
Setup

This section provides instructions for installing Kubernetes and setting up a Kubernetes

cluster. For an overview of the different options, see Picking the Right Solution.

file:///docs/setup/pick-right-solution/

Picking the Right Solution

Kubernetes can run on various platforms: from your laptop, to VMs on a cloud provider, to a

rack of bare metal servers. The effort required to set up a cluster varies from running a single

command to crafting your own customized cluster. Use this guide to choose a solution that

fits your needs.

If you just want to “kick the tires” on Kubernetes, use the local Docker-based solutions.

When you are ready to scale up to more machines and higher availability, a hosted solution is

the easiest to create and maintain.

Turnkey cloud solutions require only a few commands to create and cover a wide range of

cloud providers. On-Premises turnkey cloud solutions have the simplicity of the turnkey cloud

solution combined with the security of your own private network.

If you already have a way to configure hosting resources, use kubeadm to easily bring up a

cluster with a single command per machine.

Custom solutions vary from step-by-step instructions to general advice for setting up a

Kubernetes cluster from scratch.

Local-machine Solutions

Minikube is the recommended method for creating a local, single-node Kubernetes cluster

Local-machine Solutions

Hosted Solutions

Turnkey Cloud Solutions

On-Premises turnkey cloud solutions

Custom Solutions

Universal

Cloud

On-Premises VMs

Bare Metal

Integrations

Table of Solutions

Definition of columns

file:///docs/setup/independent/create-cluster-kubeadm/
file:///docs/getting-started-guides/minikube/

for development and testing. Setup is completely automated and doesn’t require a cloud

provider account.

Kubeadm-dind is a multi-node (while minikube is single-node) Kubernetes cluster which

only requires a docker daemon. It uses docker-in-docker technique to spawn the

Kubernetes cluster.

Ubuntu on LXD supports a nine-instance deployment on localhost.

IBM Cloud Private-CE (Community Edition) can use VirtualBox on your machine to deploy

Kubernetes to one or more VMs for development and test scenarios. Scales to full multi-

node cluster.

IBM Cloud Private-CE (Community Edition) on Linux Containers is a

Terraform/Packer/BASH based Infrastructure as Code (IaC) scripts to create a seven node

(1 Boot, 1 Master, 1 Management, 1 Proxy and 3 Workers) LXD cluster on Linux Host.

Hosted Solutions

Google Kubernetes Engine offers managed Kubernetes clusters.

Amazon Elastic Container Service for Kubernetes offers managed Kubernetes service.

Azure Container Service offers managed Kubernetes clusters.

Stackpoint.io provides Kubernetes infrastructure automation and management for

multiple public clouds.

AppsCode.com provides managed Kubernetes clusters for various public clouds, including

AWS and Google Cloud Platform.

Madcore.Ai is devops-focused CLI tool for deploying Kubernetes infrastructure in AWS.

Master, auto-scaling group nodes with spot-instances, ingress-ssl-lego, Heapster, and

Grafana.

Platform9 offers managed Kubernetes on-premises or on any public cloud, and provides

24/7 health monitoring and alerting. (Kube2go, a web-UI driven Kubernetes cluster

deployment service Platform9 released, has been integrated to Platform9 Sandbox.)

OpenShift Dedicated offers managed Kubernetes clusters powered by OpenShift.

OpenShift Online provides free hosted access for Kubernetes applications.

https://github.com/Mirantis/kubeadm-dind-cluster
file:///docs/getting-started-guides/ubuntu/local/
https://github.com/IBM/deploy-ibm-cloud-private
https://github.com/HSBawa/icp-ce-on-linux-containers
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/eks/
https://azure.microsoft.com/services/container-service/
https://stackpoint.io
https://appscode.com/products/cloud-deployment/
https://madcore.ai
https://platform9.com/products/kubernetes/
https://www.openshift.com/dedicated/
https://www.openshift.com/features/

IBM Cloud Container Service offers managed Kubernetes clusters with isolation choice,

operational tools, integrated security insight into images and containers, and integration

with Watson, IoT, and data.

Giant Swarm offers managed Kubernetes clusters in their own datacenter, on-premises, or

on public clouds.

Kubermatic provides managed Kubernetes clusters for various public clouds, including

AWS and Digital Ocean, as well as on-premises with OpenStack integration.

Pivotal Container Service provides enterprise-grade Kubernetes for both on-premises and

public clouds. PKS enables on-demand provisioning of Kubernetes clusters, multi-tenancy

and fully automated day-2 operations.

Turnkey Cloud Solutions

These solutions allow you to create Kubernetes clusters on a range of Cloud IaaS providers

with only a few commands. These solutions are actively developed and have active

community support.

Conjure-up Kubernetes with Ubuntu on AWS, Azure, Google Cloud, Oracle Cloud

Google Compute Engine (GCE)

AWS

Azure

Tectonic by CoreOS

CenturyLink Cloud

IBM Cloud

Stackpoint.io

Madcore.Ai

Kubermatic

On-Premises turnkey cloud solutions

https://console.bluemix.net/docs/containers/container_index.html
https://giantswarm.io/product/
https://www.loodse.com
https://pivotal.io/platform/pivotal-container-service
file:///docs/getting-started-guides/ubuntu/
file:///docs/getting-started-guides/gce/
file:///docs/getting-started-guides/aws/
file:///docs/getting-started-guides/azure/
https://coreos.com/tectonic
file:///docs/getting-started-guides/clc/
https://github.com/patrocinio/kubernetes-softlayer
file:///docs/getting-started-guides/stackpoint/
https://madcore.ai/
https://cloud.kubermatic.io

These solutions allow you to create Kubernetes clusters on your internal, secure, cloud

network with only a few commands.

IBM Cloud Private

Kubermatic

Custom Solutions

Kubernetes can run on a wide range of Cloud providers and bare-metal environments, and with

many base operating systems.

If you can find a guide below that matches your needs, use it. It may be a little out of date, but it

will be easier than starting from scratch. If you do want to start from scratch, either because

you have special requirements, or just because you want to understand what is underneath a

Kubernetes cluster, try the Getting Started from Scratch guide.

If you are interested in supporting Kubernetes on a new platform, see Writing a Getting Started

Guide.

Universal

If you already have a way to configure hosting resources, use kubeadm to easily bring up a

cluster with a single command per machine.

Cloud

These solutions are combinations of cloud providers and operating systems not covered by

the above solutions.

CoreOS on AWS or GCE

Kubernetes on Ubuntu

Kubespray

On-Premises VMs

https://www.ibm.com/cloud-computing/products/ibm-cloud-private/
https://www.loodse.com
file:///docs/getting-started-guides/scratch/
https://git.k8s.io/community/contributors/devel/writing-a-getting-started-guide.md
file:///docs/setup/independent/create-cluster-kubeadm/
file:///docs/getting-started-guides/coreos/
file:///docs/getting-started-guides/ubuntu/
file:///docs/getting-started-guides/kubespray/

Vagrant (uses CoreOS and flannel)

CloudStack (uses Ansible, CoreOS and flannel)

VMware vSphere

VMware vSphere, OpenStack, or Bare Metal (uses Juju, Ubuntu and flannel)

VMware (uses CoreOS and flannel)

oVirt

Fedora (Multi Node) (uses Fedora and flannel)

Bare Metal

Fedora (Single Node)

Fedora (Multi Node)

Kubernetes on Ubuntu

CoreOS on AWS or GCE

Integrations

These solutions provide integration with third-party schedulers, resource managers, and/or

lower level platforms.

DCOS

Community Edition DCOS uses AWS

Enterprise Edition DCOS supports cloud hosting, on-premises VMs, and bare metal

Table of Solutions

Below is a table of all of the solutions listed above.

IaaS Provider
Config.
Mgmt.

OS Networking Docs Support Level

file:///docs/getting-started-guides/coreos/
file:///docs/getting-started-guides/cloudstack/
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/
file:///docs/getting-started-guides/ubuntu/
file:///docs/getting-started-guides/coreos/
file:///docs/getting-started-guides/ovirt/
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
file:///docs/getting-started-guides/fedora/fedora_manual_config/
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
file:///docs/getting-started-guides/ubuntu/
file:///docs/getting-started-guides/coreos/
file:///docs/getting-started-guides/dcos/

any any multi-support any CNI docs
Project (SIG-cluster-
lifecycle)

Google Kubernetes
Engine

 GCE docs Commercial

Stackpoint.io multi-support multi-support docs Commercial

AppsCode.com Saltstack Debian multi-support docs Commercial

Madcore.Ai Jenkins DSL Ubuntu flannel docs Community (@madcore-ai)

Platform9 multi-support multi-support docs Commercial

Kubermatic multi-support multi-support docs Commercial

Giant Swarm CoreOS
flannel and/or
Calico

docs Commercial

GCE Saltstack Debian GCE docs Project

Azure Container
Service

 Ubuntu Azure docs Commercial

Azure (IaaS) Ubuntu Azure docs Community (Microsoft)

Bare-metal custom Fedora none docs Project

Bare-metal custom Fedora flannel docs
Community
(@aveshagarwal)

libvirt custom Fedora flannel docs
Community
(@aveshagarwal)

KVM custom Fedora flannel docs
Community
(@aveshagarwal)

DCOS Marathon CoreOS/Alpine custom docs
Community (Kubernetes-
Mesos Authors)

AWS CoreOS CoreOS flannel docs Community

GCE CoreOS CoreOS flannel docs Community (@pires)

Vagrant CoreOS CoreOS flannel docs
Community (@pires,
@AntonioMeireles)

CloudStack Ansible CoreOS flannel docs Community (@sebgoa)

VMware vSphere any multi-support multi-support docs Community

Bare-metal custom CentOS flannel docs Community (@coolsvap)

lxd Juju Ubuntu flannel/canal docs Commercial and Community

AWS Juju Ubuntu flannel/calico/canal docs Commercial and Community

Azure Juju Ubuntu flannel/calico/canal docs Commercial and Community

GCE Juju Ubuntu flannel/calico/canal docs Commercial and Community

Oracle Cloud Juju Ubuntu flannel/calico/canal docs Commercial and Community

Rackspace Juju Ubuntu flannel/calico/canal docs Commercial and Community

VMware vSphere Juju Ubuntu flannel/calico/canal docs Commercial and Community

Bare Metal Juju Ubuntu flannel/calico/canal docs Commercial and Community

IaaS Provider
Config.
Mgmt.

OS Networking Docs Support Level

file:///docs/setup/independent/create-cluster-kubeadm/
https://git.k8s.io/community/sig-cluster-lifecycle
https://cloud.google.com/kubernetes-engine/docs/
https://stackpoint.io/
https://appscode.com/products/cloud-deployment/
https://madcore.ai
https://github.com/madcore-ai
https://platform9.com/managed-kubernetes/
http://docs.kubermatic.io/
https://docs.giantswarm.io/
file:///docs/getting-started-guides/gce/
https://azure.microsoft.com/en-us/services/container-service/
file:///docs/getting-started-guides/azure/
https://github.com/Azure/acs-engine
file:///docs/getting-started-guides/fedora/fedora_manual_config/
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
file:///docs/getting-started-guides/dcos/
https://github.com/mesosphere/kubernetes-mesos/blob/master/AUTHORS.md
file:///docs/getting-started-guides/aws/
file:///docs/getting-started-guides/coreos/
https://github.com/pires
file:///docs/getting-started-guides/coreos/
https://github.com/pires
https://github.com/AntonioMeireles
file:///docs/getting-started-guides/cloudstack/
https://github.com/sebgoa
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/contactus.html
file:///docs/getting-started-guides/centos/centos_manual_config/
https://github.com/coolsvap
file:///docs/getting-started-guides/ubuntu/local/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes
file:///docs/getting-started-guides/ubuntu/
https://www.ubuntu.com/kubernetes
https://jujucharms.com/kubernetes

AWS Saltstack Debian AWS docs Community (@justinsb)

AWS kops Debian AWS docs Community (@justinsb)

Bare-metal custom Ubuntu flannel docs
Community (@resouer,
@WIZARD-CXY)

oVirt docs Community (@simon3z)

any any any any docs Community (@erictune)

any any any any docs Commercial and Community

IaaS Provider
Config.
Mgmt.

OS Networking Docs Support Level

Note: The above table is ordered by version test/used in nodes, followed by support level.

Definition of columns

IaaS Provider is the product or organization which provides the virtual or physical

machines (nodes) that Kubernetes runs on.

OS is the base operating system of the nodes.

Config. Mgmt. is the configuration management system that helps install and maintain

Kubernetes on the nodes.

Networking is what implements the networking model. Those with networking type none

may not support more than a single node, or may support multiple VM nodes in a single

physical node.

Conformance indicates whether a cluster created with this configuration has passed the

project’s conformance tests for supporting the API and base features of Kubernetes

v1.0.0.

Support Levels

Project: Kubernetes committers regularly use this configuration, so it usually works

with the latest release of Kubernetes.

Commercial: A commercial offering with its own support arrangements.

Community: Actively supported by community contributions. May not work with

recent releases of Kubernetes.

Inactive: Not actively maintained. Not recommended for first-time Kubernetes users,

and may be removed.

file:///docs/getting-started-guides/aws/
https://github.com/justinsb
https://github.com/kubernetes/kops/
https://github.com/justinsb
file:///docs/getting-started-guides/ubuntu/
https://github.com/resouer
https://github.com/WIZARD-CXY
file:///docs/getting-started-guides/ovirt/
https://github.com/simon3z
file:///docs/getting-started-guides/scratch/
https://github.com/erictune
http://docs.projectcalico.org/v2.2/getting-started/kubernetes/installation/
file:///docs/concepts/cluster-administration/networking/

Notes has other relevant information, such as the version of Kubernetes used.

v1.10 Release Notes

v1.10.0

Downloads for v1.10.0

Client Binaries

Server Binaries

Node Binaries

Major Themes

Node

Storage

Windows

OpenStack

API-machinery

Auth

Azure

CLI

Cluster Lifecycle

Network

Before Upgrading

Known Issues

Deprecations

Other Notable Changes

Apps

AWS

Auth

CLI

Cluster Lifecycle

GCP

Instrumentation

Node

OpenStack

Scalability

Storage

Windows

Autoscaling

API-Machinery

Network

Azure

Scheduling

Other changes

Non-user-facing Changes

External Dependencies

v1.10.0-rc.1

Downloads for v1.10.0-rc.1

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-beta.4

Other notable changes

v1.10.0-beta.4

Downloads for v1.10.0-beta.4

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-beta.3

Other notable changes

v1.10.0-beta.3

Downloads for v1.10.0-beta.3

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-beta.2

Other notable changes

v1.10.0-beta.2

Downloads for v1.10.0-beta.2

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-beta.1

Action Required

Other notable changes

v1.10.0-beta.1

Downloads for v1.10.0-beta.1

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-alpha.3

Action Required

Other notable changes

v1.10.0-alpha.3

Downloads for v1.10.0-alpha.3

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-alpha.2

Other notable changes

v1.10.0-alpha.2

Downloads for v1.10.0-alpha.2

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.10.0-alpha.1

Action Required

Other notable changes

v1.10.0-alpha.1

Downloads for v1.10.0-alpha.1

Client Binaries

Server Binaries

Node Binaries

Changelog since v1.9.0

Action Required

Other notable changes

v1.10.0

Documentation & Examples

Downloads for v1.10.0

filename sha256 hash

kubernetes.tar.gz a48d4f6eb4bf329a87915d2264250f2045aab1e8c6cc3e574a887ec42b5c6edca48d4f6eb4bf329a87915d2264250f2045aab1e8c6cc3e574a887ec42b5c6edc

kubernetes-
src.tar.gz

3b51bf50370fc022f5e4578b071db6b63963cd64b35c41954d4a2a8f6738c0a73b51bf50370fc022f5e4578b071db6b63963cd64b35c41954d4a2a8f6738c0a7

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

8f35d820d21bfdb3186074eb2ed5212b983e119215356a7a76a9f773f2a1e6a38f35d820d21bfdb3186074eb2ed5212b983e119215356a7a76a9f773f2a1e6a3

kubernetes-
client-darwin-
amd64.tar.gz

ae06d0cd8f6fa8d145a9dbdb77e6cba99ad9cfce98b01c766df1394c17443e42ae06d0cd8f6fa8d145a9dbdb77e6cba99ad9cfce98b01c766df1394c17443e42

kubernetes-
client-linux-
386.tar.gz

8147723a68763b9791def5b41d75745e835ddd82f23465a2ba7797b84ad735548147723a68763b9791def5b41d75745e835ddd82f23465a2ba7797b84ad73554

kubernetes-
client-linux-
amd64.tar.gz

845668fe2f854b05aa6f0b133314df83bb41a486a6ba613dbb1374bf3fbe8720845668fe2f854b05aa6f0b133314df83bb41a486a6ba613dbb1374bf3fbe8720

kubernetes-
client-linux-
arm.tar.gz

5d2552a6781ef0ecaf308fe6a02637faef217c98841196d4bd7c52a0f1a4bfa05d2552a6781ef0ecaf308fe6a02637faef217c98841196d4bd7c52a0f1a4bfa0

kubernetes-
client-linux-
arm64.tar.gz

9d5e4ba43ad7250429015f33f728c366daa81e894e8bfe8063d73ce990e829449d5e4ba43ad7250429015f33f728c366daa81e894e8bfe8063d73ce990e82944

kubernetes-
client-linux-
ppc64le.tar.gz

acabf3a26870303641ce60a59b5bb9702c8a7445b16f4293abc7868e91d252c8acabf3a26870303641ce60a59b5bb9702c8a7445b16f4293abc7868e91d252c8

kubernetes-

https://docs.k8s.io
https://releases.k8s.io/release-1.10/examples
https://dl.k8s.io/v1.10.0/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-linux-ppc64le.tar.gz

client-linux-
s390x.tar.gz

8d836df10b50d11434b5ee797aecc21714723f02fc47fe3dd600426eb83b9e388d836df10b50d11434b5ee797aecc21714723f02fc47fe3dd600426eb83b9e38

kubernetes-
client-
windows-
386.tar.gz

ca183b66f910ff11fa468e47251c68d256ef145fcfc2d23d4347d066e7787971ca183b66f910ff11fa468e47251c68d256ef145fcfc2d23d4347d066e7787971

kubernetes-
client-
windows-
amd64.tar.gz

817aea754a059c635f4d690aa0232a8e77eb74e76357cafd8f10556972022e9e817aea754a059c635f4d690aa0232a8e77eb74e76357cafd8f10556972022e9e

filename sha256 hash

Server Binaries

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

f2e0505bee7d9217332b96be11d1b88c06f51049f7a44666b0ede80bfb92fdf6f2e0505bee7d9217332b96be11d1b88c06f51049f7a44666b0ede80bfb92fdf6

kubernetes-
server-linux-
arm.tar.gz

a7be68c32a299c98353633f3161f910c4b970c8364ccee5f98e1991364b3ce69a7be68c32a299c98353633f3161f910c4b970c8364ccee5f98e1991364b3ce69

kubernetes-
server-linux-
arm64.tar.gz

4df4add2891d02101818653ac68b57e6ce4760fd298f47467ce767ac029f45084df4add2891d02101818653ac68b57e6ce4760fd298f47467ce767ac029f4508

kubernetes-
server-linux-
ppc64le.tar.gz

199b52461930c0218f984884069770fb7e6ceaf66342d5855b209ff1889025b8199b52461930c0218f984884069770fb7e6ceaf66342d5855b209ff1889025b8

kubernetes-
server-linux-
s390x.tar.gz

578f93fc22d2a5bec7dc36633946eb5b7359d96233a2ce74f8b3c5a231494584578f93fc22d2a5bec7dc36633946eb5b7359d96233a2ce74f8b3c5a231494584

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

8c03412881eaab5f3ea828bbb81e8ebcfc092d311b2685585817531fa7c2a2898c03412881eaab5f3ea828bbb81e8ebcfc092d311b2685585817531fa7c2a289

kubernetes-
node-linux-
arm.tar.gz

d6a413fcadb1b933a761ac9b0c864f596498a8ac3cc4922c1569306cd0047b1dd6a413fcadb1b933a761ac9b0c864f596498a8ac3cc4922c1569306cd0047b1d

kubernetes-
node-linux-
arm64.tar.gz

46d6b74759fbc3b2aad42357f019dae0e882cd4639e499e31b5b029340dabd4246d6b74759fbc3b2aad42357f019dae0e882cd4639e499e31b5b029340dabd42

kubernetes-
node-linux-
ppc64le.tar.gz

bdecc12feab2464ad917623ade0cbf58675e0566db38284b79445841d246fc08bdecc12feab2464ad917623ade0cbf58675e0566db38284b79445841d246fc08

kubernetes-
node-linux-
s390x.tar.gz

afe35c2854f35939be75ccfb0ec81399acf4043ae7cf19dd6fbe6386288972c2afe35c2854f35939be75ccfb0ec81399acf4043ae7cf19dd6fbe6386288972c2

https://dl.k8s.io/v1.10.0/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-client-windows-amd64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0/kubernetes-node-linux-s390x.tar.gz

kubernetes-
node-windows-
amd64.tar.gz

eac14e3420ca9769e067cbf929b5383cd77d56e460880a30c0df1bbfbb5a43dbeac14e3420ca9769e067cbf929b5383cd77d56e460880a30c0df1bbfbb5a43db
filename sha256 hash

Major Themes

Node

Many of the changes within SIG-Node revolve around control. With the beta release of the

kubelet.config.k8s.iokubelet.config.k8s.io API group, a significant subset of Kubelet configuration can now be

configured via a versioned config file . Kubernetes v1.10 adds alpha support for the ability to

configure whether containers in a pod should share a single process namespace , and the CRI

has been upgraded to v1alpha2, which adds support for Windows Container Configuration.

Kubernetes v1.10 also ships with the beta release of the CRI validation test suite.

The Resource Management Working Group graduated three features to beta in the 1.10

release. First, CPU Manager, which allows users to request exclusive CPU cores. This helps

performance in a variety of use-cases, including network latency sensitive applications, as well

as applications that benefit from CPU cache residency. Next, Huge Pages, which allows pods

to consume either 2Mi or 1Gi Huge Pages. This benefits applications that consume large

amounts of memory. Use of Huge Pages is a common tuning recommendation for databases

and JVMs. Finally, the Device Plugin feature, which provides a framework for vendors to

advertise their resources to the Kubelet without changing Kubernetes core code. Targeted

devices include GPUs, High-performance NICs, FPGAs, InfiniBand, and other similar computing

resources that may require vendor specific initialization and setup.

Storage

This release brings additional power to both local storage and Persistent Volumes. Mount

namespace propagation allows a container to mount a volume as rslave so that host mounts

can be seen inside the container, or as rshared so that mounts made inside a container can be

seen by the host. (Note that this is not supported on Windows.) Local Ephemeral Storage

Capacity Isolation makes it possible to set requests and limits on ephemeral local storage

resources. In addition, you can now create Local Persistent Storage, which enables

PersistentVolumes to be created with locally attached disks, and not just network volumes.

On the Persistent Volumes side, this release Prevents deletion of Persistent Volume Claims

that are used by a pod and Persistent Volumes that are bound to a Persistent Volume Claim ,

https://dl.k8s.io/v1.10.0/kubernetes-node-windows-amd64.tar.gz
https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
https://github.com/kubernetes/features/issues/495
https://github.com/kubernetes/features/issues/547
https://github.com/kubernetes/features/issues/292
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/
https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/
https://github.com/kubernetes/features/issues/432
https://github.com/kubernetes/kubernetes/pull/60275
https://github.com/kubernetes/features/issues/361
https://github.com/kubernetes/features/issues/121
https://github.com/kubernetes/features/issues/498
https://github.com/kubernetes/features/issues/499

making it impossible to delete storage that is in use by a pod.

This release also includes Topology Aware Volume Scheduling for local persistent volumes,

the stable release of Detailed storage metrics of internal state, and beta support for Out-of-tree

CSI Volume Plugins.

Windows

This release continues to enable more existing features on Windows, including container CPU

resources, image filesystem stats, and flexvolumes. It also adds Windows service control

manager support and experimental support for Hyper-V isolation of single-container pods.

OpenStack

SIG-OpenStack updated the OpenStack provider to use newer APIs, consolidated community

code into one repository, engaged with the Cloud Provider Working Group to have a consistent

plan for moving provider code into individual repositories, improved testing of provider code,

and strengthened ties with the OpenStack developer community.

API-machinery

API Aggregation has been upgraded to “stable” in Kubernetes 1.10, so you can use it in

production. Webhooks have seen numerous improvements, including alpha Support for self-

hosting authorizer webhooks.

Auth

This release lays the groundwork for new authentication methods, including the alpha release

of External client-go credential providers and the TokenRequest API. In addition, Pod Security

Policy now lets administrators decide what contexts pods can run in, and gives administrators

the ability to limit node access to the API.

Azure

Kubernetes 1.10 includes alpha Azure support for cluster-autoscaler, as well as support for

Azure Virtual Machine Scale Sets.

CLI

https://github.com/kubernetes/features/issues/490
https://github.com/kubernetes/features/issues/496
https://github.com/kubernetes/features/issues/178
https://github.com/kubernetes/features/issues/263
https://github.com/kubernetes/features/issues/516
https://github.com/kubernetes/features/issues/541
https://github.com/kubernetes/features/issues/542
https://github.com/kubernetes/features/issues/5
https://github.com/kubernetes/features/issues/279
https://github.com/kubernetes/features/issues/514
https://github.com/kubernetes/features/issues/513

This release includes a change to kubectl get and describe to work better with extensions, as

the server, rather than the client, returns this information for a smoother user experience.

Network

In terms of networking, Kubernetes 1.10 is about control. Users now have beta support for the

ability to configure a pod’s resolv.conf, rather than relying on the cluster DNS, as well as

configuring the NodePort IP address. You can also switch the default DNS plugin to CoreDNS

(beta).

Before Upgrading

In-place node upgrades to this release from versions 1.7.14, 1.8.9, and 1.9.4 are not

supported if using subpath volumes with PVCs. Such pods should be drained from the

node first.

The minimum supported version of Docker is now 1.11; if you are using Docker 1.10 or

below, be sure to upgrade Docker before upgrading Kubernetes. (#57845, @yujuhong)

The Container Runtime Interface (CRI) version has increased from v1alpha1 to v1alpha2.

Runtimes implementing the CRI will need to update to the new version, which configures

container namespaces using an enumeration rather than booleans. This change to the

alpha API is not backwards compatible; implementations of the CRI such as containerd,

will need to update to the new API version. (#58973, @verb)

The default Flexvolume plugin directory for COS images on GCE has changed to

/home/kubernetes/flexvolume/home/kubernetes/flexvolume , rather than

/etc/srv/kubernetes/kubelet-plugins/volume/exec/etc/srv/kubernetes/kubelet-plugins/volume/exec . Existing Flexvolume

installations in clusters using COS images must be moved to the new directory, and

installation processes must be updated with the new path. (#58171, @verult)

Default values differ between the Kubelet’s componentconfig (config file) API and the

Kubelet’s command line. Be sure to review the default values when migrating to using a

config file. For example, the authz mode is set to “AlwaysAllow” if you rely on the

command line, but defaults to the more secure “Webhook” mode if you load config from a

file. (#59666, @mtaufen)

[GCP kube-up.sh] Variables that were part of kube-env that were only used for kubelet

https://github.com/kubernetes/features/issues/515
https://github.com/kubernetes/features/issues/504
https://github.com/kubernetes/features/issues/539
https://github.com/kubernetes/features/issues/427
https://github.com/kubernetes/kubernetes/pull/57845
https://github.com/yujuhong
https://github.com/kubernetes/kubernetes/pull/58973
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/58171
https://github.com/verult
https://github.com/kubernetes/kubernetes/pull/59666
https://github.com/mtaufen

flags are no longer being set, and are being replaced by the more portable mechanism of

the kubelet configuration file. The individual variables in the kube-env metadata entry were

never meant to be a stable interface and this release note only applies if you are depending

on them. (#60020, @roberthbailey)

kube-proxy: feature gates are now specified as a map when provided via a JSON or YAML

KubeProxyConfiguration, rather than as a string of key-value pairs. For example:

KubeProxyConfiguration Before:

KubeProxyConfiguration After:

(#57962, @xiangpengzhao)

The kubeletconfigkubeletconfig API group has graduated from alpha to beta, and the name has

changed to kubelet.config.k8s.iokubelet.config.k8s.io . Please use kubelet.config.k8s.io/v1beta1kubelet.config.k8s.io/v1beta1 , as

kubeletconfig/v1alpha1kubeletconfig/v1alpha1 is no longer available. (#53833, @mtaufen)

kube-apiserver: the experimental in-tree Keystone password authenticator has been

removed in favor of extensions that enable use of Keystone tokens. (#59492, @dims)

The udpTimeoutMilliseconds field in the kube-proxy configuration file has been renamed

to udpIdleTimeout. Administrators must update their files accordingly. (#57754, @ncdc)

The kubelet’s --cloud-provider=auto-detect--cloud-provider=auto-detect feature has been removed; make certain

to specify the cloud provider. (#56287, @stewart-yu)

kube-apiserver: the OpenID Connect authenticator no longer accepts tokens from the

Google v3 token APIs; users must switch to the

“https://www.googleapis.com/oauth2/v4/token” endpoint.

kube-apiserver: the root /proxy paths have been removed (deprecated since v1.2). Use the

apiVersion: kubeproxy.config.k8s.io/v1alpha1apiVersion: kubeproxy.config.k8s.io/v1alpha1

kind: KubeProxyConfigurationkind: KubeProxyConfiguration

featureGates: "SupportIPVSProxyMode=true"**featureGates: "SupportIPVSProxyMode=true"**

apiVersion: kubeproxy.config.k8s.io/v1alpha1apiVersion: kubeproxy.config.k8s.io/v1alpha1

kind: KubeProxyConfigurationkind: KubeProxyConfiguration

featureGates:**featureGates:**

** SupportIPVSProxyMode: true**** SupportIPVSProxyMode: true**

https://github.com/kubernetes/kubernetes/pull/60020
https://github.com/roberthbailey
https://github.com/kubernetes/kubernetes/pull/57962
https://github.com/xiangpengzhao
https://github.com/kubernetes/kubernetes/pull/53833
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59492
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/57754
https://github.com/ncdc
https://github.com/kubernetes/kubernetes/pull/56287
https://github.com/stewart-yu

/proxy subresources on objects that support HTTP proxying. (#59884, @mikedanese)

Eviction thresholds set to 0% or 100% will turn off eviction. (#59681, @mtaufen)

CustomResourceDefinitions: OpenAPI v3 validation schemas containing refref references

are no longer permitted. Before upgrading, ensure CRD definitions do not include those

refref fields. (#58438, @carlory)

Webhooks now do not skip cluster-scoped resources. Before upgrading your Kubernetes

clusters, double check whether you have configured webhooks for cluster-scoped objects

(e.g., nodes, persistentVolume), as these webhooks will start to take effect. Delete/modify

the configs if that’s not desirable. (#58185, @caesarxuchao)

Using kubectl gcp auth plugin with a Google Service Account to authenticate to a cluster

now additionally requests a token with the “userinfo.email” scope. This way, users can

write ClusterRoleBindings/RoleBindings with the email address of the service account

directly. (This is a breaking change if the numeric uniqueIDs of the Google service

accounts were being used in RBAC role bindings. The behavior can be overridden by

explicitly specifying the scope values as comma-separated string in the

“users[*].config.scopes” field in the KUBECONFIG file.) This way, users can now set a

Google Service Account JSON key in the GOOGLE_APPLICATION_CREDENTIALS

environment variable, craft a kubeconfig file with GKE master IP+CA cert, and authenticate

to GKE in headless mode without requiring gcloud CLI. (#58141, @ahmetb)

kubectl port-forward no longer supports the deprecated -p flag; the flag itself is

unnecessary and should be replaced by just the ``. ([#59705]

(https://github.com/kubernetes/kubernetes/pull/59705), [@phsiao]

(https://github.com/phsiao))

Removed deprecated –require-kubeconfig flag, removed default –kubeconfig value

((#58367, @zhangxiaoyu-zidif)

The public-address-override, address, and port flags have been removed and replaced by

bind-address, insecure-bind-address, and insecure-port, respectively. They are marked as

deprecated in #36604, which is more than a year ago. (#59018, @hzxuzhonghu)

The alpha --init-config-dir--init-config-dir flag has been removed. Instead, use the --config--config flag to

reference a kubelet configuration file directly. (#57624, @mtaufen)

Removed deprecated and unmaintained salt support. kubernetes-salt.tar.gz will no longer

be published in the release tarball. (#58248, @mikedanese)

https://github.com/kubernetes/kubernetes/pull/59884
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/59681
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/58438
https://github.com/carlory
https://github.com/kubernetes/kubernetes/pull/58185
https://github.com/caesarxuchao
https://github.com/kubernetes/kubernetes/pull/58141
https://github.com/ahmetb
https://github.com/kubernetes/kubernetes/pull/58367
https://github.com/zhangxiaoyu-zidif
https://github.com/kubernetes/kubernetes/pull/36604
https://github.com/kubernetes/kubernetes/pull/59018
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/57624
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/58248
https://github.com/mikedanese

The deprecated –mode switch for GCE has been removed.(#61203)

The word “manifest” has been expunged from the Kubelet API. (#60314)

https://github.com/kubernetes/kubernetes/issues/49213 sig-cluster-lifecycle has decided

to phase out the cluster/ directory over the next couple of releases in favor of deployment

automations maintained outside of the core repo and outside of kubernetes orgs.

@kubernetes/sig-cluster-lifecycle-misc)

Remove deprecated ContainerVM support from GCE kube-up. (#58247,

@mikedanese)

Remove deprecated kube-push.sh functionality. (#58246, @mikedanese)

Remove deprecated container-linux support in gce kube-up.sh. (#58098,

@mikedanese)

Remove deprecated and unmaintained photon-controller kube-up.sh. (#58096,

@mikedanese)

Remove deprecated and unmaintained libvirt-coreos kube-up.sh. (#58023,

@mikedanese)

Remove deprecated and unmaintained windows installer. (#58020, @mikedanese)

Remove deprecated and unmaintained openstack-heat kube-up.sh. (#58021,

@mikedanese)

Remove deprecated vagrant kube-up.sh. (#58118,@roberthbailey)

The DaemonSet controller, its integration tests, and its e2e tests, have been updated to

use the apps/v1 API. Users should, but are not yet required to, update their scripts

accordingly. (#59883, @kow3ns)

MountPropagation feature is now beta. As a consequence, all volume mounts in

containers are now rslaverslave on Linux by default. To make this default work in all Linux

environments the entire mount tree should be marked as shareable, e.g. via

mount --make-rsharedmount --make-rshared

// . All Linux distributions that use systemd already have the root

directory mounted as rshared and hence they need not do anything. In Linux environments

without systemd we recommend running

mount --make-rsharedmount --make-rshared

// during boot before

docker is started, (@jsafrane)

https://github.com/kubernetes/kubernetes/pull/61203
https://github.com/kubernetes/kubernetes/pull/60314
https://github.com/kubernetes/kubernetes/issues/49213
https://github.com/orgs/kubernetes/teams/sig-cluster-lifecycle-misc
https://github.com/kubernetes/kubernetes/pull/58247
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58246
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58098
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58096
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58023
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58020
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58021
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58118
https://github.com/roberthbailey
https://github.com/kubernetes/kubernetes/pull/59883
https://github.com/kow3ns
https://github.com/jsafrane

Known Issues

Use of subPath module with hostPath volumes can cause issues during reconstruction

(#61446) and with containerized kubelets (#61456). The workaround for this issue is to

specify the complete path in the hostPath volume. Use of subPathmounts nested within

atomic writer volumes (configmap, secret, downwardAPI, projected) does not work

(#61545), and socket files cannot be loaded from a subPath (#62377). Work on these

issues is ongoing.

Kubeadm is currently omitting etcd certificates in a self-hosted deployment; this will be

fixed in a point relelase. (#61322)

Some users, especially those with very large clusters, may see higher memory usage by

the kube-controller-manager in 1.10. (#61041)

Deprecations

etcd2 as a backend is deprecated and support will be removed in Kubernetes 1.13.

VolumeScheduling and LocalPersistentVolume features are beta and enabled by default.

The PersistentVolume NodeAffinity alpha annotation is deprecated and will be removed in

a future release. (#59391, @msau42)

The alpha Accelerators feature gate is deprecated and will be removed in v1.11. Please

use device plugins (https://github.com/kubernetes/features/issues/368) instead. They

can be enabled using the DevicePlugins feature gate. (#57384, @mindprince)

The ability to use kubectl scale jobs is deprecated. All other scale operations remain in

place, but the ability to scale jobs will be removed in a future release. (#60139, @soltysh)

Flags that can be set via the Kubelet’s –config file are now deprecated in favor of the file.

(#60148, @mtaufen)

--show-all--show-all (which only affected pods and only for human readable/non-API printers) is

now defaulted to true and deprecated. The flag determines whether pods in a terminal

state are displayed. It will be inert in 1.11 and removed in a future release. (#60210,

@deads2k)

https://github.com/kubernetes/kubernetes/issues/61446
https://github.com/kubernetes/kubernetes/issues/61456
https://github.com/kubernetes/kubernetes/issues/61545
https://github.com/kubernetes/kubernetes/issues/61377
https://github.com/kubernetes/kubernetes/issues/61322
https://github.com/kubernetes/kubernetes/issues/61041
https://github.com/kubernetes/kubernetes/pull/59391
https://github.com/msau42
https://github.com/kubernetes/features/issues/368
https://github.com/kubernetes/kubernetes/pull/57384
https://github.com/mindprince
https://github.com/kubernetes/kubernetes/pull/60139
https://github.com/soltysh
https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/
https://github.com/kubernetes/kubernetes/pull/60148
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/60210
https://github.com/deads2k

The ability to use the insecure HTTP port of kube-controller-manager and cloud-controller-

manager has been deprecated, and will be removed in a future release. Use

--secure-port--secure-port and --bind-address--bind-address instead. (#59582, @sttts)

The ability to use the insecure flags --insecure-bind-address--insecure-bind-address , --insecure-port--insecure-port in

the apiserver has been deprecated and will be removed in a future release. Use

--secure-port--secure-port and --bind-address--bind-address instead. (#59018, @hzxuzhonghu)

The recycling reclaim policy has been deprecated. Users should use dynamic provisioning

instead. (#59063, @ayushpateria)

kube-apiserver flag –tls-ca-file has had no effect for some time. It is now deprecated and

slated for removal in 1.11. If you are specifying this flag, you must remove it from your

launch config before upgrading to 1.11. (#58968, @deads2k)

The PodSecurityPolicyPodSecurityPolicy API has been moved to the policy/v1beta1policy/v1beta1 API group. The

PodSecurityPolicyPodSecurityPolicy API in the extensions/v1beta1extensions/v1beta1 API group is deprecated and will

be removed in a future release. Authorizations for using pod security policy resources

should change to reference the policypolicy API group after upgrading to 1.11. (#54933,

@php-coder)

Add --enable-admission-plugin--enable-admission-plugin --disable-admission-plugin--disable-admission-plugin flags and deprecate

--admission-control--admission-control . When using the separate flag, the order in which they’re specified

doesn’t matter. (#58123, @hzxuzhonghu)

The kubelet –docker-disable-shared-pid flag, which runs docker containers with a process

namespace that is shared between all containers in a pod, is now deprecated and will be

removed in a future release. It is replaced by v1.Pod.Spec.ShareProcessNamespacev1.Pod.Spec.ShareProcessNamespace ,

which configures this behavior. This field is alpha and can be enabled with –feature-

gates=PodShareProcessNamespace=true. (#58093, @verb)

The kubelet’s cadvisor port has been deprecated. The default will change to 0 (disabled) in

1.12, and the cadvisor port will be removed entirely in 1.13. (#59827, @dashpole)

rktnetes has been deprecated in favor of rktlet. Please see https://github.com/kubernetes-

incubator/rktlet for more information. (#58418, @yujuhong)

The Kubelet now explicitly registers all of its command-line flags with an internal flagset,

which prevents flags from third party libraries from unintentionally leaking into the

Kubelet’s command-line API. Many unintentionally leaked flags are now marked

https://github.com/kubernetes/kubernetes/pull/59582
https://github.com/sttts
https://github.com/kubernetes/kubernetes/pull/59018
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/59063
https://github.com/ayushpateria
https://github.com/kubernetes/kubernetes/pull/58968
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/54933
https://github.com/php-coder
https://github.com/kubernetes/kubernetes/pull/58123
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/58093
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/59827
https://github.com/dashpole
https://github.com/kubernetes-incubator/rktlet
https://github.com/kubernetes/kubernetes/pull/58418
https://github.com/yujuhong

deprecated, so that users have a chance to migrate away from them before they are

removed. In addition, one previously leaked flag, –cloud-provider-gce-lb-src-cidrs, has been

entirely removed from the Kubelet’s command-line API, because it is irrelevant to Kubelet

operation. The deprecated flags are:

–application_metrics_count_limit

–boot_id_file

–container_hints

–containerd

–docker

–docker_env_metadata_whitelist

–docker_only

–docker-tls

–docker-tls-ca

–docker-tls-cert

–docker-tls-key

–enable_load_reader

–event_storage_age_limit

–event_storage_event_limit

–global_housekeeping_interval

–google-json-key

–log_cadvisor_usage

–machine_id_file

–storage_driver_user

–storage_driver_password

–storage_driver_host

–storage_driver_db

–storage_driver_table

–storage_driver_secure

–storage_driver_buffer_duration

(#57613, @mtaufen)

The boostrapped RBAC role and rolebinding for the cloud-providercloud-provider service account is

now deprecated. If you’re currently using this service account, you must create and apply

your own RBAC policy for new clusters. (#59949, @nicksardo)

Format-separated endpoints for the OpenAPI spec, such as /swagger.json, /swagger-

2.0.0.0.json, and so on, have been deprecated. The old endpoints will remain in 1.10, 1.11,

1.12 and 1.13, and get removed in 1.14. Please use single /openapi/v2/openapi/v2 endpoint with the

appropriate Accept: header instead. For example:

previous now

GET /swagger.json GET /openapi/v2 Accept: application/json

GET /swagger-2.0.0.pb-
v1

GET /openapi/v2 Accept: application/com.github.proto-openapi.spec.v2@v1.0+protobuf

GET /swagger-2.0.0.pb-
v1.gz

GET /openapi/v2 Accept: application/com.github.proto-openapi.spec.v2@v1.0+protobuf
Accept-Encoding: gzip

(#59293, @roycaihw)

Other Notable Changes

Apps

Updated defaultbackend image to 1.4 and deployment apiVersion to apps/v1. Users

should concentrate on updating scripts to the new version. (#57866, @zouyee)

Fix StatefulSet to work correctly with set-based selectors. (#59365, @ayushpateria)

Fixes a case when Deployment with recreate strategy could get stuck on old failed Pod.

(#60301, @tnozicka)

ConfigMap objects now support binary data via a new binaryDatabinaryData field. When using

https://github.com/kubernetes/kubernetes/pull/57613
https://github.com/mtaufen
https://kubernetes.io/docs/admin/authorization/rbac/
https://github.com/kubernetes/kubernetes/pull/59949
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/59293
https://github.com/roycaihw
https://github.com/kubernetes/kubernetes/pull/57866
https://github.com/zouyee
https://github.com/kubernetes/kubernetes/pull/59365
https://github.com/ayushpateria
https://github.com/kubernetes/kubernetes/pull/60301
https://github.com/tnozicka

kubectl create configmap --from-kubectl create configmap --from-

filefile , files containing non-UTF8 data will be placed

in this new field in order to preserve the non-UTF8 data. Note that kubectl’s

--append-hash--append-hash feature doesn’t take binaryDatabinaryData into account. Use of this feature

requires 1.10+ apiserver and kubelets. (#57938, @dims)

AWS

Add AWS cloud provider option to use an assumed IAM role. For example, this allows

running Controller Manager in a account separate from the worker nodes, but still allows

all resources created to interact with the workers. ELBs created would be in the same

account as the worker nodes for instance.(#59668, @brycecarman)

AWS EBS volume plugin now includes block and volumeMode support. (#58625,

@screeley44)

On AWS kubelet returns an error when started under conditions that do not allow it to

work (AWS has not yet tagged the instance), rather than failing silently. (#60125, @vainu-

arto)

AWS Security Groups created for ELBs will now be tagged with the same additional tags

as the ELB; that is, the tags specified by the “service.beta.kubernetes.io/aws-load-

balancer-additional-resource-tags” annotation. This is useful for identifying orphaned

resources. (#58767, @2rs2ts)

AWS Network Load Balancers will now be deleted properly, including security group rules.

Fixes #57568 (#57569, @micahhausler)

Time for attach/detach retry operations has been decreased from 10-12s to 2-6s (#56974,

@gnufied)

Auth

Contexts must be named in kubeconfigs. (#56769, @dixudx)

vSphere operations will no longer fail due to authentication errors. (#57978, @prashima)

This removes the cloud-provider role and role binding from the rbac boostrapper and

replaces it with a policy applied via addon mgr. This also creates a new clusterrole

allowing the service account to create events for any namespace.

https://github.com/kubernetes/kubernetes/pull/57938
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/59668
https://github.com/brycecarman
https://github.com/kubernetes/kubernetes/pull/58625
https://github.com/screeley44
https://github.com/kubernetes/kubernetes/pull/60125
https://github.com/vainu-arto
https://github.com/kubernetes/kubernetes/pull/58767
https://github.com/2rs2ts
https://github.com/kubernetes/kubernetes/pull/57568
https://github.com/kubernetes/kubernetes/pull/57569
https://github.com/micahhausler
https://github.com/kubernetes/kubernetes/pull/56974
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/56769
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/57978
https://github.com/prashima

client-go: alpha support for out-of-tree exec-based credential providers. For example, a

cloud provider could create their own authentication system rather than using the

standard authentication provided with Kubernetes. (#59495, @ericchiang)

The node authorizer now allows nodes to request service account tokens for the service

accounts of pods running on them. This allows agents using the node identity to take

actions on behalf of local pods. (#55019, @mikedanese)

kube-apiserver: the OpenID Connect authenticator can now verify ID Tokens signed with

JOSE algorithms other than RS256 through the –oidc-signing-algs flag. (#58544,

@ericchiang)

Requests with invalid credentials no longer match audit policy rules where users or

groups are set, correcting a problem where authorized requests were getting through.

(#59398, @CaoShuFeng)

The Stackdriver Metadata Agent addon now includes RBAC manifests, enabling it to

watch nodes and pods. (#57455, @kawych)

Fix RBAC role for certificate controller to allow cleaning up of Certificate Signing Requests

that are Approved and issued or Denied. (#59375, @mikedanese)

kube-apiserver: Use of the --admission-control-config-file--admission-control-config-file with a file containing an

AdmissionConfiguration apiserver.k8s.io/v1alpha1 config object no longer leads to an

error when launching kube-apiserver. (#58439 @liggitt)

Default enabled admission plugins are now

NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuotaNamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota

. Please note that if you previously had not set the --admission-control--admission-control flag, your

cluster behavior may change (to be more standard). (#58684, @hzxuzhonghu)

Encryption key and encryption provider rotation now works properly. (#58375, @liggitt

RBAC: The system:kubelet-api-admin cluster role can be used to grant full access to the

kubelet API so integrators can grant this role to the –kubelet-client-certificate credential

given to the apiserver. (#57128, @liggitt)

DenyEscalatingExec admission controller now checks psp HostNetwork as well as

hostIPC and hostPID. hostNetwork is also checked to deny exec /attach. (#56839,

[@hzxuzhonghu]=(https://github.com/hzxuzhonghu))

When using Role-Based Access Control, the “admin”, “edit”, and “view” roles now have the

https://github.com/kubernetes/kubernetes/pull/59495
https://github.com/ericchiang
https://github.com/kubernetes/kubernetes/pull/55019
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58544
https://github.com/ericchiang
https://github.com/kubernetes/kubernetes/pull/59398
https://github.com/CaoShuFeng
https://github.com/kubernetes/kubernetes/pull/57455
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/59375
https://github.com/mikedanese
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/58684
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/58375
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/57128
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/56839

expected permissions on NetworkPolicy resources, rather than reserving those

permissions to only cluster-admin. (#56650, @danwinship)

Added docker-logins config to kubernetes-worker charm. (#56217, @Cynerva)

Add ability to control primary GID of containers through Pod Spec at Pod level and Per

Container SecurityContext level. (#52077)

CLI

Use structured generator for kubectl autoscale. (#55913, @wackxu)

Allow kubectl to set image env on a cronjob (#57742, @soltysh)

Fixed crash in kubectl cp when path has multiple leading slashes. (#58144, @tomerf)

kubectl port-forward now allows using resource name (e.g., deployment/www) to select a

matching pod, as well as the use of –pod-running-timeout to wait until at least one pod is

running. (#59705, @phsiao)

‘cj’ has been added as a shortname for CronJobs, as in

kubectl getkubectl get

cjcj (#59499,

@soltysh)

crdscrds has been added as a shortname for CustomResourceDefinition, as in

kubectl getkubectl get

crdscrds (#59061, @nikhita)

Fix kubectl explain for resources not existing in default version of API group, such as

batch/v1, Kind=CronJobbatch/v1, Kind=CronJob . (#58753, @soltysh)

Added the ability to select pods in a chosen node to be drained based on given pod label-

selector. (#56864, @juanvallejo)

Kubectl explain now prints out the Kind and API version of the resource being explained.

(#55689, @luksa)

https://github.com/kubernetes/kubernetes/pull/56650
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/56217
https://github.com/Cynerva
https://github.com/kubernetes/kubernetes/pull/52077
https://github.com/kubernetes/kubernetes/pull/55913
https://github.com/wackxu
https://github.com/kubernetes/kubernetes/pull/57742
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/58144
https://github.com/tomerf
https://github.com/kubernetes/kubernetes/pull/59705
https://github.com/phsiao
https://github.com/kubernetes/kubernetes/pull/59499
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/59061
https://github.com/nikhita
https://github.com/kubernetes/kubernetes/pull/58753
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/56864
https://github.com/juanvallejo
https://github.com/kubernetes/kubernetes/pull/55689
https://github.com/luksa

Cluster Lifecycle

The default Kubernetes version for kubeadm is now 1.10. (#61127, @timothysc)

The minimum Kubernetes version in kubeadm is now v1.9.0. (#57233, @xiangpengzhao)

Fixes a bug in Heapster deployment for google sink. (#57902, @kawych)

On cluster provision or upgrade, kubeadm now generates certs and secures all

connections to the etcd static-pod with mTLS. This includes the etcd serving cert, the etcd

peer cert, and the apiserver etcd client cert. Flags and hostMounts are added to the etcd

and apiserver static-pods to load these certs. For connections to etcd, https is now used in

favor of http. (#57415, @stealthybox These certs are also generated on upgrade. (#60385,

@stealthybox)

Demoted controlplane passthrough flags apiserver-extra-args, controller-manager-extra-

args, scheduler-extra-args to alpha flags (#59882, @kris-nova)

The new flag --apiserver-advertise-dns-address--apiserver-advertise-dns-address is used in the node’s kubelet.confg

to point to the API server, allowing users to define a DNS entry instead of an IP address.

(#59288, @stevesloka)

MasterConfiguration manifiest The criSocket flag is now usable within the

MasterConfigurationMasterConfiguration and NodeConfigurationNodeConfiguration manifest files that exist for configuring

kubeadm. Before it only existed as a command line flag and was not able to be configured

when using the --config--config flag and the manifest files. (#59057(#59292, @JordanFaust)

kubeadm initkubeadm init can now omit the tainting of the master node if configured to do so in

kubeadm.yamlkubeadm.yaml using noTaintMaster: truenoTaintMaster: true . For example, uses can create a file with the

content:

And point to the file using the –config flag, as in

kubeadm init --configkubeadm init --config

/etc/kubeadm/kubeadm.yaml/etc/kubeadm/kubeadm.yaml

apiVersion: kubeadm.k8s.io/v1alpha1apiVersion: kubeadm.k8s.io/v1alpha1

kind: MasterConfigurationkind: MasterConfiguration

kubernetesVersion: v1.9.1kubernetesVersion: v1.9.1

noTaintMaster: truenoTaintMaster: true

https://github.com/kubernetes/kubernetes/pull/61127
https://github.com/timothysc
https://github.com/kubernetes/kubernetes/pull/57233
https://github.com/xiangpengzhao
https://github.com/kubernetes/kubernetes/pull/57902
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/57415
https://github.com/stealthybox
https://github.com/kubernetes/kubernetes/pull/60385
https://github.com/stealthybox
https://github.com/kubernetes/kubernetes/pull/59882
https://github.com/kris-nova
https://github.com/kubernetes/kubernetes/pull/59288
https://github.com/stevesloka
https://github.com/kubernetes/kubernetes/pull/59057
https://github.com/kubernetes/kubernetes/pull/59292
https://github.com/JordanFaust

(#55479, @ijc)

kubeadm: New “imagePullPolicy” option in the init configuration file, that gets forwarded to

kubelet static pods to control pull policy for etcd and control plane images. This option

allows for precise image pull policy specification for master nodes and thus for more tight

control over images. It is useful in CI environments and in environments, where the user

has total control over master VM templates (thus, the master VM templates can be

preloaded with the required Docker images for the control plane services). (#58960,

@rosti)

Fixed issue with charm upgrades resulting in an error state. (#59064, @hyperbolic2346)

kube-apiserver –advertise-address is now set using downward API for self-hosted

Kubernetes with kubeadm. (#56084, @andrewsykim)

When using client or server certificate rotation, the Kubelet will no longer wait until the

initial rotation succeeds or fails before starting static pods. This makes running self-

hosted masters with rotation more predictable. (#58930, @smarterclayton)

Kubeadm no longer throws an error for the –cloud-provider=external flag. (#58259,

@dims)

Added support for network spaces in the kubeapi-load-balancer charm. (#58708,

@hyperbolic2346)

Added support for network spaces in the kubernetes-master charm. (#58704,

@hyperbolic2346)

Added support for network spaces in the kubernetes-worker charm. (#58523,

@hyperbolic2346)

Added support for changing nginx and default backend images to kubernetes-worker

config. (#58542, @hyperbolic2346)

kubeadm now accepts --apiserver-extra-args--apiserver-extra-args , --controller-manager-extra-args--controller-manager-extra-args

and --scheduler-extra-args--scheduler-extra-args , making it possible to override / specify additional flags

for control plane components. One good example is to deploy Kubernetes with a different

admission-control flag on API server. (#58080, @simonferquel)

Alpha Initializers have been removed from kubadm admission control. Kubeadm users

who still want to use Initializers can use apiServerExtraArgs through the kubeadm config

file to enable it when booting up the cluster. (#58428, @dixudx)

https://github.com/kubernetes/kubernetes/pull/55479
https://github.com/ijc
https://github.com/kubernetes/kubernetes/pull/58960
https://github.com/rosti
https://github.com/kubernetes/kubernetes/pull/59064
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/56084
https://github.com/andrewsykim
https://github.com/kubernetes/kubernetes/pull/58930
https://github.com/smarterclayton
https://github.com/kubernetes/kubernetes/pull/58259
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/58708
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58704
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58523
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58542
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58080
https://github.com/simonferquel
https://github.com/kubernetes/kubernetes/pull/58428
https://github.com/dixudx

ValidatingAdmissionWebhook and MutatingAdmissionWebhook are beta, and are enabled

in kubeadm by default. (#58255, @dixudx)

Add proxy_read_timeout flag to kubeapi_load_balancer charm. (#57926, @wwwtyro)

Check for known manifests during preflight instead of only checking for non-empty

manifests directory. This makes the preflight checks less heavy-handed by specifically

checking for well-known files (kube-apiserver.yaml, kube-controller-manager.yaml, kube-

scheduler.yaml, etcd.yaml) in /etc/kubernetes/manifests instead of simply checking for a

non-empty directory. (#57287, @mattkelly)

PVC Protection alpha feature was renamed to Storage Protection. The Storage Protection

feature is beta. (#59052, @pospispa)

iSCSI sessions managed by kubernetes will now explicitly set startup.mode to ‘manual’ to

prevent automatic login after node failure recovery. This is the default open-iscsi mode, so

this change will only impact users who have changed their startup.mode to be ‘automatic’

in /etc/iscsi/iscsid.conf. (#57475, @stmcginnis)

The IPVS feature gateway is now enabled by default in kubeadm, which makes the –

feature-gates=SupportIPVSProxyMode=true obsolete, and it is no longer supported.

(#60540, @m1093782566)

GCP

ingress-gce image in glbc.manifest updated to 1.0.0 (#61302, @rramkumar1)

Instrumentation

For advanced auditing, audit policy supports subresources wildcard matching, such as

“resource/”, “/subresource”,”*”. (#55306, @hzxuzhonghu)

Auditing is now enabled behind a featureGate in kubeadm. A user can supply their own

audit policy with configuration option as well as a place for the audit logs to live. If no

policy is supplied a default policy will be provided. The default policy will log all Metadata

level policy logs. It is the example provided in the documentation. (#59067, @chuckha)

Reduce Metrics Server memory requirement from 140Mi + 4Mi per node to 40Mi + 4Mi per

node. (#58391, @kawych)

https://github.com/kubernetes/kubernetes/pull/58255
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/57926
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/57287
https://github.com/mattkelly
https://github.com/kubernetes/kubernetes/pull/59052
https://github.com/pospispa
https://github.com/kubernetes/kubernetes/pull/57475
https://github.com/stmcginnis
https://github.com/kubernetes/kubernetes/pull/60540
https://github.com/m1093782566
https://github.com/kubernetes/kubernetes/pull/61302
https://github.com/rramkumar1
https://github.com/kubernetes/kubernetes/pull/55306
https://github.com/hzxuzhonghu
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://github.com/kubernetes/kubernetes/pull/59067
https://github.com/chuckha
https://github.com/kubernetes/kubernetes/pull/58391
https://github.com/kawych

Annotations is added to advanced audit api. (#58806, @CaoShuFeng)

Reorganized iptables rules to fix a performance regression on clusters with thousands of

services. (#56164, @danwinship)

Container runtime daemon (e.g. dockerd) logs in GCE cluster will be uploaded to

stackdriver and elasticsearch with tag container-runtimecontainer-runtime . (#59103, @Random-Liu)

Enable prometheus apiserver metrics for custom resources. (#57682, @nikhita)

Add apiserver metric for number of requests dropped because of inflight limit, making it

easier to figure out on which dimension the master is overloaded. (#58340, @gmarek)

The Metrics Server now exposes metrics via the /metric endpoint. These metrics are in the

prometheus format. (#57456, @kawych)

Reduced the CPU and memory requests for the Metrics Server Nanny sidecar container to

free up unused resources. (#57252, @kawych)

Enabled log rotation for load balancer’s api logs to prevent running out of disk space.

(#56979, @hyperbolic2346)

Fixed etcd-version-monitoretcd-version-monitor to backward compatibly support etcd 3.1 go-grpc-

prometheus metrics format. (#56871, @jpbetz)

Node

Summary of Container Runtime changes:

[beta] cri-tools: CLI and validation tools for CRI is now v1.0.0-beta.0. This release

mainly focused on UX improvements. [@feiskyer]

[stable] containerd: containerd v1.1 natively supports CRI v1alpha2 now, so users can

use Kubernetes v1.10 with containerd v1.1 directly, without having to use the

intermediate cri-containerd daemon. All Kubernetes 1.10 tests passed. [@Random-

Liu]

[stable] cri-o: cri-o v1.10 updated CRI version to v1alpha2 and made several bug and

stability fixes. [@mrunalp]

[stable] frakti: frakti v1.10 implemented GCE Persistent Disk as a high performance

volume, fixed several bugs, added ARM64 support, and passed all CRI validation

conformance tests and node e2e conformance tests. [@resouer]

https://github.com/kubernetes/kubernetes/pull/58806
https://github.com/CaoShuFeng
https://github.com/kubernetes/kubernetes/pull/56164
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/59103
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/57682
https://github.com/nikhita
https://github.com/kubernetes/kubernetes/pull/58340
https://github.com/gmarek
https://github.com/kubernetes/kubernetes/pull/57456
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/57252
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/56979
https://github.com/hyperbolic2346
https://github.com/grpc-ecosystem/go-grpc-prometheus
https://github.com/kubernetes/kubernetes/pull/56871
https://github.com/jpbetz
https://github.com/kubernetes-incubator/cri-tools
https://github.com/containerd/containerd
https://k8s-testgrid.appspot.com/sig-node-containerd
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes/frakti

Fixed race conditions around devicemanager Allocate() and endpoint deletion. (#60856,

@jiayingz)

kubelet initial flag parse now normalizes flags instead of exiting. (#61053, @andrewsykim)

Fixed regression where kubelet –cpu-cfs-quota flag did not work when –cgroups-per-qos

was enabled (#61294, @derekwaynecarr)

Kubelet now supports container log rotation for container runtimes implementing CRI

(container runtime interface). The feature can be enabled with feature gate

CRIContainerLogRotationCRIContainerLogRotation . The flags --container-log-max-size--container-log-max-size and

--container-log-max-files--container-log-max-files can be used to configure the rotation behavior. (#59898,

@Random-Liu)

Fixed a bug where if an error was returned that was not an autorest.DetailedErrorautorest.DetailedError we

would return

"not found","not found",

nilnil which caused nodes to go to NotReadyNotReady state. (#57484,

@brendandburns)

HugePages feature is beta, and thus enabled by default. (#56939, @derekwaynecarr)

Avoid panic when failing to allocate a Cloud CIDR (aka GCE Alias IP Range). (#58186,

@negz)

‘none’ can now be specified in KubeletConfiguration.EnforceNodeAllocatable (–enforce-

node-allocatable) to explicitly disable enforcement. (#59515, @mtaufen)

The alpha KubeletConfiguration.ConfigTrialDuration field is no longer available. It can still

be set using the dynamic configuration alpha feature. (#59628, @mtaufen)

Summary API will include pod CPU and Memory stats for CRI container runtime. (#60328,

@Random-Liu)

Some field names in the Kubelet’s now v1beta1 config API differ from the v1alpha1 API:

for example, PodManifestPath is renamed to StaticPodPath, ManifestURL is renamed to

StaticPodURL, and ManifestURLHeader is renamed to StaticPodURLHeader. Users should

focus on switching to the v1beta1 API. (#60314, @mtaufen)

The DevicePlugins feature has graduated to beta, and is now enabled by default; users

should focus on moving to the v1beta API if possible. (#60170, @jiayingz)

Per-cpu metrics have been disabled by default for to improve scalability. (#60106,

https://github.com/kubernetes/kubernetes/pull/60856
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/61053
https://github.com/andrewsykim
https://github.com/kubernetes/kubernetes/pull/61294
https://github.com/derekwaynecarr
https://github.com/kubernetes/kubernetes/pull/59898
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/57484
https://github.com/brendandburns
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/
https://github.com/kubernetes/kubernetes/pull/56939
https://github.com/derekwaynecarr
https://github.com/kubernetes/kubernetes/pull/58186
https://github.com/negz
https://github.com/kubernetes/kubernetes/pull/59515
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59628
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/60328
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/60314
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/60170
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/60106

@dashpole)

When the PodShareProcessNamespacePodShareProcessNamespace alpha feature is enabled, setting

pod.Spec.ShareProcessNamespacepod.Spec.ShareProcessNamespace to truetrue will cause a single process namespace to

be shared between all containers in a pod. (#58716, @verb)

Resource quotas on extended resources such as GPUs are now supported. (#57302,

@lichuqiang)

If the TaintNodesByCondition is enabled, a node will be tainted when it is under PID

pressure. (#60008, @k82cn)

The Kubelet Summary API will now include total usage of pods through the “pods”

SystemContainer. (#57802, @dashpole)

vSphere Cloud Provider supports VMs provisioned on vSphere v6.5. (#59519,

@abrarshivani)

Created k8s.gcr.io image repo alias to pull images from the closest regional repo.

Replaces gcr.io/google_containers. (#57824, @thockin)

Fix the bug where kubelet in the standalone mode would wait for the update from the

apiserver source, even if there wasn’t one. (#59276, @roboll)

Changes secret, configMap, downwardAPI and projected volumes to mount read-only,

instead of allowing applications to write data and then reverting it automatically. Until

version 1.11, setting the feature gate ReadOnlyAPIDataVolumes=false will preserve the old

behavior. (#58720, @joelsmith)

Fixes a bug where kubelet crashes trying to free memory under memory pressure.

(#58574, @yastij)

New alpha feature limits the number of processes running in a pod. Cluster administrators

will be able to place limits by using the new kubelet command line parameter –pod-max-

pids. Note that since this is a alpha feature they will need to enable the

“SupportPodPidsLimit” feature. By default, we do not set any maximum limit, If an

administrator wants to enable this, they should enable SupportPodPidsLimit=true in the –

feature-gates= parameter to kubelet and specify the limit using the –pod-max-pids

parameter. The limit set is the total count of all processes running in all containers in the

pod. (#57973,@dims)

Fixes bug finding master replicas in GCE when running multiple Kubernetes clusters.

https://github.com/dashpole
https://github.com/kubernetes/kubernetes/pull/58716
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/57302
https://github.com/lichuqiang
https://github.com/kubernetes/kubernetes/pull/60008
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/57802
https://github.com/dashpole
https://github.com/kubernetes/kubernetes/pull/59519
https://github.com/abrarshivani
https://github.com/kubernetes/kubernetes/pull/57824
https://github.com/thockin
https://github.com/kubernetes/kubernetes/pull/59276
https://github.com/roboll
https://github.com/kubernetes/kubernetes/pull/58720
https://github.com/joelsmith
https://github.com/kubernetes/kubernetes/pull/58574
https://github.com/yastij
https://github.com/kubernetes/kubernetes/pull/57973
https://github.com/dims

(#58561, @jesseshieh)

–tls-min-version on kubelet and kube-apiserver allow for configuring minimum TLS

versions (#58528, @deads2k)

Fix a bug affecting nested data volumes such as secret, configmap, etc. (#57422,

@joelsmith)

kubelet will no longer attempt to remove images being used by running containers when

garbage collecting. (#57020, @dixudx)

Allow kubernetes components to react to SIGTERM signal and shutdown gracefully.

(#57756, @mborsz)

Fixed garbage collection and resource quota issue when the controller-manager uses –

leader-elect=false (#57340, @jmcmeek)

Fixed issue creating docker secrets with kubectl 1.9 for accessing docker private

registries. (#57463, @dims)

The CPU Manager feature is now beta, and is enabled by default, but the default policy is

no-op so no action is required. (#55977, @ConnorDoyle)

OpenStack

Fixed a bug in the OpenStack cloud provider where dual stack deployments (IPv4 and

IPv6) did not work well when using kubenet as the network plugin. (#59749, @zioproto)

Fixed a bug that tries to use the octavia client to query flip. (#59075, @jrperritt)

Kubernetes now registers metadata.hostname as node name for OpenStack nodes,

eliminating a problem with invalid node names. (#58502, @dixudx)

Authentication information for OpenStack cloud provider can now be specified as

environment variables. When we convert the OpenStack cloud provider to run in an

external process, we can now use the kubernetes Secrets capability to inject the OS_*

variables. This way we can specify the cloud configuration as a configmap, and specify

secrets for the userid/password information. The configmap is mounted as a file, and the

secrets are made available as environment variables. The external controller itself runs as

a pod/daemonset. For backward compatibility, we preload all the OS_* variables, and if

anything is in the config file, then that overrides the environment variables. (#58300,

@dims)

https://github.com/kubernetes/kubernetes/pull/58561
https://github.com/jesseshieh
https://github.com/kubernetes/kubernetes/pull/58528
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/57422
https://github.com/joelsmith
https://github.com/kubernetes/kubernetes/pull/57020
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/57756
https://github.com/mborsz
https://github.com/kubernetes/kubernetes/pull/57340
https://github.com/jmcmeek
https://github.com/kubernetes/kubernetes/pull/57463
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/55977
https://github.com/ConnorDoyle
https://github.com/kubernetes/kubernetes/pull/59749
https://github.com/zioproto
https://github.com/kubernetes/kubernetes/pull/59075
https://github.com/jrperritt
https://github.com/kubernetes/kubernetes/pull/58502
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58300
https://github.com/dims

Fixed issue when using OpenStack config drive for node metadata. Since we need to run

commands such as blkid, we need to ensure that api server and kube controller are

running in the privileged mode. (#57561, @dims)

Orphaned routes are properly removed from terminated instances. (#56258, @databus23)

OpenStack Cinder will now detach properly when Nova is shut down. (#56846, @zetaab)

Scalability

Added the ability to limit the increase in apiserver memory usage when audit logging with

buffering is enabled. (#61118, @shyamjvs)

Upgrade to etcd client 3.2.13 and grpc 1.7.5 to improve HA etcd cluster stability. (#57480,

@jpbetz)

Storage

Fixes CVE-2017-1002101 - See https://issue.k8s.io/60813 for details on this major

security fix. (#61044, @liggitt)

Fixed missing error checking that could cause kubelet to crash in a race condition.

(#60962, @technicianted)

Fixed a regression that prevented using subPathsubPath volume mounts with secret, configMap,

projected, and downwardAPI volumes. (#61080, @liggitt)

K8s supports cephfs fuse mount. (#55866, @zhangxiaoyu-zidif)

Use GiB unit for creating and resizing volumes for Glusterfs. (#56581, @gnufied)

Adding support for Block Volume type to rbd plugin. (#56651, @sbezverk)

Add FSType for CSI volume source to specify filesystems (alpha defaults to ext4)

(#58209, @NickrenREN)

Enabled File system resize of mounted volumes. (#58794, @gnufied)

The Local Volume Plugin has been updated to support Block volumeMode PVs. With this

change, it is now possible to create local volume PVs for raw block devices. (#59303,

@dhirajh)

Fixed an issue where Portworx volume driver wasn’t passing namespace and annotations

https://github.com/kubernetes/kubernetes/pull/57561
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/56258
https://github.com/databus23
https://github.com/kubernetes/kubernetes/pull/56846
https://github.com/zetaab
https://github.com/kubernetes/kubernetes/pull/61118
https://github.com/shyamjvs
https://github.com/kubernetes/kubernetes/pull/57480
https://github.com/jpbetz
https://issue.k8s.io/60813
https://github.com/kubernetes/kubernetes/pull/61044
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60962
https://github.com/technicianted
https://github.com/kubernetes/kubernetes/pull/61080
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/55866
https://github.com/zhangxiaoyu-zidif
https://github.com/kubernetes/kubernetes/pull/56581
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/56651
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/58209
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/58794
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/59303
https://github.com/dhirajh

to the Portworx Create API. (#59607, @harsh-px)

Addressed breaking changes introduced by new 0.2.0 release of CSI spec. Specifically,

csi.Version was removed from all API calls and CcontrollerProbe and NodeProbe were

consolidated into a single Probe API call. (#59209, @sbezverk)

GCE PD volume plugin now supports block volumes. (#58710, @screeley44)

Implements MountDevice and UnmountDevice for the CSI Plugin, the functions will call

through to NodeStageVolume/NodeUnstageVolume for CSI plugins. (#60115,

@davidz627)

The LocalStorageCapacityIsolation feature is beta and enabled by default. The

LocalStorageCapacityIsolation feature added a new resource type

ResourceEphemeralStorage “ephemeral-storage” so that this resource can be allocated,

limited, and consumed as the same way as CPU/memory. All the features related to

resource management (resource request/limit, quota, limitrange) are available for local

ephemeral storage. This local ephemeral storage represents the storage for root file

system, which will be consumed by containers’ writable layer and logs. Some volumes

such as emptyDir might also consume this storage. (#60159, @jingxu97)

VolumeScheduling and LocalPersistentVolume features are beta and enabled by default.

The PersistentVolume NodeAffinity alpha annotation is deprecated and will be removed in

a future release. (#59391, @msau42)

K8s now supports rbd-nbd for Ceph rbd volume mounts. (#58916, @ianchakeres)

CSI now allows credentials to be specified on CreateVolume/DeleteVolume,

ControllerPublishVolume/ControllerUnpublishVolume, and

NodePublishVolume/NodeUnpublishVolume operations. Before this change all API calls

had to fetch key/value stored in secret and use it to authenticate/authorize these

operations. With this change API calls receive key/value as a input parameter so they not

need to know where and how credentials were stored and fetched. Main goal was to

make these API calls CO (Container Orchestrator) agnostic. (#60118, @sbezverk)

StorageOS volume plugin has been updated to support mount options and environments

where the kubelet runs in a container and the device location should be specified.

(#58816, @croomes)

Get parent dir via canonical absolute path when trying to judge mount-point, fixing a

problem that caused an NFS volume with improper permissions to get stuck in

https://github.com/kubernetes/kubernetes/pull/59607
https://github.com/harsh-px
https://github.com/kubernetes/kubernetes/pull/59209
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/58710
https://github.com/screeley44
https://github.com/kubernetes/kubernetes/pull/60115
https://github.com/davidz627
https://github.com/kubernetes/kubernetes/pull/60159
https://github.com/jingxu97
https://github.com/kubernetes/kubernetes/pull/59391
https://github.com/msau42
https://github.com/kubernetes/kubernetes/pull/58916
https://github.com/ianchakeres
https://github.com/kubernetes/kubernetes/pull/60118
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/58816
https://github.com/croomes

TERMINATINGTERMINATING status. (#58433, [@yue9944882]](https://github.com/yue9944882))

Clusters with GCE feature ‘DiskAlphaAPI’ enabled can now dynamically provision GCE PD

volumes. (#59447, @verult)

Added keyringkeyring parameter for Ceph RBD provisioner. (#58287, @madddi)

Added xfsprogs to hyperkube container image. (#56937, @redbaron)

Improved messages user gets during and after volume resizing is done, providing a clear

message to the user explaining what to do when resizing is finished. (#58415, @gnufied)

MountPropagation feature is now beta. As consequence, all volume mounts in containers

are now “rslave” on Linux by default. To make this default work in all Linux environments

you should have entire mount tree marked as shareable via “mount –make-rshared /”. All

Linux distributions that use systemd already have root directory mounted as rshared and

hence they need not do anything. In Linux environments without systemd we recommend

running “mount –make-rshared /” during boot, before docker is started. (#59252,

@jsafrane)

Volume metrics support for vSphere Cloud Provider has been added. You can now

monitor available space, capacity, and used space on volumes created using vSphere.

(#59328, @divyenpatel)

Emit number of bound and unbound persistent volumes as Metrics. This PR adds four

kinds of Volume Metrics for kube-controller-manager: bound PVC numbers, unbound PVC

numbers, bound PV numbers and unbound PV numbers. The PVC metrics use namespace

as dimension and the PV metrics use StorageClassName as its dimension. With these

metrics we can better monitor the use of volumes in the cluster. (#57872, @mlmhl)

Add windows config to Kubelet CRI so that WindowsContainerResources can be

managed. (#57076, @feiskyer)

PersistentVolumes that are bound to a PersistentVolumeClaim will not be deleted.

(#58743, @NickrenREN)

The VolumeAttachment API is now available as V1beta1, and is enabled by default. The

Alpha API is deprecated and will be removed in a future release. (#58462, @NickrenREN)

Add storage-backend configuration option to kubernetes-master charm. (#58830,

@wwwtyro)

Fixed dynamic provisioning of GCE PDs to round to the next GB (base 1000) instead of GiB

https://github.com/kubernetes/kubernetes/pull/58433
https://github.com/kubernetes/kubernetes/pull/59447
https://github.com/verult
https://github.com/kubernetes/kubernetes/pull/58287
https://github.com/madddi
https://github.com/kubernetes/kubernetes/pull/56937
https://github.com/redbaron
https://github.com/kubernetes/kubernetes/pull/58415
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/59252
https://github.com/jsafrane
https://github.com/kubernetes/kubernetes/pull/59328
https://github.com/divyenpatel
https://github.com/kubernetes/kubernetes/pull/57872
https://github.com/mlmhl
https://github.com/kubernetes/kubernetes/pull/57076
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58743
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/58462
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/58830
https://github.com/wwwtyro

(base 1024). (#56600, @edisonxiang)

PersistentVolume flexVolume sources can now reference secrets in a namespace other

than the PersistentVolumeClaim’s namespace. (#56460, @liggitt)

Windows

kubelet and kube-proxy can now be run as native Windows services. (#60144,

@alinbalutoiu)

WindowsContainerResources is set now for windows containers. (#59333, @feiskyer)

Disable mount propagation for windows containers (because it is not supported by the

OS). (#60275, @feiskyer)

Fix image file system stats for windows nodes. (#59743, @feiskyer)

Kubernetes will now return an error if New-SmbGlobalMapping failed when mounting an

azure file on Windows. (#59540, @andyzhangx)

Kubernetes now uses the more reliable GlobalMemoryStatusEx to get total physical

memory on windows nodes. (#57124, @JiangtianLi)

Windows containers now support experimental Hyper-V isolation by setting annotation

experimental.windows.kubernetes.io/isolation-type=hypervexperimental.windows.kubernetes.io/isolation-type=hyperv and feature gates

HyperVContainer. At the moment this function only supports one container per pod.

(#58751, @feiskyer)

Get windows kernel version directly from registry rather than windows.getVersion().

(#58498, @feiskyer)

Fixed controller manager crash when using mixed case names in a vSphere cloud provider

environment. (#57286, @rohitjogvmw)

Flexvolume is now enabled on Windows nodes. (#56921, @andyzhangx)

Autoscaling

The getSubnetIDForLB() returns subnet id rather than net id. (#58208, @FengyunPan)

kubectl scalekubectl scale can now scale any resource (kube, CRD, aggregate) conforming to the

standard scale endpoint (#58298, @p0lyn0mial)

https://github.com/kubernetes/kubernetes/pull/56600
https://github.com/edisonxiang
https://github.com/kubernetes/kubernetes/pull/56460
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60144
https://github.com/alinbalutoiu
https://github.com/kubernetes/kubernetes/pull/59333
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60275
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59743
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59540
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/57124
https://github.com/JiangtianLi
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58498
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/57286
https://github.com/rohitjogvmw
https://github.com/andyzhangx/Demo/tree/master/windows/flexvolume
https://github.com/kubernetes/kubernetes/pull/56921
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/58208
https://github.com/FengyunPan
https://github.com/kubernetes/kubernetes/pull/58298
https://github.com/p0lyn0mial

Cluster Autoscaler has been updated to Version 1.2.0, which includes fixes around GPUs

and base image change. See

https://github.com/kubernetes/autoscaler/releases/tag/cluster-autoscaler-1.2.0for

details. (#60842, @mwielgus)

Allows HorizontalPodAutoscaler to use global metrics not associated with any Kubernetes

object (for example metrics from a hosting service running outside of the Kubernetes

cluster). (#60096, @MaciekPytel)

fluentd-gcp resources can be modified via a ScalingPolicy. (#59657, @x13n)

Added anti-affinity to kube-dns pods. Otherwise the “no single point of failure” setting

doesn’t actually work (a single node failure can still take down the entire cluster). (#57683,

@vainu-arto)

API-Machinery

Fixed webhooks to use the scheme provided in clientConfig, instead of defaulting to http.

