9 to

nginx:1.11.9 , and delete the minReadySeconds �eld:

update_deployment.yaml

Apply the changes made to the con�guration �le:

Print the live con�guration using kubectl get :

The output shows the following changes to the live con�guration:

The replicas �eld retains the value of 2 set by kubectl scale . This is possible because it is

omitted from the con�guration �le.

The image �eld has been updated to nginx:1.11.9 from nginx:1.7.9 .

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.11.9 # update the image
 ports:
 - containerPort: 80

kubectl apply -f https://k8s.io/docs/tutorials/object-management-kubectl/update_de

kubectl get -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_depl

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/object-management-kubectl/update_deployment.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 9/27

The last-applied-configuration annotation has been updated with the new image.

The minReadySeconds �eld has been cleared.

The last-applied-configuration annotation no longer contains the minReadySeconds �eld.

Warning: Mixing kubectl apply with the imperative object con�guration commands create and

replace is not supported. This is because create and replace do not retain the

kubectl.kubernetes.io/last-applied-configuration that kubectl apply uses to compute

updates.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 annotations:
 # ...
 # The annotation contains the updated image to nginx 1.11.9,
 # but does not contain the updated replicas to 2
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1beta1","kind":"Deployment",
 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"
 "spec":{"template":{"metadata":{"labels":{"app":"nginx"}},
 "spec":{"containers":[{"image":"nginx:1.11.9","name":"nginx",
 "ports":[{"containerPort":80}]}]}}}}
 # ...
spec:
 replicas: 2 # Set by `kubectl scale`. Ignored by `kubectl apply`.
 # minReadySeconds cleared by `kubectl apply`
 # ...
 template:
 metadata:
 # ...
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.11.9 # Set by `kubectl apply`
 # ...
 name: nginx
 ports:
 - containerPort: 80
 # ...
 # ...
 # ...
 # ...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 10/27

How to delete objects

There are two approaches to delete objects managed by kubectl apply .

Recommended: kubectl delete -f <�lename>

Manually deleting objects using the imperative command is the recommended approach, as it is

more explicit about what is being deleted, and less likely to result in the user deleting something

unintentionally:

Alternative: kubectl apply -f <directory/> --prune -l your=label

Only use this if you know what you are doing.

Warning: kubectl apply --prune is in alpha, and backwards incompatible changes might be

introduced in subsequent releases.

Warning: You must be careful when using this command, so that you do not delete objects

unintentionally.

As an alternative to kubectl delete , you can use kubectl apply to identify objects to be deleted

after their con�guration �les have been removed from the directory. Apply with --prune queries the

API server for all objects matching a set of labels, and attempts to match the returned live object

con�gurations against the object con�guration �les. If an object matches the query, and it does not

have a con�guration �le in the directory, and it does not have a last-applied-configuration

annotation, it is deleted.

Important: Apply with prune should only be run against the root directory containing the object

con�guration �les. Running against sub-directories can cause objects to be unintentionally deleted if

kubectl delete -f <filename>

kubectl apply -f <directory/> --prune -l <labels>

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 11/27

they are returned by the label selector query speci�ed with -l <labels> and do not appear in the

subdirectory.

How to view an object

You can use kubectl get with -o yaml to view the con�guration of a live object:

How apply calculates differences and merges changes

De�nition: A patch is an update operation that is scoped to speci�c �elds of an object instead of the

entire object. This enables updating only a speci�c set of �elds on an object without reading the

object �rst.

When kubectl apply updates the live con�guration for an object, it does so by sending a patch

request to the API server. The patch de�nes updates scoped to speci�c �elds of the live object

con�guration. The kubectl apply command calculates this patch request using the con�guration

�le, the live con�guration, and the last-applied-configuration annotation stored in the live

con�guration.

Merge patch calculation

The kubectl apply command writes the contents of the con�guration �le to the

kubectl.kubernetes.io/last-applied-configuration annotation. This is used to identify �elds

that have been removed from the con�guration �le and need to be cleared from the live

con�guration. Here are the steps used to calculate which �elds should be deleted or set:

1. Calculate the �elds to delete. These are the �elds present in last-applied-configuration

and missing from the con�guration �le.

2. Calculate the �elds to add or set. These are the �elds present in the con�guration �le whose

values don’t match the live con�guration.

kubectl get -f <filename|url> -o yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 12/27

Here’s an example. Suppose this is the con�guration �le for a Deployment object:

update_deployment.yaml

Also, suppose this is the live con�guration for the same Deployment object:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.11.9 # update the image
 ports:
 - containerPort: 80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/object-management-kubectl/update_deployment.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 13/27

Here are the merge calculations that would be performed by kubectl apply :

1. Calculate the �elds to delete by reading values from last-applied-configuration and

comparing them to values in the con�guration �le. In this example, minReadySeconds appears

in the last-applied-configuration annotation, but does not appear in the con�guration �le.

Action: Clear minReadySeconds from the live con�guration.

2. Calculate the �elds to set by reading values from the con�guration �le and comparing them to

values in the live con�guration. In this example, the value of image in the con�guration �le does

not match the value in the live con�guration. Action: Set the value of image in the live

con�guration.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 annotations:
 # ...
 # note that the annotation does not contain replicas
 # because it was not updated through apply
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1beta1","kind":"Deployment",
 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"
 "spec":{"minReadySeconds":5,"template":{"metadata":{"labels":{"app":"nginx"}
 "spec":{"containers":[{"image":"nginx:1.7.9","name":"nginx",
 "ports":[{"containerPort":80}]}]}}}}
 # ...
spec:
 replicas: 2 # written by scale
 # ...
 minReadySeconds: 5
 template:
 metadata:
 # ...
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.7.9
 # ...
 name: nginx
 ports:
 - containerPort: 80
 # ...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 14/27

3. Set the last-applied-configuration annotation to match the value of the con�guration �le.

4. Merge the results from 1, 2, 3 into a single patch request to the API server.

Here is the live con�guration that is the result of the merge:

How different types of �elds are merged

How a particular �eld in a con�guration �le is merged with the live con�guration depends on the type

of the �eld. There are several types of �elds:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 annotations:
 # ...
 # The annotation contains the updated image to nginx 1.11.9,
 # but does not contain the updated replicas to 2
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1beta1","kind":"Deployment",
 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"
 "spec":{"template":{"metadata":{"labels":{"app":"nginx"}},
 "spec":{"containers":[{"image":"nginx:1.11.9","name":"nginx",
 "ports":[{"containerPort":80}]}]}}}}
 # ...
spec:
 replicas: 2 # Set by `kubectl scale`. Ignored by `kubectl apply`.
 # minReadySeconds cleared by `kubectl apply`
 # ...
 template:
 metadata:
 # ...
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.11.9 # Set by `kubectl apply`
 # ...
 name: nginx
 ports:
 - containerPort: 80
 # ...
 # ...
 # ...
 # ...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 15/27

primitive: A �eld of type string, integer, or boolean. For example, image and replicas are

primitive �elds. Action: Replace.

map, also called object: A �eld of type map or a complex type that contains sub�elds. For

example, labels , annotations , spec and metadata are all maps. Action: Merge elements or

sub�elds.

list: A �eld containing a list of items that can be either primitive types or maps. For example,

containers , ports , and args are lists. Action: Varies.

When kubectl apply updates a map or list �eld, it typically does not replace the entire �eld, but

instead updates the individual subelements. For instance, when merging the spec on a Deployment,

the entire spec is not replaced. Instead the sub�elds of spec , such as replicas , are compared

and merged.

Merging changes to primitive �elds

Primitive �elds are replaced or cleared.

Note: ‘-‘ is used for “not applicable” because the value is not used.

Field in object
con�guration �le

Field in live object
con�guration

Field in last-applied-
con�guration Action

Yes Yes - Set live to con�guration �le
value.

Yes No - Set live to local
con�guration.

No - Yes Clear from live
con�guration.

No - No Do nothing. Keep live value.

Merging changes to map �elds

Fields that represent maps are merged by comparing each of the sub�elds or elements of of the

map:

Note: ‘-‘ is used for “not applicable” because the value is not used.

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 16/27

Key in object
con�guration �le

Key in live object
con�guration

Field in last-applied-
con�guration Action

Yes Yes - Compare sub �elds
values.

Yes No - Set live to local
con�guration.

No - Yes Delete from live
con�guration.

No - No Do nothing. Keep live
value.

Merging changes for �elds of type list

Merging changes to a list uses one of three strategies:

Replace the list.

Merge individual elements in a list of complex elements.

Merge a list of primitive elements.

The choice of strategy is made on a per-�eld basis.

Replace the list

Treat the list the same as a primitive �eld. Replace or delete the entire list. This preserves ordering.

Example: Use kubectl apply to update the args �eld of a Container in a Pod. This sets the value

of args in the live con�guration to the value in the con�guration �le. Any args elements that had

previously been added to the live con�guration are lost. The order of the args elements de�ned in

the con�guration �le is retained in the live con�guration.

last-applied-configuration value
 args: ["a, b"]

configuration file value
 args: ["a", "c"]

live configuration
 args: ["a", "b", "d"]

result after merge
 args: ["a", "c"]

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 17/27

Explanation: The merge used the con�guration �le value as the new list value.

Merge individual elements of a list of complex elements:

Treat the list as a map, and treat a speci�c �eld of each element as a key. Add, delete, or update

individual elements. This does not preserve ordering.

This merge strategy uses a special tag on each �eld called a patchMergeKey . The patchMergeKey

is de�ned for each �eld in the Kubernetes source code: types.go When merging a list of maps, the

�eld speci�ed as the patchMergeKey for a given element is used like a map key for that element.

Example: Use kubectl apply to update the containers �eld of a PodSpec. This merges the list

as though it was a map where each element is keyed by name .

https://git.k8s.io/kubernetes/pkg/api/v1/types.go#L2119

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 18/27

Explanation:

The container named “nginx-helper-a” was deleted because no container named “nginx-helper-a”

appeared in the con�guration �le.

last-applied-configuration value
 containers:
 - name: nginx
 image: nginx:1.10
 - name: nginx-helper-a # key: nginx-helper-a; will be deleted in result
 image: helper:1.3
 - name: nginx-helper-b # key: nginx-helper-b; will be retained
 image: helper:1.3

configuration file value
 containers:
 - name: nginx
 image: nginx:1.11
 - name: nginx-helper-b
 image: helper:1.3
 - name: nginx-helper-c # key: nginx-helper-c; will be added in result
 image: helper:1.3

live configuration
 containers:
 - name: nginx
 image: nginx:1.10
 - name: nginx-helper-a
 image: helper:1.3
 - name: nginx-helper-b
 image: helper:1.3
 args: ["run"] # Field will be retained
 - name: nginx-helper-d # key: nginx-helper-d; will be retained
 image: helper:1.3

result after merge
 containers:
 - name: nginx
 image: nginx:1.10
 # Element nginx-helper-a was deleted
 - name: nginx-helper-b
 image: helper:1.3
 args: ["run"] # Field was retained
 - name: nginx-helper-c # Element was added
 image: helper:1.3
 - name: nginx-helper-d # Element was ignored
 image: helper:1.3

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 19/27

The container named “nginx-helper-b” retained the changes to args in the live con�guration.

kubectl apply was able to identify that “nginx-helper-b” in the live con�guration was the same

“nginx-helper-b” as in the con�guration �le, even though their �elds had different values (no

args in the con�guration �le). This is because the patchMergeKey �eld value (name) was

identical in both.

The container named “nginx-helper-c” was added because no container with that name

appeared in the live con�guration, but one with that name appeared in the con�guration �le.

The container named “nginx-helper-d” was retained because no element with that name

appeared in the last-applied-con�guration.

Merge a list of primitive elements

As of Kubernetes 1.5, merging lists of primitive elements is not supported.

Note: Which of the above strategies is chosen for a given �eld is controlled by the patchStrategy

tag in types.go If no patchStrategy is speci�ed for a �eld of type list, then the list is replaced.

Default �eld values

The API server sets certain �elds to default values in the live con�guration if they are not speci�ed

when the object is created.

Here’s a con�guration �le for a Deployment. The �le does not specify strategy or selector :

simple_deployment.yaml

https://git.k8s.io/kubernetes/pkg/api/v1/types.go#L2119
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/object-management-kubectl/simple_deployment.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 20/27

simple_deployment.yaml

Create the object using kubectl apply :

Print the live con�guration using kubectl get :

The output shows that the API server set several �elds to default values in the live con�guration.

These �elds were not speci�ed in the con�guration �le.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 minReadySeconds: 5
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

kubectl apply -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_de

kubectl get -f https://k8s.io/docs/tutorials/object-management-kubectl/simple_depl

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/object-management-kubectl/simple_deployment.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 21/27

Note: Some of the �elds’ default values have been derived from the values of other �elds that were

speci�ed in the con�guration �le, such as the selector �eld.

In a patch request, defaulted �elds are not re-defaulted unless they are explicitly cleared as part of a

patch request. This can cause unexpected behavior for �elds that are defaulted based on the values

of other �elds. When the other �elds are later changed, the values defaulted from them will not be

updated unless they are explicitly cleared.

For this reason, it is recommended that certain �elds defaulted by the server are explicitly de�ned in

the con�guration �le, even if the desired values match the server defaults. This makes it easier to

apiVersion: apps/v1beta1
kind: Deployment
...
spec:
 minReadySeconds: 5
 replicas: 1 # defaulted by apiserver
 selector:
 matchLabels: # defaulted by apiserver - derived from template.metadata.labels
 app: nginx
 strategy:
 rollingUpdate: # defaulted by apiserver - derived from strategy.type
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate # defaulted apiserver
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:1.7.9
 imagePullPolicy: IfNotPresent # defaulted by apiserver
 name: nginx
 ports:
 - containerPort: 80
 protocol: TCP # defaulted by apiserver
 resources: {} # defaulted by apiserver
 terminationMessagePath: /dev/termination-log # defaulted by apiserver
 dnsPolicy: ClusterFirst # defaulted by apiserver
 restartPolicy: Always # defaulted by apiserver
 securityContext: {} # defaulted by apiserver
 terminationGracePeriodSeconds: 30 # defaulted by apiserver
...

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 22/27

recognize con�icting values that will not be re-defaulted by the server.

Example:

last-applied-configuration
spec:
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

configuration file
spec:
 strategy:
 type: Recreate # updated value
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

live configuration
spec:
 strategy:
 type: RollingUpdate # defaulted value
 rollingUpdate: # defaulted value derived from type
 maxSurge : 1
 maxUnavailable: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

l f ERROR!

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 23/27

Explanation:

1. The user creates a Deployment without de�ning strategy.type .

2. The server defaults strategy.type to RollingUpdate and defaults the

strategy.rollingUpdate values.

3. The user changes strategy.type to Recreate . The strategy.rollingUpdate values

remain at their defaulted values, though the server expects them to be cleared. If the

strategy.rollingUpdate values had been de�ned initially in the con�guration �le, it would

have been more clear that they needed to be deleted.

4. Apply fails because strategy.rollingUpdate is not cleared. The strategy.rollingupdate

�eld cannot be de�ned with a strategy.type of Recreate .

Recommendation: These �elds should be explicitly de�ned in the object con�guration �le:

Selectors and PodTemplate labels on workloads, such as Deployment, StatefulSet, Job,

DaemonSet, ReplicaSet, and ReplicationController

Deployment rollout strategy

How to clear server-defaulted �elds or �elds set by other writers

result after merge - ERROR!
spec:
 strategy:
 type: Recreate # updated value: incompatible with rollingUpdate
 rollingUpdate: # defaulted value: incompatible with "type: Recreate"
 maxSurge : 1
 maxUnavailable: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 24/27

As of Kubernetes 1.5, �elds that do not appear in the con�guration �le cannot be cleared by a merge

operation. Here are some workarounds:

Option 1: Remove the �eld by directly modifying the live object.

Note: As of Kubernetes 1.5, kubectl edit does not work with kubectl apply . Using these

together will cause unexpected behavior.

Option 2: Remove the �eld through the con�guration �le.

1. Add the �eld to the con�guration �le to match the live object.

2. Apply the con�guration �le; this updates the annotation to include the �eld.

3. Delete the �eld from the con�guration �le.

4. Apply the con�guration �le; this deletes the �eld from the live object and annotation.

How to change ownership of a �eld between the
con�guration �le and direct imperative writers

These are the only methods you should use to change an individual object �eld:

Use kubectl apply .

Write directly to the live con�guration without modifying the con�guration �le: for example, use

kubectl scale .

Changing the owner from a direct imperative writer to a
con�guration �le

Add the �eld to the con�guration �le. For the �eld, discontinue direct updates to the live con�guration

that do not go through kubectl apply .

Changing the owner from a con�guration �le to a direct imperative
writer

As of Kubernetes 1.5, changing ownership of a �eld from a con�guration �le to an imperative writer

requires manual steps:

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 25/27

Remove the �eld from the con�guration �le.

Remove the �eld from the kubectl.kubernetes.io/last-applied-configuration

annotation on the live object.

Changing management methods

Kubernetes objects should be managed using only one method at a time. Switching from one

method to another is possible, but is a manual process.

Exception: It is OK to use imperative deletion with declarative management.

Migrating from imperative command management to declarative
object con�guration

Migrating from imperative command management to declarative object con�guration involves

several manual steps:

1. Export the live object to a local con�guration �le:

2. Manually remove the status �eld from the con�guration �le.

Note: This step is optional, as kubectl apply does not update the status �eld even if it is

present in the con�guration �le.

3. Set the kubectl.kubernetes.io/last-applied-configuration annotation on the object:

4. Change processes to use kubectl apply for managing the object exclusively.

Migrating from imperative object con�guration to declarative
object con�guration

kubectl get <kind>/<name> -o yaml --export > <kind>_<name>.yaml

kubectl replace --save-config -f <kind>_<name>.yaml

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 26/27

1. Set the kubectl.kubernetes.io/last-applied-configuration annotation on the object:

2. Change processes to use kubectl apply for managing the object exclusively.

De�ning controller selectors and PodTemplate labels

Warning: Updating selectors on controllers is strongly discouraged.

The recommended approach is to de�ne a single, immutable PodTemplate label used only by the

controller selector with no other semantic meaning.

Example:

Known Issues

Prior to Kubernetes 1.6, kubectl apply did not support operating on objects stored in a

custom resource. For these cluster versions, you should instead use imperative object

con�guration.

What’s next

Managing Kubernetes Objects Using Imperative Commands

Imperative Management of Kubernetes Objects Using Con�guration Files

kubectl replace --save-config -f <kind>_<name>.yaml

selector:
 matchLabels:
 controller-selector: "extensions/v1beta1/deployment/nginx"
template:
 metadata:
 labels:
 controller-selector: "extensions/v1beta1/deployment/nginx"

http://localhost:4000/docs/concepts/api-extension/custom-resources/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-command/
http://localhost:4000/docs/tutorials/object-management-kubectl/imperative-object-management-configuration/

10/23/2017 Declarative Management of Kubernetes Objects Using Configuration Files - Kubernetes

http://localhost:4000/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/ 27/27

Kubectl Command Reference

Kubernetes Object Schema Reference

http://localhost:4000/docs/user-guide/kubectl/v1.6/
http://localhost:4000/docs/resources-reference/v1.8/

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 1/7

Run a Stateless Application Using a
Deployment

This page shows how to run an application using a Kubernetes Deployment object.

Objectives

Create an nginx deployment.

Use kubectl to list information about the deployment.

Update the deployment.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Creating and exploring an nginx deployment

Objectives
Before you begin
Creating and exploring an nginx deployment
Updating the deployment
Scaling the application by increasing the replica count
Deleting a deployment
ReplicationControllers – the Old Way
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 2/7

You can run an application by creating a Kubernetes Deployment object, and you can describe a

Deployment in a YAML �le. For example, this YAML �le describes a Deployment that runs the

nginx:1.7.9 Docker image:

deployment.yaml

1. Create a Deployment based on the YAML �le:

2. Display information about the Deployment:

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods matching the template
 template: # create pods using pod definition in this template
 metadata:
 # unlike pod-nginx.yaml, the name is not included in the meta data as a uniq
 # generated from the deployment name
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/deployment.yaml

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 3/7

3. List the pods created by the deployment:

kubectl describe deployment nginx-deployment

 user@computer:~/kubernetes.github.io$ kubectl describe deployment nginx-deploy

 Name: nginx-deployment

 Namespace: default

 CreationTimestamp: Tue, 30 Aug 2016 18:11:37 -0700

 Labels: app=nginx

 Annotations: deployment.kubernetes.io/revision=1

 Selector: app=nginx

 Replicas: 2 desired | 2 updated | 2 total | 2 available | 0 unavailable

 StrategyType: RollingUpdate

 MinReadySeconds: 0

 RollingUpdateStrategy: 1 max unavailable, 1 max surge

 Pod Template:

 Labels: app=nginx

 Containers:

 nginx:

 Image: nginx:1.7.9

 Port: 80/TCP

 Environment: <none>

 Mounts: <none>

 Volumes: <none>

 Conditions:

 Type Status Reason

 ---- ------ ------

 Available True MinimumReplicasAvailable

 Progressing True NewReplicaSetAvailable

 OldReplicaSets: <none>

 NewReplicaSet: nginx-deployment-1771418926 (2/2 replicas created)

 No events.

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 4/7

4. Display information about a pod:

where <pod-name> is the name of one of your pods.

Updating the deployment

You can update the deployment by applying a new YAML �le. This YAML �le speci�es that the

deployment should be updated to use nginx 1.8.

deployment-update.yaml

kubectl get pods -l app=nginx

 NAME READY STATUS RESTARTS AGE

 nginx-deployment-1771418926-7o5ns 1/1 Running 0 16h

 nginx-deployment-1771418926-r18az 1/1 Running 0 16h

kubectl describe pod <pod-name>

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.8 # Update the version of nginx from 1.7.9 to 1.8
 ports:
 - containerPort: 80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/deployment-update.yaml

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 5/7

1. Apply the new YAML �le:

2. Watch the deployment create pods with new names and delete the old pods:

Scaling the application by increasing the replica count

You can increase the number of pods in your Deployment by applying a new YAML �le. This YAML

�le sets replicas to 4, which speci�es that the Deployment should have four pods:

deployment-scale.yaml

1. Apply the new YAML �le:

kubectl apply -f https://k8s.io/docs/tutorials/stateless-application/deployment

kubectl get pods -l app=nginx

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 4 # Update the replicas from 2 to 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.8
 ports:
 - containerPort: 80

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/deployment-scale.yaml

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 6/7

2. Verify that the Deployment has four pods:

The output is similar to this:

Deleting a deployment

Delete the deployment by name:

ReplicationControllers – the Old Way

The preferred way to create a replicated application is to use a Deployment, which in turn uses a

ReplicaSet. Before the Deployment and ReplicaSet were added to Kubernetes, replicated applications

were con�gured by using a ReplicationController.