(#60943, @jennybuckley)

The webhook admission controller in a custom apiserver now works off-the-shelf.

(#60995, @caesarxuchao)

Upgrade the default etcd server version to 3.1.12 to pick up critical etcd “mvcc “unsynced”

watcher restore operation” fix. (#60998, @jpbetz)

Fixed bug allowing garbage collector to enter a broken state that could only be fixed by

restarting the controller-manager. (#61201, @jennybuckley)

kube-apiserver: The external hostname no longer longer use the cloud provider API to

select a default. It can be set explicitly using –external-hostname, if needed. If there is no

default, AdvertiseAddress or os.Hostname() will be used, in that order. (#56812, @dims)

Custom resources can be listed with a set of grouped resources (category) by specifying

the categories in the CustomResourceDefinition spec. Example: They can be used with

kubectl getkubectl get

importantimportant , where importantimportant is a category. (#59561, @nikhita)

Fixed an issue making it possible to create a situation in which two webhooks make it

impossible to delete each other. ValidatingWebhooks and MutatingWebhooks will not be

called on admission requests for ValidatingWebhookConfiguration and

https://github.com/kubernetes/autoscaler/releases/tag/cluster-autoscaler-1.1.2
https://github.com/kubernetes/kubernetes/pull/60842
https://github.com/mwielgus
https://github.com/kubernetes/kubernetes/pull/60096
https://github.com/MaciekPytel
https://github.com/kubernetes/kubernetes/pull/59657
https://github.com/x13n
https://github.com/kubernetes/kubernetes/pull/57683
https://github.com/vainu-arto
https://github.com/kubernetes/kubernetes/pull/60943
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/60995
https://github.com/caesarxuchao
https://github.com/kubernetes/kubernetes/pull/60998
https://github.com/jpbetz
https://github.com/kubernetes/kubernetes/pull/61201
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/56812
https://github.com/dims
https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#categories
https://github.com/kubernetes/kubernetes/pull/59561
https://github.com/nikhita

MutatingWebhookConfiguration objects in the admissionregistration.k8s.io group

(#59840, @jennybuckley)

Fixed potential deadlock when deleting CustomResourceDefinition for custom resources

with finalizers. (#60542, @liggitt)

A buffered audit backend can be used with other audit backends. (#60076, @crassirostris)

Introduced --http2-max-streams-per-connection--http2-max-streams-per-connection command line flag on api-servers

and set default to 1000 for aggregated API servers. (#60054, @MikeSpreitzer)

APIserver backed by etcdv3 exports metric shows number of resources per kind. (#59757,

@gmarek)

Add

kubectl create job --from-kubectl create job --from-

cronjobcronjob command. (#60084, @soltysh)

/status/status and /scale/scale subresources have been added for custom resources. See

https://github.com/kubernetes/kubernetes/pull/55168 for more details. (#55168,

@nikhita)

Restores the ability of older clients to delete and scale jobs with initContainers. (#59880,

@liggitt)

Fixed a race condition causing apiserver crashes during etcd healthchecking. (#60069,

@wojtek-t)

Fixed a race condition in k8s.io/client-go/tools/cache.SharedInformer that could violate

the sequential delivery guarantee and cause panics on shutdown in Kubernetes 1.8.* and

1.9.*. (#59828, @krousey)

Add automatic etcd 3.2->3.1 and 3.1->3.0 minor version rollback support to

gcr.io/google_container/etcd images. For HA clusters, all members must be stopped

before performing a rollback. (#59298, @jpbetz)

The meta.k8s.io/v1alpha1meta.k8s.io/v1alpha1 objects for retrieving tabular responses from the server (

TableTable) or fetching just the ObjectMetaObjectMeta for an object (as PartialObjectMetadataPartialObjectMetadata) are

now beta as part of meta.k8s.io/v1beta1meta.k8s.io/v1beta1 and configurations must be changed to use

the new API. Clients may request alternate representations of normal Kubernetes objects

by passing an AcceptAccept header like

application/json;as=Table;g=meta.k8s.io;v=v1beta1application/json;as=Table;g=meta.k8s.io;v=v1beta1 or

https://github.com/kubernetes/kubernetes/pull/59840
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/60542
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60076
https://github.com/crassirostris
https://github.com/kubernetes/kubernetes/pull/60054
https://github.com/MikeSpreitzer
https://github.com/kubernetes/kubernetes/pull/59757
https://github.com/gmarek
https://github.com/kubernetes/kubernetes/pull/60084
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/55168
https://github.com/kubernetes/kubernetes/pull/55168
https://github.com/nikhita
https://github.com/kubernetes/kubernetes/pull/59880
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60069
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/59828
https://github.com/krousey
https://github.com/kubernetes/kubernetes/pull/59298
https://github.com/jpbetz

application/json;as=PartialObjectMetadata;g=meta.k8s.io;v1=v1beta1application/json;as=PartialObjectMetadata;g=meta.k8s.io;v1=v1beta1 . Older

servers will ignore this representation or return an error if it is not available. Clients may

request fallback to the normal object by adding a non-qualified mime-type to their AcceptAccept

header like application/jsonapplication/json - the server will then respond with either the alternate

representation if it is supported or the fallback mime-type which is the normal object

response. (#59059, @smarterclayton)

kube-apiserver now uses SSH tunnels for webhooks if the webhook is not directly routable

from apiserver’s network environment. (#58644, @yguo0905)

Access to externally managed IP addresses via the kube-apiserver service proxy

subresource is no longer allowed by default. This can be re-enabled via the

ServiceProxyAllowExternalIPsServiceProxyAllowExternalIPs feature gate, but will be disallowed completely in 1.11

(#57265, @brendandburns)

The apiregistration.k8s.io (aggregation) is now generally available. Users should transition

from the v1beta1 API to the v1 API. (#58393, @deads2k)

Fixes an issue where the resourceVersion of an object in a DELETE watch event was not

the resourceVersion of the delete itself, but of the last update to the object. This could

disrupt the ability of clients clients to re-establish watches properly. (#58547, @liggitt)

kube-apiserver: requests to endpoints handled by unavailable extension API servers (as

indicated by an AvailableAvailable condition of falsefalse in the registered APIService) now return

503503 errors instead of 404404 errors. (#58070, @weekface)

Custom resources can now be submitted to and received from the API server in

application/yaml format, consistent with other API resources. (#58260, @liggitt)

Network

Fixed kube-proxy to work correctly with iptables 1.6.2 and later. (#60978, @danwinship)

Makes the kube-dns addon optional so that users can deploy their own DNS solution.

(#57113, @wwwtyro)

kubectl port-forwardkubectl port-forward now supports specifying a service to port forward to, as in

kubectl port-forward svc/myservicekubectl port-forward svc/myservice

8443:4438443:443 . Additional support has also been

https://github.com/kubernetes/kubernetes/pull/59059
https://github.com/kubernetes/kubernetes/pull/58644
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/57265
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/58393
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/58547
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/58070
https://github.com/weekface
https://github.com/kubernetes/kubernetes/pull/58260
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60978
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/57113

added for looking up targetPort for a service, as well as enabling using svc/name to select

a pod. (#59809, @phsiao)

Make NodePort IP addresses configurable. (#58052, @m1093782566)

Fixed the issue in kube-proxy iptables/ipvs mode to properly handle incorrect IP version.

(#56880, @MrHohn)

Kubeadm: CoreDNS supports migration of the kube-dns configuration to CoreDNS

configuration when upgrading the service discovery from kube-dns to CoreDNS as part of

Beta. (#58828, @rajansandeep)

Adds BETA support for DNSConfigDNSConfig field in PodSpec and DNSPolicy=NoneDNSPolicy=None , so

configurable pod resolve.conf is now enabled by default. (#59771, @MrHohn)

Removed some redundant rules created by the iptables proxier to improve performance

on systems with very many services. (#57461, @danwinship)

Fix an issue where port forwarding doesn’t forward local TCP6 ports to the pod (#57457,

@vfreex)

Correctly handle transient connection reset errors on GET requests from client library.

(#58520, @porridge)

GCE: Allows existing internal load balancers to continue using a subnetwork that may have

been wrongfully chosen due to a bug choosing subnetworks on automatic networks.

(#57861, @nicksardo)

Azure

Set node external IP for azure node when disabling UseInstanceMetadata. (#60959,

@feiskyer)

Changed default azure file/dir mode to 0755. (#56551, @andyzhangx)

Fixed azure file plugin failure issue on Windows after node restart. (#60625,

@andyzhangx)(#60623, @feiskyer)

Fixed race condition issue when detaching azure disk, preventing Multi-Attach errorMulti-Attach error s

when scheduling one pod from one node to another. (#60183, @andyzhangx)

Add AzureDisk support for vmss nodes. (#59716, @feiskyer)

Map correct vmset name for Azure internal load balancers. (#59747, @feiskyer)

https://github.com/kubernetes/kubernetes/pull/59809
https://github.com/phsiao
https://github.com/kubernetes/website/pull/7631/files
https://github.com/kubernetes/website/pull/7631/files
https://github.com/kubernetes/website/pull/7631/files
https://github.com/kubernetes/kubernetes/pull/58052
https://github.com/m1093782566
https://github.com/kubernetes/kubernetes/pull/56880
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/58828
https://github.com/rajansandeep
https://github.com/kubernetes/kubernetes/pull/59771
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/57461
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/57457
https://github.com/vfreex
https://github.com/kubernetes/kubernetes/pull/58520
https://github.com/porridge
https://github.com/kubernetes/kubernetes/pull/57861
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/60959
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/56551
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/60625
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/60623
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60183
https://github.com/andyzhangx
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59747
https://github.com/feiskyer

Node’s providerID will now follow the Azure resource ID format (

azure:///subscriptions/<id>/resourceGroups/<rg>/providers/Microsoft.Compute/virtualMachines/<node-azure:///subscriptions/<id>/resourceGroups/<rg>/providers/Microsoft.Compute/virtualMachines/<node-

name>name>

rather than azure://d84a1c30-0c9f-11e8-8a34-000d3a919531azure://d84a1c30-0c9f-11e8-8a34-000d3a919531) when

useInstanceMetadata is enabled (#59539, @feiskyer)

Azure public IP is now correctly removed after a service is deleted. (#59340, @feiskyer)

Added PV size grow feature for azure filesystems. (#57017, @andyzhangx)

Ensured IP is set for Azure internal load balancer. (#59083, @feiskyer)

Set fsGroup by securityContext.fsGroup in azure file. However,f user both sets gid=xxx in

mountOptions in azure storage class and securityContext.fsGroup, gid=xxx setting in

mountOptions takes precedence. (#58316, @andyzhangx)

If an Azure disk is not found, K8s will immediately detach it. (#58345, @rootfs)

Instrumented the Azure cloud provider for Prometheus monitoring. (#58204,

@cosmincojocar)

Fixed device name change issues for azure disk. (#57953, @andyzhangx) (#57549,

@andyzhangx)

Support multiple scale sets in Azure cloud provider. (#57543, @feiskyer)

Support LoadBalancer for Azure Virtual Machine Scale Sets (#57131, @feiskyer)

Fixed incorrect error info when creating an azure file PVC failed. (#56550, @andyzhangx)

Added mount options support for azure disk. For example:

kind: StorageClasskind: StorageClass

apiVersion: storage.k8s.io/v1apiVersion: storage.k8s.io/v1

metadata:metadata:

 name: hdd name: hdd

provisioner: kubernetes.io/azure-diskprovisioner: kubernetes.io/azure-disk

mountOptions:mountOptions:

 - barrier=1 - barrier=1

 - acl - acl

parameters:parameters:

 skuname: Standard_LRS skuname: Standard_LRS

 kind: Managed kind: Managed

 fstype: ext3 fstype: ext3

https://github.com/kubernetes/kubernetes/pull/59539
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59340
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/57017
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/59083
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58316
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/58345
https://github.com/rootfs
https://github.com/kubernetes/kubernetes/pull/58204
https://github.com/cosmincojocar
https://github.com/kubernetes/kubernetes/pull/57953
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/57549
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/57543
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/57131
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/56550
https://github.com/andyzhangx

(#56147, @andyzhangx)

Scheduling

Fixed a bug the in scheduler cache by using Pod UID as the cache key instead of

namespace/name (#61069, @anfernee)

When TaintNodesByConditionTaintNodesByCondition is enabled, added

node.kubernetes.io/unschedulable:NoSchedulenode.kubernetes.io/unschedulable:NoSchedule (#61161, @k82cn)

kube-scheduler: Support extender managed extended resources in kube-scheduler

(#60332, @yguo0905)

Updated priority of mirror pod according to PriorityClassName. (#58485, @k82cn)

kube-scheduler: restores default leader election behavior. Setting the --leader-elect--leader-elect

command line parameter to truetrue (#60524, @dims)

All pods with priorityClassName system-node-critical and system-cluster-critical will be

critical pods while preserving backwards compatibility. (#58835, @ravisantoshgudimetla)

Priority admission controller picks a global default with the lowest priority value if more

than one such default PriorityClass exists. (#59991, @bsalamat)

Disallow PriorityClass names with ‘system-‘ prefix for user defined priority classes.

(#59382, @bsalamat)

kube-scheduler: Use default predicates/prioritizers if they are unspecified in the policy

config. (#59363, @yguo0905)

Scheduler should be able to read from config file if configmap is not present. (#59386,

@ravisantoshgudimetla)

Add apiserver metric for current inflight-request usage. (#58342, @gmarek)

Stability: Make Pod delete event handling of scheduler more robust. (#58712,

@bsalamat)* Allow scheduler set AlwaysCheckAllPredicates, short circuit all predicates if

one predicate fails can greatly improve the scheduling performance. (#56926, @wgliang)

GCE: support passing kube-scheduler policy config via SCHEDULER_POLICY_CONFIG.

This allows us to specify a customized scheduler policy configuration. (#57425,

@yguo0905)

https://github.com/kubernetes/kubernetes/pull/56147
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/61069
https://github.com/anfernee
https://github.com/kubernetes/kubernetes/pull/61161
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/60332
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/58485
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/60524
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/58835
https://github.com/ravisantoshgudimetla
https://github.com/kubernetes/kubernetes/pull/59991
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/59382
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/59363
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/59386
https://github.com/ravisantoshgudimetla
https://github.com/kubernetes/kubernetes/pull/58342
https://github.com/gmarek
https://github.com/kubernetes/kubernetes/pull/58712
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/56926
https://github.com/wgliang
https://github.com/kubernetes/kubernetes/pull/57425
https://github.com/yguo0905

Returns an error for non overcommitable resources if they don’t have limit field set in

container spec to prevent users from creating invalid configurations. (#57170, @jiayingz)

GCE: Fixed ILB creation on automatic networks with manually created subnetworks.

(#57351, @nicksardo)

Multiple Performance Improvements to the MatchInterPodAffinity predicate (#57476,

@misterikkit)(#57477, @misterikkit)

The calico-node addon tolerates all NoExecute and NoSchedule taints by default. So

Calico components can even be scheduled on tainted nodes. (#57122, @caseydavenport)

The scheduler skips pods that use a PVC that either does not exist or is being deleted.

(#55957, @jsafrane)

Other changes

Updated dashboard version to v1.8.3, which keeps auto-generated certs in memory.

(#57326, @floreks)

fluentd-gcp addon: Fixed bug with reporting metrics in event-exporter. (#60126,

@serathius)

Avoid hook errors when effecting label changes on kubernetes-worker charm. (#59803,

@wwwtyro)

Fixed charm issue where docker login would run prior to daemon options being set.

(#59396, @kwmonroe)

Implementers of the cloud provider interface will note the addition of a context to this

interface. Trivial code modification will be necessary for a cloud provider to continue to

compile. (#59287, @cheftako)

Added configurable etcd quota backend bytes in GCE. (#59259, @wojtek-t)

GCP: allow a master to not include a metadata concealment firewall rule (if it’s not running

the metadata proxy). (#58104, @ihmccreery)

Fixed issue with kubernetes-worker option allow-privileged not properly handling the value

True with a capital T. (#59116, @hyperbolic2346)

Controller-manager –service-sync-period flag has been removed. (It was never used in the

code and should have no user impact.) (#59359, @khenidak)

https://github.com/kubernetes/kubernetes/pull/57170
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/57351
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/57476
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57477
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57122
https://github.com/caseydavenport
https://github.com/kubernetes/kubernetes/pull/55957
https://github.com/jsafrane
https://github.com/kubernetes/kubernetes/pull/57326
https://github.com/floreks
https://github.com/kubernetes/kubernetes/pull/60126
https://github.com/serathius
https://github.com/kubernetes/kubernetes/pull/59803
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/59396
https://github.com/kwmonroe
https://github.com/kubernetes/kubernetes/pull/59287
https://github.com/cheftako
https://github.com/kubernetes/kubernetes/pull/59259
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/58104
https://github.com/ihmccreery
https://github.com/kubernetes/kubernetes/pull/59116
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/59359
https://github.com/khenidak

[fluentd-gcp addon] Switch to the image provided by Stackdriver. The Stackdriver Logging

Agent container image uses fluentd v0.14.25. (#59128, @bmoyles0117)

Non-user-facing Changes

CRI now uses moutpoint as image filesystem identifier instead of UUID. (#59475,

@Random-Liu)

GCE: support Cloud TPU API in cloud provider (#58029, @yguo0905)

kubelet now notifies systemd that it has finished starting, if systemd is available and

running. (#60654, @dcbw)

Do not count failed pods as unready in HPA controller (#60648, @bskiba)

fixed foreground deletion of podtemplates (#60683, @nilebox)

Conformance tests are added for the DaemonSet kinds in the apps/v1 group version.

Deprecated versions of DaemonSet will not be tested for conformance, and conformance

is only applicable to release 1.10 and later. (#60456, @kow3ns)

Log audit backend can now be configured to perform batching before writing events to

disk. (#60237, @crassirostris)

New conformance tests added for the Garbage Collector (#60116, @jennybuckley)

Fixes a bug where character devices are not recongized by the kubelet (#60440,

@andrewsykim)

StatefulSet in apps/v1 is now included in Conformance Tests. (#60336, @enisoc)

dockertools: disable memory swap on Linux. (#59404, @ohmystack)

Increase timeout of integration tests (#60458, @jennybuckley)

force node name lowercase on static pod name generating (#59849, @yue9944882

fix device name change issue for azure disk (#60346, @andyzhangx)

Additional changes to iptables kube-proxy backend to improve performance on clusters

with very large numbers of services. (#60306, @danwinship)

add spelling checking script (#59463, @dixudx)

Use consts as predicate name in handlers (#59952, @resouer)

https://github.com/kubernetes/kubernetes/pull/59128
https://github.com/bmoyles0117
https://github.com/kubernetes/kubernetes/pull/59475
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/58029
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/60654
https://github.com/dcbw
https://github.com/kubernetes/kubernetes/pull/60648
https://github.com/bskiba
https://github.com/kubernetes/kubernetes/pull/60683
https://github.com/nilebox
https://github.com/kubernetes/kubernetes/pull/60456
https://github.com/kow3ns
https://github.com/kubernetes/kubernetes/pull/60237
https://github.com/crassirostris
https://github.com/kubernetes/kubernetes/pull/60116
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/60440
https://github.com/andrewsykim
https://github.com/kubernetes/kubernetes/pull/60336
https://github.com/enisoc
https://github.com/kubernetes/kubernetes/pull/59404
https://github.com/ohmystack
https://github.com/kubernetes/kubernetes/pull/60458
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/59849
https://github.com/kubernetes/kubernetes/pull/60346
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/60306
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/59463
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/59952
https://github.com/resouer

Fix instanceID for vmss nodes. (#59857, @feiskyer)

Increase allowed lag for ssh key sync loop in tunneler to allow for one failure (#60068,

@wojtek-t)

Set an upper bound (5 minutes) on how long the Kubelet will wait before exiting when the

client cert from disk is missing or invalid. This prevents the Kubelet from waiting forever

without attempting to bootstrap a new client credentials. (#59316, @smarterclayton)

Add ipset binary for IPVS to hyperkube docker image (#57648, @Fsero)

Making sure CSI E2E test runs on a local cluster (#60017, @sbezverk)

Fix kubelet PVC stale metrics (#59170, @cofyc)

Separate current ARM rate limiter into read/write (#59830, @khenidak)

Improve control over how ARM rate limiter is used within Azure cloud provider, add

generic cache for Azure VM/LB/NSG/RouteTable (#59520, @feiskyer)

fix typo (#59619, @jianliao82)

DaemonSet, Deployment, ReplicaSet, and StatefulSet objects are now persisted in etcd in

apps/v1 format (#58854, @liggitt)

YAMLDecoder Read now tracks rest of buffer on io.ErrShortBuffer (#58817, @karlhungus)

Prevent kubelet from getting wedged if initialization of modules returns an error. (#59020,

@brendandburns)

Fixed a race condition inside kubernetes-worker that would result in a temporary error

situation. (#59005, @hyperbolic2346)

Fix regression in the CRI: do not add a default hostname on short image names (#58955,

@runcom)

use containing API group when resolving shortname from discovery (#58741, @dixudx)

remove spaces from kubectl describe hpa (#56331, @shiywang)

fluentd-es addon: multiline stacktraces are now grouped into one entry automatically

(#58063, @monotek)

Default scheduler code is moved out of the plugin directory. (#57852, @misterikkit)

CDK nginx ingress is now handled via a daemon set. (#57530, @hyperbolic2346)

https://github.com/kubernetes/kubernetes/pull/59857
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60068
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/59316
https://github.com/smarterclayton
https://github.com/kubernetes/kubernetes/pull/57648
https://github.com/Fsero
https://github.com/kubernetes/kubernetes/pull/60017
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/59170
https://github.com/cofyc
https://github.com/kubernetes/kubernetes/pull/59830
https://github.com/khenidak
https://github.com/kubernetes/kubernetes/pull/59520
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59619
https://github.com/jianliao82
https://github.com/kubernetes/kubernetes/pull/58854
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/58817
https://github.com/karlhungus
https://github.com/kubernetes/kubernetes/pull/59020
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/59005
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58955
https://github.com/runcom
https://github.com/kubernetes/kubernetes/pull/58741
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/56331
https://github.com/shiywang
https://github.com/kubernetes/kubernetes/pull/58063
https://github.com/monotek
https://github.com/kubernetes/kubernetes/pull/57852
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57530
https://github.com/hyperbolic2346

Move local PV negative scheduling tests to integration (#57570, @sbezverk)

Only create Privileged PSP binding during e2e tests if RBAC is enabled. (#56382,

@mikkeloscar)

ignore nonexistent ns net file error when deleting container network in case a retry

(#57697, @dixudx)

Use old dns-ip mechanism with older cdk-addons. (#57403, @wwwtyro)

Retry ‘connection refused’ errors when setting up clusters on GCE. (#57394, @mborsz)

YAMLDecoder Read now returns the number of bytes read (#57000, @sel)

Drop hacks used for Mesos integration that was already removed from main kubernetes

repository (#56754, @dims)

Compare correct file names for volume detach operation (#57053, @prashima)

Fixed documentation typo in IPVS README. (#56578, @shift)

The ConfigOK node condition has been renamed to KubeletConfigOk. (#59905,

@mtaufen)

Adding pkg/kubelet/apis/deviceplugin/v1beta1 API. (#59588, @jiayingz)

Fixes volume predicate handler for equiv class (#59335, @resouer)

Bugfix: vSphere Cloud Provider (VCP) does not need any special service account anymore.

(#59440, @rohitjogvmw)

fix the error prone account creation method of blob disk (#59739, @andyzhangx)

Updated kubernetes-worker to request new security tokens when the aws cloud provider

changes the registered node name. (#59730, @hyperbolic2346)

Pod priority can be specified ins PodSpec even when the feature is disabled, but it will be

effective only when the feature is enabled. (#59291, @bsalamat)* Add generic cache for

Azure VMSS (#59652, @feiskyer)

fix the create azure file pvc failure if there is no storage account in current resource group

(#56557, @andyzhangx)

Implement envelope service with gRPC, so that KMS providers can be pulled out from API

server. (#55684, @wu-qiang)

https://github.com/kubernetes/kubernetes/pull/57570
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/56382
https://github.com/mikkeloscar
https://github.com/kubernetes/kubernetes/pull/57697
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/57403
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/57394
https://github.com/mborsz
https://github.com/kubernetes/kubernetes/pull/57000
https://github.com/sel
https://github.com/kubernetes/kubernetes/pull/56754
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/57053
https://github.com/prashima
https://github.com/kubernetes/kubernetes/pull/56578
https://github.com/shift
https://github.com/kubernetes/kubernetes/pull/59905
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59588
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/59335
https://github.com/resouer
https://github.com/kubernetes/kubernetes/pull/59440
https://github.com/rohitjogvmw
https://github.com/kubernetes/kubernetes/pull/59739
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/59730
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/59291
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/59652
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/56557
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/55684
https://github.com/wu-qiang

Enable golint for pkg/schedulerpkg/scheduler and fix the golint errors in it. (#58437, @tossmilestone)

Ensure euqiv hash calculation is per schedule (#59245, @resouer)

Upped the timeout for apiserver communication in the juju kubernetes-worker charm.

(#59219, @hyperbolic2346)

kubeadm init: skip checking cri socket in preflight checks (#58802, @dixudx)

Configurable etcd compaction frequency in GCE (#59106, @wojtek-t)

Fixed a bug which caused the apiserver reboot failure in the presence of malfunctioning

webhooks. (#59073, @caesarxuchao)

GCE: Apiserver uses InternalIPInternalIP as the most preferred kubelet address type by default.

(#59019, @MrHohn)

CRI: Add a call to reopen log file for a container. (#58899, @yujuhong)

The alpha KubeletConfigFile feature gate has been removed, because it was redundant

with the Kubelet’s –config flag. It is no longer necessary to set this gate to use the flag.

The –config flag is still considered alpha. (#58978, @mtaufen)

Fixing extra_sans option on master and load balancer. (#58843, @hyperbolic2346)

Ensure config has been created before attempting to launch ingress. (#58756, @wwwtyro)

Support metrics API in

kubectlkubectl

toptop commands. (#56206, @brancz)

Bump GCE metadata proxy to v0.1.9 to pick up security fixes. (#58221, @ihmccreery)

“ExternalTrafficLocalOnly” has been removed from feature gate. It has been a GA feature

since v1.7. (#56948, @MrHohn)

feat(fakeclient): push event on watched channel on add/update/delete (#57504,

@yue9944882)

Fixes a possible deadlock preventing quota from being recalculated (#58107,

@ironcladlou)

Bump metadata proxy version to v0.1.7 to pick up security fix. (#57762, @ihmccreery)

The kubelet uses a new release 3.1 of the pause container with the Docker runtime. This

version will clean up orphaned zombie processes that it inherits. (#57517, @verb)

https://github.com/kubernetes/kubernetes/pull/58437
https://github.com/tossmilestone
https://github.com/kubernetes/kubernetes/pull/59245
https://github.com/resouer
https://github.com/kubernetes/kubernetes/pull/59219
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58802
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/59106
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/59073
https://github.com/caesarxuchao
https://github.com/kubernetes/kubernetes/pull/59019
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/58899
https://github.com/yujuhong
https://github.com/kubernetes/kubernetes/pull/58978
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/58843
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58756
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/56206
https://github.com/brancz
https://github.com/kubernetes/kubernetes/pull/58221
https://github.com/ihmccreery
https://github.com/kubernetes/kubernetes/pull/56948
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/57504
https://github.com/yue9944882
https://github.com/kubernetes/kubernetes/pull/58107
https://github.com/ironcladlou
https://github.com/kubernetes/kubernetes/pull/57762
https://github.com/ihmccreery
https://github.com/kubernetes/kubernetes/pull/57517
https://github.com/verb

Add cache for VM get operation in azure cloud provider (#57432, @karataliu)

Configurable liveness probe initial delays for etcd and kube-apiserver in GCE (#57749,

@wojtek-t)

Fixed garbage collection hang (#57503, @liggitt

Improve scheduler performance of MatchInterPodAffinity predicate. (#57478,

@misterikkit)

Add the path ‘/version/’ to the system:discoverysystem:discovery cluster role. (#57368,

@brendandburns)

adding predicates ordering for the kubernetes scheduler. (#57168, @yastij)

Fix ipvs proxier nodeport ethassumption (#56685, @m1093782566)

Fix Heapster configuration and Metrics Server configuration to enable overriding default

resource requirements. (#56965, @kawych)

Improved event generation in volume mount, attach, and extend operations (#56872,

@davidz627)

Remove ScrubDNS interface from cloudprovider. (#56955, @feiskyer)

Fixed a garbage collection race condition where objects with ownerRefs pointing to

cluster-scoped objects could be deleted incorrectly. (#57211, @liggitt)

api-server provides specific events when unable to repair a service cluster ip or node port

(#54304, @frodenas)

delete useless params containerized (#56146, @jiulongzaitian)

dockershim now makes an Image’s Labels available in the Info field of

ImageStatusResponse (#58036, @shlevy)

Support GetLabelsForVolume in OpenStack Provider (#58871, @edisonxiang)

Add “nominatedNodeName” field to PodStatus. This field is set when a pod preempts

other pods on the node. (#58990, @bsalamat)* Fix the PersistentVolumeLabel controller

from initializing the PV labels when it’s not the next pending initializer. (#56831,

@jhorwit2)

Rename StorageProtection to StorageObjectInUseProtection (#59901, @NickrenREN)

Add support for cloud-controller-manager in local-up-cluster.sh (#57757, @dims)

https://github.com/kubernetes/kubernetes/pull/57432
https://github.com/karataliu
https://github.com/kubernetes/kubernetes/pull/57749
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/57503
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/57478
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57368
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/57168
https://github.com/yastij
https://github.com/kubernetes/kubernetes/pull/56685
https://github.com/m1093782566
https://github.com/kubernetes/kubernetes/pull/56965
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/56872
https://github.com/davidz627
https://github.com/kubernetes/kubernetes/pull/56955
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/57211
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/54304
https://github.com/frodenas
https://github.com/kubernetes/kubernetes/pull/56146
https://github.com/jiulongzaitian
https://github.com/kubernetes/kubernetes/pull/58036
https://github.com/shlevy
https://github.com/kubernetes/kubernetes/pull/58871
https://github.com/edisonxiang
https://github.com/kubernetes/kubernetes/pull/58990
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/56831
https://github.com/jhorwit2
https://github.com/kubernetes/kubernetes/pull/59901
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/57757
https://github.com/dims

GCE: A role and clusterrole will now be provided with GCE/GKE for allowing the cloud-

provider to post warning events on all services and watching configmaps in the kube-

system namespace. No user action is required. (#59686, @nicksardo)

Wait for kubedns to be ready when collecting the cluster IP. (#57337, @wwwtyro)

External Dependencies

The supported etcd server version is 3.1.12, as compared to 3.0.17 in v1.9 (#60988)

The validated docker versions are the same as for v1.9: 1.11.2 to 1.13.1 and 17.03.x (ref)

The Go version is go1.9.3, as compared to go1.9.2 in v1.9. (#59012)

The minimum supported go is the same as for v1.9: go1.9.1. (#55301)

CNI is the same as v1.9: v0.6.0 (#51250)

CSI is updated to 0.2.0 as compared to 0.1.0 in v1.9. (#60736)

The dashboard add-on has been updated to v1.8.3, as compared to 1.8.0 in v1.9.

(#517326)

Heapster has is the same as v1.9: v1.5.0. It will be upgraded in v1.11. (ref)

Cluster Autoscaler has been updated to v1.2.0. (#60842, @mwielgus)

Updates kube-dns to v1.14.8 (#57918, @rramkumar1)

Influxdb is unchanged from v1.9: v1.3.3 (#53319)

Grafana is unchanged from v1.9: v4.4.3 (#53319)

CAdvisor is v0.29.1 (#60867)

fluentd-gcp-scaler is v0.3.0 (#61269)

Updated fluentd in fluentd-es-image to fluentd v1.1.0 (#58525, @monotek)

fluentd-elasticsearch is v2.0.4 (#58525)

Updated fluentd-gcp to v3.0.0. (#60722)

Ingress glbc is v1.0.0 (#61302)

OIDC authentication is coreos/go-oidc v2 (#58544)

https://github.com/kubernetes/kubernetes/pull/59686
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/57337
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/60988
https://github.com/kubernetes/kubernetes/blob/master/test/e2e_node/system/docker_validator_test.go
https://github.com/kubernetes/kubernetes/pull/59012
https://github.com/kubernetes/kubernetes/pull/55301
https://github.com/kubernetes/kubernetes/pull/51250
https://github.com/kubernetes/kubernetes/pull/60736
https://github.com/kubernetes/kubernetes/pull/57326
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/cluster-monitoring/google/heapster-controller.yaml
https://github.com/kubernetes/kubernetes/pull/60842
https://github.com/mwielgus
https://github.com/kubernetes/kubernetes/pull/57918
https://github.com/rramkumar1
https://github.com/kubernetes/kubernetes/pull/53319
https://github.com/kubernetes/kubernetes/pull/53319
https://github.com/kubernetes/kubernetes/pull/60867
https://github.com/kubernetes/kubernetes/pull/61269
https://github.com/kubernetes/kubernetes/pull/58525
https://github.com/monotek
https://github.com/kubernetes/kubernetes/pull/58525
https://github.com/kubernetes/kubernetes/pull/60722
https://github.com/kubernetes/kubernetes/pull/61302
https://github.com/kubernetes/kubernetes/pull/58544

Updated fluentd-gcp updated to v2.0.11. (#56927, @x13n)

Calico has been updated to v2.6.7 (#59130, @caseydavenport)

v1.10.0-rc.1

Documentation & Examples

Downloads for v1.10.0-rc.1

filename sha256 hash

kubernetes.tar.gz d7409a0bf36558b8328eefc01959920641f1fb2630fe3ac19b266fcea05a1646d7409a0bf36558b8328eefc01959920641f1fb2630fe3ac19b266fcea05a1646

kubernetes-
src.tar.gz

4384bfe4151850e5d169b125c0cba51b7c2f00aa9972a6b4c22c44af74e8e3f84384bfe4151850e5d169b125c0cba51b7c2f00aa9972a6b4c22c44af74e8e3f8

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

1eb98b5d527ee9ed375f06df96c1158b9879880eb12d68a81e823d7a92e3866d1eb98b5d527ee9ed375f06df96c1158b9879880eb12d68a81e823d7a92e3866d

kubernetes-
client-darwin-
amd64.tar.gz

be7e35e9698b84ace37e0ed54640c3958c0d9eea8bd413eb8b604ec02922321abe7e35e9698b84ace37e0ed54640c3958c0d9eea8bd413eb8b604ec02922321a

kubernetes-
client-linux-
386.tar.gz

825a80abdb1171e72c1660fb7854ed6e8290cb7cb54ebb88c3570b3f95e77a02825a80abdb1171e72c1660fb7854ed6e8290cb7cb54ebb88c3570b3f95e77a02

kubernetes-
client-linux-
amd64.tar.gz

97e22907c3f0780818b7124c50451ae78e930cd99ec8f96f188cdd080547e21b97e22907c3f0780818b7124c50451ae78e930cd99ec8f96f188cdd080547e21b

kubernetes-
client-linux-
arm64.tar.gz

d27674c7daec425f0fa72ca14695e7f13c81cfd08517ceb1f5ce1bb052b5b9b2d27674c7daec425f0fa72ca14695e7f13c81cfd08517ceb1f5ce1bb052b5b9b2

kubernetes-
client-linux-
arm.tar.gz

e54f1fc7cf95981f54d68108ad0113396357ff0c7baaf6a76a635f0de21fb944e54f1fc7cf95981f54d68108ad0113396357ff0c7baaf6a76a635f0de21fb944

kubernetes-
client-linux-
ppc64le.tar.gz

7535a6668e6ca6888b22615439fae8c68d37d62f572b284755db87600050a6c67535a6668e6ca6888b22615439fae8c68d37d62f572b284755db87600050a6c6

kubernetes-
client-linux-
s390x.tar.gz

6a9f90e2ea5cb50b2691c45d327cca444ae9bfc41cba43ca22016679da940a716a9f90e2ea5cb50b2691c45d327cca444ae9bfc41cba43ca22016679da940a71

https://github.com/kubernetes/kubernetes/pull/56927
https://github.com/x13n
https://github.com/kubernetes/kubernetes/pull/59130
https://github.com/caseydavenport
https://docs.k8s.io
https://releases.k8s.io/release-1.10/examples
https://dl.k8s.io/v1.10.0-rc.1/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-linux-s390x.tar.gz

kubernetes-
client-
windows-
386.tar.gz

cc5fef5e054588ad41870a379662d8429bd0f09500bcf4a67648bf6593d18aafcc5fef5e054588ad41870a379662d8429bd0f09500bcf4a67648bf6593d18aaf

kubernetes-
client-
windows-
amd64.tar.gz

a06033004c5cecc43494d95dd5d5e75f698cf8e4d358c229c5fef222c131b077a06033004c5cecc43494d95dd5d5e75f698cf8e4d358c229c5fef222c131b077

filename sha256 hash

Server Binaries

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

e844897e9a39ca14a449e077cb4e4f2dc6c7d5326b95a1e47bef3b6f9c6057f7e844897e9a39ca14a449e077cb4e4f2dc6c7d5326b95a1e47bef3b6f9c6057f7

kubernetes-
server-linux-
arm64.tar.gz

c15476626cd750a8f59c30c3389ada482995aea66b510c43732035d33e87e774c15476626cd750a8f59c30c3389ada482995aea66b510c43732035d33e87e774

kubernetes-
server-linux-
arm.tar.gz

74a1ff7478d7ca5c4ccb2fb772ef13745a20cfb512e3e66f238abb98122cc4eb74a1ff7478d7ca5c4ccb2fb772ef13745a20cfb512e3e66f238abb98122cc4eb

kubernetes-
server-linux-
ppc64le.tar.gz

3b004717fe811352c15fe71f3122d2eaac7e0d1c4ff07d8810894c877b409c0f3b004717fe811352c15fe71f3122d2eaac7e0d1c4ff07d8810894c877b409c0f

kubernetes-
server-linux-
s390x.tar.gz

b6ff40f13355b47e2c02c6c016ac334a3f5008769ed7b4377c617c2fc9e30b7ab6ff40f13355b47e2c02c6c016ac334a3f5008769ed7b4377c617c2fc9e30b7a

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

a3a3e27c2b77fa46b7c9ff3b8bfdc672c2657e47fc4b1ca3d76cdc102ca27630a3a3e27c2b77fa46b7c9ff3b8bfdc672c2657e47fc4b1ca3d76cdc102ca27630

kubernetes-
node-linux-
arm64.tar.gz

af172c9d71ba2d15e14354159ac34ca7fe112b7d2d2ba38325c467950aa04755af172c9d71ba2d15e14354159ac34ca7fe112b7d2d2ba38325c467950aa04755

kubernetes-
node-linux-
arm.tar.gz

fb904aa009c3309e92505ceff15863f83d9317af15cbf729bcbd198f5be3379ffb904aa009c3309e92505ceff15863f83d9317af15cbf729bcbd198f5be3379f

kubernetes-
node-linux-
ppc64le.tar.gz

659f0091578e42b111417d45f708be2ac60447512e485dab7d2f4abaeee36f49659f0091578e42b111417d45f708be2ac60447512e485dab7d2f4abaeee36f49

kubernetes-
node-linux-
s390x.tar.gz

ce40dcc55ca299401ddf146b2622dd7f19532e95620bae63aea58a45a8020875ce40dcc55ca299401ddf146b2622dd7f19532e95620bae63aea58a45a8020875

kubernetes-
node-windows-

https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-client-windows-amd64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-rc.1/kubernetes-node-windows-amd64.tar.gz

amd64.tar.gz 0f8b5c551f58cdf298d41258483311cef66fe1b41093152a43120514a493b23d0f8b5c551f58cdf298d41258483311cef66fe1b41093152a43120514a493b23dfilename sha256 hash

Changelog since v1.10.0-beta.4

Other notable changes

Updates kubeadm default to use 1.10 (#61127, @timothysc)

Bump ingress-gce image in glbc.manifest to 1.0.0 (#61302, @rramkumar1)

Fix regression where kubelet –cpu-cfs-quota flag did not work when –cgroups-per-qos

was enabled (#61294, @derekwaynecarr)

Fix bug allowing garbage collector to enter a broken state that could only be fixed by

restarting the controller-manager. (#61201, @jennybuckley)

When TaintNodesByConditionTaintNodesByCondition enabled, added

node.kubernetes.io/unschedulable:NoSchedulenode.kubernetes.io/unschedulable:NoSchedule (#61161, @k82cn)

taint to the node if spec.Unschedulablespec.Unschedulable is true.

When ScheduleDaemonSetPodsScheduleDaemonSetPods enabled,

node.kubernetes.io/unschedulable:NoSchedulenode.kubernetes.io/unschedulable:NoSchedule

toleration is added automatically to DaemonSet Pods; so the unschedulableunschedulable field of

a node is not respected by the DaemonSet controller.

Fixed kube-proxy to work correctly with iptables 1.6.2 and later. (#60978, @danwinship)

Audit logging with buffering enabled can increase apiserver memory usage (e.g. up to

200MB in 100-node cluster). The increase is bounded by the buffer size (configurable). Ref:

issue #60500 (#61118, @shyamjvs)

Fix a bug in scheduler cache by using Pod UID as the cache key instead of

namespace/name (#61069, @anfernee)

v1.10.0-beta.4

Documentation & Examples

https://github.com/kubernetes/kubernetes/pull/61127
https://github.com/timothysc
https://github.com/kubernetes/kubernetes/pull/61302
https://github.com/rramkumar1
https://github.com/kubernetes/kubernetes/pull/61294
https://github.com/derekwaynecarr
https://github.com/kubernetes/kubernetes/pull/61201
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/61161
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/60978
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/60500
https://github.com/kubernetes/kubernetes/pull/61118
https://github.com/shyamjvs
https://github.com/kubernetes/kubernetes/pull/61069
https://github.com/anfernee
https://docs.k8s.io
https://releases.k8s.io/release-1.10/examples

Downloads for v1.10.0-beta.4

filename sha256 hash

kubernetes.tar.gz 69132f3edcf549c686055903e8ef007f0c92ec05a8ec1e3fea4d5b4dc468558069132f3edcf549c686055903e8ef007f0c92ec05a8ec1e3fea4d5b4dc4685580

kubernetes-
src.tar.gz

60ba32e493c0a1449cdbd615d709e9d46780c91c88255e8e9f468c5e4e12457660ba32e493c0a1449cdbd615d709e9d46780c91c88255e8e9f468c5e4e124576

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

80ef567c51aa705511ca20fbfcad2e85f1dc4fb750c0f58e0d82f4166359273f80ef567c51aa705511ca20fbfcad2e85f1dc4fb750c0f58e0d82f4166359273f

kubernetes-
client-darwin-
amd64.tar.gz

925830f3c6c135adec206012ae94807b58b9438008ae87881e7a9d648ab993ec925830f3c6c135adec206012ae94807b58b9438008ae87881e7a9d648ab993ec

kubernetes-
client-linux-
386.tar.gz

9e4f40325a27b79f16eb3254c6283d67e2fecd313535b300f9931800e4c495a49e4f40325a27b79f16eb3254c6283d67e2fecd313535b300f9931800e4c495a4

kubernetes-
client-linux-
amd64.tar.gz

85ee9bfa519e49283ab711c73f52809f8fc43616cc2076dc060987e6f262ff9585ee9bfa519e49283ab711c73f52809f8fc43616cc2076dc060987e6f262ff95

kubernetes-
client-linux-
arm.tar.gz

f0123581243a278052413e862208a797e78e7689c6dba0da08ab3200feedd66cf0123581243a278052413e862208a797e78e7689c6dba0da08ab3200feedd66c

kubernetes-
client-linux-
arm64.tar.gz

dd19b034e1798f5bb0b1c6230ef294ca8f3ef7944837c5d49dce4659bb284b8edd19b034e1798f5bb0b1c6230ef294ca8f3ef7944837c5d49dce4659bb284b8e

kubernetes-
client-linux-
ppc64le.tar.gz

84a46003fe0140f8ecec03befceed7a4d955f9f88abdced99ecee24bc675b11384a46003fe0140f8ecec03befceed7a4d955f9f88abdced99ecee24bc675b113

kubernetes-
client-linux-
s390x.tar.gz

c4ee2bf9f7ea66ab41b350220920644bee3eeceb13cfd19873843a9ab43b372dc4ee2bf9f7ea66ab41b350220920644bee3eeceb13cfd19873843a9ab43b372d

kubernetes-
client-
windows-
386.tar.gz

917e768179e82a33232281b9b6e555cee75cf6315bd3c60a1fce4717fbd0e538917e768179e82a33232281b9b6e555cee75cf6315bd3c60a1fce4717fbd0e538

kubernetes-
client-
windows-
amd64.tar.gz

915f3cc888332b360701a4b20d1af384ec5388636f2c3e3868e36124ce8a96a8915f3cc888332b360701a4b20d1af384ec5388636f2c3e3868e36124ce8a96a8

Server Binaries

https://dl.k8s.io/v1.10.0-beta.4/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-client-windows-amd64.tar.gz

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

01b50da6bae8abe4e2c813381c3848ff615fc1d8164d11b163ac0819554ad7b401b50da6bae8abe4e2c813381c3848ff615fc1d8164d11b163ac0819554ad7b4

kubernetes-
server-linux-
arm.tar.gz

0a1ebd399759a68972e6248b09ce46a76deef931e51c807e032fefc4210e3dde0a1ebd399759a68972e6248b09ce46a76deef931e51c807e032fefc4210e3dde

kubernetes-
server-linux-
arm64.tar.gz

b8298a06aed6cd1c624855fb4e2d7258e8f9201fbc5bfebc8190c24273e95d9bb8298a06aed6cd1c624855fb4e2d7258e8f9201fbc5bfebc8190c24273e95d9b

kubernetes-
server-linux-
ppc64le.tar.gz

b3b03dc71476f70c8a62cf5ac72fe0bfa433005778d39bfbc43fe225675f9986b3b03dc71476f70c8a62cf5ac72fe0bfa433005778d39bfbc43fe225675f9986

kubernetes-
server-linux-
s390x.tar.gz

940bc9b4f73f32896f3c55d1b5824f931517689ec62b70600c8699e84bc725ee940bc9b4f73f32896f3c55d1b5824f931517689ec62b70600c8699e84bc725ee

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

bcc29195864e4e486a7e8194be06f3cf575203e012790ea6d70003349b108701bcc29195864e4e486a7e8194be06f3cf575203e012790ea6d70003349b108701

kubernetes-
node-linux-
arm.tar.gz

35ab99a6cd30c2ea6a1f2347d244fb8583bfd7ef1d54f89fbf9a3a3be14fb9e735ab99a6cd30c2ea6a1f2347d244fb8583bfd7ef1d54f89fbf9a3a3be14fb9e7

kubernetes-
node-linux-
arm64.tar.gz

fcb611d964c7e1c546fbbb38c8b30b3e3bb54226540caa0b80930f53e321dd2efcb611d964c7e1c546fbbb38c8b30b3e3bb54226540caa0b80930f53e321dd2e

kubernetes-
node-linux-
ppc64le.tar.gz

4de7b25cf712df27b6eec5232dc2891e07dbeb8c3699a145f777cc0629f1fe9c4de7b25cf712df27b6eec5232dc2891e07dbeb8c3699a145f777cc0629f1fe9c

kubernetes-
node-linux-
s390x.tar.gz

2f0b6a01c7c86209f031f47e1901bf3da82efef4db5b73b4e7d83be04b03c8142f0b6a01c7c86209f031f47e1901bf3da82efef4db5b73b4e7d83be04b03c814

kubernetes-
node-windows-
amd64.tar.gz

619013157435d8da7f58bb339aa21d5a080c341aebe226934d1139d29cff72be619013157435d8da7f58bb339aa21d5a080c341aebe226934d1139d29cff72be

Changelog since v1.10.0-beta.3

Other notable changes

Fix a regression that prevented using subPathsubPath volume mounts with secret, configMap,

projected, and downwardAPI volumes (#61080, @liggitt)

https://dl.k8s.io/v1.10.0-beta.4/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.4/kubernetes-node-windows-amd64.tar.gz
https://github.com/kubernetes/kubernetes/pull/61080
https://github.com/liggitt

Upgrade the default etcd server version to 3.1.12 to pick up critical etcd “mvcc “unsynced”

watcher restore operation” fix. (#60998, @jpbetz)

Fixed missing error checking that could cause kubelet to crash in a race condition.

(#60962, @technicianted)

v1.10.0-beta.3

Documentation & Examples

Downloads for v1.10.0-beta.3

filename sha256 hash

kubernetes.tar.gz 65880d0bb77eeb83554bb0a6c78b6d3a25cd38ef7d714bbe2c73b203386618d665880d0bb77eeb83554bb0a6c78b6d3a25cd38ef7d714bbe2c73b203386618d6

kubernetes-
src.tar.gz

e9fbf8198fd80c92dd7e2ecf0cf6cefda06f9b89e7986ae141412f8732dae47ce9fbf8198fd80c92dd7e2ecf0cf6cefda06f9b89e7986ae141412f8732dae47c

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

50b1a41e70804f74b3e76d7603752d45dfd47011fd986d055462e1330330aa4550b1a41e70804f74b3e76d7603752d45dfd47011fd986d055462e1330330aa45

kubernetes-
client-darwin-
amd64.tar.gz

3658e70ae9761464df50c6cae8d57349648c80d16658892e42ea898ddab362bc3658e70ae9761464df50c6cae8d57349648c80d16658892e42ea898ddab362bc

kubernetes-
client-linux-
386.tar.gz

00b8c048b201931ab1fb059df030e0bfc866f3c3ff464213aa6071ff261a3d3300b8c048b201931ab1fb059df030e0bfc866f3c3ff464213aa6071ff261a3d33

kubernetes-
client-linux-
amd64.tar.gz

364d6439185399e72f96bea1bf2863deb2080f4bf6df721932ef14ec45b2d5fc364d6439185399e72f96bea1bf2863deb2080f4bf6df721932ef14ec45b2d5fc

kubernetes-
client-linux-
arm.tar.gz

98670b2e965e118fb02901aa949cd1eb12d34ffd0bba7ff22014e9ad587556bc98670b2e965e118fb02901aa949cd1eb12d34ffd0bba7ff22014e9ad587556bc

kubernetes-
client-linux-
arm64.tar.gz

5f4febc543aa2f10c0c8aee9c9a8cb169b19b04486bda4cf1f72c80fa7a3a4835f4febc543aa2f10c0c8aee9c9a8cb169b19b04486bda4cf1f72c80fa7a3a483

kubernetes-
client-linux-
ppc64le.tar.gz

ff3d020e97e2ff4c1824db910f13945d70320fc3988cc24385708cab58d4065fff3d020e97e2ff4c1824db910f13945d70320fc3988cc24385708cab58d4065f

https://github.com/kubernetes/kubernetes/pull/60998
https://github.com/jpbetz
https://github.com/kubernetes/kubernetes/pull/60962
https://github.com/technicianted
https://docs.k8s.io
https://releases.k8s.io/release-1.10/examples
https://dl.k8s.io/v1.10.0-beta.3/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-linux-ppc64le.tar.gz

kubernetes-
client-linux-
s390x.tar.gz

508695afe6d3466488bc20cad31c184723cb238d1c311d2d1c4f9f1c9e981bd6508695afe6d3466488bc20cad31c184723cb238d1c311d2d1c4f9f1c9e981bd6

kubernetes-
client-
windows-
386.tar.gz

9f6372cfb973d04a150e1388d96cb60e7fe6ccb9ba63a146ff2dee491c2e3f4e9f6372cfb973d04a150e1388d96cb60e7fe6ccb9ba63a146ff2dee491c2e3f4e

kubernetes-
client-
windows-
amd64.tar.gz

2c85f2f13dc535d3c777f186b7e6d9403d64ac18ae01d1e460a8979e62845e042c85f2f13dc535d3c777f186b7e6d9403d64ac18ae01d1e460a8979e62845e04

filename sha256 hash

Server Binaries

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

4797ada6fd43e223d67840e815c1edb244a3b40a3a1b6ecfde7789119f2add3d4797ada6fd43e223d67840e815c1edb244a3b40a3a1b6ecfde7789119f2add3d

kubernetes-
server-linux-
arm.tar.gz

fb2fdb4b2feb41adbbd33fe4b7abbe9780d91a288a64ff7acf85d5ef942d3960fb2fdb4b2feb41adbbd33fe4b7abbe9780d91a288a64ff7acf85d5ef942d3960

kubernetes-
server-linux-
arm64.tar.gz

bc1f35e1999beaac91b65050f70c8e539918b927937e88bfcfa34a0c26b96701bc1f35e1999beaac91b65050f70c8e539918b927937e88bfcfa34a0c26b96701

kubernetes-
server-linux-
ppc64le.tar.gz

cce312f5af7dd182c8cc4ef35a768fef788a849a93a6f2f36e9d2991e721b362cce312f5af7dd182c8cc4ef35a768fef788a849a93a6f2f36e9d2991e721b362

kubernetes-
server-linux-
s390x.tar.gz

42edec36fa34a4cc4959af20a587fb05924ccc87c94b0f845953ba1ceec56bb742edec36fa34a4cc4959af20a587fb05924ccc87c94b0f845953ba1ceec56bb7

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

e517986261e3789cada07d9063ae96ed9b17ffd80c1b220b6ae9c41238c07c08e517986261e3789cada07d9063ae96ed9b17ffd80c1b220b6ae9c41238c07c08

kubernetes-
node-linux-
arm.tar.gz

9eb213248982816a855a7ff18c9421d5e987d5f1c472880a16bc6c477ce8da2a9eb213248982816a855a7ff18c9421d5e987d5f1c472880a16bc6c477ce8da2a

kubernetes-
node-linux-
arm64.tar.gz

e938dce3ec05cedcd6ab8e2b63224170db00e2c47e67685eb3cb4bad247ac8c0e938dce3ec05cedcd6ab8e2b63224170db00e2c47e67685eb3cb4bad247ac8c0

kubernetes-
node-linux-
ppc64le.tar.gz

bc9bf3d55f85d3b30f0a28fd79b7610ecdf019b8bc8d7f978da62ee0006c72ebbc9bf3d55f85d3b30f0a28fd79b7610ecdf019b8bc8d7f978da62ee0006c72eb

kubernetes-

https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-client-windows-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-node-linux-ppc64le.tar.gz

node-linux-
s390x.tar.gz

c5a1b18b8030ec86748e23d45f1de63783c2e95d67b0d6c2fcbcd545d205db8dc5a1b18b8030ec86748e23d45f1de63783c2e95d67b0d6c2fcbcd545d205db8d

kubernetes-
node-windows-
amd64.tar.gz

df4f4e8df8665ed08a9a3d9816e61c6c9f0ce50e4185b6c7a7f34135ad1f91d0df4f4e8df8665ed08a9a3d9816e61c6c9f0ce50e4185b6c7a7f34135ad1f91d0

filename sha256 hash

Changelog since v1.10.0-beta.2

Other notable changes

kubelet initial flag parse should normalize flags instead of exiting. (#61053,

@andrewsykim)

Fixes CVE-2017-1002101 - See https://issue.k8s.io/60813 for details (#61044, @liggitt)

Fixes the races around devicemanager Allocate() and endpoint deletion. (#60856,

@jiayingz)

When ScheduleDaemonSetPods is enabled, the DaemonSet controller will delegate Pods

scheduling to default scheduler. (#59862, @k82cn)

Set node external IP for azure node when disabling UseInstanceMetadata (#60959,

@feiskyer)

Bug fix, allow webhooks to use the scheme provided in clientConfig, instead of defaulting

to http. (#60943, @jennybuckley)

Downgrade default etcd server version to 3.1.11 due to #60589 (#60891, @shyamjvs)

kubelet and kube-proxy can now be ran as Windows services (#60144, @alinbalutoiu)

v1.10.0-beta.2

Documentation & Examples

Downloads for v1.10.0-beta.2

filename sha256 hash

kubernetes.tar.gz d07d77f16664cdb5ce86c87de36727577f48113efdb00f83283714ac1373d521d07d77f16664cdb5ce86c87de36727577f48113efdb00f83283714ac1373d521

https://dl.k8s.io/v1.10.0-beta.3/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.3/kubernetes-node-windows-amd64.tar.gz
https://github.com/kubernetes/kubernetes/pull/61053
https://github.com/andrewsykim
https://github.com/kubernetes/kubernetes/pull/61044
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60856
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/59862
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/60959
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60943
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/60589
https://github.com/kubernetes/kubernetes/pull/60891
https://github.com/shyamjvs
https://github.com/kubernetes/kubernetes/pull/60144
https://github.com/alinbalutoiu
https://docs.k8s.io
https://releases.k8s.io/release-1.10/examples
https://dl.k8s.io/v1.10.0-beta.2/kubernetes.tar.gz

kubernetes-
src.tar.gz

c27b06e748e4c10f42472f51ddfef7e9546e4ec9d2ce9f7a9a3c5768de8d97bfc27b06e748e4c10f42472f51ddfef7e9546e4ec9d2ce9f7a9a3c5768de8d97bffilename sha256 hash

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

d63168f9155f04e4b47fe96381f9aa06c3d498b6e6b71d1fb8c3ffeb0f3c6e4cd63168f9155f04e4b47fe96381f9aa06c3d498b6e6b71d1fb8c3ffeb0f3c6e4c

kubernetes-
client-darwin-
amd64.tar.gz

f473cbe830c1bfb738b0a66f07b3cd858ba185232eba26fe776f90d8a27bd7c1f473cbe830c1bfb738b0a66f07b3cd858ba185232eba26fe776f90d8a27bd7c1

kubernetes-
client-linux-
386.tar.gz

2a0f74d30cdaf19ed7c3fde3528e98a8cd98fdb9dc6e6a501525e69895674d562a0f74d30cdaf19ed7c3fde3528e98a8cd98fdb9dc6e6a501525e69895674d56

kubernetes-
client-linux-
amd64.tar.gz

69c18569717a97cb5e6bc22bebcf2f64969ba68b11685faaf2949c4ffbcd0b7369c18569717a97cb5e6bc22bebcf2f64969ba68b11685faaf2949c4ffbcd0b73

kubernetes-
client-linux-
arm.tar.gz

10e1d76a1ee6c0df9f9cce40d18c350a1e3e3665e6fe64d22e4433b6283d3fe210e1d76a1ee6c0df9f9cce40d18c350a1e3e3665e6fe64d22e4433b6283d3fe2

kubernetes-
client-linux-
arm64.tar.gz

12f081b99770548c8ddd688ae6b417c196f8308bd5901abbed6f203e133411ae12f081b99770548c8ddd688ae6b417c196f8308bd5901abbed6f203e133411ae

kubernetes-
client-linux-
ppc64le.tar.gz

6e1a035b4857539c90324e00b150ae65aaf4f4524250c9ca7d77ad5936f0628e6e1a035b4857539c90324e00b150ae65aaf4f4524250c9ca7d77ad5936f0628e

kubernetes-
client-linux-
s390x.tar.gz

5a8e2b0d14e18a39f821b09a7d73fa5c085cf6c197aeb540a3fe289e04fcc0d95a8e2b0d14e18a39f821b09a7d73fa5c085cf6c197aeb540a3fe289e04fcc0d9

kubernetes-
client-
windows-
386.tar.gz

03fac6befb94b85fb90e0bb47596868b4da507d803806fad2a5fb4b85c98d87d03fac6befb94b85fb90e0bb47596868b4da507d803806fad2a5fb4b85c98d87d

kubernetes-
client-
windows-
amd64.tar.gz

3bf8dd42eb70735ebdbda4ec4ec54e9507410e2f97ab2f364b88c2f24fdf471c3bf8dd42eb70735ebdbda4ec4ec54e9507410e2f97ab2f364b88c2f24fdf471c

Server Binaries

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

1278703060865281aa48b1366e3c4b0720d4eca623ba08cf852a4719a6680ec31278703060865281aa48b1366e3c4b0720d4eca623ba08cf852a4719a6680ec3

kubernetes-
server-linux-
arm.tar.gz

b1e2b399bec8c25b7b6037203485d2d09b091afc51ffebf861d5bddb8bb076acb1e2b399bec8c25b7b6037203485d2d09b091afc51ffebf861d5bddb8bb076ac

https://dl.k8s.io/v1.10.0-beta.2/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-client-windows-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-server-linux-arm.tar.gz

kubernetes-
server-linux-
arm64.tar.gz

4c3d0ed44d6a19ae178034117891678ec373894b02f8d33627b37a36c2ea815b4c3d0ed44d6a19ae178034117891678ec373894b02f8d33627b37a36c2ea815b

kubernetes-
server-linux-
ppc64le.tar.gz

88a7b52030104a4c6fb1f8c5f79444ed853f381e1463fec7e4939a9998d92dff88a7b52030104a4c6fb1f8c5f79444ed853f381e1463fec7e4939a9998d92dff

kubernetes-
server-linux-
s390x.tar.gz

35981580c00bff0e3d92238f961e37dd505c08bcd4cafb11e274daa1eb8ced5f35981580c00bff0e3d92238f961e37dd505c08bcd4cafb11e274daa1eb8ced5f

filename sha256 hash

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

ceedb0a322167bae33042407da5369e0b7889fbaa3568281500c921afcdbe310ceedb0a322167bae33042407da5369e0b7889fbaa3568281500c921afcdbe310

kubernetes-
node-linux-
arm.tar.gz

b84ab4c486bc8f00841fccce2aafe4dcef25606c8f3184bce2551ab6486c8f71b84ab4c486bc8f00841fccce2aafe4dcef25606c8f3184bce2551ab6486c8f71

kubernetes-
node-linux-
arm64.tar.gz

b79a41145c28358a64d7a689cd282cf8361fe87c410fbae1cdc8db76cfcf6e5bb79a41145c28358a64d7a689cd282cf8361fe87c410fbae1cdc8db76cfcf6e5b

kubernetes-
node-linux-
ppc64le.tar.gz

afc00f67b9f6d4fc149d4426fc8bbf6083077e11a1d2330d70be7e765b6cb923afc00f67b9f6d4fc149d4426fc8bbf6083077e11a1d2330d70be7e765b6cb923

kubernetes-
node-linux-
s390x.tar.gz

f6128bbccddfe8ce39762bacb5c13c6c68d76a4bf8d35e773560332eb05a2c86f6128bbccddfe8ce39762bacb5c13c6c68d76a4bf8d35e773560332eb05a2c86

kubernetes-
node-windows-
amd64.tar.gz

b1dde1ed2582cd511236fec69ebd6ca30281b30cc37e0841c493f06924a466cfb1dde1ed2582cd511236fec69ebd6ca30281b30cc37e0841c493f06924a466cf

Changelog since v1.10.0-beta.1

Action Required

ACTION REQUIRED: LocalStorageCapacityIsolation feature is beta and enabled by default.

(#60159, @jingxu97)

Other notable changes

Upgrade the default etcd server version to 3.2.16 (#59836, @jpbetz)

https://dl.k8s.io/v1.10.0-beta.2/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.2/kubernetes-node-windows-amd64.tar.gz
https://github.com/kubernetes/kubernetes/pull/60159
https://github.com/jingxu97
https://github.com/kubernetes/kubernetes/pull/59836
https://github.com/jpbetz

Cluster Autoscaler 1.1.2 (#60842, @mwielgus)

ValidatingWebhooks and MutatingWebhooks will not be called on admission requests for

ValidatingWebhookConfiguration and MutatingWebhookConfiguration objects in the

admissionregistration.k8s.io group (#59840, @jennybuckley)

Kubeadm: CoreDNS supports migration of the kube-dns configuration to CoreDNS

configuration when upgrading the service discovery from kube-dns to CoreDNS as part of

Beta. (#58828, @rajansandeep)

Fix broken useManagedIdentityExtension for azure cloud provider (#60775, @feiskyer)

kubelet now notifies systemd that it has finished starting, if systemd is available and

running. (#60654, @dcbw)

Do not count failed pods as unready in HPA controller (#60648, @bskiba)

fixed foreground deletion of podtemplates (#60683, @nilebox)

Conformance tests are added for the DaemonSet kinds in the apps/v1 group version.

Deprecated versions of DaemonSet will not be tested for conformance, and conformance

is only applicable to release 1.10 and later. (#60456, @kow3ns)

Log audit backend can now be configured to perform batching before writing events to

disk. (#60237, @crassirostris)

Fixes potential deadlock when deleting CustomResourceDefinition for custom resources

with finalizers (#60542, @liggitt)

fix azure file plugin failure issue on Windows after node restart (#60625, @andyzhangx)

Set Azure vmType to standard if it is not set in azure cloud config. (#60623, @feiskyer)

On cluster provision or upgrade, kubeadm generates an etcd specific CA for all etcd

related certificates. (#60385, @stealthybox)

kube-scheduler: restores default leader election behavior. leader-elect command line

parameter should “true” (#60524, @dims)

client-go: alpha support for exec-based credential providers (#59495, @ericchiang)

v1.10.0-beta.1

Documentation & Examples

https://github.com/kubernetes/kubernetes/pull/60842
https://github.com/mwielgus
https://github.com/kubernetes/kubernetes/pull/59840
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/58828
https://github.com/rajansandeep
https://github.com/kubernetes/kubernetes/pull/60775
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60654
https://github.com/dcbw
https://github.com/kubernetes/kubernetes/pull/60648
https://github.com/bskiba
https://github.com/kubernetes/kubernetes/pull/60683
https://github.com/nilebox
https://github.com/kubernetes/kubernetes/pull/60456
https://github.com/kow3ns
https://github.com/kubernetes/kubernetes/pull/60237
https://github.com/crassirostris
https://github.com/kubernetes/kubernetes/pull/60542
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/60625
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/60623
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60385
https://github.com/stealthybox
https://github.com/kubernetes/kubernetes/pull/60524
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/59495
https://github.com/ericchiang
https://docs.k8s.io
https://releases.k8s.io/release-1.10/examples

Downloads for v1.10.0-beta.1

filename sha256 hash

kubernetes.tar.gz 428139d9877f5f94acc806cc4053b0a5f8eac2acc219f06efd0817807473dbc5428139d9877f5f94acc806cc4053b0a5f8eac2acc219f06efd0817807473dbc5

kubernetes-
src.tar.gz

5bfdecdbb43d946ea965f22ec6b8a0fc7195197a523aefebc2b7b926d4252edf5bfdecdbb43d946ea965f22ec6b8a0fc7195197a523aefebc2b7b926d4252edf

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

8cc086e901fe699df5e0711438195e675e099848a72ba272b290d22abc107a938cc086e901fe699df5e0711438195e675e099848a72ba272b290d22abc107a93

kubernetes-
client-darwin-
amd64.tar.gz

b2782b8f6dbfe3fa962b08606cbf3366b071b78c47794d2ef67f9d484b4af4e4b2782b8f6dbfe3fa962b08606cbf3366b071b78c47794d2ef67f9d484b4af4e4

kubernetes-
client-linux-
386.tar.gz

a4001ad2387ccb4557b15c560b0ea8ea4d7c7ed494375346e3f83c10eb9426aca4001ad2387ccb4557b15c560b0ea8ea4d7c7ed494375346e3f83c10eb9426ac

kubernetes-
client-linux-
amd64.tar.gz

b95d354e80d9f00a883e5eeb8c2e0ceaacc0f3cc8c904cb2eca1e1b6d91462b2b95d354e80d9f00a883e5eeb8c2e0ceaacc0f3cc8c904cb2eca1e1b6d91462b2

kubernetes-
client-linux-
arm64.tar.gz

647d234c59bc1d6f8eea88624d85b09bbe1272d9e27e1f7963e03cc025530ed0647d234c59bc1d6f8eea88624d85b09bbe1272d9e27e1f7963e03cc025530ed0

kubernetes-
client-linux-
arm.tar.gz

187da9ad060ac7d426811772f6c3d891a354945af6a7d8832ac7097e19d4b46d187da9ad060ac7d426811772f6c3d891a354945af6a7d8832ac7097e19d4b46d

kubernetes-
client-linux-
ppc64le.tar.gz

6112396b8f0e7b1401b374aa2ae6195849da7718572036b6f060a722a89dc3196112396b8f0e7b1401b374aa2ae6195849da7718572036b6f060a722a89dc319

kubernetes-
client-linux-
s390x.tar.gz

09789cf33d8eed610ad2eef7d3ae25a4b4a63ee5525e452f9094097a172a1ce909789cf33d8eed610ad2eef7d3ae25a4b4a63ee5525e452f9094097a172a1ce9

kubernetes-
client-
windows-
386.tar.gz

1e71bc9979c8915587cdea980dad36b0cafd502f972c051c2aa63c3bbfeceb141e71bc9979c8915587cdea980dad36b0cafd502f972c051c2aa63c3bbfeceb14

kubernetes-
client-
windows-
amd64.tar.gz

3c2978479c6f65f1cb5043ba182a0571480090298b7d62090d9bf11b043dd27d3c2978479c6f65f1cb5043ba182a0571480090298b7d62090d9bf11b043dd27d

Server Binaries

https://dl.k8s.io/v1.10.0-beta.1/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-client-windows-amd64.tar.gz

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

d887411450bbc06e2f4a24ce3c478fe6844856a8707b3236c045d44ab93b27d2d887411450bbc06e2f4a24ce3c478fe6844856a8707b3236c045d44ab93b27d2

kubernetes-
server-linux-
arm64.tar.gz

907f037eea90bf893520d3adeccdf29eda69eea32c564b08cecbedfd06471acd907f037eea90bf893520d3adeccdf29eda69eea32c564b08cecbedfd06471acd

kubernetes-
server-linux-
arm.tar.gz

f2ac4ad4f831a970cb35c1d7194788850dff722e859a08a879c918db1233aaa7f2ac4ad4f831a970cb35c1d7194788850dff722e859a08a879c918db1233aaa7

kubernetes-
server-linux-
ppc64le.tar.gz

0bebb59217b491c5aa4b4b9dc740c0c8c5518872f6f86853cbe30493ea8539a50bebb59217b491c5aa4b4b9dc740c0c8c5518872f6f86853cbe30493ea8539a5

kubernetes-
server-linux-
s390x.tar.gz

5f343764e04e3a8639dffe225cc6f8bc6f17e1584b2c68923708546f48d38f895f343764e04e3a8639dffe225cc6f8bc6f17e1584b2c68923708546f48d38f89

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

c4475c315d4ae27c30f80bc01d6ea8b0b8549ec6a60a5dc745cf11a0c4398c23c4475c315d4ae27c30f80bc01d6ea8b0b8549ec6a60a5dc745cf11a0c4398c23

kubernetes-
node-linux-
arm64.tar.gz

4512a4c3e62cd26fb0d3f78bfc8de9a860e7d88e7c913c5df4c239536f89da424512a4c3e62cd26fb0d3f78bfc8de9a860e7d88e7c913c5df4c239536f89da42

kubernetes-
node-linux-
arm.tar.gz

1da407ad152b185f520f04215775a8fe176550a31a2bb79e3e82968734bdfb5c1da407ad152b185f520f04215775a8fe176550a31a2bb79e3e82968734bdfb5c

kubernetes-
node-linux-
ppc64le.tar.gz

f23f6f819e6d894f8ca7457f80ee4ede729fd35ac59e9c65ab031b56aa06d4a1f23f6f819e6d894f8ca7457f80ee4ede729fd35ac59e9c65ab031b56aa06d4a1

kubernetes-
node-linux-
s390x.tar.gz

205c789f52a4c666a63ac7944ffa8ee325cb97e788b748c262eae59b838a94ba205c789f52a4c666a63ac7944ffa8ee325cb97e788b748c262eae59b838a94ba

kubernetes-
node-windows-
amd64.tar.gz

aa7675fd22d9ca671585f429f6981aa79798f1894025c3abe3a7154f3c94aae6aa7675fd22d9ca671585f429f6981aa79798f1894025c3abe3a7154f3c94aae6

Changelog since v1.10.0-alpha.3

Action Required

https://dl.k8s.io/v1.10.0-beta.1/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-beta.1/kubernetes-node-windows-amd64.tar.gz

[action required] Default Flexvolume plugin directory for COS images on GCE is changed to

/home/kubernetes/flexvolume/home/kubernetes/flexvolume . (#58171, @verult)

action required: [GCP kube-up.sh] Some variables that were part of kube-env are no longer

being set (ones only used for kubelet flags) and are being replaced by a more portable

mechanism (kubelet configuration file). The individual variables in the kube-env metadata

entry were never meant to be a stable interface and this release note only applies if you are

depending on them. (#60020, @roberthbailey)

action required: Deprecate format-separated endpoints for OpenAPI spec. Please use

single /openapi/v2/openapi/v2 endpoint instead. (#59293, @roycaihw)

action required: kube-proxy: feature gates are now specified as a map when provided via a

JSON or YAML KubeProxyConfiguration, rather than as a string of key-value pairs.

(#57962, @xiangpengzhao)

Action Required: The boostrapped RBAC role and rolebinding for the cloud-providercloud-provider

service account is now deprecated. If you’re currently using this service account, you must

create and apply your own RBAC policy for new clusters. (#59949, @nicksardo)

ACTION REQUIRED: VolumeScheduling and LocalPersistentVolume features are beta and

enabled by default. The PersistentVolume NodeAffinity alpha annotation is deprecated

and will be removed in a future release. (#59391, @msau42)

action required: Deprecate the kubelet’s cadvisor port. The default will change to 0

(disabled) in 1.12, and the cadvisor port will be removed entirely in 1.13. (#59827,

@dashpole)

action required: The kubeletconfigkubeletconfig API group has graduated from alpha to beta, and the

name has changed to kubelet.config.k8s.iokubelet.config.k8s.io . Please use

kubelet.config.k8s.io/v1beta1kubelet.config.k8s.io/v1beta1 , as kubeletconfig/v1alpha1kubeletconfig/v1alpha1 is no longer available.

(#53833, @mtaufen)

Action required: Default values differ between the Kubelet’s componentconfig (config file)

API and the Kubelet’s command line. Be sure to review the default values when migrating

to using a config file. (#59666, @mtaufen)

kube-apiserver: the experimental in-tree Keystone password authenticator has been

removed in favor of extensions that enable use of Keystone tokens. (#59492, @dims)

The udpTimeoutMilliseconds field in the kube-proxy configuration file has been renamed

https://github.com/kubernetes/kubernetes/pull/58171
https://github.com/verult
https://github.com/kubernetes/kubernetes/pull/60020
https://github.com/roberthbailey
https://github.com/kubernetes/kubernetes/pull/59293
https://github.com/roycaihw
https://github.com/kubernetes/kubernetes/pull/57962
https://github.com/xiangpengzhao
https://github.com/kubernetes/kubernetes/pull/59949
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/59391
https://github.com/msau42
https://github.com/kubernetes/kubernetes/pull/59827
https://github.com/dashpole
https://github.com/kubernetes/kubernetes/pull/53833
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59666
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59492
https://github.com/dims

to udpIdleTimeout. Action required: administrators need to update their files accordingly.

(#57754, @ncdc)

Other notable changes

Enable IPVS feature gateway by default (#60540, @m1093782566)

dockershim now makes an Image’s Labels available in the Info field of

ImageStatusResponse (#58036, @shlevy)

kube-scheduler: Support extender managed extended resources in kube-scheduler

(#60332, @yguo0905)

Fix the issue in kube-proxy iptables/ipvs mode to properly handle incorrect IP version.

(#56880, @MrHohn)

WindowsContainerResources is set now for windows containers (#59333, @feiskyer)

GCE: support Cloud TPU API in cloud provider (#58029, @yguo0905)

The node authorizer now allows nodes to request service account tokens for the service

accounts of pods running on them. (#55019, @mikedanese)

Fix StatefulSet to work with set-based selectors. (#59365, @ayushpateria)

New conformance tests added for the Garbage Collector (#60116, @jennybuckley)

Make NodePort IP addresses configurable (#58052, @m1093782566)

Implements MountDevice and UnmountDevice for the CSI Plugin, the functions will call

through to NodeStageVolume/NodeUnstageVolume for CSI plugins. (#60115,

@davidz627)

Fixes a bug where character devices are not recongized by the kubelet (#60440,

@andrewsykim)

[fluentd-gcp addon] Switch to the image, provided by Stackdriver. (#59128,

@bmoyles0117)

StatefulSet in apps/v1 is now included in Conformance Tests. (#60336, @enisoc)

K8s supports rbd-nbd for Ceph rbd volume mounts. (#58916, @ianchakeres)

AWS EBS volume plugin got block volume support (#58625, @screeley44)

https://github.com/kubernetes/kubernetes/pull/57754
https://github.com/ncdc
https://github.com/kubernetes/kubernetes/pull/60540
https://github.com/m1093782566
https://github.com/kubernetes/kubernetes/pull/58036
https://github.com/shlevy
https://github.com/kubernetes/kubernetes/pull/60332
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/56880
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/59333
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58029
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/55019
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/59365
https://github.com/ayushpateria
https://github.com/kubernetes/kubernetes/pull/60116
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/58052
https://github.com/m1093782566
https://github.com/kubernetes/kubernetes/pull/60115
https://github.com/davidz627
https://github.com/kubernetes/kubernetes/pull/60440
https://github.com/andrewsykim
https://github.com/kubernetes/kubernetes/pull/59128
https://github.com/bmoyles0117
https://github.com/kubernetes/kubernetes/pull/60336
https://github.com/enisoc
https://github.com/kubernetes/kubernetes/pull/58916
https://github.com/ianchakeres
https://github.com/kubernetes/kubernetes/pull/58625
https://github.com/screeley44

Summary API will include pod CPU and Memory stats for CRI container runtime. (#60328,

@Random-Liu)

dockertools: disable memory swap on Linux. (#59404, @ohmystack)

On AWS kubelet returns an error when started under conditions that do not allow it to

work (AWS has not yet tagged the instance). (#60125, @vainu-arto)

Increase timeout of integration tests (#60458, @jennybuckley)

Fixes a case when Deployment with recreate strategy could get stuck on old failed Pod.