What’s next

Learn more about Deployment objects.

kubectl apply -f https://k8s.io/docs/tutorials/stateless-application/deployment

kubectl get pods -l app=nginx

 NAME READY STATUS RESTARTS AGE

 nginx-deployment-148880595-4zdqq 1/1 Running 0 25s

 nginx-deployment-148880595-6zgi1 1/1 Running 0 25s

 nginx-deployment-148880595-fxcez 1/1 Running 0 2m

 nginx-deployment-148880595-rwovn 1/1 Running 0 2m

kubectl delete deployment nginx-deployment

http://localhost:4000/docs/concepts/workloads/controllers/replicationcontroller/
http://localhost:4000/docs/concepts/workloads/controllers/deployment/

10/23/2017 Run a Stateless Application Using a Deployment - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-stateless-application-deployment/ 7/7

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 1/15

Example: Deploying PHP Guestbook
application with Redis

This tutorial shows you how to build and deploy a simple, multi-tier web application using

Kubernetes and Docker. This example consists of the following components:

Objectives

Start up a Redis master.

Start up Redis slaves.

Start up the guestbook frontend.

Expose and view the Frontend Service.

Clean up.

Objectives
Before you begin
Start up the Redis Master

Creating the Redis Master Deployment
Creating the Redis Master Service

Start up the Redis Slaves
Creating the Redis Slave Deployment
Creating the Redis Slave Service

Set up and Expose the Guestbook Frontend
Creating the Guestbook Frontend Deployment
Creating the Frontend Service
Viewing the Frontend Service via NodePort

Viewing the Frontend Service via LoadBalancer
Scale the Web Frontend
Cleaning up
What’s next

https://www.docker.com/

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 2/15

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Download the following con�guration �les:

1. redis-master-deployment.yaml

2. redis-master-service.yaml

3. redis-slave-deployment.yaml

4. redis-slave-service.yaml

5. frontend-deployment.yaml

6. frontend-service.yaml

Start up the Redis Master

The guestbook application uses Redis to store its data. It writes its data to a Redis master instance

and reads data from multiple Redis slave instances.

Creating the Redis Master Deployment

The manifest �le, included below, speci�es a Deployment controller that runs a single replica Redis

master Pod.

1. Launch a terminal window in the directory you downloaded the manifest �les.

2. Apply the Redis Master Deployment from the redis-master-deployment.yaml �le:

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/tutorials/stateless-application/guestbook/redis-master-deployment.yaml
http://localhost:4000/docs/tutorials/stateless-application/guestbook/redis-master-service.yaml
http://localhost:4000/docs/tutorials/stateless-application/guestbook/redis-slave-deployment.yaml
http://localhost:4000/docs/tutorials/stateless-application/guestbook/redis-slave-service.yaml
http://localhost:4000/docs/tutorials/stateless-application/guestbook/frontend-deployment.yaml
http://localhost:4000/docs/tutorials/stateless-application/guestbook/frontend-service.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 3/15

guestbook/redis-master-deployment.yaml

1. Query the list of Pods to verify that the Redis Master Pod is running:

The response should be similar to this:

kubectl apply -f redis-master-deployment.yaml

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: redis-master
spec:
 selector:
 matchLabels:
 app: redis
 role: master
 tier: backend
 replicas: 1
 template:
 metadata:
 labels:
 app: redis
 role: master
 tier: backend
 spec:
 containers:
 - name: master
 image: gcr.io/google_containers/redis:e2e # or just image: redis
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 6379

kubectl get pods

NAME READY STATUS RESTARTS AGE

redis-master-1068406935-3lswp 1/1 Running 0 28s

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/redis-master-deployment.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 4/15

2. Run the following command to view the logs from the Redis Master Pod:

Note: Replace POD-NAME with the name of your Pod.

Creating the Redis Master Service

The guestbook applications needs to communicate to the Redis master to write its data. You need to

apply a Service to proxy the tra�c to the Redis master Pod. A Service de�nes a policy to access the

Pods.

1. Apply the Redis Master Service from the following redis-master-service.yaml �le:

guestbook/redis-master-service.yaml

kubectl logs -f POD-NAME

kubectl apply -f redis-master-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: redis-master
 labels:
 app: redis
 role: master
 tier: backend
spec:
 ports:
 - port: 6379
 targetPort: 6379
 selector:
 app: redis
 role: master
 tier: backend

http://localhost:4000/docs/concepts/services-networking/service/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/redis-master-service.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 5/15

Note: This manifest �le creates a Service named redis-master with a set of labels that

match the labels previously de�ned, so the Service routes network tra�c to the Redis master

Pod.

1. Query the list of Services to verify that the Redis Master Service is running:

The response should be similar to this:

Start up the Redis Slaves

Although the Redis master is a single pod, you can make it highly available to meet tra�c demands

by adding replica Redis slaves.

Creating the Redis Slave Deployment

Deployments scale based off of the con�gurations set in the manifest �le. In this case, the

Deployment object speci�es two replicas.

If there are not any replicas running, this Deployment would start the two replicas on your container

cluster. Conversely, if there are more than two replicas are running, it would scale down until two

replicas are running.

1. Apply the Redis Slave Deployment from the redis-slave-deployment.yaml �le:

kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 1m

redis-master 10.0.0.151 <none> 6379/TCP 8s

kubectl apply -f redis-slave-deployment.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 6/15

guestbook/redis-slave-deployment.yaml

1. Query the list of Pods to verify that the Redis Slave Pods are running:

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: redis-slave
spec:
 selector:
 matchLabels:
 app: redis
 role: slave
 tier: backend
 replicas: 2
 template:
 metadata:
 labels:
 app: redis
 role: slave
 tier: backend
 spec:
 containers:
 - name: slave
 image: gcr.io/google_samples/gb-redisslave:v1
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # Using `GET_HOSTS_FROM=dns` requires your cluster to
 # provide a dns service. As of Kubernetes 1.3, DNS is a built-in
 # service launched automatically. However, if the cluster you are using
 # does not have a built-in DNS service, you can instead
 # instead access an environment variable to find the master
 # service's host. To do so, comment out the 'value: dns' line above, and
 # uncomment the line below:
 # value: env
 ports:
 - containerPort: 6379

kubectl get pods

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/redis-slave-deployment.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 7/15

The response should be similar to this:

Creating the Redis Slave Service

The guestbook application needs to communicate to Redis slaves to read data. To make the Redis

slaves discoverable, you need to set up a Service. A Service provides transparent load balancing to a

set of Pods.

1. Apply the Redis Slave Service from the following redis-slave-service.yaml �le:

guestbook/redis-slave-service.yaml

1. Query the list of Services to verify that the Redis Slave Service is running:

NAME READY STATUS RESTARTS AGE

redis-master-1068406935-3lswp 1/1 Running 0 1m

redis-slave-2005841000-fpvqc 0/1 ContainerCreating 0 6s

redis-slave-2005841000-phfv9 0/1 ContainerCreating 0 6s

kubectl apply -f redis-slave-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: redis-slave
 labels:
 app: redis
 role: slave
 tier: backend
spec:
 ports:
 - port: 6379
 selector:
 app: redis
 role: slave
 tier: backend

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/redis-slave-service.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 8/15

The response should be similar to this:

Set up and Expose the Guestbook Frontend

The guestbook application has a web frontend serving the HTTP requests written in PHP. It is

con�gured to connect to the redis-master Service for write requests and the redis-slave

service for Read requests.

Creating the Guestbook Frontend Deployment

1. Apply the frontend Deployment from the following frontend-deployment.yaml �le:

guestbook/frontend-deployment.yaml

kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 2m

redis-master 10.0.0.151 <none> 6379/TCP 1m

redis-slave 10.0.0.223 <none> 6379/TCP 6s

kubectl apply -f frontend-deployment.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/frontend-deployment.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 9/15

guestbook/frontend-deployment.yaml

1. Query the list of Pods to verify that the three frontend replicas are running:

The response should be similar to this:

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: frontend
spec:
 selector:
 matchLabels:
 app: guestbook
 tier: frontend
 replicas: 3
 template:
 metadata:
 labels:
 app: guestbook
 tier: frontend
 spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # Using `GET_HOSTS_FROM=dns` requires your cluster to
 # provide a dns service. As of Kubernetes 1.3, DNS is a built-in
 # service launched automatically. However, if the cluster you are using
 # does not have a built-in DNS service, you can instead
 # instead access an environment variable to find the master
 # service's host. To do so, comment out the 'value: dns' line above, and
 # uncomment the line below:
 # value: env
 ports:
 - containerPort: 80

kubectl get pods -l app=guestbook -l tier=frontend

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/frontend-deployment.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 10/15

Creating the Frontend Service

The redis-slave and redis-master Services you applied are only accessible within the container

cluster because the default type for a Service is ClusterIP. ClusterIP provides a single IP address

for the set of Pods the Service is pointing to. This IP address is accessible only within the cluster.

If you want guests to be able to access your guestbook, you must con�gure the frontend Service to

be externally visible, so a client can request the Service from outside the container cluster. Minikube

can only expose Services through NodePort .

Note: Some cloud providers, like Google Compute Engine or Google Container Engine, support

external load balancers. If your cloud provider supports load balancers and you want to use it,

simply delete or comment out type: NodePort , and uncomment type: LoadBalancer .

1. Apply the frontend Service from the following frontend-service.yaml �le:

guestbook/frontend-service.yaml

NAME READY STATUS RESTARTS AGE

frontend-3823415956-dsvc5 1/1 Running 0 54s

frontend-3823415956-k22zn 1/1 Running 0 54s

frontend-3823415956-w9gbt 1/1 Running 0 54s

kubectl apply -f frontend-service.yaml

http://localhost:4000/docs/concepts/services-networking/service/#publishing-services---service-types
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/frontend-service.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 11/15

guestbook/frontend-service.yaml

1. Query the list of Services to verify that the frontend Service is running:

The response should be similar to this:

Viewing the Frontend Service via NodePort

If you deployed this application to Minikube or a local cluster, you need to �nd the IP address to view

your Guestbook.

apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:
 app: guestbook
 tier: frontend
spec:
 # comment or delete the following line if you want to use a LoadBalancer
 type: NodePort
 # if your cluster supports it, uncomment the following to automatically create
 # an external load-balanced IP for the frontend service.
 # type: LoadBalancer
 ports:
 - port: 80
 selector:
 app: guestbook
 tier: frontend

kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend 10.0.0.112 <nodes> 80:31323/TCP 6s

kubernetes 10.0.0.1 <none> 443/TCP 4m

redis-master 10.0.0.151 <none> 6379/TCP 2m

redis-slave 10.0.0.223 <none> 6379/TCP 1m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateless-application/guestbook/frontend-service.yaml

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 12/15

1. Run the following command to get the IP address for the frontend Service.

The response should be similar to this:

2. Copy the IP address, and load the page in your browser to view your guestbook.

Viewing the Frontend Service via LoadBalancer

If you deployed the frontend-service.yaml manifest with type: LoadBalancer you need to �nd

the IP address to view your Guestbook.

1. Run the following command to get the IP address for the frontend Service.

The response should be similar to this:

2. Copy the External IP address, and load the page in your browser to view your guestbook.

Scale the Web Frontend

Scaling up or down is easy because your servers are de�ned as a Service that uses a Deployment

controller.

1. Run the following command to scale up the number of frontend Pods:

minikube service frontend --url

http://192.168.99.100:31323

kubectl get service frontend

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend 10.51.242.136 109.197.92.229 80:32372/TCP 1m

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 13/15

2. Query the list of Pods to verify the number of frontend Pods running:

The response should look similar to this:

3. Run the following command to scale down the number of frontend Pods:

4. Query the list of Pods to verify the number of frontend Pods running:

The response should look similar to this:

kubectl scale deployment frontend --replicas=5

kubectl get pods

NAME READY STATUS RESTARTS AGE

frontend-3823415956-70qj5 1/1 Running 0 5s

frontend-3823415956-dsvc5 1/1 Running 0 54m

frontend-3823415956-k22zn 1/1 Running 0 54m

frontend-3823415956-w9gbt 1/1 Running 0 54m

frontend-3823415956-x2pld 1/1 Running 0 5s

redis-master-1068406935-3lswp 1/1 Running 0 56m

redis-slave-2005841000-fpvqc 1/1 Running 0 55m

redis-slave-2005841000-phfv9 1/1 Running 0 55m

kubectl scale deployment frontend --replicas=2

kubectl get pods

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 14/15

Cleaning up

Deleting the Deployments and Services also deletes any running Pods. Use labels to delete multiple

resources with one command.

1. Run the following commands to delete all Pods, Deployments, and Services.

The responses should be:

2. Query the list of Pods to verify that no Pods are running:

NAME READY STATUS RESTARTS AGE

frontend-3823415956-k22zn 1/1 Running 0 1h

frontend-3823415956-w9gbt 1/1 Running 0 1h

redis-master-1068406935-3lswp 1/1 Running 0 1h

redis-slave-2005841000-fpvqc 1/1 Running 0 1h

redis-slave-2005841000-phfv9 1/1 Running 0 1h

kubectl delete deployment -l app=redis

kubectl delete service -l app=redis

kubectl delete deployment -l app=guestbook

kubectl delete service -l app=guestbook

deployment "redis-master" deleted

deployment "redis-slave" deleted

service "redis-master" deleted

service "redis-slave" deleted

deployment "frontend" deleted

service "frontend" deleted

kubectl get pods

10/23/2017 Example: Deploying PHP Guestbook application with Redis - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/guestbook/ 15/15

The response should be this:

What’s next

Complete the Kubernetes Basics Interactive Tutorials

Use Kubernetes to create a blog using Persistant Volumes for MySQL and Wordpress

Read more about connecting applications

Read more about Managing Resources

No resources found.

http://localhost:4000/docs/tutorials/kubernetes-basics/
http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/#visit-your-new-wordpress-blog
http://localhost:4000/docs/concepts/services-networking/connect-applications-service/
http://localhost:4000/docs/concepts/cluster-administration/manage-deployment/#using-labels-effectively

10/23/2017 Use a Service to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/service-access-application-cluster/ 1/5

Use a Service to Access an Application in a
Cluster

This page shows how to create a Kubernetes Service object that external clients can use to access

an application running in a cluster. The Service provides load balancing for an application that has

two running instances.

Objectives

Run two instances of a Hello World application.

Create a Service object that exposes a node port.

Use the Service object to access the running application.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Objectives
Before you begin
Creating a service for an application running in two pods
Using a service con�guration �le
Cleaning up
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Use a Service to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/service-access-application-cluster/ 2/5

Creating a service for an application running in two
pods

1. Run a Hello World application in your cluster:

The preceding command creates a Deployment object and an associated ReplicaSet object. The

ReplicaSet has two Pods, each of which runs the Hello World application.

2. Display information about the Deployment:

3. Display information about your ReplicaSet objects:

4. Create a Service object that exposes the deployment:

5. Display information about the Service:

The output is similar to this:

kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --ima

kubectl get deployments hello-world

kubectl describe deployments hello-world

kubectl get replicasets

kubectl describe replicasets

kubectl expose deployment hello-world --type=NodePort --name=example-service

kubectl describe services example-service

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/concepts/workloads/pods/pod/

10/23/2017 Use a Service to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/service-access-application-cluster/ 3/5

Make a note of the NodePort value for the service. For example, in the preceding output, the

NodePort value is 31496.

6. List the pods that are running the Hello World application:

The output is similar to this:

7. Get the public IP address of one of your nodes that is running a Hello World pod. How you get

this address depends on how you set up your cluster. For example, if you are using Minikube,

you can see the node address by running kubectl cluster-info . If you are using Google

Compute Engine instances, you can use the gcloud compute instances list command to

see the public addresses of your nodes. For more information about this command, see the GCE

documentation.

8. On your chosen node, create a �rewall rule that allows TCP tra�c on your node port. For

example, if your Service has a NodePort value of 31568, create a �rewall rule that allows TCP

 Name: example-service

 Namespace: default

 Labels: run=load-balancer-example

 Annotations: <none>

 Selector: run=load-balancer-example

 Type: NodePort

 IP: 10.32.0.16

 Port: <unset> 8080/TCP

 Endpoints: 10.200.1.4:8080,10.200.2.5:8080

 Session Affinity: None

 Events: <none>

kubectl get pods --selector="run=load-balancer-example" --output=wide

 NAME READY STATUS ... IP NODE

 hello-world-2895499144-bsbk5 1/1 Running ... 10.200.1.4 worker1

 hello-world-2895499144-m1pwt 1/1 Running ... 10.200.2.5 worker2

https://cloud.google.com/sdk/gcloud/reference/compute/instances/list

10/23/2017 Use a Service to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/service-access-application-cluster/ 4/5

tra�c on port 31568. Different cloud providers offer different ways of con�guring �rewall rules.

See the GCE documentation on �rewall rules, for example.

9. Use the node address and node port to access the Hello World application:

where <public-node-ip> is the public IP address of your node, and <node-port> is the

NodePort value for your service.

The response to a successful request is a hello message:

Using a service con�guration �le

As an alternative to using kubectl expose , you can use a service con�guration �le to create a

Service.

Cleaning up

To delete the Service, enter this command:

To delete the Deployment, the ReplicaSet, and the Pods that are running the Hello World application,

enter this command:

What’s next

curl http://<public-node-ip>:<node-port>

 Hello Kubernetes!

kubectl delete services example-service

kubectl delete deployment hello-world

https://cloud.google.com/compute/docs/vpc/firewalls
http://localhost:4000/docs/concepts/services-networking/service/

10/23/2017 Use a Service to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tasks/access-application-cluster/service-access-application-cluster/ 5/5

Learn more about connecting applications with services.

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/

10/23/2017 Exposing an External IP Address to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address/ 1/5

Exposing an External IP Address to Access
an Application in a Cluster

This page shows how to create a Kubernetes Service object that exposes an external IP address.

Objectives

Run �ve instances of a Hello World application.

Create a Service object that exposes an external IP address.

Use the Service object to access the running application.

Before you begin

Install kubectl.

Use a cloud provider like Google Container Engine or Amazon Web Services to create a

Kubernetes cluster. This tutorial creates an external load balancer, which requires a cloud

provider.

Con�gure kubectl to communicate with your Kubernetes API server. For instructions, see the

documentation for your cloud provider.

Creating a service for an application running in �ve
pods

Objectives
Before you begin
Creating a service for an application running in �ve pods
Cleaning up
What’s next

http://localhost:4000/docs/tasks/tools/install-kubectl/
http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/

10/23/2017 Exposing an External IP Address to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address/ 2/5

1. Run a Hello World application in your cluster:

The preceding command creates a Deployment object and an associated ReplicaSet object. The

ReplicaSet has �ve Pods, each of which runs the Hello World application.

2. Display information about the Deployment:

3. Display information about your ReplicaSet objects:

4. Create a Service object that exposes the deployment:

5. Display information about the Service:

The output is similar to this:

Note: If the external IP address is shown as <pending>, wait for a minute and enter the same

command again.

kubectl run hello-world --replicas=5 --labels="run=load-balancer-example" --ima

kubectl get deployments hello-world

kubectl describe deployments hello-world

kubectl get replicasets

kubectl describe replicasets

kubectl expose deployment hello-world --type=LoadBalancer --name=my-service

kubectl get services my-service

 NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

 my-service 10.3.245.137 104.198.205.71 8080/TCP 54s

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/concepts/workloads/controllers/replicaset/
http://localhost:4000/docs/concepts/workloads/pods/pod/

10/23/2017 Exposing an External IP Address to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address/ 3/5

6. Display detailed information about the Service:

The output is similar to this:

Make a note of the external IP address exposed by your service. In this example, the external IP

address is 104.198.205.71. Also note the value of Port. In this example, the port is 8080.

7. In the preceding output, you can see that the service has several endpoints:

10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more. These are internal addresses of the pods

that are running the Hello World application. To verify these are pod addresses, enter this

command:

The output is similar to this:

kubectl describe services my-service

 Name: my-service

 Namespace: default

 Labels: run=load-balancer-example

 Annotations: <none>

 Selector: run=load-balancer-example

 Type: LoadBalancer

 IP: 10.3.245.137

 LoadBalancer Ingress: 104.198.205.71

 Port: <unset> 8080/TCP

 NodePort: <unset> 32377/TCP

 Endpoints: 10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more...

 Session Affinity: None

 Events: <none>

kubectl get pods --output=wide

10/23/2017 Exposing an External IP Address to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address/ 4/5

8. Use the external IP address to access the Hello World application:

where <external-ip> is the external IP address of your Service, and <port> is the value of

Port in your Service description.

The response to a successful request is a hello message:

Cleaning up

To delete the Service, enter this command:

To delete the Deployment, the ReplicaSet, and the Pods that are running the Hello World application,

enter this command:

What’s next

 NAME ... IP NODE

 hello-world-2895499144-1jaz9 ... 10.0.1.6 gke-cluster-1-default-pool-e0b8d2

 hello-world-2895499144-2e5uh ... 10.0.1.8 gke-cluster-1-default-pool-e0b8d2

 hello-world-2895499144-9m4h1 ... 10.0.0.6 gke-cluster-1-default-pool-e0b8d2

 hello-world-2895499144-o4z13 ... 10.0.1.7 gke-cluster-1-default-pool-e0b8d2

 hello-world-2895499144-segjf ... 10.0.2.5 gke-cluster-1-default-pool-e0b8d2

curl http://<external-ip>:<port>

 Hello Kubernetes!

kubectl delete services my-service

kubectl delete deployment hello-world

10/23/2017 Exposing an External IP Address to Access an Application in a Cluster - Kubernetes

http://localhost:4000/docs/tutorials/stateless-application/expose-external-ip-address/ 5/5

Learn more about connecting applications with services.

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 1/27

StatefulSet Basics

This tutorial provides an introduction to managing applications with StatefulSets. It demonstrates

how to create, delete, scale, and update the Pods of StatefulSets.

Objectives

StatefulSets are intended to be used with stateful applications and distributed systems. However, the

administration of stateful applications and distributed systems on Kubernetes is a broad, complex

Objectives
Before you begin
Creating a StatefulSet

Ordered Pod Creation
Pods in a StatefulSet

Examining the Pod’s Ordinal Index
Using Stable Network Identities
Writing to Stable Storage

Scaling a StatefulSet
Scaling Up
Scaling Down
Ordered Pod Termination

Updating StatefulSets
Rolling Update

Staging an Update
Rolling Out a Canary
Phased Roll Outs

On Delete
Deleting StatefulSets

Non-Cascading Delete
Cascading Delete

Pod Management Policy
OrderedReady Pod Management
Parallel Pod Management

Cleaning up

http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 2/27

topic. In order to demonstrate the basic features of a StatefulSet, and not to con�ate the former topic

with the latter, you will deploy a simple web application using a StatefulSet.

After this tutorial, you will be familiar with the following.

How to create a StatefulSet

How a StatefulSet manages its Pods

How to delete a StatefulSet

How to scale a StatefulSet

How to update a StatefulSet’s Pods

Before you begin

Before you begin this tutorial, you should familiarize yourself with the following Kubernetes concepts.

Pods

Cluster DNS

Headless Services

PersistentVolumes

PersistentVolume Provisioning

StatefulSets

kubectl CLI

This tutorial assumes that your cluster is con�gured to dynamically provision PersistentVolumes. If

your cluster is not con�gured to do so, you will have to manually provision two 1 GiB volumes prior to

starting this tutorial.