(#60301, @tnozicka)

Buffered audit backend is introduced, to be used with other audit backends. (#60076,

@crassirostris)

Update dashboard version to v1.8.3 (#57326, @floreks)

GCE PD volume plugin got block volume support (#58710, @screeley44)

force node name lowercase on static pod name generating (#59849, @yue9944882)

AWS Security Groups created for ELBs will now be tagged with the same additional tags

as the ELB (i.e. the tags specified by the “service.beta.kubernetes.io/aws-load-balancer-

additional-resource-tags” annotation.) (#58767, @2rs2ts)

Fixes an error when deleting an NLB in AWS - Fixes #57568 (#57569, @micahhausler)

fix device name change issue for azure disk (#60346, @andyzhangx)

On cluster provision or upgrade, kubeadm now generates certs and secures all

connections to the etcd static-pod with mTLS. (#57415, @stealthybox)

Some field names in the Kubelet’s now v1beta1 config API differ from the v1alpha1 API:

PodManifestPath is renamed to StaticPodPath, ManifestURL is renamed to StaticPodURL,

ManifestURLHeader is renamed to StaticPodURLHeader. (#60314, @mtaufen)

Adds BETA support for DNSConfigDNSConfig field in PodSpec and DNSPolicy=NoneDNSPolicy=None . (#59771,

@MrHohn)

kubeadm: Demote controlplane passthrough flags to alpha flags (#59882, @kris-nova)

DevicePlugins feature graduates to beta. (#60170, @jiayingz)

Additional changes to iptables kube-proxy backend to improve performance on clusters

with very large numbers of services. (#60306, @danwinship)

https://github.com/kubernetes/kubernetes/pull/60328
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/59404
https://github.com/ohmystack
https://github.com/kubernetes/kubernetes/pull/60125
https://github.com/vainu-arto
https://github.com/kubernetes/kubernetes/pull/60458
https://github.com/jennybuckley
https://github.com/kubernetes/kubernetes/pull/60301
https://github.com/tnozicka
https://github.com/kubernetes/kubernetes/pull/60076
https://github.com/crassirostris
https://github.com/kubernetes/kubernetes/pull/57326
https://github.com/floreks
https://github.com/kubernetes/kubernetes/pull/58710
https://github.com/screeley44
https://github.com/kubernetes/kubernetes/pull/59849
https://github.com/yue9944882
https://github.com/kubernetes/kubernetes/pull/58767
https://github.com/2rs2ts
https://github.com/kubernetes/kubernetes/pull/57568
https://github.com/kubernetes/kubernetes/pull/57569
https://github.com/micahhausler
https://github.com/kubernetes/kubernetes/pull/60346
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/57415
https://github.com/stealthybox
https://github.com/kubernetes/kubernetes/pull/60314
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59771
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/59882
https://github.com/kris-nova
https://github.com/kubernetes/kubernetes/pull/60170
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/60306
https://github.com/danwinship

CSI now allows credentials to be specified on CreateVolume/DeleteVolume,

ControllerPublishVolume/ControllerUnpublishVolume, and

NodePublishVolume/NodeUnpublishVolume operations (#60118, @sbezverk)

Disable mount propagation for windows containers. (#60275, @feiskyer)

Introduced --http2-max-streams-per-connection--http2-max-streams-per-connection command line flag on api-servers

and set default to 1000 for aggregated API servers. (#60054, @MikeSpreitzer)

APIserver backed by etcdv3 exports metric showing number of resources per kind

(#59757, @gmarek)

The DaemonSet controller, its integration tests, and its e2e tests, have been updated to

use the apps/v1 API. (#59883, @kow3ns)

Fix image file system stats for windows nodes (#59743, @feiskyer)

Custom resources can be listed with a set of grouped resources (category) by specifying

the categories in the CustomResourceDefinition spec. Example: They can be used with

kubectl getkubectl get

allall , where allall is a category. (#59561, @nikhita)

[fluentd-gcp addon] Fixed bug with reporting metrics in event-exporter (#60126,

@serathius)

Critical pods to use priorityClasses. (#58835, @ravisantoshgudimetla)

--show-all--show-all (which only affected pods and only for human readable/non-API printers) is

now defaulted to true and deprecated. It will be inert in 1.11 and removed in a future

release. (#60210, @deads2k)

Removed some redundant rules created by the iptables proxier, to improve performance

on systems with very many services. (#57461, @danwinship)

Disable per-cpu metrics by default for scalability. (#60106, @dashpole)

Fix inaccurate disk usage monitoring of overlayFs.

Retry docker connection on startup timeout to avoid permanent loss of metrics.

When the PodShareProcessNamespacePodShareProcessNamespace alpha feature is enabled, setting

pod.Spec.ShareProcessNamespacepod.Spec.ShareProcessNamespace to truetrue will cause a single process namespace to

be shared between all containers in a pod. (#60181, @verb)

https://github.com/kubernetes/kubernetes/pull/60118
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/60275
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60054
https://github.com/MikeSpreitzer
https://github.com/kubernetes/kubernetes/pull/59757
https://github.com/gmarek
https://github.com/kubernetes/kubernetes/pull/59883
https://github.com/kow3ns
https://github.com/kubernetes/kubernetes/pull/59743
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59561
https://github.com/nikhita
https://github.com/kubernetes/kubernetes/pull/60126
https://github.com/serathius
https://github.com/kubernetes/kubernetes/pull/58835
https://github.com/ravisantoshgudimetla
https://github.com/kubernetes/kubernetes/pull/60210
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/57461
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/60106
https://github.com/dashpole
https://github.com/kubernetes/kubernetes/pull/60181
https://github.com/verb

add spelling checking script (#59463, @dixudx)

Allows HorizontalPodAutoscaler to use global metrics not associated with any Kubernetes

object (for example metrics from a hoster service running outside of Kubernetes cluster).

(#60096, @MaciekPytel)

fix race condition issue when detaching azure disk (#60183, @andyzhangx)

Add kubectl create job command (#60084, @soltysh)

[Alpha] Kubelet now supports container log rotation for container runtime which

implements CRI(container runtime interface). (#59898, @Random-Liu)

The feature can be enabled with feature gate CRIContainerLogRotationCRIContainerLogRotation .

The flags --container-log-max-size--container-log-max-size and --container-log-max-files--container-log-max-files can be

used to configure the rotation behavior.

Reorganized iptables rules to fix a performance regression on clusters with thousands of

services. (#56164, @danwinship)

StorageOS volume plugin updated to support mount options and environments where the

kubelet runs in a container and the device location should be specified. (#58816,

@croomes)

Use consts as predicate name in handlers (#59952, @resouer)

/status/status and /scale/scale subresources are added for custom resources. (#55168, @nikhita)

Allow kubectl env to specify which keys to import from a config map (#60040,

@PhilipGough)

Set default enabled admission plugins

NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuotaNamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota

(#58684, @hzxuzhonghu)

Fix instanceID for vmss nodes. (#59857, @feiskyer)

Deprecate kubectl scale jobs (only jobs). (#60139, @soltysh)

Adds new flag --apiserver-advertise-dns-address--apiserver-advertise-dns-address which is used in node

kubelet.confg to point to API server (#59288, @stevesloka)

Fix kube-proxy flags validation for –healthz-bind-address and –metrics-bind-address to

allow specifying ip:port. (#54191, @MrHohn)

https://github.com/kubernetes/kubernetes/pull/59463
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/60096
https://github.com/MaciekPytel
https://github.com/kubernetes/kubernetes/pull/60183
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/60084
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/59898
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/56164
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/58816
https://github.com/croomes
https://github.com/kubernetes/kubernetes/pull/59952
https://github.com/resouer
https://github.com/kubernetes/kubernetes/pull/55168
https://github.com/nikhita
https://github.com/kubernetes/kubernetes/pull/60040
https://github.com/PhilipGough
https://github.com/kubernetes/kubernetes/pull/58684
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/59857
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/60139
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/59288
https://github.com/stevesloka
https://github.com/kubernetes/kubernetes/pull/54191
https://github.com/MrHohn

Increase allowed lag for ssh key sync loop in tunneler to allow for one failure (#60068,

@wojtek-t)

Flags that can be set via the Kubelet’s –config file are now deprecated in favor of the file.

(#60148, @mtaufen)

PVC Protection alpha feature was renamed to Storage Protection. Storage Protection

feature is beta. (#59052, @pospispa)

kube-apiserver: the root /proxy paths have been removed (deprecated since v1.2). Use the

/proxy subresources on objects that support HTTP proxying. (#59884, @mikedanese)

Set an upper bound (5 minutes) on how long the Kubelet will wait before exiting when the

client cert from disk is missing or invalid. This prevents the Kubelet from waiting forever

without attempting to bootstrap a new client credentials. (#59316, @smarterclayton)

v1.Pod now has a field to configure whether a single process namespace should be

shared between all containers in a pod. This feature is in alpha preview. (#58716, @verb)

Priority admission controller picks a global default with the lowest priority value if more

than one such default PriorityClass exists. (#59991, @bsalamat)

Add ipset binary for IPVS to hyperkube docker image (#57648, @Fsero)

kube-apiserver: the OpenID Connect authenticator can now verify ID Tokens signed with

JOSE algorithms other than RS256 through the –oidc-signing-algs flag. (#58544,

@ericchiang)

kube-apiserver: the OpenID Connect authenticator no longer accepts tokens from the

Google v3 token APIs, users must switch to the

“https://www.googleapis.com/oauth2/v4/token” endpoint.

Rename StorageProtection to StorageObjectInUseProtection (#59901, @NickrenREN)

kubeadm: add criSocket field to MasterConfiguration manifiest (#59057, @JordanFaust)

kubeadm: add criSocket field to NodeConfiguration manifiest (#59292, @JordanFaust)

The PodSecurityPolicyPodSecurityPolicy API has been moved to the policy/v1beta1policy/v1beta1 API group. The

PodSecurityPolicyPodSecurityPolicy API in the extensions/v1beta1extensions/v1beta1 API group is deprecated and will

be removed in a future release. Authorizations for using pod security policy resources

should change to reference the policypolicy API group after upgrading to 1.11. (#54933,

@php-coder)

https://github.com/kubernetes/kubernetes/pull/60068
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/60148
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59052
https://github.com/pospispa
https://github.com/kubernetes/kubernetes/pull/59884
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/59316
https://github.com/smarterclayton
https://github.com/kubernetes/kubernetes/pull/58716
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/59991
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/57648
https://github.com/Fsero
https://github.com/kubernetes/kubernetes/pull/58544
https://github.com/ericchiang
https://github.com/kubernetes/kubernetes/pull/59901
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/59057
https://github.com/JordanFaust
https://github.com/kubernetes/kubernetes/pull/59292
https://github.com/JordanFaust
https://github.com/kubernetes/kubernetes/pull/54933
https://github.com/php-coder

Restores the ability of older clients to delete and scale jobs with initContainers (#59880,

@liggitt)

Support for resource quota on extended resources (#57302, @lichuqiang)

Fix race causing apiserver crashes during etcd healthchecking (#60069, @wojtek-t)

If TaintNodesByCondition enabled, taint node when it under PID pressure (#60008,

@k82cn)

Expose total usage of pods through the “pods” SystemContainer in the Kubelet Summary

API (#57802, @dashpole)

Unauthorized requests will not match audit policy rules where users or groups are set.

(#59398, @CaoShuFeng)

Making sure CSI E2E test runs on a local cluster (#60017, @sbezverk)

Addressing breaking changes introduced by new 0.2.0 release of CSI spec (#59209,

@sbezverk)

GCE: A role and clusterrole will now be provided with GCE/GKE for allowing the cloud-

provider to post warning events on all services and watching configmaps in the kube-

system namespace. (#59686, @nicksardo)

Updated PID pressure node condition (#57136, @k82cn)

Add AWS cloud provider option to use an assumed IAM role (#59668, @brycecarman)

kubectl port-forwardkubectl port-forward now supports specifying a service to port forward to:

kubectl port-forward svc/myservicekubectl port-forward svc/myservice

8443:4438443:443 (#59809, @phsiao)

Fix kubelet PVC stale metrics (#59170, @cofyc)

Separate current ARM rate limiter into read/write (#59830, @khenidak)

Improve control over how ARM rate limiter is used within Azure cloud

provider

The ConfigOK node condition has been renamed to KubeletConfigOk. (#59905,

@mtaufen)

fluentd-gcp resources can be modified via a ScalingPolicy (#59657, @x13n)

Adding pkg/kubelet/apis/deviceplugin/v1beta1 API. (#59588, @jiayingz)

https://github.com/kubernetes/kubernetes/pull/59880
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/57302
https://github.com/lichuqiang
https://github.com/kubernetes/kubernetes/pull/60069
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/60008
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/57802
https://github.com/dashpole
https://github.com/kubernetes/kubernetes/pull/59398
https://github.com/CaoShuFeng
https://github.com/kubernetes/kubernetes/pull/60017
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/59209
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/59686
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/57136
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/59668
https://github.com/brycecarman
https://github.com/kubernetes/kubernetes/pull/59809
https://github.com/phsiao
https://github.com/kubernetes/kubernetes/pull/59170
https://github.com/cofyc
https://github.com/kubernetes/kubernetes/pull/59830
https://github.com/khenidak
https://github.com/kubernetes/kubernetes/pull/59905
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59657
https://github.com/x13n
https://github.com/kubernetes/kubernetes/pull/59588
https://github.com/jiayingz

Fixes volume predicate handler for equiv class (#59335, @resouer)

Bugfix: vSphere Cloud Provider (VCP) does not need any special service account anymore.

(#59440, @rohitjogvmw)

Fixing a bug in OpenStack cloud provider, where dual stack deployments (IPv4 and IPv6)

did not work well when using kubenet as the network plugin. (#59749, @zioproto)

Get parent dir via canonical absolute path when trying to judge mount-point (#58433,

@yue9944882)

Container runtime daemon (e.g. dockerd) logs in GCE cluster will be uploaded to

stackdriver and elasticsearch with tag container-runtimecontainer-runtime (#59103, @Random-Liu)

Add AzureDisk support for vmss nodes (#59716, @feiskyer)

Fixed a race condition in k8s.io/client-go/tools/cache.SharedInformer that could violate

the sequential delivery guarantee and cause panics on shutdown. (#59828, @krousey)

Avoid hook errors when effecting label changes on kubernetes-worker charm. (#59803,

@wwwtyro)

kubectl port-forward now allows using resource name (e.g., deployment/www) to select a

matching pod, as well as allows the use of –pod-running-timeout to wait till at least one

pod is running. (#59705, @phsiao)

kubectl port-forward no longer support deprecated -p flag

Deprecate insecure HTTP port of kube-controller-manager and cloud-controller-manager.

Use --secure-port--secure-port and --bind-address--bind-address instead. (#59582, @sttts)

Eviction thresholds set to 0% or 100% are now ignored. (#59681, @mtaufen)

[advanced audit] support subresources wildcard matching. (#55306, @hzxuzhonghu)

CronJobs can be accessed through cj alias (#59499, @soltysh)

fix typo in resource_allocation.go (#58275, @carmark)

fix the error prone account creation method of blob disk (#59739, @andyzhangx)

Add automatic etcd 3.2->3.1 and 3.1->3.0 minor version rollback support to

gcr.io/google_container/etcd images. For HA clusters, all members must be stopped

before performing a rollback. (#59298, @jpbetz)

https://github.com/kubernetes/kubernetes/pull/59335
https://github.com/resouer
https://github.com/kubernetes/kubernetes/pull/59440
https://github.com/rohitjogvmw
https://github.com/kubernetes/kubernetes/pull/59749
https://github.com/zioproto
https://github.com/kubernetes/kubernetes/pull/58433
https://github.com/yue9944882
https://github.com/kubernetes/kubernetes/pull/59103
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/59716
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59828
https://github.com/krousey
https://github.com/kubernetes/kubernetes/pull/59803
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/59705
https://github.com/phsiao
https://github.com/kubernetes/kubernetes/pull/59582
https://github.com/sttts
https://github.com/kubernetes/kubernetes/pull/59681
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/55306
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/59499
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/58275
https://github.com/carmark
https://github.com/kubernetes/kubernetes/pull/59739
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/59298
https://github.com/jpbetz

kubeadm initkubeadm init can now omit the tainting of the master node if configured to do so in

kubeadm.yamlkubeadm.yaml . (#55479, @ijc)

Updated kubernetes-worker to request new security tokens when the aws cloud provider

changes the registered node name. (#59730, @hyperbolic2346)

Controller-manager –service-sync-period flag is removed (was never used in the code).

(#59359, @khenidak)

Pod priority can be specified ins PodSpec even when the feature is disabled, but it will be

effective only when the feature is enabled. (#59291, @bsalamat)

kubeadm: Enable auditing behind a feature gate. (#59067, @chuckha)

Map correct vmset name for Azure internal load balancers (#59747, @feiskyer)

Add generic cache for Azure VMSS (#59652, @feiskyer)

kubeadm: New “imagePullPolicy” option in the init configuration file, that gets forwarded to

kubelet static pods to control pull policy for etcd and control plane images. (#58960,

@rosti)

fix the create azure file pvc failure if there is no storage account in current resource group

(#56557, @andyzhangx)

Add generic cache for Azure VM/LB/NSG/RouteTable (#59520, @feiskyer)

The alpha KubeletConfiguration.ConfigTrialDuration field is no longer available. (#59628,

@mtaufen)

Updates Calico version to v2.6.7 (Fixed a bug where Felix would crash when parsing a

NetworkPolicy with a named port. See

https://github.com/projectcalico/calico/releases/tag/v2.6.7) (#59130, @caseydavenport)

return error if New-SmbGlobalMapping failed when mounting azure file on Windows

(#59540, @andyzhangx)

Disallow PriorityClass names with ‘system-‘ prefix for user defined priority classes.

(#59382, @bsalamat)

Fixed an issue where Portworx volume driver wasn’t passing namespace and annotations

to the Portworx Create API. (#59607, @harsh-px)

Enable apiserver metrics for custom resources. (#57682, @nikhita)

https://github.com/kubernetes/kubernetes/pull/55479
https://github.com/ijc
https://github.com/kubernetes/kubernetes/pull/59730
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/59359
https://github.com/khenidak
https://github.com/kubernetes/kubernetes/pull/59291
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/59067
https://github.com/chuckha
https://github.com/kubernetes/kubernetes/pull/59747
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59652
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58960
https://github.com/rosti
https://github.com/kubernetes/kubernetes/pull/56557
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/59520
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59628
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59130
https://github.com/caseydavenport
https://github.com/kubernetes/kubernetes/pull/59540
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/59382
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/59607
https://github.com/harsh-px
https://github.com/kubernetes/kubernetes/pull/57682
https://github.com/nikhita

fix typo (#59619, @jianliao82)

incase -> in case

selction -> selection

Implement envelope service with gRPC, so that KMS providers can be pulled out from API

server. (#55684, @wu-qiang)

Enable golint for pkg/schedulerpkg/scheduler and fix the golint errors in it. (#58437, @tossmilestone)

AWS: Make attach/detach operations faster. from 10-12s to 2-6s (#56974, @gnufied)

CRI starts using moutpoint as image filesystem identifier instead of UUID. (#59475,

@Random-Liu)

DaemonSet, Deployment, ReplicaSet, and StatefulSet objects are now persisted in etcd in

apps/v1 format (#58854, @liggitt)

‘none’ can now be specified in KubeletConfiguration.EnforceNodeAllocatable (–enforce-

node-allocatable) to explicitly disable enforcement. (#59515, @mtaufen)

vSphere Cloud Provider supports VMs provisioned on vSphere v1.6.5 (#59519,

@abrarshivani)

Annotations is added to advanced audit api (#58806, @CaoShuFeng)

2nd try at using a vanity GCR name (#57824, @thockin)

Node’s providerID is following Azure resource ID format now when useInstanceMetadata

is enabled (#59539, @feiskyer)

Block Volume Support: Local Volume Plugin update (#59303, @dhirajh)

[action-required] The Container Runtime Interface (CRI) version has increased from

v1alpha1 to v1alpha2. Runtimes implementing the CRI will need to update to the new

version, which configures container namespaces using an enumeration rather than

booleans. (#58973, @verb)

Fix the bug where kubelet in the standalone mode would wait for the update from the

apiserver source. (#59276, @roboll)

Add “keyring” parameter for Ceph RBD provisioner (#58287, @madddi)

Ensure euqiv hash calculation is per schedule (#59245, @resouer)

https://github.com/kubernetes/kubernetes/pull/59619
https://github.com/jianliao82
https://github.com/kubernetes/kubernetes/pull/55684
https://github.com/wu-qiang
https://github.com/kubernetes/kubernetes/pull/58437
https://github.com/tossmilestone
https://github.com/kubernetes/kubernetes/pull/56974
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/59475
https://github.com/Random-Liu
https://github.com/kubernetes/kubernetes/pull/58854
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/59515
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/59519
https://github.com/abrarshivani
https://github.com/kubernetes/kubernetes/pull/58806
https://github.com/CaoShuFeng
https://github.com/kubernetes/kubernetes/pull/57824
https://github.com/thockin
https://github.com/kubernetes/kubernetes/pull/59539
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59303
https://github.com/dhirajh
https://github.com/kubernetes/kubernetes/pull/58973
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/59276
https://github.com/roboll
https://github.com/kubernetes/kubernetes/pull/58287
https://github.com/madddi
https://github.com/kubernetes/kubernetes/pull/59245
https://github.com/resouer

kube-scheduler: Use default predicates/prioritizers if they are unspecified in the policy

config (#59363, @yguo0905)

Fixed charm issue where docker login would run prior to daemon options being set.

(#59396, @kwmonroe)

Implementers of the cloud provider interface will note the addition of a context to this

interface. Trivial code modification will be necessary for a cloud provider to continue to

compile. (#59287, @cheftako)

/release-note-none (#58264, @WanLinghao)

Use a more reliable way to get total physical memory on windows nodes (#57124,

@JiangtianLi)

Add xfsprogs to hyperkube container image. (#56937, @redbaron)

Ensure Azure public IP removed after service deleted (#59340, @feiskyer)

Improve messages user gets during and after volume resizing is done. (#58415,

@gnufied)

Fix RBAC permissions for Stackdriver Metadata Agent. (#57455, @kawych)

Scheduler should be able to read from config file if configmap is not present. (#59386,

@ravisantoshgudimetla)

MountPropagation feature is now beta. As consequence, all volume mounts in containers

are now “rslave” on Linux by default. (#59252, @jsafrane)

Fix RBAC role for certificate controller to allow cleaning. (#59375, @mikedanese)

Volume metrics support for vSphere Cloud Provider (#59328, @divyenpatel)

Announcing the deprecation of the recycling reclaim policy. (#59063, @ayushpateria)

Intended for post-1.9 (#57872, @mlmhl)

The meta.k8s.io/v1alpha1meta.k8s.io/v1alpha1 objects for retrieving tabular responses from the server (

TableTable) or fetching just the ObjectMetaObjectMeta for an object (as PartialObjectMetadataPartialObjectMetadata) are

now beta as part of meta.k8s.io/v1beta1meta.k8s.io/v1beta1 . Clients may request alternate

representations of normal Kubernetes objects by passing an AcceptAccept header like

application/json;as=Table;g=meta.k8s.io;v=v1beta1application/json;as=Table;g=meta.k8s.io;v=v1beta1 or

application/json;as=PartialObjectMetadata;g=meta.k8s.io;v1=v1beta1application/json;as=PartialObjectMetadata;g=meta.k8s.io;v1=v1beta1 . Older

https://github.com/kubernetes/kubernetes/pull/59363
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/59396
https://github.com/kwmonroe
https://github.com/kubernetes/kubernetes/pull/59287
https://github.com/cheftako
https://github.com/kubernetes/kubernetes/pull/58264
https://github.com/WanLinghao
https://github.com/kubernetes/kubernetes/pull/57124
https://github.com/JiangtianLi
https://github.com/kubernetes/kubernetes/pull/56937
https://github.com/redbaron
https://github.com/kubernetes/kubernetes/pull/59340
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58415
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/57455
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/59386
https://github.com/ravisantoshgudimetla
https://github.com/kubernetes/kubernetes/pull/59252
https://github.com/jsafrane
https://github.com/kubernetes/kubernetes/pull/59375
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/59328
https://github.com/divyenpatel
https://github.com/kubernetes/kubernetes/pull/59063
https://github.com/ayushpateria
https://github.com/kubernetes/kubernetes/pull/57872
https://github.com/mlmhl

servers will ignore this representation or return an error if it is not available. Clients may

request fallback to the normal object by adding a non-qualified mime-type to their AcceptAccept

header like application/jsonapplication/json - the server will then respond with either the alternate

representation if it is supported or the fallback mime-type which is the normal object

response. (#59059, @smarterclayton)

add PV size grow feature for azure file (#57017, @andyzhangx)

Upgrade default etcd server version to 3.2.14 (#58645, @jpbetz)

Add windows config to Kubelet CRI (#57076, @feiskyer)

Configurable etcd quota backend bytes in GCE (#59259, @wojtek-t)

Remove unmaintained kube-registry-proxy support from gce kube-up. (#58564,

@mikedanese)

Allow expanding mounted volumes (#58794, @gnufied)

Upped the timeout for apiserver communication in the juju kubernetes-worker charm.

(#59219, @hyperbolic2346)

kubeadm init: skip checking cri socket in preflight checks (#58802, @dixudx)

Add “nominatedNodeName” field to PodStatus. This field is set when a pod preempts

other pods on the node. (#58990, @bsalamat)

Changes secret, configMap, downwardAPI and projected volumes to mount read-only,

instead of allowing applications to write data and then reverting it automatically. Until

version 1.11, setting the feature gate ReadOnlyAPIDataVolumes=false will preserve the old

behavior. (#58720, @joelsmith)

Fixed issue with charm upgrades resulting in an error state. (#59064, @hyperbolic2346)

Ensure IP is set for Azure internal load balancer. (#59083, @feiskyer)

Postpone PV deletion when it is being bound to a PVC (#58743, @NickrenREN)

Add V1beta1 VolumeAttachment API, co-existing with Alpha API object (#58462,

@NickrenREN)

When using client or server certificate rotation, the Kubelet will no longer wait until the

initial rotation succeeds or fails before starting static pods. This makes running self-

hosted masters with rotation more predictable. (#58930, @smarterclayton)

https://github.com/kubernetes/kubernetes/pull/59059
https://github.com/smarterclayton
https://github.com/kubernetes/kubernetes/pull/57017
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/58645
https://github.com/jpbetz
https://github.com/kubernetes/kubernetes/pull/57076
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59259
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/58564
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58794
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/59219
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58802
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58990
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/58720
https://github.com/joelsmith
https://github.com/kubernetes/kubernetes/pull/59064
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/59083
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58743
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/58462
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/58930
https://github.com/smarterclayton

v1.10.0-alpha.3

Documentation & Examples

Downloads for v1.10.0-alpha.3

filename sha256 hash

kubernetes.tar.gz 246f0373ccb25a243a387527b32354b69fc2211c422e71479d22bfb3a829c8fb246f0373ccb25a243a387527b32354b69fc2211c422e71479d22bfb3a829c8fb

kubernetes-
src.tar.gz

f9c60bb37fb7b363c9f66d8efd8aa5a36ea2093c61317c950719b3ddc86c5e10f9c60bb37fb7b363c9f66d8efd8aa5a36ea2093c61317c950719b3ddc86c5e10

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

ca8dfd7fbd34478e7ba9bba3779fcca08f7efd4f218b0c8a7f52bbeea0f42cd7ca8dfd7fbd34478e7ba9bba3779fcca08f7efd4f218b0c8a7f52bbeea0f42cd7

kubernetes-
client-darwin-
amd64.tar.gz

713c35d99f44bd19d225d2c9f2d7c4f3976b5dd76e9a817b2aaf68ee0cb5a939713c35d99f44bd19d225d2c9f2d7c4f3976b5dd76e9a817b2aaf68ee0cb5a939

kubernetes-
client-linux-
386.tar.gz

7601e55e3bb0f0fc11611c68c4bc000c3cbbb7a09652c386e482a1671be7e2d67601e55e3bb0f0fc11611c68c4bc000c3cbbb7a09652c386e482a1671be7e2d6

kubernetes-
client-linux-
amd64.tar.gz

8a6c498531c1832176e22d622008a98bac6043f05dec96747649651531ed3fd78a6c498531c1832176e22d622008a98bac6043f05dec96747649651531ed3fd7

kubernetes-
client-linux-
arm64.tar.gz

81561820fb5a000152e9d8d94882e0ed6228025ea7973ee98173b5fc89d62a4281561820fb5a000152e9d8d94882e0ed6228025ea7973ee98173b5fc89d62a42

kubernetes-
client-linux-
arm.tar.gz

6ce8c3ed253a10d78e62e000419653a29c411cd64910325b21ff3370cb0a89eb6ce8c3ed253a10d78e62e000419653a29c411cd64910325b21ff3370cb0a89eb

kubernetes-
client-linux-
ppc64le.tar.gz

a46b42c94040767f6bbf2ce10aef36d8dbe94c0069f866a848d69b2274f8f0bca46b42c94040767f6bbf2ce10aef36d8dbe94c0069f866a848d69b2274f8f0bc

kubernetes-
client-linux-
s390x.tar.gz

fa3e656b612277fc4c303aef95c60b58ed887e36431db23d26b536f226a23cf6fa3e656b612277fc4c303aef95c60b58ed887e36431db23d26b536f226a23cf6

kubernetes-
client-
windows-
386.tar.gz

832e12266495ac55cb54a999bc5ae41d42d160387b487d8b4ead577d96686b62832e12266495ac55cb54a999bc5ae41d42d160387b487d8b4ead577d96686b62

kubernetes-

https://docs.k8s.io
https://releases.k8s.io/master/examples
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-windows-386.tar.gz

client-
windows-
amd64.tar.gz

7056a3eb5a8f9e8fa0326aa6e0bf97fc5b260447315f8ec7340be5747a16f5fd7056a3eb5a8f9e8fa0326aa6e0bf97fc5b260447315f8ec7340be5747a16f5fdfilename sha256 hash

Server Binaries

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

dc8e2be2fcb6477249621fb5c813c853371a3bf8732c5cb3a6d6cab667cfa324dc8e2be2fcb6477249621fb5c813c853371a3bf8732c5cb3a6d6cab667cfa324

kubernetes-
server-linux-
arm64.tar.gz

399071ad9042a72bccd6e1aa322405c02b4a807c0b4f987d608c4c9c369979d6399071ad9042a72bccd6e1aa322405c02b4a807c0b4f987d608c4c9c369979d6

kubernetes-
server-linux-
arm.tar.gz

7457ad16665e331fa9224a3d61690206723721197ad9760c3b488de9602293f57457ad16665e331fa9224a3d61690206723721197ad9760c3b488de9602293f5

kubernetes-
server-linux-
ppc64le.tar.gz

ffcb728d879c0347bd751c9bccac3520bb057d203ba1acd55f8c727295282049ffcb728d879c0347bd751c9bccac3520bb057d203ba1acd55f8c727295282049

kubernetes-
server-linux-
s390x.tar.gz

f942f6e15886a1fb0d91d04adf47677068c56070dff060f38c371c3ee3e99648f942f6e15886a1fb0d91d04adf47677068c56070dff060f38c371c3ee3e99648

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

81b22beb30be9d270016c7b35b86ea585f29c0c5f09128da9341f9f67c8865f981b22beb30be9d270016c7b35b86ea585f29c0c5f09128da9341f9f67c8865f9

kubernetes-
node-linux-
arm64.tar.gz

d9020b99c145f44c519b1a95b55ed24e69d9c679a02352c7e05e86042daca9d1d9020b99c145f44c519b1a95b55ed24e69d9c679a02352c7e05e86042daca9d1

kubernetes-
node-linux-
arm.tar.gz

1d10bee4ed62d70b318f5703b2cd8295a08e199f810d6b361f367907e3f01fb61d10bee4ed62d70b318f5703b2cd8295a08e199f810d6b361f367907e3f01fb6

kubernetes-
node-linux-
ppc64le.tar.gz

67cd4dde212abda37e6f9e6dee1bb59db96e0727100ef0aa561c15562df0f3e167cd4dde212abda37e6f9e6dee1bb59db96e0727100ef0aa561c15562df0f3e1

kubernetes-
node-linux-
s390x.tar.gz

362b030e011ea6222b1f2dec62311d3971bcce4dba94997963e2a091efbf967b362b030e011ea6222b1f2dec62311d3971bcce4dba94997963e2a091efbf967b

kubernetes-
node-windows-
amd64.tar.gz

e609a2b0410acbb64d3ee6d7f134d98723d82d05bdbead1eaafd3584d3e45c39e609a2b0410acbb64d3ee6d7f134d98723d82d05bdbead1eaafd3584d3e45c39

Changelog since v1.10.0-alpha.2

https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-client-windows-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.3/kubernetes-node-windows-amd64.tar.gz

Other notable changes

Fixed issue with kubernetes-worker option allow-privileged not properly handling the value

True with a capital T. (#59116, @hyperbolic2346)

Added anti-affinity to kube-dns pods (#57683, @vainu-arto)

cloudprovider/openstack: fix bug the tries to use octavia client to query flip (#59075,

@jrperritt)

Windows containers now support experimental Hyper-V isolation by setting annotation

experimental.windows.kubernetes.io/isolation-type=hypervexperimental.windows.kubernetes.io/isolation-type=hyperv and feature gates

HyperVContainer. Only one container per pod is supported yet. (#58751, @feiskyer)

crdscrds is added as a shortname for CustomResourceDefinition i.e.

kubectl getkubectl get

crdscrds

can now be used. (#59061, @nikhita)

Fix an issue where port forwarding doesn’t forward local TCP6 ports to the pod (#57457,

@vfreex)

YAMLDecoder Read now tracks rest of buffer on io.ErrShortBuffer (#58817, @karlhungus)

Prevent kubelet from getting wedged if initialization of modules returns an error. (#59020,

@brendandburns)

Fixed a race condition inside kubernetes-worker that would result in a temporary error

situation. (#59005, @hyperbolic2346)

[GCE] Apiserver uses InternalIPInternalIP as the most preferred kubelet address type by default.

(#59019, @MrHohn)

Deprecate insecure flags --insecure-bind-address--insecure-bind-address , --insecure-port--insecure-port and remove

--public-address-override--public-address-override . (#59018, @hzxuzhonghu)

Support GetLabelsForVolume in OpenStack Provider (#58871, @edisonxiang)

Build using go1.9.3. (#59012, @ixdy)

CRI: Add a call to reopen log file for a container. (#58899, @yujuhong)

The alpha KubeletConfigFile feature gate has been removed, because it was redundant

https://github.com/kubernetes/kubernetes/pull/59116
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/57683
https://github.com/vainu-arto
https://github.com/kubernetes/kubernetes/pull/59075
https://github.com/jrperritt
https://github.com/kubernetes/kubernetes/pull/58751
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/59061
https://github.com/nikhita
https://github.com/kubernetes/kubernetes/pull/57457
https://github.com/vfreex
https://github.com/kubernetes/kubernetes/pull/58817
https://github.com/karlhungus
https://github.com/kubernetes/kubernetes/pull/59020
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/59005
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/59019
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/59018
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/58871
https://github.com/edisonxiang
https://github.com/kubernetes/kubernetes/pull/59012
https://github.com/ixdy
https://github.com/kubernetes/kubernetes/pull/58899
https://github.com/yujuhong

with the Kubelet’s –config flag. It is no longer necessary to set this gate to use the flag.

The –config flag is still considered alpha. (#58978, @mtaufen)

kubectl scalekubectl scale can now scale any resource (kube, CRD, aggregate) conforming to the

standard scale endpoint (#58298, @p0lyn0mial)

kube-apiserver flag –tls-ca-file has had no effect for some time. It is now deprecated and

slated for removal in 1.11. If you are specifying this flag, you must remove it from your

launch config before upgrading to 1.11. (#58968, @deads2k)

Fix regression in the CRI: do not add a default hostname on short image names (#58955,

@runcom)

Get windows kernel version directly from registry (#58498, @feiskyer)

Remove deprecated –require-kubeconfig flag, remove default –kubeconfig value (#58367,

@zhangxiaoyu-zidif)

Google Cloud Service Account email addresses can now be used in RBAC (#58141,

@ahmetb)

Role bindings since the default scopes now include the “userinfo.email”

scope. This is a breaking change if the numeric uniqueIDs of the Google

service accounts were being used in RBAC role bindings. The behavior

can be overridden by explicitly specifying the scope values as

comma-separated string in the “users[*].config.scopes” field in the

KUBECONFIG file.

kube-apiserver is changed to use SSH tunnels for webhook iff the webhook is not directly

routable from apiserver’s network environment. (#58644, @yguo0905)

Updated priority of mirror pod according to PriorityClassName. (#58485, @k82cn)

Fixes a bug where kubelet crashes trying to free memory under memory pressure

(#58574, @yastij)

v1.10.0-alpha.2

Documentation & Examples

https://github.com/kubernetes/kubernetes/pull/58978
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/58298
https://github.com/p0lyn0mial
https://github.com/kubernetes/kubernetes/pull/58968
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/58955
https://github.com/runcom
https://github.com/kubernetes/kubernetes/pull/58498
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/58367
https://github.com/zhangxiaoyu-zidif
https://github.com/kubernetes/kubernetes/pull/58141
https://github.com/ahmetb
https://github.com/kubernetes/kubernetes/pull/58644
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/58485
https://github.com/k82cn
https://github.com/kubernetes/kubernetes/pull/58574
https://github.com/yastij
https://docs.k8s.io
https://releases.k8s.io/master/examples

Downloads for v1.10.0-alpha.2

filename sha256 hash

kubernetes.tar.gz 89efeb8b16c40e5074f092f51399995f0fe4a0312367a8f54bd227c3c6fcb62989efeb8b16c40e5074f092f51399995f0fe4a0312367a8f54bd227c3c6fcb629

kubernetes-
src.tar.gz

eefbbf435f1b7a0e416f4e6b2c936c49ce5d692994da8d235c5e25bc408eec57eefbbf435f1b7a0e416f4e6b2c936c49ce5d692994da8d235c5e25bc408eec57

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

878366200ddfb9128a133d7d377057c6f878b24357062cf5243c0f0aac26b292878366200ddfb9128a133d7d377057c6f878b24357062cf5243c0f0aac26b292

kubernetes-
client-darwin-
amd64.tar.gz

dc065b9ecfa513607eac6e7dd125b2c25c9a9e7c13d0b2b6e56586e17bbd6ae5dc065b9ecfa513607eac6e7dd125b2c25c9a9e7c13d0b2b6e56586e17bbd6ae5

kubernetes-
client-linux-
386.tar.gz

93c2462051935d8f6bca6c72d09948963d47cd64426660f63e0cea7d37e2481293c2462051935d8f6bca6c72d09948963d47cd64426660f63e0cea7d37e24812

kubernetes-
client-linux-
amd64.tar.gz

0eef61285fad1f9ff8392c59986d3a41887abc642bcb5cb451c5a5300927e2c40eef61285fad1f9ff8392c59986d3a41887abc642bcb5cb451c5a5300927e2c4

kubernetes-
client-linux-
arm64.tar.gz

6cf7913730a57b503beaf37f5c4d0f97789358983ed03654036f8b986b60cc626cf7913730a57b503beaf37f5c4d0f97789358983ed03654036f8b986b60cc62

kubernetes-
client-linux-
arm.tar.gz

f03c3ecbf4c08d263f2daa8cbe838e20452d6650b80e9a74762c155c26a579b7f03c3ecbf4c08d263f2daa8cbe838e20452d6650b80e9a74762c155c26a579b7

kubernetes-
client-linux-
ppc64le.tar.gz

25a2f93ebb721901d262adae4c0bdaa4cf1293793e9dff4507e031b85f46aff825a2f93ebb721901d262adae4c0bdaa4cf1293793e9dff4507e031b85f46aff8

kubernetes-
client-linux-
s390x.tar.gz

3e0b9ef771f36edb61bd61ccb67996ed41793c01f8686509bf93e585ee882c943e0b9ef771f36edb61bd61ccb67996ed41793c01f8686509bf93e585ee882c94

kubernetes-
client-
windows-
386.tar.gz

387e5e6b0535f4f5996c0732f1b591d80691acaec86e35482c7b90e00a1856f7387e5e6b0535f4f5996c0732f1b591d80691acaec86e35482c7b90e00a1856f7

kubernetes-
client-
windows-
amd64.tar.gz

c10a72d40252707b732d33d03beec3c6380802d0a6e3214cbbf4af258fddf28cc10a72d40252707b732d33d03beec3c6380802d0a6e3214cbbf4af258fddf28c

Server Binaries

https://dl.k8s.io/v1.10.0-alpha.2/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-linux-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-client-windows-amd64.tar.gz

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

42c1e016e8b0c5cc36c7bf574abca18c63e16d719d35e19ddbcbcd5aaeabc46c42c1e016e8b0c5cc36c7bf574abca18c63e16d719d35e19ddbcbcd5aaeabc46c

kubernetes-
server-linux-
arm64.tar.gz

b7774c54344c75bf5c703d4ca271f0af6c230e86cbe40eafd9cbf98a4f4be6e9b7774c54344c75bf5c703d4ca271f0af6c230e86cbe40eafd9cbf98a4f4be6e9

kubernetes-
server-linux-
arm.tar.gz

c11c8554506b64d6fd1a6e79bfc4e1e19f4f826b9ba98de81bc757901e8cdc43c11c8554506b64d6fd1a6e79bfc4e1e19f4f826b9ba98de81bc757901e8cdc43

kubernetes-
server-linux-
ppc64le.tar.gz

196bd957804b2a9049189d225e49bf78e52e9adef12c072128e4e85d35da438e196bd957804b2a9049189d225e49bf78e52e9adef12c072128e4e85d35da438e

kubernetes-
server-linux-
s390x.tar.gz

be12fbea28a6cb089734782fe11e6f90a30785b9ad1ec02bc08a59afeb95c173be12fbea28a6cb089734782fe11e6f90a30785b9ad1ec02bc08a59afeb95c173

Node Binaries

filename sha256 hash

kubernetes-
node-linux-
amd64.tar.gz

a1feb239dfc473b49adf95d7d94e4a9c6c7d07416d4e935e3fc10175ffaa7163a1feb239dfc473b49adf95d7d94e4a9c6c7d07416d4e935e3fc10175ffaa7163

kubernetes-
node-linux-
arm64.tar.gz

26583c0bd08313bdc0bdfba6745f3ccd0f117431d3a5e2623bb5015675d506b826583c0bd08313bdc0bdfba6745f3ccd0f117431d3a5e2623bb5015675d506b8

kubernetes-
node-linux-
arm.tar.gz

79c6299a5482467e3e85ee881f21edf5d491bc28c94e547d9297d1e1ad1b745879c6299a5482467e3e85ee881f21edf5d491bc28c94e547d9297d1e1ad1b7458

kubernetes-
node-linux-
ppc64le.tar.gz

2732fd288f1eac44c599423ce28cbdb85b54a646970a3714be5ff86d1b14b5e22732fd288f1eac44c599423ce28cbdb85b54a646970a3714be5ff86d1b14b5e2

kubernetes-
node-linux-
s390x.tar.gz

8d49432f0ff3baf55e71c29fb6ffc1673b2a45b9eae2e1906138b1409da539408d49432f0ff3baf55e71c29fb6ffc1673b2a45b9eae2e1906138b1409da53940

kubernetes-
node-windows-
amd64.tar.gz

15ff74edfa98cd1afadcc4e53dd592b1e2935fbab76ad731309d355ae23bdd0915ff74edfa98cd1afadcc4e53dd592b1e2935fbab76ad731309d355ae23bdd09

Changelog since v1.10.0-alpha.1

Action Required

Bug fix: webhooks now do not skip cluster-scoped resources (#58185, @caesarxuchao)

https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-server-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.2/kubernetes-node-windows-amd64.tar.gz
https://github.com/kubernetes/kubernetes/pull/58185
https://github.com/caesarxuchao

Action required: Before upgrading your Kubernetes clusters, double check if you had

configured webhooks for cluster-scoped objects (e.g., nodes, persistentVolume),

these webhooks will start to take effect. Delete/modify the configs if that’s not

desirable.

Other notable changes

Fixing extra_sans option on master and load balancer. (#58843, @hyperbolic2346)

ConfigMap objects now support binary data via a new binaryDatabinaryData field. When using

kubectl create configmap --from-kubectl create configmap --from-

filefile , files containing non-UTF8 data will be placed

in this new field in order to preserve the non-UTF8 data. Use of this feature requires 1.10+

apiserver and kubelets. (#57938, @dims)

New alpha feature to limit the number of processes running in a pod. Cluster

administrators will be able to place limits by using the new kubelet command line

parameter –pod-max-pids. Note that since this is a alpha feature they will need to enable

the “SupportPodPidsLimit” feature. (#57973, @dims)

Add storage-backend configuration option to kubernetes-master charm. (#58830,

@wwwtyro)

use containing API group when resolving shortname from discovery (#58741, @dixudx)

Fix kubectl explain for resources not existing in default version of API group (#58753,

@soltysh)

Ensure config has been created before attempting to launch ingress. (#58756, @wwwtyro)

Access to externally managed IP addresses via the kube-apiserver service proxy

subresource is no longer allowed by default. This can be re-enabled via the

ServiceProxyAllowExternalIPsServiceProxyAllowExternalIPs feature gate, but will be disallowed completely in 1.11

(#57265, @brendandburns)

Added support for external cloud providers in kubeadm (#58259, @dims)

rktnetes has been deprecated in favor of rktlet. Please see https://github.com/kubernetes-

incubator/rktlet for more information. (#58418, @yujuhong)

Fixes bug finding master replicas in GCE when running multiple Kubernetes clusters

https://github.com/kubernetes/kubernetes/pull/58843
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/57938
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/57973
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/58830
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/58741
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58753
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/58756
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/57265
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/58259
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/58418
https://github.com/yujuhong

(#58561, @jesseshieh)

Update Calico version to v2.6.6 (#58482, @tmjd)

Promoting the apiregistration.k8s.io (aggregation) to GA (#58393, @deads2k)

Stability: Make Pod delete event handling of scheduler more robust. (#58712, @bsalamat)

Added support for network spaces in the kubeapi-load-balancer charm (#58708,

@hyperbolic2346)

Added support for network spaces in the kubernetes-master charm (#58704,

@hyperbolic2346)

update etcd unified version to 3.1.10 (#54242, @zouyee)

updates fluentd in fluentd-es-image to fluentd 1.1.0 (#58525, @monotek)

Support metrics API in

kubectlkubectl

toptop commands. (#56206, @brancz)

Added support for network spaces in the kubernetes-worker charm (#58523,

@hyperbolic2346)

CustomResourceDefinitions: OpenAPI v3 validation schemas containing refref references

are no longer permitted (valid references could not be constructed previously because

property ids were not permitted either). Before upgrading, ensure CRD definitions do not

include those refref fields. (#58438, @carlory)

Openstack: register metadata.hostname as node name (#58502, @dixudx)

Added nginx and default backend images to kubernetes-worker config. (#58542,

@hyperbolic2346)

–tls-min-version on kubelet and kube-apiserver allow for configuring minimum TLS

versions (#58528, @deads2k)

Fixes an issue where the resourceVersion of an object in a DELETE watch event was not

the resourceVersion of the delete itself, but of the last update to the object. This could

disrupt the ability of clients clients to re-establish watches properly. (#58547, @liggitt)

Fixed crash in kubectl cp when path has multiple leading slashes (#58144, @tomerf)

kube-apiserver: requests to endpoints handled by unavailable extension API servers (as

indicated by an AvailableAvailable condition of falsefalse in the registered APIService) now return

https://github.com/kubernetes/kubernetes/pull/58561
https://github.com/jesseshieh
https://github.com/kubernetes/kubernetes/pull/58482
https://github.com/tmjd
https://github.com/kubernetes/kubernetes/pull/58393
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/58712
https://github.com/bsalamat
https://github.com/kubernetes/kubernetes/pull/58708
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58704
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/54242
https://github.com/zouyee
https://github.com/kubernetes/kubernetes/pull/58525
https://github.com/monotek
https://github.com/kubernetes/kubernetes/pull/56206
https://github.com/brancz
https://github.com/kubernetes/kubernetes/pull/58523
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58438
https://github.com/carlory
https://github.com/kubernetes/kubernetes/pull/58502
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58542
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/58528
https://github.com/deads2k
https://github.com/kubernetes/kubernetes/pull/58547
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/58144
https://github.com/tomerf

503503 errors instead of 404404 errors. (#58070, @weekface)

Correctly handle transient connection reset errors on GET requests from client library.

(#58520, @porridge)

Authentication information for OpenStack cloud provider can now be specified as

environment variables (#58300, @dims)

Bump GCE metadata proxy to v0.1.9 to pick up security fixes. (#58221, @ihmccreery)

kubeadm now supports CIDR notations in NO_PROXY environment variable (#53895,

@kad)

kubeadm now accept --apiserver-extra-args--apiserver-extra-args , --controller-manager-extra-args--controller-manager-extra-args

and --scheduler-extra-args--scheduler-extra-args to override / specify additional flags for control plane

components (#58080, @simonferquel)

Add --enable-admission-plugin--enable-admission-plugin --disable-admission-plugin--disable-admission-plugin flags and deprecate

--admission-control--admission-control . (#58123, @hzxuzhonghu)

Afterwards, don’t care about the orders specified in the flags.

“ExternalTrafficLocalOnly” has been removed from feature gate. It has been a GA feature

since v1.7. (#56948, @MrHohn)

GCP: allow a master to not include a metadata concealment firewall rule (if it’s not running

the metadata proxy). (#58104, @ihmccreery)

kube-apiserver: fixes loading of --admission-control-config-file--admission-control-config-file containing

AdmissionConfiguration apiserver.k8s.io/v1alpha1 config object (#58439, @liggitt)

Fix issue when using OpenStack config drive for node metadata (#57561, @dims)

Add FSType for CSI volume source to specify filesystems (#58209, @NickrenREN)

OpenStack cloudprovider: Ensure orphaned routes are removed. (#56258, @databus23)

Reduce Metrics Server memory requirement (#58391, @kawych)

Fix a bug affecting nested data volumes such as secret, configmap, etc. (#57422,

@joelsmith)

kubectl now enforces required flags at a more fundamental level (#53631, @dixudx)

Remove alpha Initializers from kubadm admission control (#58428, @dixudx)

https://github.com/kubernetes/kubernetes/pull/58070
https://github.com/weekface
https://github.com/kubernetes/kubernetes/pull/58520
https://github.com/porridge
https://github.com/kubernetes/kubernetes/pull/58300
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/58221
https://github.com/ihmccreery
https://github.com/kubernetes/kubernetes/pull/53895
https://github.com/kad
https://github.com/kubernetes/kubernetes/pull/58080
https://github.com/simonferquel
https://github.com/kubernetes/kubernetes/pull/58123
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/56948
https://github.com/MrHohn
https://github.com/kubernetes/kubernetes/pull/58104
https://github.com/ihmccreery
https://github.com/kubernetes/kubernetes/pull/58439
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/57561
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/58209
https://github.com/NickrenREN
https://github.com/kubernetes/kubernetes/pull/56258
https://github.com/databus23
https://github.com/kubernetes/kubernetes/pull/58391
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/57422
https://github.com/joelsmith
https://github.com/kubernetes/kubernetes/pull/53631
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58428
https://github.com/dixudx

Enable ValidatingAdmissionWebhook and MutatingAdmissionWebhook in kubeadm from

v1.9 (#58255, @dixudx)

Fixed encryption key and encryption provider rotation (#58375, @liggitt)

set fsGroup by securityContext.fsGroup in azure file (#58316, @andyzhangx)

Remove deprecated and unmaintained salt support. kubernetes-salt.tar.gz will no longer

be published in the release tarball. (#58248, @mikedanese)

Detach and clear bad disk URI (#58345, @rootfs)

Allow version arg in kubeadm upgrade apply to be optional if config file already have

version info (#53220, @medinatiger)

feat(fakeclient): push event on watched channel on add/update/delete (#57504,

@yue9944882)

Custom resources can now be submitted to and received from the API server in

application/yaml format, consistent with other API resources. (#58260, @liggitt)

remove spaces from kubectl describe hpa (#56331, @shiywang)

fluentd-gcp updated to version 2.0.14. (#58224, @zombiezen)

Instrument the Azure cloud provider for Prometheus monitoring. (#58204,

@cosmincojocar)

-Add scheduler optimization options, short circuit all predicates if … (#56926, @wgliang)

Remove deprecated ContainerVM support from GCE kube-up. (#58247, @mikedanese)

Remove deprecated kube-push.sh functionality. (#58246, @mikedanese)

The getSubnetIDForLB() should return subnet id rather than net id. (#58208,

@FengyunPan)

Avoid panic when failing to allocate a Cloud CIDR (aka GCE Alias IP Range). (#58186,

@negz)

Handle Unhealthy devices (#57266, @vikaschoudhary16)

Expose Metrics Server metrics via /metric endpoint. (#57456, @kawych)

Remove deprecated container-linux support in gce kube-up.sh. (#58098, @mikedanese)

openstack cinder detach problem is fixed if nova is shutdowned (#56846, @zetaab)

https://github.com/kubernetes/kubernetes/pull/58255
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58375
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/58316
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/58248
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58345
https://github.com/rootfs
https://github.com/kubernetes/kubernetes/pull/53220
https://github.com/medinatiger
https://github.com/kubernetes/kubernetes/pull/57504
https://github.com/yue9944882
https://github.com/kubernetes/kubernetes/pull/58260
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/56331
https://github.com/shiywang
https://github.com/kubernetes/kubernetes/pull/58224
https://github.com/zombiezen
https://github.com/kubernetes/kubernetes/pull/58204
https://github.com/cosmincojocar
https://github.com/kubernetes/kubernetes/pull/56926
https://github.com/wgliang
https://github.com/kubernetes/kubernetes/pull/58247
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58246
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58208
https://github.com/FengyunPan
https://github.com/kubernetes/kubernetes/pull/58186
https://github.com/negz
https://github.com/kubernetes/kubernetes/pull/57266
https://github.com/vikaschoudhary16
https://github.com/kubernetes/kubernetes/pull/57456
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/58098
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/56846
https://github.com/zetaab

Fixes a possible deadlock preventing quota from being recalculated (#58107,

@ironcladlou)

fluentd-es addon: multiline stacktraces are now grouped into one entry automatically

(#58063, @monotek)

GCE: Allows existing internal load balancers to continue using an outdated subnetwork

(#57861, @nicksardo)

ignore images in used by running containers when GC (#57020, @dixudx)

Remove deprecated and unmaintained photon-controller kube-up.sh. (#58096,

@mikedanese)

The kubelet flag to run docker containers with a process namespace that is shared

between all containers in a pod is now deprecated and will be replaced by a new field in

v1.Podv1.Pod that configures this behavior. (#58093, @verb)

fix device name change issue for azure disk: add remount logic (#57953, @andyzhangx)

The Kubelet now explicitly registers all of its command-line flags with an internal flagset,

which prevents flags from third party libraries from unintentionally leaking into the

Kubelet’s command-line API. Many unintentionally leaked flags are now marked

deprecated, so that users have a chance to migrate away from them before they are

removed. One previously leaked flag, –cloud-provider-gce-lb-src-cidrs, was entirely

removed from the Kubelet’s command-line API, because it is irrelevant to Kubelet

operation. (#57613, @mtaufen)

Remove deprecated and unmaintained libvirt-coreos kube-up.sh. (#58023, @mikedanese)

Remove deprecated and unmaintained windows installer. (#58020, @mikedanese)

Remove deprecated and unmaintained openstack-heat kube-up.sh. (#58021,

@mikedanese)

Fixes authentication problem faced during various vSphere operations. (#57978,

@prashima)

fluentd-gcp updated to version 2.0.13. (#57789, @x13n)

Add support for cloud-controller-manager in local-up-cluster.sh (#57757, @dims)

Update CSI spec dependency to point to v0.1.0 tag (#57989, @NickrenREN)

Update kube-dns to Version 1.14.8 that includes only small changes to how Prometheus

https://github.com/kubernetes/kubernetes/pull/58107
https://github.com/ironcladlou
https://github.com/kubernetes/kubernetes/pull/58063
https://github.com/monotek
https://github.com/kubernetes/kubernetes/pull/57861
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/57020
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/58096
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58093
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/57953
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/57613
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/58023
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58020
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/58021
https://github.com/mikedanese
https://github.com/kubernetes/kubernetes/pull/57978
https://github.com/prashima
https://github.com/kubernetes/kubernetes/pull/57789
https://github.com/x13n
https://github.com/kubernetes/kubernetes/pull/57757
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/57989
https://github.com/NickrenREN

metrics are collected. (#57918, @rramkumar1)

Add proxy_read_timeout flag to kubeapi_load_balancer charm. (#57926, @wwwtyro)

Adding support for Block Volume type to rbd plugin. (#56651, @sbezverk)

Fixes a bug in Heapster deployment for google sink. (#57902, @kawych)

Forbid unnamed contexts in kubeconfigs. (#56769, @dixudx)

Upgrade to etcd client 3.2.13 and grpc 1.7.5 to improve HA etcd cluster stability. (#57480,

@jpbetz)

Default scheduler code is moved out of the plugin directory. (#57852, @misterikkit)

plugin/pkg/scheduler -> pkg/scheduler

plugin/cmd/kube-scheduler -> cmd/kube-scheduler

Bump metadata proxy version to v0.1.7 to pick up security fix. (#57762, @ihmccreery)

HugePages feature is beta (#56939, @derekwaynecarr)

GCE: support passing kube-scheduler policy config via SCHEDULER_POLICY_CONFIG

(#57425, @yguo0905)

Returns an error for non overcommitable resources if they don’t have limit field set in

container spec. (#57170, @jiayingz)

Update defaultbackend image to 1.4 and deployment apiVersion to apps/v1 (#57866,

@zouyee)

kubeadm: set kube-apiserver advertise address using downward API (#56084,

@andrewsykim)

CDK nginx ingress is now handled via a daemon set. (#57530, @hyperbolic2346)

The kubelet uses a new release 3.1 of the pause container with the Docker runtime. This

version will clean up orphaned zombie processes that it inherits. (#57517, @verb)

Allow kubectl set image env on a cronjob (#57742, @soltysh)

Move local PV negative scheduling tests to integration (#57570, @sbezverk)

https://github.com/kubernetes/kubernetes/pull/57918
https://github.com/rramkumar1
https://github.com/kubernetes/kubernetes/pull/57926
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/56651
https://github.com/sbezverk
https://github.com/kubernetes/kubernetes/pull/57902
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/56769
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/57480
https://github.com/jpbetz
https://github.com/kubernetes/kubernetes/pull/57852
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57762
https://github.com/ihmccreery
https://github.com/kubernetes/kubernetes/pull/56939
https://github.com/derekwaynecarr
https://github.com/kubernetes/kubernetes/pull/57425
https://github.com/yguo0905
https://github.com/kubernetes/kubernetes/pull/57170
https://github.com/jiayingz
https://github.com/kubernetes/kubernetes/pull/57866
https://github.com/zouyee
https://github.com/kubernetes/kubernetes/pull/56084
https://github.com/andrewsykim
https://github.com/kubernetes/kubernetes/pull/57530
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/57517
https://github.com/verb
https://github.com/kubernetes/kubernetes/pull/57742
https://github.com/soltysh
https://github.com/kubernetes/kubernetes/pull/57570
https://github.com/sbezverk

fix azure disk not available issue when device name changed (#57549, @andyzhangx)

Only create Privileged PSP binding during e2e tests if RBAC is enabled. (#56382,

@mikkeloscar)

RBAC: The system:kubelet-api-admin cluster role can be used to grant full access to the

kubelet API (#57128, @liggitt)

Allow kubernetes components to react to SIGTERM signal and shutdown gracefully.

(#57756, @mborsz)

ignore nonexistent ns net file error when deleting container network in case a retry

(#57697, @dixudx)

check psp HostNetwork in DenyEscalatingExec admission controller. (#56839,

@hzxuzhonghu)

The alpha --init-config-dir--init-config-dir flag has been removed. Instead, use the --config--config flag to

reference a kubelet configuration file directly. (#57624, @mtaufen)

Add cache for VM get operation in azure cloud provider (#57432, @karataliu)

Fix garbage collection when the controller-manager uses –leader-elect=false (#57340,

@jmcmeek)

iSCSI sessions managed by kubernetes will now explicitly set startup.mode to ‘manual’ to

(#57475, @stmcginnis)

prevent automatic login after node failure recovery. This is the default open-iscsi

mode, so

this change will only impact users who have changed their startup.mode to be

‘automatic’

in /etc/iscsi/iscsid.conf.

Configurable liveness probe initial delays for etcd and kube-apiserver in GCE (#57749,

@wojtek-t)

Fixed garbage collection hang (#57503, @liggitt)

Fixes controller manager crash in certain vSphere cloud provider environment. (#57286,

@rohitjogvmw)

Remove useInstanceMetadata parameter from Azure cloud provider. (#57647, @feiskyer)

https://github.com/kubernetes/kubernetes/pull/57549
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/56382
https://github.com/mikkeloscar
https://github.com/kubernetes/kubernetes/pull/57128
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/57756
https://github.com/mborsz
https://github.com/kubernetes/kubernetes/pull/57697
https://github.com/dixudx
https://github.com/kubernetes/kubernetes/pull/56839
https://github.com/hzxuzhonghu
https://github.com/kubernetes/kubernetes/pull/57624
https://github.com/mtaufen
https://github.com/kubernetes/kubernetes/pull/57432
https://github.com/karataliu
https://github.com/kubernetes/kubernetes/pull/57340
https://github.com/jmcmeek
https://github.com/kubernetes/kubernetes/pull/57475
https://github.com/stmcginnis
https://github.com/kubernetes/kubernetes/pull/57749
https://github.com/wojtek-t
https://github.com/kubernetes/kubernetes/pull/57503
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/57286
https://github.com/rohitjogvmw
https://github.com/kubernetes/kubernetes/pull/57647
https://github.com/feiskyer

Support multiple scale sets in Azure cloud provider. (#57543, @feiskyer)

GCE: Fixes ILB creation on automatic networks with manually created subnetworks.

(#57351, @nicksardo)

Improve scheduler performance of MatchInterPodAffinity predicate. (#57476,

@misterikkit)

Improve scheduler performance of MatchInterPodAffinity predicate. (#57477,

@misterikkit)

Improve scheduler performance of MatchInterPodAffinity predicate. (#57478,

@misterikkit)

Allow use resource ID to specify public IP address in azure_loadbalancer (#53557,

@yolo3301)

Fixes a bug where if an error was returned that was not an autorest.DetailedErrorautorest.DetailedError we

would return

"not found","not found",

nilnil which caused nodes to go to NotReadyNotReady state. (#57484,

@brendandburns)

Add the path ‘/version/’ to the system:discoverysystem:discovery cluster role. (#57368,

@brendandburns)

Fixes issue creating docker secrets with kubectl 1.9 for accessing docker private

registries. (#57463, @dims)

adding predicates ordering for the kubernetes scheduler. (#57168, @yastij)

Free up CPU and memory requested but unused by Metrics Server Pod Nanny. (#57252,

@kawych)

The alpha Accelerators feature gate is deprecated and will be removed in v1.11. Please

use device plugins instead. They can be enabled using the DevicePlugins feature gate.

(#57384, @mindprince)

Fixed dynamic provisioning of GCE PDs to round to the next GB instead of GiB (#56600,

@edisonxiang)

Separate loop and plugin control (#52371, @cheftako)

Use old dns-ip mechanism with older cdk-addons. (#57403, @wwwtyro)

https://github.com/kubernetes/kubernetes/pull/57543
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/57351
https://github.com/nicksardo
https://github.com/kubernetes/kubernetes/pull/57476
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57477
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/57478
https://github.com/misterikkit
https://github.com/kubernetes/kubernetes/pull/53557
https://github.com/yolo3301
https://github.com/kubernetes/kubernetes/pull/57484
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/57368
https://github.com/brendandburns
https://github.com/kubernetes/kubernetes/pull/57463
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/57168
https://github.com/yastij
https://github.com/kubernetes/kubernetes/pull/57252
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/57384
https://github.com/mindprince
https://github.com/kubernetes/kubernetes/pull/56600
https://github.com/edisonxiang
https://github.com/kubernetes/kubernetes/pull/52371
https://github.com/cheftako
https://github.com/kubernetes/kubernetes/pull/57403
https://github.com/wwwtyro

Retry ‘connection refused’ errors when setting up clusters on GCE. (#57394, @mborsz)

Upgrade to etcd client 3.2.11 and grpc 1.7.5 to improve HA etcd cluster stability. (#57160,

@jpbetz)

Added the ability to select pods in a chosen node to be drained, based on given pod label-

selector (#56864, @juanvallejo)

Wait for kubedns to be ready when collecting the cluster IP. (#57337, @wwwtyro)

Use “k8s.gcr.io” for container images rather than “gcr.io/google_containers”. This is just a

redirect, for now, so should not impact anyone materially. (#54174, @thockin)

Documentation and tools should all convert to the new name. Users should take note

of this in case they see this new name in the system.

Fix ipvs proxier nodeport eth* assumption (#56685, @m1093782566)

v1.10.0-alpha.1

Documentation & Examples

Downloads for v1.10.0-alpha.1

filename sha256 hash

kubernetes.tar.gz 403b90bfa32f7669b326045a629bd15941c533addcaf0c49d3c3c561da0542f2403b90bfa32f7669b326045a629bd15941c533addcaf0c49d3c3c561da0542f2

kubernetes-
src.tar.gz

266da065e9eddf19d36df5ad325f2f854101a0e712766148e87d998e789b80cf266da065e9eddf19d36df5ad325f2f854101a0e712766148e87d998e789b80cf

Client Binaries

filename sha256 hash

kubernetes-
client-darwin-
386.tar.gz

5aaa8e294ae4060d34828239e37f37b45fa5a69508374be668965102848626be5aaa8e294ae4060d34828239e37f37b45fa5a69508374be668965102848626be

kubernetes-
client-darwin-
amd64.tar.gz

40a8e3bab11b88a2bb8e748f0b29da806d89b55775508039abe9c38c5f4ab97d40a8e3bab11b88a2bb8e748f0b29da806d89b55775508039abe9c38c5f4ab97d

kubernetes-
client-linux- e08dde0b561529f0b2bb39c141f4d7b1c943749ef7c1f9779facf5fb5b385d6ae08dde0b561529f0b2bb39c141f4d7b1c943749ef7c1f9779facf5fb5b385d6a

https://github.com/kubernetes/kubernetes/pull/57394
https://github.com/mborsz
https://github.com/kubernetes/kubernetes/pull/57160
https://github.com/jpbetz
https://github.com/kubernetes/kubernetes/pull/56864
https://github.com/juanvallejo
https://github.com/kubernetes/kubernetes/pull/57337
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/54174
https://github.com/thockin
https://github.com/kubernetes/kubernetes/pull/56685
https://github.com/m1093782566
https://docs.k8s.io
https://releases.k8s.io/master/examples
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-src.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-darwin-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-darwin-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-linux-386.tar.gz

386.tar.gz

kubernetes-
client-linux-
amd64.tar.gz

76a05d31acaab932ef45c67e1d6c9273933b8bc06dd5ce9bad3c7345d526770276a05d31acaab932ef45c67e1d6c9273933b8bc06dd5ce9bad3c7345d5267702

kubernetes-
client-linux-
arm64.tar.gz

4b833c9e80f3e4ac4958ea0ffb5ae564b31d2a524f6a14e58802937b2b936d734b833c9e80f3e4ac4958ea0ffb5ae564b31d2a524f6a14e58802937b2b936d73

kubernetes-
client-linux-
arm.tar.gz

f1484ab75010a2258ed7717b1284d0c139d17e194ac9e391b8f1c0999eec3c2df1484ab75010a2258ed7717b1284d0c139d17e194ac9e391b8f1c0999eec3c2d

kubernetes-
client-linux-
ppc64le.tar.gz

da884f09ec753925b2c1f27ea0a1f6c3da2056855fc88f47929bb3d6c2a09312da884f09ec753925b2c1f27ea0a1f6c3da2056855fc88f47929bb3d6c2a09312

kubernetes-
client-linux-
s390x.tar.gz

c486f760c6707fc92d1659d3cbe33d68c03190760b73ac215957ee52f9c19195c486f760c6707fc92d1659d3cbe33d68c03190760b73ac215957ee52f9c19195

kubernetes-
client-
windows-
386.tar.gz

514c550b7ff85ac33e6ed333bcc06461651fe4004d8b7c12ca67f5dc1d2198bf514c550b7ff85ac33e6ed333bcc06461651fe4004d8b7c12ca67f5dc1d2198bf

kubernetes-
client-
windows-
amd64.tar.gz

ddad59222f6a8cb4e88c4330c2a967c4126cb22ac5e0d7126f9f65cca0fb9f45ddad59222f6a8cb4e88c4330c2a967c4126cb22ac5e0d7126f9f65cca0fb9f45

filename sha256 hash

Server Binaries

filename sha256 hash

kubernetes-
server-linux-
amd64.tar.gz

514efd798ce1d7fe4233127f3334a3238faad6c26372a2d457eff02cbe72d756514efd798ce1d7fe4233127f3334a3238faad6c26372a2d457eff02cbe72d756

kubernetes-
server-linux-
arm64.tar.gz

f71f75fb96221f65891fc3e04fd52ae4e5628da8b7b4fbedece3fab4cb650afaf71f75fb96221f65891fc3e04fd52ae4e5628da8b7b4fbedece3fab4cb650afa

kubernetes-
server-linux-
arm.tar.gz

a9d8c2386813fd690e60623a6ee1968fe8f0a1a8e13bc5cc12b2caf8e8a862e1a9d8c2386813fd690e60623a6ee1968fe8f0a1a8e13bc5cc12b2caf8e8a862e1

kubernetes-
server-linux-
ppc64le.tar.gz

21336a5e40aead4e2ec7e744a99d72bf8cb552341f3141abf8f235beb250cd9321336a5e40aead4e2ec7e744a99d72bf8cb552341f3141abf8f235beb250cd93

kubernetes-
server-linux-
s390x.tar.gz

257e44d38fef83f08990b6b9b5e985118e867c0c33f0e869f0900397b9d30498257e44d38fef83f08990b6b9b5e985118e867c0c33f0e869f0900397b9d30498

Node Binaries

filename sha256 hash

https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-windows-386.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-client-windows-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-server-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-server-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-server-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-server-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-server-linux-s390x.tar.gz

kubernetes-
node-linux-
amd64.tar.gz

97bf1210f0595ebf496ca7b000c4367f8a459d97ef72459efc6d0e07a072398f97bf1210f0595ebf496ca7b000c4367f8a459d97ef72459efc6d0e07a072398f

kubernetes-
node-linux-
arm64.tar.gz

eebcd3c14fb4faeb82ab047a2152db528adc2d9f7b20eef6f5dc58202ebe3124eebcd3c14fb4faeb82ab047a2152db528adc2d9f7b20eef6f5dc58202ebe3124

kubernetes-
node-linux-
arm.tar.gz

3d4428416c775a0a6463f623286bd2ecdf9240ce901e1fbae180dfb564c53ea13d4428416c775a0a6463f623286bd2ecdf9240ce901e1fbae180dfb564c53ea1

kubernetes-
node-linux-
ppc64le.tar.gz

5cc96b24fad0ac1779a66f9b136d90e975b07bf619fea905e6c26ac5a4c411685cc96b24fad0ac1779a66f9b136d90e975b07bf619fea905e6c26ac5a4c41168

kubernetes-
node-linux-
s390x.tar.gz

134c13338edf4efcd511f4161742fbaa6dc232965d3d926c3de435e8a080fcbb134c13338edf4efcd511f4161742fbaa6dc232965d3d926c3de435e8a080fcbb

kubernetes-
node-windows-
amd64.tar.gz

ae54bf2bbcb99cdcde959140460d0f83c0ecb187d060b594ae9c5349960ab055ae54bf2bbcb99cdcde959140460d0f83c0ecb187d060b594ae9c5349960ab055

filename sha256 hash

Changelog since v1.9.0

Action Required

[action required] Remove the kubelet’s --cloud-provider=auto-detect--cloud-provider=auto-detect feature (#56287,

@stewart-yu)

Other notable changes

Fix Heapster configuration and Metrics Server configuration to enable overriding default

resource requirements. (#56965, @kawych)

YAMLDecoder Read now returns the number of bytes read (#57000, @sel)

Retry ‘connection refused’ errors when setting up clusters on GCE. (#57324, @mborsz)

Update kubeadm’s minimum supported Kubernetes version in v1.10.x to v1.9.0 (#57233,

@xiangpengzhao)

Graduate CPU Manager feature from alpha to beta. (#55977, @ConnorDoyle)

Drop hacks used for Mesos integration that was already removed from main kubernetes

repository (#56754, @dims)

Compare correct file names for volume detach operation (#57053, @prashima)

https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-node-linux-amd64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-node-linux-arm64.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-node-linux-arm.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-node-linux-ppc64le.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-node-linux-s390x.tar.gz
https://dl.k8s.io/v1.10.0-alpha.1/kubernetes-node-windows-amd64.tar.gz
https://github.com/kubernetes/kubernetes/pull/56287
https://github.com/stewart-yu
https://github.com/kubernetes/kubernetes/pull/56965
https://github.com/kawych
https://github.com/kubernetes/kubernetes/pull/57000
https://github.com/sel
https://github.com/kubernetes/kubernetes/pull/57324
https://github.com/mborsz
https://github.com/kubernetes/kubernetes/pull/57233
https://github.com/xiangpengzhao
https://github.com/kubernetes/kubernetes/pull/55977
https://github.com/ConnorDoyle
https://github.com/kubernetes/kubernetes/pull/56754
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/57053
https://github.com/prashima

Improved event generation in volume mount, attach, and extend operations (#56872,

@davidz627)

GCE: bump COS image version to cos-stable-63-10032-71-0 (#57204, @yujuhong)

fluentd-gcp updated to version 2.0.11. (#56927, @x13n)

calico-node addon tolerates all NoExecute and NoSchedule taints by default. (#57122,

@caseydavenport)

Support LoadBalancer for Azure Virtual Machine Scale Sets (#57131, @feiskyer)

Makes the kube-dns addon optional so that users can deploy their own DNS solution.

(#57113, @wwwtyro)

Enabled log rotation for load balancer’s api logs to prevent running out of disk space.

(#56979, @hyperbolic2346)

Remove ScrubDNS interface from cloudprovider. (#56955, @feiskyer)

Fix etcd-version-monitoretcd-version-monitor to backward compatibly support etcd 3.1 go-grpc-

prometheus metrics format. (#56871, @jpbetz)

enable flexvolume on Windows node (#56921, @andyzhangx)

When using Role-Based Access Control, the “admin”, “edit”, and “view” roles now have the

expected permissions on NetworkPolicy resources. (#56650, @danwinship)

Fix the PersistentVolumeLabel controller from initializing the PV labels when it’s not the

next pending initializer. (#56831, @jhorwit2)

kube-apiserver: The external hostname no longer use the cloud provider API to select a

default. It can be set explicitly using –external-hostname, if needed. (#56812, @dims)

Use GiB unit for creating and resizing volumes for Glusterfs (#56581, @gnufied)

PersistentVolume flexVolume sources can now reference secrets in a namespace other

than the PersistentVolumeClaim’s namespace. (#56460, @liggitt)

Scheduler skips pods that use a PVC that either does not exist or is being deleted.

(#55957, @jsafrane)

Fixed a garbage collection race condition where objects with ownerRefs pointing to

cluster-scoped objects could be deleted incorrectly. (#57211, @liggitt)

Kubectl explain now prints out the Kind and API version of the resource being explained

https://github.com/kubernetes/kubernetes/pull/56872
https://github.com/davidz627
https://github.com/kubernetes/kubernetes/pull/57204
https://github.com/yujuhong
https://github.com/kubernetes/kubernetes/pull/56927
https://github.com/x13n
https://github.com/kubernetes/kubernetes/pull/57122
https://github.com/caseydavenport
https://github.com/kubernetes/kubernetes/pull/57131
https://github.com/feiskyer
https://github.com/kubernetes/kubernetes/pull/57113
https://github.com/wwwtyro
https://github.com/kubernetes/kubernetes/pull/56979
https://github.com/hyperbolic2346
https://github.com/kubernetes/kubernetes/pull/56955
https://github.com/feiskyer
https://github.com/grpc-ecosystem/go-grpc-prometheus
https://github.com/kubernetes/kubernetes/pull/56871
https://github.com/jpbetz
https://github.com/kubernetes/kubernetes/pull/56921
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/56650
https://github.com/danwinship
https://github.com/kubernetes/kubernetes/pull/56831
https://github.com/jhorwit2
https://github.com/kubernetes/kubernetes/pull/56812
https://github.com/dims
https://github.com/kubernetes/kubernetes/pull/56581
https://github.com/gnufied
https://github.com/kubernetes/kubernetes/pull/56460
https://github.com/liggitt
https://github.com/kubernetes/kubernetes/pull/55957
https://github.com/jsafrane
https://github.com/kubernetes/kubernetes/pull/57211
https://github.com/liggitt

(#55689, @luksa)

api-server provides specific events when unable to repair a service cluster ip or node port

(#54304, @frodenas)

Added docker-logins config to kubernetes-worker charm (#56217, @Cynerva)

delete useless params containerized (#56146, @jiulongzaitian)

add mount options support for azure disk (#56147, @andyzhangx)

Use structured generator for kubectl autoscale (#55913, @wackxu)

K8s supports cephfs fuse mount. (#55866, @zhangxiaoyu-zidif)

COS: Keep the docker network checkpoint (#54805, @yujuhong)

Fixed documentation typo in IPVS README. (#56578, @shift)

See the Releases Page for older releases.

Release notes of older releases can be found in:

CHANGELOG-1.2.md

CHANGELOG-1.3.md

CHANGELOG-1.4.md

CHANGELOG-1.5.md

CHANGELOG-1.6.md

CHANGELOG-1.7.md

CHANGELOG-1.8.md

CHANGELOG-1.9.md

https://github.com/kubernetes/kubernetes/pull/55689
https://github.com/luksa
https://github.com/kubernetes/kubernetes/pull/54304
https://github.com/frodenas
https://github.com/kubernetes/kubernetes/pull/56217
https://github.com/Cynerva
https://github.com/kubernetes/kubernetes/pull/56146
https://github.com/jiulongzaitian
https://github.com/kubernetes/kubernetes/pull/56147
https://github.com/andyzhangx
https://github.com/kubernetes/kubernetes/pull/55913
https://github.com/wackxu
https://github.com/kubernetes/kubernetes/pull/55866
https://github.com/zhangxiaoyu-zidif
https://github.com/kubernetes/kubernetes/pull/54805
https://github.com/yujuhong
https://github.com/kubernetes/kubernetes/pull/56578
https://github.com/shift
https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.2.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.3.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.4.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.5.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.6.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.7.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.8.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.9.md

Building from Source

You can either build a release from source or download a pre-built release. If you do not plan

on developing Kubernetes itself, we suggest using a pre-built version of the current release,

which can be found in the Release Notes.

The Kubernetes source code can be downloaded from the kubernetes/kubernetes repo.

Building from source

If you are simply building a release from source there is no need to set up a full golang

environment as all building happens in a Docker container.

Building a release is simple.

For more details on the release process see the kubernetes/kubernetes buildbuild directory.

git clone https://github.com/kubernetes/kubernetes.gitgit clone https://github.com/kubernetes/kubernetes.git

cd cd kuberneteskubernetes

make releasemake release

file:///docs/imported/release/notes/
https://github.com/kubernetes/kubernetes
http://releases.k8s.io/master/build/

Running Kubernetes Locally via Minikube

Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a single-node

Kubernetes cluster inside a VM on your laptop for users looking to try out Kubernetes or

develop with it day-to-day.

Minikube Features

Minikube Features

Installation

Quickstart

Alternative Container Runtimes

CRI-O

rkt container engine

Driver plugins

Reusing the Docker daemon

Managing your Cluster

Starting a Cluster

Specifying the Kubernetes version

Configuring Kubernetes

Examples

Stopping a Cluster

Deleting a Cluster

Interacting With your Cluster

Kubectl

Dashboard

Services

Networking

Persistent Volumes

Mounted Host Folders

Private Container Registries

Add-ons

Using Minikube with an HTTP Proxy

Known Issues

Design

Additional Links:

Community

Minikube supports Kubernetes features such as:

DNS

NodePorts

ConfigMaps and Secrets

Dashboards

Container Runtime: Docker, rkt and CRI-O

Enabling CNI (Container Network Interface)

Ingress

Installation

See Installing Minikube.

Quickstart

Here’s a brief demo of minikube usage. If you want to change the VM driver add the

appropriate --vm-driver=xxx--vm-driver=xxx flag to minikube startminikube start . Minikube supports the following

drivers:

virtualbox

vmwarefusion

kvm (driver installation)

hyperkit (driver installation)

xhyve (driver installation) (deprecated)

Note that the IP below is dynamic and can change. It can be retrieved with minikube ipminikube ip .

https://github.com/rkt/rkt
https://github.com/kubernetes-incubator/cri-o
file:///docs/tasks/tools/install-minikube/
https://git.k8s.io/minikube/docs/drivers.md#kvm-driver
https://git.k8s.io/minikube/docs/drivers.md#hyperkit-driver
https://git.k8s.io/minikube/docs/drivers.md#xhyve-driver

Alternative Container Runtimes

CRI-O

To use CRI-O as the container runtime, run:

$ $ minikube startminikube start

Starting Starting local local Kubernetes cluster...Kubernetes cluster...

Running pre-create checks...Running pre-create checks...

Creating machine...Creating machine...

Starting Starting local local Kubernetes cluster...Kubernetes cluster...

$ $ kubectl run hello-minikube kubectl run hello-minikube --image--image==k8s.gcr.io/echoserver:1.4 k8s.gcr.io/echoserver:1.4 --port--port==80808080

deployment deployment "hello-minikube""hello-minikube" created created

$ $ kubectl expose deployment hello-minikube kubectl expose deployment hello-minikube --type--type==NodePortNodePort

service service "hello-minikube""hello-minikube" exposed exposed

We have now launched an echoserver pod but we have to wait until the pod is up before curling/accessing it# We have now launched an echoserver pod but we have to wait until the pod is up before curling/accessing it
via the exposed service.# via the exposed service.
To check whether the pod is up and running we can use the following:# To check whether the pod is up and running we can use the following:
$ $ kubectl get podkubectl get pod

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hello-minikube-3383150820-vctvh 0/1 ContainerCreating 0 3shello-minikube-3383150820-vctvh 0/1 ContainerCreating 0 3s

We can see that the pod is still being created from the ContainerCreating status# We can see that the pod is still being created from the ContainerCreating status
$ $ kubectl get podkubectl get pod

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hello-minikube-3383150820-vctvh 1/1 Running 0 13shello-minikube-3383150820-vctvh 1/1 Running 0 13s

We can see that the pod is now Running and we will now be able to curl it:# We can see that the pod is now Running and we will now be able to curl it:
$ $ curl curl $($(minikube service hello-minikube minikube service hello-minikube --url--url))

CLIENT VALUES:CLIENT VALUES:

client_addressclient_address==192.168.99.1192.168.99.1

commandcommand==GETGET

real real pathpath==//

......

$ $ kubectl delete services hello-minikubekubectl delete services hello-minikube

service service "hello-minikube""hello-minikube" deleted deleted

$ $ kubectl delete deployment hello-minikubekubectl delete deployment hello-minikube

deployment deployment "hello-minikube""hello-minikube" deleted deleted

$ $ minikube stopminikube stop

Stopping Stopping local local Kubernetes cluster...Kubernetes cluster...

Stopping Stopping "minikube""minikube"......

$ $ minikube start minikube start \\

 --network-plugin--network-plugin==cni cni \\

 --container-runtime--container-runtime==cri-o cri-o \\

 --bootstrapper--bootstrapper==kubeadmkubeadm

https://github.com/kubernetes-incubator/cri-o

Or you can use the extended version:

rkt container engine

To use rkt as the container runtime run:

This will use an alternative minikube ISO image containing both rkt, and Docker, and enable

CNI networking.

Driver plugins

See DRIVERS for details on supported drivers and how to install plugins, if required.

Reusing the Docker daemon

When using a single VM of Kubernetes, it’s really handy to reuse the minikube’s built-in Docker

daemon; as this means you don’t have to build a docker registry on your host machine and

push the image into it - you can just build inside the same docker daemon as minikube which

speeds up local experiments. Just make sure you tag your Docker image with something other

than ‘latest’ and use that tag while you pull the image. Otherwise, if you do not specify version

of your image, it will be assumed as :latest:latest , with pull image policy of AlwaysAlways

correspondingly, which may eventually result in ErrImagePullErrImagePull as you may not have any

versions of your Docker image out there in the default docker registry (usually DockerHub) yet.

To be able to work with the docker daemon on your mac/linux host use the

docker-env commanddocker-env command in your shell:

$ $ minikube start minikube start \\

 --network-plugin--network-plugin==cni cni \\

 --extra-config--extra-config==kubelet.container-runtimekubelet.container-runtime==remote remote \\

 --extra-config--extra-config==kubelet.container-runtime-endpointkubelet.container-runtime-endpoint==/var/run/crio.sock /var/run/crio.sock \\

 --extra-config--extra-config==kubelet.image-service-endpointkubelet.image-service-endpoint==/var/run/crio.sock /var/run/crio.sock \\

 --bootstrapper--bootstrapper==kubeadmkubeadm

$ $ minikube start minikube start \\

 --network-plugin--network-plugin==cni cni \\

 --container-runtime--container-runtime==rktrkt

eval $(minikube docker-env)eval $(minikube docker-env)

https://github.com/rkt/rkt
https://git.k8s.io/minikube/docs/drivers.md

You should now be able to use docker on the command line on your host mac/linux machine

talking to the docker daemon inside the minikube VM:

On Centos 7, docker may report the following error:

The fix is to update /etc/sysconfig/docker to ensure that minikube’s environment changes are

respected:

Remember to turn off the imagePullPolicy:Always, as otherwise Kubernetes won’t use images

you built locally.

Managing your Cluster

Starting a Cluster

The minikube startminikube start command can be used to start your cluster. This command creates and

configures a virtual machine that runs a single-node Kubernetes cluster. This command also

configures your kubectl installation to communicate with this cluster.

If you are behind a web proxy, you will need to pass this information in e.g. via

Unfortunately just setting the environment variables will not work.

Minikube will also create a “minikube” context, and set it to default in kubectl. To switch back to

docker psdocker ps

Could not read CA certificate "/etc/docker/ca.pem": open /etc/docker/ca.pem: no such file or directoryCould not read CA certificate "/etc/docker/ca.pem": open /etc/docker/ca.pem: no such file or directory

< DOCKER_CERT_PATH=/etc/docker< DOCKER_CERT_PATH=/etc/docker

> if [-z "${DOCKER_CERT_PATH}"]; then> if [-z "${DOCKER_CERT_PATH}"]; then

> DOCKER_CERT_PATH=/etc/docker> DOCKER_CERT_PATH=/etc/docker

> fi> fi

https_proxy=<my proxy> minikube start --docker-env http_proxy=<my proxy> --docker-env https_proxy=<my proxy> --docker-env no_proxy=192.168.99.0/24https_proxy=<my proxy> minikube start --docker-env http_proxy=<my proxy> --docker-env https_proxy=<my proxy> --docker-env no_proxy=192.168.99.0/24

file:///docs/user-guide/kubectl-overview/

this context later, run this command:

kubectl config use-contextkubectl config use-context

minikubeminikube .

Specifying the Kubernetes version

Minikube supports running multiple different versions of Kubernetes. You can access a list of

all available versions via

You can specify the specific version of Kubernetes for Minikube to use by adding the

--kubernetes-version--kubernetes-version string to the minikube startminikube start command. For example, to run

version v1.7.3v1.7.3 , you would run the following:

Configuring Kubernetes

Minikube has a “configurator” feature that allows users to configure the Kubernetes

components with arbitrary values. To use this feature, you can use the --extra-config--extra-config flag

on the minikube startminikube start command.

This flag is repeated, so you can pass it several times with several different values to set

multiple options.

This flag takes a string of the form component.key=valuecomponent.key=value , where componentcomponent is one of the

strings from the below list, keykey is a value on the configuration struct and valuevalue is the value

to set.

Valid keys can be found by examining the documentation for the Kubernetes

componentconfigscomponentconfigs for each component. Here is the documentation for each supported

configuration:

kubelet

apiserver

proxy

minikube get-k8s-versionsminikube get-k8s-versions

minikube start --kubernetes-version v1.7.3minikube start --kubernetes-version v1.7.3

https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeletConfiguration
https://godoc.org/k8s.io/kubernetes/cmd/kube-apiserver/app/options#APIServer
https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeProxyConfiguration

controller-manager

etcd

scheduler

Examples

To change the MaxPodsMaxPods setting to 5 on the Kubelet, pass this flag:

--extra-config=kubelet.MaxPods=5--extra-config=kubelet.MaxPods=5 .

This feature also supports nested structs. To change the LeaderElection.LeaderElectLeaderElection.LeaderElect

setting to truetrue on the scheduler, pass this flag:

--extra-config=scheduler.LeaderElection.LeaderElect=true--extra-config=scheduler.LeaderElection.LeaderElect=true .

To set the AuthorizationModeAuthorizationMode on the apiserverapiserver to RBACRBAC , you can use:

--extra-config=apiserver.Authorization.Mode=RBAC--extra-config=apiserver.Authorization.Mode=RBAC .

Stopping a Cluster

The minikube stopminikube stop command can be used to stop your cluster. This command shuts down

the minikube virtual machine, but preserves all cluster state and data. Starting the cluster again

will restore it to it’s previous state.

Deleting a Cluster

The

minikubeminikube

deletedelete command can be used to delete your cluster. This command shuts

down and deletes the minikube virtual machine. No data or state is preserved.

Interacting With your Cluster

Kubectl

The minikube startminikube start command creates a “kubectl context” called “minikube”. This context

contains the configuration to communicate with your minikube cluster.

Minikube sets this context to default automatically, but if you need to switch back to it in the

future, run:

https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeControllerManagerConfiguration
https://godoc.org/github.com/coreos/etcd/etcdserver#ServerConfig
https://godoc.org/k8s.io/kubernetes/pkg/apis/componentconfig#KubeSchedulerConfiguration
file:///docs/user-guide/kubectl/v1.10/#-em-set-context-em-

kubectl config use-contextkubectl config use-context

minikubeminikube ,

Or pass the context on each command like this:

kubectl get pods --kubectl get pods --

context=minikubecontext=minikube .

Dashboard

To access the Kubernetes Dashboard, run this command in a shell after starting minikube to

get the address:

Services

To access a service exposed via a node port, run this command in a shell after starting

minikube to get the address:

Networking

The minikube VM is exposed to the host system via a host-only IP address, that can be

obtained with the minikube ipminikube ip command. Any services of type NodePortNodePort can be accessed

over that IP address, on the NodePort.

To determine the NodePort for your service, you can use a kubectlkubectl command like this:

kubectl get service $SERVICE --output='jsonpath="kubectl get service $SERVICE --output='jsonpath="

{.spec.ports[0].nodePort}"'{.spec.ports[0].nodePort}"'

Persistent Volumes

Minikube supports PersistentVolumes of type hostPathhostPath . These PersistentVolumes are

mapped to a directory inside the minikube VM.

minikube dashboardminikube dashboard

minikube service minikube service [[-n-n NAMESPACE] NAMESPACE] [[--url--url]] NAME NAME

file:///docs/tasks/access-application-cluster/web-ui-dashboard/
file:///docs/concepts/storage/persistent-volumes/

The Minikube VM boots into a tmpfs, so most directories will not be persisted across reboots (

minikube stopminikube stop). However, Minikube is configured to persist files stored under the following

host directories:

/data/data

/var/lib/localkube/var/lib/localkube

/var/lib/docker/var/lib/docker

Here is an example PersistentVolume config to persist data in the /data/data directory:

Mounted Host Folders

Some drivers will mount a host folder within the VM so that you can easily share files between

the VM and host. These are not configurable at the moment and different for the driver and OS

you are using.

Note: Host folder sharing is not implemented in the KVM driver yet.

Driver OS HostFolder VM

VirtualBox Linux /home /hosthome

VirtualBox OSX /Users /Users

VirtualBox Windows C://Users /c/Users

VMware Fusion OSX /Users /Users

Xhyve OSX /Users /Users

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumePersistentVolume

metadatametadata::

 namename:: pv0001pv0001

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 capacitycapacity::

 storagestorage:: 5Gi5Gi

 hostPathhostPath::

 pathpath:: /data/pv0001//data/pv0001/

Private Container Registries

To access a private container registry, follow the steps on this page.

We recommend you use ImagePullSecretsImagePullSecrets , but if you would like to configure access on the

minikube VM you can place the .dockercfg.dockercfg in the /home/docker/home/docker directory or the

config.jsonconfig.json in the /home/docker/.docker/home/docker/.docker directory.

Add-ons

In order to have minikube properly start or restart custom addons, place the addons you wish

to be launched with minikube in the ~/.minikube/addons~/.minikube/addons directory. Addons in this folder will

be moved to the minikube VM and launched each time minikube is started or restarted.

Using Minikube with an HTTP Proxy

Minikube creates a Virtual Machine that includes Kubernetes and a Docker daemon. When

Kubernetes attempts to schedule containers using Docker, the Docker daemon may require

external network access to pull containers.

If you are behind an HTTP proxy, you may need to supply Docker with the proxy settings. To do

this, pass the required environment variables as flags during minikube startminikube start .

For example:

If your Virtual Machine address is 192.168.99.100, then chances are your proxy settings will

prevent kubectl from directly reaching it. To by-pass proxy configuration for this IP address,

you should modify your no_proxy settings. You can do so with:

Known Issues

$ $ minikube start minikube start --docker-env--docker-env http_proxyhttp_proxy==http://http://$YOURPROXY$YOURPROXY:PORT :PORT \\

 --docker-env--docker-env https_proxyhttps_proxy==https://https://$YOURPROXY$YOURPROXY:PORT:PORT

$ $ export export no_proxyno_proxy==no_proxyno_proxy,,$($(minikube ipminikube ip))

file:///docs/concepts/containers/_site/images/

Features that require a Cloud Provider will not work in Minikube. These include:

LoadBalancers

Features that require multiple nodes. These include:

Advanced scheduling policies

Design

Minikube uses libmachine for provisioning VMs, and localkube (originally written and donated

to this project by RedSpread) for running the cluster.

For more information about minikube, see the proposal.

Additional Links:

Goals and Non-Goals : For the goals and non-goals of the minikube project, please see our

roadmap.

Development Guide: See CONTRIBUTING.md for an overview of how to send pull

requests.

Building Minikube: For instructions on how to build/test minikube from source, see the

build guide

Adding a New Dependency: For instructions on how to add a new dependency to minikube

see the adding dependencies guide

Adding a New Addon: For instruction on how to add a new addon for minikube see the

adding an addon guide

Updating Kubernetes: For instructions on how to update kubernetes see the updating

Kubernetes guide

Community

Contributions, questions, and comments are all welcomed and encouraged! minikube

https://github.com/docker/machine/tree/master/libmachine
https://git.k8s.io/minikube/pkg/localkube
https://redspread.com/
https://git.k8s.io/community/contributors/design-proposals/cluster-lifecycle/local-cluster-ux.md
https://git.k8s.io/minikube/docs/contributors/roadmap.md
https://git.k8s.io/minikube/CONTRIBUTING.md
https://git.k8s.io/minikube/docs/contributors/build_guide.md
https://git.k8s.io/minikube/docs/contributors/adding_a_dependency.md
https://git.k8s.io/minikube/docs/contributors/adding_an_addon.md
https://git.k8s.io/minikube/docs/contributors/updating_kubernetes.md

developers hang out on Slack in the #minikube channel (get an invitation here). We also have

the kubernetes-dev Google Groups mailing list. If you are posting to the list please prefix your

subject with “minikube: “.

https://kubernetes.slack.com
http://slack.kubernetes.io/
https://groups.google.com/forum/#!forum/kubernetes-dev

Installing kubeadm

This page shows how to install the kubeadmkubeadm toolbox. For information

how to create a cluster with kubeadm once you have performed this

installation process, see the Using kubeadm to Create a Cluster page.

Before you begin

One or more machines running one of:

Ubuntu 16.04+

Debian 9

CentOS 7

RHEL 7

Fedora 25/26 (best-effort)

HypriotOS v1.0.1+

Container Linux (tested with 1576.4.0)

2 GB or more of RAM per machine (any less will leave little room for your apps)

2 CPUs or more

Before you begin

Verify the MAC address and product_uuid are unique for every

node

Check network adapters

Check required ports

Master node(s)

Worker node(s)

Installing Docker

Installing kubeadm, kubelet and kubectl

Configure cgroup driver used by kubelet on Master Node

Troubleshooting

What’s next

file:///docs/setup/independent/create-cluster-kubeadm/

Full network connectivity between all machines in the cluster (public or private network is

fine)

Unique hostname, MAC address, and product_uuid for every node. See here for more

details.

Certain ports are open on your machines. See here for more details.

Swap disabled. You MUST disable swap in order for the kubelet to work properly.

Verify the MAC address and product_uuid are unique
for every node

You can get the MAC address of the network interfaces using the command ip linkip link or

ifconfig -ifconfig -

aa

The product_uuid can be checked by using the command

sudo catsudo cat

/sys/class/dmi/id/product_uuid/sys/class/dmi/id/product_uuid

It is very likely that hardware devices will have unique addresses, although some virtual

machines may have identical values. Kubernetes uses these values to uniquely identify the

nodes in the cluster. If these values are not unique to each node, the installation process may

fail.

Check network adapters

If you have more than one network adapter, and your Kubernetes components are not

reachable on the default route, we recommend you add IP route(s) so Kubernetes cluster

addresses go via the appropriate adapter.

Check required ports

Master node(s)

https://kubernetes.io/docs/setup/independent/install-kubeadm/#verify-the-mac-address-and-product_uuid-are-unique-for-every-node
file:///docs/setup/independent/install-kubeadm/#check-required-ports
https://github.com/kubernetes/kubeadm/issues/31

Protocol Direction Port Range Purpose

TCP Inbound 6443* Kubernetes API server

TCP Inbound 2379-2380 etcd server client API

TCP Inbound 10250 Kubelet API

TCP Inbound 10251 kube-scheduler

TCP Inbound 10252 kube-controller-manager

TCP Inbound 10255 Read-only Kubelet API

Worker node(s)

Protocol Direction Port Range Purpose

TCP Inbound 10250 Kubelet API

TCP Inbound 10255 Read-only Kubelet API

TCP Inbound 30000-32767 NodePort Services**

** Default port range for NodePort Services.

Any port numbers marked with * are overridable, so you will need to ensure any custom ports

you provide are also open.

Although etcd ports are included in master nodes, you can also host your own etcd cluster

externally or on custom ports.

The pod network plugin you use (see below) may also require certain ports to be open. Since

this differs with each pod network plugin, please see the documentation for the plugins about

what port(s) those need.

Installing Docker

On each of your machines, install Docker. Version v1.12 is recommended, but v1.11, v1.13 and

17.03 are known to work as well. Versions 17.06+ might work, but have not yet been tested and

verified by the Kubernetes node team.

Please proceed with executing the following commands based on your OS as root. You may

become the root user by executing

sudo -sudo -

ii after SSH-ing to each host.

file:///docs/concepts/services-networking/service/

If you already have the required versions of the Docker installed, you can move on to next

section. If not, you can use the following commands to install Docker on your system:

Refer to the official Docker installation guides for more information.

Installing kubeadm, kubelet and kubectl

You will install these packages on all of your machines:

kubeadmkubeadm : the command to bootstrap the cluster.

kubeletkubelet : the component that runs on all of the machines in your cluster and does things

like starting pods and containers.

kubectlkubectl : the command line util to talk to your cluster.

kubeadm will not install or manage kubeletkubelet or kubectlkubectl for you, so you will need to ensure

Install Docker from Ubuntu’s repositories:

or install Docker CE 17.03 from Docker’s repositories for Ubuntu or Debian:

Ubuntu, Debian or HypriotOS CentOS, RHEL or Fedora Container Linux

apt-get updateapt-get update

apt-get install -y docker.ioapt-get install -y docker.io

apt-get updateapt-get update

apt-get install -y \apt-get install -y \

 apt-transport-https \ apt-transport-https \

 ca-certificates \ ca-certificates \

 curl \ curl \

 software-properties-common software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -

add-apt-repository \add-apt-repository \

 "deb https://download.docker.com/linux/$(. /etc/os-release; echo "$ID") \ "deb https://download.docker.com/linux/$(. /etc/os-release; echo "$ID") \

 $(lsb_release -cs) \ $(lsb_release -cs) \

 stable" stable"

apt-get update && apt-get install -y docker-ce=$(apt-cache madison docker-ce | grep 17.03 | head -1 | awk '{print $3}')apt-get update && apt-get install -y docker-ce=$(apt-cache madison docker-ce | grep 17.03 | head -1 | awk '{print $3}')

https://docs.docker.com/engine/installation/

they match the version of the Kubernetes control panel you want kubeadm to install for you. If

you do not, there is a risk of a version skew occurring that can lead to unexpected, buggy

behaviour. However, one minor version skew between the kubelet and the control plane is

supported, but the kubelet version may never exceed the API server version. For example,

kubelets running 1.7.0 should be fully compatible with a 1.8.0 API server, but not vice versa.

For more information on version skews, please read our version skew policy.

The kubelet is now restarting every few seconds, as it waits in a crashloop for kubeadm to tell

it what to do.

Configure cgroup driver used by kubelet on Master
Node

Make sure that the cgroup driver used by kubelet is the same as the one used by Docker.

Verify that your Docker cgroup driver matches the kubelet config:

If the Docker cgroup driver and the kubelet config don’t match, change the kubelet config to

match the Docker cgroup driver. The flag you need to change is --cgroup-driver--cgroup-driver . If it’s

already set, you can update like so:

Ubuntu, Debian or HypriotOS CentOS, RHEL or Fedora Container Linux

apt-get update && apt-get install -y apt-transport-httpsapt-get update && apt-get install -y apt-transport-https

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -

cat <<EOF >/etc/apt/sources.list.d/kubernetes.listcat <<EOF >/etc/apt/sources.list.d/kubernetes.list

deb http://apt.kubernetes.io/ kubernetes-xenial maindeb http://apt.kubernetes.io/ kubernetes-xenial main

EOFEOF

apt-get updateapt-get update

apt-get install -y kubelet kubeadm kubectlapt-get install -y kubelet kubeadm kubectl

docker info | docker info | grepgrep -i-i cgroup cgroup

catcat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

sed sed -i-i "s/cgroup-driver=systemd/cgroup-driver=cgroupfs/g""s/cgroup-driver=systemd/cgroup-driver=cgroupfs/g" /etc/systemd/system/kubelet.service.d/10-kubeadm.conf /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

file:///docs/setup/independent/create-cluster-kubeadm/#version-skew-policy

Otherwise, you will need to open the systemd file and add the flag to an existing environment

line.

Then restart kubelet:

Troubleshooting

If you are running into difficulties with kubeadm, please consult our troubleshooting docs.

What’s next

Using kubeadm to Create a Cluster

systemctl daemon-reloadsystemctl daemon-reload

systemctl restart kubeletsystemctl restart kubelet

file:///docs/setup/independent/troubleshooting-kubeadm/
file:///docs/setup/independent/create-cluster-kubeadm/

Using kubeadm to Create a Cluster

kubeadm is a toolkit that helps you bootstrap a best-practice Kubernetes

cluster in an easy, reasonably secure and extensible way. It also supports

managing Bootstrap Tokens for you and upgrading/downgrading

clusters.

kubeadm aims to set up a minimum viable cluster that pass the

Kubernetes Conformance tests, but installing other addons than really

necessary for a functional cluster is out of scope.

It by design does not install a networking solution for you, which means you have to install a

third-party CNI-compliant networking solution yourself using kubectl applykubectl apply .

kubeadm expects the user to bring a machine to execute on, the type doesn’t matter, can be a

Linux laptop, virtual machine, physical/cloud server or Raspberry Pi. This makes kubeadm well

suited to integrate with provisioning systems of different kinds (e.g. Terraform, Ansible, etc.).

kubeadm is designed to be a simple way for new users to start trying Kubernetes out, possibly

for the first time, a way for existing users to test their application on and stitch together a

cluster easily, and also to be a building block in other ecosystem and/or installer tool with a

larger scope.

You can install kubeadm very easily on operating systems that support installing deb or rpm

packages. The responsible SIG for kubeadm, SIG Cluster Lifecycle, provides these packages

pre-built for you, but you may also on other OSes.

kubeadm Maturity

Area Maturity Level

Command line UX beta

Implementation beta

Config file API alpha

Self-hosting alpha

kubeadm alpha subcommands alpha

CoreDNS alpha

file:///docs/admin/bootstrap-tokens/
http://blog.kubernetes.io/2017/10/software-conformance-certification.html
https://github.com/kubernetes/community/tree/master/sig-cluster-lifecycle

DynamicKubeletConfig alphaArea Maturity Level

kubeadm’s overall feature state is Beta and will soon be graduated to General Availability (GA)

during 2018. Some sub-features, like self-hosting or the configuration file API are still under

active development. The implementation of creating the cluster may change slightly as the tool

evolves, but the overall implementation should be pretty stable. Any commands under

kubeadm alphakubeadm alpha are by definition, supported on an alpha level.

Support timeframes

Kubernetes releases are generally supported for nine months, and during that period a patch

release may be issued from the release branch if a severe bug or security issue is found. Here

are the latest Kubernetes releases and the support timeframe; which also applies to kubeadmkubeadm .

Kubernetes version Release month End-of-life-month

v1.6.x March 2017 December 2017

v1.7.x June 2017 March 2018

v1.8.x September 2017 June 2018

v1.9.x December 2017 September 2018

kubeadm Maturity

Support timeframes

Before you begin

Objectives

Instructions

(1/4) Installing kubeadm on your hosts

(2/4) Initializing your master

(3/4) Installing a pod network

Master Isolation

(4/4) Joining your nodes

(Optional) Controlling your cluster from machines other than the master

(Optional) Proxying API Server to localhost

Tear down

Upgrading a kubeadm cluster

Explore other add-ons

What’s next

Feedback

Version skew policy

Before you begin

1. One or more machines running a deb/rpm-compatible OS, e.g. Ubuntu or CentOS

2. 2 GB or more of RAM per machine (any less will leave little room for your apps)

3. 2 CPUs or more on the master

4. Full network connectivity between all machines in the cluster (public or private network is

fine)

Objectives

Install a secure Kubernetes cluster on your machines

Install a Pod network on the cluster so that your Pods can talk to each other

Instructions

(1/4) Installing kubeadm on your hosts

See Installing kubeadm.

Note: If you already have kubeadm installed, you should do a

apt-get update && apt-getapt-get update && apt-get

upgradeupgrade or

yumyum

updateupdate to get the latest version of kubeadm.

The kubelet is now restarting every few seconds, as it waits in a crashloop for kubeadm to tell

it what to do. This crashloop is expected and normal, please proceed with the next step and

the kubelet will start running normally.

(2/4) Initializing your master

The master is the machine where the control plane components run, including etcd (the cluster

database) and the API server (which the kubectl CLI communicates with).

kubeadm works on multiple platforms

Limitations

Troubleshooting

file:///docs/setup/independent/install-kubeadm/

To initialize the master, pick one of the machines you previously installed kubeadm on, and run:

Notes:

Please refer to the kubeadm reference guide if you want to read more about the flags

kubeadm initkubeadm init provides. You can also specify a configuration file instead of using flags.

You need to choose a Pod Network Plugin in the next step. Depending on what third-party

provider you choose, you might have to set the --pod-network-cidr--pod-network-cidr to something

provider-specific. The tabs below will contain a notice about what flags on kubeadm initkubeadm init

are required.

Unless otherwise specified, kubeadm uses the default gateway’s network interface to

advertise the master’s IP. If you want to use a different network interface, specify

--apiserver-advertise-address=<ip-address>--apiserver-advertise-address=<ip-address> argument to kubeadm initkubeadm init . To

deploy an IPv6 Kubernetes cluster using IPv6 addressing, you must specify an IPv6, e.g.

--apiserver-advertise-address=fd00::101--apiserver-advertise-address=fd00::101

If you would like to customise control plane components including optional IPv6

assignment to liveness probe for control plane components and etcd server, you can do so

by providing extra args to each one, as documented here.

kubeadm initkubeadm init will first run a series of prechecks to ensure that the machine is ready to

run Kubernetes. It will expose warnings and exit on errors. It will then download and install

the cluster database and control plane components. This may take several minutes.

You can’t run kubeadm initkubeadm init twice without tearing down the cluster in between (unless

you’re upgrading from v1.6 to v1.7), see Tear Down.

The output should look like:

kubeadm initkubeadm init

file:///docs/reference/setup-tools/kubeadm/kubeadm/
file:///docs/reference/setup-tools/kubeadm/kubeadm-init/#config-file
file:///docs/admin/kubeadm#custom-args
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-7/

[init] Using Kubernetes version: v1.8.0[init] Using Kubernetes version: v1.8.0

[init] Using Authorization modes: [Node RBAC][init] Using Authorization modes: [Node RBAC]

[preflight] Running pre-flight checks[preflight] Running pre-flight checks

[kubeadm] WARNING: starting in 1.8, tokens expire after 24 hours by default (if you require a non-expiring token use --token-ttl 0)[kubeadm] WARNING: starting in 1.8, tokens expire after 24 hours by default (if you require a non-expiring token use --token-ttl 0)

[certificates] Generated ca certificate and key.[certificates] Generated ca certificate and key.

[certificates] Generated apiserver certificate and key.[certificates] Generated apiserver certificate and key.

[certificates] apiserver serving cert is signed for DNS names [kubeadm-master kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 10.138.0.4][certificates] apiserver serving cert is signed for DNS names [kubeadm-master kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 10.138.0.4]

[certificates] Generated apiserver-kubelet-client certificate and key.[certificates] Generated apiserver-kubelet-client certificate and key.

[certificates] Generated sa key and public key.[certificates] Generated sa key and public key.

[certificates] Generated front-proxy-ca certificate and key.[certificates] Generated front-proxy-ca certificate and key.

[certificates] Generated front-proxy-client certificate and key.[certificates] Generated front-proxy-client certificate and key.

[certificates] Valid certificates and keys now exist in "/etc/kubernetes/pki"[certificates] Valid certificates and keys now exist in "/etc/kubernetes/pki"

[kubeconfig] Wrote KubeConfig file to disk: "admin.conf"[kubeconfig] Wrote KubeConfig file to disk: "admin.conf"

[kubeconfig] Wrote KubeConfig file to disk: "kubelet.conf"[kubeconfig] Wrote KubeConfig file to disk: "kubelet.conf"

[kubeconfig] Wrote KubeConfig file to disk: "controller-manager.conf"[kubeconfig] Wrote KubeConfig file to disk: "controller-manager.conf"

[kubeconfig] Wrote KubeConfig file to disk: "scheduler.conf"[kubeconfig] Wrote KubeConfig file to disk: "scheduler.conf"

[controlplane] Wrote Static Pod manifest for component kube-apiserver to "/etc/kubernetes/manifests/kube-apiserver.yaml"[controlplane] Wrote Static Pod manifest for component kube-apiserver to "/etc/kubernetes/manifests/kube-apiserver.yaml"

[controlplane] Wrote Static Pod manifest for component kube-controller-manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"[controlplane] Wrote Static Pod manifest for component kube-controller-manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"

[controlplane] Wrote Static Pod manifest for component kube-scheduler to "/etc/kubernetes/manifests/kube-scheduler.yaml"[controlplane] Wrote Static Pod manifest for component kube-scheduler to "/etc/kubernetes/manifests/kube-scheduler.yaml"

[etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/manifests/etcd.yaml"[etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/manifests/etcd.yaml"

[init] Waiting for the kubelet to boot up the control plane as Static Pods from directory "/etc/kubernetes/manifests"[init] Waiting for the kubelet to boot up the control plane as Static Pods from directory "/etc/kubernetes/manifests"

[init] This often takes around a minute; or longer if the control plane images have to be pulled.[init] This often takes around a minute; or longer if the control plane images have to be pulled.

[apiclient] All control plane components are healthy after 39.511972 seconds[apiclient] All control plane components are healthy after 39.511972 seconds

[uploadconfig] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace[uploadconfig] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace

[markmaster] Will mark node master as master by adding a label and a taint[markmaster] Will mark node master as master by adding a label and a taint

[markmaster] Master master tainted and labelled with key/value: node-role.kubernetes.io/master=""[markmaster] Master master tainted and labelled with key/value: node-role.kubernetes.io/master=""

[bootstraptoken] Using token: <token>[bootstraptoken] Using token: <token>

[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials

[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token

[bootstraptoken] Creating the "cluster-info" ConfigMap in the "kube-public" namespace[bootstraptoken] Creating the "cluster-info" ConfigMap in the "kube-public" namespace

[addons] Applied essential addon: kube-dns[addons] Applied essential addon: kube-dns

[addons] Applied essential addon: kube-proxy[addons] Applied essential addon: kube-proxy

Your Kubernetes master has initialized successfully!Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run (as a regular user):To start using your cluster, you need to run (as a regular user):

 mkdir -p $HOME/.kube mkdir -p $HOME/.kube

 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

 sudo chown $(id -u):$(id -g) $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:

 http://kubernetes.io/docs/admin/addons/ http://kubernetes.io/docs/admin/addons/

You can now join any number of machines by running the following on each nodeYou can now join any number of machines by running the following on each node

as root:as root:

 kubeadm join --token <token> <master-ip>:<master-port> --discovery-token-ca-cert-hash sha256:<hash> kubeadm join --token <token> <master-ip>:<master-port> --discovery-token-ca-cert-hash sha256:<hash>

To make kubectl work for your non-root user, you might want to run these commands (which

is also a part of the kubeadm initkubeadm init output):

Alternatively, if you are the rootroot user, you could run this:

Make a record of the kubeadm joinkubeadm join command that kubeadm initkubeadm init outputs. You will need

this in a moment.

The token is used for mutual authentication between the master and the joining nodes. The

token included here is secret, keep it safe as anyone with this token can add authenticated

nodes to your cluster. These tokens can be listed, created and deleted with the

kubeadm tokenkubeadm token command. See the reference guide for more details.

(3/4) Installing a pod network

You MUST install a pod network add-on so that your pods can communicate with each other.

The network must be deployed before any applications. Also, kube-dns, an internal helper

service, will not start up before a network is installed. kubeadm only supports Container

Network Interface (CNI) based networks (and does not support kubenet).

Several projects provide Kubernetes pod networks using CNI, some of which also support

Network Policy. See the add-ons page for a complete list of available network add-ons. IPv6

support was added in CNI v0.6.0. CNI bridge and local-ipam are the only supported IPv6

network plugins in 1.9.

Note: kubeadm sets up a more secure cluster by default and enforces use of RBAC. Please

make sure that the network manifest of choice supports RBAC.

You can install a pod network add-on with the following command:

mkdir mkdir -p-p $HOME$HOME/.kube/.kube

sudo sudo cp cp -i-i /etc/kubernetes/admin.conf /etc/kubernetes/admin.conf $HOME$HOME/.kube/config/.kube/config

sudo sudo chown chown $($(id id -u-u))::$($(id id -g-g)) $HOME$HOME/.kube/config/.kube/config

export export KUBECONFIGKUBECONFIG==/etc/kubernetes/admin.conf/etc/kubernetes/admin.conf

kubectl apply kubectl apply -f-f <add-on.yaml> <add-on.yaml>

file:///docs/reference/setup-tools/kubeadm/kubeadm-token/
file:///docs/concepts/services-networking/networkpolicies/
file:///docs/concepts/cluster-administration/addons/
https://github.com/containernetworking/cni/releases/tag/v0.6.0
https://github.com/containernetworking/plugins/blob/master/plugins/main/bridge/README.md
https://github.com/containernetworking/plugins/blob/master/plugins/ipam/host-local/README.md

NOTE: You can install only one pod network per cluster.

Once a pod network has been installed, you can confirm that it is working by checking that the

kube-dns pod is Running in the output of

kubectl get pods --all-kubectl get pods --all-

namespacesnamespaces . And once

the kube-dns pod is up and running, you can continue by joining your nodes.

If your network is not working or kube-dns is not in the Running state, check out our

troubleshooting docs.

Master Isolation

By default, your cluster will not schedule pods on the master for security reasons. If you want

to be able to schedule pods on the master, e.g. for a single-machine Kubernetes cluster for

development, run:

With output looking something like:

This will remove the node-role.kubernetes.io/masternode-role.kubernetes.io/master taint from any nodes that have it,

including the master node, meaning that the scheduler will then be able to schedule pods

everywhere.

(4/4) Joining your nodes

The nodes are where your workloads (containers and pods, etc) run. To add new nodes to your

cluster do the following for each machine:

Please select one of the tabs to see installation instructions for the respective third-

party Pod Network Provider.

Choose one... Calico Canal Flannel Kube-router Romana

Weave Net

kubectl taint nodes kubectl taint nodes --all--all node-role.kubernetes.io/master- node-role.kubernetes.io/master-

node "test-01" untaintednode "test-01" untainted

taint key="dedicated" and effect="" not found.taint key="dedicated" and effect="" not found.

taint key="dedicated" and effect="" not found.taint key="dedicated" and effect="" not found.

file:///docs/setup/independent/troubleshooting-kubeadm/

SSH to the machine

Become root (e.g.

sudo susudo su

--)

Run the command that was output by kubeadm initkubeadm init . For example:

Note: To specify an IPv6 tuple for <master-ip>:<master-port><master-ip>:<master-port> , IPv6 address must be

enclosed in square brackets, for example: [fd00::101]:2073[fd00::101]:2073 .

The output should look something like:

A few seconds later, you should notice this node in the output from

kubectl getkubectl get

nodesnodes

when run on the master.

(Optional) Controlling your cluster from machines other than
the master

kubeadm join kubeadm join --token--token <token> <master-ip>:<master-port> <token> <master-ip>:<master-port> --discovery-token-ca-cert-hash--discovery-token-ca-cert-hash

[preflight] Running pre-flight checks[preflight] Running pre-flight checks

[discovery] Trying to connect to API Server "10.138.0.4:6443"[discovery] Trying to connect to API Server "10.138.0.4:6443"

[discovery] Created cluster-info discovery client, requesting info from "https://10.138.0.4:6443"[discovery] Created cluster-info discovery client, requesting info from "https://10.138.0.4:6443"

[discovery] Requesting info from "https://10.138.0.4:6443" again to validate TLS against the pinned public key[discovery] Requesting info from "https://10.138.0.4:6443" again to validate TLS against the pinned public key

[discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server "10.138.0.4:6443"[discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server "10.138.0.4:6443"

[discovery] Successfully established connection with API Server "10.138.0.4:6443"[discovery] Successfully established connection with API Server "10.138.0.4:6443"

[bootstrap] Detected server version: v1.8.0[bootstrap] Detected server version: v1.8.0

[bootstrap] The server supports the Certificates API (certificates.k8s.io/v1beta1)[bootstrap] The server supports the Certificates API (certificates.k8s.io/v1beta1)

[csr] Created API client to obtain unique certificate for this node, generating keys and certificate signing request[csr] Created API client to obtain unique certificate for this node, generating keys and certificate signing request

[csr] Received signed certificate from the API server, generating KubeConfig...[csr] Received signed certificate from the API server, generating KubeConfig...

Node join complete:Node join complete:

* Certificate signing request sent to master and response* Certificate signing request sent to master and response

 received. received.

* Kubelet informed of new secure connection details.* Kubelet informed of new secure connection details.

Run 'kubectl get nodes' on the master to see this machine join.Run 'kubectl get nodes' on the master to see this machine join.

In order to get a kubectl on some other computer (e.g. laptop) to talk to your cluster, you need

to copy the administrator kubeconfig file from your master to your workstation like this:

Note:

The example above assumes SSH access is enabled for root. If that is not the case, you

can copy the admin.confadmin.conf file to be accessible by some other user and scpscp using that

other user instead.

The admin.confadmin.conf file gives the user superuser privileges over the cluster. This file should

be used sparsingly. For normal users, it’s recommended to generate an unique credential

to which you whitelist privileges. You can do this with the

kubeadm alpha phase kubeconfig user --client-namekubeadm alpha phase kubeconfig user --client-name

<CN><CN> command. That

command will print out a KubeConfig file to STDOUT which you should save to a file and

distribute to your user. After that, whitelist privileges by using

kubectl createkubectl create

(cluster)rolebinding(cluster)rolebinding .

(Optional) Proxying API Server to localhost

If you want to connect to the API Server from outside the cluster you can use kubectl proxykubectl proxy :

You can now access the API Server locally at http://localhost:8001/api/v1http://localhost:8001/api/v1

Tear down

To undo what kubeadm did, you should first drain the node and make sure that the node is

empty before shutting it down.

Talking to the master with the appropriate credentials, run:

scp root@<master ip>:/etc/kubernetes/admin.conf scp root@<master ip>:/etc/kubernetes/admin.conf ..

kubectl kubectl --kubeconfig--kubeconfig ./admin.conf get nodes ./admin.conf get nodes

scp root@<master ip>:/etc/kubernetes/admin.conf scp root@<master ip>:/etc/kubernetes/admin.conf ..

kubectl kubectl --kubeconfig--kubeconfig ./admin.conf proxy ./admin.conf proxy

file:///docs/reference/generated/kubectl/kubectl-commands#drain

Then, on the node being removed, reset all kubeadm installed state:

If you wish to start over simply run kubeadm initkubeadm init or kubeadm joinkubeadm join with the appropriate

arguments.

More options and information about the kubeadm reset commandkubeadm reset command .

Upgrading a kubeadm cluster

Instructions for upgrading kubeadm clusters are available for:

1.6 to 1.7 upgrades

1.7.x to 1.7.y upgrades

1.7 to 1.8 upgrades

1.8.x to 1.8.y upgrades

1.8 to 1.9 upgrades/downgrades

1.9.x to 1.9.y upgrades

1.9.x to 1.9.y HA cluster upgrades

Explore other add-ons

See the list of add-ons to explore other add-ons, including tools for logging, monitoring,

network policy, visualization & control of your Kubernetes cluster.

What’s next

Learn about kubeadm’s advanced usage in the kubeadm reference documentation

kubectl drain <node name> kubectl drain <node name> --delete-local-data--delete-local-data --force--force --ignore-daemonsets--ignore-daemonsets

kubectl delete node <node name>kubectl delete node <node name>

kubeadm resetkubeadm reset

file:///docs/reference/setup-tools/kubeadm/kubeadm-reset/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-7/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-9/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-9/
file:///docs/tasks/administer-cluster/upgrade-downgrade/kubeadm-upgrade-ha/
file:///docs/concepts/cluster-administration/addons/
file:///docs/reference/setup-tools/kubeadm/kubeadm

Learn more about Kubernetes concepts and kubectlkubectl .

Configure log rotation. You can use logrotate for that. When using Docker, you can specify

log rotation options for Docker daemon, for example

--log-driver=json-file --log-opt=max-size=10m --log-opt=max---log-driver=json-file --log-opt=max-size=10m --log-opt=max-

file=5file=5 . See

Configure and troubleshoot the Docker daemon for more details.

Feedback

kubeadm support Slack Channel: #kubeadm

General SIG Cluster Lifecycle Development Slack Channel: #sig-cluster-lifecycle

SIG Cluster Lifecycle SIG information

SIG Cluster Lifecycle Mailing List: kubernetes-sig-cluster-lifecycle

kubeadm Github issue tracker

Version skew policy

The kubeadm CLI tool of version vX.Y may deploy clusters with a control plane of version vX.Y

or vX.(Y-1). kubeadm CLI vX.Y can also upgrade an existing kubeadm-created cluster of

version vX.(Y-1).

Due to that we can’t see into the future, kubeadm CLI vX.Y may or may not be able to deploy

vX.(Y+1) clusters.

Example: kubeadm v1.8 can deploy both v1.7 and v1.8 clusters and upgrade v1.7 kubeadm-

created clusters to v1.8.

Please also check our installation guide for more information on the version skew between

kubelets and the control plane.

kubeadm works on multiple platforms

kubeadm deb/rpm packages and binaries are built for amd64, arm (32-bit), arm64, ppc64le,

and s390x following the multi-platform proposal.

file:///docs/concepts/
file:///docs/user-guide/kubectl-overview/
https://docs.docker.com/engine/admin/
https://kubernetes.slack.com/messages/kubeadm/
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://groups.google.com/forum/#!forum/kubernetes-sig-cluster-lifecycle
https://github.com/kubernetes/kubeadm/issues
file:///docs/setup/independent/install-kubeadm/#installing-kubeadm-kubelet-and-kubectl
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multi-platform.md

Only some of the network providers offer solutions for all platforms. Please consult the list of

network providers above or the documentation from each provider to figure out whether the

provider supports your chosen platform.

Limitations

Please note: kubeadm is a work in progress and these limitations will be addressed in due

course.

1. The cluster created here has a single master, with a single etcd database running on it.

This means that if the master fails, your cluster may lose data and may need to be

recreated from scratch. Adding HA support (multiple etcd servers, multiple API servers,

etc) to kubeadm is still a work-in-progress.

Workaround: regularly back up etcd. The etcd data directory configured by kubeadm is at

/var/lib/etcd/var/lib/etcd on the master.

Troubleshooting

If you are running into difficulties with kubeadm, please consult our troubleshooting docs.

https://coreos.com/etcd/docs/latest/admin_guide.html
file:///docs/setup/independent/troubleshooting-kubeadm/

Troubleshooting kubeadm

ebtables or some similar executable not found during installation

If you see the following warnings while running kubeadm initkubeadm init

Then you may be missing ebtablesebtables , ethtoolethtool or a similar executable on your Linux machine.

You can install them with the following commands:

For ubuntu/debian users, run

apt install ebtablesapt install ebtables

ethtoolethtool .

For CentOS/Fedora users, run

yum install ebtablesyum install ebtables

ethtoolethtool .

kubeadm blocks waiting for control plane during installation

If you notice that kubeadm initkubeadm init hangs after printing out the following line:

This may be caused by a number of problems. The most common are:

network connection problems. Check that your machine has full network connectivity

before continuing.

the default cgroup driver configuration for the kubelet differs from that used by Docker.

Check the system log file (e.g. /var/log/message/var/log/message) or examine the output from

journalctl -ujournalctl -u

kubeletkubelet . If you see something like the following:

[preflight] WARNING: ebtables not found in system path [preflight] WARNING: ebtables not found in system path

[preflight] WARNING: ethtool not found in system path [preflight] WARNING: ethtool not found in system path

[apiclient] Created API client, waiting for the control plane to become ready [apiclient] Created API client, waiting for the control plane to become ready

There are two common ways to fix the cgroup driver problem:

1. Install docker again following instructions here.

2. Change the kubelet config to match the Docker cgroup driver manually, you can refer to

Configure cgroup driver used by kubelet on Master Node for detailed instructions. The

kubectl describekubectl describe

podpod or kubectl logskubectl logs commands can help you diagnose errors. For

example:

control plane Docker containers are crashlooping or hanging. You can check this by

running docker psdocker ps and investigating each container by running docker logsdocker logs .

Pods in RunContainerError , CrashLoopBackOff or Error state

Right after kubeadm initkubeadm init there should not be any such Pods. If there are Pods in such a state

right after kubeadm initkubeadm init , please open an issue in the kubeadm repo. kube-dnskube-dns should be in

the PendingPending state until you have deployed the network solution. However, if you see Pods in

the RunContainerErrorRunContainerError , CrashLoopBackOffCrashLoopBackOff or ErrorError state after deploying the network

solution and nothing happens to kube-dnskube-dns , it’s very likely that the Pod Network solution that

you installed is somehow broken. You might have to grant it more RBAC privileges or use a

newer version. Please file an issue in the Pod Network providers’ issue tracker and get the

issue triaged there.

kube-dns is stuck in the Pending state

This is expected and part of the design. kubeadm is network provider-agnostic, so the admin

should install the pod network solution of choice. You have to install a Pod Network before

error: failed to run Kubelet: failed to create kubelet: error: failed to run Kubelet: failed to create kubelet:

misconfiguration: kubelet cgroup driver: misconfiguration: kubelet cgroup driver: "systemd""systemd" is different from docker cgroup driver: is different from docker cgroup driver:

kubectl kubectl -n-n ${${NAMESPACENAMESPACE}} describe pod describe pod ${${POD_NAMEPOD_NAME}}

kubectl kubectl -n-n ${${NAMESPACENAMESPACE}} logs logs ${${POD_NAMEPOD_NAME}} -c-c ${${CONTAINER_NAMECONTAINER_NAME}}

file:///docs/setup/independent/install-kubeadm/#installing-docker
file:///docs/setup/independent/install-kubeadm/#configure-cgroup-driver-used-by-kubelet-on-master-node
file:///docs/concepts/cluster-administration/addons/

kube-dnskube-dns may deployed fully. Hence the PendingPending state before the network is set up.

HostPort services do not work

The HostPortHostPort and HostIPHostIP functionality is available depending on your Pod Network

provider. Please contact the author of the Pod Network solution to find out whether HostPortHostPort

and HostIPHostIP functionality are available.

Verified HostPort CNI providers:

Calico

Canal

Flannel

For more information, read the CNI portmap documentation.

If your network provider does not support the portmap CNI plugin, you may need to use the

NodePort feature of services or use HostNetwork=trueHostNetwork=true .

Pods are not accessible via their Service IP

Many network add-ons do not yet enable hairpin mode which allows pods to access

themselves via their Service IP if they don’t know about their podIP. This is an issue related to

CNI. Please contact the providers of the network add-on providers to get timely information

about whether they support hairpin mode.

If you are using VirtualBox (directly or via Vagrant), you will need to ensure that

hostname -hostname -

ii

returns a routable IP address (i.e. one on the second network interface, not the first one). By

default, it doesn’t do this and kubelet ends-up using first non-loopback network interface,

which is usually NATed. Workaround: Modify /etc/hosts/etc/hosts , take a look at this VagrantfileVagrantfile

ubuntu-vagrantfile for how this can be achieved.

TLS certificate errors

The following error indicates a possible certificate mismatch.

kubectl get po# kubectl get po

Unable to connect to the server: x509: certificate signed by unknown authority (possibly because of "crypto/rsa: verification error" while trying to verify candidate authority certificate "kubernetes")Unable to connect to the server: x509: certificate signed by unknown authority (possibly because of "crypto/rsa: verification error" while trying to verify candidate authority certificate "kubernetes")

https://github.com/containernetworking/plugins/blob/master/plugins/meta/portmap/README.md
file:///docs/concepts/services-networking/service/#type-nodeport
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/#a-pod-cannot-reach-itself-via-service-ip
https://github.com/containernetworking/cni/issues/476
https://github.com/errordeveloper/k8s-playground/blob/22dd39dfc06111235620e6c4404a96ae146f26fd/Vagrantfile#L11

Verify that the $HOME/.kube/config$HOME/.kube/config file contains a valid certificate, and regenerate a

certificate if necessary. Another workaround is to overwrite the default kubeconfigkubeconfig for the

“admin” user:

Default NIC When using flannel as the pod network in Vagrant

The following error might indicate that something was wrong in the pod network:

If you’re using flannel as the pod network inside vagrant, then you will have to specify the

default interface name for flannel.

Vagrant typically assigns two interfaces to all VMs. The first, for which all hosts are assigned

the IP address 10.0.2.1510.0.2.15 , is for external traffic that gets NATed.

This may lead to problems with flannel. By default, flannel selects the first interface on a host.

This leads to all hosts thinking they have the same public IP address. To prevent this issue,

pass the --iface eth1--iface eth1 flag to flannel so that the second interface is chosen.

Routing errors

In some situations kubectl logskubectl logs and

kubectlkubectl

runrun commands may return with the

following errors despite an otherwise apparently correctly working cluster:

This is due to Kubernetes using an IP that can not communicate with other IPs on the

seemingly same subnet, possibly by policy of the machine provider. As an example, Digital

mv $HOME/.kube $HOME/.kube.bakmv $HOME/.kube $HOME/.kube.bak

mkdir -p $HOME/.kubemkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/configsudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/configsudo chown $(id -u):$(id -g) $HOME/.kube/config

Error from server (NotFound): the server could not find the requested resourceError from server (NotFound): the server could not find the requested resource

Error from server: Get https://10.19.0.41:10250/containerLogs/default/mysql-ddc65b868-glc5m/mysql: dial tcp 10.19.0.41:10250: getsockopt: no route to hostError from server: Get https://10.19.0.41:10250/containerLogs/default/mysql-ddc65b868-glc5m/mysql: dial tcp 10.19.0.41:10250: getsockopt: no route to host

Ocean assigns a public IP to eth0eth0 as well as a private one to be used internally as anchor for

their floating IP feature, yet kubeletkubelet will pick the latter as the node’s InternalIPInternalIP instead of

the public one.

Use ip addr showip addr show to check for this scenario instead of ifconfigifconfig because ifconfigifconfig will

not display the offending alias IP address. Alternatively an API endpoint specific to Digital

Ocean allows to query for the anchor IP from the droplet:

The workaround is to tell kubeletkubelet which IP to use using --node-ip--node-ip . When using Digital

Ocean, it can be the public one (assigned to eth0eth0) or the private one (assigned to eth1eth1)

should you want to use the optional private network. For example:

Please note that this assumes KUBELET_EXTRA_ARGSKUBELET_EXTRA_ARGS hasn’t already been set in the unit file.

Then restart kubeletkubelet :

curl http://169.254.169.254/metadata/v1/interfaces/public/0/anchor_ipv4/addresscurl http://169.254.169.254/metadata/v1/interfaces/public/0/anchor_ipv4/address

IFACE=eth0 # change to eth1 for DO's private networkIFACE=eth0 # change to eth1 for DO's private network

DROPLET_IP_ADDRESS=$(ip addr show dev $IFACE | awk 'match($0,/inet (([0-9]|\.)+).* scope global/,a) { print a[1]; exit }')DROPLET_IP_ADDRESS=$(ip addr show dev $IFACE | awk 'match($0,/inet (([0-9]|\.)+).* scope global/,a) { print a[1]; exit }')

echo $DROPLET_IP_ADDRESS # check this, just in caseecho $DROPLET_IP_ADDRESS # check this, just in case

echo "Environment=\"KUBELET_EXTRA_ARGS=--node-ip=$DROPLET_IP_ADDRESS\"" >> /etc/systemd/system/kubelet.service.d/10-kubeadm.confecho "Environment=\"KUBELET_EXTRA_ARGS=--node-ip=$DROPLET_IP_ADDRESS\"" >> /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

systemctl daemon-reloadsystemctl daemon-reload

systemctl restart kubeletsystemctl restart kubelet

Creating HA clusters with kubeadm

This guide shows you how to install and set up a highly available Kubernetes cluster using

kubeadm.

This document shows you how to perform setup tasks that kubeadm doesn’t perform:

provision hardware; configure multiple systems; and load balancing.

Note: This guide is only one potential solution, and there are many ways to configure a

highly available cluster. If a better solution works for you, please use it. If you find a

better solution that can be adopted by the community, feel free to contribute it back.

Before you begin

Three machines that meet kubeadm’s minimum requirements for the masters

Three machines that meet kubeadm’s minimum requirements for the workers

Before you begin

Installing prerequisites on masters

Setting up an HA etcd cluster

Create etcd CA certs

Generate etcd client certs

Create SSH access

Generate etcd server and peer certs

Run etcd

Set up master Load Balancer

Acquire etcd certs

Run kubeadm initkubeadm init on master0master0

Run kubeadm initkubeadm init on master1master1 and master2master2

Option 1: Copy with scp

Option 2: Copy paste

Add master1master1 and master2master2 to load balancer

Install CNI network

Install workers

Configure workers

https://kubernetes.io/docs/setup/independent/install-kubeadm/#before-you-begin
https://kubernetes.io/docs/setup/independent/install-kubeadm/#before-you-begin

Optional: At least three machines that meet kubeadm’s minimum requirements if you

intend to host etcd on dedicated nodes (see information below)

1GB or more of RAM per machine (any less will leave little room for your apps)

Full network connectivity between all machines in the cluster (public or private network is

fine)

Installing prerequisites on masters

For each master that has been provisioned, follow the installation guide on how to install

kubeadm and its dependencies. At the end of this step, you should have all the dependencies

installed on each master.

Setting up an HA etcd cluster

For highly available setups, you will need to decide how to host your etcd cluster. A cluster is

composed of at least 3 members. We recommend one of the following models:

1. Hosting etcd cluster on separate compute nodes (Virtual Machines), or

2. Hosting etcd cluster on the master nodes.

While the first option provides more performance and better hardware isolation, it is also more

expensive and requires an additional support burden.

For Option 1: create 3 virtual machines that follow CoreOS’s hardware recommendations. For

the sake of simplicity, we will refer to them as etcd0etcd0 , etcd1etcd1 and etcd2etcd2 .

For Option 2: you can skip to the next step. Any reference to etcd0etcd0 , etcd1etcd1 and etcd2etcd2

throughout this guide should be replaced with master0master0 , master1master1 and master2master2 accordingly,

since your master nodes host etcd.

Create etcd CA certs

1. Install cfsslcfssl and cfssljsoncfssljson :

https://kubernetes.io/docs/setup/independent/install-kubeadm/#before-you-begin
file:///docs/setup/independent/install-kubeadm/
https://coreos.com/etcd/docs/latest/op-guide/hardware.html

2. SSH into etcd0etcd0 and run the following:

curl curl -o-o /usr/local/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 /usr/local/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64

curl curl -o-o /usr/local/bin/cfssljson https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 /usr/local/bin/cfssljson https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64

chmod +x /usr/local/bin/cfsslchmod +x /usr/local/bin/cfssl**

mkdir mkdir -p-p /etc/kubernetes/pki/etcd /etc/kubernetes/pki/etcd

cdcd /etc/kubernetes/pki/etcd /etc/kubernetes/pki/etcd

catcat >>ca-config.json ca-config.json <<<<EOFEOF

{{

 "signing": { "signing": {

 "default": { "default": {

 "expiry": "43800h" "expiry": "43800h"

 }, },

 "profiles": { "profiles": {

 "server": { "server": {

 "expiry": "43800h", "expiry": "43800h",

 "usages": ["usages": [

 "signing", "signing",

 "key encipherment", "key encipherment",

 "server auth", "server auth",

 "client auth" "client auth"

]]

 }, },

 "client": { "client": {

 "expiry": "43800h", "expiry": "43800h",

 "usages": ["usages": [

 "signing", "signing",

 "key encipherment", "key encipherment",

 "client auth" "client auth"

]]

 }, },

 "peer": { "peer": {

Optional: You can modify ca-csr.jsonca-csr.json to add a section for namesnames . See the CFSSL

wiki for an example.

3. Next, generate the CA certs like so:

Generate etcd client certs

 "peer": { "peer": {

 "expiry": "43800h", "expiry": "43800h",

 "usages": ["usages": [

 "signing", "signing",

 "key encipherment", "key encipherment",

 "server auth", "server auth",

 "client auth" "client auth"

]]

 } }

 } }

 } }

}}

EOFEOF

catcat >>ca-csr.json ca-csr.json <<<<EOFEOF

{{

 "CN": "etcd", "CN": "etcd",

 "key": { "key": {

 "algo": "rsa", "algo": "rsa",

 "size": 2048 "size": 2048

 } }

}}

EOFEOF

cfssl gencert cfssl gencert -initca-initca ca-csr.json | cfssljson ca-csr.json | cfssljson -bare-bare ca - ca -

https://github.com/cloudflare/cfssl/wiki/Creating-a-new-CSR

1. Generate the client certificates.

While on etcd0etcd0 , run the following:

This should result in client.pemclient.pem and client-key.pemclient-key.pem being created.

Create SSH access

In order to copy certs between machines, you must enable SSH access for scpscp .

1. First, open new tabs in your shell for etcd1etcd1 and etcd2etcd2 . Ensure you are SSHed into all

three machines and then run the following (it will be a lot quicker if you use tmux syncing -

to do this in iTerm enter cmd+shift+icmd+shift+i):

Make sure that eth1eth1 corresponds to the network interface for the IPv4 address of the

private network. This might vary depending on your networking setup, so please check by

running

echoecho

$PRIVATE_IP$PRIVATE_IP before continuing.

2. Next, generate some SSH keys for the boxes:

catcat >>client.json client.json <<<<EOFEOF

{{

 "CN": "client", "CN": "client",

 "key": { "key": {

 "algo": "ecdsa", "algo": "ecdsa",

 "size": 256 "size": 256

 } }

}}

EOFEOF

cfssl gencert cfssl gencert -ca-ca==ca.pem ca.pem -ca-key-ca-key==ca-key.pem ca-key.pem -config-config==ca-config.json ca-config.json -profile-profile

export export PEER_NAMEPEER_NAME==$($(hostnamehostname))

export export PRIVATE_IPPRIVATE_IP==$($(ip addr show eth1 | ip addr show eth1 | grepgrep -Po-Po 'inet \K[\d.]+''inet \K[\d.]+'))

Make sure to replace <email><email> with your email, a placeholder, or an empty string. Keep

hitting enter until files exist in ~/.ssh~/.ssh .

3. Output the contents of the public key file for etcd1etcd1 and etcd2etcd2 , like so:

4. Finally, copy the output for each and paste them into etcd0etcd0 ’s ~/.ssh/authorized_keys~/.ssh/authorized_keys

file. This will permit etcd1etcd1 and etcd2etcd2 to SSH in to the machine.

Generate etcd server and peer certs

1. In order to generate certs, each etcd machine needs the root CA generated by etcd0etcd0 . On

etcd1etcd1 and etcd2etcd2 , run the following:

Where <etcd0-ip-address><etcd0-ip-address> corresponds to the public or private IPv4 of etcd0etcd0 .

2. Once this is done, run the following on all etcd machines:

ssh-keygen ssh-keygen -t-t rsa rsa -b-b 4096 4096 -C-C "<email>""<email>"

catcat ~/.ssh/id_rsa.pub ~/.ssh/id_rsa.pub

mkdir mkdir -p-p /etc/kubernetes/pki/etcd /etc/kubernetes/pki/etcd

cdcd /etc/kubernetes/pki/etcd /etc/kubernetes/pki/etcd

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca.pem scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca.pem ..

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca-key.pem scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca-key.pem ..

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client.pem scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client.pem ..

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client-key.pem scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client-key.pem ..

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca-config.json scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca-config.json ..

The above will replace the default configuration with your machine’s hostname as the peer

name, and its IP addresses. Make sure these are correct before generating the certs. If you

found an error, reconfigure config.jsonconfig.json and re-run the cfsslcfssl commands.

This will result in the following files: peer.pempeer.pem , peer-key.pempeer-key.pem , server.pemserver.pem ,

server-key.pemserver-key.pem .

Run etcd

Now that all the certificates have been generated, you will now install and set up etcd on each

machine.

Set up master Load Balancer

The next step is to create a Load Balancer that sits in front of your master nodes. How you do

this depends on your environment; you could, for example, leverage a cloud provider Load

Balancer, or set up your own using NGINX, keepalived, or HAproxy.

cfssl print-defaults csr cfssl print-defaults csr >> config.json config.json

sed sed -i-i '0,/CN/{s/example\.net/''0,/CN/{s/example\.net/'""$PEER_NAME$PEER_NAME""'/}''/}' config.json config.json

sed sed -i-i 's/www\.example\.net/''s/www\.example\.net/'""$PRIVATE_IP$PRIVATE_IP""'/''/' config.json config.json

sed sed -i-i 's/example\.net/''s/example\.net/'""$PEER_NAME$PEER_NAME""'/''/' config.json config.json

cfssl gencert cfssl gencert -ca-ca==ca.pem ca.pem -ca-key-ca-key==ca-key.pem ca-key.pem -config-config==ca-config.json ca-config.json -profile-profile

cfssl gencert cfssl gencert -ca-ca==ca.pem ca.pem -ca-key-ca-key==ca-key.pem ca-key.pem -config-config==ca-config.json ca-config.json -profile-profile

Please select one of the tabs to see installation instructions for the respective way to

run etcd.

Choose one... systemd Static Pods

Choose one... Cloud On-Site

Acquire etcd certs

Only follow this step if your etcd is hosted on dedicated nodes (Option 1). If you are hosting

etcd on the masters (Option 2), you can skip this step since you’ve already generated the etcd

certificates on the masters.

1. Generate SSH keys for each of the master nodes by following the steps in the create ssh

access section. After doing this, each master will have an SSH key in

~/.ssh/id_rsa.pub~/.ssh/id_rsa.pub and an entry in etcd0etcd0 ’s ~/.ssh/authorized_keys~/.ssh/authorized_keys file.

2. Run the following:

Run kubeadm init on master0

1. In order for kubeadm to run, you first need to write a configuration file:

Please select one of the tabs to see installation instructions for information on load

balancing in the respective environment.

mkdir mkdir -p-p /etc/kubernetes/pki/etcd /etc/kubernetes/pki/etcd

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca.pem /etc/kubernetes/pki/etcdscp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/ca.pem /etc/kubernetes/pki/etcd

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client.pem /etc/kubernetes/pki/etcdscp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client.pem /etc/kubernetes/pki/etcd

scp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client-key.pem /etc/kubernetes/pki/etcdscp root@<etcd0-ip-address>:/etc/kubernetes/pki/etcd/client-key.pem /etc/kubernetes/pki/etcd

Ensure that the following placeholders are replaced:

1. <private-ip><private-ip> with the private IPv4 of the master server.

2. <etcd0-ip><etcd0-ip> , <etcd1-ip><etcd1-ip> and <etcd2-ip><etcd2-ip> with the IP addresses of your three etcd

nodes

3. <podCIDR><podCIDR> with your Pod CIDR. Please read the CNI network section of the docs for

more information. Some CNI providers do not require a value to be set.

Note: If you are using Kubernetes 1.9+, you can replace the

apiserver-count:apiserver-count:

33 extra

argument with endpoint-reconciler-type: leaseendpoint-reconciler-type: lease . For more information, see the

documentation.

2. When this is done, run kubeadm like so:

catcat >>config.yaml config.yaml <<<<EOFEOF

apiVersion: kubeadm.k8s.io/v1alpha1apiVersion: kubeadm.k8s.io/v1alpha1

kind: MasterConfigurationkind: MasterConfiguration

api:api:

 advertiseAddress: <private-ip> advertiseAddress: <private-ip>

etcd:etcd:

 endpoints: endpoints:

 - https://<etcd0-ip-address>:2379 - https://<etcd0-ip-address>:2379

 - https://<etcd1-ip-address>:2379 - https://<etcd1-ip-address>:2379

 - https://<etcd2-ip-address>:2379 - https://<etcd2-ip-address>:2379

 caFile: /etc/kubernetes/pki/etcd/ca.pem caFile: /etc/kubernetes/pki/etcd/ca.pem

 certFile: /etc/kubernetes/pki/etcd/client.pem certFile: /etc/kubernetes/pki/etcd/client.pem

 keyFile: /etc/kubernetes/pki/etcd/client-key.pem keyFile: /etc/kubernetes/pki/etcd/client-key.pem

networking:networking:

 podSubnet: <podCIDR> podSubnet: <podCIDR>

apiServerCertSANs:apiServerCertSANs:

- <load-balancer-ip>- <load-balancer-ip>

apiServerExtraArgs:apiServerExtraArgs:

 apiserver-count: "3" apiserver-count: "3"

EOFEOF

https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#pod-network
https://kubernetes.io/docs/admin/high-availability/#endpoint-reconciler

Run kubeadm init on master1 and master2

Before running kubeadm on the other masters, you need to first copy the K8s CA cert from

master0master0 . To do this, you have two options:

Option 1: Copy with scp

1. Follow the steps in the create ssh access section, but instead of adding to etcd0etcd0 ’s

authorized_keysauthorized_keys file, add them to master0master0 .

2. Once you’ve done this, run:

Option 2: Copy paste

1. Copy the contents of /etc/kubernetes/pki/ca.crt/etc/kubernetes/pki/ca.crt , /etc/kubernetes/pki/ca.key/etc/kubernetes/pki/ca.key ,

/etc/kubernetes/pki/sa.key/etc/kubernetes/pki/sa.key and /etc/kubernetes/pki/sa.pub/etc/kubernetes/pki/sa.pub and create these

files manually on master1master1 and master2master2 .

When this is done, you can follow the previous step to install the control plane with kubeadm.

Add master1 and master2 to load balancer

Once kubeadm has provisioned the other masters, you can add them to the load balancer pool.

Install CNI network

Follow the instructions here to install the pod network. Make sure this corresponds to

kubeadm init kubeadm init --config--config==config.yamlconfig.yaml

scp root@<master0-ip-address>:/etc/kubernetes/pki/scp root@<master0-ip-address>:/etc/kubernetes/pki/** /etc/kubernetes/pki /etc/kubernetes/pki

rm apiserver.rm apiserver.**

file:///docs/setup/independent/create-cluster-kubeadm/#pod-network

whichever pod CIDR you provided in the master configuration file.

Install workers

Next provision and set up the worker nodes. To do this, you will need to provision at least 3

Virtual Machines.

1. To configure the worker nodes, follow the same steps as non-HA workloads.

Configure workers

1. Reconfigure kube-proxy to access kube-apiserver via the load balancer:

2. Reconfigure the kubelet to access kube-apiserver via the load balancer:

kubectl get configmap kubectl get configmap -n-n kube-system kube-proxy kube-system kube-proxy -o-o yaml yaml >> kube-proxy-cm.yaml kube-proxy-cm.yaml

sed sed -i-i 's#server:.*#server: https://<masterLoadBalancerFQDN>:6443#g''s#server:.*#server: https://<masterLoadBalancerFQDN>:6443#g' kube-proxy-cm.yaml kube-proxy-cm.yaml

kubectl apply kubectl apply -f-f kube-proxy-cm.yaml kube-proxy-cm.yaml --force--force

restart all kube-proxy pods to ensure that they load the new configmap# restart all kube-proxy pods to ensure that they load the new configmap

kubectl delete pod kubectl delete pod -n-n kube-system kube-system -l-l k8s-app k8s-app==kube-proxykube-proxy

sudo sudo sed sed -i-i 's#server:.*#server: https://<masterLoadBalancerFQDN>:6443#g''s#server:.*#server: https://<masterLoadBalancerFQDN>:6443#g' /etc/kubernetes/kubelet.conf /etc/kubernetes/kubelet.conf

sudo sudo systemctl restart kubeletsystemctl restart kubelet

https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#44-joining-your-nodes

Creating a Custom Cluster from Scratch

This guide is for people who want to craft a custom Kubernetes cluster. If you can find an

existing Getting Started Guide that meets your needs on this list, then we recommend using it,

as you will be able to benefit from the experience of others. However, if you have specific IaaS,

networking, configuration management, or operating system requirements not met by any of

those guides, then this guide will provide an outline of the steps you need to take. Note that it

requires considerably more effort than using one of the pre-defined guides.

This guide is also useful for those wanting to understand at a high level some of the steps that

existing cluster setup scripts are making.

Designing and Preparing

Learning

Cloud Provider

Nodes

Network

Network Connectivity

Network Policy

Cluster Naming

Software Binaries

Downloading and Extracting Kubernetes Binaries

Selecting Images

Security Models

Preparing Certs

Preparing Credentials

Configuring and Installing Base Software on Nodes

Docker

rkt

kubelet

kube-proxy

Networking

Other

Using Configuration Management

Bootstrapping the Cluster

etcd

Apiserver, Controller Manager, and Scheduler

Apiserver pod template

file:///docs/setup/

Designing and Preparing

Learning

1. You should be familiar with using Kubernetes already. We suggest you set up a temporary

cluster by following one of the other Getting Started Guides. This will help you become

familiar with the CLI (kubectl) and concepts (pods, services, etc.) first.

2. You should have kubectlkubectl installed on your desktop. This will happen as a side effect of

completing one of the other Getting Started Guides. If not, follow the instructions here.

Cloud Provider

Kubernetes has the concept of a Cloud Provider, which is a module which provides an interface

for managing TCP Load Balancers, Nodes (Instances) and Networking Routes. The interface is

defined in pkg/cloudprovider/cloud.gopkg/cloudprovider/cloud.go . It is possible to create a custom cluster without

implementing a cloud provider (for example if using bare-metal), and not all parts of the

interface need to be implemented, depending on how flags are set on various components.

Nodes

You can use virtual or physical machines.

While you can build a cluster with 1 machine, in order to run all the examples and tests you

Cloud Providers

Scheduler pod template

Controller Manager Template

Starting and Verifying Apiserver, Scheduler, and Controller Manager

Starting Cluster Services

Troubleshooting

Running validate-cluster

Inspect pods and services

Try Examples

Running the Conformance Test

Networking

Getting Help

Support Level

file:///docs/user-guide/kubectl/
file:///docs/user-guide/pods/
file:///docs/concepts/services-networking/service/
file:///docs/tasks/kubectl/install/

need at least 4 nodes.

Many Getting-started-guides make a distinction between the master node and regular

nodes. This is not strictly necessary.

Nodes will need to run some version of Linux with the x86_64 architecture. It may be

possible to run on other OSes and Architectures, but this guide does not try to assist with

that.

Apiserver and etcd together are fine on a machine with 1 core and 1GB RAM for clusters

with 10s of nodes. Larger or more active clusters may benefit from more cores.

Other nodes can have any reasonable amount of memory and any number of cores. They

need not have identical configurations.

Network

Network Connectivity

Kubernetes has a distinctive networking model.

Kubernetes allocates an IP address to each pod. When creating a cluster, you need to allocate

a block of IPs for Kubernetes to use as Pod IPs. The simplest approach is to allocate a

different block of IPs to each node in the cluster as the node is added. A process in one pod

should be able to communicate with another pod using the IP of the second pod. This

connectivity can be accomplished in two ways:

Using an overlay network

An overlay network obscures the underlying network architecture from the pod

network through traffic encapsulation (for example vxlan).

Encapsulation reduces performance, though exactly how much depends on your

solution.

Without an overlay network

Configure the underlying network fabric (switches, routers, etc.) to be aware of pod IP

addresses.

This does not require the encapsulation provided by an overlay, and so can achieve

better performance.

file:///docs/concepts/cluster-administration/networking/

Which method you choose depends on your environment and requirements. There are various

ways to implement one of the above options:

Use a network plugin which is called by Kubernetes

Kubernetes supports the CNI network plugin interface.

There are a number of solutions which provide plugins for Kubernetes (listed

alphabetically):

Calico

Flannel

Open vSwitch (OVS)

Romana

Weave

More found here

You can also write your own.

Compile support directly into Kubernetes

This can be done by implementing the “Routes” interface of a Cloud Provider module.

The Google Compute Engine (GCE) and AWS guides use this approach.

Configure the network external to Kubernetes

This can be done by manually running commands, or through a set of externally

maintained scripts.

You have to implement this yourself, but it can give you an extra degree of flexibility.

You will need to select an address range for the Pod IPs.

Various approaches:

GCE: each project has its own 10.0.0.0/810.0.0.0/8 . Carve off a /16/16 for each Kubernetes

cluster from that space, which leaves room for several clusters. Each node gets a

further subdivision of this space.

AWS: use one VPC for whole organization, carve off a chunk for each cluster, or use

different VPC for different clusters.

https://github.com/containernetworking/cni
http://docs.projectcalico.org/
https://github.com/coreos/flannel
http://openvswitch.org/
http://romana.io/
http://weave.works/
file:///docs/admin/networking#how-to-achieve-this/
file:///docs/getting-started-guides/gce/
file:///docs/getting-started-guides/aws/

Allocate one CIDR subnet for each node’s PodIPs, or a single large CIDR from which

smaller CIDRs are automatically allocated to each node.