Creating a StatefulSet

http://localhost:4000/docs/user-guide/pods/single-container/
http://localhost:4000/docs/concepts/services-networking/dns-pod-service/
http://localhost:4000/docs/concepts/services-networking/service/#headless-services
http://localhost:4000/docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/user-guide/kubectl

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 3/27

Begin by creating a StatefulSet using the example below. It is similar to the example presented in the

StatefulSets concept. It creates a Headless Service, nginx , to publish the IP addresses of Pods in

the StatefulSet, web .

web.yaml

http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/concepts/services-networking/service/#headless-services
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/web.yaml

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 4/27

web.yaml

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: nginx

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: web
spec:
 serviceName: "nginx"
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html
 volumeClaimTemplates:
 - metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/web.yaml

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 5/27

Download the example above, and save it to a �le named web.yaml

You will need to use two terminal windows. In the �rst terminal, use kubectl get to watch the

creation of the StatefulSet’s Pods.

In the second terminal, use kubectl create to create the Headless Service and StatefulSet de�ned

in web.yaml .

The command above creates two Pods, each running an NGINX webserver. Get the nginx Service

and the web StatefulSet to verify that they were created successfully.

Ordered Pod Creation

For a StatefulSet with N replicas, when Pods are being deployed, they are created sequentially, in

order from {0..N-1}. Examine the output of the kubectl get command in the �rst terminal.

Eventually, the output will look like the example below.

kubectl get pods -w -l app=nginx

kubectl create -f web.yaml
service "nginx" created
statefulset "web" created

kubectl get service nginx
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx None <none> 80/TCP 12s

kubectl get statefulset web
NAME DESIRED CURRENT AGE
web 2 1 20s

http://localhost:4000/docs/user-guide/kubectl/v1.8/#get
http://localhost:4000/docs/user-guide/kubectl/v1.8/#create
https://www.nginx.com/

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 6/27

Notice that the web-1 Pod is not launched until the web-0 Pod is Running and Ready.

Pods in a StatefulSet

Pods in a StatefulSet have a unique ordinal index and a stable network identity.

Examining the Pod’s Ordinal Index

Get the StatefulSet’s Pods.

As mentioned in the StatefulSets concept, the Pods in a StatefulSet have a sticky, unique identity.

This identity is based on a unique ordinal index that is assigned to each Pod by the StatefulSet

controller. The Pods’ names take the form <statefulset name>-<ordinal index> . Since the web

StatefulSet has two replicas, it creates two Pods, web-0 and web-1 .

Using Stable Network Identities

Each Pod has a stable hostname based on its ordinal index. Use kubectl exec to execute the

hostname command in each Pod.

kubectl get pods -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 19s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 18s

kubectl get pods -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 1m
web-1 1/1 Running 0 1m

http://localhost:4000/docs/user-guide/pod-states
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/user-guide/kubectl/v1.8/#exec

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 7/27

Use kubectl run to execute a container that provides the nslookup command from the

dnsutils package. Using nslookup on the Pods’ hostnames, you can examine their in-cluster DNS

addresses.

The CNAME of the headless service points to SRV records (one for each Pod that is Running and

Ready). The SRV records point to A record entries that contain the Pods’ IP addresses.

In one terminal, watch the StatefulSet’s Pods.

In a second terminal, use kubectl delete to delete all the Pods in the StatefulSet.

Wait for the StatefulSet to restart them, and for both Pods to transition to Running and Ready.

for i in 0 1; do kubectl exec web-$i -- sh -c 'hostname'; done
web-0
web-1

kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh
nslookup web-0.nginx
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-0.nginx
Address 1: 10.244.1.6

nslookup web-1.nginx
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-1.nginx
Address 1: 10.244.2.6

kubectl get pod -w -l app=nginx

kubectl delete pod -l app=nginx
pod "web-0" deleted
pod "web-1" deleted

http://localhost:4000/docs/user-guide/kubectl/v1.8/#run
http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 8/27

Use kubectl exec and kubectl run to view the Pods hostnames and in-cluster DNS entries.

The Pods’ ordinals, hostnames, SRV records, and A record names have not changed, but the IP

addresses associated with the Pods may have changed. In the cluster used for this tutorial, they

have. This is why it is important not to con�gure other applications to connect to Pods in a

StatefulSet by IP address.

If you need to �nd and connect to the active members of a StatefulSet, you should query the CNAME

of the Headless Service (nginx.default.svc.cluster.local). The SRV records associated with

the CNAME will contain only the Pods in the StatefulSet that are Running and Ready.

If your application already implements connection logic that tests for liveness and readiness, you

can use the SRV records of the Pods (web-0.nginx.default.svc.cluster.local ,

kubectl get pod -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 0/1 ContainerCreating 0 0s
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 2s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 34s

for i in 0 1; do kubectl exec web-$i -- sh -c 'hostname'; done
web-0
web-1

kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh
nslookup web-0.nginx
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-0.nginx
Address 1: 10.244.1.7

nslookup web-1.nginx
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-1.nginx
Address 1: 10.244.2.8

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 9/27

web-1.nginx.default.svc.cluster.local), as they are stable, and your application will be able to

discover the Pods’ addresses when they transition to Running and Ready.

Writing to Stable Storage

Get the PersistentVolumeClaims for web-0 and web-1 .

The StatefulSet controller created two PersistentVolumeClaims that are bound to two

PersistentVolumes. As the cluster used in this tutorial is con�gured to dynamically provision

PersistentVolumes, the PersistentVolumes were created and bound automatically.

The NGINX webservers, by default, will serve an index �le at /usr/share/nginx/html/index.html .

The volumeMounts �eld in the StatefulSets spec ensures that the /usr/share/nginx/html

directory is backed by a PersistentVolume.

Write the Pods’ hostnames to their index.html �les and verify that the NGINX webservers serve

the hostnames.

Note, if you instead see 403 Forbidden responses for the above curl command, you will need to �x

the permissions of the directory mounted by the volumeMounts (due to a bug when using hostPath

volumes) with:

before retrying the curl command above.

kubectl get pvc -l app=nginx
NAME STATUS VOLUME CAPACITY ACCESS
www-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO
www-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO

for i in 0 1; do kubectl exec web-$i -- sh -c 'echo $(hostname) > /usr/share/nginx

for i in 0 1; do kubectl exec -it web-$i -- curl localhost; done
web-0
web-1

for i in 0 1; do kubectl exec web-$i -- chmod 755 /usr/share/nginx/html; done

http://localhost:4000/docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes/kubernetes/issues/2630

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 10/27

In one terminal, watch the StatefulSet’s Pods.

In a second terminal, delete all of the StatefulSet’s Pods.

Examine the output of the kubectl get command in the �rst terminal, and wait for all of the Pods

to transition to Running and Ready.

Verify the web servers continue to serve their hostnames.

Even though web-0 and web-1 were rescheduled, they continue to serve their hostnames because

the PersistentVolumes associated with their PersistentVolumeClaims are remounted to their

volumeMounts . No matter what node web-0 and web-1 are scheduled on, their PersistentVolumes

will be mounted to the appropriate mount points.

Scaling a StatefulSet

kubectl get pod -w -l app=nginx

kubectl delete pod -l app=nginx
pod "web-0" deleted
pod "web-1" deleted

kubectl get pod -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 0/1 ContainerCreating 0 0s
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 2s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 34s

for i in 0 1; do kubectl exec -it web-$i -- curl localhost; done
web-0
web-1

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 11/27

Scaling a StatefulSet refers to increasing or decreasing the number of replicas. This is accomplished

by updating the replicas �eld. You can use either kubectl scale or kubectl patch to scale a

StatefulSet.

Scaling Up

In one terminal window, watch the Pods in the StatefulSet.

In another terminal window, use kubectl scale to scale the number of replicas to 5.

Examine the output of the kubectl get command in the �rst terminal, and wait for the three

additional Pods to transition to Running and Ready.

The StatefulSet controller scaled the number of replicas. As with StatefulSet creation, the StatefulSet

controller created each Pod sequentially with respect to its ordinal index, and it waited for each Pod’s

predecessor to be Running and Ready before launching the subsequent Pod.

kubectl get pods -w -l app=nginx

kubectl scale sts web --replicas=5
statefulset "web" scaled

kubectl get pods -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 2h
web-1 1/1 Running 0 2h
NAME READY STATUS RESTARTS AGE
web-2 0/1 Pending 0 0s
web-2 0/1 Pending 0 0s
web-2 0/1 ContainerCreating 0 0s
web-2 1/1 Running 0 19s
web-3 0/1 Pending 0 0s
web-3 0/1 Pending 0 0s
web-3 0/1 ContainerCreating 0 0s
web-3 1/1 Running 0 18s
web-4 0/1 Pending 0 0s
web-4 0/1 Pending 0 0s
web-4 0/1 ContainerCreating 0 0s
web-4 1/1 Running 0 19s

http://localhost:4000/docs/user-guide/kubectl/v1.8/#scale
http://localhost:4000/docs/user-guide/kubectl/v1.8/#patch

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 12/27

Scaling Down

In one terminal, watch the StatefulSet’s Pods.

In another terminal, use kubectl patch to scale the StatefulSet back down to three replicas.

Wait for web-4 and web-3 to transition to Terminating.

Ordered Pod Termination

The controller deleted one Pod at a time, in reverse order with respect to its ordinal index, and it

waited for each to be completely shutdown before deleting the next.

Get the StatefulSet’s PersistentVolumeClaims.

kubectl get pods -w -l app=nginx

kubectl patch sts web -p '{"spec":{"replicas":3}}'
statefulset "web" patched

kubectl get pods -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 3h
web-1 1/1 Running 0 3h
web-2 1/1 Running 0 55s
web-3 1/1 Running 0 36s
web-4 0/1 ContainerCreating 0 18s
NAME READY STATUS RESTARTS AGE
web-4 1/1 Running 0 19s
web-4 1/1 Terminating 0 24s
web-4 1/1 Terminating 0 24s
web-3 1/1 Terminating 0 42s
web-3 1/1 Terminating 0 42s

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 13/27

There are still �ve PersistentVolumeClaims and �ve PersistentVolumes. When exploring a Pod’s

stable storage, we saw that the PersistentVolumes mounted to the Pods of a StatefulSet are not

deleted whenthe StatefulSet’s Pods are deleted. This is still true when Pod deletion is caused by

scaling the StatefulSet down.

Updating StatefulSets

In Kubernetes 1.7 and later, the StatefulSet controller supports automated updates. The strategy

used is determined by the spec.updateStrategy �eld of the StatefulSet API Object. This feature

can be used to upgrade the container images, resource requests and/or limits, labels, and

annotations of the Pods in a StatefulSet. There are two valid update strategies, RollingUpdate and

OnDelete .

Rolling Update

The RollingUpdate update strategy will update all Pods in a StatefulSet, in reverse ordinal order,

while respecting the StatefulSet guarantees.

Patch the web StatefulSet to apply the RollingUpdate update strategy.

In one terminal window, patch the web StatefulSet to change the container image again.

kubectl get pvc -l app=nginx
NAME STATUS VOLUME CAPACITY ACCESS
www-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO
www-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO
www-web-2 Bound pvc-e1125b27-b508-11e6-932f-42010a800002 1Gi RWO
www-web-3 Bound pvc-e1176df6-b508-11e6-932f-42010a800002 1Gi RWO
www-web-4 Bound pvc-e11bb5f8-b508-11e6-932f-42010a800002 1Gi RWO

kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate
statefulset "web" patched

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 14/27

In another terminal, watch the Pods in the StatefulSet.

The Pods in the StatefulSet are updated in reverse ordinal order. The StatefulSet controller

terminates each Pod, and waits for it to transition to Running and Ready prior to updating the next

Pod. Note that, even though the StatefulSet controller will not proceed to update the next Pod until its

ordinal successor is Running and Ready, it will restore any Pod that fails during the update to its

current version. Pods that have already received the update will be restored to the updated version,

kubectl patch statefulset web --type='json' -p='[{"op": "replace", "path": "/spec/
statefulset "web" patched

kubectl get po -l app=nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 7m
web-1 1/1 Running 0 7m
web-2 1/1 Running 0 8m
web-2 1/1 Terminating 0 8m
web-2 1/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Pending 0 0s
web-2 0/1 Pending 0 0s
web-2 0/1 ContainerCreating 0 0s
web-2 1/1 Running 0 19s
web-1 1/1 Terminating 0 8m
web-1 0/1 Terminating 0 8m
web-1 0/1 Terminating 0 8m
web-1 0/1 Terminating 0 8m
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 6s
web-0 1/1 Terminating 0 7m
web-0 1/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 10s

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 15/27

and Pods that have not yet received the update will be restored to the previous version. In this way,

the controller attempts to continue to keep the application healthy and the update consistent in the

presence of intermittent failures.

Get the Pods to view their container images.

All the Pods in the StatefulSet are now running the previous container image.

Tip You can also use kubectl rollout status sts/<name> to view the status of a rolling update.

Staging an Update

You can stage an update to a StatefulSet by using the partition parameter of the RollingUpdate

update strategy. A staged update will keep all of the Pods in the StatefulSet at the current version

while allowing mutations to the StatefulSet’s .spec.template .

Patch the web StatefulSet to add a partition to the updateStrategy �eld.

Patch the StatefulSet again to change the container’s image.

Delete a Pod in the StatefulSet.

for p in 0 1 2; do kubectl get po web-$p --template '{{range $i, $c := .spec.conta
gcr.io/google_containers/nginx-slim:0.8
gcr.io/google_containers/nginx-slim:0.8
gcr.io/google_containers/nginx-slim:0.8

kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate
statefulset "web" patched

kubectl patch statefulset web --type='json' -p='[{"op": "replace", "path": "/spec/
statefulset "web" patched

kubectl delete po web-2
pod "web-2" deleted

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 16/27

Wait for the Pod to be Running and Ready.

Get the Pod’s container.

Notice that, even though the update strategy is RollingUpdate the StatefulSet controller restored

the Pod with its original container. This is because the ordinal of the Pod is less than the partition

speci�ed by the updateStrategy .

Rolling Out a Canary

You can roll out a canary to test a modi�cation by decrementing the partition you speci�ed

above.

Patch the StatefulSet to decrement the partition.

Wait for web-2 to be Running and Ready.

kubectl get po -l app=nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 4m
web-1 1/1 Running 0 4m
web-2 0/1 ContainerCreating 0 11s
web-2 1/1 Running 0 18s

kubectl get po web-2 --template '{{range $i, $c := .spec.containers}}{{$c.image}}{
gcr.io/google_containers/nginx-slim:0.8

kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate
statefulset "web" patched

kubectl get po -l app=nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 4m
web-1 1/1 Running 0 4m
web-2 0/1 ContainerCreating 0 11s
web-2 1/1 Running 0 18s

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 17/27

Get the Pod’s container.

When you changed the partition , the StatefulSet controller automatically updated the web-2 Pod

because the Pod’s ordinal was less than or equal to the partition .

Delete the web-1 Pod.

Wait for the web-1 Pod to be Running and Ready.

Get the web-1 Pods container.

web-1 was restored to its original con�guration because the Pod’s ordinal was less than the

partition. When a partition is speci�ed, all Pods with an ordinal that is greater than or equal to the

partition will be updated when the StatefulSet’s .spec.template is updated. If a Pod that has an

kubectl get po web-2 --template '{{range $i, $c := .spec.containers}}{{$c.image}}{
gcr.io/google_containers/nginx-slim:0.7

kubectl delete po web-1
pod "web-1" deleted

kubectl get po -l app=nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 6m
web-1 0/1 Terminating 0 6m
web-2 1/1 Running 0 2m
web-1 0/1 Terminating 0 6m
web-1 0/1 Terminating 0 6m
web-1 0/1 Terminating 0 6m
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 18s

kubectl get po web-1 --template '{{range $i, $c := .spec.containers}}{{$c.image}}{
gcr.io/google_containers/nginx-slim:0.8

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 18/27

ordinal less than the partition is deleted or otherwise terminated, it will be restored to its original

con�guration.

Phased Roll Outs

You can perform a phased roll out (e.g. a linear, geometric, or exponential roll out) using a partitioned

rolling update in a similar manner to how you rolled out a canary. To perform a phased roll out, set

the partition to the ordinal at which you want the controller to pause the update.

The partition is currently set to 2 . Set the partition to 0 .

Wait for all of the Pods in the StatefulSet to become Running and Ready.

Get the Pod’s containers.

kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate
statefulset "web" patched

kubectl get po -l app=nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 3m
web-1 0/1 ContainerCreating 0 11s
web-2 1/1 Running 0 2m
web-1 1/1 Running 0 18s
web-0 1/1 Terminating 0 3m
web-0 1/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 3s

for p in 0 1 2; do kubectl get po web-$p --template '{{range $i, $c := .spec.conta
gcr.io/google_containers/nginx-slim:0.7
gcr.io/google_containers/nginx-slim:0.7
gcr.io/google_containers/nginx-slim:0.7

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 19/27

By moving the partition to 0 , you allowed the StatefulSet controller to continue the update

process.

On Delete

The OnDelete update strategy implements the legacy (1.6 and prior) behavior, When you select this

update strategy, the StatefulSet controller will not automatically update Pods when a modi�cation is

made to the StatefulSet’s .spec.template �eld. This strategy can be selected by setting the

.spec.template.updateStrategy.type to OnDelete .

Deleting StatefulSets

StatefulSet supports both Non-Cascading and Cascading deletion. In a Non-Cascading Delete, the

StatefulSet’s Pods are not deleted when the StatefulSet is deleted. In a Cascading Delete, both the

StatefulSet and its Pods are deleted.

Non-Cascading Delete

In one terminal window, watch the Pods in the StatefulSet.

Use kubectl delete to delete the StatefulSet. Make sure to supply the --cascade=false

parameter to the command. This parameter tells Kubernetes to only delete the StatefulSet, and to

not delete any of its Pods.

Get the Pods to examine their status.

kubectl get pods -w -l app=nginx

kubectl delete statefulset web --cascade=false
statefulset "web" deleted

http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 20/27

Even though web has been deleted, all of the Pods are still Running and Ready. Delete web-0 .

Get the StatefulSet’s Pods.

As the web StatefulSet has been deleted, web-0 has not been relaunched.

In one terminal, watch the StatefulSet’s Pods.

In a second terminal, recreate the StatefulSet. Note that, unless you deleted the nginx Service (

which you should not have), you will see an error indicating that the Service already exists.

Ignore the error. It only indicates that an attempt was made to create the nginx Headless Service

even though that Service already exists.

Examine the output of the kubectl get command running in the �rst terminal.

kubectl get pods -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 6m
web-1 1/1 Running 0 7m
web-2 1/1 Running 0 5m

kubectl delete pod web-0
pod "web-0" deleted

kubectl get pods -l app=nginx
NAME READY STATUS RESTARTS AGE
web-1 1/1 Running 0 10m
web-2 1/1 Running 0 7m

kubectl get pods -w -l app=nginx

kubectl create -f web.yaml
statefulset "web" created
Error from server (AlreadyExists): error when creating "web.yaml": services "nginx

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 21/27

When the web StatefulSet was recreated, it �rst relaunched web-0 . Since web-1 was already

Running and Ready, when web-0 transitioned to Running and Ready, it simply adopted this Pod.

Since you recreated the StatefulSet with replicas equal to 2, once web-0 had been recreated, and

once web-1 had been determined to already be Running and Ready, web-2 was terminated.

Let’s take another look at the contents of the index.html �le served by the Pods’ webservers.

Even though you deleted both the StatefulSet and the web-0 Pod, it still serves the hostname

originally entered into its index.html �le. This is because the StatefulSet never deletes the

PersistentVolumes associated with a Pod. When you recreated the StatefulSet and it relaunched

web-0 , its original PersistentVolume was remounted.

Cascading Delete

In one terminal window, watch the Pods in the StatefulSet.

In another terminal, delete the StatefulSet again. This time, omit the --cascade=false parameter.

kubectl get pods -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-1 1/1 Running 0 16m
web-2 1/1 Running 0 2m
NAME READY STATUS RESTARTS AGE
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 18s
web-2 1/1 Terminating 0 3m
web-2 0/1 Terminating 0 3m
web-2 0/1 Terminating 0 3m
web-2 0/1 Terminating 0 3m

for i in 0 1; do kubectl exec -it web-$i -- curl localhost; done
web-0
web-1

kubectl get pods -w -l app=nginx

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 22/27

Examine the output of the kubectl get command running in the �rst terminal, and wait for all of

the Pods to transition to Terminating.

As you saw in the Scaling Down section, the Pods are terminated one at a time, with respect to the

reverse order of their ordinal indices. Before terminating a Pod, the StatefulSet controller waits for

the Pod’s successor to be completely terminated.

Note that, while a cascading delete will delete the StatefulSet and its Pods, it will not delete the

Headless Service associated with the StatefulSet. You must delete the nginx Service manually.

Recreate the StatefulSet and Headless Service one more time.

When all of the StatefulSet’s Pods transition to Running and Ready, retrieve the contents of their

index.html �les.

kubectl delete statefulset web
statefulset "web" deleted

kubectl get pods -w -l app=nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 11m
web-1 1/1 Running 0 27m
NAME READY STATUS RESTARTS AGE
web-0 1/1 Terminating 0 12m
web-1 1/1 Terminating 0 29m
web-0 0/1 Terminating 0 12m
web-0 0/1 Terminating 0 12m
web-0 0/1 Terminating 0 12m
web-1 0/1 Terminating 0 29m
web-1 0/1 Terminating 0 29m
web-1 0/1 Terminating 0 29m

kubectl delete service nginx
service "nginx" deleted

kubectl create -f web.yaml
service "nginx" created
statefulset "web" created

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 23/27

Even though you completely deleted the StatefulSet, and all of its Pods, the Pods are recreated with

their PersistentVolumes mounted, and web-0 and web-1 will still serve their hostnames.

Finally delete the web StatefulSet and the nginx service.

Pod Management Policy

For some distributed systems, the StatefulSet ordering guarantees are unnecessary and/or

undesirable. These systems require only uniqueness and identity. To address this, in Kubernetes 1.7,

we introduced .spec.podManagementPolicy to the StatefulSet API Object.

OrderedReady Pod Management

OrderedReady pod management is the default for StatefulSets. It tells the StatefulSet controller to

respect the ordering guarantees demonstrated above.

Parallel Pod Management

Parallel pod management tells the StatefulSet controller to launch or terminate all Pods in

parallel, and not to wait for Pods to become Running and Ready or completely terminated prior to

launching or terminating another Pod.

webp.yaml

for i in 0 1; do kubectl exec -it web-$i -- curl localhost; done
web-0
web-1

kubectl delete service nginx
service "nginx" deleted

kubectl delete statefulset web
statefulset "web" deleted

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/webp.yaml

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 24/27

webp.yaml

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: nginx

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: web
spec:
 serviceName: "nginx"
 podManagementPolicy: "Parallel"
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: gcr.io/google_containers/nginx-slim:0.8
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html
 volumeClaimTemplates:
 - metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/webp.yaml

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 25/27

Download the example above, and save it to a �le named webp.yaml

This manifest is identical to the one you downloaded above except that the

.spec.podManagementPolicy of the web StatefulSet is set to Parallel .