You need max-pods-per-node * max-number-of-nodes IPs in total. A /24/24 per node

supports 254 pods per machine and is a common choice. If IPs are scarce, a /26/26 (62

pods per machine) or even a /27/27 (30 pods) may be sufficient.

For example, use 10.10.0.0/1610.10.0.0/16 as the range for the cluster, with up to 256 nodes

using 10.10.0.0/2410.10.0.0/24 through 10.10.255.0/2410.10.255.0/24 , respectively.

Need to make these routable or connect with overlay.

Kubernetes also allocates an IP to each service. However, service IPs do not necessarily need

to be routable. The kube-proxy takes care of translating Service IPs to Pod IPs before traffic

leaves the node. You do need to allocate a block of IPs for services. Call this

SERVICE_CLUSTER_IP_RANGESERVICE_CLUSTER_IP_RANGE . For example, you could set

SERVICE_CLUSTER_IP_RANGE="10.0.0.0/16"SERVICE_CLUSTER_IP_RANGE="10.0.0.0/16" , allowing 65534 distinct services to be active at

once. Note that you can grow the end of this range, but you cannot move it without disrupting

the services and pods that already use it.

Also, you need to pick a static IP for master node.

Call this MASTER_IPMASTER_IP .

Open any firewalls to allow access to the apiserver ports 80 and/or 443.

Enable ipv4 forwarding sysctl,

net.ipv4.ip_forward =net.ipv4.ip_forward =

11

Network Policy

Kubernetes enables the definition of fine-grained network policy between Pods using the

NetworkPolicy resource.

Not all networking providers support the Kubernetes NetworkPolicy API, see Using Network

Policy for more information.

Cluster Naming

You should pick a name for your cluster. Pick a short name for each cluster which is unique

file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/network-policies/
file:///docs/tasks/configure-pod-container/declare-network-policy/

from future cluster names. This will be used in several ways:

by kubectl to distinguish between various clusters you have access to. You will probably

want a second one sometime later, such as for testing new Kubernetes releases, running

in a different region of the world, etc.

Kubernetes clusters can create cloud provider resources (for example, AWS ELBs) and

different clusters need to distinguish which resources each created. Call this

CLUSTER_NAMECLUSTER_NAME .

Software Binaries

You will need binaries for:

etcd

A container runner, one of:

docker

rkt

Kubernetes

kubelet

kube-proxy

kube-apiserver

kube-controller-manager

kube-scheduler

Downloading and Extracting Kubernetes Binaries

A Kubernetes binary release includes all the Kubernetes binaries as well as the supported

release of etcd. You can use a Kubernetes binary release (recommended) or build your

Kubernetes binaries following the instructions in the Developer Documentation. Only using a

binary release is covered in this guide.

Download the latest binary release and unzip it. Server binary tarballs are no longer included in

the Kubernetes final tarball, so you will need to locate and run

./kubernetes/cluster/get-kube-binaries.sh./kubernetes/cluster/get-kube-binaries.sh to download the client and server binaries.

https://git.k8s.io/community/contributors/devel/
https://github.com/kubernetes/kubernetes/releases/latest

Then locate ./kubernetes/server/kubernetes-server-linux-amd64.tar.gz./kubernetes/server/kubernetes-server-linux-amd64.tar.gz and unzip

that. Then, within the second set of unzipped files, locate ./kubernetes/server/bin./kubernetes/server/bin , which

contains all the necessary binaries.

Selecting Images

You will run docker, kubelet, and kube-proxy outside of a container, the same way you would

run any system daemon, so you just need the bare binaries. For etcd, kube-apiserver, kube-

controller-manager, and kube-scheduler, we recommend that you run these as containers, so

you need an image to be built.

You have several choices for Kubernetes images:

Use images hosted on Google Container Registry (GCR):

For example gcr.io/google-containers/hyperkube:$TAGgcr.io/google-containers/hyperkube:$TAG , where TAGTAG is the latest

release tag, which can be found on the latest releases page.

Ensure $TAG is the same tag as the release tag you are using for kubelet and kube-

proxy.

The hyperkube binary is an all in one binary

hyperkube kubelethyperkube kubelet

...... runs the kubelet,

hyperkube apiserverhyperkube apiserver

...... runs an

apiserver, etc.

Build your own images.

Useful if you are using a private registry.

The release contains files such as

./kubernetes/server/bin/kube-apiserver.tar./kubernetes/server/bin/kube-apiserver.tar which can be converted into

docker images using a command like

docker load -i kube-docker load -i kube-

apiserver.tarapiserver.tar

You can verify if the image is loaded successfully with the right repository and tag

using command like

dockerdocker

imagesimages

For etcd, you can:

https://github.com/kubernetes/kubernetes/releases/latest
https://releases.k8s.io/master/cmd/hyperkube

Use images hosted on Google Container Registry (GCR), such as

gcr.io/google-containers/etcd:2.2.1gcr.io/google-containers/etcd:2.2.1

Use images hosted on Docker Hub or Quay.io, such as quay.io/coreos/etcd:v2.2.1quay.io/coreos/etcd:v2.2.1

Use etcd binary included in your OS distro.

Build your own image

You can do:

cd kubernetes/cluster/_site/images/etcd;cd kubernetes/cluster/_site/images/etcd;

makemake

We recommend that you use the etcd version which is provided in the Kubernetes binary

distribution. The Kubernetes binaries in the release were tested extensively with this version of

etcd and not with any other version. The recommended version number can also be found as

the value of TAGTAG in kubernetes/cluster/_site/images/etcd/Makefilekubernetes/cluster/_site/images/etcd/Makefile .

The remainder of the document assumes that the image identifiers have been chosen and

stored in corresponding env vars. Examples (replace with latest tags and appropriate registry):

HYPERKUBE_IMAGE=gcr.io/google-containers/hyperkube:$TAGHYPERKUBE_IMAGE=gcr.io/google-containers/hyperkube:$TAG

ETCD_IMAGE=gcr.io/google-containers/etcd:$ETCD_VERSIONETCD_IMAGE=gcr.io/google-containers/etcd:$ETCD_VERSION

Security Models

There are two main options for security:

Access the apiserver using HTTP.

Use a firewall for security.

This is easier to setup.

Access the apiserver using HTTPS

Use https with certs, and credentials for user.

This is the recommended approach.

Configuring certs can be tricky.

If following the HTTPS approach, you will need to prepare certs and credentials.

https://hub.docker.com/search/?q=etcd
https://quay.io/repository/coreos/etcd

Preparing Certs

You need to prepare several certs:

The master needs a cert to act as an HTTPS server.

The kubelets optionally need certs to identify themselves as clients of the master, and

when serving its own API over HTTPS.

Unless you plan to have a real CA generate your certs, you will need to generate a root cert and

use that to sign the master, kubelet, and kubectl certs. How to do this is described in the

authentication documentation.

You will end up with the following files (we will use these variables later on)

CA_CERTCA_CERT

put in on node where apiserver runs, for example in /srv/kubernetes/ca.crt/srv/kubernetes/ca.crt .

MASTER_CERTMASTER_CERT

signed by CA_CERT

put in on node where apiserver runs, for example in /srv/kubernetes/server.crt/srv/kubernetes/server.crt

MASTER_KEYMASTER_KEY

put in on node where apiserver runs, for example in /srv/kubernetes/server.key/srv/kubernetes/server.key

KUBELET_CERTKUBELET_CERT

optional

KUBELET_KEYKUBELET_KEY

optional

Preparing Credentials

The admin user (and any users) need:

a token or a password to identify them.

tokens are just long alphanumeric strings, 32 chars for example. See

file:///docs/admin/authentication/#creating-certificates/

TOKEN=$(dd if=/dev/urandom bs=128 count=1 2>/dev/null | base64 | tr -dTOKEN=$(dd if=/dev/urandom bs=128 count=1 2>/dev/null | base64 | tr -d

"=+/" | dd bs=32 count=1 2>/dev/null)"=+/" | dd bs=32 count=1 2>/dev/null)

Your tokens and passwords need to be stored in a file for the apiserver to read. This guide

uses /var/lib/kube-apiserver/known_tokens.csv/var/lib/kube-apiserver/known_tokens.csv . The format for this file is described in

the authentication documentation.

For distributing credentials to clients, the convention in Kubernetes is to put the credentials

into a kubeconfig file.

The kubeconfig file for the administrator can be created as follows:

If you have already used Kubernetes with a non-custom cluster (for example, used a

Getting Started Guide), you will already have a $HOME/.kube/config$HOME/.kube/config file.

You need to add certs, keys, and the master IP to the kubeconfig file:

If using the firewall-only security option, set the apiserver this way:

kubectl config set-cluster $CLUSTER_NAME --server=http://$MASTER_IPkubectl config set-cluster $CLUSTER_NAME --server=http://$MASTER_IP

--insecure-skip-tls-verify=true--insecure-skip-tls-verify=true

Otherwise, do this to set the apiserver ip, client certs, and user credentials.

kubectl config set-cluster $CLUSTER_NAME --certificate-kubectl config set-cluster $CLUSTER_NAME --certificate-

authority=$CA_CERT --embed-certs=true --server=https://$MASTER_IPauthority=$CA_CERT --embed-certs=true --server=https://$MASTER_IP

kubectl config set-credentials $USER --client-certificate=$CLI_CERTkubectl config set-credentials $USER --client-certificate=$CLI_CERT

--client-key=$CLI_KEY --embed-certs=true --token=$TOKEN--client-key=$CLI_KEY --embed-certs=true --token=$TOKEN

Set your cluster as the default cluster to use:

kubectl config set-context $CONTEXT_NAME --cluster=$CLUSTER_NAME --kubectl config set-context $CONTEXT_NAME --cluster=$CLUSTER_NAME --

user=$USERuser=$USER

kubectl config use-contextkubectl config use-context

$CONTEXT_NAME$CONTEXT_NAME

Next, make a kubeconfig file for the kubelets and kube-proxy. There are a couple of options for

how many distinct files to make:

1. Use the same credential as the admin - This is simplest to setup.

file:///docs/admin/authentication/
file:///docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/

2. One token and kubeconfig file for all kubelets, one for all kube-proxy, one for admin. - This

mirrors what is done on GCE today

3. Different credentials for every kubelet, etc. - We are working on this but all the pieces are

not ready yet.

You can make the files by copying the $HOME/.kube/config$HOME/.kube/config or by using the following

template:

Put the kubeconfig(s) on every node. The examples later in this guide assume that there are

kubeconfigs in /var/lib/kube-proxy/kubeconfig/var/lib/kube-proxy/kubeconfig and /var/lib/kubelet/kubeconfig/var/lib/kubelet/kubeconfig .

Configuring and Installing Base Software on Nodes

This section discusses how to configure machines to be Kubernetes nodes.

You should run three daemons on every node:

docker or rkt

kubelet

kube-proxy

You will also need to do assorted other configuration on top of a base OS install.

Tip: One possible starting point is to setup a cluster using an existing Getting Started Guide.

apiVersionapiVersion:: v1v1

kindkind:: ConfigConfig

usersusers::

-- namename:: kubeletkubelet

 useruser::

 tokentoken:: ${KUBELET_TOKEN}${KUBELET_TOKEN}

clustersclusters::

-- namename:: locallocal

 clustercluster::

 certificate-authoritycertificate-authority:: /srv/kubernetes/ca.crt/srv/kubernetes/ca.crt

contextscontexts::

-- contextcontext::

 clustercluster:: locallocal

 useruser:: kubeletkubelet

 namename:: service-account-contextservice-account-context

current-contextcurrent-context:: service-account-contextservice-account-context

After getting a cluster running, you can then copy the init.d scripts or systemd unit files from

that cluster, and then modify them for use on your custom cluster.

Docker

The minimum required Docker version will vary as the kubelet version changes. The newest

stable release is a good choice. Kubelet will log a warning and refuse to start pods if the

version is too old, so pick a version and try it.

If you previously had Docker installed on a node without setting Kubernetes-specific options,

you may have a Docker-created bridge and iptables rules. You may want to remove these as

follows before proceeding to configure Docker for Kubernetes.

The way you configure docker will depend in whether you have chosen the routable-vip or

overlay-network approaches for your network. Some suggested docker options:

create your own bridge for the per-node CIDR ranges, call it cbr0, and set --bridge=cbr0--bridge=cbr0

option on docker.

set --iptables=false--iptables=false so docker will not manipulate iptables for host-ports (too coarse

on older docker versions, may be fixed in newer versions) so that kube-proxy can manage

iptables instead of docker.

--ip-masq=false--ip-masq=false

if you have setup PodIPs to be routable, then you want this false, otherwise, docker will

rewrite the PodIP source-address to a NodeIP.

some environments (for example GCE) still need you to masquerade out-bound traffic

when it leaves the cloud environment. This is very environment specific.

if you are using an overlay network, consult those instructions.

--mtu=--mtu=

may be required when using Flannel, because of the extra packet size due to udp

encapsulation

iptables iptables -t-t nat nat -F-F

ip link ip link set set docker0 downdocker0 down

ip link delete docker0ip link delete docker0

--insecure-registry $CLUSTER_SUBNET--insecure-registry $CLUSTER_SUBNET

to connect to a private registry, if you set one up, without using SSL.

You may want to increase the number of open files for docker:

DOCKER_NOFILE=1000000DOCKER_NOFILE=1000000

Where this config goes depends on your node OS. For example, GCE’s Debian-based distro

uses /etc/default/docker/etc/default/docker .

Ensure docker is working correctly on your system before proceeding with the rest of the

installation, by following examples given in the Docker documentation.

rkt

rkt is an alternative to Docker. You only need to install one of Docker or rkt. The minimum

version required is v0.5.6.

systemd is required on your node to run rkt. The minimum version required to match rkt v0.5.6

is systemd 215.

rkt metadata service is also required for rkt networking support. You can start rkt metadata

service by using command like

sudo systemd-run rkt metadata-sudo systemd-run rkt metadata-

serviceservice

Then you need to configure your kubelet with flag:

--container-runtime=rkt--container-runtime=rkt

kubelet

All nodes should run kubelet. See Software Binaries.

Arguments to consider:

If following the HTTPS security approach:

--kubeconfig=/var/lib/kubelet/kubeconfig--kubeconfig=/var/lib/kubelet/kubeconfig

Otherwise, if taking the firewall-based security approach

--config=/etc/kubernetes/manifests--config=/etc/kubernetes/manifests

https://github.com/coreos/rkt
https://github.com/coreos/rkt/releases/tag/v0.5.6
http://www.freedesktop.org/wiki/Software/systemd/
http://lists.freedesktop.org/archives/systemd-devel/2014-July/020903.html
https://github.com/coreos/rkt/blob/master/Documentation/networking/overview.md

--cluster-dns=--cluster-dns= to the address of the DNS server you will setup (see Starting Cluster

Services.)

--cluster-domain=--cluster-domain= to the dns domain prefix to use for cluster DNS addresses.

--docker-root=--docker-root=

--root-dir=--root-dir=

--pod-cidr=--pod-cidr= The CIDR to use for pod IP addresses, only used in standalone mode. In

cluster mode, this is obtained from the master.

--register-node--register-node (described in Node documentation.)

kube-proxy

All nodes should run kube-proxy. (Running kube-proxy on a “master” node is not strictly

required, but being consistent is easier.) Obtain a binary as described for kubelet.

Arguments to consider:

If following the HTTPS security approach:

--master=https://$MASTER_IP--master=https://$MASTER_IP

--kubeconfig=/var/lib/kube-proxy/kubeconfig--kubeconfig=/var/lib/kube-proxy/kubeconfig

Otherwise, if taking the firewall-based security approach

--master=http://$MASTER_IP--master=http://$MASTER_IP

Note that on some Linux platforms, you may need to manually install the conntrackconntrack package

which is a dependency of kube-proxy, or else kube-proxy cannot be started successfully.

For more details on debugging kube-proxy problems, please refer to Debug Services

Networking

Each node needs to be allocated its own CIDR range for pod networking. Call this

NODE_X_POD_CIDRNODE_X_POD_CIDR .

A bridge called cbr0cbr0 needs to be created on each node. The bridge is explained further in the

networking documentation. The bridge itself needs an address from $NODE_X_POD_CIDR$NODE_X_POD_CIDR - by

file:///docs/admin/node/
file:///docs/tasks/debug-application-cluster/debug-service/
file:///docs/concepts/cluster-administration/networking/

convention the first IP. Call this NODE_X_BRIDGE_ADDRNODE_X_BRIDGE_ADDR . For example, if NODE_X_POD_CIDRNODE_X_POD_CIDR is

10.0.0.0/1610.0.0.0/16 , then NODE_X_BRIDGE_ADDRNODE_X_BRIDGE_ADDR is 10.0.0.1/1610.0.0.1/16 . NOTE: this retains the /16/16 suffix

because of how this is used later.

If you have turned off Docker’s IP masquerading to allow pods to talk to each other, then you

may need to do masquerading just for destination IPs outside the cluster network. For

example:

This will rewrite the source address from the PodIP to the Node IP for traffic bound outside the

cluster, and kernel connection tracking will ensure that responses destined to the node still

reach the pod.

NOTE: This is environment specific. Some environments will not need any masquerading at all.

Others, such as GCE, will not allow pod IPs to send traffic to the internet, but have no problem

with them inside your GCE Project.

Other

Enable auto-upgrades for your OS package manager, if desired.

Configure log rotation for all node components (for example using logrotate).

Setup liveness-monitoring (for example using supervisord).

Setup volume plugin support (optional)

Install any client binaries for optional volume types, such as glusterfs-clientglusterfs-client for

GlusterFS volumes.

Using Configuration Management

The previous steps all involved “conventional” system administration techniques for setting up

machines. You may want to use a Configuration Management system to automate the node

configuration process. There are examples of Saltstack, Ansible, Juju, and CoreOS Cloud

Config in the various Getting Started Guides.

iptables iptables -t-t nat nat -A-A POSTROUTING POSTROUTING !! -d-d ${${CLUSTER_SUBNETCLUSTER_SUBNET}} -m-m addrtype addrtype !! --dst-type--dst-type

http://www.iptables.info/en/connection-state.html
http://linux.die.net/man/8/logrotate
http://supervisord.org/
file:///docs/admin/salt/

Bootstrapping the Cluster

While the basic node services (kubelet, kube-proxy, docker) are typically started and managed

using traditional system administration/automation approaches, the remaining master

components of Kubernetes are all configured and managed by Kubernetes:

Their options are specified in a Pod spec (yaml or json) rather than an /etc/init.d file or

systemd unit.

They are kept running by Kubernetes rather than by init.

etcd

You will need to run one or more instances of etcd.

Highly available and easy to restore - Run 3 or 5 etcd instances with, their logs written to a

directory backed by durable storage (RAID, GCE PD)

Not highly available, but easy to restore - Run one etcd instance, with its log written to a

directory backed by durable storage (RAID, GCE PD).

Note: May result in operations outages in case of instance outage.

Highly available - Run 3 or 5 etcd instances with non durable storage.

Note: Log can be written to non-durable storage because storage is replicated.

See cluster-troubleshooting for more discussion on factors affecting cluster availability.

To run an etcd instance:

1. Copy cluster/gce/manifests/etcd.manifestcluster/gce/manifests/etcd.manifest

2. Make any modifications needed

3. Start the pod by putting it into the kubelet manifest directory

Apiserver, Controller Manager, and Scheduler

file:///docs/admin/cluster-troubleshooting/
https://github.com/kubernetes/kubernetes/blob/master/cluster/gce/manifests/etcd.manifest

The apiserver, controller manager, and scheduler will each run as a pod on the master node.

For each of these components, the steps to start them running are similar:

1. Start with a provided template for a pod.

2. Set the HYPERKUBE_IMAGEHYPERKUBE_IMAGE to the values chosen in Selecting Images.

3. Determine which flags are needed for your cluster, using the advice below each template.

4. Set the flags to be individual strings in the command array (for example $ARGN below)

5. Start the pod by putting the completed template into the kubelet manifest directory.

6. Verify that the pod is started.

Apiserver pod template

{{

 "kind""kind":: "Pod""Pod",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "kube-apiserver""kube-apiserver"

 },},

 "spec""spec":: {{

 "hostNetwork""hostNetwork":: truetrue,,

 "containers""containers":: [[

 {{

 "name""name":: "kube-apiserver""kube-apiserver",,

 "image""image":: "${HYPERKUBE_IMAGE}""${HYPERKUBE_IMAGE}",,

 "command""command":: [[

 "/hyperkube""/hyperkube",,

 "apiserver""apiserver",,

 "$ARG1""$ARG1",,

 "$ARG2""$ARG2",,

 "$ARGN""$ARGN"

],],

 "ports""ports":: [[

 {{

 "name""name":: "https""https",,

 "hostPort""hostPort":: 443443,,

 "containerPort""containerPort":: 443443

 },},

 {{

 "name""name":: "local""local",,

 "hostPort""hostPort":: 80808080,,

 "containerPort""containerPort":: 80808080

 }}

],],

Here are some apiserver flags you may need to set:

--cloud-provider=--cloud-provider= see cloud providers

--cloud-config=--cloud-config= see cloud providers

--address=${MASTER_IP}--address=${MASTER_IP} or --bind-address=127.0.0.1--bind-address=127.0.0.1 and --address=127.0.0.1--address=127.0.0.1

if you want to run a proxy on the master node.

],],

 "volumeMounts""volumeMounts":: [[

 {{

 "name""name":: "srvkube""srvkube",,

 "mountPath""mountPath":: "/srv/kubernetes""/srv/kubernetes",,

 "readOnly""readOnly":: truetrue

 },},

 {{

 "name""name":: "etcssl""etcssl",,

 "mountPath""mountPath":: "/etc/ssl""/etc/ssl",,

 "readOnly""readOnly":: truetrue

 }}

],],

 "livenessProbe""livenessProbe":: {{

 "httpGet""httpGet":: {{

 "scheme""scheme":: "HTTP""HTTP",,

 "host""host":: "127.0.0.1""127.0.0.1",,

 "port""port":: 80808080,,

 "path""path":: "/healthz""/healthz"

 },},

 "initialDelaySeconds""initialDelaySeconds":: 1515,,

 "timeoutSeconds""timeoutSeconds":: 1515

 }}

 }}

],],

 "volumes""volumes":: [[

 {{

 "name""name":: "srvkube""srvkube",,

 "hostPath""hostPath":: {{

 "path""path":: "/srv/kubernetes""/srv/kubernetes"

 }}

 },},

 {{

 "name""name":: "etcssl""etcssl",,

 "hostPath""hostPath":: {{

 "path""path":: "/etc/ssl""/etc/ssl"

 }}

 }}

]]

 }}

}}

--service-cluster-ip-range=$SERVICE_CLUSTER_IP_RANGE--service-cluster-ip-range=$SERVICE_CLUSTER_IP_RANGE

--etcd-servers=http://127.0.0.1:4001--etcd-servers=http://127.0.0.1:4001

--tls-cert-file=/srv/kubernetes/server.cert--tls-cert-file=/srv/kubernetes/server.cert

--tls-private-key-file=/srv/kubernetes/server.key--tls-private-key-file=/srv/kubernetes/server.key

--enable-admission-plugins=$RECOMMENDED_LIST--enable-admission-plugins=$RECOMMENDED_LIST

See admission controllers for recommended arguments.

--allow-privileged=true--allow-privileged=true , only if you trust your cluster user to run pods as root.

If you are following the firewall-only security approach, then use these arguments:

--token-auth-file=/dev/null--token-auth-file=/dev/null

--insecure-bind-address=$MASTER_IP--insecure-bind-address=$MASTER_IP

--advertise-address=$MASTER_IP--advertise-address=$MASTER_IP

If you are using the HTTPS approach, then set:

--client-ca-file=/srv/kubernetes/ca.crt--client-ca-file=/srv/kubernetes/ca.crt

--token-auth-file=/srv/kubernetes/known_tokens.csv--token-auth-file=/srv/kubernetes/known_tokens.csv

--basic-auth-file=/srv/kubernetes/basic_auth.csv--basic-auth-file=/srv/kubernetes/basic_auth.csv

This pod mounts several node file system directories using the hostPathhostPath volumes. Their

purposes are:

The /etc/ssl/etc/ssl mount allows the apiserver to find the SSL root certs so it can authenticate

external services, such as a cloud provider.

This is not required if you do not use a cloud provider (bare-metal for example).

The /srv/kubernetes/srv/kubernetes mount allows the apiserver to read certs and credentials stored

on the node disk. These could instead be stored on a persistent disk, such as a GCE PD, or

baked into the image.

Optionally, you may want to mount /var/log/var/log as well and redirect output there (not

file:///docs/admin/admission-controllers/

shown in template).

Do this if you prefer your logs to be accessible from the root filesystem with tools like

journalctl.

TODO document proxy-ssh setup.

Cloud Providers

Apiserver supports several cloud providers.

options for --cloud-provider--cloud-provider flag are awsaws , azureazure , cloudstackcloudstack , fakefake , gcegce , mesosmesos ,

openstackopenstack , ovirtovirt , photonphoton , rackspacerackspace , vspherevsphere , or unset.

unset used for bare metal setups.

support for new IaaS is added by contributing code here

Some cloud providers require a config file. If so, you need to put config file into apiserver image

or mount through hostPath.

--cloud-config=--cloud-config= set if cloud provider requires a config file.

Used by awsaws , gcegce , mesosmesos , openstackopenstack , ovirtovirt and rackspacerackspace .

You must put config file into apiserver image or mount through hostPath.

Cloud config file syntax is Gcfg.

AWS format defined by type AWSCloudConfig

There is a similar type in the corresponding file for other cloud providers.

Scheduler pod template

Complete this template for the scheduler pod:

https://releases.k8s.io/master/pkg/cloudprovider/providers
https://code.google.com/p/gcfg/
https://releases.k8s.io/master/pkg/cloudprovider/providers/aws/aws.go

Typically, no additional flags are required for the scheduler.

Optionally, you may want to mount /var/log/var/log as well and redirect output there.

Controller Manager Template

Template for controller manager pod:

{{

 "kind""kind":: "Pod""Pod",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "kube-scheduler""kube-scheduler"

 },},

 "spec""spec":: {{

 "hostNetwork""hostNetwork":: truetrue,,

 "containers""containers":: [[

 {{

 "name""name":: "kube-scheduler""kube-scheduler",,

 "image""image":: "$HYPERKUBE_IMAGE""$HYPERKUBE_IMAGE",,

 "command""command":: [[

 "/hyperkube""/hyperkube",,

 "scheduler""scheduler",,

 "--master=127.0.0.1:8080""--master=127.0.0.1:8080",,

 "$SCHEDULER_FLAG1""$SCHEDULER_FLAG1",,

 "$SCHEDULER_FLAGN""$SCHEDULER_FLAGN"

],],

 "livenessProbe""livenessProbe":: {{

 "httpGet""httpGet":: {{

 "scheme""scheme":: "HTTP""HTTP",,

 "host""host":: "127.0.0.1""127.0.0.1",,

 "port""port":: 1025110251,,

 "path""path":: "/healthz""/healthz"

 },},

 "initialDelaySeconds""initialDelaySeconds":: 1515,,

 "timeoutSeconds""timeoutSeconds":: 1515

 }}

 }}

]]

 }}

}}

{{

 "kind""kind":: "Pod""Pod",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "kube-controller-manager""kube-controller-manager"

 },},

 },},

 "spec""spec":: {{

 "hostNetwork""hostNetwork":: truetrue,,

 "containers""containers":: [[

 {{

 "name""name":: "kube-controller-manager""kube-controller-manager",,

 "image""image":: "$HYPERKUBE_IMAGE""$HYPERKUBE_IMAGE",,

 "command""command":: [[

 "/hyperkube""/hyperkube",,

 "controller-manager""controller-manager",,

 "$CNTRLMNGR_FLAG1""$CNTRLMNGR_FLAG1",,

 "$CNTRLMNGR_FLAGN""$CNTRLMNGR_FLAGN"

],],

 "volumeMounts""volumeMounts":: [[

 {{

 "name""name":: "srvkube""srvkube",,

 "mountPath""mountPath":: "/srv/kubernetes""/srv/kubernetes",,

 "readOnly""readOnly":: truetrue

 },},

 {{

 "name""name":: "etcssl""etcssl",,

 "mountPath""mountPath":: "/etc/ssl""/etc/ssl",,

 "readOnly""readOnly":: truetrue

 }}

],],

 "livenessProbe""livenessProbe":: {{

 "httpGet""httpGet":: {{

 "scheme""scheme":: "HTTP""HTTP",,

 "host""host":: "127.0.0.1""127.0.0.1",,

 "port""port":: 1025210252,,

 "path""path":: "/healthz""/healthz"

 },},

 "initialDelaySeconds""initialDelaySeconds":: 1515,,

 "timeoutSeconds""timeoutSeconds":: 1515

 }}

 }}

],],

 "volumes""volumes":: [[

 {{

 "name""name":: "srvkube""srvkube",,

 "hostPath""hostPath":: {{

 "path""path":: "/srv/kubernetes""/srv/kubernetes"

 }}

 },},

 {{

 "name""name":: "etcssl""etcssl",,

 "hostPath""hostPath":: {{

 "path""path":: "/etc/ssl""/etc/ssl"

 }}

 }}

]]

 }}

}}

Flags to consider using with controller manager:

--cluster-cidr=--cluster-cidr= , the CIDR range for pods in cluster.

--allocate-node-cidrs=--allocate-node-cidrs= , if you are using --cloud-provider=--cloud-provider= , allocate and set the

CIDRs for pods on the cloud provider.

--cloud-provider=--cloud-provider= and --cloud-config--cloud-config as described in apiserver section.

--service-account-private-key-file=/srv/kubernetes/server.key--service-account-private-key-file=/srv/kubernetes/server.key , used by the

service account feature.

--master=127.0.0.1:8080--master=127.0.0.1:8080

Starting and Verifying Apiserver, Scheduler, and Controller Manager

Place each completed pod template into the kubelet config dir (whatever --config=--config=

argument of kubelet is set to, typically /etc/kubernetes/manifests/etc/kubernetes/manifests). The order does not

matter: scheduler and controller manager will retry reaching the apiserver until it is up.

Use psps or docker psdocker ps to verify that each process has started. For example, verify that kubelet

has started a container for the apiserver like this:

Then try to connect to the apiserver:

If you have selected the --register-node=true--register-node=true option for kubelets, they will now begin self-

registering with the apiserver. You should soon be able to see all your nodes by running the

$ $ sudo sudo docker ps | docker ps | grep grep apiserverapiserver

5783290746d5 gcr.io/google-containers/kube-apiserver:e36bf367342b5a80d7467fd7611ad873 5783290746d5 gcr.io/google-containers/kube-apiserver:e36bf367342b5a80d7467fd7611ad873

$ $ echoecho $($(curl curl -s-s http://localhost:8080/healthz http://localhost:8080/healthz))

okok

$ $ curl curl -s-s http://localhost:8080/api http://localhost:8080/api

{{

 "versions""versions": : [[

 "v1""v1"

]]

}}

file:///docs/user-guide/service-accounts

kubectl getkubectl get

nodesnodes command. Otherwise, you will need to manually create node objects.

Starting Cluster Services

You will want to complete your Kubernetes clusters by adding cluster-wide services. These are

sometimes called addons, and an overview of their purpose is in the admin guide.

Notes for setting up each cluster service are given below:

Cluster DNS:

Required for many Kubernetes examples

Setup instructions

Admin Guide

Cluster-level Logging

Cluster-level Logging Overview

Cluster-level Logging with Elasticsearch

Cluster-level Logging with Stackdriver Logging

Container Resource Monitoring

Setup instructions

GUI

Setup instructions

Troubleshooting

Running validate-cluster

cluster/validate-cluster.shcluster/validate-cluster.sh is used by cluster/kube-up.shcluster/kube-up.sh to determine if the cluster

start succeeded.

Example usage and output:

file:///docs/admin/cluster-components/#addons
http://releases.k8s.io/master/cluster/addons/dns/
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/user-guide/logging/overview/
file:///docs/user-guide/logging/elasticsearch/
file:///docs/user-guide/logging/stackdriver/
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/
https://github.com/kubernetes/dashboard

Inspect pods and services

Try to run through the “Inspect your cluster” section in one of the other Getting Started Guides,

such as GCE. You should see some services. You should also see “mirror pods” for the

apiserver, scheduler and controller-manager, plus any add-ons you started.

Try Examples

At this point you should be able to run through one of the basic examples, such as the nginx

example.

Running the Conformance Test

You may want to try to run the Conformance test. Any failures may give a hint as to areas that

need more attention.

Networking

The nodes must be able to connect to each other using their private IP. Verify this by pinging or

SSH-ing from one node to another.

Getting Help

If you run into trouble, please see the section on troubleshooting, post to the kubernetes-users

group, or come ask questions on Slack.

KUBECTL_PATHKUBECTL_PATH==$($(which kubectlwhich kubectl)) NUM_NODESNUM_NODES==3 3 KUBERNETES_PROVIDERKUBERNETES_PROVIDER==local local cluster/validate-cluster.shcluster/validate-cluster.sh

Found 3 nodeFound 3 node((ss))..

NAME STATUS AGE VERSIONNAME STATUS AGE VERSION

node1.local Ready 1h v1.6.9+a3d1dfa6f4335node1.local Ready 1h v1.6.9+a3d1dfa6f4335

node2.local Ready 1h v1.6.9+a3d1dfa6f4335node2.local Ready 1h v1.6.9+a3d1dfa6f4335

node3.local Ready 1h v1.6.9+a3d1dfa6f4335node3.local Ready 1h v1.6.9+a3d1dfa6f4335

Validate output:Validate output:

NAME STATUS MESSAGE ERRORNAME STATUS MESSAGE ERROR

controller-manager Healthy okcontroller-manager Healthy ok

scheduler Healthy okscheduler Healthy ok

etcd-1 Healthy etcd-1 Healthy {{"health""health": : "true""true"}}

etcd-2 Healthy etcd-2 Healthy {{"health""health": : "true""true"}}

etcd-0 Healthy etcd-0 Healthy {{"health""health": : "true""true"}}

Cluster validation succeededCluster validation succeeded

file:///docs/getting-started-guides/gce/#inspect-your-cluster
file:///docs/tutorials/stateless-application/deployment.yaml
http://releases.k8s.io/master/test/e2e_node/conformance/run_test.sh
file:///docs/getting-started-guides/gce/#troubleshooting
https://groups.google.com/forum/#!forum/kubernetes-users
file:///docs/troubleshooting#slack

Support Level

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

any any any any docs Community (@erictune)

For support level information on all solutions, see the Table of solutions chart.

file:///docs/getting-started-guides/scratch/
https://github.com/erictune
file:///docs/getting-started-guides/#table-of-solutions/

Deprecated Alternatives

Stop. These guides are superseded by
Minikube. They are only listed here for
completeness.

Using Vagrant

Advanced: Directly using Kubernetes raw binaries (Linux Only)

file:///_site/docs/getting-started-guides/minikube/
https://git.k8s.io/community/contributors/devel/vagrant.md
https://git.k8s.io/community/contributors/devel/running-locally.md

Running Kubernetes on Alibaba Cloud

Alibaba Cloud Container Service

The Alibaba Cloud Container Service lets you run and manage Docker applications on a cluster

of Alibaba Cloud ECS instances. It supports the popular open source container orchestrators:

Docker Swarm and Kubernetes.

To simplify cluster deployment and management, use Kubernetes Support for Alibaba Cloud

Container Service. You can get started quickly by following the Kubernetes walk-through, and

there are some tutorials for Kubernetes Support on Alibaba Cloud in Chinese.

To use custom binaries or open source Kubernetes, follow the instructions below.

Custom Deployments

The source code for Kubernetes with Alibaba Cloud provider implementation is open source

and available on GitHub.

For more information, see “Quick deployment of Kubernetes - VPC environment on Alibaba

Cloud” in English and Chinese.

https://www.aliyun.com/product/containerservice
https://www.aliyun.com/solution/kubernetes/
https://help.aliyun.com/document_detail/53751.html
https://yq.aliyun.com/teams/11/type_blog-cid_200-page_1
https://github.com/AliyunContainerService/kubernetes
https://www.alibabacloud.com/forum/read-830
https://yq.aliyun.com/articles/66474

Running Kubernetes on AWS EC2

Supported Production Grade Tools

conjure-up is an open-source installer for Kubernetes that creates Kubernetes clusters

with native AWS integrations on Ubuntu.

Kubernetes Operations - Production Grade K8s Installation, Upgrades, and Management.

Supports running Debian, Ubuntu, CentOS, and RHEL in AWS.

CoreOS Tectonic includes the open-source Tectonic Installer that creates Kubernetes

clusters with Container Linux nodes on AWS.

CoreOS originated and the Kubernetes Incubator maintains a CLI tool, kube-awskube-aws , that

creates and manages Kubernetes clusters with Container Linux nodes, using AWS tools:

EC2, CloudFormation and Autoscaling.

Getting started with your cluster

Command line administration tool: kubectl

The cluster startup script will leave you with a kuberneteskubernetes directory on your workstation.

Alternately, you can download the latest Kubernetes release from this page.

Next, add the appropriate binary folder to your PATHPATH to access kubectl:

Supported Production Grade Tools

Getting started with your cluster

Command line administration tool: kubectlkubectl

Examples

Scaling the cluster

Tearing down the cluster

Support Level

Further reading

file:///docs/getting-started-guides/ubuntu/
https://github.com/kubernetes/kops
https://coreos.com/tectonic/
https://github.com/coreos/tectonic-installer
https://github.com/kubernetes-incubator/kube-aws
https://coreos.com/why/
https://github.com/kubernetes/kubernetes/releases

An up-to-date documentation page for this tool is available here: kubectl manual

By default, kubectlkubectl will use the kubeconfigkubeconfig file generated during the cluster startup for

authenticating against the API. For more information, please read kubeconfig files

Examples

See a simple nginx example to try out your new cluster.

The “Guestbook” application is another popular example to get started with Kubernetes:

guestbook example

For more complete applications, please look in the examples directory

Scaling the cluster

Adding and removing nodes through kubectlkubectl is not supported. You can still scale the

amount of nodes manually through adjustments of the ‘Desired’ and ‘Max’ properties within

the Auto Scaling Group, which was created during the installation.

Tearing down the cluster

Make sure the environment variables you used to provision your cluster are still exported, then

call the following script inside the kuberneteskubernetes directory:

Support Level

OS X# OS X

export export PATHPATH==<path/to/kubernetes-directory>/platforms/darwin/amd64:<path/to/kubernetes-directory>/platforms/darwin/amd64:$PATH$PATH

Linux# Linux

export export PATHPATH==<path/to/kubernetes-directory>/platforms/linux/amd64:<path/to/kubernetes-directory>/platforms/linux/amd64:$PATH$PATH

cluster/kube-down.shcluster/kube-down.sh

file:///docs/user-guide/kubectl/
file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters/
file:///docs/tasks/run-application/run-stateless-application-deployment/
https://github.com/kubernetes/examples/tree/master/guestbook/
https://github.com/kubernetes/examples/tree/master/
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-manual-scaling.html

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

AWS kops Debian k8s (VPC) docs Community (@justinsb)

AWS CoreOS CoreOS flannel docs Community

AWS Juju Ubuntu flannel, calico, canal docs 100% Commercial, Community

For support level information on all solutions, see the Table of solutions chart.

Further reading

Please see the Kubernetes docs for more details on administering and using a Kubernetes

cluster.

https://github.com/kubernetes/kops
https://github.com/justinsb
file:///docs/getting-started-guides/aws
file:///docs/getting-started-guides/ubuntu
file:///docs/getting-started-guides/#table-of-solutions
file:///docs/

Running Kubernetes on Azure

Azure Container Service

The Azure Container Service offers simple deployments of one of three open source

orchestrators: DC/OS, Swarm, and Kubernetes clusters.

For an example of deploying a Kubernetes cluster onto Azure via the Azure Container Service:

Microsoft Azure Container Service - Kubernetes Walkthrough

Custom Deployments: ACS-Engine

The core of the Azure Container Service is open source and available on GitHub for the

community to use and contribute to: ACS-Engine.

ACS-Engine is a good choice if you need to make customizations to the deployment beyond

what the Azure Container Service officially supports. These customizations include deploying

into existing virtual networks, utilizing multiple agent pools, and more. Some community

contributions to ACS-Engine may even become features of the Azure Container Service.

The input to ACS-Engine is similar to the ARM template syntax used to deploy a cluster directly

with the Azure Container Service. The resulting output is an Azure Resource Manager

Template that can then be checked into source control and can then be used to deploy

Kubernetes clusters into Azure.

You can get started quickly by following the ACS-Engine Kubernetes Walkthrough.

CoreOS Tectonic for Azure

The CoreOS Tectonic Installer for Azure is open source and available on GitHub for the

community to use and contribute to: Tectonic Installer.

Tectonic Installer is a good choice when you need to make cluster customizations as it is built

on Hashicorp’s Terraform Azure Resource Manager (ARM) provider. This enables users to

https://azure.microsoft.com/en-us/services/container-service/
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine/blob/master/docs/kubernetes.md
https://github.com/coreos/tectonic-installer
https://www.terraform.io/docs/providers/azurerm/

customize or integrate using familiar Terraform tooling.

You can get started using the Tectonic Installer for Azure Guide.

https://coreos.com/tectonic/docs/latest/install/azure/azure-terraform.html

Running Kubernetes on CenturyLink
Cloud

These scripts handle the creation, deletion and expansion of Kubernetes clusters on

CenturyLink Cloud.

You can accomplish all these tasks with a single command. We have made the Ansible

playbooks used to perform these tasks available here.

Find Help

If you run into any problems or want help with anything, we are here to help. Reach out to use

via any of the following ways:

Submit a github issue

Find Help

Clusters of VMs or Physical Servers, your choice.

Requirements

Script Installation

Script Installation Example: Ubuntu 14 Walkthrough

Cluster Creation

Cluster Creation: Script Options

Cluster Expansion

Cluster Expansion: Script Options

Cluster Deletion

Examples

Cluster Features and Architecture

Optional add-ons

Cluster management

Accessing the cluster programmatically

Accessing the cluster with a browser

Configuration files

kubectlkubectl usage examples

What Kubernetes features do not work on CenturyLink Cloud

Ansible Files

Further reading

https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc/blob/master/ansible/README.md

Send an email to Kubernetes AT ctl DOT io

Visit http://info.ctl.io/kubernetes

Clusters of VMs or Physical Servers, your choice.

We support Kubernetes clusters on both Virtual Machines or Physical Servers. If you want

to use physical servers for the worker nodes (minions), simple use the –

minion_type=bareMetal flag.

For more information on physical servers, visit: https://www.ctl.io/bare-metal/

Physical serves are only available in the VA1 and GB3 data centers.

VMs are available in all 13 of our public cloud locations

Requirements

The requirements to run this script are:

A linux administrative host (tested on ubuntu and OSX)

python 2 (tested on 2.7.11)

pip (installed with python as of 2.7.9)

git

A CenturyLink Cloud account with rights to create new hosts

An active VPN connection to the CenturyLink Cloud from your linux host

Script Installation

After you have all the requirements met, please follow these instructions to install this script.

1) Clone this repository and cd into it.

git clone https://github.com/CenturyLinkCloud/adm-kubernetes-on-clcgit clone https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc

http://info.ctl.io/kubernetes
https://www.ctl.io/bare-metal/

2) Install all requirements, including

Ansible

CenturyLink Cloud SDK

Ansible Modules

3) Create the credentials file from the template and use it to set your ENV variables

4) Grant your machine access to the CenturyLink Cloud network by using a VM inside the

network or configuring a VPN connection to the CenturyLink Cloud network.

Script Installation Example: Ubuntu 14 Walkthrough

If you use an ubuntu 14, for your convenience we have provided a step by step guide to install

the requirements and install the script.

sudo sudo pip install pip install -r-r ansible/requirements.txt ansible/requirements.txt

cp ansible/credentials.sh.template ansible/credentials.shcp ansible/credentials.sh.template ansible/credentials.sh

vi ansible/credentials.shvi ansible/credentials.sh

source source ansible/credentials.shansible/credentials.sh

system# system
apt-get updateapt-get update

apt-get install apt-get install -y-y git python python-crypto git python python-crypto

curl curl -O-O https://bootstrap.pypa.io/get-pip.py https://bootstrap.pypa.io/get-pip.py

python get-pip.pypython get-pip.py

installing this repository# installing this repository
mkdir mkdir -p-p ~home/k8s-on-clc ~home/k8s-on-clc

cdcd ~home/k8s-on-clc ~home/k8s-on-clc

git clone https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc.gitgit clone https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc.git

cd cd adm-kubernetes-on-clc/adm-kubernetes-on-clc/

pip install pip install -r-r requirements.txt requirements.txt

getting started# getting started
cd cd ansibleansible

cp credentials.sh.template credentials.shcp credentials.sh.template credentials.sh;; vi credentials.sh vi credentials.sh

source source credentials.shcredentials.sh

https://www.ctl.io/knowledge-base/network/how-to-configure-client-vpn/

Cluster Creation

To create a new Kubernetes cluster, simply run the kube-up.shkube-up.sh script. A complete list of

script options and some examples are listed below.

It takes about 15 minutes to create the cluster. Once the script completes, it will output some

commands that will help you setup kubectl on your machine to point to the new cluster.

When the cluster creation is complete, the configuration files for it are stored locally on your

administrative host, in the following directory

Cluster Creation: Script Options

CLC_CLUSTER_NAMECLC_CLUSTER_NAME=[=[name of kubernetes cluster]name of kubernetes cluster]

cdcd ./adm-kubernetes-on-clc ./adm-kubernetes-on-clc

bash kube-up.sh bash kube-up.sh -c-c==""$CLC_CLUSTER_NAME$CLC_CLUSTER_NAME""

>> CLC_CLUSTER_HOMECLC_CLUSTER_HOME==$HOME$HOME/.clc_kube//.clc_kube/$CLC_CLUSTER_NAME$CLC_CLUSTER_NAME//

Usage: kube-up.sh Usage: kube-up.sh [[OPTIONS]OPTIONS]

Create servers Create servers in in the CenturyLinkCloud environment and initialize a Kubernetes clusterthe CenturyLinkCloud environment and initialize a Kubernetes cluster

Environment variables CLC_V2_API_USERNAME and CLC_V2_API_PASSWD must be Environment variables CLC_V2_API_USERNAME and CLC_V2_API_PASSWD must be set set inin

order to access the CenturyLinkCloud APIorder to access the CenturyLinkCloud API

All options All options ((both short and long formboth short and long form)) require arguments, and must include require arguments, and must include "=""="

between option name and option value.between option name and option value.

 -h-h ((--help--help)) display this display this help help and and exitexit

 -c-c== ((--clc_cluster_name--clc_cluster_name=)=) set set the name of the cluster, as used the name of the cluster, as used in in CLC group namesCLC group names

 -t-t== ((--minion_type--minion_type=)=) standard -> VM standard -> VM ((defaultdefault)), bareMetal -> physical], bareMetal -> physical]

 -d-d== ((--datacenter--datacenter=)=) VA1 VA1 ((defaultdefault))

 -m-m== ((--minion_count--minion_count=)=) number of kubernetes minion nodes number of kubernetes minion nodes

 -mem-mem== ((--vm_memory--vm_memory=)=) number of GB ram number of GB ram for for each minioneach minion

 -cpu-cpu== ((--vm_cpu--vm_cpu=)=) number of virtual cps number of virtual cps for for each minion nodeeach minion node

 -phyid-phyid== ((--server_conf_id--server_conf_id=)=) physical server configuration id, one of physical server configuration id, one of

 physical_server_20_core_conf_id physical_server_20_core_conf_id

 physical_server_12_core_conf_id physical_server_12_core_conf_id

 physical_server_4_core_conf_id physical_server_4_core_conf_id ((defaultdefault

 -etcd_separate_cluster-etcd_separate_cluster==yes create a separate cluster of three etcd nodes,yes create a separate cluster of three etcd nodes,

 otherwise run etcd on the master node otherwise run etcd on the master node

Cluster Expansion

To expand an existing Kubernetes cluster, run the add-kube-node.shadd-kube-node.sh script. A complete list

of script options and some examples are listed below. This script must be run from the same

host that created the cluster (or a host that has the cluster artifact files stored in

~/.clc_kube/$cluster_name~/.clc_kube/$cluster_name).

Cluster Expansion: Script Options

Cluster Deletion

There are two ways to delete an existing cluster:

1) Use our python script:

2) Use the CenturyLink Cloud UI. To delete a cluster, log into the CenturyLink Cloud control

portal and delete the parent server group that contains the Kubernetes Cluster. We hope to add

a scripted option to do this soon.

Examples

cdcd ./adm-kubernetes-on-clc ./adm-kubernetes-on-clc

bash add-kube-node.sh bash add-kube-node.sh -c-c=="name_of_kubernetes_cluster""name_of_kubernetes_cluster" -m-m==22

Usage: add-kube-node.sh Usage: add-kube-node.sh [[OPTIONS]OPTIONS]

Create servers Create servers in in the CenturyLinkCloud environment and add to anthe CenturyLinkCloud environment and add to an

existing CLC kubernetes clusterexisting CLC kubernetes cluster

Environment variables CLC_V2_API_USERNAME and CLC_V2_API_PASSWD must be Environment variables CLC_V2_API_USERNAME and CLC_V2_API_PASSWD must be set set inin

order to access the CenturyLinkCloud APIorder to access the CenturyLinkCloud API

 -h-h ((--help--help)) display this display this help help and and exitexit

 -c-c== ((--clc_cluster_name--clc_cluster_name=)=) set set the name of the cluster, as used the name of the cluster, as used in in CLC group namesCLC group names

 -m-m== ((--minion_count--minion_count=)=) number of kubernetes minion nodes to add number of kubernetes minion nodes to add

python delete_cluster.py python delete_cluster.py --cluster--cluster==clc_cluster_name clc_cluster_name --datacenter--datacenter==DC1DC1

Create a cluster with name of k8s_1, 1 master node and 3 worker minions (on physical

machines), in VA1

Create a cluster with name of k8s_2, an ha etcd cluster on 3 VMs and 6 worker minions (on

VMs), in VA1

Create a cluster with name of k8s_3, 1 master node, and 10 worker minions (on VMs) with

higher mem/cpu, in UC1:

Cluster Features and Architecture

We configure the Kubernetes cluster with the following features:

KubeDNS: DNS resolution and service discovery

Heapster/InfluxDB: For metric collection. Needed for Grafana and auto-scaling.

Grafana: Kubernetes/Docker metric dashboard

KubeUI: Simple web interface to view Kubernetes state

Kube Dashboard: New web interface to interact with your cluster

We use the following to create the Kubernetes cluster:

Kubernetes 1.1.7

Ubuntu 14.04

Flannel 0.5.4

Docker 1.9.1-0~trusty

bash kube-up.sh bash kube-up.sh --clc_cluster_name--clc_cluster_name==k8s_1 k8s_1 --minion_type--minion_type==bareMetal bareMetal --minion_count--minion_count

bash kube-up.sh bash kube-up.sh --clc_cluster_name--clc_cluster_name==k8s_2 k8s_2 --minion_type--minion_type==standard standard --minion_count--minion_count

bash kube-up.sh bash kube-up.sh --clc_cluster_name--clc_cluster_name==k8s_3 k8s_3 --minion_type--minion_type==standard standard --minion_count--minion_count

Etcd 2.2.2

Optional add-ons

Logging: We offer an integrated centralized logging ELK platform so that all Kubernetes

and docker logs get sent to the ELK stack. To install the ELK stack and configure

Kubernetes to send logs to it, follow the log aggregation documentation. Note: We don’t

install this by default as the footprint isn’t trivial.

Cluster management

The most widely used tool for managing a Kubernetes cluster is the command-line utility

kubectlkubectl . If you do not already have a copy of this binary on your administrative machine, you

may run the script install_kubectl.shinstall_kubectl.sh which will download it and install it in

/usr/bin/local/usr/bin/local .

The script requires that the environment variable CLC_CLUSTER_NAMECLC_CLUSTER_NAME be defined

install_kubectl.shinstall_kubectl.sh also writes a configuration file which will embed the necessary

authentication certificates for the particular cluster. The configuration file is written to the

${CLC_CLUSTER_HOME}/kube${CLC_CLUSTER_HOME}/kube directory

Accessing the cluster programmatically

It’s possible to use the locally stored client certificates to access the apiserver. For example,

you may want to use any of the Kubernetes API client libraries to program against your

Kubernetes cluster in the programming language of your choice.

To demonstrate how to use these locally stored certificates, we provide the following example

of using curlcurl to communicate to the master apiserver via https:

export export KUBECONFIGKUBECONFIG==${${CLC_CLUSTER_HOMECLC_CLUSTER_HOME}}/kube/config/kube/config

kubectl versionkubectl version

kubectl cluster-infokubectl cluster-info

https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc/blob/master/log_aggregration.md
file:///docs/reference/client-libraries/

But please note, this does not work out of the box with the curlcurl binary distributed with OSX.

Accessing the cluster with a browser

We install the kubernetes dashboard. When you create a cluster, the script should output URLs

for these interfaces like this:

kubernetes-dashboard is running at

https://${MASTER_IP}:6443/api/v1/namespaces/kube-system/services/kubernetes-https://${MASTER_IP}:6443/api/v1/namespaces/kube-system/services/kubernetes-

dashboard/proxydashboard/proxy

.

Note on Authentication to the UIs: The cluster is set up to use basic authentication for the user

admin. Hitting the url at https://${MASTER_IP}:6443https://${MASTER_IP}:6443 will require accepting the self-signed

certificate from the apiserver, and then presenting the admin password written to file at:

> _${CLC_CLUSTER_HOME}/kube/admin_password.txt_> _${CLC_CLUSTER_HOME}/kube/admin_password.txt_

Configuration files

Various configuration files are written into the home directory CLC_CLUSTER_HOME under

.clc_kube/${CLC_CLUSTER_NAME}.clc_kube/${CLC_CLUSTER_NAME} in several subdirectories. You can use these files to

access the cluster from machines other than where you created the cluster from.

config/config/ : Ansible variable files containing parameters describing the master and minion

hosts

hosts/hosts/ : hosts files listing access information for the ansible playbooks

kube/kube/ : kubectlkubectl configuration files, and the basic-authentication password for admin

access to the Kubernetes API

pki/pki/ : public key infrastructure files enabling TLS communication in the cluster

ssh/ssh/ : SSH keys for root access to the hosts

curl curl \\

 --cacert--cacert ${${CLC_CLUSTER_HOMECLC_CLUSTER_HOME}}/pki/ca.crt /pki/ca.crt \\

 --key--key ${${CLC_CLUSTER_HOMECLC_CLUSTER_HOME}}/pki/kubecfg.key /pki/kubecfg.key \\

 --cert--cert ${${CLC_CLUSTER_HOMECLC_CLUSTER_HOME}}/pki/kubecfg.crt https:///pki/kubecfg.crt https://${${MASTER_IPMASTER_IP}}:6443:6443

file:///docs/tasks/web-ui-dashboard/

kubectl usage examples

There are a great many features of kubectl. Here are a few examples

List existing nodes, pods, services and more, in all namespaces, or in just one:

The Kubernetes API server exposes services on web URLs, which are protected by requiring

client certificates. If you run a kubectl proxy locally, kubectlkubectl will provide the necessary

certificates and serve locally over http.

Then, you can access urls like

http://127.0.0.1:8001/api/v1/namespaces/kube-system/services/kubernetes-http://127.0.0.1:8001/api/v1/namespaces/kube-system/services/kubernetes-

dashboard/proxy/dashboard/proxy/

without the need for client certificates in your browser.

What Kubernetes features do not work on
CenturyLink Cloud

These are the known items that don’t work on CenturyLink cloud but do work on other cloud

providers:

At this time, there is no support services of the type LoadBalancer. We are actively working

on this and hope to publish the changes sometime around April 2016.

At this time, there is no support for persistent storage volumes provided by CenturyLink

Cloud. However, customers can bring their own persistent storage offering. We ourselves

use Gluster.

Ansible Files

kubectl get nodeskubectl get nodes

kubectl get kubectl get --all-namespaces--all-namespaces services services

kubectl get kubectl get --namespace--namespace==kube-system replicationcontrollerskube-system replicationcontrollers

kubectl proxy kubectl proxy -p-p 8001 8001

file:///docs/tasks/access-application-cluster/create-external-load-balancer/

If you want more information about our Ansible files, please read this file

Further reading

Please see the Kubernetes docs for more details on administering and using a Kubernetes

cluster.

https://github.com/CenturyLinkCloud/adm-kubernetes-on-clc/blob/master/ansible/README.md
file:///docs/

Running Kubernetes on Google Compute
Engine

The example below creates a Kubernetes cluster with 4 worker node Virtual Machines and a

master Virtual Machine (i.e. 5 VMs in your cluster). This cluster is set up and controlled from

your workstation (or wherever you find convenient).

Before you start

If you want a simplified getting started experience and GUI for managing clusters, please

consider trying Google Kubernetes Engine for hosted cluster installation and management.

For an easy way to experiment with the Kubernetes development environment, click the button

below to open a Google Cloud Shell with an auto-cloned copy of the Kubernetes source repo.

If you want to use custom binaries or pure open source Kubernetes, please continue with the

instructions below.

Prerequisites

Before you start

Prerequisites

Starting a cluster

Installing the Kubernetes command line tools on your workstation

Getting started with your cluster

Inspect your cluster

Run some examples

Tearing down the cluster

Customizing

Troubleshooting

Project settings

Cluster initialization hang

SSH

Networking

Support Level

Further reading

https://cloud.google.com/kubernetes-engine/
https://console.cloud.google.com/cloudshell/open?git_repo=https://github.com/kubernetes/kubernetes&page=editor&open_in_editor=README.md

1. You need a Google Cloud Platform account with billing enabled. Visit the Google

Developers Console for more details.

2. Install gcloudgcloud as necessary. gcloudgcloud can be installed as a part of the Google Cloud SDK.

3. Enable the Compute Engine Instance Group Manager API in the Google Cloud developers

console.

4. Make sure that gcloud is set to use the Google Cloud Platform project you want. You can

check the current project using

gcloud config listgcloud config list

projectproject and change it via

gcloud config set project <project-gcloud config set project <project-

id>id> .

5. Make sure you have credentials for GCloud by running gcloud auth logingcloud auth login .

6. (Optional) In order to make API calls against GCE, you must also run

gcloud auth application-default logingcloud auth application-default login .

7. Make sure you can start up a GCE VM from the command line. At least make sure you can

do the Create an instance part of the GCE Quickstart.

8. Make sure you can SSH into the VM without interactive prompts. See the Log in to the

instance part of the GCE Quickstart.

Starting a cluster

You can install a client and start a cluster with either one of these commands (we list both in

case only one is installed on your machine):

or

Once this command completes, you will have a master VM and four worker VMs, running as a

Kubernetes cluster.

By default, some containers will already be running on your cluster. Containers like fluentdfluentd

curl curl -sS-sS https://get.k8s.io | bash https://get.k8s.io | bash

wget wget -q-q -O-O - https://get.k8s.io | bash - https://get.k8s.io | bash

https://console.cloud.google.com
https://cloud.google.com/sdk/
https://console.developers.google.com/apis/api/replicapool.googleapis.com/overview
https://console.developers.google.com/apis/library
https://cloud.google.com/compute/docs/instances/#startinstancegcloud
https://cloud.google.com/compute/docs/instances/#sshing

provide logging, while heapsterheapster provides monitoring services.

The script run by the commands above creates a cluster with the name/prefix “kubernetes”. It

defines one specific cluster config, so you can’t run it more than once.

Alternately, you can download and install the latest Kubernetes release from this page, then

run the <kubernetes>/cluster/kube-up.sh<kubernetes>/cluster/kube-up.sh script to start the cluster:

If you want more than one cluster running in your project, want to use a different name, or want

a different number of worker nodes, see the

<kubernetes>/cluster/gce/config-default.sh<kubernetes>/cluster/gce/config-default.sh file for more fine-grained configuration

before you start up your cluster.

If you run into trouble, please see the section on troubleshooting, post to the kubernetes-users

group, or come ask questions on Slack.

The next few steps will show you:

1. How to set up the command line client on your workstation to manage the cluster

2. Examples of how to use the cluster

3. How to delete the cluster

4. How to start clusters with non-default options (like larger clusters)

Installing the Kubernetes command line tools on your
workstation

The cluster startup script will leave you with a running cluster and a kuberneteskubernetes directory on

your workstation.

The kubectl tool controls the Kubernetes cluster manager. It lets you inspect your cluster

resources, create, delete, and update components, and much more. You will use it to look at

your new cluster and bring up example apps.

You can use gcloudgcloud to install the kubectlkubectl command-line tool on your workstation:

cd cd kuberneteskubernetes

cluster/kube-up.shcluster/kube-up.sh

gcloud components install kubectlgcloud components install kubectl

file:///docs/concepts/cluster-administration/logging/
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/README.md
https://github.com/kubernetes/kubernetes/releases
file:///docs/getting-started-guides/gce/#troubleshooting
https://groups.google.com/forum/#!forum/kubernetes-users
file:///docs/troubleshooting/#slack
file:///docs/user-guide/kubectl/

Note: The kubectl version bundled with gcloudgcloud may be older than the one downloaded by the

get.k8s.io install script. See Installing kubectl document to see how you can set up the latest

kubectlkubectl on your workstation.

Getting started with your cluster

Inspect your cluster

Once kubectlkubectl is in your path, you can use it to look at your cluster. E.g., running:

should show a set of services that look something like this:

Similarly, you can take a look at the set of pods that were created during cluster startup. You

can do this via the

command.

You’ll see a list of pods that looks something like this (the name specifics will be different):

$ $ kubectl get kubectl get --all-namespaces--all-namespaces services services

NAMESPACE NAME CLUSTER_IP EXTERNAL_IP PORTNAMESPACE NAME CLUSTER_IP EXTERNAL_IP PORT((SS

default kubernetes 10.0.0.1 <none> 443/TCP 1ddefault kubernetes 10.0.0.1 <none> 443/TCP 1d

kube-system kube-dns 10.0.0.2 <none> 53/TCP,53/UDP 1dkube-system kube-dns 10.0.0.2 <none> 53/TCP,53/UDP 1d

kube-system kube-ui 10.0.0.3 <none> 80/TCP 1dkube-system kube-ui 10.0.0.3 <none> 80/TCP 1d

......

$ $ kubectl get kubectl get --all-namespaces--all-namespaces pods pods

NAMESPACE NAME READY STATUS RESTARTS AGENAMESPACE NAME READY STATUS RESTARTS AGE

kube-system fluentd-cloud-logging-kubernetes-minion-63uo 1/1 Running 0 14mkube-system fluentd-cloud-logging-kubernetes-minion-63uo 1/1 Running 0 14m

kube-system fluentd-cloud-logging-kubernetes-minion-c1n9 1/1 Running 0 14mkube-system fluentd-cloud-logging-kubernetes-minion-c1n9 1/1 Running 0 14m

kube-system fluentd-cloud-logging-kubernetes-minion-c4og 1/1 Running 0 14mkube-system fluentd-cloud-logging-kubernetes-minion-c4og 1/1 Running 0 14m

kube-system fluentd-cloud-logging-kubernetes-minion-ngua 1/1 Running 0 14mkube-system fluentd-cloud-logging-kubernetes-minion-ngua 1/1 Running 0 14m

kube-system kube-dns-v5-7ztia 3/3 Running 0 15mkube-system kube-dns-v5-7ztia 3/3 Running 0 15m

kube-system kube-ui-v1-curt1 1/1 Running 0 15mkube-system kube-ui-v1-curt1 1/1 Running 0 15m

kube-system monitoring-heapster-v5-ex4u3 1/1 Running 1 15mkube-system monitoring-heapster-v5-ex4u3 1/1 Running 1 15m

kube-system monitoring-influx-grafana-v1-piled 2/2 Running 0 15mkube-system monitoring-influx-grafana-v1-piled 2/2 Running 0 15m

file:///docs/tasks/kubectl/install/
file:///docs/user-guide/services
file:///docs/user-guide/pods

Some of the pods may take a few seconds to start up (during this time they’ll show PendingPending),

but check that they all show as RunningRunning after a short period.

Run some examples

Then, see a simple nginx example to try out your new cluster.

For more complete applications, please look in the examples directory. The guestbook

example is a good “getting started” walkthrough.

Tearing down the cluster

To remove/delete/teardown the cluster, use the kube-down.shkube-down.sh script.

Likewise, the kube-up.shkube-up.sh in the same directory will bring it back up. You do not need to rerun

the curlcurl or wgetwget command: everything needed to setup the Kubernetes cluster is now on

your workstation.

Customizing

The script above relies on Google Storage to stage the Kubernetes release. It then will start (by

default) a single master VM along with 4 worker VMs. You can tweak some of these

parameters by editing kubernetes/cluster/gce/config-default.shkubernetes/cluster/gce/config-default.sh You can view a

transcript of a successful cluster creation here.

Troubleshooting

Project settings

You need to have the Google Cloud Storage API, and the Google Cloud Storage JSON API

enabled. It is activated by default for new projects. Otherwise, it can be done in the Google

Cloud Console. See the Google Cloud Storage JSON API Overview for more details.

Also ensure that– as listed in the Prerequisites section– you’ve enabled the

cd cd kuberneteskubernetes

cluster/kube-down.shcluster/kube-down.sh

file:///docs/user-guide/simple-nginx
https://github.com/kubernetes/examples/tree/master/
https://github.com/kubernetes/examples/tree/master/guestbook/
https://gist.github.com/satnam6502/fc689d1b46db9772adea
https://cloud.google.com/storage/docs/json_api/

Compute Engine Instance Group ManagerCompute Engine Instance Group Manager

APIAPI , and can start up a GCE VM from the

command line as in the GCE Quickstart instructions.

Cluster initialization hang

If the Kubernetes startup script hangs waiting for the API to be reachable, you can

troubleshoot by SSHing into the master and node VMs and looking at logs such as

/var/log/startupscript.log/var/log/startupscript.log .

Once you fix the issue, you should run kube-down.shkube-down.sh to cleanup after the partial cluster

creation, before running kube-up.shkube-up.sh to try again.

SSH

If you’re having trouble SSHing into your instances, ensure the GCE firewall isn’t blocking port

22 to your VMs. By default, this should work but if you have edited firewall rules or created a

new non-default network, you’ll need to expose it:

gcloud compute firewall-rules create default-ssh --network=<network-name> --gcloud compute firewall-rules create default-ssh --network=<network-name> --

description "SSH allowed from anywhere" --allow tcp:22description "SSH allowed from anywhere" --allow tcp:22

Additionally, your GCE SSH key must either have no passcode or you need to be using

ssh-agentssh-agent .

Networking

The instances must be able to connect to each other using their private IP. The script uses the

“default” network which should have a firewall rule called “default-allow-internal” which allows

traffic on any port on the private IPs. If this rule is missing from the default network or if you

change the network being used in cluster/config-default.shcluster/config-default.sh create a new rule with the

following field values:

Source Ranges: 10.0.0.0/810.0.0.0/8

Allowed Protocols and Port: tcp:1-65535;udp:1-65535;icmptcp:1-65535;udp:1-65535;icmp

Support Level

https://cloud.google.com/compute/docs/quickstart

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

GCE Saltstack Debian GCE docs Project

For support level information on all solutions, see the Table of solutions chart.

Further reading

Please see the Kubernetes docs for more details on administering and using a Kubernetes

cluster.

file:///docs/getting-started-guides/gce/
file:///docs/getting-started-guides/#table-of-solutions
file:///docs/

Running Kubernetes on Multiple Clouds
with Stackpoint.io

Introduction

Introduction

AWS

Choose a Provider

Configure Your Provider

Configure Your Cluster

Running the Cluster

GCE

Choose a Provider

Configure Your Provider

Configure Your Cluster

Running the Cluster

Google Kubernetes Engine

Choose a Provider

Configure Your Provider

Configure Your Cluster

Running the Cluster

DigitalOcean

Choose a Provider

Configure Your Provider

Configure Your Cluster

Running the Cluster

Microsoft Azure

Choose a Provider

Configure Your Provider

Configure Your Cluster

Running the Cluster

Packet

Choose a Provider

Configure Your Provider

Configure Your Cluster

Running the Cluster

StackPointCloud is the universal control plane for Kubernetes Anywhere. StackPointCloud

allows you to deploy and manage a Kubernetes cluster to the cloud provider of your choice in 3

steps using a web-based interface.

AWS

To create a Kubernetes cluster on AWS, you will need an Access Key ID and a Secret Access

Key from AWS.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Amazon Web Services (AWS).

Configure Your Provider

Add your Access Key ID and a Secret Access Key from AWS. Select your default

StackPointCloud SSH keypair, or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Configure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to

create the cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on AWS, consult the Kubernetes

documentation.

GCE

https://stackpoint.io
https://stackpoint.io/#/clusters
file:///docs/getting-started-guides/aws/

To create a Kubernetes cluster on GCE, you will need the Service Account JSON Data from

Google.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Google Compute Engine (GCE).

Configure Your Provider

Add your Service Account JSON Data from Google. Select your default StackPointCloud SSH

keypair, or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Configure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to

create the cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on GCE, consult the Kubernetes

documentation.

Google Kubernetes Engine

To create a Kubernetes cluster on Google Kubernetes Engine, you will need the Service

Account JSON Data from Google.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

https://stackpoint.io
https://stackpoint.io/#/clusters
file:///docs/getting-started-guides/gce/
https://stackpoint.io

Click to select Google Kubernetes Engine.

Configure Your Provider

Add your Service Account JSON Data from Google. Select your default StackPointCloud SSH

keypair, or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Configure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to

create the cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on Google Kubernetes Engine,

consult the official documentation.

DigitalOcean

To create a Kubernetes cluster on DigitalOcean, you will need a DigitalOcean API Token.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select DigitalOcean.

Configure Your Provider

Add your DigitalOcean API Token. Select your default StackPointCloud SSH keypair, or click

ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

https://stackpoint.io/#/clusters
file:///docs/home/
https://stackpoint.io

Configure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to

create the cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on DigitalOcean, consult the

official documentation.

Microsoft Azure

To create a Kubernetes cluster on Microsoft Azure, you will need an Azure Subscription ID,

Username/Email, and Password.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Microsoft Azure.

Configure Your Provider

Add your Azure Subscription ID, Username/Email, and Password. Select your default

StackPointCloud SSH keypair, or click ADD SSH KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Configure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to

create the cluster.

Running the Cluster

https://stackpoint.io/#/clusters
file:///docs/home/
https://stackpoint.io

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on Azure, consult the Kubernetes

documentation.

Packet

To create a Kubernetes cluster on Packet, you will need a Packet API Key.

Choose a Provider

Log in to stackpoint.io with a GitHub, Google, or Twitter account.

Click +ADD A CLUSTER NOW.

Click to select Packet.

Configure Your Provider

Add your Packet API Key. Select your default StackPointCloud SSH keypair, or click ADD SSH

KEY to add a new keypair.

Click SUBMIT to submit the authorization information.

Configure Your Cluster

Choose any extra options you may want to include with your cluster, then click SUBMIT to

create the cluster.

Running the Cluster

You can monitor the status of your cluster and suspend or delete it from your stackpoint.io

dashboard.

For information on using and managing a Kubernetes cluster on Packet, consult the official

documentation.

https://stackpoint.io/#/clusters
file:///docs/getting-started-guides/azure/
https://stackpoint.io
https://stackpoint.io/#/clusters
file:///docs/home/

CoreOS on AWS or GCE

There are multiple guides on running Kubernetes with CoreOS:

Official CoreOS Guides

These guides are maintained by CoreOS and deploy Kubernetes the “CoreOS Way” with full

TLS, the DNS add-on, and more. These guides pass Kubernetes conformance testing and we

encourage you to test this yourself.

AWS Multi-Node

Guide and CLI tool for setting up a multi-node cluster on AWS. CloudFormation is used to set

up a master and multiple workers in auto-scaling groups.

Bare Metal Multi-Node

Guide and HTTP/API service for PXE booting and provisioning a multi-node cluster on bare

metal. Ignition is used to provision a master and multiple workers on the first boot from disk.

Vagrant Multi-Node

Guide to setting up a multi-node cluster on Vagrant. The deployer can independently configure

the number of etcd nodes, master nodes, and worker nodes to bring up a fully HA control

plane.

Vagrant Single-Node

The quickest way to set up a Kubernetes development environment locally. As easy as

git clonegit clone , vagrant upvagrant up and configuring kubectlkubectl .

Full Step by Step Guide

A generic guide to setting up an HA cluster on any cloud or bare metal, with full TLS. Repeat

the master or worker steps to configure more machines of that role.

Community Guides

Official CoreOS Guides

Community Guides

Support Level

https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/conformance-tests.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-baremetal.html#automated-provisioning
https://coreos.com/ignition/docs/latest/
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant-single.html
https://coreos.com/kubernetes/docs/latest/getting-started.html

These guides are maintained by community members, cover specific platforms and use cases,

and experiment with different ways of configuring Kubernetes on CoreOS.

Easy Multi-node Cluster on Google Compute Engine

Scripted installation of a single master, multi-worker cluster on GCE. Kubernetes components

are managed by fleet.

Multi-node cluster using cloud-config and Weave on Vagrant

Configure a Vagrant-based cluster of 3 machines with networking provided by Weave.

Multi-node cluster using cloud-config and Vagrant

Configure a single master, multi-worker cluster locally, running on your choice of hypervisor:

VirtualBox, Parallels, or VMware

Single-node cluster using a small OS X App

Guide to running a solo cluster (master + worker) controlled by an OS X menubar application.

Uses xhyve + CoreOS under the hood.

Multi-node cluster with Vagrant and fleet units using a small OS X App

Guide to running a single master, multi-worker cluster controlled by an OS X menubar

application. Uses Vagrant under the hood.

Multi-node cluster using cloud-config, CoreOS and VMware ESXi

Configure a single master, single worker cluster on VMware ESXi.

Single/Multi-node cluster using cloud-config, CoreOS and Foreman

Configure a standalone Kubernetes or a Kubernetes cluster with Foreman.

Support Level

IaaS
Provider

Config.
Mgmt

OS Networking Docs Conforms Support Level

GCE CoreOS CoreOS flannel docs Community (@pires)

Vagrant CoreOS CoreOS flannel docs
Community (@pires,
@AntonioMeireles)

For support level information on all solutions, see the Table of solutions chart.

https://github.com/rimusz/coreos-multi-node-k8s-gce/blob/master/README.md
https://github.com/coreos/fleet
https://github.com/errordeveloper/weave-demos/blob/master/poseidon/README.md
https://github.com/pires/kubernetes-vagrant-coreos-cluster/blob/master/README.md
https://github.com/rimusz/kube-solo-osx/blob/master/README.md
https://github.com/rimusz/coreos-osx-gui-kubernetes-cluster/blob/master/README.md
https://github.com/xavierbaude/VMware-coreos-multi-nodes-Kubernetes
https://github.com/johscheuer/theforeman-coreos-kubernetes
https://theforeman.org
file:///docs/getting-started-guides/coreos
https://github.com/pires
file:///docs/getting-started-guides/coreos
https://github.com/pires
https://github.com/AntonioMeireles
file:///docs/getting-started-guides/#table-of-solutions

Kubernetes on Ubuntu

There are multiple ways to run a Kubernetes cluster with Ubuntu. These pages explain how to

deploy Kubernetes on Ubuntu on multiple public and private clouds, as well as bare metal.

Official Ubuntu Guides

The Canonical Distribution of Kubernetes

The latest version of Kubernetes with upstream binaries. Supports AWS, GCE, Azure, Joyent,

OpenStack, VMware, Bare Metal and localhost deployments.

Quick Start

conjure-up provides the quickest way to deploy Kubernetes on Ubuntu for multiple clouds and

bare metal. It provides a user-friendly UI that prompts you for cloud credentials and

configuration options

Available for Ubuntu 16.04 and newer:

As well as Homebrew for macOS:

Official Ubuntu Guides

Quick Start

Operational Guides

Third-party Product Integrations

Developer Guides

Where to find us

sudo snap install conjure-up --classicsudo snap install conjure-up --classic

re-login may be required at that point if you just installed snap utility# re-login may be required at that point if you just installed snap utility

conjure-up kubernetesconjure-up kubernetes

brew install conjure-upbrew install conjure-up

conjure-up kubernetesconjure-up kubernetes

https://www.ubuntu.com/cloud/kubernetes
http://conjure-up.io/

Operational Guides

These are more in-depth guides for users choosing to run Kubernetes in production:

Installation

Validation

Backups

Upgrades

Scaling

Logging

Monitoring

Networking

Security

Storage

Troubleshooting

Decommissioning

Operational Considerations

Glossary

Third-party Product Integrations

Rancher

Developer Guides

Localhost using LXD

Where to find us

file:///docs/getting-started-guides/ubuntu/installation/
file:///docs/getting-started-guides/ubuntu/validation/
file:///docs/getting-started-guides/ubuntu/backups/
file:///docs/getting-started-guides/ubuntu/upgrades/
file:///docs/getting-started-guides/ubuntu/scaling/
file:///docs/getting-started-guides/ubuntu/logging/
file:///docs/getting-started-guides/ubuntu/monitoring/
file:///docs/getting-started-guides/ubuntu/networking/
file:///docs/getting-started-guides/ubuntu/security/
file:///docs/getting-started-guides/ubuntu/storage/
file:///docs/getting-started-guides/ubuntu/troubleshooting/
file:///docs/getting-started-guides/ubuntu/decommissioning/
file:///docs/getting-started-guides/ubuntu/operational-considerations/
file:///docs/getting-started-guides/ubuntu/glossary/
file:///docs/getting-started-guides/ubuntu/rancher/
file:///docs/getting-started-guides/ubuntu/local/

We’re normally following the following Slack channels:

kubernetes-users

kubernetes-novice

sig-cluster-lifecycle

sig-cluster-ops

sig-onprem

and we monitor the Kubernetes mailing lists.

https://kubernetes.slack.com/messages/kubernetes-users/
https://kubernetes.slack.com/messages/kubernetes-novice/
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://kubernetes.slack.com/messages/sig-cluster-ops/
https://kubernetes.slack.com/messages/sig-onprem/

Installing Kubernetes on AWS with kops

Overview

This quickstart shows you how to easily install a Kubernetes cluster on AWS. It uses a tool

called kopskops .

kops is an opinionated provisioning system:

Fully automated installation

Uses DNS to identify clusters

Self-healing: everything runs in Auto-Scaling Groups

Limited OS support (Debian preferred, Ubuntu 16.04 supported, early support for CentOS &

RHEL)

High-Availability support

Can directly provision, or generate terraform manifests

If your opinions differ from these you may prefer to build your own cluster using kubeadm as a

building block. kops builds on the kubeadm work.

Creating a cluster

(1/5) Install kops

Requirements

You must have kubectl installed in order for kops to work.

Installation

Download kops from the releases page (it is also easy to build from source):

On MacOS:

https://github.com/kubernetes/kops
file:///docs/admin/kubeadm/
file:///docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/kops/releases

On Linux:

(2/5) Create a route53 domain for your cluster

kops uses DNS for discovery, both inside the cluster and so that you can reach the kubernetes

API server from clients.

kops has a strong opinion on the cluster name: it should be a valid DNS name. By doing so you

will no longer get your clusters confused, you can share clusters with your colleagues

unambiguously, and you can reach them without relying on remembering an IP address.

You can, and probably should, use subdomains to divide your clusters. As our example we will

use useast1.dev.example.comuseast1.dev.example.com . The API server endpoint will then be

api.useast1.dev.example.comapi.useast1.dev.example.com .

A Route53 hosted zone can serve subdomains. Your hosted zone could be

useast1.dev.example.comuseast1.dev.example.com , but also dev.example.comdev.example.com or even example.comexample.com . kops works

with any of these, so typically you choose for organization reasons (e.g. you are allowed to

create records under dev.example.comdev.example.com , but not under example.comexample.com).

Let’s assume you’re using dev.example.comdev.example.com as your hosted zone. You create that hosted

zone using the normal process, or with a command such as

aws route53 create-hosted-zone --name dev.example.com --caller-referenceaws route53 create-hosted-zone --name dev.example.com --caller-reference

11 .

You must then set up your NS records in the parent domain, so that records in the domain will

resolve. Here, you would create NS records in example.comexample.com for devdev . If it is a root domain

name you would configure the NS records at your domain registrar (e.g. example.comexample.com would

curl -OL https://github.com/kubernetes/kops/releases/download/1.8.0/kops-darwin-amd64curl -OL https://github.com/kubernetes/kops/releases/download/1.8.0/kops-darwin-amd64

chmod +x kops-darwin-amd64chmod +x kops-darwin-amd64

mv kops-darwin-amd64 /usr/local/bin/kopsmv kops-darwin-amd64 /usr/local/bin/kops

you can also install using Homebrew# you can also install using Homebrew

brew update && brew install kopsbrew update && brew install kops

wget https://github.com/kubernetes/kops/releases/download/1.8.0/kops-linux-amd64wget https://github.com/kubernetes/kops/releases/download/1.8.0/kops-linux-amd64

chmod +x kops-linux-amd64chmod +x kops-linux-amd64

mv kops-linux-amd64 /usr/local/bin/kopsmv kops-linux-amd64 /usr/local/bin/kops

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html

need to be configured where you bought example.comexample.com).

This step is easy to mess up (it is the #1 cause of problems!) You can double-check that your

cluster is configured correctly if you have the dig tool by running:

dig NS dev.example.comdig NS dev.example.com

You should see the 4 NS records that Route53 assigned your hosted zone.

(3/5) Create an S3 bucket to store your clusters state

kops lets you manage your clusters even after installation. To do this, it must keep track of the

clusters that you have created, along with their configuration, the keys they are using etc. This

information is stored in an S3 bucket. S3 permissions are used to control access to the bucket.

Multiple clusters can use the same S3 bucket, and you can share an S3 bucket between your

colleagues that administer the same clusters - this is much easier than passing around

kubecfg files. But anyone with access to the S3 bucket will have administrative access to all

your clusters, so you don’t want to share it beyond the operations team.

So typically you have one S3 bucket for each ops team (and often the name will correspond to

the name of the hosted zone above!)

In our example, we chose dev.example.comdev.example.com as our hosted zone, so let’s pick

clusters.dev.example.comclusters.dev.example.com as the S3 bucket name.

Export AWS_PROFILEAWS_PROFILE (if you need to select a profile for the AWS CLI to work)

Create the S3 bucket using

aws s3 mbaws s3 mb

s3://clusters.dev.example.coms3://clusters.dev.example.com

You can export KOPS_STATE_STORE=s3://clusters.dev.example.comexport KOPS_STATE_STORE=s3://clusters.dev.example.com and then kops

will use this location by default. We suggest putting this in your bash profile or similar.

(4/5) Build your cluster configuration

Run “kops create cluster” to create your cluster configuration:

kops create cluster --zones=us-east-1ckops create cluster --zones=us-east-1c

useast1.dev.example.comuseast1.dev.example.com

kops will create the configuration for your cluster. Note that it only creates the configuration, it

does not actually create the cloud resources - you’ll do that in the next step with a

kops updatekops update

clustercluster . This give you an opportunity to review the configuration or change it.

It prints commands you can use to explore further:

List your clusters with:

kops getkops get

clustercluster

Edit this cluster with: kops edit cluster useast1.dev.example.comkops edit cluster useast1.dev.example.com

Edit your node instance group:

kops edit ig --name=useast1.dev.example.comkops edit ig --name=useast1.dev.example.com

nodesnodes

Edit your master instance group:

kops edit ig --name=useast1.dev.example.com master-us-east-kops edit ig --name=useast1.dev.example.com master-us-east-

1c1c

If this is your first time using kops, do spend a few minutes to try those out! An instance group

is a set of instances, which will be registered as kubernetes nodes. On AWS this is

implemented via auto-scaling-groups. You can have several instance groups, for example if

you wanted nodes that are a mix of spot and on-demand instances, or GPU and non-GPU

instances.

(5/5) Create the cluster in AWS

Run “kops update cluster” to create your cluster in AWS:

kops update cluster useast1.dev.example.com --kops update cluster useast1.dev.example.com --

yesyes

That takes a few seconds to run, but then your cluster will likely take a few minutes to actually

be ready.

kops updatekops update

clustercluster will be the tool you’ll use whenever you change the

configuration of your cluster; it applies the changes you have made to the configuration to your

cluster - reconfiguring AWS or kubernetes as needed.

For example, after you kops edit ig nodeskops edit ig nodes , then

kops update cluster --kops update cluster --

yesyes to apply

your configuration, and sometimes you will also have to

kops rolling-updatekops rolling-update

clustercluster to

roll out the configuration immediately.

Without --yes--yes ,

kops updatekops update

clustercluster will show you a preview of what it is going to do. This

is handy for production clusters!

Explore other add-ons

See the list of add-ons to explore other add-ons, including tools for logging, monitoring,

network policy, visualization & control of your Kubernetes cluster.

What’s next

Learn more about Kubernetes concepts and kubectlkubectl .

Learn about kopskops advanced usage

Cleanup

To delete your cluster:

kops delete cluster useast1.dev.example.com --kops delete cluster useast1.dev.example.com --

yesyes

Feedback

Slack Channel: #sig-aws has a lot of kops users

GitHub Issues

file:///docs/concepts/cluster-administration/addons/
file:///docs/concepts/
file:///docs/user-guide/kubectl-overview/
https://github.com/kubernetes/kops
https://kubernetes.slack.com/messages/sig-aws/
https://github.com/kubernetes/kops/issues

Installing Kubernetes On-premises/Cloud
Providers with Kubespray

Overview

This quickstart helps to install a Kubernetes cluster hosted on GCE, Azure, OpenStack, AWS, or

Baremetal with Kubespray.

Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain

knowledge for generic OS/Kubernetes clusters configuration management tasks. Kubespray

provides:

a highly available cluster

composable attributes

support for most popular Linux distributions (CoreOS, Debian Jessie, Ubuntu 16.04,

CentOS/RHEL 7, Fedora/CentOS Atomic)

continuous integration tests

To choose a tool which best fits your use case, read this comparison to kubeadm and kops.

Creating a cluster

(1/5) Meet the underlay requirements

Provision servers with the following requirements:

Ansible v2.4Ansible v2.4 (or newer)

JinjaJinja

2.92.9 (or newer)

python-netaddrpython-netaddr installed on the machine that running Ansible commands

Target servers must have access to the Internet in order to pull docker images

https://github.com/kubernetes-incubator/kubespray
http://docs.ansible.com/
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/ansible.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/comparisons.md
file:///docs/admin/kubeadm/
file:///_site/docs/getting-started-guides/kops
https://github.com/kubernetes-incubator/kubespray#requirements

Target servers are configured to allow IPv4 forwarding

Target servers have SSH connectivity (tcp/22) directly to your nodes or through a bastion

host/ssh jump box

Target servers have a privileged user

Your SSH key must be copied to all the servers that are part of your inventory

Firewall rules configured properly to allow Ansible and Kubernetes components to

communicate

If using a cloud provider, you must have the appropriate credentials available and exported

as environment variables

Kubespray provides the following utilities to help provision your environment:

Terraform scripts for the following cloud providers:

AWS

OpenStack

(2/5) Compose an inventory file

After you provision your servers, create an inventory file for Ansible. You can do this manually

or via a dynamic inventory script. For more information, see “Building your own inventory”.

(3/5) Plan your cluster deployment

Kubespray provides the ability to customize many aspects of the deployment:

CNI (networking) plugins

DNS configuration

Choice of control plane: native/binary or containerized with docker or rkt)

Component versions

Calico route reflectors

Component runtime options

Certificate generation methods

https://www.terraform.io/
https://github.com/kubernetes-incubator/kubespray/tree/master/contrib/terraform/aws
https://github.com/kubernetes-incubator/kubespray/tree/master/contrib/terraform/openstack
http://docs.ansible.com/ansible/intro_inventory.html
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#building-your-own-inventory

Kubespray customizations can be made to a variable file. If you are just getting started with

Kubespray, consider using the Kubespray defaults to deploy your cluster and explore

Kubernetes.

(4/5) Deploy a Cluster

Next, deploy your cluster:

Cluster deployment using ansible-playbook.

Large deployments (100+ nodes) may require specific adjustments for best results.

(5/5) Verify the deployment

Kubespray provides a way to verify inter-pod connectivity and DNS resolve with Netchecker.

Netchecker ensures the netchecker-agents pods can resolve DNS requests and ping each over

within the default namespace. Those pods mimic similar behavior of the rest of the workloads

and serve as cluster health indicators.

Cluster operations

Kubespray provides additional playbooks to manage your cluster: scale and upgrade.

Scale your cluster

You can add worker nodes from your cluster by running the scale playbook. For more

information, see “Adding nodes”. You can remove worker nodes from your cluster by running

the remove-node playbook. For more information, see “Remove nodes”.

Upgrade your cluster

You can upgrade your cluster by running the upgrade-cluster playbook. For more information,

see “Upgrades”.

ansible-playbook -i your/inventory/hosts.ini cluster.yml -b -v \ansible-playbook -i your/inventory/hosts.ini cluster.yml -b -v \

 --private-key=~/.ssh/private_key --private-key=~/.ssh/private_key

http://docs.ansible.com/ansible/playbooks_variables.html
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#starting-custom-deployment
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/large-deployments.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/netcheck.md
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#adding-nodes
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/getting-started.md#remove-nodes
https://github.com/kubernetes-incubator/kubespray/blob/master/docs/upgrades.md

What’s next

Check out planned work on Kubespray’s roadmap.

Cleanup

You can reset your nodes and wipe out all components installed with Kubespray via the reset

playbook.

Caution: When running the reset playbook, be sure not to accidentally target your

production cluster!

Feedback

Slack Channel: #kubespray

GitHub Issues

https://github.com/kubernetes-incubator/kubespray/blob/master/docs/roadmap.md
https://github.com/kubernetes-incubator/kubespray/blob/master/reset.yml
https://kubernetes.slack.com/messages/kubespray/
https://github.com/kubernetes-incubator/kubespray/issues

CoreOS on AWS or GCE

Official CoreOS Guides
Community Guides
Support Level

There are multiple guides on running Kubernetes with CoreOS:

Official CoreOS Guides

These guides are maintained by CoreOS and deploy Kubernetes the “CoreOS Way” with full
TLS, the DNS add-on, and more. These guides pass Kubernetes conformance testing and we
encourage you to test this yourself.

AWS Multi-Node

Guide and CLI tool for setting up a multi-node cluster on AWS. CloudFormation is used to set up
a master and multiple workers in auto-scaling groups.

Bare Metal Multi-Node

Guide and HTTP/API service for PXE booting and provisioning a multi-node cluster on bare
metal. Ignition is used to provision a master and multiple workers on the first boot from disk.

Vagrant Multi-Node

Guide to setting up a multi-node cluster on Vagrant. The deployer can independently configure
the number of etcd nodes, master nodes, and worker nodes to bring up a fully HA control plane.

Vagrant Single-Node

The quickest way to set up a Kubernetes development environment locally. As easy as git clone,
vagrant up and configuring kubectl.

Full Step by Step Guide

A generic guide to setting up an HA cluster on any cloud or bare metal, with full TLS. Repeat the
master or worker steps to configure more machines of that role.

Community Guides

These guides are maintained by community members, cover specific platforms and use cases,
and experiment with different ways of configuring Kubernetes on CoreOS.

Easy Multi-node Cluster on Google Compute Engine

Scripted installation of a single master, multi-worker cluster on GCE. Kubernetes components
are managed by fleet.

Multi-node cluster using cloud-config and Weave on Vagrant

Configure a Vagrant-based cluster of 3 machines with networking provided by Weave.

https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/conformance-tests.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-baremetal.html#automated-provisioning
https://coreos.com/ignition/docs/latest/
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant-single.html
https://coreos.com/kubernetes/docs/latest/getting-started.html
https://github.com/rimusz/coreos-multi-node-k8s-gce/blob/master/README.md
https://github.com/coreos/fleet
https://github.com/errordeveloper/weave-demos/blob/master/poseidon/README.md

Multi-node cluster using cloud-config and Vagrant

Configure a single master, multi-worker cluster locally, running on your choice of hypervisor:
VirtualBox, Parallels, or VMware

Single-node cluster using a small OS X App

Guide to running a solo cluster (master + worker) controlled by an OS X menubar application.
Uses xhyve + CoreOS under the hood.

Multi-node cluster with Vagrant and fleet units using a small OS X App

Guide to running a single master, multi-worker cluster controlled by an OS X menubar
application. Uses Vagrant under the hood.

Multi-node cluster using cloud-config, CoreOS and VMware ESXi

Configure a single master, single worker cluster on VMware ESXi.

Single/Multi-node cluster using cloud-config, CoreOS and Foreman

Configure a standalone Kubernetes or a Kubernetes cluster with Foreman.

Support Level

IaaS
Provider

Config.
Mgmt

OS Networking Docs Conforms Support Level

GCE CoreOS CoreOS flannel docs Community (@pires)

Vagrant CoreOS CoreOS flannel docs
Community (@pires,
@AntonioMeireles)

For support level information on all solutions, see the Table of solutions chart.

https://github.com/pires/kubernetes-vagrant-coreos-cluster/blob/master/README.md
https://github.com/rimusz/kube-solo-osx/blob/master/README.md
https://github.com/rimusz/coreos-osx-gui-kubernetes-cluster/blob/master/README.md
https://github.com/xavierbaude/VMware-coreos-multi-nodes-Kubernetes
https://github.com/johscheuer/theforeman-coreos-kubernetes
https://theforeman.org
file:///docs/getting-started-guides/coreos
https://github.com/pires
file:///docs/getting-started-guides/coreos
https://github.com/pires
https://github.com/AntonioMeireles
file:///docs/getting-started-guides/#table-of-solutions

Cloudstack

CloudStack is a software to build public and private clouds based on hardware virtualization

principles (traditional IaaS). To deploy Kubernetes on CloudStack there are several possibilities

depending on the Cloud being used and what images are made available. CloudStack also has

a vagrant plugin available, hence Vagrant could be used to deploy Kubernetes either using the

existing shell provisioner or using new Salt based recipes.

CoreOS templates for CloudStack are built nightly. CloudStack operators need to register this

template in their cloud before proceeding with these Kubernetes deployment instructions.

This guide uses a single Ansible playbook, which is completely automated and can deploy

Kubernetes on a CloudStack based Cloud using CoreOS images. The playbook, creates an ssh

key pair, creates a security group and associated rules and finally starts coreOS instances

configured via cloud-init.

Prerequisites

On CloudStack server you also have to install libselinux-python :

cs is a python module for the CloudStack API.

Prerequisites

Clone the playbook

Create a Kubernetes cluster

Support Level

$ sudo apt-get install -y python-pip libssl-dev$ sudo apt-get install -y python-pip libssl-dev

$ sudo pip install cs$ sudo pip install cs

$ sudo pip install sshpubkeys$ sudo pip install sshpubkeys

$ sudo apt-get install software-properties-common$ sudo apt-get install software-properties-common

$ sudo apt-add-repository ppa:ansible/ansible$ sudo apt-add-repository ppa:ansible/ansible

$ sudo apt-get update$ sudo apt-get update

$ sudo apt-get install ansible$ sudo apt-get install ansible

yum install libselinux-pythonyum install libselinux-python

https://cloudstack.apache.org/
http://coreos.com
http://stable.release.core-os.net/amd64-usr/current/
http://docs.cloudstack.apache.org/projects/cloudstack-administration/en/latest/templates.html
https://github.com/apachecloudstack/k8s
https://github.com/exoscale/cs

Set your CloudStack endpoint, API keys and HTTP method used.

You can define them as environment variables: CLOUDSTACK_ENDPOINTCLOUDSTACK_ENDPOINT , CLOUDSTACK_KEYCLOUDSTACK_KEY ,

CLOUDSTACK_SECRETCLOUDSTACK_SECRET and CLOUDSTACK_METHODCLOUDSTACK_METHOD .

Or create a ~/.cloudstack.ini~/.cloudstack.ini file:

We need to use the http POST method to pass the large userdata to the coreOS instances.

Clone the playbook

Create a Kubernetes cluster

You simply need to run the playbook.

Some variables can be edited in the k8s.ymlk8s.yml file.

This will start a Kubernetes master node and a number of compute nodes (by default 2). The

instance_typeinstance_type and templatetemplate are specific, edit them to specify your CloudStack cloud

specific template and instance type (i.e. service offering).

[cloudstack][cloudstack]

endpoint = <your cloudstack api endpoint>endpoint = <your cloudstack api endpoint>

key = <your api access key>key = <your api access key>

secret = <your api secret key>secret = <your api secret key>

method = postmethod = post

$ git clone https://github.com/apachecloudstack/k8s$ git clone https://github.com/apachecloudstack/k8s

$ cd kubernetes-cloudstack$ cd kubernetes-cloudstack

$ ansible-playbook k8s.yml$ ansible-playbook k8s.yml

vars:vars:

 ssh_key: k8s ssh_key: k8s

 k8s_num_nodes: 2 k8s_num_nodes: 2

 k8s_security_group_name: k8s k8s_security_group_name: k8s

 k8s_node_prefix: k8s2 k8s_node_prefix: k8s2

 k8s_template: <templatename> k8s_template: <templatename>

 k8s_instance_type: <serviceofferingname> k8s_instance_type: <serviceofferingname>

Check the tasks and templates in roles/k8sroles/k8s if you want to modify anything.

Once the playbook as finished, it will print out the IP of the Kubernetes master:

SSH to it using the key that was created and using the core user and you can list the machines

in your cluster:

Support Level

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

CloudStack Ansible CoreOS flannel docs Community (@Guiques)

For support level information on all solutions, see the Table of solutions chart.

TASK: [k8s | debug msg='k8s master IP is {{ k8s_master.default_ip }}'] ********TASK: [k8s | debug msg='k8s master IP is {{ k8s_master.default_ip }}'] ********

$ ssh -i ~/.ssh/id_rsa_k8s core@<master IP>$ ssh -i ~/.ssh/id_rsa_k8s core@<master IP>

$ fleetctl list-machines$ fleetctl list-machines

MACHINE IP METADATAMACHINE IP METADATA

a017c422... <node #1 IP> role=nodea017c422... <node #1 IP> role=node

ad13bf84... <master IP> role=masterad13bf84... <master IP> role=master

e9af8293... <node #2 IP> role=nodee9af8293... <node #2 IP> role=node

file:///docs/getting-started-guides/cloudstack/
https://github.com/ltupin/
file:///docs/getting-started-guides/#table-of-solutions

Kubernetes on DCOS

Mesosphere provides an easy option to provision Kubernetes onto DC/OS, offering:

Pure upstream Kubernetes

Single-click cluster provisioning

Highly available and secure by default

Kubernetes running alongside fast-data platforms (e.g. Akka, Cassandra, Kafka, Spark)

Official Mesosphere Guide

The canonical source of getting started on DC/OS is located in the quickstart repo.

https://mesosphere.com/product/
https://github.com/mesosphere/dcos-kubernetes-quickstart

oVirt

What is oVirt

oVirt is a virtual datacenter manager that delivers powerful management of multiple virtual

machines on multiple hosts. Using KVM and libvirt, oVirt can be installed on Fedora, CentOS, or

Red Hat Enterprise Linux hosts to set up and manage your virtual data center.

oVirt Cloud Provider Deployment

The oVirt cloud provider allows to easily discover and automatically add new VM instances as

nodes to your Kubernetes cluster. At the moment there are no community-supported or pre-

loaded VM images including Kubernetes but it is possible to import or install Project Atomic (or

Fedora) in a VM to generate a template. Any other distribution that includes Kubernetes may

work as well.

It is mandatory to install the ovirt-guest-agent in the guests for the VM ip address and

hostname to be reported to ovirt-engine and ultimately to Kubernetes.

Once the Kubernetes template is available it is possible to start instantiating VMs that can be

discovered by the cloud provider.

Using the oVirt Cloud Provider

The oVirt Cloud Provider requires access to the oVirt REST-API to gather the proper

information, the required credential should be specified in the ovirt-cloud.confovirt-cloud.conf file:

What is oVirt

oVirt Cloud Provider Deployment

Using the oVirt Cloud Provider

oVirt Cloud Provider Screencast

Support Level

http://ovedou.blogspot.it/2014/03/importing-glance-images-as-ovirt.html
https://www.ovirt.org/documentation/quickstart/quickstart-guide/#create-virtual-machines
https://www.ovirt.org/documentation/quickstart/quickstart-guide/#using-templates
http://www.ovirt.org/documentation/how-to/guest-agent/install-the-guest-agent-in-fedora/

In the same file it is possible to specify (using the filtersfilters section) what search query to use

to identify the VMs to be reported to Kubernetes:

In the above example all the VMs tagged with the kuberneteskubernetes label will be reported as nodes

to Kubernetes.

The ovirt-cloud.confovirt-cloud.conf file then must be specified in kube-controller-manager:

oVirt Cloud Provider Screencast

This short screencast demonstrates how the oVirt Cloud Provider can be used to dynamically

add VMs to your Kubernetes cluster.

[connection][connection]

uri = https://localhost:8443/ovirt-engine/apiuri = https://localhost:8443/ovirt-engine/api

username = admin@internalusername = admin@internal

password = adminpassword = admin

[filters][filters]

Search query used to find nodes# Search query used to find nodes

vms = tag=kubernetesvms = tag=kubernetes

kube-controller-manager ... --cloud-provider=ovirt --cloud-config=/path/to/ovirt-cloud.conf ...kube-controller-manager ... --cloud-provider=ovirt --cloud-config=/path/to/ovirt-cloud.conf ...

Support Level

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

oVirt docs Community (@simon3z)

For support level information on all solutions, see the Table of solutions chart.

http://www.youtube.com/watch?v=JyyST4ZKne8
file:///docs/getting-started-guides/ovirt
https://github.com/simon3z
file:///docs/getting-started-guides/#table-of-solutions

Fedora (Single Node)

Prerequisites

1. You need 2 or more machines with Fedora installed. These can be either bare metal

machines or virtual machines.

Instructions

This is a getting started guide for Fedora. It is a manual configuration so you understand all the

underlying packages / services / ports, etc…

This guide will only get ONE node (previously minion) working. Multiple nodes require a

functional networking configuration done outside of Kubernetes. Although the additional

Kubernetes configuration requirements should be obvious.

The Kubernetes package provides a few services: kube-apiserver, kube-scheduler, kube-

controller-manager, kubelet, kube-proxy. These services are managed by systemd and the

configuration resides in a central location: /etc/kubernetes/etc/kubernetes . We will break the services up

between the hosts. The first host, fed-master, will be the Kubernetes master. This host will run

the kube-apiserver, kube-controller-manager, and kube-scheduler. In addition, the master will

also run etcd (not needed if etcd runs on a different host but this guide assumes that etcd and

Kubernetes master run on the same host). The remaining host, fed-node will be the node and

run kubelet, proxy and docker.

System Information:

Hosts:

Prerequisites

Instructions

Support Level

fedfed--mastermaster = = 192192..168168..121121..99

fedfed--nodenode = = 192192..168168..121121..6565

file:///docs/concepts/cluster-administration/networking/

Prepare the hosts:

Install Kubernetes on all hosts - fed-{master,node}. This will also pull in docker. Also install

etcd on fed-master. This guide has been tested with Kubernetes-0.18 and beyond.

Running on AWS EC2 with RHEL 7.2, you need to enable “extras” repository for yum by

editing /etc/yum.repos.d/redhat-rhui.repo/etc/yum.repos.d/redhat-rhui.repo and changing the enable=0enable=0 to

enable=1enable=1 for extras.

Install etcd

Add master and node to /etc/hosts/etc/hosts on all machines (not needed if hostnames already

in DNS). Make sure that communication works between fed-master and fed-node by using

a utility such as ping.

Edit /etc/kubernetes/config/etc/kubernetes/config (which should be the same on all hosts) to set the name

of the master server:

Disable the firewall on both the master and node, as Docker does not play well with other

firewall rule managers. Please note that iptables.service does not exist on the default

Fedora Server install.

dnf dnf -y-y install kubernetes install kubernetes

dnf dnf -y-y install etcd install etcd

echoecho "192.168.121.9 fed-master"192.168.121.9 fed-master

192.168.121.65 fed-node"192.168.121.65 fed-node" >>>> /etc/hosts /etc/hosts

Comma separated list of nodes in the etcd cluster# Comma separated list of nodes in the etcd cluster
KUBE_MASTERKUBE_MASTER=="--master=http://fed-master:8080""--master=http://fed-master:8080"

systemctl mask firewalld.servicesystemctl mask firewalld.service

systemctl stop firewalld.servicesystemctl stop firewalld.service

systemctl disable iptables.servicesystemctl disable iptables.service

systemctl stop iptables.servicesystemctl stop iptables.service

Configure the Kubernetes services on the master.

Edit /etc/kubernetes/apiserver/etc/kubernetes/apiserver to appear as such. The service-cluster-ip-range IP

addresses must be an unused block of addresses, not used anywhere else. They do not

need to be routed or assigned to anything.

Edit /etc/etcd/etcd.conf/etc/etcd/etcd.conf to let etcd listen on all available IPs instead of 127.0.0.1. If

you have not done this, you might see an error such as “connection refused”.

Start the appropriate services on master:

Configure the Kubernetes services on the node.

We need to configure the kubelet on the node.

Edit /etc/kubernetes/kubelet/etc/kubernetes/kubelet to appear as such:

The address on the local server to listen to.# The address on the local server to listen to.
KUBE_API_ADDRESSKUBE_API_ADDRESS=="--address=0.0.0.0""--address=0.0.0.0"

Comma separated list of nodes in the etcd cluster# Comma separated list of nodes in the etcd cluster
KUBE_ETCD_SERVERSKUBE_ETCD_SERVERS=="--etcd-servers=http://127.0.0.1:2379""--etcd-servers=http://127.0.0.1:2379"

Address range to use for services# Address range to use for services
KUBE_SERVICE_ADDRESSESKUBE_SERVICE_ADDRESSES=="--service-cluster-ip-range=10.254.0.0/16""--service-cluster-ip-range=10.254.0.0/16"

Add your own!# Add your own!
KUBE_API_ARGSKUBE_API_ARGS==""""

ETCD_LISTEN_CLIENT_URLSETCD_LISTEN_CLIENT_URLS=="http://0.0.0.0:2379""http://0.0.0.0:2379"

for for SERVICES SERVICES in in etcd kube-apiserver kube-controller-manager kube-scheduleretcd kube-apiserver kube-controller-manager kube-scheduler;; dodo

 systemctl restart systemctl restart $SERVICES$SERVICES

 systemctl systemctl enableenable $SERVICES$SERVICES

 systemctl status systemctl status $SERVICES$SERVICES

donedone

Start the appropriate services on the node (fed-node).

Check to make sure now the cluster can see the fed-node on fed-master, and its status

changes to Ready.

######
Kubernetes kubelet (node) config# Kubernetes kubelet (node) config

The address for the info server to serve on (set to 0.0.0.0 or "" for all interfaces)# The address for the info server to serve on (set to 0.0.0.0 or "" for all interfaces)
KUBELET_ADDRESSKUBELET_ADDRESS=="--address=0.0.0.0""--address=0.0.0.0"

You may leave this blank to use the actual hostname# You may leave this blank to use the actual hostname
KUBELET_HOSTNAMEKUBELET_HOSTNAME=="--hostname-override=fed-node""--hostname-override=fed-node"

location of the api-server# location of the api-server
KUBELET_ARGSKUBELET_ARGS=="--cgroup-driver=systemd --kubeconfig=/etc/kubernetes/master-kubeconfig.yaml --require-kubeconfig""--cgroup-driver=systemd --kubeconfig=/etc/kubernetes/master-kubeconfig.yaml --require-kubeconfig"

Add your own!# Add your own!
KUBELET_ARGSKUBELET_ARGS==""""

kindkind:: ConfigConfig

clustersclusters::

-- namename:: locallocal

 clustercluster::

 serverserver:: http://fed-master:8080http://fed-master:8080

usersusers::

-- namename:: kubeletkubelet

contextscontexts::

-- contextcontext::

 clustercluster:: locallocal

 useruser:: kubeletkubelet

 namename:: kubelet-contextkubelet-context

current-contextcurrent-context:: kubelet-contextkubelet-context

for for SERVICES SERVICES in in kube-proxy kubelet dockerkube-proxy kubelet docker;; do do

 systemctl restart systemctl restart $SERVICES$SERVICES

 systemctl systemctl enableenable $SERVICES$SERVICES

 systemctl status systemctl status $SERVICES$SERVICES

donedone

kubectl get nodeskubectl get nodes

NAME STATUS AGE VERSIONNAME STATUS AGE VERSION

fed-node Ready 4hfed-node Ready 4h

Deletion of nodes:

To delete fed-node from your Kubernetes cluster, one should run the following on fed-master

(Please do not do it, it is just for information):

You should be finished!

The cluster should be running! Launch a test pod.

Support Level

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

Bare-metal custom Fedora none docs Project

For support level information on all solutions, see the Table of solutions chart.

kubectl delete kubectl delete -f-f ./node.json ./node.json

file:///docs/getting-started-guides/fedora/fedora_manual_config
file:///docs/getting-started-guides/#table-of-solutions

Fedora (Multi Node)

This document describes how to deploy Kubernetes on multiple hosts to set up a multi-node

cluster and networking with flannel. Follow fedora getting started guide to setup 1 master (fed-

master) and 2 or more nodes. Make sure that all nodes have different names (fed-node1, fed-

node2 and so on) and labels (fed-node1-label, fed-node2-label, and so on) to avoid any conflict.

Also make sure that the Kubernetes master host is running etcd, kube-controller-manager,

kube-scheduler, and kube-apiserver services, and the nodes are running docker, kube-proxy

and kubelet services. Now install flannel on Kubernetes nodes. Flannel on each node

configures an overlay network that docker uses. Flannel runs on each node to setup a unique

class-C container network.

Prerequisites

You need 2 or more machines with Fedora installed.

Master Setup

Perform following commands on the Kubernetes master

Configure flannel by creating a flannel-config.jsonflannel-config.json in your current directory on fed-

master. Flannel provides udp and vxlan among other overlay networking backend options.

In this guide, we choose kernel based vxlan backend. The contents of the json are:

Prerequisites

Master Setup

Node Setup

Test the cluster and flannel configuration

Support Level

file:///docs/getting-started-guides/fedora/fedora_manual_config/

NOTE: Choose an IP range that is NOT part of the public IP address range.

Add the configuration to the etcd server on fed-master.

Verify that the key exists in the etcd server on fed-master.

Node Setup

Perform following commands on all Kubernetes nodes

Install the flannel package

Edit the flannel configuration file /etc/sysconfig/flanneld as follows:

{{

 "Network""Network":: "18.16.0.0/16""18.16.0.0/16",,

 "SubnetLen""SubnetLen":: 2424,,

 "Backend""Backend":: {{

 "Type""Type":: "vxlan""vxlan",,

 "VNI""VNI":: 11

 }}

}}

etcdctl etcdctl setset /coreos.com/network/config < flannel-config.json /coreos.com/network/config < flannel-config.json

etcdctl get /coreos.com/network/configetcdctl get /coreos.com/network/config

dnf -y install flannel# dnf -y install flannel

Flanneld configuration options# Flanneld configuration options

etcd url location. Point this to the server where etcd runs# etcd url location. Point this to the server where etcd runs

FLANNEL_ETCDFLANNEL_ETCD=="http://fed-master:2379""http://fed-master:2379"

etcd config key. This is the configuration key that flannel queries# etcd config key. This is the configuration key that flannel queries

For address range assignment# For address range assignment

FLANNEL_ETCD_KEYFLANNEL_ETCD_KEY=="/coreos.com/network""/coreos.com/network"

Any additional options that you want to pass# Any additional options that you want to pass

FLANNEL_OPTIONSFLANNEL_OPTIONS==""""

Note: By default, flannel uses the interface for the default route. If you have multiple interfaces

and would like to use an interface other than the default route one, you could add “-iface=” to

FLANNEL_OPTIONS. For additional options, run

flanneld --flanneld --

helphelp on command line.

Enable the flannel service.

If docker is not running, then starting flannel service is enough and skip the next step.

If docker is already running, then stop docker, delete docker bridge (docker0), start flanneld

and restart docker as follows. Another alternative is to just reboot the system (

systemctlsystemctl

rebootreboot).

Test the cluster and flannel configuration

Now check the interfaces on the nodes. Notice there is now a flannel.1 interface, and the ip

addresses of docker0 and flannel.1 interfaces are in the same network. You will notice that

docker0 is assigned a subnet (18.16.29.0/24 as shown below) on each Kubernetes node out

of the IP range configured above. A working output should look like this:

From any node in the cluster, check the cluster members by issuing a query to etcd server via

systemctl systemctl enable enable flanneldflanneld

systemctl start flanneldsystemctl start flanneld

systemctl stop dockersystemctl stop docker

ip link delete docker0ip link delete docker0

systemctl start flanneldsystemctl start flanneld

systemctl start dockersystemctl start docker

ip -4 a|grep inet# ip -4 a|grep inet

 inet 127.0.0.1/8 scope host lo inet 127.0.0.1/8 scope host lo

 inet 192.168.122.77/24 brd 192.168.122.255 scope global dynamic eth0 inet 192.168.122.77/24 brd 192.168.122.255 scope global dynamic eth0

 inet 18.16.29.0/16 scope global flannel.1 inet 18.16.29.0/16 scope global flannel.1

 inet 18.16.29.1/24 scope global docker0 inet 18.16.29.1/24 scope global docker0

curl (only partial output is shown using

grep -E "\grep -E "\

{|\}|key|value"{|\}|key|value"). If you set up a 1

master and 3 nodes cluster, you should see one block for each node showing the subnets they

have been assigned. You can associate those subnets to each node by the MAC address

(VtepMAC) and IP address (Public IP) that is listed in the output.

From all nodes, review the /run/flannel/subnet.env/run/flannel/subnet.env file. This file was generated

automatically by flannel.

At this point, we have etcd running on the Kubernetes master, and flannel / docker running on

Kubernetes nodes. Next steps are for testing cross-host container communication which will

confirm that docker and flannel are configured properly.

Issue the following commands on any 2 nodes:

curl curl -s-s http://fed-master:2379/v2/keys/coreos.com/network/subnets | python http://fed-master:2379/v2/keys/coreos.com/network/subnets | python -mjson-mjson

{{

 "node""node":: {{

 "key""key":: "/coreos.com/network/subnets""/coreos.com/network/subnets",,

 {{

 "key""key":: "/coreos.com/network/subnets/18.16.29.0-24""/coreos.com/network/subnets/18.16.29.0-24",,

 "value""value":: "{"{\"\"PublicIPPublicIP\"\"::\"\"192.168.122.77192.168.122.77\"\",,\"\"BackendTypeBackendType\"\"::\"\"

 },},

 {{

 "key""key":: "/coreos.com/network/subnets/18.16.83.0-24""/coreos.com/network/subnets/18.16.83.0-24",,

 "value""value":: "{"{\"\"PublicIPPublicIP\"\"::\"\"192.168.122.36192.168.122.36\"\",,\"\"BackendTypeBackendType\"\"::\"\"

 },},

 {{

 "key""key":: "/coreos.com/network/subnets/18.16.90.0-24""/coreos.com/network/subnets/18.16.90.0-24",,

 "value""value":: "{"{\"\"PublicIPPublicIP\"\"::\"\"192.168.122.127192.168.122.127\"\",,\"\"BackendTypeBackendType\"\"::\"\"

 }}

 }}

}}

cat /run/flannel/subnet.env# cat /run/flannel/subnet.env

FLANNEL_SUBNETFLANNEL_SUBNET==18.16.29.1/2418.16.29.1/24

FLANNEL_MTUFLANNEL_MTU==14501450

FLANNEL_IPMASQFLANNEL_IPMASQ==falsefalse

This will place you inside the container. Install iproute and iputils packages to install ip and ping

utilities. Due to a bug, it is required to modify capabilities of ping binary to work around

“Operation not permitted” error.

Now note the IP address on the first node:

And also note the IP address on the other node:

Now ping from the first node to the other node:

Now Kubernetes multi-node cluster is set up with overlay networking set up by flannel.

Support Level

IaaS Provider Config. Mgmt OS Networking Docs Conforms Support Level

Bare-metal custom Fedora flannel docs Community (@aveshagarwal)

libvirt custom Fedora flannel docs Community (@aveshagarwal)

KVM custom Fedora flannel docs Community (@aveshagarwal)

docker run -it fedora:latest bash# docker run -it fedora:latest bash

bash-4.3# bash-4.3#

bash-4.3# dnf bash-4.3# dnf -y-y install iproute iputils install iproute iputils

bash-4.3# setcap cap_net_raw-ep /usr/bin/pingbash-4.3# setcap cap_net_raw-ep /usr/bin/ping

bash-4.3# ip bash-4.3# ip -4-4 a l eth0 | a l eth0 | grep grep inetinet

 inet 18.16.29.4/24 scope global eth0 inet 18.16.29.4/24 scope global eth0

bash-4.3# ip a l eth0 | bash-4.3# ip a l eth0 | grep grep inetinet

 inet 18.16.90.4/24 scope global eth0 inet 18.16.90.4/24 scope global eth0

bash-4.3# ping 18.16.90.4bash-4.3# ping 18.16.90.4

PING 18.16.90.4 PING 18.16.90.4 ((18.16.90.418.16.90.4)) 56 56((8484)) bytes of data. bytes of data.

64 bytes from 18.16.90.4: 64 bytes from 18.16.90.4: icmp_seqicmp_seq==1 1 ttlttl==62 62 timetime==0.275 ms0.275 ms

64 bytes from 18.16.90.4: 64 bytes from 18.16.90.4: icmp_seqicmp_seq==2 2 ttlttl==62 62 timetime==0.372 ms0.372 ms

https://bugzilla.redhat.com/show_bug.cgi?id=1142311
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal
file:///docs/getting-started-guides/fedora/flannel_multi_node_cluster/
https://github.com/aveshagarwal

CoreOS on AWS or GCE

Official CoreOS Guides
Community Guides
Support Level

There are multiple guides on running Kubernetes with CoreOS:

Official CoreOS Guides

These guides are maintained by CoreOS and deploy Kubernetes the “CoreOS Way” with full
TLS, the DNS add-on, and more. These guides pass Kubernetes conformance testing and we
encourage you to test this yourself.

AWS Multi-Node

Guide and CLI tool for setting up a multi-node cluster on AWS. CloudFormation is used to set up
a master and multiple workers in auto-scaling groups.

Bare Metal Multi-Node

Guide and HTTP/API service for PXE booting and provisioning a multi-node cluster on bare
metal. Ignition is used to provision a master and multiple workers on the first boot from disk.

Vagrant Multi-Node

Guide to setting up a multi-node cluster on Vagrant. The deployer can independently configure
the number of etcd nodes, master nodes, and worker nodes to bring up a fully HA control plane.

Vagrant Single-Node

The quickest way to set up a Kubernetes development environment locally. As easy as git clone,
vagrant up and configuring kubectl.

Full Step by Step Guide

A generic guide to setting up an HA cluster on any cloud or bare metal, with full TLS. Repeat the
master or worker steps to configure more machines of that role.

Community Guides

These guides are maintained by community members, cover specific platforms and use cases,
and experiment with different ways of configuring Kubernetes on CoreOS.

Easy Multi-node Cluster on Google Compute Engine

Scripted installation of a single master, multi-worker cluster on GCE. Kubernetes components
are managed by fleet.

Multi-node cluster using cloud-config and Weave on Vagrant

Configure a Vagrant-based cluster of 3 machines with networking provided by Weave.

https://coreos.com/kubernetes/docs/latest/
https://coreos.com/kubernetes/docs/latest/conformance-tests.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-baremetal.html#automated-provisioning
https://coreos.com/ignition/docs/latest/
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant-single.html
https://coreos.com/kubernetes/docs/latest/getting-started.html
https://github.com/rimusz/coreos-multi-node-k8s-gce/blob/master/README.md
https://github.com/coreos/fleet
https://github.com/errordeveloper/weave-demos/blob/master/poseidon/README.md

Multi-node cluster using cloud-config and Vagrant

Configure a single master, multi-worker cluster locally, running on your choice of hypervisor:
VirtualBox, Parallels, or VMware

Single-node cluster using a small OS X App

Guide to running a solo cluster (master + worker) controlled by an OS X menubar application.
Uses xhyve + CoreOS under the hood.

Multi-node cluster with Vagrant and fleet units using a small OS X App

Guide to running a single master, multi-worker cluster controlled by an OS X menubar
application. Uses Vagrant under the hood.

Multi-node cluster using cloud-config, CoreOS and VMware ESXi

Configure a single master, single worker cluster on VMware ESXi.

Single/Multi-node cluster using cloud-config, CoreOS and Foreman

Configure a standalone Kubernetes or a Kubernetes cluster with Foreman.

Support Level

IaaS
Provider

Config.
Mgmt

OS Networking Docs Conforms Support Level

GCE CoreOS CoreOS flannel docs Community (@pires)

Vagrant CoreOS CoreOS flannel docs
Community (@pires,
@AntonioMeireles)

For support level information on all solutions, see the Table of solutions chart.

https://github.com/pires/kubernetes-vagrant-coreos-cluster/blob/master/README.md
https://github.com/rimusz/kube-solo-osx/blob/master/README.md
https://github.com/rimusz/coreos-osx-gui-kubernetes-cluster/blob/master/README.md
https://github.com/xavierbaude/VMware-coreos-multi-nodes-Kubernetes
https://github.com/johscheuer/theforeman-coreos-kubernetes
https://theforeman.org
file:///docs/getting-started-guides/coreos
https://github.com/pires
file:///docs/getting-started-guides/coreos
https://github.com/pires
https://github.com/AntonioMeireles
file:///docs/getting-started-guides/#table-of-solutions

Kubernetes on Ubuntu

There are multiple ways to run a Kubernetes cluster with Ubuntu. These pages explain how to
deploy Kubernetes on Ubuntu on multiple public and private clouds, as well as bare metal.

Official Ubuntu Guides
Quick Start
Operational Guides

Third-party Product Integrations
Developer Guides
Where to find us

Official Ubuntu Guides

The Canonical Distribution of Kubernetes

The latest version of Kubernetes with upstream binaries. Supports AWS, GCE, Azure, Joyent,
OpenStack, VMware, Bare Metal and localhost deployments.

Quick Start

conjure-up provides the quickest way to deploy Kubernetes on Ubuntu for multiple clouds and
bare metal. It provides a user-friendly UI that prompts you for cloud credentials and configuration
options

Available for Ubuntu 16.04 and newer:

sudo snap install conjure-up --classic
re-login may be required at that point if you just installed snap utility
conjure-up kubernetes

As well as Homebrew for macOS:

brew install conjure-up
conjure-up kubernetes

Operational Guides

These are more in-depth guides for users choosing to run Kubernetes in production:

Installation
Validation
Backups
Upgrades
Scaling
Logging
Monitoring
Networking
Security
Storage
Troubleshooting
Decommissioning
Operational Considerations
Glossary

Third-party Product Integrations

https://www.ubuntu.com/cloud/kubernetes
http://conjure-up.io/
file:///docs/getting-started-guides/ubuntu/installation/
file:///docs/getting-started-guides/ubuntu/validation/
file:///docs/getting-started-guides/ubuntu/backups/
file:///docs/getting-started-guides/ubuntu/upgrades/
file:///docs/getting-started-guides/ubuntu/scaling/
file:///docs/getting-started-guides/ubuntu/logging/
file:///docs/getting-started-guides/ubuntu/monitoring/
file:///docs/getting-started-guides/ubuntu/networking/
file:///docs/getting-started-guides/ubuntu/security/
file:///docs/getting-started-guides/ubuntu/storage/
file:///docs/getting-started-guides/ubuntu/troubleshooting/
file:///docs/getting-started-guides/ubuntu/decommissioning/
file:///docs/getting-started-guides/ubuntu/operational-considerations/
file:///docs/getting-started-guides/ubuntu/glossary/

Rancher

Developer Guides

Localhost using LXD

Where to find us

We’re normally following the following Slack channels:

kubernetes-users
kubernetes-novice
sig-cluster-lifecycle
sig-cluster-ops
sig-onprem

and we monitor the Kubernetes mailing lists.

file:///docs/getting-started-guides/ubuntu/rancher/
file:///docs/getting-started-guides/ubuntu/local/
https://kubernetes.slack.com/messages/kubernetes-users/
https://kubernetes.slack.com/messages/kubernetes-novice/
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://kubernetes.slack.com/messages/sig-cluster-ops/
https://kubernetes.slack.com/messages/sig-onprem/

Validation - End-to-end Testing

This page will outline how to ensure that a Juju-deployed Kubernetes cluster has stood up

correctly and is ready to accept workloads.

Before you begin

This page assumes you have a working Juju deployed cluster.

End-to-end testing

End-to-end (e2e) tests for Kubernetes provide a mechanism to test end-to-end behavior of the

system, and is the last signal to ensure end user operations match developer specifications.

Although unit and integration tests provide a good signal, in a distributed system like

Kubernetes it is not uncommon that a minor change may pass all unit and integration tests,

but cause unforeseen changes at the system level.

The primary objectives of the e2e tests are to ensure a consistent and reliable behavior of the

kubernetes code base, and to catch hard-to-test bugs before users do, when unit and

integration tests are insufficient.

End-to-end tests will pass on a properly running CDK cluster outside of bugs in the tests.

Before you begin

End-to-end testing

Deploy kubernetes-e2e charm

Running the e2e test

Tuning the e2e test

More information on end-to-end testing

Evaluating end-to-end results

Accessing the results in a flat file

Action result output

Known issues

Upgrading the e2e tests

Deploy kubernetes-e2e charm

To deploy the end-to-end test suite, you need to relate the kubernetes-e2ekubernetes-e2e charm to your

existing kubernetes-master nodes and easyrsa:

Once the relations have settled, you can do

jujujuju

statusstatus until the workload status results in

Ready to test.Ready to test. - you may then kick off an end to end validation test.

Running the e2e test

The e2e test is encapsulated as an action to ensure consistent runs of the end to end test. The

defaults are sensible for most deployments.

Tuning the e2e test

The e2e test is configurable. By default it will focus on or skip the declared conformance tests

in a cloud agnostic way. Default behaviors are configurable. This allows the operator to test

only a subset of the conformance tests, or to test more behaviors not enabled by default. You

can see all tunable options on the charm by inspecting the schema output of the actions:

Output:

juju deploy cs:~containers/kubernetes-e2ejuju deploy cs:~containers/kubernetes-e2e

juju add-relation kubernetes-e2e easyrsajuju add-relation kubernetes-e2e easyrsa

juju add-relation kubernetes-e2e:kubernetes-master kubernetes-master:kube-api-endpointjuju add-relation kubernetes-e2e:kubernetes-master kubernetes-master:kube-api-endpoint

juju add-relation kubernetes-e2e:kube-control kubernetes-master:kube-controljuju add-relation kubernetes-e2e:kube-control kubernetes-master:kube-control

juju run-action kubernetes-e2e/0 testjuju run-action kubernetes-e2e/0 test

juju actions kubernetes-e2e --format=yaml --schemajuju actions kubernetes-e2e --format=yaml --schema

As an example, you can run a more limited set of tests for rapid validation of a deployed

cluster. The following example will skip the FlakyFlaky , SlowSlow , and FeatureFeature labeled tests:

Note: the escaping of the regex due to how bash handles brackets.

To see the different types of tests the Kubernetes end-to-end charm has access to, we

encourage you to see the upstream documentation on the different types of tests, and to

thoroughly understand what subsets of the tests you are running.

More information on end-to-end testing

Along with the above descriptions, end-to-end testing is a much larger subject than this

readme can encapsulate. There is far more information in the end-to-end testing guide.

Evaluating end-to-end results

It is not enough to just simply run the test. Result output is stored in two places. The raw

output of the e2e run is available in the juju show-action-outputjuju show-action-output command, as well as a

flat file on disk on the kubernetes-e2ekubernetes-e2e unit that executed the test.

test:test:

 description: Run end-to-end validation test suite description: Run end-to-end validation test suite

 properties: properties:

 focus: focus:

 default: \[Conformance\] default: \[Conformance\]

 description: Regex focus for executing the test description: Regex focus for executing the test

 type: string type: string

 skip: skip:

 default: \[Flaky\] default: \[Flaky\]

 description: Regex of tests to skip description: Regex of tests to skip

 type: string type: string

 timeout: timeout:

 default: 30000 default: 30000

 description: Timeout in nanoseconds description: Timeout in nanoseconds

 type: integer type: integer

 title: test title: test

 type: object type: object

juju run-action kubernetes-e2e/0 test skip='\[(Flaky|Slow|Feature:.*)\]'juju run-action kubernetes-e2e/0 test skip='\[(Flaky|Slow|Feature:.*)\]'

https://git.k8s.io/community/contributors/devel/e2e-tests.md#kinds-of-tests
https://git.k8s.io/community/contributors/devel/e2e-tests.md

Note: The results will only be available once the action has completed the test run. End-

to-end testing can be quite time consuming, often taking more than 1 hour, depending

on configuration.

Accessing the results in a flat file

Here’s how to copy the output out as a file:

Output:

Copy output to your local machine:

Action result output

Or you can just show the output inline:

Output:

Show the results in your terminal:

Known issues

juju run-action kubernetes-e2e/0 testjuju run-action kubernetes-e2e/0 test

Action queued with id: 4ceed33a-d96d-465a-8f31-20d63442e51bAction queued with id: 4ceed33a-d96d-465a-8f31-20d63442e51b

juju scp kubernetes-e2e/0:4ceed33a-d96d-465a-8f31-20d63442e51b.log .juju scp kubernetes-e2e/0:4ceed33a-d96d-465a-8f31-20d63442e51b.log .

juju run-action kubernetes-e2e/0 testjuju run-action kubernetes-e2e/0 test

Action queued with id: 4ceed33a-d96d-465a-8f31-20d63442e51bAction queued with id: 4ceed33a-d96d-465a-8f31-20d63442e51b

juju show-action-output 4ceed33a-d96d-465a-8f31-20d63442e51bjuju show-action-output 4ceed33a-d96d-465a-8f31-20d63442e51b

The e2e test suite assumes egress network access. It will pull container images from gcr.iogcr.io .

You will need to have this registry unblocked in your firewall to successfully run e2e test

results. Or you may use the exposed proxy settings properly configured on the kubernetes-

worker units.

Upgrading the e2e tests

The e2e tests are always expanding; you can see if there’s an upgrade available by running

juju status kubernetes-juju status kubernetes-

e2ee2e .

When an upgrade is available, upgrade your deployment:

juju upgrade-charm kubernetes-e2ejuju upgrade-charm kubernetes-e2e

https://github.com/juju-solutions/bundle-canonical-kubernetes#proxy-configuration

Backups

The state of a Kubernetes cluster is kept in the etcd datastore. This page shows how to

backup and restore the etcd shipped with the Canonical Distribution of Kubernetes. Backing up

application specific data, normally stored in a persistent volume, is outside the scope of this

document.

Before you begin

This page assumes you have a working Juju deployed cluster.

Snapshot etcd data

The snapshotsnapshot action of the etcd charm allows the operator to snapshot a running cluster’s

data for use in cloning, backing up, or migrating to a new cluster.

This will create a snapshot in /home/ubuntu/etcd-snapshots/home/ubuntu/etcd-snapshots by default.

Restore etcd data

The etcd charm is capable of restoring its data from a cluster-data snapshot via the restorerestore

action. This comes with caveats and a very specific path to restore a cluster: The cluster must

Before you begin

Snapshot etcd data

Restore etcd data

Migrating an etcd cluster

Known Limitations

Loss of PKI warning

Restoring from snapshot on a scaled cluster

juju run-action etcd/0 snapshot juju run-action etcd/0 snapshot

be in a state of only having a single member. So it’s best to deploy a new cluster using the etcd

charm, without adding any additional units.

The above code snippet will deploy a single unit of etcd, as ‘new-etcd’

Once the restore action has completed, evaluate the cluster health. If the unit is healthy, you

may resume scaling the application to meet your needs.

param target: destination directory to save the existing data.

param skip-backup: Don’t backup any existing data.

Migrating an etcd cluster

Using the above snapshot and restore operations, migrating etcd is a fairly easy task.

Step 1: Snapshot your existing cluster. This is encapsulated in the snapshotsnapshot action.

Results:

Step 2: Check the status of the action so you can grab the snapshot and verify the sum. The

copy.cmdcopy.cmd result output is a copy/paste command for you to download the exact snapshot

that you just created.

Download the snapshot archive from the unit that created the snapshot and verify the sha256

sum

juju deploy etcd new-etcdjuju deploy etcd new-etcd

juju run-action etcd/0 restore target=/mnt/etcd-backupsjuju run-action etcd/0 restore target=/mnt/etcd-backups

juju run-action etcd/0 snapshotjuju run-action etcd/0 snapshot

Action queued with id: b46d5d6f-5625-4320-8cda-b611c6ae580cAction queued with id: b46d5d6f-5625-4320-8cda-b611c6ae580c

juju show-action-output b46d5d6f-5625-4320-8cda-b611c6ae580cjuju show-action-output b46d5d6f-5625-4320-8cda-b611c6ae580c

Results:

Copy the snapshot to the local disk and then check the sha256sum.

Step 3: Deploy the new cluster leader, and attach the snapshot:

Step 4: Reinitialize the master with the data from the resource we just attached in step 3.

Known Limitations

Loss of PKI warning

If you destroy the leader - identified with the ** text next to the unit number in status: all TLS

pki will be lost. No PKI migration occurs outside of the units requesting and registering the

certificates.

Caution: Mismanaging this configuration will result in locking yourself out of the cluster,

and can potentially break existing deployments in very strange ways relating to x509

validation of certificates, which affects both servers and clients.

results:results:

 copy: copy:

 cmd: juju scp etcd/0:/home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz cmd: juju scp etcd/0:/home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz

 . .

 snapshot: snapshot:

 path: /home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz path: /home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz

 sha256: 1dea04627812397c51ee87e313433f3102f617a9cab1d1b79698323f6459953d sha256: 1dea04627812397c51ee87e313433f3102f617a9cab1d1b79698323f6459953d

 size: 68K size: 68K

status: completedstatus: completed

juju scp etcd/0:/home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz .juju scp etcd/0:/home/ubuntu/etcd-snapshots/etcd-snapshot-2016-11-09-02.41.47.tar.gz .

sha256sum etcd-snapshot-2016-11-09-02.41.47.tar.gzsha256sum etcd-snapshot-2016-11-09-02.41.47.tar.gz

juju deploy etcd new-etcd --resource snapshot=./etcd-snapshot-2016-11-09-02.41.47.tar.gzjuju deploy etcd new-etcd --resource snapshot=./etcd-snapshot-2016-11-09-02.41.47.tar.gz

juju run-action new-etcd/0 restorejuju run-action new-etcd/0 restore

Restoring from snapshot on a scaled cluster

Restoring from a snapshot on a scaled cluster will result in a broken cluster. Etcd performs

clustering during unit turn-up, and state is stored in Etcd itself. During the snapshot restore

phase, a new cluster ID is initialized, and peers are dropped from the snapshot state to enable

snapshot restoration. Please follow the migration instructions above in the restore action

description.

Upgrades

This page will outline how to manage and execute a Kubernetes upgrade.

Before you begin

This page assumes you have a working deployed cluster.

Warning: You should always back up all your data before attempting an upgrade. Don’t

forget to include the workload inside your cluster! Refer to the backup documentation.

Patch kubernetes upgrades for example 1.9.0 ->
1.9.1

Clusters are transparently upgraded to the latest Kubernetes patch release. To be clear, a

cluster deployed using the 1.9/stable channel will transparently receive unattended upgrades

for the 1.9.X Kubernetes releases. The upgrade causes no disruption to the operation of the

cluster and requires no intervention from a cluster administrator. Each patch release is

evaluated by the Canonical Kubernetes Distribution team. Once a patch release passes internal

Before you begin

Patch kubernetes upgrades for example 1.9.0 -> 1.9.1

Upgrading a minor Kubernetes release for example 1.8.1 -> 1.9.0

Upgrade etcd

Upgrade kubeapi-load-balancer

Upgrade Kubernetes

Master Upgrades

Worker Upgrades

Blue/green worker upgrade

In place worker upgrade

Verify upgrade

Upgrade Flannel

Upgrade easyrsa

file:///docs/getting-started-guides/ubuntu/backups

testing and is deemed safe for upgrade, it is packaged in snap format and pushed to the stable

channel.

Upgrading a minor Kubernetes release for example
1.8.1 -> 1.9.0

The Kubernetes charms follow the Kubernetes releases. Please consult your support plan on

the upgrade frequency. Important operational considerations and changes in behaviour will

always be documented in the release notes.

Upgrade etcd

Backing up etcd requires an export and snapshot, refer to the backup documentation to create

a snapshot. After the snapshot, upgrade the etcd service with:

This will handle upgrades between minor versions of etcd. Instructions on how to upgrade

from 2.x to 3.x can be found here in the juju-solutions wiki.

Upgrade kubeapi-load-balancer

The Kubernetes Charms are generally all updated and released at the same time. A core part

of a cluster on Ubuntu is the kubeapi-load-balancer component. Incorrect or missing changes

there can have an effect on API availability and access controls. To ensure API service

continuity for the master and workers when they are updated, this upgrade needs to precede

them.

To upgrade the charm run:

Upgrade Kubernetes

The Kubernetes Charms use snap channels to drive payloads. The channels are defined by

X.Y/channelX.Y/channel where X.YX.Y is the major.minormajor.minor release of Kubernetes (for example 1.9) and

juju upgrade-charm etcdjuju upgrade-charm etcd

juju upgrade-charm kubeapi-load-balancerjuju upgrade-charm kubeapi-load-balancer

file:///docs/getting-started-guides/ubuntu/backups
https://github.com/juju-solutions/bundle-canonical-kubernetes/wiki/Etcd-2.3-to-3.x-upgrade

channelchannel is one of the four following channels:

Channel name Description

stable The latest stable released patch version of Kubernetes

candidate Release candidate releases of Kubernetes

beta Latest alpha or beta of Kubernetes for that minor release

edge Nightly builds of that minor release of Kubernetes

If a release isn’t available, the next highest channel is used. For example, 1.9/beta will load

/candidate/candidate or /stable/stable depending on availability of release. Development versions of

Kubernetes are available in the edge channel for each minor release. There is no guarantee

that edge snaps will work with the current charms.

Master Upgrades

First you need to upgrade the masters:

Note: Always upgrade the masters before the workers.

Once the latest charm is deployed, the channel for Kubernetes can be selected by issuing the

following:

Where xx is the minor version of Kubernetes. For example, 1.9/stable1.9/stable . See above for

Channel definitions. Once you’ve configured kubernetes-master with the appropriate channel,

run the upgrade action on each master:

juju upgrade-charm kubernetes-masterjuju upgrade-charm kubernetes-master

juju config kubernetes-master channel=1.x/stablejuju config kubernetes-master channel=1.x/stable

juju run-action kubernetes-master/0 upgradejuju run-action kubernetes-master/0 upgrade

juju run-action kubernetes-master/1 upgradejuju run-action kubernetes-master/1 upgrade

......

Worker Upgrades

Two methods of upgrading workers are supported. Blue/Green Deployment and upgrade-in-

place. Both methods are provided for operational flexibility and both are supported and tested.

Blue/Green will require more hardware up front than in-place, but is a safer upgrade route.

Blue/green worker upgrade

Given a deployment where the workers are named kubernetes-alpha.

Deploy new workers:

Pause the old workers so your workload migrates:

Verify old workloads have migrated with:

Tear down old workers with:

In place worker upgrade

Where xx is the minor version of Kubernetes. For example, 1.9/stable1.9/stable . See above for

Channel definitions. Once you’ve configured kubernetes-worker with the appropriate channel,

run the upgrade action on each worker:

juju deploy kubernetes-betajuju deploy kubernetes-beta

juju run-action kubernetes-alpha/# pausejuju run-action kubernetes-alpha/# pause

kubectl get pod -o widekubectl get pod -o wide

juju remove-application kubernetes-alphajuju remove-application kubernetes-alpha

juju upgrade-charm kubernetes-workerjuju upgrade-charm kubernetes-worker

juju config kubernetes-worker channel=1.x/stablejuju config kubernetes-worker channel=1.x/stable

http://martinfowler.com/bliki/BlueGreenDeployment.html

Verify upgrade

kubectl versionkubectl version should return the newer version.

It is recommended to rerun a cluster validation to ensure that the cluster upgrade has

successfully completed.

Upgrade Flannel

Upgrading flannel can be done at any time, it is independent of Kubernetes upgrades. Be

advised that networking is interrupted during the upgrade. You can initiate a flannel upgrade

with:

Upgrade easyrsa

Upgrading easyrsa can be done at any time, it is independent of Kubernetes upgrades.

Upgrading easyrsa should result in zero downtime as it is not a running service:

juju run-action kubernetes-worker/0 upgradejuju run-action kubernetes-worker/0 upgrade

juju run-action kubernetes-worker/1 upgradejuju run-action kubernetes-worker/1 upgrade

......

juju upgrade-charm flanneljuju upgrade-charm flannel

juju upgrade-charm easyrsajuju upgrade-charm easyrsa

file:///docs/getting-started-guides/ubuntu/validation

Scaling

This page shows how to horizontally scale master and worker nodes on a cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Any of the applications can be scaled out post-deployment. The charms update the status

messages with progress, so it is recommended to run.

Kubernetes masters

The provided Kubernetes master nodes act as a control plane for the cluster. The deployment

has been designed so that these nodes can be scaled independently of worker nodes to allow

for more operational flexibility. To scale a master node up, simply execute:

This will add another master node to the control plane. See the building high-availability

clusters section of the documentation for more information.

Kubernetes workers

Before you begin

Kubernetes masters

Kubernetes workers

etcd

Juju controller

watch -c juju status --colorwatch -c juju status --color

juju add-unit kubernetes-masterjuju add-unit kubernetes-master

file:///docs/admin/high-availability

The kubernetes-worker nodes are the load-bearing units of a Kubernetes cluster.

By default pods are automatically spread throughout the kubernetes-worker units that you

have deployed.

To add more kubernetes-worker units to the cluster:

or specify machine constraints to create larger nodes:

Refer to the machine constraints documentation for other machine constraints that might be

useful for the kubernetes-worker units.

etcd

Etcd is used as a key-value store for the Kubernetes cluster. The bundle defaults to one

instance in this cluster.

For quorum reasons it is recommended to keep an odd number of etcd nodes. 3, 5, 7, and 9

nodes are the recommended amount of nodes, depending on your cluster size. The CoreOS

etcd documentation has a chart for the optimal cluster size to determine fault tolerance.

To add an etcd unit:

Shrinking of an etcd cluster after growth is not recommended.

Juju controller

A single node is responsible for coordinating with all the Juju agents on each machine that

manage Kubernetes; it is called the controller node. For production deployments it is

recommended to enable HA of the controller node:

juju add-unit kubernetes-workerjuju add-unit kubernetes-worker

juju set-constraints kubernetes-worker "cpu-cores=8 mem=32G"juju set-constraints kubernetes-worker "cpu-cores=8 mem=32G"

juju add-unit kubernetes-workerjuju add-unit kubernetes-worker

juju add-unit etcdjuju add-unit etcd

https://jujucharms.com/docs/stable/charms-constraints
https://coreos.com/etcd/docs/latest/admin_guide.html#optimal-cluster-size

Enabling HA results in 3 controller nodes, this should be sufficient for most use cases. 5 and 7

controller nodes are also supported for extra large deployments.

Refer to the Juju HA controller documentation for more information.

juju enable-hajuju enable-ha

https://jujucharms.com/docs/2.2/controllers-ha

Setting up Kubernetes with Juju

Ubuntu 16.04 introduced the Canonical Distribution of Kubernetes, a pure upstream

distribution of Kubernetes designed for production usage. This page shows you how to deploy

a cluster.

Before you begin

A working Juju client; this does not have to be a Linux machine, it can also be Windows or

OSX.

A supported cloud.

Bare Metal deployments are supported via MAAS. Refer to the MAAS documentation

for configuration instructions.

OpenStack deployments are currently only tested on Icehouse and newer.

One of the following:

Network access to the following domains

*.jujucharms.com

Before you begin

Deployment overview

Support Level

Installation options

Conjure-up

Juju deploy

Configure Juju to use your cloud provider

Launch a Kubernetes cluster

Monitor deployment

Interacting with the cluster

Scale up cluster

Scale out cluster

Tear down cluster

More Info

https://www.ubuntu.com/cloud/kubernetes
https://jujucharms.com/docs/2.3/reference-install
http://maas.io
http://maas.io/docs/

gcr.io

github.com

Access to an Ubuntu mirror (public or private)

Offline deployment prepared with these instructions.

Deployment overview

Out of the box the deployment comes with the following components on 9 machines:

Kubernetes (automated deployment, operations, and scaling)

Four node Kubernetes cluster with one master and three worker nodes.

TLS used for communication between units for security.

Flannel Software Defined Network (SDN) plugin

A load balancer for HA kubernetes-master (Experimental)

Optional Ingress Controller (on worker)

Optional Dashboard addon (on master) including Heapster for cluster monitoring

EasyRSA

Performs the role of a certificate authority serving self signed certificates to the

requesting units of the cluster.

ETCD (distributed key value store)

Three unit cluster for reliability.

The Juju Kubernetes work is curated by the Big Software team at Canonical Ltd, let us know

how we are doing. If you find any problems please open an issue on our tracker so we can find

them.

Support Level

IaaS Provider
Config.
Mgmt

OS Networking Docs Conforms Support Level

https://github.com/juju-solutions/bundle-canonical-kubernetes/wiki/Running-CDK-in-a-restricted-environment
https://www.canonical.com/
https://github.com/juju-solutions/bundle-canonical-kubernetes

Amazon Web Services
(AWS)

Juju Ubuntu flannel,
calico*

docs Commercial,
Community

OpenStack Juju Ubuntu
flannel,
calico

docs
Commercial,
Community

Microsoft Azure Juju Ubuntu flannel docs
Commercial,
Community

Google Compute Engine
(GCE)

Juju Ubuntu
flannel,
calico

docs
Commercial,
Community

Joyent Juju Ubuntu flannel docs
Commercial,
Community

Rackspace Juju Ubuntu flannel docs
Commercial,
Community

VMware vSphere Juju Ubuntu
flannel,
calico

docs
Commercial,
Community

Bare Metal (MAAS) Juju Ubuntu
flannel,
calico

docs
Commercial,
Community

IaaS Provider
Config.
Mgmt

OS Networking Docs Conforms Support Level

For support level information on all solutions, see the Table of solutions chart.

Installation options

You can launch a cluster in one of two ways: conjure-up or juju deploy. Conjure-up is just a

convenience wrapper over juju and simplifies the installation. As such, it is the preferred

method of install.

Deployment of the cluster is supported on a wide variety of public clouds, private OpenStack

clouds, or raw bare metal clusters. Bare metal deployments are supported via MAAS.

Conjure-up

To install Kubernetes with conjure-up, you need only to run the following commands and then

follow the prompts:

Juju deploy

sudo snap install conjure-up --classicsudo snap install conjure-up --classic

conjure-up kubernetesconjure-up kubernetes

file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/ubuntu
https://ubuntu.com/cloud/kubernetes
https://github.com/juju-solutions/bundle-kubernetes-core
file:///docs/getting-started-guides/#table-of-solutions
http://maas.io/

Configure Juju to use your cloud provider

After deciding which cloud to deploy to, follow the cloud setup page to configure deploying to

that cloud.

Load your cloud credentials for each cloud provider you would like to use.

In this example

You can also just auto load credentials for popular clouds with the

juju autoload-credentialsjuju autoload-credentials command, which will auto import your credentials from the

default files and environment variables for each cloud.

Next we need to bootstrap a controller to manage the cluster. You need to define the cloud you

want to bootstrap on, the region, and then any name for your controller node:

or, another example, this time on Azure:

If you receive this error, it is likely that the default Azure VM size (Standard D1 v2 [1 vcpu, 3.5

GB memory]) is not available in the Azure location:

You will need a controller node for each cloud or region you are deploying to. See the controller

documentation for more information.

Note that each controller can host multiple Kubernetes clusters in a given cloud or region.

juju add-credential awsjuju add-credential aws

credential name: my_credentialscredential name: my_credentials

select auth-type [userpass, oauth, etc]: userpassselect auth-type [userpass, oauth, etc]: userpass

enter username: jorgeenter username: jorge

enter password: *******enter password: *******

juju update-clouds # This command ensures all the latest regions are up to date on your clientjuju update-clouds # This command ensures all the latest regions are up to date on your client

juju bootstrap aws/us-east-2juju bootstrap aws/us-east-2

juju bootstrap azure/westus2juju bootstrap azure/westus2

ERROR failed to bootstrap model: instance provisioning failed (Failed)ERROR failed to bootstrap model: instance provisioning failed (Failed)

https://jujucharms.com/docs/devel/getting-started
https://jujucharms.com/docs/2.3/credentials
https://jujucharms.com/docs/2.3/controllers

Launch a Kubernetes cluster

The following command will deploy the initial 9-node starter cluster. The speed of execution is

very dependent of the performance of the cloud you’re deploying to:

After this command executes the cloud will then launch instances and begin the deployment

process.

Monitor deployment

The

jujujuju

statusstatus command provides information about each unit in the cluster. Use the

watch -c juju status --watch -c juju status --

colorcolor command to get a real-time view of the cluster as it

deploys. When all the states are green and “Idle”, the cluster is ready to be used:

Output:

juju deploy canonical-kubernetesjuju deploy canonical-kubernetes

juju statusjuju status

Model Controller Cloud/Region Version SLAModel Controller Cloud/Region Version SLA

conjure-canonical-kubern-f48 conjure-up-aws-650 aws/us-east-2 2.3.2 unsupportedconjure-canonical-kubern-f48 conjure-up-aws-650 aws/us-east-2 2.3.2 unsupported

App Version Status Scale Charm Store Rev OS NotesApp Version Status Scale Charm Store Rev OS Notes

easyrsa 3.0.1 active 1 easyrsa jujucharms 27 ubuntu easyrsa 3.0.1 active 1 easyrsa jujucharms 27 ubuntu

etcd 2.3.8 active 3 etcd jujucharms 63 ubuntu etcd 2.3.8 active 3 etcd jujucharms 63 ubuntu

flannel 0.9.1 active 4 flannel jujucharms 40 ubuntu flannel 0.9.1 active 4 flannel jujucharms 40 ubuntu

kubeapi-load-balancer 1.10.3 active 1 kubeapi-load-balancer jujucharms 43 ubuntu exposedkubeapi-load-balancer 1.10.3 active 1 kubeapi-load-balancer jujucharms 43 ubuntu exposed

kubernetes-master 1.9.3 active 1 kubernetes-master jujucharms 13 ubuntu kubernetes-master 1.9.3 active 1 kubernetes-master jujucharms 13 ubuntu

kubernetes-worker 1.9.3 active 3 kubernetes-worker jujucharms 81 ubuntu exposedkubernetes-worker 1.9.3 active 3 kubernetes-worker jujucharms 81 ubuntu exposed

Unit Workload Agent Machine Public address Ports MessageUnit Workload Agent Machine Public address Ports Message

easyrsa/0* active idle 3 18.219.190.99 Certificate Authority connected.easyrsa/0* active idle 3 18.219.190.99 Certificate Authority connected.

etcd/0 active idle 5 18.219.56.23 2379/tcp Healthy with 3 known peersetcd/0 active idle 5 18.219.56.23 2379/tcp Healthy with 3 known peers

etcd/1* active idle 0 18.219.212.151 2379/tcp Healthy with 3 known peersetcd/1* active idle 0 18.219.212.151 2379/tcp Healthy with 3 known peers

etcd/2 active idle 6 13.59.240.210 2379/tcp Healthy with 3 known peersetcd/2 active idle 6 13.59.240.210 2379/tcp Healthy with 3 known peers

kubeapi-load-balancer/0* active idle 1 18.222.61.65 443/tcp Loadbalancer ready.kubeapi-load-balancer/0* active idle 1 18.222.61.65 443/tcp Loadbalancer ready.

kubernetes-master/0* active idle 4 18.219.105.220 6443/tcp Kubernetes master running.kubernetes-master/0* active idle 4 18.219.105.220 6443/tcp Kubernetes master running.

 flannel/3 active idle 18.219.105.220 Flannel subnet 10.1.78.1/24 flannel/3 active idle 18.219.105.220 Flannel subnet 10.1.78.1/24

kubernetes-worker/0 active idle 2 18.219.221.98 80/tcp,443/tcp Kubernetes worker running.kubernetes-worker/0 active idle 2 18.219.221.98 80/tcp,443/tcp Kubernetes worker running.

 flannel/1 active idle 18.219.221.98 Flannel subnet 10.1.38.1/24 flannel/1 active idle 18.219.221.98 Flannel subnet 10.1.38.1/24

kubernetes-worker/1* active idle 7 18.219.249.103 80/tcp,443/tcp Kubernetes worker running.kubernetes-worker/1* active idle 7 18.219.249.103 80/tcp,443/tcp Kubernetes worker running.

 flannel/2 active idle 18.219.249.103 Flannel subnet 10.1.68.1/24 flannel/2 active idle 18.219.249.103 Flannel subnet 10.1.68.1/24

kubernetes-worker/2 active idle 8 52.15.89.16 80/tcp,443/tcp Kubernetes worker running.kubernetes-worker/2 active idle 8 52.15.89.16 80/tcp,443/tcp Kubernetes worker running.

 flannel/0* active idle 52.15.89.16 Flannel subnet 10.1.73.1/24 flannel/0* active idle 52.15.89.16 Flannel subnet 10.1.73.1/24

Machine State DNS Inst id Series AZ MessageMachine State DNS Inst id Series AZ Message

0 started 18.219.212.151 i-065eab4eabc691b25 xenial us-east-2a running0 started 18.219.212.151 i-065eab4eabc691b25 xenial us-east-2a running

1 started 18.222.61.65 i-0b332955f028d6281 xenial us-east-2b running1 started 18.222.61.65 i-0b332955f028d6281 xenial us-east-2b running

2 started 18.219.221.98 i-0879ef1ed95b569bc xenial us-east-2a running2 started 18.219.221.98 i-0879ef1ed95b569bc xenial us-east-2a running

3 started 18.219.190.99 i-08a7b364fc008fc85 xenial us-east-2c running3 started 18.219.190.99 i-08a7b364fc008fc85 xenial us-east-2c running

4 started 18.219.105.220 i-0f92d3420b01085af xenial us-east-2a running4 started 18.219.105.220 i-0f92d3420b01085af xenial us-east-2a running

5 started 18.219.56.23 i-0271f6448cebae352 xenial us-east-2c running5 started 18.219.56.23 i-0271f6448cebae352 xenial us-east-2c running

6 started 13.59.240.210 i-0789ef5837e0669b3 xenial us-east-2b running6 started 13.59.240.210 i-0789ef5837e0669b3 xenial us-east-2b running

7 started 18.219.249.103 i-02f110b0ab042f7ac xenial us-east-2b running7 started 18.219.249.103 i-02f110b0ab042f7ac xenial us-east-2b running

8 started 52.15.89.16 i-086852bf1bee63d4e xenial us-east-2c running8 started 52.15.89.16 i-086852bf1bee63d4e xenial us-east-2c running

Relation provider Requirer Interface Type MessageRelation provider Requirer Interface Type Message

easyrsa:client etcd:certificates tls-certificates regular easyrsa:client etcd:certificates tls-certificates regular

easyrsa:client kubeapi-load-balancer:certificates tls-certificates regular easyrsa:client kubeapi-load-balancer:certificates tls-certificates regular

easyrsa:client kubernetes-master:certificates tls-certificates regular easyrsa:client kubernetes-master:certificates tls-certificates regular

easyrsa:client kubernetes-worker:certificates tls-certificates regular easyrsa:client kubernetes-worker:certificates tls-certificates regular

etcd:cluster etcd:cluster etcd peer etcd:cluster etcd:cluster etcd peer

etcd:db flannel:etcd etcd regular etcd:db flannel:etcd etcd regular

etcd:db kubernetes-master:etcd etcd regular etcd:db kubernetes-master:etcd etcd regular

kubeapi-load-balancer:loadbalancer kubernetes-master:loadbalancer public-address regular kubeapi-load-balancer:loadbalancer kubernetes-master:loadbalancer public-address regular

kubeapi-load-balancer:website kubernetes-worker:kube-api-endpoint http regular kubeapi-load-balancer:website kubernetes-worker:kube-api-endpoint http regular

kubernetes-master:cni flannel:cni kubernetes-cni subordinate kubernetes-master:cni flannel:cni kubernetes-cni subordinate

kubernetes-master:kube-api-endpoint kubeapi-load-balancer:apiserver http regular kubernetes-master:kube-api-endpoint kubeapi-load-balancer:apiserver http regular

kubernetes-master:kube-control kubernetes-worker:kube-control kube-control regular kubernetes-master:kube-control kubernetes-worker:kube-control kube-control regular

kubernetes-worker:cni flannel:cni kubernetes-cni subordinate kubernetes-worker:cni flannel:cni kubernetes-cni subordinate

Interacting with the cluster

After the cluster is deployed you may assume control over the cluster from any kubernetes-

master, or kubernetes-worker node.