In one terminal, watch the Pods in the StatefulSet.

In another terminal, create the StatefulSet and Service in the manifest.

Examine the output of the kubectl get command that you executed in the �rst terminal.

The StatefulSet controller launched both web-0 and web-1 at the same time.

Keep the second terminal open, and, in another terminal window scale the StatefulSet.

Examine the output of the terminal where the kubectl get command is running.

kubectl get po -l app=nginx -w

kubectl create -f webp.yaml
service "nginx" created
statefulset "web" created

kubectl get po -l app=nginx -w
NAME READY STATUS RESTARTS AGE
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-1 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 10s
web-1 1/1 Running 0 10s

kubectl scale statefulset/web --replicas=4
statefulset "web" scaled

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 26/27

The StatefulSet controller launched two new Pods, and it did not wait for the �rst to become Running

and Ready prior to launching the second.

Keep this terminal open, and in another terminal delete the web StatefulSet.

Again, examine the output of the kubectl get command running in the other terminal.

The StatefulSet controller deletes all Pods concurrently, it does not wait for a Pod’s ordinal successor

to terminate prior to deleting that Pod.

web-3 0/1 Pending 0 0s
web-3 0/1 Pending 0 0s
web-3 0/1 Pending 0 7s
web-3 0/1 ContainerCreating 0 7s
web-2 1/1 Running 0 10s
web-3 1/1 Running 0 26s

kubectl delete sts web

web-3 1/1 Terminating 0 9m
web-2 1/1 Terminating 0 9m
web-3 1/1 Terminating 0 9m
web-2 1/1 Terminating 0 9m
web-1 1/1 Terminating 0 44m
web-0 1/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-3 0/1 Terminating 0 9m
web-2 0/1 Terminating 0 9m
web-1 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-2 0/1 Terminating 0 9m
web-2 0/1 Terminating 0 9m
web-2 0/1 Terminating 0 9m
web-1 0/1 Terminating 0 44m
web-1 0/1 Terminating 0 44m
web-1 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-3 0/1 Terminating 0 9m
web-3 0/1 Terminating 0 9m
web-3 0/1 Terminating 0 9m

10/23/2017 StatefulSet Basics - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/basic-stateful-set/ 27/27

Close the terminal where the kubectl get command is running and delete the nginx Service.

Cleaning up

You will need to delete the persistent storage media for the PersistentVolumes used in this tutorial.

Follow the necessary steps, based on your environment, storage con�guration, and provisioning

method, to ensure that all storage is reclaimed.

kubectl delete svc nginx

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 1/7

Run a Single-Instance Stateful Application

This page shows you how to run a single-instance stateful application in Kubernetes using a

PersistentVolume and a Deployment. The application is MySQL.

Objectives

Create a PersistentVolume referencing a disk in your environment.

Create a MySQL Deployment.

Expose MySQL to other pods in the cluster at a known DNS name.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

You need to either have a dynamic PersistentVolume provisioner with a default StorageClass, or

statically provision PersistentVolumes yourself to satisfy the PersistentVolumeClaims used here.

Objectives
Before you begin
Deploy MySQL
Accessing the MySQL instance
Updating
Deleting a deployment
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/user-guide/persistent-volumes/#storageclasses
http://localhost:4000/docs/user-guide/persistent-volumes/#provisioning
http://localhost:4000/docs/user-guide/persistent-volumes/#persistentvolumeclaims

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 2/7

Deploy MySQL

You can run a stateful application by creating a Kubernetes Deployment and connecting it to an

existing PersistentVolume using a PersistentVolumeClaim. For example, this YAML �le describes a

Deployment that runs MySQL and references the PersistentVolumeClaim. The �le de�nes a volume

mount for /var/lib/mysql, and then creates a PersistentVolumeClaim that looks for a 20G volume.

This claim is satis�ed by any existing volume that meets the requirements, or by a dynamic

provisioner.

Note: The password is de�ned in the con�g yaml, and this is insecure. See Kubernetes Secrets for a

secure solution.

mysql-deployment.yaml

apiVersion: v1
kind: Service
metadata:
 name: mysql
spec:
 ports:
 - port: 3306
 selector:
 app: mysql
 clusterIP: None

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: mysql
spec:
 selector:
 matchLabels:
 app: mysql

t t

http://localhost:4000/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-deployment.yaml

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 3/7

mysql-deployment.yaml

1. Deploy the contents of the YAML �le:

2. Display information about the Deployment:

 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 # Use secret in real usage
 - name: MYSQL_ROOT_PASSWORD
 value: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-deployment.ya

kubectl describe deployment mysql

 Name: mysql

 Namespace: default

 CreationTimestamp: Tue, 01 Nov 2016 11:18:45 -0700

 Labels: app=mysql

 Annotations: deployment.kubernetes.io/revision=1

 Selector: app=mysql

 Replicas: 1 desired | 1 updated | 1 total | 0 available | 1 unavai

 StrategyType: Recreate

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-deployment.yaml

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 4/7

3. List the pods created by the Deployment:

 MinReadySeconds: 0

 Pod Template:

 Labels: app=mysql

 Containers:

 mysql:

 Image: mysql:5.6

 Port: 3306/TCP

 Environment:

 MYSQL_ROOT_PASSWORD: password

 Mounts:

 /var/lib/mysql from mysql-persistent-storage (rw)

 Volumes:

 mysql-persistent-storage:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim

 ClaimName: mysql-pv-claim

 ReadOnly: false

 Conditions:

 Type Status Reason

 ---- ------ ------

 Available False MinimumReplicasUnavailable

 Progressing True ReplicaSetUpdated

 OldReplicaSets: <none>

 NewReplicaSet: mysql-63082529 (1/1 replicas created)

 Events:

 FirstSeen LastSeen Count From SubobjectPath Type

 --------- -------- ----- ---- ------------- ----

 33s 33s 1 {deployment-controller } Norma

kubectl get pods -l app=mysql

 NAME READY STATUS RESTARTS AGE

 mysql-63082529-2z3ki 1/1 Running 0 3m

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 5/7

4. Inspect the PersistentVolumeClaim:

Accessing the MySQL instance

The preceding YAML �le creates a service that allows other Pods in the cluster to access the

database. The Service option clusterIP: None lets the Service DNS name resolve directly to the

Pod’s IP address. This is optimal when you have only one Pod behind a Service and you don’t intend

to increase the number of Pods.

Run a MySQL client to connect to the server:

This command creates a new Pod in the cluster running a MySQL client and connects it to the server

through the Service. If it connects, you know your stateful MySQL database is up and running.

kubectl describe pvc mysql-pv-claim

 Name: mysql-pv-claim

 Namespace: default

 StorageClass:

 Status: Bound

 Volume: mysql-pv

 Labels: <none>

 Annotations: pv.kubernetes.io/bind-completed=yes

 pv.kubernetes.io/bound-by-controller=yes

 Capacity: 20Gi

 Access Modes: RWO

 Events: <none>

kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h my

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 6/7

Updating

The image or any other part of the Deployment can be updated as usual with the kubectl apply

command. Here are some precautions that are speci�c to stateful apps:

Don’t scale the app. This setup is for single-instance apps only. The underlying PersistentVolume

can only be mounted to one Pod. For clustered stateful apps, see the StatefulSet

documentation.

Use strategy: type: Recreate in the Deployment con�guration YAML �le. This instructs

Kubernetes to not use rolling updates. Rolling updates will not work, as you cannot have more

than one Pod running at a time. The Recreate strategy will stop the �rst pod before creating a

new one with the updated con�guration.

Deleting a deployment

Delete the deployed objects by name:

If you manually provisioned a PersistentVolume, you also need to manually delete it, as well as

release the underlying resource. If you used a dynamic provisioner, it automatically deletes the

PersistentVolume when it sees that you deleted the PersistentVolumeClaim. Some dynamic

provisioners (such as those for EBS and PD) also release the underlying resource upon deleting the

PersistentVolume.

What’s next

Waiting for pod default/mysql-client-274442439-zyp6i to be running, status is Pend
If you don't see a command prompt, try pressing enter.

mysql>

kubectl delete deployment,svc mysql
kubectl delete pvc mysql-pv-claim

http://localhost:4000/docs/concepts/workloads/controllers/statefulset/

10/23/2017 Run a Single-Instance Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-single-instance-stateful-application/ 7/7

Learn more about Deployment objects.

Learn more about Deploying applications

kubectl run documentation

Volumes and Persistent Volumes

http://localhost:4000/docs/concepts/workloads/controllers/deployment/
http://localhost:4000/docs/user-guide/deploying-applications/
http://localhost:4000/docs/user-guide/kubectl/v1.6/#run
http://localhost:4000/docs/concepts/storage/volumes/
http://localhost:4000/docs/concepts/storage/persistent-volumes/

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 1/17

Run a Replicated Stateful Application

This page shows how to run a replicated stateful application using a StatefulSet controller. The

example is a MySQL single-master topology with multiple slaves running asynchronous replication.

Note that this is not a production con�guration. In particular, MySQL settings remain on insecure

defaults to keep the focus on general patterns for running stateful applications in Kubernetes.

Objectives

Deploy a replicated MySQL topology with a StatefulSet controller.

Send MySQL client tra�c.

Observe resistance to downtime.

Scale the StatefulSet up and down.

Objectives
Before you begin
Deploy MySQL

Con�gMap
Services
StatefulSet

Understanding stateful Pod initialization
Generating con�guration
Cloning existing data
Starting replication

Sending client tra�c
Simulating Pod and Node downtime

Break the Readiness Probe
Delete Pods
Drain a Node

Scaling the number of slaves
Cleaning up
What’s next

http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 2/17

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

You need to either have a dynamic PersistentVolume provisioner with a default StorageClass, or

statically provision PersistentVolumes yourself to satisfy the PersistentVolumeClaims used here.

This tutorial assumes you are familiar with PersistentVolumes and StatefulSets, as well as other

core concepts like Pods, Services, and Con�gMaps.

Some familiarity with MySQL helps, but this tutorial aims to present general patterns that should

be useful for other systems.

Deploy MySQL

The example MySQL deployment consists of a Con�gMap, two Services, and a StatefulSet.

Con�gMap

Create the Con�gMap from the following YAML con�guration �le:

mysql-configmap.yaml

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-configmap.yaml

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/user-guide/persistent-volumes/#storageclasses
http://localhost:4000/docs/user-guide/persistent-volumes/#provisioning
http://localhost:4000/docs/user-guide/persistent-volumes/#persistentvolumeclaims
http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/tasks/configure-pod-container/configmap/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-configmap.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 3/17

mysql-configmap.yaml

This Con�gMap provides my.cnf overrides that let you independently control con�guration on the

MySQL master and slaves. In this case, you want the master to be able to serve replication logs to

slaves and you want slaves to reject any writes that don’t come via replication.

There’s nothing special about the Con�gMap itself that causes different portions to apply to different

Pods. Each Pod decides which portion to look at as it’s initializing, based on information provided by

the StatefulSet controller.

Services

Create the Services from the following YAML con�guration �le:

mysql-services.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: mysql
 labels:
 app: mysql
data:
 master.cnf: |
 # Apply this config only on the master.
 [mysqld]
 log-bin
 slave.cnf: |
 # Apply this config only on slaves.
 [mysqld]
 super-read-only

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-services.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-configmap.yaml
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-services.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 4/17

mysql-services.yaml

The Headless Service provides a home for the DNS entries that the StatefulSet controller creates for

each Pod that’s part of the set. Because the Headless Service is named mysql , the Pods are

accessible by resolving <pod-name>.mysql from within any other Pod in the same Kubernetes

cluster and namespace.

The Client Service, called mysql-read , is a normal Service with its own cluster IP that distributes

connections across all MySQL Pods that report being Ready. The set of potential endpoints includes

the MySQL master and all slaves.

Note that only read queries can use the load-balanced Client Service. Because there is only one

MySQL master, clients should connect directly to the MySQL master Pod (through its DNS entry

within the Headless Service) to execute writes.

Headless service for stable DNS entries of StatefulSet members.
apiVersion: v1
kind: Service
metadata:
 name: mysql
 labels:
 app: mysql
spec:
 ports:
 - name: mysql
 port: 3306
 clusterIP: None
 selector:
 app: mysql

Client service for connecting to any MySQL instance for reads.
For writes, you must instead connect to the master: mysql-0.mysql.
apiVersion: v1
kind: Service
metadata:
 name: mysql-read
 labels:
 app: mysql
spec:
 ports:
 - name: mysql
 port: 3306
 selector:
 app: mysql

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-services.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 5/17

StatefulSet

Finally, create the StatefulSet from the following YAML con�guration �le:

mysql-statefulset.yaml

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-statefulset.yaml

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: mysql
spec:
 selector:
 matchLabels:
 app: mysql
 serviceName: mysql
 replicas: 3
 template:
 metadata:
 labels:
 app: mysql
 spec:
 initContainers:
 - name: init-mysql
 image: mysql:5.7
 command:
 - bash
 - "-c"
 - |
 set -ex
 # Generate mysql server-id from pod ordinal index.
 [[`hostname` =~ -([0-9]+)$]] || exit 1
 ordinal=${BASH_REMATCH[1]}
 echo [mysqld] > /mnt/conf.d/server-id.cnf
 # Add an offset to avoid reserved server-id=0 value.
 echo server-id=$((100 + $ordinal)) >> /mnt/conf.d/server-id.cnf
 # Copy appropriate conf.d files from config-map to emptyDir.
 if [[$ordinal -eq 0]]; then
 cp /mnt/config-map/master.cnf /mnt/conf.d/
 else
 cp /mnt/config-map/slave.cnf /mnt/conf.d/
 fi
 volumeMounts:
 - name: conf

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-statefulset.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 6/17

mysql-statefulset.yaml
 mountPath: /mnt/conf.d
 - name: config-map
 mountPath: /mnt/config-map
 - name: clone-mysql
 image: gcr.io/google-samples/xtrabackup:1.0
 command:
 - bash
 - "-c"
 - |
 set -ex
 # Skip the clone if data already exists.
 [[-d /var/lib/mysql/mysql]] && exit 0
 # Skip the clone on master (ordinal index 0).
 [[`hostname` =~ -([0-9]+)$]] || exit 1
 ordinal=${BASH_REMATCH[1]}
 [[$ordinal -eq 0]] && exit 0
 # Clone data from previous peer.
 ncat --recv-only mysql-$(($ordinal-1)).mysql 3307 | xbstream -x -C /var/
 # Prepare the backup.
 xtrabackup --prepare --target-dir=/var/lib/mysql
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 - name: conf
 mountPath: /etc/mysql/conf.d
 containers:
 - name: mysql
 image: mysql:5.7
 env:
 - name: MYSQL_ALLOW_EMPTY_PASSWORD
 value: "1"
 ports:
 - name: mysql
 containerPort: 3306
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 - name: conf
 mountPath: /etc/mysql/conf.d
 resources:
 requests:
 cpu: 500m
 memory: 1Gi
 livenessProbe:
 exec:
 command: ["mysqladmin", "ping"]
 initialDelaySeconds: 30
 periodSeconds: 10
 timeoutSeconds: 5
 readinessProbe:

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-statefulset.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 7/17

mysql-statefulset.yaml
 exec:
 # Check we can execute queries over TCP (skip-networking is off).
 command: ["mysql", "-h", "127.0.0.1", "-e", "SELECT 1"]
 initialDelaySeconds: 5
 periodSeconds: 2
 timeoutSeconds: 1
 - name: xtrabackup
 image: gcr.io/google-samples/xtrabackup:1.0
 ports:
 - name: xtrabackup
 containerPort: 3307
 command:
 - bash
 - "-c"
 - |
 set -ex
 cd /var/lib/mysql

 # Determine binlog position of cloned data, if any.
 if [[-f xtrabackup_slave_info]]; then
 # XtraBackup already generated a partial "CHANGE MASTER TO" query
 # because we're cloning from an existing slave.
 mv xtrabackup_slave_info change_master_to.sql.in
 # Ignore xtrabackup_binlog_info in this case (it's useless).
 rm -f xtrabackup_binlog_info
 elif [[-f xtrabackup_binlog_info]]; then
 # We're cloning directly from master. Parse binlog position.
 [[`cat xtrabackup_binlog_info` =~ ^(.*?)[[:space:]]+(.*?)$]] || exit
 rm xtrabackup_binlog_info
 echo "CHANGE MASTER TO MASTER_LOG_FILE='${BASH_REMATCH[1]}',\
 MASTER_LOG_POS=${BASH_REMATCH[2]}" > change_master_to.sql.in
 fi

 # Check if we need to complete a clone by starting replication.
 if [[-f change_master_to.sql.in]]; then
 echo "Waiting for mysqld to be ready (accepting connections)"
 until mysql -h 127.0.0.1 -e "SELECT 1"; do sleep 1; done

 echo "Initializing replication from clone position"
 # In case of container restart, attempt this at-most-once.
 mv change_master_to.sql.in change_master_to.sql.orig
 mysql -h 127.0.0.1 <<EOF
 $(<change_master_to.sql.orig),
 MASTER_HOST='mysql-0.mysql',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_CONNECT_RETRY=10;
 START SLAVE;
 EOF
 fi

Start a server to send backups when requested by peers

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-statefulset.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 8/17

mysql-statefulset.yaml

You can watch the startup progress by running:

After a while, you should see all 3 Pods become Running:

Press Ctrl+C to cancel the watch. If you don’t see any progress, make sure you have a dynamic

PersistentVolume provisioner enabled as mentioned in the prerequisites.

This manifest uses a variety of techniques for managing stateful Pods as part of a StatefulSet. The

next section highlights some of these techniques to explain what happens as the StatefulSet creates

 # Start a server to send backups when requested by peers.
 exec ncat --listen --keep-open --send-only --max-conns=1 3307 -c \
 "xtrabackup --backup --slave-info --stream=xbstream --host=127.0.0.1 -
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 - name: conf
 mountPath: /etc/mysql/conf.d
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 volumes:
 - name: conf
 emptyDir: {}
 - name: config-map
 configMap:
 name: mysql
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

kubectl get pods -l app=mysql --watch

NAME READY STATUS RESTARTS AGE
mysql-0 2/2 Running 0 2m
mysql-1 2/2 Running 0 1m
mysql-2 2/2 Running 0 1m

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tasks/run-application/mysql-statefulset.yaml

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 9/17

Pods.

Understanding stateful Pod initialization

The StatefulSet controller starts Pods one at a time, in order by their ordinal index. It waits until each

Pod reports being Ready before starting the next one.

In addition, the controller assigns each Pod a unique, stable name of the form

<statefulset-name>-<ordinal-index> . In this case, that results in Pods named mysql-0 ,

mysql-1 , and mysql-2 .

The Pod template in the above StatefulSet manifest takes advantage of these properties to perform

orderly startup of MySQL replication.

Generating con�guration

Before starting any of the containers in the Pod spec, the Pod �rst runs any Init Containers in the

order de�ned.

The �rst Init Container, named init-mysql , generates special MySQL con�g �les based on the

ordinal index.

The script determines its own ordinal index by extracting it from the end of the Pod name, which is

returned by the hostname command. Then it saves the ordinal (with a numeric offset to avoid

reserved values) into a �le called server-id.cnf in the MySQL conf.d directory. This translates

the unique, stable identity provided by the StatefulSet controller into the domain of MySQL server IDs,

which require the same properties.

The script in the init-mysql container also applies either master.cnf or slave.cnf from the

Con�gMap by copying the contents into conf.d . Because the example topology consists of a single

MySQL master and any number of slaves, the script simply assigns ordinal 0 to be the master, and

everyone else to be slaves. Combined with the StatefulSet controller’s deployment order guarantee,

this ensures the MySQL master is Ready before creating slaves, so they can begin replicating.

Cloning existing data

http://localhost:4000/docs/concepts/workloads/pods/init-containers/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/#deployment-and-scaling-guarantees/

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 10/17

In general, when a new Pod joins the set as a slave, it must assume the MySQL master might already

have data on it. It also must assume that the replication logs might not go all the way back to the

beginning of time. These conservative assumptions are the key to allow a running StatefulSet to

scale up and down over time, rather than being �xed at its initial size.

The second Init Container, named clone-mysql , performs a clone operation on a slave Pod the �rst

time it starts up on an empty PersistentVolume. That means it copies all existing data from another

running Pod, so its local state is consistent enough to begin replicating from the master.

MySQL itself does not provide a mechanism to do this, so the example uses a popular open-source

tool called Percona XtraBackup. During the clone, the source MySQL server might suffer reduced

performance. To minimize impact on the MySQL master, the script instructs each Pod to clone from

the Pod whose ordinal index is one lower. This works because the StatefulSet controller always

ensures Pod N is Ready before starting Pod N+1 .

Starting replication

After the Init Containers complete successfully, the regular containers run. The MySQL Pods consist

of a mysql container that runs the actual mysqld server, and an xtrabackup container that acts

as a sidecar.

The xtrabackup sidecar looks at the cloned data �les and determines if it’s necessary to initialize

MySQL replication on the slave. If so, it waits for mysqld to be ready and then executes the

CHANGE MASTER TO and START SLAVE commands with replication parameters extracted from the

XtraBackup clone �les.

Once a slave begins replication, it remembers its MySQL master and reconnects automatically if the

server restarts or the connection dies. Also, because slaves look for the master at its stable DNS

name (mysql-0.mysql), they automatically �nd the master even if it gets a new Pod IP due to being

rescheduled.

Lastly, after starting replication, the xtrabackup container listens for connections from other Pods

requesting a data clone. This server remains up inde�nitely in case the StatefulSet scales up, or in

case the next Pod loses its PersistentVolumeClaim and needs to redo the clone.

Sending client tra�c

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 11/17

You can send test queries to the MySQL master (hostname mysql-0.mysql) by running a

temporary container with the mysql:5.7 image and running the mysql client binary.

Use the hostname mysql-read to send test queries to any server that reports being Ready:

You should get output like this:

To demonstrate that the mysql-read Service distributes connections across servers, you can run

SELECT @@server_id in a loop:

You should see the reported @@server_id change randomly, because a different endpoint might be

selected upon each connection attempt:

kubectl run mysql-client --image=mysql:5.7 -i --rm --restart=Never --\
 mysql -h mysql-0.mysql <<EOF
CREATE DATABASE test;
CREATE TABLE test.messages (message VARCHAR(250));
INSERT INTO test.messages VALUES ('hello');
EOF

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never --\
 mysql -h mysql-read -e "SELECT * FROM test.messages"

Waiting for pod default/mysql-client to be running, status is Pending, pod ready:
+---------+
| message |
+---------+
| hello |
+---------+
pod "mysql-client" deleted

kubectl run mysql-client-loop --image=mysql:5.7 -i -t --rm --restart=Never --\
 bash -ic "while sleep 1; do mysql -h mysql-read -e 'SELECT @@server_id,NOW()'; d

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 12/17

You can press Ctrl+C when you want to stop the loop, but it’s useful to keep it running in another

window so you can see the effects of the following steps.