If you didn’t use conjure-up, you will first need to download the credentials and client

application to your local workstation:

Create the kubectl config directory.

Copy the kubeconfig file to the default location.

The next step is to install the kubectl client on your local machine. The recommended way to

do this on Ubuntu is using the kubectl snap (https://kubernetes.io/docs/tasks/tools/install-

kubectl/#install-with-snap-on-ubuntu).

The following command should be run on the machine you wish to use to control the

kubernetes cluster:

This will install and deploy the kubectl binary. You may need to restart your terminal as your

$PATH may have been updated.

Query the cluster:

Output:

mkdir -p ~/.kubemkdir -p ~/.kube

juju scp kubernetes-master/0:/home/ubuntu/config ~/.kube/configjuju scp kubernetes-master/0:/home/ubuntu/config ~/.kube/config

sudo snap install kubectl --classicsudo snap install kubectl --classic

kubectl cluster-infokubectl cluster-info

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-with-snap-on-ubuntu

Congratulations, you’ve now set up a Kubernetes cluster!

Scale up cluster

Want larger Kubernetes nodes? It is easy to request different sizes of cloud resources from

Juju by using constraints. You can increase the amount of CPU or memory (RAM) in any of the

systems requested by Juju. This allows you to fine tune the Kubernetes cluster to fit your

workload. Use flags on the bootstrap command or as a separate

jujujuju

constraintsconstraints

command. Look to the Juju documentation for machine details.

Scale out cluster

Need more workers? We just add more units:

Or multiple units at one time:

You can also ask for specific instance types or other machine-specific constraints. See the

constraints documentation for more information. Here are some examples, note that generic

constraints such as corescores and memmem are more portable between clouds. In this case we’ll ask

for a specific instance type from AWS:

Kubernetes master is running at https://52.15.104.227:443Kubernetes master is running at https://52.15.104.227:443

Heapster is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/heapster/proxyHeapster is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/heapster/proxy

KubeDNS is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/kube-dns/proxyKubeDNS is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/kube-dns/proxy

Grafana is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/monitoring-grafana/proxyGrafana is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy

InfluxDB is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/monitoring-influxdb/proxyInfluxDB is running at https://52.15.104.227:443/api/v1/namespaces/kube-system/services/monitoring-influxdb/proxy

juju add-unit kubernetes-workerjuju add-unit kubernetes-worker

juju add-unit juju add-unit -n3-n3 kubernetes-worker kubernetes-worker

juju set-constraints kubernetes-worker instance-typejuju set-constraints kubernetes-worker instance-type==c4.largec4.large

juju add-unit kubernetes-workerjuju add-unit kubernetes-worker

https://jujucharms.com/docs/2.3/charms-constraints
https://jujucharms.com/docs/stable/reference-constraints

You can also scale the etcd charm for more fault tolerant key/value storage:

It is strongly recommended to run an odd number of units for quorum.

Tear down cluster

If you used conjure-up to create your cluster, you can tear it down with conjure-downconjure-down . If you

used juju directly, you can tear it down by destroying the Juju model or the controller. Use the

jujujuju

switchswitch command to get the current controller name:

This will shutdown and terminate all running instances on that cloud.

More Info

The Ubuntu Kubernetes deployment uses open-source operations, or operations as code,

known as charms. These charms are assembled from layers which keeps the code smaller

and more focused on the operations of just Kubernetes and its components.

The Kubernetes layer and bundles can be found in the kuberneteskubernetes project on github.com:

Bundle location

Kubernetes charm layer location

Canonical Kubernetes home

Main issue tracker

Feature requests, bug reports, pull requests and feedback are appreciated.

juju add-unit juju add-unit -n3-n3 etcd etcd

juju switchjuju switch

juju destroy-controller juju destroy-controller $controllername$controllername --destroy-all-models--destroy-all-models

https://git.k8s.io/kubernetes/cluster/juju/bundles
https://git.k8s.io/kubernetes/cluster/juju/layers
https://jujucharms.com/kubernetes
https://github.com/juju-solutions/bundle-canonical-kubernetes

Monitoring

This page shows how to connect various logging solutions to a Juju deployed cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Connecting Datadog

Datadog is a SaaS offering which includes support for a range of integrations, including

Kubernetes and ETCD. While the solution is SAAS/Commercial, they include a Free tier which is

supported with the following method. To deploy a full Kubernetes stack with Datadog out of

the box, do:

Installation of Datadog

To start, deploy the latest version Datadog from the Charm Store:

Before you begin

Connecting Datadog

Installation of Datadog

Connecting Elastic stack

New install of ElasticSearch

Existing ElasticSearch cluster

Connecting Nagios

New install of Nagios

Existing install of Nagios

juju deploy canonical-kubernetes-datadogjuju deploy canonical-kubernetes-datadog

juju deploy datadogjuju deploy datadog

Configure Datadog with your api-key, found in the Datadog dashboard. Replace XXXXXXXX with

your API key.

Finally, attach datadogdatadog to all applications you wish to monitor. For example, kubernetes-

master, kubernetes-worker, and etcd:

Connecting Elastic stack

The Elastic stack, formally “ELK” stack, refers to Elastic Search and the suite of tools to

facilitate log aggregation, monitoring, and dashboarding. To deploy a full Kubernetes stack

with elastic out of the box, do:

New install of ElasticSearch

To start, deploy the latest version of ElasticSearch, Kibana, Filebeat, and Topbeat from the

Charm Store:

This can be done in one command as:

However, if you wish to customize the deployment, or proceed manually, the following

commands can be issued:

juju configure datadog api-key=XXXXjuju configure datadog api-key=XXXX

juju add-relation datadog kubernetes-workerjuju add-relation datadog kubernetes-worker

juju add-relation datadog kubernetes-masterjuju add-relation datadog kubernetes-master

juju add-relation datadog etcdjuju add-relation datadog etcd

juju deploy canonical-kubernetes-elasticjuju deploy canonical-kubernetes-elastic

juju deploy beats-corejuju deploy beats-core

Finally, connect filebeat and topbeat to all applications you wish to monitor. For example,

kubernetes-master and kubernetes-worker:

Existing ElasticSearch cluster

In the event an ElasticSearch cluster already exists, the following can be used to connect and

leverage it instead of creating a new, separate, cluster. First deploy the two beats, filebeat and

topbeat

Configure both filebeat and topbeat to connect to your ElasticSearch cluster, replacing

255.255.255.255255.255.255.255 with the IP address in your setup.

Follow the above instructions on connect topbeat and filebeat to the applications you wish to

monitor.

Connecting Nagios

Nagios utilizes the Nagios Remote Plugin Executor protocol (NRPE protocol) as an agent on

juju deploy elasticsearchjuju deploy elasticsearch

juju deploy kibanajuju deploy kibana

juju deploy filebeatjuju deploy filebeat

juju deploy topbeatjuju deploy topbeat

juju add-relation elasticsearch kibanajuju add-relation elasticsearch kibana

juju add-relation elasticsearch topbeatjuju add-relation elasticsearch topbeat

juju add-relation elasticsearch filebeatjuju add-relation elasticsearch filebeat

juju add-relation kubernetes-master topbeatjuju add-relation kubernetes-master topbeat

juju add-relation kubernetes-master filebeatjuju add-relation kubernetes-master filebeat

juju add-relation kubernetes-worker topbeatjuju add-relation kubernetes-worker topbeat

juju add-relation kubernetes-worker filebeatjuju add-relation kubernetes-worker filebeat

juju deploy filebeatjuju deploy filebeat

juju deploy topbeatjuju deploy topbeat

juju configure filebeat elasticsearch=255.255.255.255juju configure filebeat elasticsearch=255.255.255.255

juju configure topbeat elasticsearch=255.255.255.255juju configure topbeat elasticsearch=255.255.255.255

each node to derive machine level details of the health and applications.

New install of Nagios

To start, deploy the latest version of the Nagios and NRPE charms from the store:

Connect Nagios to NRPE

Finally, add NRPE to all applications deployed that you wish to monitor, for example

kubernetes-masterkubernetes-master , kubernetes-workerkubernetes-worker , etcdetcd , easyrsaeasyrsa , and kubeapi-load-balancerkubeapi-load-balancer .

Existing install of Nagios

If you already have an existing Nagios installation, the nrpe-external-masternrpe-external-master charm can be

used instead. This will allow you to supply configuration options that map your existing

external Nagios installation to NRPE. Replace 255.255.255.255255.255.255.255 with the IP address of the

nagios instance.

Once configured, connect nrpe-external-master as outlined above.

juju deploy nagiosjuju deploy nagios

juju deploy nrpejuju deploy nrpe

juju add-relation nagios nrpejuju add-relation nagios nrpe

juju add-relation nrpe kubernetes-masterjuju add-relation nrpe kubernetes-master

juju add-relation nrpe kubernetes-workerjuju add-relation nrpe kubernetes-worker

juju add-relation nrpe etcdjuju add-relation nrpe etcd

juju add-relation nrpe easyrsajuju add-relation nrpe easyrsa

juju add-relation nrpe kubeapi-load-balancerjuju add-relation nrpe kubeapi-load-balancer

juju deploy nrpe-external-masterjuju deploy nrpe-external-master

juju configure nrpe-external-master nagios_master=255.255.255.255juju configure nrpe-external-master nagios_master=255.255.255.255

Networking

Kubernetes supports the Container Network Interface (CNI). This is a network plugin

architecture that allows you to use whatever Kubernetes-friendly SDN you want. Currently this

means support for Flannel and Canal.

This page shows how the various network portions of a cluster work and how to configure

them.

Before you begin

This page assumes you have a working Juju deployed cluster.

Note: Note that if you deploy a cluster via conjure-up or the CDK bundles, manually

deploying CNI plugins is unnecessary.

The CNI charms are subordinates. These charms will require a principal charm that

implements the kubernetes-cnikubernetes-cni interface in order to properly deploy.

Flannel

Canal

Before you begin

Flannel

Canal

Configuration

juju deploy flanneljuju deploy flannel

juju add-relation flannel kubernetes-masterjuju add-relation flannel kubernetes-master

juju add-relation flannel kubernetes-workerjuju add-relation flannel kubernetes-worker

juju add-relation flannel etcdjuju add-relation flannel etcd

https://github.com/containernetworking/cni
https://jujucharms.com/docs/stable/authors-subordinate-applications

Configuration

iface The interface to configure the flannel or canal SDN binding. If this value is empty string or

undefined the code will attempt to find the default network adapter similar to the following

command:

cidr The network range to configure the flannel or canal SDN to declare when establishing

networking setup with etcd. Ensure this network range is not active on layers 2/3 you’re

deploying to, as it will cause collisions and odd behavior if care is not taken when selecting a

good CIDR range to assign to flannel. It’s also good practice to ensure you allot yourself a large

enough IP range to support how large your cluster will potentially scale. Class A IP ranges with

/24 are a good option.

juju deploy canaljuju deploy canal

juju add-relation canal kubernetes-masterjuju add-relation canal kubernetes-master

juju add-relation canal kubernetes-workerjuju add-relation canal kubernetes-worker

juju add-relation canal etcdjuju add-relation canal etcd

$ $ route | route | grep grep default | head default | head -n-n 1 | awk 1 | awk {{'print $8''print $8'}}

Security Considerations

By default all connections between every provided node are secured via TLS by easyrsa,

including the etcd cluster.

This page explains the security considerations of a deployed cluster and production

recommendations.

Before you begin

This page assumes you have a working Juju deployed cluster.

Implementation

The TLS and easyrsa implementations use the following layers.

layer-tls-client layer-easyrsa

Limiting ssh access

By default the administrator can ssh to any deployed node in a cluster. You can mass disable

ssh access to the cluster nodes by issuing the following command.

Note: The Juju controller node will still have open ssh access in your cloud, and will be used as

a jump host in this case.

Refer to the model management page in the Juju documentation for instructions on how to

manage ssh keys.

Before you begin

Implementation

Limiting ssh access

juju model-config proxy-ssh=truejuju model-config proxy-ssh=true

https://jujucharms.com/docs/2.2/developer-layers
https://github.com/juju-solutions/layer-tls-client
https://github.com/juju-solutions/layer-easyrsa
https://jujucharms.com/docs/2.2/models

Storage

This page explains how to install and configure persistent storage on a cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Ceph Persistent Volumes

The Canonical Distribution of Kubernetes allows you to connect with durable storage devices

such as Ceph. When paired with the Juju Storage feature you can add durable storage easily

and across clouds.

Deploy a minimum of three ceph-mon and three ceph-osd units.

Relate the units together:

List the storage pools available to Juju for your cloud:

Output:

Before you begin

Ceph Persistent Volumes

juju deploy cs:ceph-mon -n 3juju deploy cs:ceph-mon -n 3

juju deploy cs:ceph-osd -n 3juju deploy cs:ceph-osd -n 3

juju add-relation ceph-mon ceph-osdjuju add-relation ceph-mon ceph-osd

juju storage-poolsjuju storage-pools

http://ceph.com
https://jujucharms.com/docs/2.0/charms-storage

Note: This listing is for the Amazon Web Services public cloud. Different clouds may have

different pool names.

Add a storage pool to the ceph-osd charm by NAME,SIZE,COUNT:

Next relate the storage cluster with the Kubernetes cluster:

We are now ready to enlist Persistent Volumes in Kubernetes which our workloads can

consume via Persistent Volume (PV) claims.

This example created a “test” Rados Block Device (rbd) in the size of 50 MB.

Use watch on your Kubernetes cluster like the following, you should see the PV become

enlisted and be marked as available:

Output:

To consume these Persistent Volumes, your pods will need an associated Persistent Volume

Name Provider AttrsName Provider Attrs

ebs ebs ebs ebs

ebs-ssd ebs volume-type=ssdebs-ssd ebs volume-type=ssd

loop loop loop loop

rootfs rootfs rootfs rootfs

tmpfs tmpfstmpfs tmpfs

juju add-storage ceph-osd/0 osd-devices=ebs,10G,1juju add-storage ceph-osd/0 osd-devices=ebs,10G,1

juju add-storage ceph-osd/1 osd-devices=ebs,10G,1juju add-storage ceph-osd/1 osd-devices=ebs,10G,1

juju add-storage ceph-osd/2 osd-devices=ebs,10G,1juju add-storage ceph-osd/2 osd-devices=ebs,10G,1

juju add-relation kubernetes-master ceph-monjuju add-relation kubernetes-master ceph-mon

juju run-action kubernetes-master/0 create-rbd-pv name=test size=50juju run-action kubernetes-master/0 create-rbd-pv name=test size=50

watch kubectl get pvwatch kubectl get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGENAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE

test 50M RWO Available 10stest 50M RWO Available 10s

file:///docs/concepts/storage/persistent-volumes/

Claim with them, and is outside the scope of this README. See the Persistent Volumes

documentation for more information.

file:///docs/concepts/storage/persistent-volumes/

Troubleshooting

This document with highlighting how to troubleshoot the deployment of a Kubernetes cluster,

it will not cover debugging of workloads inside Kubernetes.

Before you begin

This page assumes you have a working Juju deployed cluster.

Understanding Cluster Status

Using

jujujuju

statusstatus can give you some insight as to what’s happening in a cluster:

Before you begin

Understanding Cluster Status

SSHing to units

Collecting debug information

Common Problems

Load Balancer interfering with Helm

Logging and monitoring

In this example we can glean some information. The WorkloadWorkload column will show the status of

a given service. The MessageMessage section will show you the health of a given service in the cluster.

During deployment and maintenance these workload statuses will update to reflect what a

given node is doing. For example the workload my say maintenancemaintenance while message will

describe this maintenance as

InstallingInstalling

dockerdocker .

During normal operation the Workload should read activeactive , the Agent column (which reflects

what the Juju agent is doing) should read idleidle , and the messages will either say ReadyReady or

another descriptive term.

juju status --juju status --

colorcolor will also return all green results when a

cluster’s deployment is healthy.

Status can become unwieldy for large clusters, it is then recommended to check status on

individual services, for example to check the status on the workers only:

Model Controller Cloud/Region VersionModel Controller Cloud/Region Version

kubes work-multi aws/us-east-2 2.0.2.1kubes work-multi aws/us-east-2 2.0.2.1

App Version Status Scale Charm Store Rev OS NotesApp Version Status Scale Charm Store Rev OS Notes

easyrsa 3.0.1 active 1 easyrsa jujucharms 3 ubuntu easyrsa 3.0.1 active 1 easyrsa jujucharms 3 ubuntu

etcd 2.2.5 active 1 etcd jujucharms 17 ubuntu etcd 2.2.5 active 1 etcd jujucharms 17 ubuntu

flannel 0.6.1 active 2 flannel jujucharms 6 ubuntu flannel 0.6.1 active 2 flannel jujucharms 6 ubuntu

kubernetes-master 1.4.5 active 1 kubernetes-master jujucharms 8 ubuntu exposedkubernetes-master 1.4.5 active 1 kubernetes-master jujucharms 8 ubuntu exposed

kubernetes-worker 1.4.5 active 1 kubernetes-worker jujucharms 11 ubuntu exposedkubernetes-worker 1.4.5 active 1 kubernetes-worker jujucharms 11 ubuntu exposed

Unit Workload Agent Machine Public address Ports MessageUnit Workload Agent Machine Public address Ports Message

easyrsa/0* active idle 0/lxd/0 10.0.0.55 Certificate Authority connected.easyrsa/0* active idle 0/lxd/0 10.0.0.55 Certificate Authority connected.

etcd/0* active idle 0 52.15.47.228 2379/tcp Healthy with 1 known peers.etcd/0* active idle 0 52.15.47.228 2379/tcp Healthy with 1 known peers.

kubernetes-master/0* active idle 0 52.15.47.228 6443/tcp Kubernetes master services ready.kubernetes-master/0* active idle 0 52.15.47.228 6443/tcp Kubernetes master services ready.

 flannel/1 active idle 52.15.47.228 Flannel subnet 10.1.75.1/24 flannel/1 active idle 52.15.47.228 Flannel subnet 10.1.75.1/24

kubernetes-worker/0* active idle 1 52.15.177.233 80/tcp,443/tcp Kubernetes worker running.kubernetes-worker/0* active idle 1 52.15.177.233 80/tcp,443/tcp Kubernetes worker running.

 flannel/0* active idle 52.15.177.233 Flannel subnet 10.1.63.1/24 flannel/0* active idle 52.15.177.233 Flannel subnet 10.1.63.1/24

Machine State DNS Inst id Series AZMachine State DNS Inst id Series AZ

0 started 52.15.47.228 i-0bb211a18be691473 xenial us-east-2a0 started 52.15.47.228 i-0bb211a18be691473 xenial us-east-2a

0/lxd/0 started 10.0.0.55 juju-153b74-0-lxd-0 xenial 0/lxd/0 started 10.0.0.55 juju-153b74-0-lxd-0 xenial

1 started 52.15.177.233 i-0502d7de733be31bb xenial us-east-2b1 started 52.15.177.233 i-0502d7de733be31bb xenial us-east-2b

juju status kubernetes-workerjuju status kubernetes-worker

or just on the etcd cluster:

Errors will have an obvious message, and will return a red result when used with

juju status --juju status --

colorcolor . Nodes that come up in this manner should be investigated.

SSHing to units

You can ssh to individual units easily with the following convention,

juju sshjuju ssh

<servicename>/<unit#><servicename>/<unit#> :

Will automatically ssh you to the 3rd worker unit.

This will automatically ssh you to the easyrsa unit.

Collecting debug information

Sometimes it is useful to collect all the information from a cluster to share with a developer to

identify problems. This is best accomplished with CDK Field Agent.

Download and execute the collect.py script from CDK Field Agent on a box that has a Juju

client configured with the current controller and model pointing at the CDK deployment of

interest.

Running the script will generate a tarball of system information and includes basic information

such as systemctl status, Juju logs, charm unit data, etc. Additional application-specific

information may be included as well.

juju status etcdjuju status etcd

juju ssh kubernetes-worker/3juju ssh kubernetes-worker/3

juju ssh easyrsa/0 juju ssh easyrsa/0

https://github.com/juju-solutions/cdk-field-agent
https://github.com/juju-solutions/cdk-field-agent

Common Problems

Load Balancer interfering with Helm

This section assumes you have a working deployment of Kubernetes via Juju using a Load

Balancer for the API, and that you are using Helm to deploy charts.

To deploy Helm you will have run:

Then when using helm you may see one of the following errors:

Helm doesn’t get the version from the Tiller server

Helm cannot install your chart

This is caused by the API load balancer not forwarding ports in the context of the helm client-

server relationship. To deploy using helm, you will need to follow these steps:

1. Expose the Kubernetes Master service

2. Identify the public IP address of one of your masters

helm inithelm init

$HELM_HOME has been configured at /home/ubuntu/.helm$HELM_HOME has been configured at /home/ubuntu/.helm

Tiller (the helm server side component) has been installed into your Kubernetes Cluster.Tiller (the helm server side component) has been installed into your Kubernetes Cluster.

Happy Helming!Happy Helming!

helm versionhelm version

Client: &version.Version{SemVer:"v2.1.3", GitCommit:"5cbc48fb305ca4bf68c26eb8d2a7eb363227e973", GitTreeState:"clean"}Client: &version.Version{SemVer:"v2.1.3", GitCommit:"5cbc48fb305ca4bf68c26eb8d2a7eb363227e973", GitTreeState:"clean"}

Error: cannot connect to TillerError: cannot connect to Tiller

helm install <chart> --debughelm install <chart> --debug

Error: forwarding ports: error upgrading connection: Upgrade request requiredError: forwarding ports: error upgrading connection: Upgrade request required

juju expose kubernetes-masterjuju expose kubernetes-master

In this context the public IP address is 54.210.100.102.

If you want to access this data programmatically you can use the JSON output:

3. Update the kubeconfig file

juju status kubernetes-masterjuju status kubernetes-master

Model Controller Cloud/Region VersionModel Controller Cloud/Region Version

production k8s-admin aws/us-east-1 2.0.0production k8s-admin aws/us-east-1 2.0.0

App Version Status Scale Charm Store Rev OS NotesApp Version Status Scale Charm Store Rev OS Notes

flannel 0.6.1 active 1 flannel jujucharms 7 ubuntuflannel 0.6.1 active 1 flannel jujucharms 7 ubuntu

kubernetes-master 1.5.1 active 1 kubernetes-master jujucharms 10 ubuntu exposedkubernetes-master 1.5.1 active 1 kubernetes-master jujucharms 10 ubuntu exposed

Unit Workload Agent Machine Public address Ports MessageUnit Workload Agent Machine Public address Ports Message

kubernetes-master/0* active idle 5 54.210.100.102 6443/tcp Kubernetes master running.kubernetes-master/0* active idle 5 54.210.100.102 6443/tcp Kubernetes master running.

 flannel/0 active idle 54.210.100.102 Flannel subnet 10.1.50.1/24 flannel/0 active idle 54.210.100.102 Flannel subnet 10.1.50.1/24

Machine State DNS Inst id Series AZMachine State DNS Inst id Series AZ

5 started 54.210.100.102 i-002b7150639eb183b xenial us-east-1a5 started 54.210.100.102 i-002b7150639eb183b xenial us-east-1a

Relation Provides Consumes TypeRelation Provides Consumes Type

certificates easyrsa kubernetes-master regularcertificates easyrsa kubernetes-master regular

etcd etcd flannel regularetcd etcd flannel regular

etcd etcd kubernetes-master regularetcd etcd kubernetes-master regular

cni flannel kubernetes-master regularcni flannel kubernetes-master regular

loadbalancer kubeapi-load-balancer kubernetes-master regularloadbalancer kubeapi-load-balancer kubernetes-master regular

cni kubernetes-master flannel subordinatecni kubernetes-master flannel subordinate

cluster-dns kubernetes-master kubernetes-worker regularcluster-dns kubernetes-master kubernetes-worker regular

cni kubernetes-worker flannel subordinatecni kubernetes-worker flannel subordinate

juju show-status kubernetes-master --format json | jq --raw-output '.applications."kubernetes-master".units | keys[]'juju show-status kubernetes-master --format json | jq --raw-output '.applications."kubernetes-master".units | keys[]'

54.210.100.10254.210.100.102

Identify the kubeconfig file or section used for this cluster, and edit the server

configuration.

By default, it will look like https://54.213.123.123:443https://54.213.123.123:443 . Replace it with the Kubernetes

Master endpoint https://54.210.100.102:6443https://54.210.100.102:6443 and save.

Note that the default port used by CDK for the Kubernetes Master API is 6443 while the

port exposed by the load balancer is 443.

4. Start helm again!

Logging and monitoring

By default there is no log aggregation of the Kubernetes nodes, each node logs locally. Please

read over the logging page for more information.

helm install <chart> --debughelm install <chart> --debug

Created tunnel using local port: '36749'Created tunnel using local port: '36749'

SERVER: "localhost:36749"SERVER: "localhost:36749"

CHART PATH: /home/ubuntu/.helm/<chart>CHART PATH: /home/ubuntu/.helm/<chart>

NAME: <chart>NAME: <chart>

......

......

https://kubernetes.io/docs/getting-started-guides/ubuntu/logging/

Decommissioning

This page shows you how to properly decommission a cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Warning: By the time you’ve reached this step you should have backed up your

workloads and pertinent data; this section is for the complete destruction of a cluster.

Destroy the Juju model

It is recommended to deploy individual Kubernetes clusters in their own models, so that there

is a clean separation between environments. To remove a cluster first find out which model it’s

in with juju list-modelsjuju list-models . The controller reserves an adminadmin model for itself. If you have

chosen to not name your model it might show up as defaultdefault .

You can then destroy the model, which will in turn destroy the cluster inside of it:

Before you begin

Destroy the Juju model

Cleaning up the Controller

$ juju list-models$ juju list-models

Controller: aws-us-east-2Controller: aws-us-east-2

Model Cloud/Region Status Machines Cores Access Last connectionModel Cloud/Region Status Machines Cores Access Last connection

controller aws/us-east-2 available 1 2 admin just nowcontroller aws/us-east-2 available 1 2 admin just now

my-kubernetes-cluster* aws/us-east-2 available 12 22 admin 2 minutes agomy-kubernetes-cluster* aws/us-east-2 available 12 22 admin 2 minutes ago

juju destroy-model my-kubernetes-clusterjuju destroy-model my-kubernetes-cluster

This will destroy and decommission all nodes. You can confirm all nodes are destroyed by

running

jujujuju

statusstatus .

If you’re using a public cloud this will terminate the instances. If you’re on bare metal using

MAAS this will release the nodes, optionally wipe the disk, power off the machines, and return

them to available pool of machines to deploy from.

Cleaning up the Controller

If you’re not using the controller for anything else, you will also need to remove the controller

instance:

$ juju destroy-model my-kubernetes-cluster$ juju destroy-model my-kubernetes-cluster

WARNING! This command will destroy the "my-kubernetes-cluster" model.WARNING! This command will destroy the "my-kubernetes-cluster" model.

This includes all machines, applications, data and other resources.This includes all machines, applications, data and other resources.

Continue [y/N]? yContinue [y/N]? y

Destroying modelDestroying model

Waiting on model to be removed, 12 machine(s), 10 application(s)...Waiting on model to be removed, 12 machine(s), 10 application(s)...

Waiting on model to be removed, 12 machine(s), 9 application(s)...Waiting on model to be removed, 12 machine(s), 9 application(s)...

Waiting on model to be removed, 12 machine(s), 8 application(s)...Waiting on model to be removed, 12 machine(s), 8 application(s)...

Waiting on model to be removed, 12 machine(s), 7 application(s)...Waiting on model to be removed, 12 machine(s), 7 application(s)...

Waiting on model to be removed, 12 machine(s)...Waiting on model to be removed, 12 machine(s)...

Waiting on model to be removed...Waiting on model to be removed...

$$

$ juju list-controllers$ juju list-controllers

Use --refresh flag with this command to see the latest information.Use --refresh flag with this command to see the latest information.

Controller Model User Access Cloud/Region Models Machines HA VersionController Model User Access Cloud/Region Models Machines HA Version

aws-us-east-2* - admin superuser aws/us-east-2 2 1 none 2.0.1 aws-us-east-2* - admin superuser aws/us-east-2 2 1 none 2.0.1

$ juju destroy-controller aws-us-east-2 $ juju destroy-controller aws-us-east-2

WARNING! This command will destroy the "aws-us-east-2" controller.WARNING! This command will destroy the "aws-us-east-2" controller.

This includes all machines, applications, data and other resources.This includes all machines, applications, data and other resources.

Continue? (y/N):yContinue? (y/N):y

Destroying controllerDestroying controller

Waiting for hosted model resources to be reclaimedWaiting for hosted model resources to be reclaimed

All hosted models reclaimed, cleaning up controller machinesAll hosted models reclaimed, cleaning up controller machines

$ $

Operational Considerations

This page gives recommendations and hints for people managing long lived clusters

Before you begin

This page assumes you understand the basics of Juju and Kubernetes.

Managing Juju

Sizing your controller node

The Juju Controller:

requires about 2 to 2.5GB RAM to operate.

uses a MongoDB database as a storage backend for the configuration and state of the

cluster. This database can grow significantly, and can also be the biggest consumer of

CPU cycles on the instance

aggregates and stores the log data of all services and units. Therefore, significant storage

is needed for long lived models. If your intention is to keep the cluster running, make sure

to provision at least 64GB for the logs.

To bootstrap a controller with constraints run the following command:

Before you begin

Managing Juju

Sizing your controller node

SSHing into the Controller Node

Managing your Kubernetes cluster

Running privileged containers

Private registry

Example usage

juju bootstrap --contraints "mem=8GB cpu-cores=4 root-disk=128G"juju bootstrap --contraints "mem=8GB cpu-cores=4 root-disk=128G"

Juju will select the cheapest instance type matching your constraints on your target cloud. You

can also use the instance-typeinstance-type constraint in conjunction with root-diskroot-disk for strict control.

For more information about the constraints available, refer to the official documentation

Additional information about logging can be found in the logging section

SSHing into the Controller Node

By default, Juju will create a pair of SSH keys that it will use to automate the connection to

units. They are stored on the client node in ~/.local/share/juju/ssh/~/.local/share/juju/ssh/

After deployment, Juju Controller is a “silent unit” that acts as a proxy between the client and

the deployed applications. Nevertheless it can be useful to SSH into it.

First you need to understand your environment, especially if you run several Juju models and

controllers. Run

The first line

Controller:Controller:

k8sk8s refers to how you bootstrapped.

Then you will see 2, 3 or more models listed below.

admin/controller is the default model that hosts all controller units of juju

admin/default is created by default as the primary model to host the user application,

such as the Kubernetes cluster

admin/whale is an additional model created if you use conjure-up as an overlay on top of

Juju.

Now to ssh into a controller node, you first ask Juju to switch context, then ssh as you would

with a normal unit:

juju list-models --alljuju list-models --all

$ juju models --all$ juju models --all

Controller: k8sController: k8s

Model Cloud/Region Status Machines Cores Access Last connectionModel Cloud/Region Status Machines Cores Access Last connection

admin/controller lxd/localhost available 1 - admin just nowadmin/controller lxd/localhost available 1 - admin just now

admin/default lxd/localhost available 0 - admin 2017-01-23admin/default lxd/localhost available 0 - admin 2017-01-23

admin/whale* lxd/localhost available 6 - admin 3 minutes agoadmin/whale* lxd/localhost available 6 - admin 3 minutes ago

https://jujucharms.com/docs/stable/reference-constraints
file:///docs/getting-started-guides/ubuntu/logging

At this stage, you can query the controller model as well:

Note that if you had bootstrapped in HA mode, you would see several machines listed.

Now ssh-ing into the controller follows the same semantic as classic Juju commands:

When you are done and want to come back to your initial model, exit the controller and

Then if you need to switch back to your cluster and ssh into the units, run

Managing your Kubernetes cluster

juju switch controllerjuju switch controller

juju statusjuju status

Model Controller Cloud/Region VersionModel Controller Cloud/Region Version

controller k8s lxd/localhost 2.0.2controller k8s lxd/localhost 2.0.2

App Version Status Scale Charm Store Rev OS NotesApp Version Status Scale Charm Store Rev OS Notes

Unit Workload Agent Machine Public address Ports MessageUnit Workload Agent Machine Public address Ports Message

Machine State DNS Inst id Series AZMachine State DNS Inst id Series AZ

0 started 10.191.22.15 juju-2a5ed8-0 xenial 0 started 10.191.22.15 juju-2a5ed8-0 xenial

$ juju ssh 0$ juju ssh 0

Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.8.0-34-generic x86_64)Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.8.0-34-generic x86_64)

 * Documentation: https://help.ubuntu.com * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage * Support: https://ubuntu.com/advantage

 Get cloud support with Ubuntu Advantage Cloud Guest: Get cloud support with Ubuntu Advantage Cloud Guest:

 http://www.ubuntu.com/business/services/cloud http://www.ubuntu.com/business/services/cloud

0 packages can be updated.0 packages can be updated.

0 updates are security updates.0 updates are security updates.

Last login: Tue Jan 24 16:38:13 2017 from 10.191.22.1Last login: Tue Jan 24 16:38:13 2017 from 10.191.22.1

ubuntu@juju-2a5ed8-0:~$ ubuntu@juju-2a5ed8-0:~$

juju switch defaultjuju switch default

Running privileged containers

By default, juju-deployed clusters only allow running privileged containers on nodes with GPUs.

If you need privileged containers on other nodes, you have to enable the allow-privilegedallow-privileged

config on both kubernetes-master and kubernetes-worker:

Private registry

With the registry action, you can easily create a private docker registry that uses TLS

authentication. However, note that a registry deployed with that action is not HA; it uses

storage tied to the kubernetes node where the pod is running. Consequently, if the registry pod

is migrated from one node to another, you will need to re-publish the images.

Example usage

Create the relevant authentication files. Let’s say you want user userAuserA to authenticate with

the password passwordApasswordA . Then you’ll do:

(the htpasswdhtpasswd program comes with the apache2-utilsapache2-utils package)

Assuming that your registry will be reachable at myregistry.company.commyregistry.company.com , you already have

your TLS key in the registry.keyregistry.key file, and your TLS certificate (with

myregistry.company.commyregistry.company.com as Common Name) in the registry.crtregistry.crt file, you would then run:

If you then decide that you want to delete the registry, just run:

juju config kubernetes-master allow-privileged=truejuju config kubernetes-master allow-privileged=true

juju config kubernetes-worker allow-privileged=truejuju config kubernetes-worker allow-privileged=true

echo "userA:passwordA" > htpasswd-plainecho "userA:passwordA" > htpasswd-plain

htpasswd -c -b -B htpasswd userA passwordAhtpasswd -c -b -B htpasswd userA passwordA

juju run-action kubernetes-worker/0 registry domain=myregistry.company.com htpasswd="$(base64 -w0 htpasswd)" htpasswd-plain="$(base64 -w0 htpasswd-plain)" tlscert="$(base64 -w0 registry.crt)" tlskey="$(base64 -w0 registry.key)" ingress=truejuju run-action kubernetes-worker/0 registry domain=myregistry.company.com htpasswd="$(base64 -w0 htpasswd)" htpasswd-plain="$(base64 -w0 htpasswd-plain)" tlscert="$(base64 -w0 registry.crt)" tlskey="$(base64 -w0 registry.key)" ingress=true

juju run-action kubernetes-worker/0 registry delete=true ingress=truejuju run-action kubernetes-worker/0 registry delete=true ingress=true

Glossary and Terminology

This page explains some of the terminology used in deploying Kubernetes with Juju.

controller - The management node of a cloud environment. Typically you have one controller

per cloud region, or more in HA environments. The controller is responsible for managing all

subsequent models in a given environment. It contains the Juju API server and its underlying

database.

model - A collection of charms and their relationships that define a deployment. This includes

machines and units. A controller can host multiple models. It is recommended to separate

Kubernetes clusters into individual models for management and isolation reasons.

charm - The definition of a service, including its metadata, dependencies with other services,

required packages, and application management logic. It contains all the operational

knowledge of deploying a Kubernetes cluster. Included charm examples are

kubernetes-corekubernetes-core , easyrsaeasyrsa , flannelflannel , and etcdetcd .

unit - A given instance of a service. These may or may not use up a whole machine, and may

be colocated on the same machine. So for example you might have a kubernetes-workerkubernetes-worker ,

and etcdetcd , and easyrsaeasyrsa units running on a single machine, but they are three distinct units of

different services.

machine - A physical node, these can either be bare metal nodes, or virtual machines provided

by a cloud.

Local Kubernetes development with LXD

The purpose of using LXD on a local machine is to emulate the same deployment that a user

would use in a cloud or bare metal. Each node is treated as a machine, with the same

characteristics as production. Each node is a separate container, which runs Docker

containers and kubectlkubectl inside (see Cluster Intro for more info).

Running Kubernetes locally has obvious development advantages, such as lower cost and

faster iteration than constantly deploying and tearing down clusters on a public cloud. Ideally, a

Kubernetes developer can spawn all necessary nodes inside local containers and test new

configurations as they are committed. This page will show you how to deploy a cluster to LXD

containers on a local machine.

Before you begin

Install conjure-up, a tool for deploying big software. Add the current user to the lxdlxd user

group.

Note: If conjure-up asks you to “Setup an ipv6 subnet” with LXD, answer NO. ipv6 with

Juju/LXD is currently unsupported.

Deploying Kubernetes

Start the deployment with:

Before you begin

Deploying Kubernetes

Accessing the Cluster

sudo snap install conjure-up --classicsudo snap install conjure-up --classic

sudo usermod -a -G lxd $(whoami)sudo usermod -a -G lxd $(whoami)

conjure-up kubernetesconjure-up kubernetes

https://linuxcontainers.org/lxd/
file:///docs/tutorials/kubernetes-basics/cluster-intro/
http://conjure-up.io/

For this walkthrough we are going to create a new controller - select the localhostlocalhost Cloud

type:

Deploy the applications:

Wait for Juju bootstrap to finish:

Wait for our Applications to be fully deployed:

Run the final post-processing steps to automatically configure your Kubernetes environment:

Review the final summary screen:

Accessing the Cluster

You can access your Kubernetes cluster by running the following:

Or if you’ve already run this once it’ll create a new config file as shown in the summary screen.

kubectl --kubeconfig=~/.kube/configkubectl --kubeconfig=~/.kube/config

kubectl --kubeconfig=~/.kube/config.conjure-upkubectl --kubeconfig=~/.kube/config.conjure-up

Logging

This page will explain how logging works within a Juju deployed cluster.

Before you begin

This page assumes you have a working Juju deployed cluster.

Agent Logging

The

juju debug-juju debug-

loglog will show all of the consolidated logs of all the Juju agents running on

each node of the cluster. This can be useful for finding out why a specific node hasn’t deployed

or is in an error state. These agent logs are located in /var/lib/juju/agents/var/lib/juju/agents on every node.

See the Juju documentation for more information.

Managing log verbosity

Log verbosity in Juju is set at the model level. You can adjust it at any time:

and later on your k8s-production model

Before you begin

Agent Logging

Managing log verbosity

juju add-model k8s-development --config logging-config='<root>=DEBUG;unit=DEBUG'juju add-model k8s-development --config logging-config='<root>=DEBUG;unit=DEBUG'

juju model-config -m k8s-production logging-config='<root>=ERROR;unit=ERROR'juju model-config -m k8s-production logging-config='<root>=ERROR;unit=ERROR'

https://jujucharms.com/docs/stable/troubleshooting-logs

In addition, the jujud daemon is started in debug mode by default on all controllers. To remove

that behavior edit /var/lib/juju/init/jujud-machine-0/exec-start.sh/var/lib/juju/init/jujud-machine-0/exec-start.sh on the controller

node and comment the --debug--debug section.

It then contains:

Then restart the service with:

See the official documentation for more information about logging and other model settings in

Juju.

#!/usr/bin/env bash#!/usr/bin/env bash

Set up logging.# Set up logging.

touch touch '/var/log/juju/machine-0.log''/var/log/juju/machine-0.log'

chown syslog:syslog chown syslog:syslog '/var/log/juju/machine-0.log''/var/log/juju/machine-0.log'

chmod 0600 chmod 0600 '/var/log/juju/machine-0.log''/var/log/juju/machine-0.log'

execexec >>>> '/var/log/juju/machine-0.log''/var/log/juju/machine-0.log'

exec exec 2>&12>&1

Run the script.# Run the script.

'/var/lib/juju/tools/machine-0/jujud''/var/lib/juju/tools/machine-0/jujud' machine machine --data-dir--data-dir '/var/lib/juju''/var/lib/juju' --machine-id--machine-id

sudo systemctl restart jujud-machine-0.servicesudo systemctl restart jujud-machine-0.service

https://jujucharms.com/docs/stable/models-config

Rancher Integration with Ubuntu
Kubernetes

This repository explains how to deploy Rancher 2.0alpha on Canonical Kubernetes.

These steps are currently in alpha/testing phase and will most likely change.

The original documentation for this integration can be found at

https://github.com/CalvinHartwell/canonical-kubernetes-rancher/.

Before you begin

To use this guide, you must have a working kubernetes cluster that was deployed using

Canonical’s juju.

The full instructions for deploying Kubernetes with juju can be found at

https://kubernetes.io/docs/getting-started-guides/ubuntu/installation/.

Deploying Rancher

To deploy Rancher, we just need to run the Rancher container workload on-top of Kubernetes.

Rancher provides their containers through dockerhub

(https://hub.docker.com/r/rancher/server/tags/) and can be downloaded freely from the

internet.

If you’re running your own registry or have an offline deployment, the container should be

downloaded and pushed to a private registry before proceeding.

Deploying Rancher with a nodeport

Before you begin

Deploying Rancher

Deploying Rancher with a nodeport

Deploying Rancher with an ingress rule

Removing Rancher

https://github.com/CalvinHartwell/canonical-kubernetes-rancher/
https://kubernetes.io/docs/getting-started-guides/ubuntu/installation/
https://hub.docker.com/r/rancher/server/tags/

First create a yaml file which defines how to deploy Rancher on kubernetes. Save the file as

cdk-rancher-nodeport.yaml:

 --- ---

apiVersion: rbac.authorization.k8s.io/v1apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBindingkind: ClusterRoleBinding

metadata:metadata:

 name: cluster-admin name: cluster-admin

subjects:subjects:

 - kind: ServiceAccount - kind: ServiceAccount

 name: default name: default

 namespace: default namespace: default

roleRef:roleRef:

 kind: ClusterRole kind: ClusterRole

 name: cluster-admin name: cluster-admin

 apiGroup: rbac.authorization.k8s.io apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRolekind: ClusterRole

metadata:metadata:

 name: cluster-admin name: cluster-admin

rules:rules:

- apiGroups:- apiGroups:

 - '*' - '*'

 resources: resources:

 - '*' - '*'

 verbs: verbs:

 - '*' - '*'

- nonResourceURLs:- nonResourceURLs:

 - '*' - '*'

 verbs: verbs:

 - '*' - '*'

apiVersion: extensions/v1beta1apiVersion: extensions/v1beta1

kind: Deploymentkind: Deployment

metadata:metadata:

 creationTimestamp: null creationTimestamp: null

 labels: labels:

 app: rancher app: rancher

 name: rancher name: rancher

spec:spec:

 replicas: 1 replicas: 1

 selector: selector:

 matchLabels: matchLabels:

 app: rancher app: rancher

 strategy: {} strategy: {}

 template: template:

 metadata: metadata:

 creationTimestamp: null creationTimestamp: null

 labels: labels:

 app: rancher app: rancher

 ima: pod ima: pod

 spec: spec:

Once kubectl is running and working, run the following command to deploy Rancher:

 spec: spec:

 containers: containers:

 - image: rancher/server:preview - image: rancher/server:preview

 imagePullPolicy: Always imagePullPolicy: Always

 name: rancher name: rancher

 ports: ports:

 - containerPort: 80 - containerPort: 80

 - containerPort: 443 - containerPort: 443

 livenessProbe: livenessProbe:

 httpGet: httpGet:

 path: / path: /

 port: 80 port: 80

 initialDelaySeconds: 5 initialDelaySeconds: 5

 timeoutSeconds: 30 timeoutSeconds: 30

 resources: {} resources: {}

 restartPolicy: Always restartPolicy: Always

 serviceAccountName: "" serviceAccountName: ""

status: {}status: {}

apiVersion: v1apiVersion: v1

kind: Servicekind: Service

metadata:metadata:

 name: rancher name: rancher

 labels: labels:

 app: rancher app: rancher

spec:spec:

 ports: ports:

 - port: 443 - port: 443

 protocol: TCP protocol: TCP

 targetPort: 443 targetPort: 443

 selector: selector:

 app: rancher app: rancher

apiVersion: v1apiVersion: v1

kind: Servicekind: Service

metadata: metadata:

 name: rancher-nodeport name: rancher-nodeport

spec: spec:

 type: NodePort type: NodePort

 selector: selector:

 app: rancher app: rancher

 ports: ports:

 - name: rancher-api - name: rancher-api

 protocol: TCP protocol: TCP

 nodePort: 30443 nodePort: 30443

 port: 443 port: 443

 targetPort: 443 targetPort: 443

 kubectl apply -f cdk-rancher-nodeport.yaml kubectl apply -f cdk-rancher-nodeport.yaml

Now we need to open this nodeport so we can access it. For that, we can use juju. We need to

run the open-port command for each of the worker nodes in our cluster. Inside the cdk-

rancher-nodeport.yaml file, the nodeport has been set to 30443. Below shows how to open the

port on each of the worker nodes:

Rancher can now be accessed on this port through a worker IP or DNS entries if you have

created them. It is generally recommended that you create a DNS entry for each of the worker

nodes in your cluster. For example, if you have three worker nodes and you own the domain

example.com, you could create three A records, one for each worker in the cluster.

As creating DNS entries is outside of the scope of this document, we will use the freely

available xip.io service which can return A records for an IP address which is part of the

domain name. For example, if you have the domain rancher.35.178.130.245.xip.io, the xip.io

service will automatically return the IP address 35.178.130.245 as an A record which is useful

for testing purposes. For your deployment, the IP address 35.178.130.245 should be replaced

with one of your worker IP address, which can be found using Juju or AWS:

 # repeat this for each kubernetes worker in the cluster. # repeat this for each kubernetes worker in the cluster.

 juju run --unit kubernetes-worker/0 "open-port 30443" juju run --unit kubernetes-worker/0 "open-port 30443"

 juju run --unit kubernetes-worker/1 "open-port 30443" juju run --unit kubernetes-worker/1 "open-port 30443"

 juju run --unit kubernetes-worker/2 "open-port 30443" juju run --unit kubernetes-worker/2 "open-port 30443"

 calvinh@ubuntu-ws:~/Source/cdk-rancher$ juju status calvinh@ubuntu-ws:~/Source/cdk-rancher$ juju status

... output omitted. # ... output omitted.

Unit Workload Agent Machine Public address Ports MessageUnit Workload Agent Machine Public address Ports Message

easyrsa/0* active idle 0 35.178.118.232 Certificate Authority connected.easyrsa/0* active idle 0 35.178.118.232 Certificate Authority connected.

etcd/0* active idle 1 35.178.49.31 2379/tcp Healthy with 3 known peersetcd/0* active idle 1 35.178.49.31 2379/tcp Healthy with 3 known peers

etcd/1 active idle 2 35.177.99.171 2379/tcp Healthy with 3 known peersetcd/1 active idle 2 35.177.99.171 2379/tcp Healthy with 3 known peers

etcd/2 active idle 3 35.178.125.161 2379/tcp Healthy with 3 known peersetcd/2 active idle 3 35.178.125.161 2379/tcp Healthy with 3 known peers

kubeapi-load-balancer/0* active idle 4 35.178.37.87 443/tcp Loadbalancer ready.kubeapi-load-balancer/0* active idle 4 35.178.37.87 443/tcp Loadbalancer ready.

kubernetes-master/0* active idle 5 35.177.239.237 6443/tcp Kubernetes master running.kubernetes-master/0* active idle 5 35.177.239.237 6443/tcp Kubernetes master running.

 flannel/0* active idle 35.177.239.237 Flannel subnet 10.1.27.1/24 flannel/0* active idle 35.177.239.237 Flannel subnet 10.1.27.1/24

kubernetes-worker/0* active idle 6 35.178.130.245 80/tcp,443/tcp,30443/tcp Kubernetes worker running.kubernetes-worker/0* active idle 6 35.178.130.245 80/tcp,443/tcp,30443/tcp Kubernetes worker running.

 flannel/2 active idle 35.178.130.245 Flannel subnet 10.1.82.1/24 flannel/2 active idle 35.178.130.245 Flannel subnet 10.1.82.1/24

kubernetes-worker/1 active idle 7 35.178.121.29 80/tcp,443/tcp,30443/tcp Kubernetes worker running.kubernetes-worker/1 active idle 7 35.178.121.29 80/tcp,443/tcp,30443/tcp Kubernetes worker running.

 flannel/3 active idle 35.178.121.29 Flannel subnet 10.1.66.1/24 flannel/3 active idle 35.178.121.29 Flannel subnet 10.1.66.1/24

kubernetes-worker/2 active idle 8 35.177.144.76 80/tcp,443/tcp,30443/tcp Kubernetes worker running.kubernetes-worker/2 active idle 8 35.177.144.76 80/tcp,443/tcp,30443/tcp Kubernetes worker running.

 flannel/1 active idle 35.177.144.76 flannel/1 active idle 35.177.144.76

Note the IP addresses for the kubernetes-workers in the example above. You should pick one of the public addresses. # Note the IP addresses for the kubernetes-workers in the example above. You should pick one of the public addresses.

Try opening up Rancher in your browser using the nodeport and the domain name or ip

address:

If you need to make any changes to the kubernetes configuration file, edit the yaml file and

then just use apply again:

Deploying Rancher with an ingress rule

It is also possible to deploy Rancher using an ingress rule. This has the added benefit of not

requiring additional ports to be opened up on the Kubernetes cluster. First create a yaml file to

describe the deployment called cdk-rancher-ingress.yaml which should contain the following:

 # replace the IP address with one of your Kubernetes worker, find this from juju status command. # replace the IP address with one of your Kubernetes worker, find this from juju status command.

 wget https://35.178.130.245.xip.io:30443 --no-check-certificate wget https://35.178.130.245.xip.io:30443 --no-check-certificate

 # this should also work # this should also work

 wget https://35.178.130.245:30443 --no-check-certificate wget https://35.178.130.245:30443 --no-check-certificate

 kubectl apply -f cdk-rancher-nodeport.yaml kubectl apply -f cdk-rancher-nodeport.yaml

apiVersion: rbac.authorization.k8s.io/v1apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBindingkind: ClusterRoleBinding

metadata:metadata:

 name: cluster-admin name: cluster-admin

subjects:subjects:

 - kind: ServiceAccount - kind: ServiceAccount

 name: default name: default

 namespace: default namespace: default

roleRef:roleRef:

 kind: ClusterRole kind: ClusterRole

 name: cluster-admin name: cluster-admin

 apiGroup: rbac.authorization.k8s.io apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRolekind: ClusterRole

metadata:metadata:

 name: cluster-admin name: cluster-admin

rules:rules:

- apiGroups:- apiGroups:

 - '*' - '*'

 resources: resources:

 - '*' - '*'

 verbs: verbs:

 - '*' - '*'

 - '*' - '*'

- nonResourceURLs:- nonResourceURLs:

 - '*' - '*'

 verbs: verbs:

 - '*' - '*'

apiVersion: extensions/v1beta1apiVersion: extensions/v1beta1

kind: Deploymentkind: Deployment

metadata:metadata:

 creationTimestamp: null creationTimestamp: null

 labels: labels:

 app: rancher app: rancher

 name: rancher name: rancher

spec:spec:

 replicas: 1 replicas: 1

 selector: selector:

 matchLabels: matchLabels:

 app: rancher app: rancher

 strategy: {} strategy: {}

 template: template:

 metadata: metadata:

 creationTimestamp: null creationTimestamp: null

 labels: labels:

 app: rancher app: rancher

 spec: spec:

 containers: containers:

 - image: rancher/server:preview - image: rancher/server:preview

 imagePullPolicy: Always imagePullPolicy: Always

 name: rancher name: rancher

 ports: ports:

 - containerPort: 443 - containerPort: 443

 livenessProbe: livenessProbe:

 httpGet: httpGet:

 path: / path: /

 port: 80 port: 80

 initialDelaySeconds: 5 initialDelaySeconds: 5

 timeoutSeconds: 30 timeoutSeconds: 30

 resources: {} resources: {}

 restartPolicy: Always restartPolicy: Always

 serviceAccountName: "" serviceAccountName: ""

status: {}status: {}

apiVersion: v1apiVersion: v1

kind: Servicekind: Service

metadata: metadata:

 name: rancher name: rancher

 labels: labels:

 app: rancher app: rancher

spec: spec:

 ports: ports:

 - port: 443 - port: 443

 targetPort: 443 targetPort: 443

 protocol: TCP protocol: TCP

 selector: selector:

 app: rancher app: rancher

It is generally recommended that you create a DNS entry for each of the worker nodes in your

cluster. For example, if you have three worker nodes and you own the domain example.com,

you could create three A records, one for each worker in the cluster.

As creating DNS entries is outside of the scope of this tutorial, we will use the freely available

xip.io service which can return A records for an IP address which is part of the domain name.

For example, if you have the domain rancher.35.178.130.245.xip.io, the xip.io service will

automatically return the IP address 35.178.130.245 as an A record which is useful for testing

purposes.

For your deployment, the IP address 35.178.130.245 should be replaced with one of your

worker IP address, which can be found using Juju or AWS:

 app: rancher app: rancher

apiVersion: extensions/v1beta1apiVersion: extensions/v1beta1

kind: Ingresskind: Ingress

metadata:metadata:

 name: rancher name: rancher

 annotations: annotations:

 kubernetes.io/tls-acme: "true" kubernetes.io/tls-acme: "true"

 ingress.kubernetes.io/secure-backends: "true" ingress.kubernetes.io/secure-backends: "true"

spec:spec:

 tls: tls:

 - hosts: - hosts:

 - rancher.34.244.118.135.xip.io - rancher.34.244.118.135.xip.io

 rules: rules:

 - host: rancher.34.244.118.135.xip.io - host: rancher.34.244.118.135.xip.io

 http: http:

 paths: paths:

 - path: / - path: /

 backend: backend:

 serviceName: rancher serviceName: rancher

 servicePort: 443 servicePort: 443

Looking at the output from the juju status above, the Public Address (35.178.130.245) can be

used to create a xip.io DNS entry (rancher.35.178.130.245.xip.io) which should be placed into

the cdk-rancher-ingress.yaml file. You could also create your own DNS entry as long as it

resolves to each of the worker nodes or one of them it will work fine:

Once you’ve edited the ingress rule to reflect your DNS entries, run the kubectl apply -f cdk-

rancher-ingress.yaml to deploy Kubernetes:

Rancher can now be accessed on the regular 443 through a worker IP or DNS entries if you

have created them. Try opening it up in your browser:

 calvinh@ubuntu-ws:~/Source/cdk-rancher$ juju status calvinh@ubuntu-ws:~/Source/cdk-rancher$ juju status

... output omitted. # ... output omitted.

Unit Workload Agent Machine Public address Ports MessageUnit Workload Agent Machine Public address Ports Message

easyrsa/0* active idle 0 35.178.118.232 Certificate Authority connected.easyrsa/0* active idle 0 35.178.118.232 Certificate Authority connected.

etcd/0* active idle 1 35.178.49.31 2379/tcp Healthy with 3 known peersetcd/0* active idle 1 35.178.49.31 2379/tcp Healthy with 3 known peers

etcd/1 active idle 2 35.177.99.171 2379/tcp Healthy with 3 known peersetcd/1 active idle 2 35.177.99.171 2379/tcp Healthy with 3 known peers

etcd/2 active idle 3 35.178.125.161 2379/tcp Healthy with 3 known peersetcd/2 active idle 3 35.178.125.161 2379/tcp Healthy with 3 known peers

kubeapi-load-balancer/0* active idle 4 35.178.37.87 443/tcp Loadbalancer ready.kubeapi-load-balancer/0* active idle 4 35.178.37.87 443/tcp Loadbalancer ready.

kubernetes-master/0* active idle 5 35.177.239.237 6443/tcp Kubernetes master running.kubernetes-master/0* active idle 5 35.177.239.237 6443/tcp Kubernetes master running.

 flannel/0* active idle 35.177.239.237 Flannel subnet 10.1.27.1/24 flannel/0* active idle 35.177.239.237 Flannel subnet 10.1.27.1/24

kubernetes-worker/0* active idle 6 35.178.130.245 80/tcp,443/tcp,30443/tcp Kubernetes worker running.kubernetes-worker/0* active idle 6 35.178.130.245 80/tcp,443/tcp,30443/tcp Kubernetes worker running.

 flannel/2 active idle 35.178.130.245 Flannel subnet 10.1.82.1/24 flannel/2 active idle 35.178.130.245 Flannel subnet 10.1.82.1/24

kubernetes-worker/1 active idle 7 35.178.121.29 80/tcp,443/tcp,30443/tcp Kubernetes worker running.kubernetes-worker/1 active idle 7 35.178.121.29 80/tcp,443/tcp,30443/tcp Kubernetes worker running.

 flannel/3 active idle 35.178.121.29 Flannel subnet 10.1.66.1/24 flannel/3 active idle 35.178.121.29 Flannel subnet 10.1.66.1/24

kubernetes-worker/2 active idle 8 35.177.144.76 80/tcp,443/tcp,30443/tcp Kubernetes worker running.kubernetes-worker/2 active idle 8 35.177.144.76 80/tcp,443/tcp,30443/tcp Kubernetes worker running.

 flannel/1 active idle 35.177.144.76 flannel/1 active idle 35.177.144.76

Note the IP addresses for the kubernetes-workers in the example above. You should pick one of the public addresses. # Note the IP addresses for the kubernetes-workers in the example above. You should pick one of the public addresses.

 # The xip.io domain should appear in two places in the file, change both entries. # The xip.io domain should appear in two places in the file, change both entries.

 cat cdk-rancher-ingress.yaml | grep xip.io cat cdk-rancher-ingress.yaml | grep xip.io

 - host: rancher.35.178.130.245.xip.io - host: rancher.35.178.130.245.xip.io

 kubectl apply -f cdk-rancher-ingress.yaml kubectl apply -f cdk-rancher-ingress.yaml

 # replace the IP address with one of your Kubernetes worker, find this from juju status command. # replace the IP address with one of your Kubernetes worker, find this from juju status command.

 wget https://35.178.130.245.xip.io:443 --no-check-certificate wget https://35.178.130.245.xip.io:443 --no-check-certificate

If you need to make any changes to the kubernetes configuration file, edit the yaml file and

then just use apply again:

Removing Rancher

You can remove Rancher from your cluster using kubectl. Deleting constructs in Kubernetes is

as simple as creating them:

 kubectl apply -f cdk-rancher-ingress.yaml kubectl apply -f cdk-rancher-ingress.yaml

 # If you used the nodeport example change the yaml filename if you used the ingress example. # If you used the nodeport example change the yaml filename if you used the ingress example.

 kubectl delete -f cdk-rancher-nodeport.yaml kubectl delete -f cdk-rancher-nodeport.yaml

Using Windows Server Containers in
Kubernetes

Note: These instructions were recently updated based on Windows Server platform

enhancements and the Kubernetes v1.9 release

Kubernetes version 1.5 introduced Alpha support for Windows Server Containers based on the

Windows Server 2016 operating system. With the release of Windows Server version 1709 and

using Kubernetes v1.9 users are able to deploy a Kubernetes cluster either on-premises or in a

private/public cloud using a number of different network topologies and CNI plugins. Some key

feature improvements for Windows Server Containers on Kubernetes include:

Improved support for pods! Shared network namespace (compartment) with multiple

Windows Server containers (shared kernel)

Reduced network complexity by using a single network endpoint per pod

Kernel-Based load-balancing using the Virtual Filtering Platform (VFP) Hyper-v Switch

Extension (analogous to Linux iptables)

Container Runtime Interface (CRI) pod and node level statistics

Support for kubeadm commands to add Windows Server nodes to a Kubernetes

environment

The Kubernetes control plane (API Server, Scheduler, Controller Manager, etc) continue to run

on Linux, while the kubelet and kube-proxy can be run on Windows Server 2016 or later

Note: Windows Server Containers on Kubernetes is a Beta feature in Kubernetes v1.9

Get Windows Binaries

We recommend using the release binaries that can be found at

https://github.com/kubernetes/kubernetes/releases/latest. Under the CHANGELOG you can

find the Node Binaries link for Windows-amd64, which will include kubeadm, kubectl, kubelet

and kube-proxy.

If you wish to build the code yourself, please refer to detailed build instructions here.

Prerequisites

In Kubernetes version 1.9 or later, Windows Server Containers for Kubernetes are supported

using the following:

1. Kubernetes control plane running on existing Linux infrastructure (version 1.9 or later).

2. Kubenet network plugin setup on the Linux nodes.

3. Windows Server 2016 RTM or later. Windows Server version 1709 or later is preferred; it

unlocks key capabilities like shared network namespace.

4. Docker Version 17.06.1-ee-2 or later for Windows Server nodes (Linux nodes and

Kubernetes control plane can run any Kubernetes supported Docker Version).

Networking

There are several supported network configurations with Kubernetes v1.9 on Windows,

including both Layer-3 routed and overlay topologies using third-party network plugins.

1. Upstream L3 Routing - IP routes configured in upstream ToR

2. Host-Gateway - IP routes configured on each host

3. Open vSwitch (OVS) & Open Virtual Network (OVN) with Overlay - overlay networks

(supports STT and Geneve tunneling types)

4. [Future - In Review] Overlay - VXLAN or IP-in-IP encapsulation using Flannel

5. [Future] Layer-3 Routing with BGP (Calico)

The selection of which network configuration and topology to deploy depends on the physical

network topology and a user’s ability to configure routes, performance concerns with

encapsulation, and requirement to integrate with third-party network plugins.

https://github.com/kubernetes/kubernetes/releases/latest
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/compiling-kubernetes-binaries

Future CNI Plugins

An additional two CNI plugins [win-l2bridge (host-gateway) and win-overlay (vxlan)] are in PR

review. These two CNI plugins, when ready, can either be used directly or with Flannel.

Linux

The above networking approaches are already supported on Linux using a bridge interface,

which essentially creates a private network local to the node. Similar to the Windows side,

routes to all other pod CIDRs must be created in order to send packets via the “public” NIC.

Windows

Windows supports the CNI network model and uses plugins to interface with the Windows

Host Networking Service (HNS) to configure host networking and policy. At the time of this

writing, the only publicly available CNI plugin from Microsoft is built from a private repo and

available here wincni.exe. It uses an l2bridge network created through the Windows Host

Networking Service (HNS) by an administrator using HNS PowerShell commands on each

node as documented in the Windows Host Setup section below. Source code for the future

CNI plugins will be made available publicly.

Upstream L3 Routing Topology

In this topology, networking is achieved using L3 routing with static IP routes configured in an

upstream Top of Rack (ToR) switch/router. Each cluster node is connected to the

management network with a host IP. Additionally, each node uses a local ‘l2bridge’ network

with a pod CIDR assigned. All pods on a given worker node will be connected to the pod CIDR

subnet (‘l2bridge’ network). In order to enable network communication between pods running

on different nodes, the upstream router has static routes configured with pod CIDR prefix =>

Host IP.

The following example diagram illustrates the Windows Server networking setup for

Kubernetes using Upstream L3 Routing Setup:

Host-Gateway Topology

This topology is similar to the Upstream L3 Routing topology with the only difference being

that static IP routes are configured directly on each cluster node and not in the upstream ToR.

Each node uses a local ‘l2bridge’ network with a pod CIDR assigned as before and has routing

https://github.com/containernetworking/plugins/pull/85
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/cni/wincni.exe

table entries for all other pod CIDR subnets assigned to the remote cluster nodes.

Using OVN with OVS

The following diagram gives a general overview of the architecture and interaction between

components:

(The above image is from https://github.com/openvswitch/ovn-kubernetes#overlay-mode-

architecture-diagram)

Due to its architecture, OVN has a central component which stores your networking intent in a

database. Other components i.e. kube-apiserver, kube-controller-manager, kube-scheduler etc.

can be deployed on that central node as well.

Setting up Windows Server Containers on
Kubernetes

To run Windows Server Containers on Kubernetes, you’ll need to set up both your host

machines and the Kubernetes node components for Windows. Depending on your network

topology, routes may need to be set up for pod communication on different nodes.

Host Setup

For 1. Upstream L3 Routing Topology and 2. Host-Gateway Topology

Linux Host Setup

1. Linux hosts should be setup according to their respective distro documentation and the

requirements of the Kubernetes version you will be using.

2. Configure Linux Master node using steps here

3. [Optional] CNI network plugin installed.

Windows Host Setup

https://github.com/openvswitch/ovn-kubernetes#overlay-mode-architecture-diagram
https://github.com/MicrosoftDocs/Virtualization-Documentation/blob/live/virtualization/windowscontainers/kubernetes/creating-a-linux-master.md

1. Windows Server container host running the required Windows Server and Docker versions.

Follow the setup instructions outlined by this help topic: https://docs.microsoft.com/en-

us/virtualization/windowscontainers/quick-start/quick-start-windows-server.

2. Get Windows Binaries kubelet.exe, kube-proxy.exe, and kubectl.exe using instructions

3. Copy Node spec file (kube config) from Linux master node with X.509 keys

4. Create the HNS Network, ensure the correct CNI network config, and start kubelet.exe

using this script start-kubelet.ps1

5. Start kube-proxy using this script start-kubeproxy.ps1

6. [Only required for #2 Host-Gateway mode] Add static routes on Windows host using this

script AddRoutes.ps1

More detailed instructions can be found here.

Windows CNI Config Example Today, Windows CNI plugin is based on wincni.exe code with

the following example, configuration file. This is based on the ToR example diagram shown

above, specifying the configuration to apply to Windows node-1. Of special interest is Windows

node-1 pod CIDR (10.10.187.64/26) and the associated gateway of cbr0 (10.10.187.66). The

exception list is specifying the Service CIDR (11.0.0.0/8), Cluster CIDR (10.10.0.0/16), and

Management (or Host) CIDR (10.127.132.128/25).

Note: this file assumes that a user previous created ‘l2bridge’ host networks on each Windows

node using <Verb>-HNSNetwork<Verb>-HNSNetwork cmdlets as shown in the start-kubelet.ps1start-kubelet.ps1 and

start-kubeproxy.ps1start-kubeproxy.ps1 scripts linked above

https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/start-kubelet.ps1
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/start-kubeproxy.ps1
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/AddRoutes.ps1
https://github.com/MicrosoftDocs/Virtualization-Documentation/blob/live/virtualization/windowscontainers/kubernetes/getting-started-kubernetes-windows.md

For 3. Open vSwitch (OVS) & Open Virtual Network (OVN) with Overlay

{{

 "cniVersion""cniVersion":: "0.2.0""0.2.0",,

 "name""name":: "l2bridge""l2bridge",,

 "type""type":: "wincni.exe""wincni.exe",,

 "master""master":: "Ethernet""Ethernet",,

 "ipam""ipam":: {{

 "environment""environment":: "azure""azure",,

 "subnet""subnet":: "10.10.187.64/26""10.10.187.64/26",,

 "routes""routes":: [{[{

 "GW""GW":: "10.10.187.66""10.10.187.66"

 }]}]

 },},

 "dns""dns":: {{

 "Nameservers""Nameservers":: [[

 "11.0.0.10""11.0.0.10"

]]

 },},

 "AdditionalArgs""AdditionalArgs":: [{[{

 "Name""Name":: "EndpointPolicy""EndpointPolicy",,

 "Value""Value":: {{

 "Type""Type":: "OutBoundNAT""OutBoundNAT",,

 "ExceptionList""ExceptionList":: [[

 "11.0.0.0/8""11.0.0.0/8",,

 "10.10.0.0/16""10.10.0.0/16",,

 "10.127.132.128/25""10.127.132.128/25"

]]

 }}

 },},

 {{

 "Name""Name":: "EndpointPolicy""EndpointPolicy",,

 "Value""Value":: {{

 "Type""Type":: "ROUTE""ROUTE",,

 "DestinationPrefix""DestinationPrefix":: "11.0.0.0/8""11.0.0.0/8",,

 "NeedEncap""NeedEncap":: truetrue

 }}

 },},

 {{

 "Name""Name":: "EndpointPolicy""EndpointPolicy",,

 "Value""Value":: {{

 "Type""Type":: "ROUTE""ROUTE",,

 "DestinationPrefix""DestinationPrefix":: "10.127.132.213/32""10.127.132.213/32",,

 "NeedEncap""NeedEncap":: truetrue

 }}

 }}

]]

}}

Linux Host Setup

Setting up the central node and the components needed is out of scope of this document. You

can read these instructions for that.

Adding a Linux minion is also out of scope and you can read it here: Linux minion.

Windows Host Setup

Adding a Windows minion requires you to install OVS and OVN binaries. Windows Server

container host running the required Windows Server and Docker versions. Follow the setup

instructions outlined by this help topic. This type of deployment is supported starting with

Windows Server 2016 RTM.

Compiling OVS and generating the installer will not be treated in this document. For a step by

step instruction please visit this link. For a prebuilt certified installer please visit this link and

download the latest version of it.

The following guide uses the prebuilt certified installer.

Installing OVS can be done either via the GUI dialogs or unattended. Adding a Windows host to

your setup requires you to have OVN HostOVN Host together with the default installation features.

Below is the dialog image on what needs to be installed:

For an unattended installation please use the following command:

The installer propagates new environment variables. Please open a new command shell or

logoff/logon to ensure the environment variables are refreshed.

For overlay, OVS on Windows requires a transparent docker network to function properly.

Please use the following to create a transparent docker network which will be used by OVS.

From powershell:

cmd /c 'msiexec /i openvswitch.msi ADDLOCAL="OpenvSwitchCLI,OpenvSwitchDriver,OVNHost" /qn'cmd /c 'msiexec /i openvswitch.msi ADDLOCAL="OpenvSwitchCLI,OpenvSwitchDriver,OVNHost" /qn'

docker network create -d transparent --gateway $GATEWAY_IP --subnet $SUBNET `docker network create -d transparent --gateway $GATEWAY_IP --subnet $SUBNET `

 -o com.docker.network.windowsshim.interface="$INTERFACE_ALIAS" external -o com.docker.network.windowsshim.interface="$INTERFACE_ALIAS" external

https://github.com/openvswitch/ovn-kubernetes#k8s-master-node-initialization
https://github.com/openvswitch/ovn-kubernetes#k8s-minion-node-initializations
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-start-windows-server
http://docs.openvswitch.org/en/latest/intro/install/windows/#open-vswitch-on-windows
https://cloudbase.it/openvswitch/#download

Where $SUBNET is the minion subnet which will be used to spawn pods on (the one which will

be used by kubernetes), $GATEWAY_IP is the first IP of the $SUBNET and $INTERFACE_ALIAS

is the interface used for creating the overlay tunnels (must have connectivity with the rests of

the OVN hosts). Example:

After creating the docker network please run the next commands from powershell. (creates an

OVS bridge, adds the interface under the bridge and enables the OVS forwarding switch

extension)

Besides of the above, setting up a Windows host is the same as the Linux host. Follow the

steps from here.

Windows CNI Setup

Today, Windows OVN&OVS CNI plugin is based on ovn_cni.exe which can be downloaded

from here. A sample of CNI config file is the following:

docker network create -d transparent --gateway 10.0.1.1 --subnet 10.0.1.0/24 `docker network create -d transparent --gateway 10.0.1.1 --subnet 10.0.1.0/24 `

 -o com.docker.network.windowsshim.interface="Ethernet0" external -o com.docker.network.windowsshim.interface="Ethernet0" external

$a = Get-NetAdapter | where Name -Match HNSTransparent$a = Get-NetAdapter | where Name -Match HNSTransparent

Rename-NetAdapter $a[0].Name -NewName HNSTransparentRename-NetAdapter $a[0].Name -NewName HNSTransparent

Stop-Service ovs-vswitchd -force; Disable-VMSwitchExtension "Cloudbase Open vSwitch Extension";Stop-Service ovs-vswitchd -force; Disable-VMSwitchExtension "Cloudbase Open vSwitch Extension";

ovs-vsctl --no-wait del-br br-exovs-vsctl --no-wait del-br br-ex

ovs-vsctl --no-wait --may-exist add-br br-exovs-vsctl --no-wait --may-exist add-br br-ex

ovs-vsctl --no-wait add-port br-ex HNSTransparent -- set interface HNSTransparent type=internalovs-vsctl --no-wait add-port br-ex HNSTransparent -- set interface HNSTransparent type=internal

ovs-vsctl --no-wait add-port br-ex $INTERFACE_ALIASovs-vsctl --no-wait add-port br-ex $INTERFACE_ALIAS

Enable-VMSwitchExtension "Cloudbase Open vSwitch Extension"; sleep 2; Restart-Service ovs-vswitchdEnable-VMSwitchExtension "Cloudbase Open vSwitch Extension"; sleep 2; Restart-Service ovs-vswitchd

{{

 "name": "net", "name": "net",

 "type": "ovn_cni.exe", "type": "ovn_cni.exe",

 "bridge": "br-int", "bridge": "br-int",

 "isGateway": "true", "isGateway": "true",

 "ipMasq": "false", "ipMasq": "false",

 "ipam": { "ipam": {

 "type": "host-local", "type": "host-local",

 "subnet": "$SUBNET" "subnet": "$SUBNET"

 } }

}}

https://github.com/openvswitch/ovn-kubernetes#k8s-minion-node-initializations
https://cloudbase.it/downloads/ovn_cni.exe

Where $SUBNET is the subnet that was used in the previous

docker networkdocker network

createcreate

command.

For a complete guide on Google Cloud Platform (GCP), namely Google Compute Engine (GCE)

visit this.

For a complete guide on Amazon Web Services (AWS) visit this.

Starting the Cluster

To start your cluster, you’ll need to start both the Linux-based Kubernetes control plane, and

the Windows Server-based Kubernetes node components (kubelet and kube-proxy). For the

OVS & OVN only the kubelet is required.

Starting the Linux-based Control Plane

Use your preferred method to start Kubernetes cluster on Linux. Please note that Cluster CIDR

might need to be updated.

Support for kubeadm join

If your cluster has been created by kubeadm, and your networking is setup correctly using one

of the methods listed above (networking is setup outside of kubeadm), you can use kubeadm

to add a Windows node to your cluster. At a high level, you first have to initialize the master

with kubeadm (Linux), then set up the CNI based networking (outside of kubeadm), and finally

start joining Windows or Linux worker nodes to the cluster. For additional documentation and

reference material, visit the kubeadm link above.

The kubeadm binary can be found at Kubernetes Releases, inside the node binaries archive.

Adding a Windows node is not any different than adding a Linux node:

kubeadm.exe join --token <token> <master-ip>:<master-port> --discovery-token-kubeadm.exe join --token <token> <master-ip>:<master-port> --discovery-token-

ca-cert-hash sha256:<hash>ca-cert-hash sha256:<hash>

See joining-your-nodes for more details.

https://github.com/apprenda/kubernetes-ovn-heterogeneous-cluster#heterogeneous-kubernetes-cluster-on-top-of-ovn
https://github.com/justeat/kubernetes-windows-aws-ovs#kubernetes-on-windows-in-aws-using-ovn
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://github.com/kubernetes/kubernetes/releases
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#44-joining-your-nodes

Supported Features

The examples listed below assume running Windows nodes on Windows Server 1709. If you

are running Windows Server 2016, the examples will need the image updated to specify

image: microsoft/windowsservercore:ltsc2016image: microsoft/windowsservercore:ltsc2016 . This is due to the requirement for

container images to match the host operating system version when using process isolation.

Not specifying a tag will implicitly use the :latest:latest tag which can lead to surprising behaviors.

Please consult with https://hub.docker.com/r/microsoft/windowsservercore/ for additional

information on Windows Server Core image tagging.

Scheduling Pods on Windows

Because your cluster has both Linux and Windows nodes, you must explicitly set the

nodeSelectornodeSelector constraint to be able to schedule pods to Windows nodes. You must set

nodeSelector with the label beta.kubernetes.io/osbeta.kubernetes.io/os to the value windowswindows ; see the following

example:

{{

 ""apiVersion"apiVersion":: ""v1"v1",,

 ""kind"kind":: ""Pod"Pod",,

 ""metadata"metadata":: {{

 ""name"name":: ""iis"iis",,

 ""labels"labels":: {{

 ""name"name":: ""iis"iis"

 }}

 },},

 ""spec"spec":: {{

 ""containers"containers":: [[

 {{

 ""name"name":: ""iis"iis",,

 ""image"image":: ""microsoft/iis:windowsservercore-1709"microsoft/iis:windowsservercore-1709",,

 ""ports"ports":: [[

 {{

 ""containerPort"containerPort":: 8080

 }}

]]

 }}

],],

 ""nodeSelector"nodeSelector":: {{

 ""beta.kubernetes.io/os"beta.kubernetes.io/os":: ""windows"windows"

 }}

 }}

}}

https://hub.docker.com/r/microsoft/windowsservercore/

Note: this example assumes you are running on Windows Server 1709, so uses the image tag

to support that. If you are on a different version, you will need to update the tag. For example, if

on Windows Server 2016, update to use "image": "microsoft/iis""image": "microsoft/iis" which will default to

that OS version.