Simulating Pod and Node downtime

To demonstrate the increased availability of reading from the pool of slaves instead of a single

server, keep the SELECT @@server_id loop from above running while you force a Pod out of the

Ready state.

Break the Readiness Probe

The readiness probe for the mysql container runs the command

mysql -h 127.0.0.1 -e 'SELECT 1' to make sure the server is up and able to execute queries.

One way to force this readiness probe to fail is to break that command:

This reaches into the actual container’s �lesystem for Pod mysql-2 and renames the mysql

command so the readiness probe can’t �nd it. After a few seconds, the Pod should report one of its

containers as not Ready, which you can check by running:

+-------------+---------------------+
| @@server_id | NOW() |
+-------------+---------------------+
| 100 | 2006-01-02 15:04:05 |
+-------------+---------------------+
+-------------+---------------------+
| @@server_id | NOW() |
+-------------+---------------------+
| 102 | 2006-01-02 15:04:06 |
+-------------+---------------------+
+-------------+---------------------+
| @@server_id | NOW() |
+-------------+---------------------+
| 101 | 2006-01-02 15:04:07 |
+-------------+---------------------+

kubectl exec mysql-2 -c mysql -- mv /usr/bin/mysql /usr/bin/mysql.off

http://localhost:4000/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 13/17

Look for 1/2 in the READY column:

At this point, you should see your SELECT @@server_id loop continue to run, although it never

reports 102 anymore. Recall that the init-mysql script de�ned server-id as 100 + $ordinal ,

so server ID 102 corresponds to Pod mysql-2 .

Now repair the Pod and it should reappear in the loop output after a few seconds:

Delete Pods

The StatefulSet also recreates Pods if they’re deleted, similar to what a ReplicaSet does for stateless

Pods.

The StatefulSet controller notices that no mysql-2 Pod exists anymore, and creates a new one with

the same name and linked to the same PersistentVolumeClaim. You should see server ID 102

disappear from the loop output for a while and then return on its own.

Drain a Node

If your Kubernetes cluster has multiple Nodes, you can simulate Node downtime (such as when

Nodes are upgraded) by issuing a drain.

First determine which Node one of the MySQL Pods is on:

kubectl get pod mysql-2

NAME READY STATUS RESTARTS AGE
mysql-2 1/2 Running 0 3m

kubectl exec mysql-2 -c mysql -- mv /usr/bin/mysql.off /usr/bin/mysql

kubectl delete pod mysql-2

kubectl get pod mysql-2 -o wide

http://localhost:4000/docs/user-guide/kubectl/v1.6/#drain

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 14/17

The Node name should show up in the last column:

Then drain the Node by running the following command, which cordons it so no new Pods may

schedule there, and then evicts any existing Pods. Replace <node-name> with the name of the Node

you found in the last step.

This might impact other applications on the Node, so it’s best to only do this in a test cluster.

Now you can watch as the Pod reschedules on a different Node:

It should look something like this:

And again, you should see server ID 102 disappear from the SELECT @@server_id loop output for

a while and then return.

Now uncordon the Node to return it to a normal state:

NAME READY STATUS RESTARTS AGE IP NODE
mysql-2 2/2 Running 0 15m 10.244.5.27 kubernetes-minion

kubectl drain <node-name> --force --delete-local-data --ignore-daemonsets

kubectl get pod mysql-2 -o wide --watch

NAME READY STATUS RESTARTS AGE IP NODE
mysql-2 2/2 Terminating 0 15m 10.244.1.56 kubernetes-mi
[...]
mysql-2 0/2 Pending 0 0s <none> kubernetes-mi
mysql-2 0/2 Init:0/2 0 0s <none> kubernetes-mi
mysql-2 0/2 Init:1/2 0 20s 10.244.5.32 kubernetes-mi
mysql-2 0/2 PodInitializing 0 21s 10.244.5.32 kubernetes-mi
mysql-2 1/2 Running 0 22s 10.244.5.32 kubernetes-mi
mysql-2 2/2 Running 0 30s 10.244.5.32 kubernetes-mi

kubectl uncordon <node-name>

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 15/17

Scaling the number of slaves

With MySQL replication, you can scale your read query capacity by adding slaves. With StatefulSet,

you can do this with a single command:

Watch the new Pods come up by running:

Once they’re up, you should see server IDs 103 and 104 start appearing in the

SELECT @@server_id loop output.

You can also verify that these new servers have the data you added before they existed:

Scaling back down is also seamless:

Note, however, that while scaling up creates new PersistentVolumeClaims automatically, scaling

down does not automatically delete these PVCs. This gives you the choice to keep those initialized

PVCs around to make scaling back up quicker, or to extract data before deleting them.

kubectl scale statefulset mysql --replicas=5

kubectl get pods -l app=mysql --watch

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never --\
 mysql -h mysql-3.mysql -e "SELECT * FROM test.messages"

Waiting for pod default/mysql-client to be running, status is Pending, pod ready:
+---------+
| message |
+---------+
| hello |
+---------+
pod "mysql-client" deleted

kubectl scale statefulset mysql --replicas=3

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 16/17

You can see this by running:

Which shows that all 5 PVCs still exist, despite having scaled the StatefulSet down to 3:

If you don’t intend to reuse the extra PVCs, you can delete them:

Cleaning up

1. Cancel the SELECT @@server_id loop by pressing Ctrl+C in its terminal, or running the

following from another terminal:

2. Delete the StatefulSet. This also begins terminating the Pods.

3. Verify that the Pods disappear. They might take some time to �nish terminating.

kubectl get pvc -l app=mysql

NAME STATUS VOLUME CAPACITY ACC
data-mysql-0 Bound pvc-8acbf5dc-b103-11e6-93fa-42010a800002 10Gi RWO
data-mysql-1 Bound pvc-8ad39820-b103-11e6-93fa-42010a800002 10Gi RWO
data-mysql-2 Bound pvc-8ad69a6d-b103-11e6-93fa-42010a800002 10Gi RWO
data-mysql-3 Bound pvc-50043c45-b1c5-11e6-93fa-42010a800002 10Gi RWO
data-mysql-4 Bound pvc-500a9957-b1c5-11e6-93fa-42010a800002 10Gi RWO

kubectl delete pvc data-mysql-3
kubectl delete pvc data-mysql-4

kubectl delete pod mysql-client-loop --now

kubectl delete statefulset mysql

kubectl get pods -l app=mysql

10/23/2017 Run a Replicated Stateful Application - Kubernetes

http://localhost:4000/docs/tasks/run-application/run-replicated-stateful-application/ 17/17

You’ll know the Pods have terminated when the above returns:

4. Delete the Con�gMap, Services, and PersistentVolumeClaims.

5. If you manually provisioned PersistentVolumes, you also need to manually delete them, as well

as release the underlying resources. If you used a dynamic provisioner, it automatically deletes

the PersistentVolumes when it sees that you deleted the PersistentVolumeClaims. Some

dynamic provisioners (such as those for EBS and PD) also release the underlying resources

upon deleting the PersistentVolumes.

What’s next

Look in the Helm Charts repository for other stateful application examples.

No resources found.

kubectl delete configmap,service,pvc -l app=mysql

https://github.com/kubernetes/charts

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 1/11

Example: Deploying WordPress and MySQL
with Persistent Volumes

This tutorial shows you how to deploy a WordPress site and a MySQL database using Minikube. Both

applications use PersistentVolumes and PersistentVolumeClaims to store data.

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an

administrator, and a PeristentVolumeClaim (PVC) is a set amount of storage in a PV.

PersistentVolumes and PeristentVolumeClaims are independent from Pod lifecycles and preserve

data through restarting, rescheduling, and even deleting Pods.

Warning: This deployment is not suitable for production use cases, as it uses single instance

WordPress and MySQL Pods. Consider using WordPress Helm Chart to deploy WordPress in

production.

Objectives

Create a PersistentVolume

Create a Secret

Deploy MySQL

Deploy WordPress

Objectives
Before you begin
Create a PersistentVolume

Setting up a hostPath Volume
Create a Secret for MySQL Password
Deploy MySQL
Deploy WordPress
Cleaning up
What’s next

http://localhost:4000/docs/concepts/storage/persistent-volumes/
http://localhost:4000/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://github.com/kubernetes/charts/tree/master/stable/wordpress

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 2/11

Clean up

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Download the following con�guration �les:

1. local-volumes.yaml

2. mysql-deployment.yaml

3. wordpress-deployment.yaml

Create a PersistentVolume

MySQL and Wordpress each use a PersistentVolume to store data. While Kubernetes supports many

different types of PersistentVolumes, this tutorial covers hostPath.

Note: If you have a Kubernetes cluster running on Google Container Engine, please follow this

guide.

Setting up a hostPath Volume

A hostPath mounts a �le or directory from the host node’s �lesystem into your Pod.

Warning: Only use hostPath for developing and testing. With hostPath, your data lives on the

node the Pod is scheduled onto and does not move between nodes. If a Pod dies and gets

scheduled to another node in the cluster, the data is lost.

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/local-volumes.yaml
http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/mysql-deployment.yaml
http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/wordpress-deployment.yaml
http://localhost:4000/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
http://localhost:4000/docs/concepts/storage/volumes/#hostpath
https://cloud.google.com/container-engine/docs/tutorials/persistent-disk

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 3/11

1. Launch a terminal window in the directory you downloaded the manifest �les.

2. Create two PersistentVolumes from the local-volumes.yaml �le:

mysql-wordpress-persistent-volume/local-volumes.yaml

3. Run the following command to verify that two 20GiB PersistentVolumes are available:

kubectl create -f local-volumes.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv-1
 labels:
 type: local
spec:
 capacity:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: /tmp/data/pv-1

apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv-2
 labels:
 type: local
spec:
 capacity:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: /tmp/data/pv-2

kubectl get pv

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/local-volumes.yaml

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 4/11

The response should be like this:

Create a Secret for MySQL Password

A Secret is an object that stores a piece of sensitive data like a password or key. The manifest �les

are already con�gured to use a Secret, but you have to create your own Secret.

1. Create the Secret object from the following command:

Note: Replace YOUR_PASSWORD with the password you want to apply.

2. Verify that the Secret exists by running the following command:

The response should be like this:

Note: To protect the Secret from exposure, neither get nor describe show its contents.

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STO

local-pv-1 20Gi RWO Retain Available

local-pv-2 20Gi RWO Retain Available

kubectl create secret generic mysql-pass --from-literal=password=YOUR_PASSWORD

kubectl get secrets

NAME TYPE DATA AGE

mysql-pass Opaque 1 42s

http://localhost:4000/docs/concepts/configuration/secret/

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 5/11

Deploy MySQL

The following manifest describes a single-instance MySQL Deployment. The MySQL container

mounts the PersistentVolume at /var/lib/mysql. The MYSQL_ROOT_PASSWORD environment variable

sets the database password from the Secret.

mysql-wordpress-persistent-volume/mysql-deployment.yaml

apiVersion: v1
kind: Service
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 ports:
 - port: 3306
 selector:
 app: wordpress
 tier: mysql
 clusterIP: None

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
 labels:
 app: wordpress
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress

tier: mysql

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/mysql-deployment.yaml

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 6/11

mysql-wordpress-persistent-volume/mysql-deployment.yaml

1. Deploy MySQL from the mysql-deployment.yaml �le:

2. Verify that the Pod is running by running the following command:

Note: It can take up to a few minutes for the Pod’s Status to be RUNNING .

The response should be like this:

 tier: mysql
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

kubectl create -f mysql-deployment.yaml

kubectl get pods

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/mysql-deployment.yaml

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 7/11

Deploy WordPress

The following manifest describes a single-instance WordPress Deployment and Service. It uses

many of the same features like a PVC for persistent storage and a Secret for the password. But it

also uses a different setting: type: NodePort . This setting exposes WordPress to tra�c from

outside of the cluster.

mysql-wordpress-persistent-volume/wordpress-deployment.yaml

NAME READY STATUS RESTARTS AGE

wordpress-mysql-1894417608-x5dzt 1/1 Running 0 40s

apiVersion: v1
kind: Service
metadata:
 name: wordpress
 labels:
 app: wordpress
spec:
 ports:
 - port: 80
 selector:
 app: wordpress
 tier: frontend
 type: LoadBalancer

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: wp-pv-claim
 labels:
 app: wordpress
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

apiVersion: apps/v1beta2
kind: Deployment
metadata:
name: wordpress

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/wordpress-deployment.yaml

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 8/11

mysql-wordpress-persistent-volume/wordpress-deployment.yaml

1. Create a WordPress Service and Deployment from the wordpress-deployment.yaml �le:

2. Verify that the Service is running by running the following command:

 name: wordpress
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: frontend
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: frontend
 spec:
 containers:
 - image: wordpress:4.8-apache
 name: wordpress
 env:
 - name: WORDPRESS_DB_HOST
 value: wordpress-mysql
 - name: WORDPRESS_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 80
 name: wordpress
 volumeMounts:
 - name: wordpress-persistent-storage
 mountPath: /var/www/html
 volumes:
 - name: wordpress-persistent-storage
 persistentVolumeClaim:
 claimName: wp-pv-claim

kubectl create -f wordpress-deployment.yaml

kubectl get services wordpress

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/wordpress-deployment.yaml

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 9/11

The response should be like this:

Note: Minikube can only expose Services through NodePort .

The EXTERNAL-IP is always <pending> .

3. Run the following command to get the IP Address for the WordPress Service:

The response should be like this:

4. Copy the IP address, and load the page in your browser to view your site.

You should see the WordPress set up page similar to the following screenshot.

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

wordpress 10.0.0.89 <pending> 80:32406/TCP 4m

minikube service wordpress --url

http://1.2.3.4:32406

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 10/11

Warning: Do not leave your WordPress installation on this page. If another user �nds it,

they can set up a website on your instance and use it to serve malicious content.

Either install WordPress by creating a username and password or delete your instance.

Cleaning up

1. Run the following command to delete your Secret:

2. Run the following commands to delete all Deployments and Services:

kubectl delete secret mysql-pass

10/23/2017 Example: Deploying WordPress and MySQL with Persistent Volumes - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/ 11/11

3. Run the following commands to delete the PersistentVolumeClaims and the PersistentVolumes:

Note: Any other Type of PersistentVolume would allow you to recreate the Deployments

and Services at this point without losing data, but hostPath loses the data as soon as

the Pod stops running.

What’s next

Learn more about Introspection and Debugging

Learn more about Jobs

Learn more about Port Forwarding

Learn how to Get a Shell to a Container

kubectl delete deployment -l app=wordpress

kubectl delete service -l app=wordpress

kubectl delete pvc -l app=wordpress

kubectl delete pv local-pv-1 local-pv-2

http://localhost:4000/docs/tasks/debug-application-cluster/debug-application-introspection/
http://localhost:4000/docs/concepts/workloads/controllers/jobs-run-to-completion/
http://localhost:4000/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
http://localhost:4000/docs/tasks/debug-application-cluster/get-shell-running-container/

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 1/10

Example: Deploying Cassandra with Stateful
Sets

This tutorial shows you how to develop a native cloud Cassandra deployment on Kubernetes. In this

instance, a custom Cassandra SeedProvider enables Cassandra to discover new Cassandra nodes

as they join the cluster.

Deploying stateful distributed applications, like Cassandra, within a clustered environment can be

challenging. StatefulSets greatly simplify this process. Please read about StatefulSets for more

information about the features used in this tutorial.

Cassandra Docker

The Pods use the gcr.io/google-samples/cassandra:v12 image from Google’s container

registry. The docker is based on debian:jessie and includes OpenJDK 8. This image includes a

standard Cassandra installation from the Apache Debian repo. By using environment variables you

can change values that are inserted into cassandra.yaml .

ENV VAR DEFAULT VALUE

CASSANDRA_CLUSTER_NAME ‘Test Cluster’

CASSANDRA_NUM_TOKENS 32

CASSANDRA_RPC_ADDRESS 0.0.0.0

Objectives
Before you begin

Additional Minikube Setup Instructions
Creating a Cassandra Headless Service

Validating (optional)
Using a StatefulSet to Create a Cassandra Ring
Validating The Cassandra StatefulSet
Modifying the Cassandra StatefulSet
Cleaning up
What’s next

http://cassandra.apache.org/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
https://github.com/kubernetes/examples/blob/master/cassandra/image/Dockerfile
https://cloud.google.com/container-registry/docs/

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 2/10

Objectives

Create and Validate a Cassandra headless Services.

Use a StatefulSet to create a Cassandra ring.

Validate the StatefulSet.

Modify the StatefulSet.

Delete the StatefulSet and its Pods.

Before you begin

To complete this tutorial, you should already have a basic familiarity with Pods, Services, and

StatefulSets. In addition, you should:

Install and Con�gure the kubectl command line

Download cassandra-service.yaml and cassandra-statefulset.yaml

Have a supported Kubernetes Cluster running

Note: Please read the getting started guides if you do not already have a cluster.

Additional Minikube Setup Instructions

Caution: Minikube defaults to 1024MB of memory and 1 CPU which results in an insu�cient

resource errors during this tutorial.

To avoid these errors, run minikube with:

minikube start --memory 5120 --cpus=4

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/workloads/pods/pod/
http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/workloads/controllers/statefulset/
http://localhost:4000/docs/tasks/tools/install-kubectl/
http://localhost:4000/docs/tutorials/stateful-application/cassandra/cassandra-service.yaml
http://localhost:4000/docs/tutorials/stateful-application/cassandra/cassandra-statefulset.yaml
http://localhost:4000/docs/setup/pick-right-solution/
http://localhost:4000/docs/getting-started-guides/minikube/

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 3/10

Creating a Cassandra Headless Service

A Kubernetes Service describes a set of Pods that perform the same task.

The following Service is used for DNS lookups between Cassandra Pods and clients within the

Kubernetes Cluster.

1. Launch a terminal window in the directory you downloaded the manifest �les.

2. Create a Service to track all Cassandra StatefulSet Nodes from the

cassandra-service.yaml �le:

cassandra/cassandra-service.yaml

Validating (optional)

Get the Cassandra Service .

The response should be

kubectl create -f cassandra-service.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 app: cassandra
 name: cassandra
spec:
 clusterIP: None
 ports:
 - port: 9042
 selector:
 app: cassandra

kubectl get svc cassandra

http://localhost:4000/docs/concepts/services-networking/service/
http://localhost:4000/docs/concepts/workloads/pods/pod/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/cassandra/cassandra-service.yaml

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 4/10

If anything else returns, the service was not successfully created. Read Debug Services for common

issues.

Using a StatefulSet to Create a Cassandra Ring

The StatefulSet manifest, included below, creates a Cassandra ring that consists of three Pods.

Note: This example uses the default provisioner for Minikube. Please update the following

StatefulSet for the cloud you are working with.

1. Update the StatefulSet if necessary.

2. Create the Cassandra StatefulSet from the cassandra-statefulset.yaml �le:

cassandra/cassandra-statefulset.yaml

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cassandra None <none> 9042/TCP 45s

kubectl create -f cassandra-statefulset.yaml

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: cassandra
 labels:
 app: cassandra
spec:
 serviceName: cassandra
 replicas: 3
 selector:
 matchLabels:
 app: cassandra
 template:
 metadata:
 labels:
 app: cassandra
 spec:

t i :

http://localhost:4000/docs/tasks/debug-application-cluster/debug-service/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/cassandra/cassandra-statefulset.yaml

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 5/10

cassandra/cassandra-statefulset.yaml

 containers:
 - name: cassandra
 image: gcr.io/google-samples/cassandra:v12
 imagePullPolicy: Always
 ports:
 - containerPort: 7000
 name: intra-node
 - containerPort: 7001
 name: tls-intra-node
 - containerPort: 7199
 name: jmx
 - containerPort: 9042
 name: cql
 resources:
 limits:
 cpu: "500m"
 memory: 1Gi
 requests:
 cpu: "500m"
 memory: 1Gi
 securityContext:
 capabilities:
 add:
 - IPC_LOCK
 lifecycle:
 preStop:
 exec:
 command: ["/bin/sh", "-c", "PID=$(pidof java) && kill $PID && while
 env:
 - name: MAX_HEAP_SIZE
 value: 512M
 - name: HEAP_NEWSIZE
 value: 100M
 - name: CASSANDRA_SEEDS
 value: "cassandra-0.cassandra.default.svc.cluster.local"
 - name: CASSANDRA_CLUSTER_NAME
 value: "K8Demo"
 - name: CASSANDRA_DC
 value: "DC1-K8Demo"
 - name: CASSANDRA_RACK
 value: "Rack1-K8Demo"
 - name: CASSANDRA_AUTO_BOOTSTRAP
 value: "false"
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 readinessProbe:
 exec:
 command:
 - /bin/bash
 - -c

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/cassandra/cassandra-statefulset.yaml

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 6/10

cassandra/cassandra-statefulset.yaml

Validating The Cassandra StatefulSet

1. Get the Cassandra StatefulSet:

The response should be

 - /ready-probe.sh
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # These volume mounts are persistent. They are like inline claims,
 # but not exactly because the names need to match exactly one of
 # the stateful pod volumes.
 volumeMounts:
 - name: cassandra-data
 mountPath: /cassandra_data
 # These are converted to volume claims by the controller
 # and mounted at the paths mentioned above.
 # do not use these in production until ssd GCEPersistentDisk or other ssd pd
 volumeClaimTemplates:
 - metadata:
 name: cassandra-data
 annotations:
 volume.beta.kubernetes.io/storage-class: fast
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: fast
provisioner: k8s.io/minikube-hostpath
parameters:
 type: pd-ssd

kubectl get statefulset cassandra

NAME DESIRED CURRENT AGE

cassandra 3 0 13s

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/cassandra/cassandra-statefulset.yaml

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 7/10

The StatefulSet resource deploys Pods sequentially.

2. Get the Pods to see the ordered creation status:

The response should be

Note: It can take up to ten minutes for all three Pods to deploy.

Once all Pods are deployed, the same command returns:

3. Run the Cassandra utility nodetool to display the status of the ring.

The response is:

kubectl get pods -l="app=cassandra"

NAME READY STATUS RESTARTS AGE

cassandra-0 1/1 Running 0 1m

cassandra-1 0/1 ContainerCreating 0 8s

NAME READY STATUS RESTARTS AGE

cassandra-0 1/1 Running 0 10m

cassandra-1 1/1 Running 0 9m

cassandra-2 1/1 Running 0 8m

kubectl exec cassandra-0 -- nodetool status

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 8/10

Modifying the Cassandra StatefulSet

Use kubectl edit to modify the size of of a Cassandra StatefulSet.

1. Run the following command:

This command opens an editor in your terminal. The line you need to change is the replicas

�eld.

Note: The following sample is an excerpt of the StatefulSet �le.

yaml # Please edit the object below. Lines beginning with a '#' will be

ignored, # and an empty file will abort the edit. If an error occurs while

saving this file will be # reopened with the relevant failures. # apiVersion:

apps/v1beta2 kind: StatefulSet metadata: creationTimestamp: 2016-08-

13T18:40:58Z generation: 1 labels: app: cassandra name: cassandra namespace:

default resourceVersion: "323" selfLink:

/apis/apps/v1beta1/namespaces/default/statefulsets/cassandra uid: 7a219483-

6185-11e6-a910-42010a8a0fc0 spec: replicas: 3

2. Change the number of replicas to 4, and then save the manifest.

Datacenter: DC1-K8Demo

======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID

UN 172.17.0.5 83.57 KiB 32 74.0% e2dd09e6-d9d3-477e-96

UN 172.17.0.4 101.04 KiB 32 58.8% f89d6835-3a42-4419-9

UN 172.17.0.6 84.74 KiB 32 67.1% a6a1e8c2-3dc5-4417-b1

kubectl edit statefulset cassandra

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 9/10

The StatefulSet now contains 4 Pods.

3. Get the Cassandra StatefulSet to verify:

The response should be

Cleaning up

Deleting or scaling a StatefulSet down does not delete the volumes associated with the StatefulSet.

This ensures safety �rst: your data is more valuable than an auto purge of all related StatefulSet

resources.

Warning: Depending on the storage class and reclaim policy, deleting the Persistent Volume

Claims may cause the associated volumes to also be deleted. Never assume you’ll be able to

access data if its volume claims are deleted.

1. Run the following commands to delete everything in a StatefulSet :

2. Run the following command to delete the Cassandra Service .

kubectl get statefulset cassandra

NAME DESIRED CURRENT AGE

cassandra 4 4 36m

grace=$(kubectl get po cassandra-0 -o=jsonpath='{.spec.terminationGracePeriodSe

 && kubectl delete statefulset -l app=cassandra \

 && echo "Sleeping $grace" \

 && sleep $grace \

 && kubectl delete pvc -l app=cassandra

10/23/2017 Example: Deploying Cassandra with Stateful Sets - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/cassandra/ 10/10

What’s next

Learn how to Scale a StatefulSet.

Learn more about the KubernetesSeedProvider

See more custom Seed Provider Con�gurations

kubectl delete service -l app=cassandra

http://localhost:4000/docs/tasks/run-application/scale-stateful-set/
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://git.k8s.io/examples/cassandra/java/README.md

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 1/29

Running ZooKeeper, A CP Distributed
System

This tutorial demonstrates Apache Zookeeper on Kubernetes using StatefulSets,

PodDisruptionBudgets, and PodAntiA�nity.

Objectives

After this tutorial, you will know the following.

How to deploy a ZooKeeper ensemble using StatefulSet.

How to consistently con�gure the ensemble using Con�gMaps.

How to spread the deployment of ZooKeeper servers in the ensemble.

Objectives
Before you begin

ZooKeeper Basics
Creating a ZooKeeper Ensemble

Facilitating Leader Election
Achieving Consensus
Sanity Testing the Ensemble
Providing Durable Storage

Ensuring Consistent Con�guration
Con�guring Logging
Con�guring a Non-Privileged User

Managing the ZooKeeper Process
Updating the Ensemble
Handling Process Failure
Testing for Liveness
Testing for Readiness

Tolerating Node Failure
Surviving Maintenance
Cleaning up

https://zookeeper.apache.org/
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/concepts/workloads/pods/disruptions/#specifying-a-poddisruptionbudget
http://localhost:4000/docs/user-guide/node-selection/#inter-pod-affinity-and-anti-affinity-beta-feature

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 2/29

How to use PodDisruptionBudgets to ensure service availability during planned maintenance.

Before you begin

Before starting this tutorial, you should be familiar with the following Kubernetes concepts.

Pods

Cluster DNS

Headless Services

PersistentVolumes

PersistentVolume Provisioning

StatefulSets

PodDisruptionBudgets

PodAntiA�nity

kubectl CLI

You will require a cluster with at least four nodes, and each node will require at least 2 CPUs and 4

GiB of memory. In this tutorial you will cordon and drain the cluster’s nodes. This means that all

Pods on the cluster’s nodes will be terminated and evicted, and the nodes will, temporarily,

become unschedulable. You should use a dedicated cluster for this tutorial, or you should ensure

that the disruption you cause will not interfere with other tenants.

This tutorial assumes that your cluster is con�gured to dynamically provision PersistentVolumes. If

your cluster is not con�gured to do so, you will have to manually provision three 20 GiB volumes prior

to starting this tutorial.

ZooKeeper Basics

Apache ZooKeeper is a distributed, open-source coordination service for distributed applications.

ZooKeeper allows you to read, write, and observe updates to data. Data are organized in a �le system

like hierarchy and replicated to all ZooKeeper servers in the ensemble (a set of ZooKeeper servers).

http://localhost:4000/docs/user-guide/pods/single-container/
http://localhost:4000/docs/concepts/services-networking/dns-pod-service/
http://localhost:4000/docs/concepts/services-networking/service/#headless-services
http://localhost:4000/docs/concepts/storage/volumes/
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
http://localhost:4000/docs/concepts/workloads/pods/disruptions/#specifying-a-poddisruptionbudget
http://localhost:4000/docs/user-guide/node-selection/#inter-pod-affinity-and-anti-affinity-beta-feature
http://localhost:4000/docs/user-guide/kubectl
https://zookeeper.apache.org/doc/current/

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 3/29

All operations on data are atomic and sequentially consistent. ZooKeeper ensures this by using the

Zab consensus protocol to replicate a state machine across all servers in the ensemble.

The ensemble uses the Zab protocol to elect a leader, and data can not be written until a leader is

elected. Once a leader is elected, the ensemble uses Zab to ensure that all writes are replicated to a

quorum before they are acknowledged and made visible to clients. Without respect to weighted

quorums, a quorum is a majority component of the ensemble containing the current leader. For

instance, if the ensemble has three servers, a component that contains the leader and one other

server constitutes a quorum. If the ensemble can not achieve a quorum, data can not be written.

ZooKeeper servers keep their entire state machine in memory, but every mutation is written to a

durable WAL (Write Ahead Log) on storage media. When a server crashes, it can recover its previous

state by replaying the WAL. In order to prevent the WAL from growing without bound, ZooKeeper

servers will periodically snapshot their in memory state to storage media. These snapshots can be

loaded directly into memory, and all WAL entries that preceded the snapshot may be safely

discarded.

Creating a ZooKeeper Ensemble

The manifest below contains a Headless Service, a Service, a PodDisruptionBudget, and a

StatefulSet.

zookeeper.yaml

apiVersion: v1
kind: Service
metadata:
 name: zk-hs
 labels:
 app: zk
spec:
 ports:
 - port: 2888
 name: server
 - port: 3888
 name: leader-election
 clusterIP: None
 selector:
 app: zk

https://pdfs.semanticscholar.org/b02c/6b00bd5dbdbd951fddb00b906c82fa80f0b3.pdf
http://localhost:4000/docs/concepts/services-networking/service/#headless-services
http://localhost:4000/docs/concepts/services-networking/service
http://localhost:4000/docs/concepts/workloads/pods/disruptions//#specifying-a-poddisruptionbudget
http://localhost:4000/docs/concepts/abstractions/controllers/statefulsets/
https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/zookeeper.yaml

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 4/29

zookeeper.yaml

apiVersion: v1
kind: Service
metadata:
 name: zk-cs
 labels:
 app: zk
spec:
 ports:
 - port: 2181
 name: client
 selector:
 app: zk

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: zk-pdb
spec:
 selector:
 matchLabels:
 app: zk
 maxUnavailable: 1

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: zk
spec:
 selector:
 matchLabels:
 app: zk
 serviceName: zk-hs
 replicas: 3
 updateStrategy:
 type: RollingUpdate
 podManagementPolicy: Parallel
 template:
 metadata:
 labels:
 app: zk
 spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: "app"
 operator: In
 values:
 - zk
 topologyKey: "kubernetes.io/hostname"

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/zookeeper.yaml

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 5/29

zookeeper.yaml
 containers:
 - name: kubernetes-zookeeper
 imagePullPolicy: Always
 image: "gcr.io/google_containers/kubernetes-zookeeper:1.0-3.4.10"
 resources:
 requests:
 memory: "1Gi"
 cpu: "0.5"
 ports:
 - containerPort: 2181
 name: client
 - containerPort: 2888
 name: server
 - containerPort: 3888
 name: leader-election
 command:
 - sh
 - -c
 - "start-zookeeper \
 --servers=3 \
 --data_dir=/var/lib/zookeeper/data \
 --data_log_dir=/var/lib/zookeeper/data/log \
 --conf_dir=/opt/zookeeper/conf \
 --client_port=2181 \
 --election_port=3888 \
 --server_port=2888 \
 --tick_time=2000 \
 --init_limit=10 \
 --sync_limit=5 \
 --heap=512M \
 --max_client_cnxns=60 \
 --snap_retain_count=3 \
 --purge_interval=12 \
 --max_session_timeout=40000 \
 --min_session_timeout=4000 \
 --log_level=INFO"
 readinessProbe:
 exec:
 command:
 - sh
 - -c
 - "zookeeper-ready 2181"
 initialDelaySeconds: 10
 timeoutSeconds: 5
 livenessProbe:
 exec:
 command:
 - sh
 - -c
 - "zookeeper-ready 2181"
 initialDelaySeconds: 10

timeoutSeconds: 5

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/zookeeper.yaml

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 6/29

zookeeper.yaml

Open a command terminal, and use kubectl apply to create the manifest.

This creates the zk-hs Headless Service, the zk-cs Service, the zk-pdb PodDisruptionBudget,

and the zk StatefulSet.

Use kubectl get to watch the StatefulSet controller create the StatefulSet’s Pods.

Once the zk-2 Pod is Running and Ready, use CRTL-C to terminate kubectl.

 timeoutSeconds: 5
 volumeMounts:
 - name: datadir
 mountPath: /var/lib/zookeeper
 securityContext:
 runAsUser: 1000
 fsGroup: 1000
 volumeClaimTemplates:
 - metadata:
 name: datadir
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

kubectl apply -f https://k8s.io/docs/tutorials/stateful-application/zookeeper.yaml

service "zk-hs" created
service "zk-cs" created
poddisruptionbudget "zk-pdb" created
statefulset "zk" created

kubectl get pods -w -l app=zk

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/stateful-application/zookeeper.yaml
http://localhost:4000/docs/user-guide/kubectl/v1.8/#apply
http://localhost:4000/docs/user-guide/kubectl/v1.8/#get

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 7/29

The StatefulSet controller creates three Pods, and each Pod has a container with a ZooKeeper 3.4.9

server.

Facilitating Leader Election

As there is no terminating algorithm for electing a leader in an anonymous network, Zab requires

explicit membership con�guration in order to perform leader election. Each server in the ensemble

needs to have a unique identi�er, all servers need to know the global set of identi�ers, and each

identi�er needs to be associated with a network address.

Use kubectl exec to get the hostnames of the Pods in the zk StatefulSet.

The StatefulSet controller provides each Pod with a unique hostname based on its ordinal index. The

hostnames take the form <statefulset name>-<ordinal index> . As the replicas �eld of the

zk StatefulSet is set to 3 , the Set’s controller creates three Pods with their hostnames set to zk-0 ,

zk-1 , and zk-2 .

NAME READY STATUS RESTARTS AGE
zk-0 0/1 Pending 0 0s
zk-0 0/1 Pending 0 0s
zk-0 0/1 ContainerCreating 0 0s
zk-0 0/1 Running 0 19s
zk-0 1/1 Running 0 40s
zk-1 0/1 Pending 0 0s
zk-1 0/1 Pending 0 0s
zk-1 0/1 ContainerCreating 0 0s
zk-1 0/1 Running 0 18s
zk-1 1/1 Running 0 40s
zk-2 0/1 Pending 0 0s
zk-2 0/1 Pending 0 0s
zk-2 0/1 ContainerCreating 0 0s
zk-2 0/1 Running 0 19s
zk-2 1/1 Running 0 40s

for i in 0 1 2; do kubectl exec zk-$i -- hostname; done

zk-0
zk-1
zk-2

http://www-us.apache.org/dist/zookeeper/zookeeper-3.4.9/
http://localhost:4000/docs/user-guide/kubectl/v1.8/#exec

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 8/29

The servers in a ZooKeeper ensemble use natural numbers as unique identi�ers, and each server’s

identi�er is stored in a �le called myid in the server’s data directory.

Examine the contents of the myid �le for each server.

As the identi�ers are natural numbers and the ordinal indices are non-negative integers, you can

generate an identi�er by adding one to the ordinal.

Get the FQDN (Fully Quali�ed Domain Name) of each Pod in the zk StatefulSet.

The zk-hs Service creates a domain for all of the Pods,

zk-headless.default.svc.cluster.local .

The A records in Kubernetes DNS resolve the FQDNs to the Pods’ IP addresses. If the Pods are

rescheduled, the A records will be updated with the Pods’ new IP addresses, but the A record’s

names will not change.

ZooKeeper stores its application con�guration in a �le named zoo.cfg . Use kubectl exec to view

the contents of the zoo.cfg �le in the zk-0 Pod.

for i in 0 1 2; do echo "myid zk-$i";kubectl exec zk-$i -- cat /var/lib/zookeeper/

myid zk-0
1
myid zk-1
2
myid zk-2
3

for i in 0 1 2; do kubectl exec zk-$i -- hostname -f; done

zk-0.zk-hs.default.svc.cluster.local
zk-1.zk-hs.default.svc.cluster.local
zk-2.zk-hs.default.svc.cluster.local

kubectl exec zk-0 -- cat /opt/zookeeper/conf/zoo.cfg

http://localhost:4000/docs/concepts/services-networking/dns-pod-service/

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 9/29

For the server.1 , server.2 , and server.3 properties at the bottom of the �le, the 1 , 2 , and 3

correspond to the identi�ers in the ZooKeeper servers’ myid �les. They are set to the FQDNs for the

Pods in the zk StatefulSet.

Achieving Consensus

Consensus protocols require that the identi�ers of each participant be unique. No two participants in

the Zab protocol should claim the same unique identi�er. This is necessary to allow the processes in

the system to agree on which processes have committed which data. If two Pods were launched

with the same ordinal, two ZooKeeper servers would both identify themselves as the same server.

clientPort=2181
dataDir=/var/lib/zookeeper/data
dataLogDir=/var/lib/zookeeper/log
tickTime=2000
initLimit=10
syncLimit=2000
maxClientCnxns=60
minSessionTimeout= 4000
maxSessionTimeout= 40000
autopurge.snapRetainCount=3
autopurge.purgeInteval=0
server.1=zk-0.zk-headless.default.svc.cluster.local:2888:3888
server.2=zk-1.zk-headless.default.svc.cluster.local:2888:3888
server.3=zk-2.zk-headless.default.svc.cluster.local:2888:3888

kubectl get pods -w -l app=zk
NAME READY STATUS RESTARTS AGE
zk-0 0/1 Pending 0 0s
zk-0 0/1 Pending 0 0s
zk-0 0/1 ContainerCreating 0 0s
zk-0 0/1 Running 0 19s
zk-0 1/1 Running 0 40s
zk-1 0/1 Pending 0 0s
zk-1 0/1 Pending 0 0s
zk-1 0/1 ContainerCreating 0 0s
zk-1 0/1 Running 0 18s
zk-1 1/1 Running 0 40s
zk-2 0/1 Pending 0 0s
zk-2 0/1 Pending 0 0s
zk-2 0/1 ContainerCreating 0 0s
zk-2 0/1 Running 0 19s
zk-2 1/1 Running 0 40s

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 10/29

The A records for each Pod are only entered when the Pod becomes Ready. Therefore, the FQDNs of

the ZooKeeper servers will only resolve to a single endpoint, and that endpoint will be the unique

ZooKeeper server claiming the identity con�gured in its myid �le.

This ensures that the servers properties in the ZooKeepers’ zoo.cfg �les represents a correctly

con�gured ensemble.

When the servers use the Zab protocol to attempt to commit a value, they will either achieve

consensus and commit the value (if leader election has succeeded and at least two of the Pods are

Running and Ready), or they will fail to do so (if either of the aforementioned conditions are not met).

No state will arise where one server acknowledges a write on behalf of another.

Sanity Testing the Ensemble

The most basic sanity test is to write some data to one ZooKeeper server and to read the data from

another.

Use the zkCli.sh script to write world to the path /hello on the zk-0 Pod.

This will write world to the /hello path in the ensemble.

zk-0.zk-hs.default.svc.cluster.local
zk-1.zk-hs.default.svc.cluster.local
zk-2.zk-hs.default.svc.cluster.local

server.1=zk-0.zk-hs.default.svc.cluster.local:2888:3888
server.2=zk-1.zk-hs.default.svc.cluster.local:2888:3888
server.3=zk-2.zk-hsdefault.svc.cluster.local:2888:3888

kubectl exec zk-0 zkCli.sh create /hello world

WATCHER::

WatchedEvent state:SyncConnected type:None path:null
Created /hello

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 11/29

Get the data from the zk-1 Pod.

The data that you created on zk-0 is available on all of the servers in the ensemble.

Providing Durable Storage

As mentioned in the ZooKeeper Basics section, ZooKeeper commits all entries to a durable WAL, and

periodically writes snapshots in memory state, to storage media. Using WALs to provide durability is

a common technique for applications that use consensus protocols to achieve a replicated state

machine and for storage applications in general.

Use kubectl delete to delete the zk StatefulSet.

Watch the termination of the Pods in the StatefulSet.

When zk-0 if fully terminated, use CRTL-C to terminate kubectl.

kubectl exec zk-1 zkCli.sh get /hello

WATCHER::

WatchedEvent state:SyncConnected type:None path:null
world
cZxid = 0x100000002
ctime = Thu Dec 08 15:13:30 UTC 2016
mZxid = 0x100000002
mtime = Thu Dec 08 15:13:30 UTC 2016
pZxid = 0x100000002
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 5
numChildren = 0

kubectl delete statefulset zk
statefulset "zk" deleted

kubectl get pods -w -l app=zk

http://localhost:4000/docs/user-guide/kubectl/v1.8/#delete

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 12/29

Reapply the manifest in zookeeper.yaml .

The zk StatefulSet will be created, but, as they already exist, the other API Objects in the manifest

will not be modi�ed.

Watch the StatefulSet controller recreate the StatefulSet’s Pods.

Once the zk-2 Pod is Running and Ready, use CRTL-C to terminate kubectl.

zk-2 1/1 Terminating 0 9m
zk-0 1/1 Terminating 0 11m
zk-1 1/1 Terminating 0 10m
zk-2 0/1 Terminating 0 9m
zk-2 0/1 Terminating 0 9m
zk-2 0/1 Terminating 0 9m
zk-1 0/1 Terminating 0 10m
zk-1 0/1 Terminating 0 10m
zk-1 0/1 Terminating 0 10m
zk-0 0/1 Terminating 0 11m
zk-0 0/1 Terminating 0 11m
zk-0 0/1 Terminating 0 11m

kubectl apply -f https://k8s.io/docs/tutorials/stateful-application/zookeeper.yaml

kubectl get pods -w -l app=zk

NAME READY STATUS RESTARTS AGE
zk-0 0/1 Pending 0 0s
zk-0 0/1 Pending 0 0s
zk-0 0/1 ContainerCreating 0 0s
zk-0 0/1 Running 0 19s
zk-0 1/1 Running 0 40s
zk-1 0/1 Pending 0 0s
zk-1 0/1 Pending 0 0s
zk-1 0/1 ContainerCreating 0 0s
zk-1 0/1 Running 0 18s
zk-1 1/1 Running 0 40s
zk-2 0/1 Pending 0 0s
zk-2 0/1 Pending 0 0s
zk-2 0/1 ContainerCreating 0 0s
zk-2 0/1 Running 0 19s
zk-2 1/1 Running 0 40s

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 13/29

Get the value you entered during the sanity test, from the zk-2 Pod.

Even though all of the Pods in the zk StatefulSet have been terminated and recreated, the ensemble

still serves the original value.

The volumeClaimTemplates �eld, of the zk StatefulSet’s spec , speci�es a PersistentVolume that

will be provisioned for each Pod.

The StatefulSet controller generates a PersistentVolumeClaim for each Pod in the StatefulSet.

Get the StatefulSet’s PersistentVolumeClaims.

kubectl exec zk-2 zkCli.sh get /hello

WATCHER::

WatchedEvent state:SyncConnected type:None path:null
world
cZxid = 0x100000002
ctime = Thu Dec 08 15:13:30 UTC 2016
mZxid = 0x100000002
mtime = Thu Dec 08 15:13:30 UTC 2016
pZxid = 0x100000002
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 5
numChildren = 0

volumeClaimTemplates:
 - metadata:
 name: datadir
 annotations:
 volume.alpha.kubernetes.io/storage-class: anything
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 20Gi

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 14/29

When the StatefulSet recreated its Pods, the Pods’ PersistentVolumes were remounted.

The volumeMounts section of the StatefulSet’s container template causes the PersistentVolumes

to be mounted to the ZooKeeper servers’ data directories.

When a Pod in the zk StatefulSet is (re)scheduled, it will always have the same PersistentVolume

mounted to the ZooKeeper server’s data directory. Even when the Pods are rescheduled, all of the

writes made to the ZooKeeper servers’ WALs, and all of their snapshots, remain durable.

Ensuring Consistent Con�guration

As noted in the Facilitating Leader Election and Achieving Consensus sections, the servers in a

ZooKeeper ensemble require consistent con�guration in order to elect a leader and form a quorum.

They also require consistent con�guration of the Zab protocol in order for the protocol to work

correctly over a network. In our example we achive consistent con�guration by embedding the

con�guration directly into the manifest.

Get the zk StatefulSet.

kubectl get pvc -l app=zk

NAME STATUS VOLUME CAPACITY ACC
datadir-zk-0 Bound pvc-bed742cd-bcb1-11e6-994f-42010a800002 20Gi RWO
datadir-zk-1 Bound pvc-bedd27d2-bcb1-11e6-994f-42010a800002 20Gi RWO
datadir-zk-2 Bound pvc-bee0817e-bcb1-11e6-994f-42010a800002 20Gi RWO

volumeMounts:
 - name: datadir
 mountPath: /var/lib/zookeeper

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 15/29

Notice that the command used to start the ZooKeeper servers passed the con�guration as

command line parameter. Enviornment variables are another, equally good, way to pass

con�guration to ensemble.

Con�guring Logging

One of the �les generated by the zkGenConfig.sh script controls ZooKeeper’s logging. ZooKeeper

uses Log4j, and, by default, it uses a time and size based rolling �le appender for its logging

con�guration. Get the logging con�guration from one of Pods in the zk StatefulSet.

The logging con�guration below will cause the ZooKeeper process to write all of its logs to the

standard output �le stream.

 kubectl get sts zk -o yaml
...
 command:
 - sh
 - -c
 - "start-zookeeper \
 --servers=3 \
 --data_dir=/var/lib/zookeeper/data \
 --data_log_dir=/var/lib/zookeeper/data/log \
 --conf_dir=/opt/zookeeper/conf \
 --client_port=2181 \
 --election_port=3888 \
 --server_port=2888 \
 --tick_time=2000 \
 --init_limit=10 \
 --sync_limit=5 \
 --heap=512M \
 --max_client_cnxns=60 \
 --snap_retain_count=3 \
 --purge_interval=12 \
 --max_session_timeout=40000 \
 --min_session_timeout=4000 \
 --log_level=INFO"
...

kubectl exec zk-0 cat /usr/etc/zookeeper/log4j.properties

http://logging.apache.org/log4j/2.x/

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 16/29

This is the simplest possible way to safely log inside the container. As the application’s logs are being

written to standard out, Kubernetes will handle log rotation for you. Kubernetes also implements a

sane retention policy that ensures application logs written to standard out and standard error do not

exhaust local storage media.

Use kubectl logs to retrieve the last few log lines from one of the Pods.

Application logs that are written to standard out or standard error are viewable using kubectl logs

and from the Kubernetes Dashboard.

zookeeper.root.logger=CONSOLE
zookeeper.console.threshold=INFO
log4j.rootLogger=${zookeeper.root.logger}
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.Threshold=${zookeeper.console.threshold}
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%d{ISO8601} [myid:%X{myid}] - %-5p

kubectl logs zk-0 --tail 20

2016-12-06 19:34:16,236 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:16,237 [myid:1] - INFO [Thread-1136:NIOServerCnxn@1008] - Closed
2016-12-06 19:34:26,155 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:26,155 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:26,156 [myid:1] - INFO [Thread-1137:NIOServerCnxn@1008] - Closed
2016-12-06 19:34:26,222 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:26,222 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:26,226 [myid:1] - INFO [Thread-1138:NIOServerCnxn@1008] - Closed
2016-12-06 19:34:36,151 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:36,152 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:36,152 [myid:1] - INFO [Thread-1139:NIOServerCnxn@1008] - Closed
2016-12-06 19:34:36,230 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:36,231 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:36,231 [myid:1] - INFO [Thread-1140:NIOServerCnxn@1008] - Closed
2016-12-06 19:34:46,149 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:46,149 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:46,149 [myid:1] - INFO [Thread-1141:NIOServerCnxn@1008] - Closed
2016-12-06 19:34:46,230 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:46,230 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:218
2016-12-06 19:34:46,230 [myid:1] - INFO [Thread-1142:NIOServerCnxn@1008] - Closed

http://localhost:4000/docs/user-guide/kubectl/v1.8/#logs

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 17/29

Kubernetes also supports more powerful, but more complex, logging integrations with Logging Using

Stackdriver and Logging Using Elasticsearch and Kibana. For cluster level log shipping and

aggregation, you should consider deploying a sidecar container to rotate and ship your logs.

Con�guring a Non-Privileged User

The best practices with respect to allowing an application to run as a privileged user inside of a

container are a matter of debate. If your organization requires that applications be run as a non-

privileged user you can use a SecurityContext to control the user that the entry point runs as.

The zk StatefulSet’s Pod template contains a SecurityContext.

In the Pods’ containers, UID 1000 corresponds to the zookeeper user and GID 1000 corresponds to

the zookeeper group.

Get the ZooKeeper process information from the zk-0 Pod.

As the runAsUser �eld of the securityContext object is set to 1000, instead of running as root,

the ZooKeeper process runs as the zookeeper user.

By default, when the Pod’s PersistentVolume is mounted to the ZooKeeper server’s data directory, it

is only accessible by the root user. This con�guration prevents the ZooKeeper process from writing

to its WAL and storing its snapshots.

Get the �le permissions of the ZooKeeper data directory on the zk-0 Pod.

securityContext:
 runAsUser: 1000
 fsGroup: 1000

kubectl exec zk-0 -- ps -elf

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
4 S zookeep+ 1 0 0 80 0 - 1127 - 20:46 ? 00:00:00 sh -c z
0 S zookeep+ 27 1 0 80 0 - 1155556 - 20:46 ? 00:00:19 /usr/li

kubectl exec -ti zk-0 -- ls -ld /var/lib/zookeeper/data

http://localhost:4000/docs/tasks/debug-application-cluster/logging-stackdriver/
http://localhost:4000/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://localhost:4000/docs/tasks/configure-pod-container/security-context/

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 18/29

As the fsGroup �eld of the securityContext object is set to 1000, the ownership of the Pods’

PersistentVolumes is set to the zookeeper group, and the ZooKeeper process is able to successfully

read and write its data.

Managing the ZooKeeper Process

The ZooKeeper documentation indicates that “You will want to have a supervisory process that

manages each of your ZooKeeper server processes (JVM).” Utilizing a watchdog (supervisory

process) to restart failed processes in a distributed system is a common pattern. When deploying an

application in Kubernetes, rather than using an external utility as a supervisory process, you should

use Kubernetes as the watchdog for your application.

Updating the Ensemble

The zk StatefulSet is con�gured to use the RollingUpdate update strategy.

You can use kubectl patch to update the number of cpus allocated to the servers.

Use kubectl rollout status to watch the status of the update.

drwxr-sr-x 3 zookeeper zookeeper 4096 Dec 5 20:45 /var/lib/zookeeper/data

kubectl patch sts zk --type='json' -p='[{"op": "replace", "path": "/spec/template/

statefulset "zk" patched

https://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_supervision

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 19/29

The Pods are terminated, one at a time, in reverse ordinal order, and they are recreated with the new

con�guration. This ensures that quorum is maintained during a rolling update.

Use kubectl rollout history to view a history or previous con�gurations.

Use kubectl rollout undo to roll back the modi�cation.

Handling Process Failure

Restart Policies control how Kubernetes handles process failures for the entry point of the container

in a Pod. For Pods in a StatefulSet, the only appropriate RestartPolicy is Always, and this is the

default value. For stateful applications you should never override the default policy.

Examine the process tree for the ZooKeeper server running in the zk-0 Pod.

kubectl rollout status sts/zk
waiting for statefulset rolling update to complete 0 pods at revision zk-5db449966
Waiting for 1 pods to be ready...
Waiting for 1 pods to be ready...
waiting for statefulset rolling update to complete 1 pods at revision zk-5db449966
Waiting for 1 pods to be ready...
Waiting for 1 pods to be ready...
waiting for statefulset rolling update to complete 2 pods at revision zk-5db449966
Waiting for 1 pods to be ready...
Waiting for 1 pods to be ready...
statefulset rolling update complete 3 pods at revision zk-5db4499664...

kubectl rollout history sts/zk
statefulsets "zk"
REVISION
1
2

kubectl rollout undo sts/zk
statefulset "zk" rolled back

kubectl exec zk-0 -- ps -ef

http://localhost:4000/docs/user-guide/pod-states/#restartpolicy

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 20/29

The command used as the container’s entry point has PID 1, and the ZooKeeper process, a child of

the entry point, has PID 23.

In one terminal watch the Pods in the zk StatefulSet.

In another terminal, kill the ZooKeeper process in Pod zk-0 .

The death of the ZooKeeper process caused its parent process to terminate. As the RestartPolicy of

the container is Always, the parent process was relaunched.

If your application uses a script (such as zkServer.sh) to launch the process that implements the

application’s business logic, the script must terminate with the child process. This ensures that

Kubernetes will restart the application’s container when the process implementing the application’s

business logic fails.

Testing for Liveness

Con�guring your application to restart failed processes is not su�cient to keep a distributed system

healthy. There are many scenarios where a system’s processes can be both alive and unresponsive,

UID PID PPID C STIME TTY TIME CMD
zookeep+ 1 0 0 15:03 ? 00:00:00 sh -c zkGenConfig.sh && zkServer.s
zookeep+ 27 1 0 15:03 ? 00:00:03 /usr/lib/jvm/java-8-openjdk-amd64/

kubectl get pod -w -l app=zk

 kubectl exec zk-0 -- pkill java

NAME READY STATUS RESTARTS AGE
zk-0 1/1 Running 0 21m
zk-1 1/1 Running 0 20m
zk-2 1/1 Running 0 19m
NAME READY STATUS RESTARTS AGE
zk-0 0/1 Error 0 29m
zk-0 0/1 Running 1 29m
zk-0 1/1 Running 1 29m

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 21/29

or otherwise unhealthy. You should use liveness probes in order to notify Kubernetes that your

application’s processes are unhealthy and should be restarted.

The Pod template for the zk StatefulSet speci�es a liveness probe.

The probe calls a simple bash script that uses the ZooKeeper ruok four letter word to test the

server’s health.

In one terminal window, watch the Pods in the zk StatefulSet.

In another window, delete the zkOk.sh script from the �le system of Pod zk-0 .

When the liveness probe for the ZooKeeper process fails, Kubernetes will automatically restart the

process for you, ensuring that unhealthy processes in the ensemble are restarted.

 livenessProbe:
 exec:
 command:
 - "zkOk.sh"
 initialDelaySeconds: 15
 timeoutSeconds: 5

ZK_CLIENT_PORT=${ZK_CLIENT_PORT:-2181}
OK=$(echo ruok | nc 127.0.0.1 $ZK_CLIENT_PORT)
if ["$OK" == "imok"]; then
 exit 0
else
 exit 1
fi

kubectl get pod -w -l app=zk

kubectl exec zk-0 -- rm /opt/zookeeper/bin/zkOk.sh

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 22/29

Testing for Readiness

Readiness is not the same as liveness. If a process is alive, it is scheduled and healthy. If a process is

ready, it is able to process input. Liveness is a necessary, but not su�cient, condition for readiness.

There are many cases, particularly during initialization and termination, when a process can be alive

but not ready.

If you specify a readiness probe, Kubernetes will ensure that your application’s processes will not

receive network tra�c until their readiness checks pass.

For a ZooKeeper server, liveness implies readiness. Therefore, the readiness probe from the

zookeeper.yaml manifest is identical to the liveness probe.

Even though the liveness and readiness probes are identical, it is important to specify both. This

ensures that only healthy servers in the ZooKeeper ensemble receive network tra�c.

Tolerating Node Failure

ZooKeeper needs a quorum of servers in order to successfully commit mutations to data. For a three

server ensemble, two servers must be healthy in order for writes to succeed. In quorum based

systems, members are deployed across failure domains to ensure availability. In order to avoid an

kubectl get pod -w -l app=zk
NAME READY STATUS RESTARTS AGE
zk-0 1/1 Running 0 1h
zk-1 1/1 Running 0 1h
zk-2 1/1 Running 0 1h
NAME READY STATUS RESTARTS AGE
zk-0 0/1 Running 0 1h
zk-0 0/1 Running 1 1h
zk-0 1/1 Running 1 1h

 readinessProbe:
 exec:
 command:
 - "zkOk.sh"
 initialDelaySeconds: 15
 timeoutSeconds: 5

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 23/29

outage, due to the loss of an individual machine, best practices preclude co-locating multiple

instances of the application on the same machine.

By default, Kubernetes may co-locate Pods in a StatefulSet on the same node. For the three server

ensemble you created, if two servers reside on the same node, and that node fails, the clients of your

ZooKeeper service will experience an outage until at least one of the Pods can be rescheduled.

You should always provision additional capacity to allow the processes of critical systems to be

rescheduled in the event of node failures. If you do so, then the outage will only last until the

Kubernetes scheduler reschedules one of the ZooKeeper servers. However, if you want your service

to tolerate node failures with no downtime, you should set podAntiAffinity .

Get the nodes for Pods in the zk Stateful Set.

All of the Pods in the zk StatefulSet are deployed on different nodes.

This is because the Pods in the zk StatefulSet have a PodAntiA�nity speci�ed.

The requiredDuringSchedulingIgnoredDuringExecution �eld tells the Kubernetes Scheduler

that it should never co-locate two Pods from the zk-headless Service in the domain de�ned by the

topologyKey . The topologyKey kubernetes.io/hostname indicates that the domain is an

for i in 0 1 2; do kubectl get pod zk-$i --template {{.spec.nodeName}}; echo ""; d

kubernetes-minion-group-cxpk
kubernetes-minion-group-a5aq
kubernetes-minion-group-2g2d

 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: "app"
 operator: In
 values:
 - zk-headless
 topologyKey: "kubernetes.io/hostname"

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 24/29

individual node. Using different rules, labels, and selectors, you can extend this technique to spread

your ensemble across physical, network, and power failure domains.

Surviving Maintenance

In this section you will cordon and drain nodes. If you are using this tutorial on a shared cluster,

be sure that this will not adversely affect other tenants.

The previous section showed you how to spread your Pods across nodes to survive unplanned node

failures, but you also need to plan for temporary node failures that occur due to planned

maintenance.

Get the nodes in your cluster.

Use kubectl cordon to cordon all but four of the nodes in your cluster.

Get the zk-pdb PodDisruptionBudget.

The max-unavailable �eld indicates to Kubernetes that at most one Pod from zk StatefulSet can

be unavailable at any time.

In one terminal, watch the Pods in the zk StatefulSet.

kubectl get nodes

kubectl cordon < node name >

kubectl get pdb zk-pdb

NAME MIN-AVAILABLE MAX-UNAVAILABLE ALLOWED-DISRUPTIONS AGE
zk-pdb N/A 1 1

kubectl get pods -w -l app=zk

http://localhost:4000/docs/user-guide/kubectl/v1.8/#cordon

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 25/29

In another terminal, get the nodes that the Pods are currently scheduled on.

Use kubectl drain to cordon and drain the node on which the zk-0 Pod is scheduled.

As there are four nodes in your cluster, kubectl drain , succeeds and the zk-0 is rescheduled to

another node.

Keep watching the StatefulSet’s Pods in the �rst terminal and drain the node on which zk-1 is

scheduled.

for i in 0 1 2; do kubectl get pod zk-$i --template {{.spec.nodeName}}; echo ""; d
kubernetes-minion-group-pb41
kubernetes-minion-group-ixsl
kubernetes-minion-group-i4c4

kubectl drain $(kubectl get pod zk-0 --template {{.spec.nodeName}}) --ignore-daemo
node "kubernetes-minion-group-pb41" cordoned
WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or D
pod "zk-0" deleted
node "kubernetes-minion-group-pb41" drained

NAME READY STATUS RESTARTS AGE
zk-0 1/1 Running 2 1h
zk-1 1/1 Running 0 1h
zk-2 1/1 Running 0 1h
NAME READY STATUS RESTARTS AGE
zk-0 1/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Pending 0 0s
zk-0 0/1 Pending 0 0s
zk-0 0/1 ContainerCreating 0 0s
zk-0 0/1 Running 0 51s
zk-0 1/1 Running 0 1m

http://localhost:4000/docs/user-guide/kubectl/v1.8/#drain

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 26/29

The zk-1 Pod can not be scheduled. As the zk StatefulSet contains a PodAntiA�nity rule

preventing co-location of the Pods, and as only two nodes are schedulable, the Pod will remain in a

Pending state.

Continue to watch the Pods of the stateful set, and drain the node on which zk-2 is scheduled.

Use CRTL-C to terminate to kubectl.

kubectl drain $(kubectl get pod zk-1 --template {{.spec.nodeName}}) --ignore-daemo
WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or D
pod "zk-1" deleted
node "kubernetes-minion-group-ixsl" drained

kubectl get pods -w -l app=zk
NAME READY STATUS RESTARTS AGE
zk-0 1/1 Running 2 1h
zk-1 1/1 Running 0 1h
zk-2 1/1 Running 0 1h
NAME READY STATUS RESTARTS AGE
zk-0 1/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Pending 0 0s
zk-0 0/1 Pending 0 0s
zk-0 0/1 ContainerCreating 0 0s
zk-0 0/1 Running 0 51s
zk-0 1/1 Running 0 1m
zk-1 1/1 Terminating 0 2h
zk-1 0/1 Terminating 0 2h
zk-1 0/1 Terminating 0 2h
zk-1 0/1 Terminating 0 2h
zk-1 0/1 Pending 0 0s
zk-1 0/1 Pending 0 0s

kubectl drain $(kubectl get pod zk-2 --template {{.spec.nodeName}}) --ignore-daemo
node "kubernetes-minion-group-i4c4" cordoned
WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or D
WARNING: Ignoring DaemonSet-managed pods: node-problem-detector-v0.1-dyrog; Deleti
There are pending pods when an error occurred: Cannot evict pod as it would violat
pod/zk-2

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 27/29

You can not drain the third node because evicting zk-2 would violate zk-budget . However, the

node will remain cordoned.

Use zkCli.sh to retrieve the value you entered during the sanity test from zk-0 .

The service is still available because its PodDisruptionBudget is respected.

Use kubectl uncordon to uncordon the �rst node.

zk-1 is rescheduled on this node. Wait until zk-1 is Running and Ready.

kubectl exec zk-0 zkCli.sh get /hello

WatchedEvent state:SyncConnected type:None path:null
world
cZxid = 0x200000002
ctime = Wed Dec 07 00:08:59 UTC 2016
mZxid = 0x200000002
mtime = Wed Dec 07 00:08:59 UTC 2016
pZxid = 0x200000002
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 5
numChildren = 0

kubectl uncordon kubernetes-minion-group-pb41
node "kubernetes-minion-group-pb41" uncordoned

http://localhost:4000/docs/user-guide/kubectl/v1.8/#uncordon

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 28/29

Attempt to drain the node on which zk-2 is scheduled.

This time kubectl drain succeeds.

Uncordon the second node to allow zk-2 to be rescheduled.

kubectl get pods -w -l app=zk
NAME READY STATUS RESTARTS AGE
zk-0 1/1 Running 2 1h
zk-1 1/1 Running 0 1h
zk-2 1/1 Running 0 1h
NAME READY STATUS RESTARTS AGE
zk-0 1/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Terminating 2 2h
zk-0 0/1 Pending 0 0s
zk-0 0/1 Pending 0 0s
zk-0 0/1 ContainerCreating 0 0s
zk-0 0/1 Running 0 51s
zk-0 1/1 Running 0 1m
zk-1 1/1 Terminating 0 2h
zk-1 0/1 Terminating 0 2h
zk-1 0/1 Terminating 0 2h
zk-1 0/1 Terminating 0 2h
zk-1 0/1 Pending 0 0s
zk-1 0/1 Pending 0 0s
zk-1 0/1 Pending 0 12m
zk-1 0/1 ContainerCreating 0 12m
zk-1 0/1 Running 0 13m
zk-1 1/1 Running 0 13m

kubectl drain $(kubectl get pod zk-2 --template {{.spec.nodeName}}) --ignore-daemo
node "kubernetes-minion-group-i4c4" already cordoned
WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or D
pod "heapster-v1.2.0-2604621511-wht1r" deleted
pod "zk-2" deleted
node "kubernetes-minion-group-i4c4" drained

kubectl uncordon kubernetes-minion-group-ixsl
node "kubernetes-minion-group-ixsl" uncordoned

10/23/2017 Running ZooKeeper, A CP Distributed System - Kubernetes

http://localhost:4000/docs/tutorials/stateful-application/zookeeper/ 29/29

You can use kubectl drain in conjunction with PodDisruptionBudgets to ensure that your service

remains available during maintenance. If drain is used to cordon nodes and evict pods prior to taking

the node o�ine for maintenance, services that express a disruption budget will have that budget

respected. You should always allocate additional capacity for critical services so that their Pods can

be immediately rescheduled.

Cleaning up

Use kubectl uncordon to uncordon all the nodes in your cluster.

You will need to delete the persistent storage media for the PersistentVolumes used in this

tutorial. Follow the necessary steps, based on your environment, storage con�guration, and

provisioning method, to ensure that all storage is reclaimed.

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 1/12

AppArmor

FEATURE STATE: Kubernetes v1.4 beta

AppArmor is a Linux kernel security module that supplements the standard Linux user and group

based permissions to con�ne programs to a limited set of resources. AppArmor can be con�gured

for any application to reduce its potential attack surface and provide greater in-depth defense. It is

con�gured through pro�les tuned to whitelist the access needed by a speci�c program or container,

such as Linux capabilities, network access, �le permissions, etc. Each pro�le can be run in either

enforcing mode, which blocks access to disallowed resources, or complain mode, which only reports

violations.

AppArmor can help you to run a more secure deployment by restricting what containers are allowed

to do, and/or provide better auditing through system logs. However, it is important to keep in mind

that AppArmor is not a silver bullet and can only do so much to protect against exploits in your

application code. It is important to provide good, restrictive pro�les, and harden your applications

and cluster from other angles as well.

Objectives

Objectives
Before you begin
Securing a Pod
Example
Administration

Setting up nodes with pro�les
Restricting pro�les with the PodSecurityPolicy
Disabling AppArmor
Upgrading to Kubernetes v1.4 with AppArmor
Upgrade path to General Availability

Authoring Pro�les
API Reference

Pod Annotation
Pro�le Reference
PodSecurityPolicy Annotations

What’s next

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 2/12

See an example of how to load a pro�le on a node

Learn how to enforce the pro�le on a Pod

Learn how to check that the pro�le is loaded

See what happens when a pro�le is violated

See what happens when a pro�le cannot be loaded

Before you begin

Make sure:

1. Kubernetes version is at least v1.4 – Kubernetes support for AppArmor was added in v1.4.

Kubernetes components older than v1.4 are not aware of the new AppArmor annotations, and

will silently ignore any AppArmor settings that are provided. To ensure that your Pods are

receiving the expected protections, it is important to verify the Kubelet version of your nodes:

2. AppArmor kernel module is enabled – For the Linux kernel to enforce an AppArmor pro�le, the

AppArmor kernel module must be installed and enabled. Several distributions enable the module

by default, such as Ubuntu and SUSE, and many others provide optional support. To check

whether the module is enabled, check the /sys/module/apparmor/parameters/enabled �le:

If the Kubelet contains AppArmor support (>= v1.4), it will refuse to run a Pod with AppArmor

options if the kernel module is not enabled.

$ kubectl get nodes -o=jsonpath=$'{range .items[*]}{@.metadata.name}: {@.status

gke-test-default-pool-239f5d02-gyn2: v1.4.0

gke-test-default-pool-239f5d02-x1kf: v1.4.0

gke-test-default-pool-239f5d02-xwux: v1.4.0

$ cat /sys/module/apparmor/parameters/enabled

Y

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 3/12

Note: Ubuntu carries many AppArmor patches that have not been merged into the upstream

Linux kernel, including patches that add additional hooks and features. Kubernetes has only

been tested with the upstream version, and does not promise support for other features.

3. Container runtime is Docker – Currently the only Kubernetes-supported container runtime that

also supports AppArmor is Docker. As more runtimes add AppArmor support, the options will be

expanded. You can verify that your nodes are running docker with:

If the Kubelet contains AppArmor support (>= v1.4), it will refuse to run a Pod with AppArmor

options if the runtime is not Docker.

4. Pro�le is loaded – AppArmor is applied to a Pod by specifying an AppArmor pro�le that each

container should be run with. If any of the speci�ed pro�les is not already loaded in the kernel,

the Kubelet (>= v1.4) will reject the Pod. You can view which pro�les are loaded on a node by

checking the /sys/kernel/security/apparmor/profiles �le. For example:

For more details on loading pro�les on nodes, see Setting up nodes with pro�les.

As long as the Kubelet version includes AppArmor support (>= v1.4), the Kubelet will reject a Pod

with AppArmor options if any of the prerequisites are not met. You can also verify AppArmor support

on nodes by checking the node ready condition message (though this is likely to be removed in a

later release):

$ kubectl get nodes -o=jsonpath=$'{range .items[*]}{@.metadata.name}: {@.status

gke-test-default-pool-239f5d02-gyn2: docker://1.11.2

gke-test-default-pool-239f5d02-x1kf: docker://1.11.2

gke-test-default-pool-239f5d02-xwux: docker://1.11.2

$ ssh gke-test-default-pool-239f5d02-gyn2 "sudo cat /sys/kernel/security/apparm

apparmor-test-deny-write (enforce)

apparmor-test-audit-write (enforce)

docker-default (enforce)

k8s-nginx (enforce)

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 4/12

Securing a Pod

Note: AppArmor is currently in beta, so options are speci�ed as annotations. Once support

graduates to general availability, the annotations will be replaced with �rst-class �elds (more details

in Upgrade path to GA).

AppArmor pro�les are speci�ed per-container. To specify the AppArmor pro�le to run a Pod container

with, add an annotation to the Pod’s metadata:

Where <container_name> is the name of the container to apply the pro�le to, and <profile_ref>

speci�es the pro�le to apply. The profile_ref can be one of:

runtime/default to apply the runtime’s default pro�le

localhost/<profile_name> to apply the pro�le loaded on the host with the name

<profile_name>

See the API Reference for the full details on the annotation and pro�le name formats.

Kubernetes AppArmor enforcement works by �rst checking that all the prerequisites have been met,

and then forwarding the pro�le selection to the container runtime for enforcement. If the

prerequisites have not been met, the Pod will be rejected, and will not run.

To verify that the pro�le was applied, you can look for the AppArmor security option listed in the

container created event:

$ kubectl get nodes -o=jsonpath=$'{range .items[*]}{@.metadata.name}: {.status.con
gke-test-default-pool-239f5d02-gyn2: kubelet is posting ready status. AppArmor ena
gke-test-default-pool-239f5d02-x1kf: kubelet is posting ready status. AppArmor ena
gke-test-default-pool-239f5d02-xwux: kubelet is posting ready status. AppArmor ena

container.apparmor.security.beta.kubernetes.io/<container_name>: <profile_ref>

$ kubectl get events | grep Created
22s 22s 1 hello-apparmor Pod spec.containers{hell

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 5/12

You can also verify directly that the container’s root process is running with the correct pro�le by

checking its proc attr:

Example

This example assumes you have already set up a cluster with AppArmor support.

First, we need to load the pro�le we want to use onto our nodes. The pro�le we’ll use simply denies

all �le writes:

deny-write.profile

Since we don’t know where the Pod will be scheduled, we’ll need to load the pro�le on all our nodes.

For this example we’ll just use SSH to install the pro�les, but other approaches are discussed in

Setting up nodes with pro�les.

$ kubectl exec <pod_name> cat /proc/1/attr/current
k8s-apparmor-example-deny-write (enforce)

#include <tunables/global>

profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {
 #include <abstractions/base>

 file,

 # Deny all file writes.
 deny /** w,
}

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/deny-write.profile

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 6/12

Next, we’ll run a simple “Hello AppArmor” pod with the deny-write pro�le:

hello-apparmor-pod.yaml

If we look at the pod events, we can see that the Pod container was created with the AppArmor

pro�le “k8s-apparmor-example-deny-write”:

$ NODES=(
 # The SSH-accessible domain names of your nodes
 gke-test-default-pool-239f5d02-gyn2.us-central1-a.my-k8s
 gke-test-default-pool-239f5d02-x1kf.us-central1-a.my-k8s
 gke-test-default-pool-239f5d02-xwux.us-central1-a.my-k8s)
$ for NODE in ${NODES[*]}; do ssh $NODE 'sudo apparmor_parser -q <<EOF
#include <tunables/global>

profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {
 #include <abstractions/base>

 file,

 # Deny all file writes.
 deny /** w,
}
EOF'
done

apiVersion: v1
kind: Pod
metadata:
 name: hello-apparmor
 annotations:
 # Tell Kubernetes to apply the AppArmor profile "k8s-apparmor-example-deny-wri
 # Note that this is ignored if the Kubernetes node is not running version 1.4
 container.apparmor.security.beta.kubernetes.io/hello: localhost/k8s-apparmor-e
spec:
 containers:
 - name: hello
 image: busybox
 command: ["sh", "-c", "echo 'Hello AppArmor!' && sleep 1h"]

$ kubectl create -f ./hello-apparmor-pod.yaml

https://raw.githubusercontent.com/kubernetes/kubernetes.github.io/master/docs/tutorials/clusters/hello-apparmor-pod.yaml

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 7/12

We can verify that the container is actually running with that pro�le by checking its proc attr:

Finally, we can see what happens if we try to violate the pro�le by writing to a �le:

To wrap up, let’s look at what happens if we try to specify a pro�le that hasn’t been loaded:

$ kubectl get events | grep hello-apparmor
14s 14s 1 hello-apparmor Pod
14s 14s 1 hello-apparmor Pod spec.containers{hello}
13s 13s 1 hello-apparmor Pod spec.containers{hello}
13s 13s 1 hello-apparmor Pod spec.containers{hello}
13s 13s 1 hello-apparmor Pod spec.containers{hello}

$ kubectl exec hello-apparmor cat /proc/1/attr/current
k8s-apparmor-example-deny-write (enforce)

$ kubectl exec hello-apparmor touch /tmp/test
touch: /tmp/test: Permission denied
error: error executing remote command: command terminated with non-zero exit code:

$ kubectl create -f /dev/stdin <<EOF
apiVersion: v1
kind: Pod
metadata:
 name: hello-apparmor-2
 annotations:
 container.apparmor.security.beta.kubernetes.io/hello: localhost/k8s-apparmor-e
spec:
 containers:
 - name: hello
 image: busybox
 command: ["sh", "-c", "echo 'Hello AppArmor!' && sleep 1h"]
EOF
pod "hello-apparmor-2" created

$ kubectl describe pod hello-apparmor-2
Name: hello-apparmor-2
Namespace: default
Node: gke-test-default-pool-239f5d02-x1kf/
Start Time: Tue, 30 Aug 2016 17:58:56 -0700
Labels: <none>
Annotations: container.apparmor.security.beta.kubernetes.io/hello=localhost/k8s-
Status: Pending

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 8/12

Note the pod status is Failed, with a helpful error message:

Pod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write" is not

loaded

. An event was also recorded with the same message.

Administration

Status: Pending
Reason: AppArmor
Message: Pod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-wr
IP:
Controllers: <none>
Containers:
 hello:
 Container ID:
 Image: busybox
 Image ID:
 Port:
 Command:
 sh
 -c
 echo 'Hello AppArmor!' && sleep 1h
 State: Waiting
 Reason: Blocked
 Ready: False
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-dnz7v (ro)
Conditions:
 Type Status
 Initialized True
 Ready False
 PodScheduled True
Volumes:
 default-token-dnz7v:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-dnz7v
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: <none>
Events:
 FirstSeen LastSeen Count From SubobjectPath T
 --------- -------- ----- ---- ------------- -
 23s 23s 1 {default-scheduler } N
 23s 23s 1 {kubelet e2e-test-stclair-minion-group-t1f5}

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 9/12

Setting up nodes with pro�les

Kubernetes does not currently provide any native mechanisms for loading AppArmor pro�les onto

nodes. There are lots of ways to setup the pro�les though, such as:

Through a DaemonSet that runs a Pod on each node to ensure the correct pro�les are loaded.

An example implementation can be found here.

At node initialization time, using your node initialization scripts (e.g. Salt, Ansible, etc.) or image.

By copying the pro�les to each node and loading them through SSH, as demonstrated in the

Example.

The scheduler is not aware of which pro�les are loaded onto which node, so the full set of pro�les

must be loaded onto every node. An alternative approach is to add a node label for each pro�le (or

class of pro�les) on the node, and use a node selector to ensure the Pod is run on a node with the

required pro�le.

Restricting pro�les with the PodSecurityPolicy

If the PodSecurityPolicy extension is enabled, cluster-wide AppArmor restrictions can be applied. To

enable the PodSecurityPolicy, two �ags must be set on the apiserver :

With the extension enabled, the AppArmor options can be speci�ed as annotations on the

PodSecurityPolicy:

The default pro�le name option speci�es the pro�le to apply to containers by default when none is

speci�ed. The allowed pro�le names option speci�es a list of pro�les that Pod containers are

allowed to be run with. If both options are provided, the default must be allowed. The pro�les are

speci�ed in the same format as on containers. See the API Reference for the full speci�cation.

--admission-control=PodSecurityPolicy[,others...]
--runtime-config=extensions/v1beta1/podsecuritypolicy[,others...]

apparmor.security.beta.kubernetes.io/defaultProfileName: <profile_ref>
apparmor.security.beta.kubernetes.io/allowedProfileNames: <profile_ref>[,others...

http://localhost:4000/docs/concepts/workloads/controllers/daemonset/
https://git.k8s.io/contrib/apparmor/loader
http://localhost:4000/docs/concepts/configuration/assign-pod-node/

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 10/12

Disabling AppArmor

If you do not want AppArmor to be available on your cluster, it can be disabled by a command-line

�ag:

When disabled, any Pod that includes an AppArmor pro�le will fail validation with a “Forbidden” error.

Note that by default docker always enables the “docker-default” pro�le on non-privileged pods (if the

AppArmor kernel module is enabled), and will continue to do so even if the feature-gate is disabled.

The option to disable AppArmor will be removed when AppArmor graduates to general availability

(GA).

Upgrading to Kubernetes v1.4 with AppArmor

No action is required with respect to AppArmor to upgrade your cluster to v1.4. However, if any

existing pods had an AppArmor annotation, they will not go through validation (or PodSecurityPolicy

admission). If permissive pro�les are loaded on the nodes, a malicious user could pre-apply a

permissive pro�le to escalate the pod privileges above the docker-default. If this is a concern, it is

recommended to scrub the cluster of any pods containing an annotation with

apparmor.security.beta.kubernetes.io .

Upgrade path to General Availability

When AppArmor is ready to be graduated to general availability (GA), the options currently speci�ed

through annotations will be converted to �elds. Supporting all the upgrade and downgrade paths

through the transition is very nuanced, and will be explained in detail when the transition occurs. We

will commit to supporting both �elds and annotations for at least 2 releases, and will explicitly reject

the annotations for at least 2 releases after that.

Authoring Pro�les

Getting AppArmor pro�les speci�ed correctly can be a tricky business. Fortunately there are some

tools to help with that:

--feature-gates=AppArmor=false

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 11/12

aa-genprof and aa-logprof generate pro�le rules by monitoring an application’s activity and

logs, and admitting the actions it takes. Further instructions are provided by the AppArmor

documentation.

bane is an AppArmor pro�le generator for Docker that uses a simpli�ed pro�le language.

It is recommended to run your application through Docker on a development workstation to generate

the pro�les, but there is nothing preventing running the tools on the Kubernetes node where your Pod

is running.

To debug problems with AppArmor, you can check the system logs to see what, speci�cally, was

denied. AppArmor logs verbose messages to dmesg , and errors can usually be found in the system

logs or through journalctl . More information is provided in AppArmor failures.

API Reference

Pod Annotation

Specifying the pro�le a container will run with:

key: container.apparmor.security.beta.kubernetes.io/<container_name> Where

<container_name> matches the name of a container in the Pod. A separate pro�le can be

speci�ed for each container in the Pod.

value: a pro�le reference, described below

Pro�le Reference

runtime/default : Refers to the default runtime pro�le.

Equivalent to not specifying a pro�le (without a PodSecurityPolicy default), except it still

requires AppArmor to be enabled.

For Docker, this resolves to the docker-default pro�le for non-privileged containers, and

uncon�ned (no pro�le) for privileged containers.

localhost/<profile_name> : Refers to a pro�le loaded on the node (localhost) by name.

http://wiki.apparmor.net/index.php/Profiling_with_tools
https://github.com/jfrazelle/bane
http://wiki.apparmor.net/index.php/AppArmor_Failures
https://docs.docker.com/engine/security/apparmor/

10/23/2017 AppArmor - Kubernetes

http://localhost:4000/docs/tutorials/clusters/apparmor/ 12/12

The possible pro�le names are detailed in the core policy reference.

Any other pro�le reference format is invalid.

PodSecurityPolicy Annotations

Specifying the default pro�le to apply to containers when none is provided:

key: apparmor.security.beta.kubernetes.io/defaultProfileName

value: a pro�le reference, described above

Specifying the list of pro�les Pod containers is allowed to specify:

key: apparmor.security.beta.kubernetes.io/allowedProfileNames

value: a comma-separated list of pro�le references (described above)

Although an escaped comma is a legal character in a pro�le name, it cannot be explicitly

allowed here.

What’s next

Additional resources:

Quick guide to the AppArmor pro�le language

AppArmor core policy reference

http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference#Profile_names_and_attachment_specifications
http://wiki.apparmor.net/index.php/QuickProfileLanguage
http://wiki.apparmor.net/index.php/ProfileLanguage

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 1/9

Using Source IP

Applications running in a Kubernetes cluster �nd and communicate with each other, and the outside

world, through the Service abstraction. This document explains what happens to the source IP of

packets sent to different types of Services, and how you can toggle this behavior according to your

needs.

Objectives

Expose a simple application through various types of Services

Understand how each Service type handles source IP NAT

Understand the tradeoffs involved in preserving source IP

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be con�gured to

communicate with your cluster. If you do not already have a cluster, you can create one by using

Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Objectives
Before you begin
Terminology
Prerequisites
Source IP for Services with Type=ClusterIP
Source IP for Services with Type=NodePort
Source IP for Services with Type=LoadBalancer
Cleaning up
What’s next

http://localhost:4000/docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 2/9

Terminology

This document makes use of the following terms:

NAT: network address translation

Source NAT: replacing the source IP on a packet, usually with a node’s IP

Destination NAT: replacing the destination IP on a packet, usually with a pod IP

VIP: a virtual IP, such as the one assigned to every Kubernetes Service

Kube-proxy: a network daemon that orchestrates Service VIP management on every node

Prerequisites

You must have a working Kubernetes 1.5 cluster to run the examples in this document. The

examples use a small nginx webserver that echoes back the source IP of requests it receives

through an HTTP header. You can create it as follows:

Source IP for Services with Type=ClusterIP

Packets sent to ClusterIP from within the cluster are never source NAT’d if you’re running kube-proxy

in iptables mode, which is the default since Kubernetes 1.2. Kube-proxy exposes its mode through a

proxyMode endpoint:

$ kubectl run source-ip-app --image=gcr.io/google_containers/echoserver:1.4
deployment "source-ip-app" created

$ kubectl get nodes
NAME STATUS AGE VERSION
kubernetes-minion-group-6jst Ready 2h v1.6.0+fff5156
kubernetes-minion-group-cx31 Ready 2h v1.6.0+fff5156
kubernetes-minion-group-jj1t Ready 2h v1.6.0+fff5156

kubernetes-minion-group-6jst $ curl localhost:10249/proxyMode
iptables

https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation#SNAT
https://en.wikipedia.org/wiki/Network_address_translation#DNAT
http://localhost:4000/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
http://localhost:4000/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
http://localhost:4000/docs/concepts/services-networking/service/#proxy-mode-iptables

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 3/9

You can test source IP preservation by creating a Service over the source IP app:

And hitting the ClusterIP from a pod in the same cluster:

If the client pod and server pod are in the same node, the client_address is the client pod’s IP

address. However, if the client pod and server pod are in different nodes, the client_address is the

client pod’s node �annel IP address.

Source IP for Services with Type=NodePort

$ kubectl expose deployment source-ip-app --name=clusterip --port=80 --target-port
service "clusterip" exposed

$ kubectl get svc clusterip
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusterip 10.0.170.92 <none> 80/TCP 51s

$ kubectl run busybox -it --image=busybox --restart=Never --rm
Waiting for pod default/busybox to be running, status is Pending, pod ready: false
If you don't see a command prompt, try pressing enter.

ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc noqueue
 link/ether 0a:58:0a:f4:03:08 brd ff:ff:ff:ff:ff:ff
 inet 10.244.3.8/24 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::188a:84ff:feb0:26a5/64 scope link
 valid_lft forever preferred_lft forever

wget -qO - 10.0.170.92
CLIENT VALUES:
client_address=10.244.3.8
command=GET
...

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 4/9

As of Kubernetes 1.5, packets sent to Services with Type=NodePort are source NAT’d by default. You

can test this by creating a NodePort Service:

If you’re running on a cloudprovider, you may need to open up a �rewall-rule for the

nodes:nodeport reported above. Now you can try reaching the Service from outside the cluster

through the node port allocated above.

Note that these are not the correct client IPs, they’re cluster internal IPs. This is what happens:

Client sends packet to node2:nodePort

node2 replaces the source IP address (SNAT) in the packet with its own IP address

node2 replaces the destination IP on the packet with the pod IP

packet is routed to node 1, and then to the endpoint

the pod’s reply is routed back to node2

the pod’s reply is sent back to the client

Visually:

$ kubectl expose deployment source-ip-app --name=nodeport --port=80 --target-port=
service "nodeport" exposed

$ NODEPORT=$(kubectl get -o jsonpath="{.spec.ports[0].nodePort}" services nodeport
$ NODES=$(kubectl get nodes -o jsonpath='{ $.items[*].status.addresses[?(@.type=="

$ for node in $NODES; do curl -s $node:$NODEPORT | grep -i client_address; done
client_address=10.180.1.1
client_address=10.240.0.5
client_address=10.240.0.3

http://localhost:4000/docs/concepts/services-networking/service/#type-nodeport

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 5/9

To avoid this, Kubernetes has a feature to preserve the client source IP (check here for feature

availability). Setting service.spec.externalTrafficPolicy to the value Local will only proxy

requests to local endpoints, never forwarding tra�c to other nodes and thereby preserving the

original source IP address. If there are no local endpoints, packets sent to the node are dropped, so

you can rely on the correct source-ip in any packet processing rules you might apply a packet that

make it through to the endpoint.

Set the service.spec.externalTrafficPolicy �eld as follows:

Now, re-run the test:

Note that you only got one reply, with the right client IP, from the one node on which the endpoint pod

is running.

This is what happens:

client sends packet to node2:nodePort , which doesn’t have any endpoints

packet is dropped

client sends packet to node1:nodePort , which does have endpoints

node1 routes packet to endpoint with the correct source IP

 client
 \ ^
 \ \
 v \
 node 1 <--- node 2
 | ^ SNAT
 | | --->
 v |
 endpoint

$ kubectl patch svc nodeport -p '{"spec":{"externalTrafficPolicy":"Local"}}'
service "nodeport" patched

$ for node in $NODES; do curl --connect-timeout 1 -s $node:$NODEPORT | grep -i cli
client_address=104.132.1.79

http://localhost:4000/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 6/9

Visually:

Source IP for Services with Type=LoadBalancer

As of Kubernetes 1.5, packets sent to Services with Type=LoadBalancer are source NAT’d by default,

because all schedulable Kubernetes nodes in the Ready state are eligible for loadbalanced tra�c.

So if packets arrive at a node without an endpoint, the system proxies it to a node with an endpoint,

replacing the source IP on the packet with the IP of the node (as described in the previous section).

You can test this by exposing the source-ip-app through a loadbalancer

However, if you’re running on GKE/GCE, setting the same service.spec.externalTrafficPolicy

�eld to Local forces nodes without Service endpoints to remove themselves from the list of nodes

eligible for loadbalanced tra�c by deliberately failing health checks.

Visually:

 client
 ^ / \
 / / \
 / v X
 node 1 node 2
 ^ |
 | |
 | v
 endpoint

$ kubectl expose deployment source-ip-app --name=loadbalancer --port=80 --target-p
service "loadbalancer" exposed

$ kubectl get svc loadbalancer
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
loadbalancer 10.0.65.118 104.198.149.140 80/TCP 5m

$ curl 104.198.149.140
CLIENT VALUES:
client_address=10.240.0.5
...

http://localhost:4000/docs/concepts/services-networking/service/#type-loadbalancer

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 7/9

You can test this by setting the annotation:

You should immediately see the service.spec.healthCheckNodePort �eld allocated by

Kubernetes:

The service.spec.healthCheckNodePort �eld points to a port on every node serving the health

check at /healthz . You can test this:

A service controller running on the master is responsible for allocating the cloud loadbalancer, and

when it does so, it also allocates HTTP health checks pointing to this port/path on each node. Wait

about 10 seconds for the 2 nodes without endpoints to fail health checks, then curl the lb ip:

 client
 |
 lb VIP
 / ^
 v /
health check ---> node 1 node 2 <--- health check
 200 <--- ^ | ---> 500
 | V
 endpoint

$ kubectl patch svc loadbalancer -p '{"spec":{"externalTrafficPolicy":"Local"}}'

$ kubectl get svc loadbalancer -o yaml | grep -i healthCheckNodePort
 healthCheckNodePort: 32122

$ kubectl get pod -o wide -l run=source-ip-app
NAME READY STATUS RESTARTS AGE IP
source-ip-app-826191075-qehz4 1/1 Running 0 20h 10.180.1.

kubernetes-minion-group-6jst $ curl localhost:32122/healthz
1 Service Endpoints found

kubernetes-minion-group-jj1t $ curl localhost:32122/healthz
No Service Endpoints Found

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 8/9

Cross platform support

As of Kubernetes 1.5, support for source IP preservation through Services with Type=LoadBalancer

is only implemented in a subset of cloudproviders (GCP and Azure). The cloudprovider you’re running

on might ful�ll the request for a loadbalancer in a few different ways:

1. With a proxy that terminates the client connection and opens a new connection to your

nodes/endpoints. In such cases the source IP will always be that of the cloud LB, not that of the

client.

2. With a packet forwarder, such that requests from the client sent to the loadbalancer VIP end up

at the node with the source IP of the client, not an intermediate proxy.

Loadbalancers in the �rst category must use an agreed upon protocol between the loadbalancer and

backend to communicate the true client IP such as the HTTP X-FORWARDED-FOR header, or the

proxy protocol. Loadbalancers in the second category can leverage the feature described above by

simply creating an HTTP health check pointing at the port stored in the

service.spec.healthCheckNodePort �eld on the Service.

Cleaning up

Delete the Services:

Delete the Deployment, ReplicaSet and Pod:

What’s next

$ curl 104.198.149.140
CLIENT VALUES:
client_address=104.132.1.79
...

$ kubectl delete svc -l run=source-ip-app

$ kubectl delete deployment source-ip-app

https://en.wikipedia.org/wiki/X-Forwarded-For
http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt

10/23/2017 Using Source IP - Kubernetes

http://localhost:4000/docs/tutorials/services/source-ip/ 9/9

Learn more about connecting applications via services

Learn more about loadbalancing

http://localhost:4000/docs/concepts/services-networking/connect-applications-service/
http://localhost:4000/docs/user-guide/load-balancer