Secrets and ConfigMaps

Secrets and ConfigMaps can be utilized in Windows Server Containers, but must be used as

environment variables. See limitations section below for additional details.

Examples:

Windows pod with secrets mapped to environment variables

Windows pod with configMap values mapped to environment variables

 apiVersionapiVersion:: v1v1

 kindkind:: SecretSecret

 metadatametadata::

 namename:: mysecretmysecret

 typetype:: OpaqueOpaque

 datadata::

 usernameusername:: YWRtaW4=YWRtaW4=

 passwordpassword:: MWYyZDFlMmU2N2RmMWYyZDFlMmU2N2Rm

 apiVersionapiVersion:: v1v1

 kindkind:: PodPod

 metadatametadata::

 namename:: my-secret-podmy-secret-pod

 specspec::

 containerscontainers::

 -- namename:: my-secret-podmy-secret-pod

 imageimage:: microsoft/windowsservercore:1709microsoft/windowsservercore:1709

 envenv::

 -- namename:: USERNAMEUSERNAME

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: mysecretmysecret

 keykey:: usernameusername

 -- namename:: PASSWORDPASSWORD

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: mysecretmysecret

 keykey:: passwordpassword

 nodeSelectornodeSelector::

 beta.kubernetes.io/osbeta.kubernetes.io/os:: windowswindows

Volumes

Some supported Volume Mounts are local, emptyDir, hostPath. One thing to remember is that

paths must either be escaped, or use forward slashes, for example

mountPath:mountPath:

"C:\\etc\\foo""C:\\etc\\foo" or mountPath: "C:/etc/foo"mountPath: "C:/etc/foo" .

Persistent Volume Claims are supported for supported volume types.

Examples:

Windows pod with a hostPath volume

kindkind:: ConfigMapConfigMap

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: example-configexample-config

datadata::

 example.property.1example.property.1:: hellohello

 example.property.2example.property.2:: worldworld

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: my-configmap-podmy-configmap-pod

specspec::

 containerscontainers::

 -- namename:: my-configmap-podmy-configmap-pod

 imageimage:: microsoft/windowsservercore:1709microsoft/windowsservercore:1709

 envenv::

 -- namename:: EXAMPLE_PROPERTY_1EXAMPLE_PROPERTY_1

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 namename:: example-configexample-config

 keykey:: example.property.1example.property.1

 -- namename:: EXAMPLE_PROPERTY_2EXAMPLE_PROPERTY_2

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 namename:: example-configexample-config

 keykey:: example.property.2example.property.2

 nodeSelectornodeSelector::

 beta.kubernetes.io/osbeta.kubernetes.io/os:: windowswindows

Windows pod with multiple emptyDir volumes

DaemonSets

DaemonSets are supported

 apiVersionapiVersion:: v1v1

 kindkind:: PodPod

 metadatametadata::

 namename:: my-hostpath-volume-podmy-hostpath-volume-pod

 specspec::

 containerscontainers::

 -- namename:: my-hostpath-volume-podmy-hostpath-volume-pod

 imageimage:: microsoft/windowsservercore:1709microsoft/windowsservercore:1709

 volumeMountsvolumeMounts::

 -- namename:: foofoo

 mountPathmountPath:: ""C:C:\\\\etcetc\\\\foo"foo"

 readOnlyreadOnly:: truetrue

 nodeSelectornodeSelector::

 beta.kubernetes.io/osbeta.kubernetes.io/os:: windowswindows

 volumesvolumes::

 -- namename:: foofoo

 hostPathhostPath::

 pathpath:: ""C:C:\\\\etcetc\\\\foo"foo"

 apiVersionapiVersion:: v1v1

 kindkind:: PodPod

 metadatametadata::

 namename:: my-empty-dir-podmy-empty-dir-pod

 specspec::

 containerscontainers::

 -- imageimage:: microsoft/windowsservercore:1709microsoft/windowsservercore:1709

 namename:: my-empty-dir-podmy-empty-dir-pod

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 -- mountPathmountPath:: C:/scratchC:/scratch

 namename:: scratch-volumescratch-volume

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

 -- namename:: scratch-volumescratch-volume

 emptyDiremptyDir:: {}{}

 nodeSelectornodeSelector::

 beta.kubernetes.io/osbeta.kubernetes.io/os:: windowswindows

Metrics

Windows Stats use a hybrid model: pod and container level stats come from CRI (via

dockershim), while node level stats come from the “winstats” package that exports cadvisor

like data structures using windows specific perf counters from the node.

Container Resources

Container resources (CPU and memory) could be set now for windows containers in v1.10.

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: DaemonSetDaemonSet

metadatametadata::

 namename:: my-DaemonSetmy-DaemonSet

 labelslabels::

 appapp:: foofoo

specspec::

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: foofoo

 specspec::

 containerscontainers::

 -- namename:: foofoo

 imageimage:: microsoft/windowsservercore:1709microsoft/windowsservercore:1709

 nodeSelectornodeSelector::

 beta.kubernetes.io/osbeta.kubernetes.io/os:: windowswindows

Hyper-V Containers

Hyper-V containers are supported as experimental in v1.10. To create a Hyper-V container,

kubelet should be started with feature gates HyperVContainer=trueHyperVContainer=true and Pod should include

annotation experimental.windows.kubernetes.io/isolation-type=hypervexperimental.windows.kubernetes.io/isolation-type=hyperv .

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: iisiis

specspec::

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: iisiis

 specspec::

 containerscontainers::

 -- namename:: iisiis

 imageimage:: microsoft/iismicrosoft/iis

 resourcesresources::

 limitslimits::

 memorymemory:: ""128Mi"128Mi"

 cpucpu:: 22

 portsports::

 -- containerPortcontainerPort:: 8080

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: iisiis

specspec::

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: iisiis

 annotationsannotations::

 experimental.windows.kubernetes.io/isolation-typeexperimental.windows.kubernetes.io/isolation-type:: hypervhyperv

 specspec::

 containerscontainers::

 -- namename:: iisiis

 imageimage:: microsoft/iismicrosoft/iis

 portsports::

 -- containerPortcontainerPort:: 8080

Known Limitations for Windows Server Containers
with v1.9

Some of these limitations will be addressed by the community in future releases of Kubernetes

Shared network namespace (compartment) with multiple Windows Server containers

(shared kernel) per pod is only supported on Windows Server 1709 or later

Using Secrets and ConfigMaps as volume mounts is not supported

Mount propagation is not supported on Windows

The StatefulSet functionality for stateful applications is not supported

Horizontal Pod Autoscaling for Windows Server Container pods has not been verified to

work end-to-end

Hyper-V isolated containers are not supported.

Windows container OS must match the Host OS. If it does not, the pod will get stuck in a

crash loop.

Under the networking models of L3 or Host GW, Kubernetes Services are inaccessible to

Windows nodes due to a Windows issue. This is not an issue if using OVN/OVS for

networking.

Windows kubelet.exe may fail to start when running on Windows Server under VMware

Fusion issue 57110

Flannel and Weavenet are not yet supported

Some .Net Core applications expect environment variables with a colon (::) in the name.

Kubernetes currently does not allow this. Replace colon (::) with double underscore (____)

as documented here.

Next steps and resources

Support for Windows is in Beta as of v1.9 and your feedback is welcome. For information

on getting involved, please head to SIG-Windows

Troubleshooting and Common Problems: Link

https://github.com/kubernetes/kubernetes/pull/57124
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?tabs=basicconfiguration#configuration-by-environment
https://github.com/kubernetes/community/blob/master/sig-windows/README.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems

Validate Node Setup

Node Conformance Test

Node conformance test is a containerized test framework that provides a system verification

and functionality test for a node. The test validates whether the node meets the minimum

requirements for Kubernetes; a node that passes the test is qualified to join a Kubernetes

cluster.

Limitations

In Kubernetes version 1.5, node conformance test has the following limitations:

Node conformance test only supports Docker as the container runtime.

Node Prerequisite

To run node conformance test, a node must satisfy the same prerequisites as a standard

Kubernetes node. At a minimum, the node should have the following daemons installed:

Container Runtime (Docker)

Kubelet

Running Node Conformance Test

Node Conformance Test

Limitations

Node Prerequisite

Running Node Conformance Test

Running Node Conformance Test for Other Architectures

Running Selected Test

Caveats

To run the node conformance test, perform the following steps:

1. Point your Kubelet to localhost --api-servers="http://localhost:8080"--api-servers="http://localhost:8080" , because the

test framework starts a local master to test Kubelet. There are some other Kubelet flags

you may care:

1. --pod-cidr--pod-cidr : If you are using kubenetkubenet , you should specify an arbitrary CIDR to

Kubelet, for example --pod-cidr=10.180.0.0/24--pod-cidr=10.180.0.0/24 .

2. --cloud-provider--cloud-provider : If you are using --cloud-provider=gce--cloud-provider=gce , you should remove the

flag to run the test.

2. Run the node conformance test with command:

Running Node Conformance Test for Other
Architectures

Kubernetes also provides node conformance test docker images for other architectures:

Arch Image

amd64 node-test-amd64

arm node-test-arm

arm64 node-test-arm64

Running Selected Test

To run specific tests, overwrite the environment variable FOCUSFOCUS with the regular expression of

tests you want to run.

$CONFIG_DIR is the pod manifest path of your Kubelet.# $CONFIG_DIR is the pod manifest path of your Kubelet.

$LOG_DIR is the test output path.# $LOG_DIR is the test output path.

sudo sudo docker run docker run -it-it --rm--rm --privileged--privileged --net--net==host host \\

 -v-v /:/rootfs /:/rootfs -v-v $CONFIG_DIR$CONFIG_DIR::$CONFIG_DIR$CONFIG_DIR -v-v LOG_DIRLOG_DIR:/var/result :/var/result \\

 k8s.gcr.io/node-test:0.2 k8s.gcr.io/node-test:0.2

To skip specific tests, overwrite the environment variable SKIPSKIP with the regular expression of

tests you want to skip.

Node conformance test is a containerized version of node e2e test. By default, it runs all

conformance tests.

Theoretically, you can run any node e2e test if you configure the container and mount required

volumes properly. But it is strongly recommended to only run conformance test, because it

requires much more complex configuration to run non-conformance test.

Caveats

The test leaves some docker images on the node, including the node conformance test

image and images of containers used in the functionality test.

The test leaves dead containers on the node. These containers are created during the

functionality test.

sudo sudo docker run docker run -it-it --rm--rm --privileged--privileged --net--net==host host \\

 -v-v /:/rootfs:ro /:/rootfs:ro -v-v $CONFIG_DIR$CONFIG_DIR::$CONFIG_DIR$CONFIG_DIR -v-v LOG_DIRLOG_DIR:/var/result :/var/result \\

 -e-e FOCUSFOCUS==MirrorPod MirrorPod \ \ # Only run MirrorPod test# Only run MirrorPod test

 k8s.gcr.io/node-test:0.2 k8s.gcr.io/node-test:0.2

sudo sudo docker run docker run -it-it --rm--rm --privileged--privileged --net--net==host host \\

 -v-v /:/rootfs:ro /:/rootfs:ro -v-v $CONFIG_DIR$CONFIG_DIR::$CONFIG_DIR$CONFIG_DIR -v-v LOG_DIRLOG_DIR:/var/result :/var/result \\

 -e-e SKIPSKIP==MirrorPod MirrorPod \ \ # Run all conformance tests but skip MirrorPod test# Run all conformance tests but skip MirrorPod test

 k8s.gcr.io/node-test:0.2 k8s.gcr.io/node-test:0.2

https://github.com/kubernetes/community/blob/master/contributors/devel/e2e-node-tests.md

 SETUP CONCEPTS TASKS TUTORIALS REFERENCEHOME

USERS › APPLICATION DEVELOPER › FOUNDATIONAL

I n t r o d u c t i o n

SECTIONS IN THIS DOC

If you’re a developer looking to run applications on

Kubernetes, this page and its linked topics can help you get

started with the fundamentals. Though this page primarily

describes development workflows, the subsequent page in

the series covers more advanced, production setups.

A quick note

This app developer “user journey” is not a

comprehensive overview of Kubernetes. It focuses

more on what you develop, test, and deploy to

Kubernetes, rather than how the underlying

infrastructure works.

Though it’s possible for a single person to manage

both, in many organizations, it’s common to assign

the latter to a dedicated .

Get started with a cluster

Web-based environment

cluster operator

file:///
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///editdocs/
file:///community/
file:///blog
https://github.com/kubernetes/kubernetes
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/home/
file:///docs/setup/
file:///docs/concepts/
file:///docs/tasks/
file:///docs/tutorials/
file:///docs/reference/
file:///docs/home/?path=users&persona=app-developer&level=intermediate
file:///docs/reference/glossary/?all=true#term-cluster-operator

If you’re brand new to Kubernetes and simply want to

experiment without setting up a full development

environment, web-based environments are a good place to

start:

Kubernetes Basics - Introduces you to six common

Kubernetes workflows. Each section walks you

through browser-based, interactive exercises

complete with their own Kubernetes environment.

Katacoda - The playground equivalent of the

environment used in Kubernetes Basics above.

Katacoda also provides more advanced tutorials,

such as “Liveness and Readiness Healthchecks”.

Play with Kubernetes - A less structured

environment than the Katacoda playground, for

those who are more comfortable with Kubernetes

concepts and want to explore further. It supports

the ability to spin up multiple nodes.

Minikube (recommended)

Web-based environments are easy to access, but are not

persistent. If you want to continue exploring Kubernetes in

a workspace that you can come back to and change,

Minikube is a good option.

Minikube can be installed locally, and runs a simple, single-

node Kubernetes cluster inside a virtual machine (VM).

This cluster is fully functioning and contains all core

Kubernetes components. Many developers have found this

sufficient for local application development.

Install Minikube.

Install kubectl. ()

(Optional) Install Docker if you plan to run your

Minikube cluster as part of a local development

environment.

What is kubectl?

file:///docs/tutorials/kubernetes-basics/#basics-modules
https://www.katacoda.com/courses/kubernetes/playground
https://www.katacoda.com/courses/kubernetes/
http://labs.play-with-k8s.com/
file:///docs/tasks/tools/install-minikube/
file:///docs/tasks/tools/install-kubectl/
file:///docs/user-guide/kubectl-overview/
file:///docs/setup/independent/install-kubeadm/#installing-docker

Minikube includes a Docker daemon, but if you’re

developing applications locally, you’ll want an

independent Docker instance to support your

workflow. This allows you to create and

push them to a container registry.

Version 1.12 is recommended for full

compatibility with Kubernetes, but a few other

versions are tested and known to work.

You can get basic information about your cluster with the

commands kubectl cluster-info and kubectl get nodes .

However, to get a good idea of what’s really going on, you

need to deploy an application to your cluster. This is

covered in the next section.

Deploy an application

Basic workloads

The following examples demonstrate the fundamentals of

deploying Kubernetes apps:

Stateless apps: Deploy a simple nginx server .

Stateful apps: Deploy a MySQL database.

Through these deployment tasks, you’ll gain familiarity with

the following:

General concepts

Configuration files - Written in YAML or

JSON, these files describe the desired state

of your application in terms of Kubernetes

API objects. A file can include one or more

API object descriptions (manifests). (See the

example YAML from the stateless app).

containers

file:///docs/concepts/overview/what-is-kubernetes/#why-containers
file:///docs/tasks/run-application/run-stateless-application-deployment/
file:///docs/tasks/run-application/run-single-instance-stateful-application/
file:///docs/tasks/run-application/run-stateless-application-deployment/#creating-and-exploring-an-nginx-deployment

 - This is the basic unit for all of the

workloads you run on Kubernetes. These

workloads, such as Deployments and Jobs,

are composed of one or more Pods. To learn

more, check out this explanation of Pods and

Nodes.

Common workload objects

 - The most common way of

running X copies (Pods) of your application.

Supports rolling updates to your container

images.

 - By itself, a Deployment can’t receive

traffic. Setting up a Service is one of the

simplest ways to configure a Deployment to

receive and loadbalance requests. Depending

on the type of Service used, these requests

can come from external client apps or be

limited to apps within the same cluster. A

Service is tied to a specific Deployment using

 selection.

The subsequent topics are also useful to know for basic

application deployment.

Metadata

You can also specify custom information about your

Kubernetes API objects by attaching key/value fields.

Kubernetes provides two ways of doing this:

 - Identifying metadata that you can use to

sort and select sets of API objects. Labels have

many applications, including the following:

To keep the right number of replicas (Pods)

running in a Deployment. The specified label

(app: nginx in the stateless app example) is

used to stamp the Deployment’s newly

Pods

Deployment

Service

label

Labels

file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/tutorials/kubernetes-basics/explore-intro/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/overview/working-with-objects/labels
file:///docs/concepts/overview/working-with-objects/labels
file:///docs/tasks/run-application/run-stateless-application-deployment/#creating-and-exploring-an-nginx-deployment

created Pods (as the value of the

spec.template.labels configuration field), and

to query which Pods it already manages (as

the value of spec.selector.matchLabels).

To tie a Service to a Deployment using the

selector field, which is demonstrated in the

stateful app example.

To look for specific subset of Kubernetes

objects, when you are using . For

instance, the command kubectl get

deployments --selector=app=nginx only displays

Deployments from the nginx app.

 - Nonidentifying metadata that you can

attach to API objects, usually if you don’t intend to

use them for sorting purposes. These often serve as

supplementary data about an app’s deployment,

such as Git SHAs, PR numbers, or URL pointers to

observability dashboards.

Storage

You’ll also want to think about storage. Kubernetes

provides different types of storage API objects for different

storage needs:

 - Let you define storage for your cluster

that is tied to the lifecycle of a Pod. It is therefore

more persistent than container storage. Learn how

to configure volume storage, or read more about

volume storage.

 and -

Let you define storage at the cluster level. Typically

a cluster operator defines the PersistentVolume

objects for the cluster, and cluster users (application

developers, you) define the PersistentVolumeClaim

objects that your application requires. Learn how to

kubectl

Annotations

Volumes

PersistentVolumes PersistentVolumeClaims

file:///docs/tasks/run-application/run-single-instance-stateful-application/#deploy-mysql
file:///docs/user-guide/kubectl-overview/
file:///docs/concepts/overview/working-with-objects/annotations
file:///docs/concepts/storage/volumes/
file:///docs/tasks/configure-pod-container/configure-volume-storage/
file:///docs/concepts/storage/volumes/
file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/storage/persistent-volumes/
file:///docs/tasks/configure-pod-container/configure-persistent-volume-storage/

set up persistent storage for your cluster or read

more about persistent volumes.

Configuration

To avoid having to unnecessarily rebuild your container

images, you should decouple your application’s

configuration data from the code required to run it. There

are a couple ways of doing this, which you should choose

according to your use case:

Approach
Type of

Data

How it's

mounted
Example

Using a

manifest's

container

definition

Non-

confidential

Environment

variable

Command-

line flag

Using Non-

confidential

Environment

variable OR

local file

nginx

configuration

Using Confidential

Environment

variable OR

local file

Database

credentials

If you have any data that you want to keep private,

you should be using a Secret. Otherwise there is

nothing stopping that data from being exposed to

malicious users.

Understand basic Kubernetes architecture

As an app developer, you don’t need to know everything

about the inner workings of Kubernetes, but you may find it

helpful to understand it at a high level.

What Kubernetes offers

ConfigMaps

Secrets

file:///docs/concepts/storage/persistent-volumes/
file:///docs/tasks/inject-data-application/define-environment-variable-container/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/concepts/configuration/secret/

Say that your team is deploying an ordinary Rails

application. You’ve run some calculations and determined

that you need five instances of your app running at any

given time, in order to handle external traffic.

If you’re not running Kubernetes or a similar automated

system, you might find the following scenario familiar:

1. One instance of your app (a complete

machine instance or just a container)

goes down.

2. Because your team has monitoring set

up, this pages the person on call.

3. The on-call person has to go in,

investigate, and manually spin up a new

instance.

4. Depending how your team handles

DNS/networking, the on-call person may

also need to also update the service

discovery mechanism to point at the IP

of the new Rails instance rather than the

old.

This process can be tedious and also inconvenient,

especially if (2) happens in the early hours of the morning!

If you have Kubernetes set up, however, manual

intervention is not as necessary. The Kubernetes control

plane, which runs on your cluster’s master node, gracefully

handles (3) and (4) on your behalf. As a result, Kubernetes

is often referred to as a self-healing system.

There are two key parts of the control plane that facilitate

this behavior: the Kubernetes API server and the Controllers.

Kubernetes API server

For Kubernetes to be useful, it needs to know what sort of

cluster state you want it to maintain. Your YAML or JSON

configuration files declare this desired state in terms of one

file:///docs/concepts/overview/components/#master-components

or more API objects, such as . To make

updates to your cluster’s state, you submit these files to

the server (kube-apiserver).

Examples of state include but are not limited to the

following:

The applications or other workloads to run

The container images for your applications and

workloads

Allocation of network and disk resources

Note that the API server is just the gateway, and that

object data is actually stored in a highly available datastore

called etcd. For most intents and purposes, though, you

can focus on the API server. Most reads and writes to

cluster state take place as API requests.

You can read more about the Kubernetes API here.

Controllers

Once you’ve declared your desired state through the

Kubernetes API, the controllers work to make the cluster’s

current state match this desired state.

The standard controller processes are kube-controller-

manager and cloud-controller-manager , but you can also

write your own controllers as well.

All of these controllers implement a control loop. For

simplicity, you can think of this as the following:

1. What is the current state of the cluster

(X)?

2. What is the desired state of the cluster

(Y)?

3. X == Y ?

true - Do nothing.

Deployments

Kubernetes API

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/overview/kubernetes-api/
https://github.com/coreos/etcd
file:///docs/concepts/overview/working-with-objects/kubernetes-objects/
file:///docs/reference/generated/kube-controller-manager/
file:///docs/concepts/overview/components/#cloud-controller-manager

false - Perform tasks to get to Y

(such as starting or restarting

containers, or scaling the number

of replicas of a given application).

(Return to 1)

By continuously looping, these controllers ensure the

cluster can pick up new updates and avoid drifting from the

desired state. These ideas are covered in more detail here.

Additional resources

The Kubernetes documentation is rich in detail. Here’s a

curated list of resources to help you start digging deeper.

Basic concepts
More about the components that run Kubernetes

Understanding Kubernetes objects

More about Node objects

More about Pod objects

Tutorials
Kubernetes Basics

Hello Minikube (Runs on Mac only)

Kubernetes 101

Kubernetes 201

Kubernetes object management

What’s next
If you feel fairly comfortable with the topics on this page

and want to learn more, check out the following user

journeys:

Intermediate App Developer - Dive deeper, with the

next level of this journey.

https://kubernetes.io/docs/concepts/
file:///docs/concepts/overview/components/
file:///docs/concepts/overview/working-with-objects/kubernetes-objects/
file:///docs/concepts/architecture/nodes/
file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/tutorials/kubernetes-basics/
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/user-guide/walkthrough/
file:///docs/user-guide/walkthrough/k8s201/
file:///docs/tutorials/object-management-kubectl/object-management/
file:///docs/user-journeys/users/application-developer/intermediate/

Get Started

Documentation

Blog

Partners

Community

Case Studies

Get Kubernetes Contribute

© 2018 The Kubernetes Authors | Documentation Distributed under CC BY 4.0

Copyright © 2018 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list

of trademarks of The Linux Foundation, please see our Trademark Usage page

Foundational Cluster Operator - Build breadth, by

exploring other journeys.

Create an

Issue Edit this Page

file:///docs/user-journeys/users/cluster-operator/foundational/
file:///editdocs#docs/user-journeys/users/application-developer/foundational.md
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///blog
file:///partners/
file:///community/
file:///case-studies/
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/setup/pick-right-solution/
https://github.com/kubernetes/kubernetes
https://git.k8s.io/website/LICENSE
https://www.linuxfoundation.org/trademark-usage

 SETUP CONCEPTS TASKS TUTORIALS REFERENCEHOME

USERS › APPLICATION DEVELOPER › INTERMEDIATE

I n t r o d u c t i o n

SECTIONS IN THIS DOC

This page assumes that you’ve experimented with

Kubernetes before. At this point, you should have

basic experience interacting with a Kubernetes

cluster (locally with Minikube, or elsewhere), and

using API objects like Deployments to run your

applications.

If not, you should review the Beginner App Developer

topics first.

After checking out the current page and its linked sections,

you should have a better understanding of the following:

Additional Kubernetes workload patterns, beyond

Deployments

What it takes to make a Kubernetes application

production-ready

Community tools that can improve your

development workflow

file:///
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///editdocs/
file:///community/
file:///blog
https://github.com/kubernetes/kubernetes
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/home/
file:///docs/setup/
file:///docs/concepts/
file:///docs/tasks/
file:///docs/tutorials/
file:///docs/reference/
file:///docs/user-journeys/users/application-developer/foundational/

Learn additional workload patterns

As your Kubernetes use cases become more complex, you

may find it helpful to familiarize yourself with more of the

toolkit that Kubernetes provides. Basic workload objects

like make it straightforward to run, update,

and scale applications, but they are not ideal for every

scenario.

The following API objects provide functionality for

additional workload types, whether they are persistent or

terminating.

Persistent workloads

Like Deployments, these API objects run indefinitely on a

cluster until they are manually terminated. They are best

for long-running applications.

 - Like Deployments, StatefulSets allow

you to specify that a certain number of replicas

should be running for your application.

It’s misleading to say that Deployments can’t

handle stateful workloads. Using

, you can persist data

beyond the lifecycle of any individual Pod in

your Deployment.

However, StatefulSets can provide stronger

guarantees about “recovery” behavior than

Deployments. StatefulSets maintain a sticky, stable

identity for their Pods. The following table provides

some concrete examples of what this might look

like:

Deployments

StatefulSets

PersistentVolumes

file:///docs/user-journeys/users/application-developer/foundational/#section-2
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/storage/persistent-volumes/

 Deployment StatefulSet

Example

Pod name

example-

b1c4
example-0

When a Pod

dies

Reschedule

on any

node, with

new name

example-

a51z

Reschedule on

same node, as

example-0

When a

node

becomes

unreachable

Pod(s) are

scheduled

onto new

node, with

new names

Pod(s) are marked

as “Unknown”, and

aren’t rescheduled

unless the Node

object is forcefully

deleted

In practice, this means that StatefulSets are best

suited for scenarios where replicas (Pods) need to

coordinate their workloads in a strongly consistent

manner. Guaranteeing an identity for each Pod

helps avoid split-brain side effects in the case when

a node becomes unreachable (network partition).

This makes StatefulSets a great fit for distributed

datastores like Cassandra or Elasticsearch.

 - DaemonSets run continuously on

every node in your cluster, even as nodes are added

or swapped in. This guarantee is particularly useful

for setting up global behavior across your cluster,

such as:

Logging and monitoring, from applications

like fluentd

Network proxy or service mesh

DaemonSets

https://en.wikipedia.org/wiki/Split-brain_(computing)
https://en.wikipedia.org/wiki/Network_partition
file:///docs/concepts/workloads/controllers/daemonset
https://www.linux.com/news/whats-service-mesh-and-why-do-i-need-one

Terminating workloads

In contrast to Deployments, these API objects are finite.

They stop once the specified number of Pods have

completed successfully.

 - You can use these for one-off tasks like

running a script or setting up a work queue. These

tasks can be executed sequentially or in parallel.

These tasks should be relatively independent, as

Jobs do not support closely communicating parallel

processes. Read more about Job patterns.

 - These are similar to Jobs, but allow you

to schedule their execution for a specific time or for

periodic recurrence. You might use CronJobs to

send reminder emails or to run backup jobs. They

are set up with a similar syntax as crontab.

Other resources

For more info, you can check out a list of additional

Kubernetes resource types as well as the API reference

docs.

There may be additional features not mentioned here that

you may find useful, which are covered in the full

Kubernetes documentation.

Deploy a production-ready workload

The beginner tutorials on this site, such as the Guestbook

app, are geared towards getting workloads up and running

on your cluster. This prototyping is great for building your

intuition around Kubernetes! However, in order to reliably

and securely promote your workloads to production, you

need to follow some additional best practices.

Declarative configuration

Jobs

CronJobs

file:///docs/concepts/workloads/controllers/jobs-run-to-completion
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/#job-patterns
file:///docs/concepts/workloads/controllers/cron-jobs/
file:///docs/reference/kubectl/overview/#resource-types
file:///docs/reference/generated/kubernetes-api/v1.10
file:///docs/home/?path=browse
file:///docs/tutorials/stateless-application/guestbook/

You are likely interacting with your Kubernetes cluster via

. kubectl can be used to debug the current state of

your cluster (such as checking the number of nodes), or to

modify live Kubernetes objects (such as updating a

workload’s replica count with kubectl scale).

When using kubectl to update your Kubernetes objects, it’s

important to be aware that different commands

correspond to different approaches:

Purely imperative

Imperative with local configuration files (typically

YAML)

Declarative with local configuration files (typically

YAML)

There are pros and cons to each approach, though the

declarative approach (such as kubectl apply -f) may be

most helpful in production. With this approach, you rely on

local YAML files as the source of truth about your desired

state. This enables you to version control your

configuration, which is helpful for code reviews and audit

tracking.

For additional configuration best practices, familiarize

yourself with this guide.

Security

You may be familiar with the principle of least privilege—if

you are too generous with permissions when writing or

using software, the negative effects of a compromise can

escalate out of control. Would you be cautious handing out

sudo privileges to software on your OS? If so, you should

be just as careful when granting your workload

permissions to the server! The API server

is the gateway for your cluster’s source of truth; it provides

endpoints to read or modify cluster state.

kubectl

Kubernetes API

file:///docs/user-guide/kubectl-overview/
file:///docs/tutorials/object-management-kubectl/imperative-object-management-command/
file:///docs/tutorials/object-management-kubectl/imperative-object-management-configuration/
file:///docs/tutorials/object-management-kubectl/declarative-object-management-configuration/
file:///docs/concepts/configuration/overview/
file:///docs/concepts/overview/kubernetes-api/

You (or your) can lock down API access

with the following:

 - An “identity” that your Pods can

be tied to

 - One way of granting your ServiceAccount

explicit permissions

For even more comprehensive reading about security best

practices, consider checking out the following topics:

Authentication (Is the user who they say they are?)

Authorization (Does the user actually have

permissions to do what they’re asking?)

Resource isolation and management

If your workloads are operating in a multi-tenant

environment with multiple teams or projects, your

container(s) are not necessarily running alone on their

node(s). They are sharing node resources with other

containers which you do not own.

Even if your cluster operator is managing the cluster on

your behalf, it is helpful to be aware of the following:

, used for isolation

Resource quotas, which affect what your team’s

workloads can use

Memory and CPU requests, for a given Pod or

container

Monitoring, both on the cluster level and the app

level

This list may not be completely comprehensive, but many

teams have existing processes that take care of all this. If

this is not the case, you’ll find the Kubernetes

documentation fairly rich in detail.

cluster operator

ServiceAccounts

RBAC

Namespaces

file:///docs/reference/glossary/?all=true#term-cluster-operator
file:///docs/tasks/configure-pod-container/configure-service-account/
file:///docs/admin/authorization/rbac/
file:///docs/admin/authentication/
file:///docs/admin/authorization/
file:///docs/concepts/overview/working-with-objects/namespaces
file:///docs/concepts/policy/resource-quotas/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/debug-application-cluster/resource-usage-monitoring/

Improve your dev workflow with tooling

As an app developer, you’ll likely encounter the following

tools in your workflow.

kubectl

kubectl is a command-line tool that allows you to easily

read or modify your Kubernetes cluster. It provides

convenient, short commands for common operations like

scaling app instances and getting node info. How does

kubectl do this? It’s basically just a user-friendly wrapper

for making API requests. It’s written using client-go, the Go

library for the Kubernetes API.

To learn about the most commonly used kubectl

commands, check out the kubectl cheatsheet. It explains

topics such as the following:

kubeconfig files - Your kubeconfig file tells kubectl

what cluster to talk to, and can reference multiple

clusters (such as dev and prod).

The various output formats available - This is useful

to know when you are using kubectl get to list

information about certain API objects.

The JSONPath output format - This is related to the

output formats above. JSONPath is especially

useful for parsing specific subfields out of kubectl

get output (such as the URL of a).

kubectl run vs kubectl apply - This ties into the

declarative configuration discussion in the previous

section.

For the full list of kubectl commands and their options,

check out the reference guide.

Helm

Service

https://github.com/kubernetes/client-go/#client-go
file:///docs/reference/kubectl/cheatsheet/
file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters/
file:///docs/reference/kubectl/cheatsheet/#formatting-output
file:///docs/reference/kubectl/jsonpath/
file:///docs/concepts/services-networking/service/
file:///docs/reference/kubectl/conventions/
file:///docs/reference/generated/kubectl/kubectl-commands

To leverage pre-packaged configurations from the

community, you can use .

Helm charts package up YAML configurations for specific

apps like Jenkins and Postgres. You can then install and

run these apps on your cluster with minimal extra

configuration. This approach makes the most sense for

“off-the-shelf” components which do not require much

custom implementation logic.

For writing your own Kubernetes app configurations, there

is a thriving ecosystem of tools that you may find useful.

Explore additional resources

References

Now that you’re fairly familiar with Kubernetes, you may

find it useful to browse the following reference pages.

Doing so provides a high level view of what other features

may exist:

Commonly used kubectl commands

Kubernetes API reference

Standardized Glossary

In addition, the Kubernetes blog often has helpful posts on

Kubernetes design patterns and case studies.

What’s next

If you feel fairly comfortable with the topics on this page

and want to learn more, check out the following user

journeys:

Advanced App Developer - Dive deeper, with the next

level of this journey.

Foundational Cluster Operator - Build breadth, by

exploring other journeys.

Helm charts

https://github.com/kubernetes/helm/blob/master/docs/charts.md
https://docs.google.com/a/heptio.com/spreadsheets/d/1FCgqz1Ci7_VCz_wdh8vBitZ3giBtac_H8SBw4uxnrsE/edit?usp=drive_web
file:///docs/reference/kubectl/cheatsheet/
file:///docs/reference/generated/kubernetes-api/v1.10
file:///docs/reference/glossary/
http://blog.kubernetes.io/
file:///docs/user-journeys/users/application-developer/advanced/
file:///docs/user-journeys/users/cluster-operator/foundational/

Get Started

Documentation

Blog

Partners

Community

Case Studies

Get Kubernetes Contribute

© 2018 The Kubernetes Authors | Documentation Distributed under CC BY 4.0

Copyright © 2018 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list

of trademarks of The Linux Foundation, please see our Trademark Usage page

Create an

Issue Edit this Page

file:///editdocs#docs/user-journeys/users/application-developer/intermediate.md
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///blog
file:///partners/
file:///community/
file:///case-studies/
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/setup/pick-right-solution/
https://github.com/kubernetes/kubernetes
https://git.k8s.io/website/LICENSE
https://www.linuxfoundation.org/trademark-usage

 SETUP CONCEPTS TASKS TUTORIALS REFERENCEHOME

USERS › APPLICATION DEVELOPER › ADVANCED

I n t r o d u c t i o n

SECTIONS IN THIS DOC

This page assumes that you’re familiar with core

Kubernetes concepts, and are comfortable

deploying your own apps. If not, you should review

the Intermediate App Developer topics first.

After checking out the current page and its linked sections,

you should have a better understanding of the following:

Advanced features that you can leverage in your

application

The various ways of extending the Kubernetes API

Deploy an application with advanced features

Now you know the set of API objects that Kubernetes

provides. Understanding the difference between a

 and a is oftentimes sufficient for

app deployment. That being said, it’s also worth

familiarizing yourself with Kubernetes’s lesser known

features. They can be quite powerful when applied to the

DaemonSet Deployment

file:///
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///editdocs/
file:///community/
file:///blog
https://github.com/kubernetes/kubernetes
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/home/
file:///docs/setup/
file:///docs/concepts/
file:///docs/tasks/
file:///docs/tutorials/
file:///docs/reference/
file:///docs/user-journeys/users/application-developer/intermediate/
file:///docs/concepts/workloads/controllers/daemonset
file:///docs/concepts/workloads/controllers/deployment/

right use cases.

Container-level features

As you may know, it’s an antipattern to migrate an entire

app (e.g. containerized Rails app, MySQL database, and all)

into a single Pod. That being said, there are some very

useful patterns that go beyond a 1:1 correspondence

between a container and its Pod:

Sidecar container: Although your Pod should still

have a single main container, you can add a

secondary container that acts as a helper (see a

logging example). Two containers within a single

Pod can communicate via a shared volume.

Init containers: Init containers run before any of a

Pod’s app containers (such as main and sidecar

containers). Read more, see an nginx server

example, and learn how to debug these containers .

Pod configuration

Usually, you use and to attach metadata

to your resources. To inject data into your resources, you’d

likely create (for nonconfidential data) or

 (for confidential data).

Below are some other, lesser-known ways of configuring

your resources’ Pods:

Taints and Tolerations - These provide a way for

nodes to “attract” or “repel” your Pods. They are

often used when an application needs to be

deployed onto specific hardware, such as GPUs for

scientific computing. Read more.

Downward API - This allows your containers to

consume information about themselves or the

cluster, without being overly coupled to the

Kubernetes API server. This can be achieved with

labels annotations

ConfigMaps

Secrets

file:///docs/concepts/cluster-administration/logging/#sidecar-container-with-a-logging-agent
file:///docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/
file:///docs/concepts/workloads/pods/init-containers/
file:///docs/tasks/configure-pod-container/configure-pod-initialization/
file:///docs/tasks/debug-application-cluster/debug-init-containers/
file:///docs/concepts/overview/working-with-objects/labels
file:///docs/concepts/overview/working-with-objects/annotations
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/concepts/configuration/secret/
file:///docs/concepts/configuration/taint-and-toleration/

environment variables or DownwardAPIVolumeFiles.

Pod Presets - Normally, to mount runtime

requirements (such as environmental variables,

ConfigMaps, and Secrets) into a resource, you

specify them in the resource’s configuration file.

PodPresets allow you to dynamically inject these

requirements instead, when the resource is created.

For instance, this allows team A to mount any

number of new Secrets into the resources created

by teams B and C, without requiring action from B

and C. See an example.

Additional API Objects

Before setting up the following resources, check to

see if they are the responsibility of your

organization’s .

 - These resources

are a great way to automate the process of scaling

your application when CPU usage or other custom

metrics spike. See an example to understand how

HPAs are set up.

Federated cluster objects - If you are running an

application on multiple Kubernetes clusters using

federation, you need to deploy the federated version

of the standard Kubernetes API objects. For

reference, check out the guides for setting up

Federated ConfigMaps and Federated Deployments.

Extend the Kubernetes API

Kubernetes is designed with extensibility in mind. If the API

resources and features mentioned above are not enough

for your needs, there are ways to customize its behavior

cluster operators

Horizontal Pod Autoscaler (HPA)

file:///docs/tasks/inject-data-application/environment-variable-expose-pod-information/
file:///docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/
file:///docs/concepts/workloads/pods/podpreset/
file:///docs/tasks/inject-data-application/podpreset/
file:///docs/reference/glossary/?all=true#term-cluster-operator
file:///docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
file:///docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
file:///docs/tasks/administer-federation/configmap/
file:///docs/tasks/administer-federation/deployment/

without having to modify core Kubernetes code.

Understand Kubernetes’s default behavior

Before making any customizations, it’s important that you

understand the general abstraction behind Kubernetes API

objects. Although Deployments and Secrets may seem

quite different, the following concepts are true for any

object:

Kubernetes objects are a way of storing structured

data about your cluster. In the case of

Deployments, this data represents desired state

(such as “How many replicas should be running?”),

but it can also be general metadata (such as

database credentials).

Kubernetes objects are modified via the

. In other words, you can make GET

and POST requests to a specific resource path

(such as <api-server-

url>/api/v1/namespaces/default/deployments) to read

and write the corresponding object type.

By leveraging the Controller pattern, Kubernetes

objects can be used to enforce desired state. For

simplicity, you can think of the Controller pattern as

the following continuous loop:

Check current state (number of

replicas, container image, etc)

Compare current state to desired

state

Update if there’s a mismatch

These states are obtained from the Kubernetes API.

Not all Kubernetes objects need to have a

Controller. Though Deployments trigger the

Kubernetes API

file:///docs/concepts/overview/kubernetes-api/
file:///docs/concepts/api-extension/custom-resources/#custom-controllers

cluster to make state changes, ConfigMaps

act purely as storage.

Create Custom Resources

Based on the ideas above, you can define a new Custom

Resource that is just as legitimate as a Deployment. For

example, you might want to define a Backup object for

periodic backups, if CronJobs don’t provide all the

functionality you need.

There are two main ways of setting up custom resources:

1. Custom Resource Definitions (CRDs) - This

method requires the least amount of

implementation work. See an example.

2. API aggregation - This method requires some

pre-configuration before you actually set up a

separate, extension API server.

Note that unlike standard Kubernetes objects, which rely

on the built-in kube-controller-manager , you’ll need to write

and run your own custom controllers.

You may also find the following info helpful:

How to know if custom resources are right for your

use case

How to decide between CRDs and API aggregation

Service Catalog

If you want to consume or provide complete services

(rather than individual resources), provides

a specification for doing so. These services are registered

using (see some examples).

If you do not have a to manage the

installation of Service Catalog, you can do so using Helm or

an installer binary.

Service Catalog

Service Brokers

cluster operator

file:///docs/concepts/api-extension/custom-resources/#custom-resources
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
file:///docs/tasks/access-kubernetes-api/configure-aggregation-layer/
file:///docs/tasks/access-kubernetes-api/setup-extension-api-server/
file:///docs/reference/generated/kube-controller-manager/
https://github.com/kubernetes/sample-controller
file:///docs/concepts/api-extension/custom-resources/#should-i-use-a-configmap-or-a-custom-resource
file:///docs/concepts/api-extension/custom-resources/#choosing-a-method-for-adding-custom-resources
file:///docs/reference/glossary/?all=true#term-service-catalog
https://github.com/openservicebrokerapi/servicebroker
file:///docs/reference/glossary/?all=true#term-service-broker
https://github.com/openservicebrokerapi/servicebroker/blob/master/gettingStarted.md#example-service-brokers
file:///docs/reference/glossary/?all=true#term-cluster-operator
file:///docs/tasks/service-catalog/install-service-catalog-using-helm/
file:///docs/tasks/service-catalog/install-service-catalog-using-sc/

Get Started

Documentation

Blog

Explore additional resources

References

The following topics are also useful for building more

complex applications:

Other points of extensibility within Kubernetes - A

conceptual overview of where you can hook into the

Kubernetes architecture.

Kubernetes Client Libraries - Useful for building apps

that need to interact heavily with the Kubernetes

API.

What’s next

Congrats on completing the Application Developer user

journey! You’ve covered the majority of features that

Kubernetes has to offer. What now?

If you’d like to suggest new features or keep up with

the latest developments around Kubernetes app

development, consider joining a

 such as SIG Apps.

If you are interested in learning more about the inner

workings of Kubernetes (e.g. networking), consider

checking out the Cluster Operator journey.

Create an

Issue Edit this Page

SIG (special interest group)

file:///docs/concepts/overview/extending/
file:///docs/reference/client-libraries/
https://github.com/kubernetes/community/blob/master/sig-list.md#master-sig-list
https://github.com/kubernetes/community/tree/master/sig-apps
file:///docs/user-journeys/users/cluster-operator/foundational/
file:///editdocs#docs/user-journeys/users/application-developer/advanced.md
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///blog

Partners

Community

Case Studies

Get Kubernetes Contribute

© 2018 The Kubernetes Authors | Documentation Distributed under CC BY 4.0

Copyright © 2018 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list

of trademarks of The Linux Foundation, please see our Trademark Usage page

file:///partners/
file:///community/
file:///case-studies/
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/setup/pick-right-solution/
https://github.com/kubernetes/kubernetes
https://git.k8s.io/website/LICENSE
https://www.linuxfoundation.org/trademark-usage

 SETUP CONCEPTS TASKS TUTORIALS REFERENCEHOME

USERS › CLUSTER OPERATOR › FOUNDATIONAL

I n t r o d u c t i o n

SECTIONS IN THIS DOC

If you want to learn how to get started managing and

operating a Kubernetes cluster, this page and the linked

topics introduce you to the foundational concepts and

tasks. This page introduces you to a Kubernetes cluster

and key concepts to understand and manage it. The

content focuses primarily on the cluster itself rather than

the software running within the cluster.

Get an overview of Kubernetes

If you have not already done so, start your understanding

by reading through What is Kubernetes?, which introduces

a number of basic concepts and terms.

Kubernetes is quite flexible, and a cluster can be run in a

wide variety of places. You can interact with Kubernetes

entirely on your own laptop or local development machine

with it running within a virtual machine. Kubernetes can

also run on virtual machines hosted either locally or in a

cloud provider, and you can run a Kubernetes cluster on

bare metal.

file:///
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///editdocs/
file:///community/
file:///blog
https://github.com/kubernetes/kubernetes
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/home/
file:///docs/setup/
file:///docs/concepts/
file:///docs/tasks/
file:///docs/tutorials/
file:///docs/reference/
file:///docs/concepts/overview/what-is-kubernetes/

A cluster is made up of one or more Nodes; where a node

is a physical or virtual machine. If there is more than one

node in your cluster then the nodes are connected with a

cluster network. Regardless of how many nodes, all

Kubernetes clusters generally have the same components,

which are described in Kubernetes Components.

Learn about Kubernetes basics

A good way to become familiar with how to manage and

operate a Kubernetes cluster is by setting one up. One of

the most compact ways to experiment with a cluster is

Installing and using Minikube. Minikube is a command line

tool for setting up and running a single-node cluster within

a virtual machine on your local laptop or development

computer. Minikube is even available through your browser

at the Katacoda Kubernetes Playground. Katacoda

provides a browser-based connection to a single-node

cluster, using minikube behind the scenes, to support a

number of tutorials to explore Kubernetes. You can also

leverage the web-based Play with Kubernetes to the same

ends - a temporary cluster to play with on the web.

You interact with Kubernetes either through a dashboard,

an API, or using a command-line tool (such as kubectl) that

interacts with the Kubernetes API. Be familiar with

Organizing Cluster Access by using configuration files. The

Kubernetes API exposes a number of resources that

provide the building blocks and abstractions that are used

to run software on Kubernetes. Learn more about these

resources at Understanding Kubernetes Objects. These

resources are covered in a number of articles within the

Kubernetes documentation.

Pod Overview

Pods

ReplicaSets

file:///docs/concepts/architecture/nodes/
file:///docs/concepts/cluster-administration/networking/
file:///docs/concepts/overview/components
file:///docs/tasks/tools/install-minikube/
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/configuration/organize-cluster-access-kubeconfig/
file:///docs/concepts/overview/working-with-objects/kubernetes-objects
file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/controllers/replicaset/

Deployments

Garbage Collection

Container Images

Container Environment Variables

Labels and Selectors

Namespaces

Namespaces Walkthrough

Services

Annotations

ConfigMaps

Secrets

As a cluster operator you may not need to use all these

resources, although you should be familiar with them to

understand how the cluster is being used. There are a

number of additional resources that you should be aware

of, some listed under Intermediate Resources. You should

also be familiar with how to manage kubernetes resources.

Get information about your cluster

You can access clusters using the Kubernetes API. If you

are not already familiar with how to do this, you can review

the introductory tutorial. Using kubectl , you can retrieve

information about your Kubernetes cluster very quickly. To

get basic information about the nodes in your cluster run

the command kubectl get nodes . You can get more detailed

information for the same nodes with the command kubectl

describe nodes . You can see the status of the core of

kubernetes with the command kubectl get

componentstatuses .

Some additional resources for getting information about

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/garbage-collection/
file:///docs/concepts/containers/_site/images/
file:///docs/concepts/containers/container-environment-variables/
file:///docs/concepts/overview/working-with-objects/labels/
file:///docs/concepts/overview/working-with-objects/namespaces/
file:///docs/tasks/administer-cluster/namespaces-walkthrough/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/overview/working-with-objects/annotations/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/concepts/configuration/secret/
file:///docs/user-journeys/users/cluster-operator/intermediate#section-1
file:///docs/concepts/cluster-administration/manage-deployment/
file:///docs/tasks/administer-cluster/access-cluster-api/
file:///docs/tutorials/kubernetes-basics/explore-intro/

Get Started

Documentation

Blog

Partners

Community

your cluster and how it is operating include:

Tools for Monitoring Compute, Storage, and

Network Resources

Core metrics pipeline

Metrics

Explore additional resources

Tutorials
Kubernetes Basics

Kubernetes 101 - kubectl command line interface

and Pods

Kubernetes 201 - labels, deployments, services, and

health checking

Configuring Redis with a ConfigMap

Stateless Applications

Deploying PHP Guestbook with Redis

Expose an External IP address to access an

application

Create an

Issue Edit this Page

file:///docs/tasks/debug-application-cluster/resource-usage-monitoring/
file:///docs/tasks/debug-application-cluster/core-metrics-pipeline/
file:///docs/concepts/cluster-administration/controller-metrics/
file:///docs/tutorials/kubernetes-basics/
file:///docs/user-guide/walkthrough/
file:///docs/user-guide/walkthrough/k8s201/
file:///docs/tutorials/configuration/configure-redis-using-configmap/
file:///docs/tutorials/stateless-application/guestbook/
file:///docs/tutorials/stateless-application/expose-external-ip-address/
file:///editdocs#docs/user-journeys/users/cluster-operator/foundational.md
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///blog
file:///partners/
file:///community/

Case Studies

Get Kubernetes Contribute

© 2018 The Kubernetes Authors | Documentation Distributed under CC BY 4.0

Copyright © 2018 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list

of trademarks of The Linux Foundation, please see our Trademark Usage page

file:///case-studies/
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/setup/pick-right-solution/
https://github.com/kubernetes/kubernetes
https://git.k8s.io/website/LICENSE
https://www.linuxfoundation.org/trademark-usage

 SETUP CONCEPTS TASKS TUTORIALS REFERENCEHOME

USERS > CLUSTER OPERATOR > INTERMEDIATE

I n t r o d u c t i o n

SECTIONS IN THIS DOC

If you are a cluster operator looking to expand your grasp

of Kubernetes, this page and its linked topics extend the

information provided on the foundational cluster operator

page. From this page you can get information on key

Kubernetes tasks needed to manage a complete

production cluster.

Work with ingress, networking, storage, and workloads

Introductions to Kubernetes typically discuss simple

stateless applications. As you move into more complex

development, testing, and production environments, you

need to consider more complex cases:

Communication: Ingress and Networking

Ingress

Storage: Volumes and PersistentVolumes

Volumes

Persistent Volumes

Workloads

file:///
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/
file:///editdocs/
file:///community/
file:///blog
https://github.com/kubernetes/kubernetes
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/home/
file:///docs/setup/
file:///docs/concepts/
file:///docs/tasks/
file:///docs/tutorials/
file:///docs/reference/
file:///docs/user-journeys/users/cluster-operator/foundational
file:///docs/concepts/services-networking/ingress/
file:///docs/concepts/storage/volumes/
file:///docs/concepts/storage/persistent-volumes/

DaemonSets

Stateful Sets

Jobs

CronJobs

Pods

Pod Lifecycle

Init Containers

Pod Presets

Container Lifecycle Hooks

And how Pods work with scheduling, priority, disruptions:

Taints and Tolerations

Pods and Priority

Disruptions

Assigning Pods to Nodes

Managing Compute Resources for Containers

Configuration Best Practices

Implement security best practices

Securing your cluster includes work beyond the scope of

Kubernetes itself.

In Kubernetes, you configure access control:

Controlling Access to the Kubernetes API

Authenticating

Using Admission Controllers

You also configure authorization. That is, you determine

not just how users and services authenticate to the API

file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/
file:///docs/concepts/workloads/controllers/cron-jobs/
file:///docs/concepts/workloads/pods/pod-lifecycle/
file:///docs/concepts/workloads/pods/init-containers/
file:///docs/concepts/workloads/pods/podpreset/
file:///docs/concepts/containers/container-lifecycle-hooks/
file:///docs/concepts/configuration/taint-and-toleration/
file:///docs/concepts/configuration/pod-priority-preemption/
file:///docs/concepts/workloads/pods/disruptions/
file:///docs/concepts/configuration/assign-pod-node/
file:///docs/concepts/configuration/manage-compute-resources-container/
file:///docs/concepts/configuration/overview/
file:///docs/admin/accessing-the-api/
file:///docs/admin/authentication/
file:///docs/admin/admission-controllers/

server, or whether they have access, but also what

resources they have access to. Role-based access control

(RBAC) is the recommended mechanism for controlling

authorization to Kubernetes resources. Other authorization

modes are available for more specific use cases.

Authorization Overview

Using RBAC Authorization

You should create Secrets to hold sensitive data such as

passwords, tokens, or keys. Be aware, however, that there

are limitations to the protections that a Secret can provide.

See the Risks section of the Secrets documentation.

Implement custom logging and monitoring

Monitoring the health and state of your cluster is

important. Collecting metrics, logging, and providing

access to that information are common needs. Kubernetes

provides some basic logging structure, and you may want

to use additional tools to help aggregate and analyze log

data.

Start with the basics on Kubernetes logging to understand

how containers do logging and common patterns. Cluster

operators often want to add something to gather and

aggregate those logs. See the following topics:

Logging Using Elasticsearch and Kibana

Logging Using Stackdriver

Like log aggregation, many clusters utilize additional

software to help capture metrics and display them. There

is an overview of tools at Tools for Monitoring Compute,

Storage, and Network Resources. Kubernetes also

supports a core metrics pipeline which can be used by

Horizontal Pod Autoscaler with custom metrics.

Prometheus, which is another CNCF project, is a common

file:///docs/admin/authorization/
file:///docs/admin/authorization/rbac/
file:///docs/concepts/configuration/secret/#risks
file:///docs/concepts/cluster-administration/logging/
file:///docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/
file:///docs/tasks/debug-application-cluster/logging-stackdriver/
file:///docs/tasks/debug-application-cluster/resource-usage-monitoring/
file:///docs/tasks/debug-application-cluster/core-metrics-pipeline/
https://prometheus.io/

Get Started

Documentation

choice to support capture and temporary collection of

metrics. There are several options for installing

Prometheus, including using the stable/prometheus helm

chart, and CoreOS provides a prometheus operator and

kube-prometheus, which adds on Grafana dashboards and

common configurations.

A common configuration on Minikube and some

Kubernetes clusters uses Heapster along with InfluxDB and

Grafana. There is a walkthrough of how to install this

configuration in your cluster. As of Kubernetes 1.9, the sig-

instrumentation team is shifting away from an all-inclusive

monitoring pattern with heapster, described in Prometheus

vs. Heapster vs. Kubernetes Metrics APIs.

Hosted data analytics services such as Datadog also offer

Kubernetes integration.

Additional resources

Cluster Administration:

Troubleshoot Clusters

Debug Pods and Replication Controllers

Debug Init Containers

Debug Stateful Sets

Debug Applications

Using explorer to investigate your cluster

Create an

Issue Edit this Page

https://github.com/kubernetes/charts/tree/master/stable/prometheus
https://helm.sh/
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus
https://github.com/kubernetes/minikube
https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster/blob/master/docs/influxdb.md
https://blog.kublr.com/how-to-utilize-the-heapster-influxdb-grafana-stack-in-kubernetes-for-monitoring-pods-4a553f4d36c9
https://github.com/kubernetes/community/tree/master/sig-instrumentation
https://brancz.com/2018/01/05/prometheus-vs-heapster-vs-kubernetes-metrics-apis/
https://docs.datadoghq.com/integrations/kubernetes/
file:///docs/tasks/debug-application-cluster/debug-cluster/
file:///docs/tasks/debug-application-cluster/debug-pod-replication-controller/
file:///docs/tasks/debug-application-cluster/debug-init-containers/
file:///docs/tasks/debug-application-cluster/debug-stateful-set/
file:///docs/tasks/debug-application-cluster/debug-application/
https://github.com/kubernetes/examples/blob/master/staging/explorer/README.md
file:///editdocs#docs/user-journeys/users/cluster-operator/intermediate.md
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/home/

Blog

Partners

Community

Case Studies

Get Kubernetes Contribute

© 2018 The Kubernetes Authors | Documentation Distributed under CC BY 4.0

Copyright © 2018 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks. For a list

of trademarks of The Linux Foundation, please see our Trademark Usage page

file:///blog
file:///partners/
file:///community/
file:///case-studies/
https://twitter.com/kubernetesio
https://github.com/kubernetes/kubernetes
http://slack.k8s.io/
http://stackoverflow.com/questions/tagged/kubernetes
https://groups.google.com/forum/#!forum/kubernetes-users
https://calendar.google.com/calendar/embed?src=nt2tcnbtbied3l6gi2h29slvc0%40group.calendar.google.com
file:///docs/setup/pick-right-solution/
https://github.com/kubernetes/kubernetes
https://git.k8s.io/website/LICENSE
https://www.linuxfoundation.org/trademark-usage

Installing Addons

Overview

Add-ons extend the functionality of Kubernetes.

This page lists some of the available add-ons and links to their respective installation

instructions.

Add-ons in each section are sorted alphabetically - the ordering does not imply any preferential

status.

Networking and Network Policy

ACI provides integrated container networking and network security with Cisco ACI.

Calico is a secure L3 networking and network policy provider.

Canal unites Flannel and Calico, providing networking and network policy.

Cilium is a L3 network and network policy plugin that can enforce HTTP/API/L7 policies

transparently. Both routing and overlay/encapsulation mode are supported.

CNI-Genie enables Kubernetes to seamlessly connect to a choice of CNI plugins, such as

Calico, Canal, Flannel, Romana, or Weave.

Contiv provides configurable networking (native L3 using BGP, overlay using vxlan, classic

L2, and Cisco-SDN/ACI) for various use cases and a rich policy framework. Contiv project

is fully open sourced. The installer provides both kubeadm and non-kubeadm based

installation options.

Flannel is an overlay network provider that can be used with Kubernetes.

Multus is a Multi plugin for multiple network support in Kubernetes to support all CNI

plugins (e.g. Calico, Cilium, Contiv, Flannel), in addition to SRIOV, DPDK, OVS-DPDK and

VPP based workloads in Kubernetes.

NSX-T Container Plug-in (NCP) provides integration between VMware NSX-T and

https://www.github.com/noironetworks/aci-containers
http://docs.projectcalico.org/latest/getting-started/kubernetes/installation/hosted/
https://github.com/tigera/canal/tree/master/k8s-install
https://github.com/cilium/cilium
https://github.com/Huawei-PaaS/CNI-Genie
http://contiv.github.io
http://github.com/contiv
http://github.com/contiv/install
https://github.com/coreos/flannel/blob/master/Documentation/kubernetes.md
https://github.com/Intel-Corp/multus-cni
https://docs.vmware.com/en/VMware-NSX-T/2.0/nsxt_20_ncp_kubernetes.pdf

container orchestrators such as Kubernetes, as well as integration between NSX-T and

container-based CaaS/PaaS platforms such as Pivotal Container Service (PKS) and

Openshift.

Nuage is an SDN platform that provides policy-based networking between Kubernetes

Pods and non-Kubernetes environments with visibility and security monitoring.

Romana is a Layer 3 networking solution for pod networks that also supports the

NetworkPolicy API. Kubeadm add-on installation details available here.

Weave Net provides networking and network policy, will carry on working on both sides of

a network partition, and does not require an external database.

Service Discovery

CoreDNS is a flexible, extensible DNS server which can be installed as the in-cluster DNS

for pods.

Visualization & Control

Dashboard is a dashboard web interface for Kubernetes.

Weave Scope is a tool for graphically visualizing your containers, pods, services etc. Use it

in conjunction with a Weave Cloud account or host the UI yourself.

Legacy Add-ons

There are several other add-ons documented in the deprecated cluster/addons directory.

Well-maintained ones should be linked to here. PRs welcome!

https://github.com/nuagenetworks/nuage-kubernetes/blob/v5.1.1-1/docs/kubernetes-1-installation.rst
http://romana.io
file:///docs/concepts/services-networking/network-policies/
https://github.com/romana/romana/tree/master/containerize
https://www.weave.works/docs/net/latest/kube-addon/
https://coredns.io
https://github.com/coredns/deployment/tree/master/kubernetes
https://github.com/kubernetes/dashboard#kubernetes-dashboard
https://www.weave.works/documentation/scope-latest-installing/#k8s
https://cloud.weave.works/
https://git.k8s.io/kubernetes/cluster/addons

Configuring Kubernetes with Salt

The Kubernetes cluster can be configured using Salt.

The Salt scripts are shared across multiple hosting providers and depending on where you

host your Kubernetes cluster, you may be using different operating systems and different

networking configurations. As a result, it’s important to understand some background

information before making Salt changes in order to minimize introducing failures for other

hosting providers.

Salt cluster setup

The salt-master service runs on the kubernetes-master (except on the default GCE and

OpenStack-Heat setup).

The salt-minion service runs on the kubernetes-master and each kubernetes-node in the

cluster.

Each salt-minion service is configured to interact with the salt-master service hosted on the

kubernetes-master via the master.conf file (except on GCE and OpenStack-Heat).

The salt-master is contacted by each salt-minion and depending upon the machine

information presented, the salt-master will provision the machine as either a kubernetes-

master or kubernetes-node with all the required capabilities needed to run Kubernetes.

If you are running the Vagrant based environment, the salt-api service is running on the

kubernetes-master. It is configured to enable the vagrant user to introspect the salt cluster in

order to find out about machines in the Vagrant environment via a REST API.

Standalone Salt Configuration on GCE and others

On GCE and OpenStack, using the Openstack-Heat provider, the master and nodes are all

[[root@kubernetes-master] root@kubernetes-master] $ $ catcat /etc/salt/minion.d/master.conf /etc/salt/minion.d/master.conf

master: kubernetes-mastermaster: kubernetes-master

configured as standalone minions. The configuration for each VM is derived from the VM’s

instance metadata and then stored in Salt grains (/etc/salt/minion.d/grains.conf/etc/salt/minion.d/grains.conf) and

pillars (/srv/salt-overlay/pillar/cluster-params.sls/srv/salt-overlay/pillar/cluster-params.sls) that local Salt uses to enforce

state.

All remaining sections that refer to master/minion setups should be ignored for GCE and

OpenStack. One fallout of this setup is that the Salt mine doesn’t exist - there is no sharing of

configuration amongst nodes.

Salt security

(Not applicable on default GCE and OpenStack-Heat setup.)

Security is not enabled on the salt-master, and the salt-master is configured to auto-accept

incoming requests from minions. It is not recommended to use this security configuration in

production environments without deeper study. (In some environments this isn’t as bad as it

might sound if the salt master port isn’t externally accessible and you trust everyone on your

network.)

Salt minion configuration

Each minion in the salt cluster has an associated configuration that instructs the salt-master

how to provision the required resources on the machine.

An example file is presented below using the Vagrant based environment.

Each hosting environment has a slightly different grains.conf file that is used to build

[[root@kubernetes-master] root@kubernetes-master] $ $ catcat /etc/salt/master.d/auto-accept.conf /etc/salt/master.d/auto-accept.conf

open_mode: Trueopen_mode: True

auto_accept: Trueauto_accept: True

[[root@kubernetes-master] root@kubernetes-master] $ $ catcat /etc/salt/minion.d/grains.conf /etc/salt/minion.d/grains.conf

grains:grains:

 etcd_servers: etcd_servers: $MASTER_IP$MASTER_IP

 cloud: vagrant cloud: vagrant

 roles: roles:

 - kubernetes-master - kubernetes-master

http://docs.saltstack.com/en/latest/topics/tutorials/standalone_minion.html
https://cloud.google.com/compute/docs/metadata

conditional logic where required in the Salt files.

The following enumerates the set of defined key/value pairs that are supported today. If you

add new ones, please make sure to update this list.

Key Value

api_serversapi_servers
(Optional) The IP address / host name where a kubelet can get read-only access to
kube-apiserver

cbr-cidrcbr-cidr (Optional) The minion IP address range used for the docker container bridge.

cloudcloud (Optional) Which IaaS platform is used to host Kubernetes, gce, azure, aws, vagrant

etcd_serversetcd_servers
(Optional) Comma-delimited list of IP addresses the kube-apiserver and kubelet
use to reach etcd. Uses the IP of the first machine in the kubernetes_master role, or
127.0.0.1 on GCE.

hostnamefhostnamef (Optional) The full host name of the machine, i.e. uname -n

node_ipnode_ip (Optional) The IP address to use to address this node

hostname_overridehostname_override (Optional) Mapped to the kubelet hostname-override

network_modenetwork_mode (Optional) Networking model to use among nodes: openvswitch

networkInterfaceNamenetworkInterfaceName (Optional) Networking interface to use to bind addresses, default value eth0

publicAddressOverridepublicAddressOverride
(Optional) The IP address the kube-apiserver should use to bind against for
external read-only access

rolesroles

(Required) 1. kubernetes-masterkubernetes-master means this machine is the master in the

Kubernetes cluster. 2. kubernetes-poolkubernetes-pool means this machine is a

kubernetes-node. Depending on the role, the Salt scripts will provision different
resources on the machine.

These keys may be leveraged by the Salt sls files to branch behavior.

In addition, a cluster may be running a Debian based operating system or Red Hat based

operating system (Centos, Fedora, RHEL, etc.). As a result, it’s important to sometimes

distinguish behavior based on operating system using if branches like the following.

{%{% ifif grainsgrains[['os_family''os_family']] ==== 'RedHat''RedHat' %}%}

// something specific to a RedHat environment (Centos, Fedora, RHEL) where you may use yum, systemd, etc.// something specific to a RedHat environment (Centos, Fedora, RHEL) where you may use yum, systemd, etc.

{%{% elseelse %}%}

// something specific to Debian environment (apt-get, initd)// something specific to Debian environment (apt-get, initd)

{%{% endifendif %}%}

Best Practices

When configuring default arguments for processes, it’s best to avoid the use of

EnvironmentFiles (Systemd in Red Hat environments) or init.d files (Debian distributions) to

hold default values that should be common across operating system environments. This helps

keep our Salt template files easy to understand for editors who may not be familiar with the

particulars of each distribution.

Future enhancements (Networking)

Per pod IP configuration is provider-specific, so when making networking changes, it’s

important to sandbox these as all providers may not use the same mechanisms (iptables,

openvswitch, etc.)

We should define a grains.conf key that captures more specifically what network configuration

environment is being used to avoid future confusion across providers.

Building Large Clusters

Support

At v1.10, Kubernetes supports clusters with up to 5000 nodes. More specifically, we support

configurations that meet all of the following criteria:

No more than 5000 nodes

No more than 150000 total pods

No more than 300000 total containers

No more than 100 pods per node

Setup

A cluster is a set of nodes (physical or virtual machines) running Kubernetes agents, managed

by a “master” (the cluster-level control plane).

Normally the number of nodes in a cluster is controlled by the value NUM_NODESNUM_NODES in the

platform-specific config-default.shconfig-default.sh file (for example, see GCE’s config-default.shconfig-default.sh).

Simply changing that value to something very large, however, may cause the setup script to

fail for many cloud providers. A GCE deployment, for example, will run in to quota issues and

fail to bring the cluster up.

Support

Setup

Quota Issues

Etcd storage

Size of master and master components

Addon Resources

Allowing minor node failure at startup

http://releases.k8s.io/master/cluster/gce/config-default.sh

When setting up a large Kubernetes cluster, the following issues must be considered.

Quota Issues

To avoid running into cloud provider quota issues, when creating a cluster with many nodes,

consider:

Increase the quota for things like CPU, IPs, etc.

In GCE, for example, you’ll want to increase the quota for:

CPUs

VM instances

Total persistent disk reserved

In-use IP addresses

Firewall Rules

Forwarding rules

Routes

Target pools

Gating the setup script so that it brings up new node VMs in smaller batches with waits in

between, because some cloud providers rate limit the creation of VMs.

Etcd storage

To improve performance of large clusters, we store events in a separate dedicated etcd

instance.

When creating a cluster, existing salt scripts:

start and configure additional etcd instance

configure api-server to use it for storing events

Size of master and master components

On GCE/Google Kubernetes Engine, and AWS, kube-upkube-up automatically configures the proper

VM size for your master depending on the number of nodes in your cluster. On other providers,

https://cloud.google.com/compute/docs/resource-quotas

you will need to configure it manually. For reference, the sizes we use on GCE are

1-5 nodes: n1-standard-1

6-10 nodes: n1-standard-2

11-100 nodes: n1-standard-4

101-250 nodes: n1-standard-8

251-500 nodes: n1-standard-16

more than 500 nodes: n1-standard-32

And the sizes we use on AWS are

1-5 nodes: m3.medium

6-10 nodes: m3.large

11-100 nodes: m3.xlarge

101-250 nodes: m3.2xlarge

251-500 nodes: c4.4xlarge

more than 500 nodes: c4.8xlarge

Note that these master node sizes are currently only set at cluster startup time, and are not

adjusted if you later scale your cluster up or down (e.g. manually removing or adding nodes, or

using a cluster autoscaler).

Addon Resources

To prevent memory leaks or other resource issues in cluster addons from consuming all the

resources available on a node, Kubernetes sets resource limits on addon containers to limit the

CPU and Memory resources they can consume (See PR #10653 and #10778).

For example:

https://releases.k8s.io/master/cluster/addons
http://pr.k8s.io/10653/files
http://pr.k8s.io/10778/files

Except for Heapster, these limits are static and are based on data we collected from addons

running on 4-node clusters (see #10335). The addons consume a lot more resources when

running on large deployment clusters (see #5880). So, if a large cluster is deployed without

adjusting these values, the addons may continuously get killed because they keep hitting the

limits.

To avoid running into cluster addon resource issues, when creating a cluster with many nodes,

consider the following:

Scale memory and CPU limits for each of the following addons, if used, as you scale up

the size of cluster (there is one replica of each handling the entire cluster so memory and

CPU usage tends to grow proportionally with size/load on cluster):

InfluxDB and Grafana

kubedns, dnsmasq, and sidecar

Kibana

Scale number of replicas for the following addons, if used, along with the size of cluster

(there are multiple replicas of each so increasing replicas should help handle increased

load, but, since load per replica also increases slightly, also consider increasing

CPU/memory limits):

elasticsearch

Increase memory and CPU limits slightly for each of the following addons, if used, along

with the size of cluster (there is one replica per node but CPU/memory usage increases

slightly along with cluster load/size as well):

FluentD with ElasticSearch Plugin

FluentD with GCP Plugin

Heapster’s resource limits are set dynamically based on the initial size of your cluster (see

 containerscontainers::

 -- namename:: fluentd-cloud-loggingfluentd-cloud-logging

 imageimage:: k8s.gcr.io/fluentd-gcp:1.16k8s.gcr.io/fluentd-gcp:1.16

 resourcesresources::

 limitslimits::

 cpucpu:: 100m100m

 memorymemory:: 200Mi200Mi

http://issue.k8s.io/10335#issuecomment-117861225
http://issue.k8s.io/5880#issuecomment-113984085
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/influxdb/influxdb-grafana-controller.yaml
http://releases.k8s.io/master/cluster/addons/dns/kube-dns.yaml.in
http://releases.k8s.io/master/cluster/addons/fluentd-elasticsearch/kibana-deployment.yaml
http://releases.k8s.io/master/cluster/addons/fluentd-elasticsearch/es-statefulset.yaml
http://releases.k8s.io/master/cluster/addons/fluentd-elasticsearch/fluentd-es-ds.yaml
http://releases.k8s.io/master/cluster/addons/fluentd-gcp/fluentd-gcp-ds.yaml

#16185 and #22940). If you find that Heapster is running out of resources, you should adjust

the formulas that compute heapster memory request (see those PRs for details).

For directions on how to detect if addon containers are hitting resource limits, see the

Troubleshooting section of Compute Resources.

In the future, we anticipate to set all cluster addon resource limits based on cluster size, and to

dynamically adjust them if you grow or shrink your cluster. We welcome PRs that implement

those features.

Allowing minor node failure at startup

For various reasons (see #18969 for more details) running kube-up.shkube-up.sh with a very large

NUM_NODESNUM_NODES may fail due to a very small number of nodes not coming up properly. Currently

you have two choices: restart the cluster (kube-down.shkube-down.sh and then kube-up.shkube-up.sh again), or

before running kube-up.shkube-up.sh set the environment variable ALLOWED_NOTREADY_NODESALLOWED_NOTREADY_NODES to

whatever value you feel comfortable with. This will allow kube-up.shkube-up.sh to succeed with fewer

than NUM_NODESNUM_NODES coming up. Depending on the reason for the failure, those additional nodes

may join later or the cluster may remain at a size of

NUM_NODES -NUM_NODES -

ALLOWED_NOTREADY_NODESALLOWED_NOTREADY_NODES .

http://issue.k8s.io/16185
http://issue.k8s.io/22940
file:///docs/concepts/configuration/manage-compute-resources-container/#troubleshooting
http://issue.k8s.io/13048
https://github.com/kubernetes/kubernetes/issues/18969

Running in Multiple Zones

Introduction

Kubernetes 1.2 adds support for running a single cluster in multiple failure zones (GCE calls

them simply “zones”, AWS calls them “availability zones”, here we’ll refer to them as “zones”).

This is a lightweight version of a broader Cluster Federation feature (previously referred to by

the affectionate nickname “Ubernetes”). Full Cluster Federation allows combining separate

Kubernetes clusters running in different regions or cloud providers (or on-premises data

centers). However, many users simply want to run a more available Kubernetes cluster in

multiple zones of their single cloud provider, and this is what the multizone support in 1.2

allows (this previously went by the nickname “Ubernetes Lite”).

Multizone support is deliberately limited: a single Kubernetes cluster can run in multiple zones,

but only within the same region (and cloud provider). Only GCE and AWS are currently

supported automatically (though it is easy to add similar support for other clouds or even bare

metal, by simply arranging for the appropriate labels to be added to nodes and volumes).

Functionality

When nodes are started, the kubelet automatically adds labels to them with zone information.

Kubernetes will automatically spread the pods in a replication controller or service across

nodes in a single-zone cluster (to reduce the impact of failures.) With multiple-zone clusters,

Introduction

Functionality

Limitations

Walkthrough

Bringing up your cluster

Nodes are labeled

Add more nodes in a second zone

Volume affinity

Pods are spread across zones

Shutting down the cluster

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multicluster/federation.md

this spreading behavior is extended across zones (to reduce the impact of zone failures.) (This

is achieved via SelectorSpreadPrioritySelectorSpreadPriority). This is a best-effort placement, and so if the

zones in your cluster are heterogeneous (e.g. different numbers of nodes, different types of

nodes, or different pod resource requirements), this might prevent perfectly even spreading of

your pods across zones. If desired, you can use homogeneous zones (same number and types

of nodes) to reduce the probability of unequal spreading.

When persistent volumes are created, the PersistentVolumeLabelPersistentVolumeLabel admission controller

automatically adds zone labels to them. The scheduler (via the VolumeZonePredicateVolumeZonePredicate

predicate) will then ensure that pods that claim a given volume are only placed into the same

zone as that volume, as volumes cannot be attached across zones.

Limitations

There are some important limitations of the multizone support:

We assume that the different zones are located close to each other in the network, so we

don’t perform any zone-aware routing. In particular, traffic that goes via services might

cross zones (even if pods in some pods backing that service exist in the same zone as the

client), and this may incur additional latency and cost.

Volume zone-affinity will only work with a PersistentVolumePersistentVolume , and will not work if you

directly specify an EBS volume in the pod spec (for example).

Clusters cannot span clouds or regions (this functionality will require full federation

support).

Although your nodes are in multiple zones, kube-up currently builds a single master node

by default. While services are highly available and can tolerate the loss of a zone, the

control plane is located in a single zone. Users that want a highly available control plane

should follow the high availability instructions.

StatefulSet volume zone spreading when using dynamic provisioning is currently not

compatible with pod affinity or anti-affinity policies.

If the name of the StatefulSet contains dashes (“-“), volume zone spreading may not

provide a uniform distribution of storage across zones.

When specifying multiple PVCs in a Deployment or Pod spec, the StorageClass needs to

file:///docs/admin/high-availability

be configured for a specific, single zone, or the PVs need to be statically provisioned in a

specific zone. Another workaround is to use a StatefulSet, which will ensure that all the

volumes for a replica are provisioned in the same zone.

Walkthrough

We’re now going to walk through setting up and using a multi-zone cluster on both GCE &

AWS. To do so, you bring up a full cluster (specifying MULTIZONE=trueMULTIZONE=true), and then you add

nodes in additional zones by running kube-upkube-up again (specifying

KUBE_USE_EXISTING_MASTER=trueKUBE_USE_EXISTING_MASTER=true).

Bringing up your cluster

Create the cluster as normal, but pass MULTIZONE to tell the cluster to manage multiple

zones; creating nodes in us-central1-a.

GCE:

AWS:

This step brings up a cluster as normal, still running in a single zone (but MULTIZONE=trueMULTIZONE=true has

enabled multi-zone capabilities).

Nodes are labeled

View the nodes; you can see that they are labeled with zone information. They are all in

us-central1-aus-central1-a (GCE) or us-west-2aus-west-2a (AWS) so far. The labels are

failure-domain.beta.kubernetes.io/regionfailure-domain.beta.kubernetes.io/region for the region, and

failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone for the zone:

curl curl -sS-sS https://get.k8s.io | https://get.k8s.io | MULTIZONEMULTIZONE==true true KUBERNETES_PROVIDERKUBERNETES_PROVIDER==gce gce KUBE_GCE_ZONEKUBE_GCE_ZONE

curl curl -sS-sS https://get.k8s.io | https://get.k8s.io | MULTIZONEMULTIZONE==true true KUBERNETES_PROVIDERKUBERNETES_PROVIDER==aws aws KUBE_AWS_ZONEKUBE_AWS_ZONE

Add more nodes in a second zone

Let’s add another set of nodes to the existing cluster, reusing the existing master, running in a

different zone (us-central1-b or us-west-2b). We run kube-up again, but by specifying

KUBE_USE_EXISTING_MASTER=trueKUBE_USE_EXISTING_MASTER=true kube-up will not create a new master, but will reuse one

that was previously created instead.

GCE:

On AWS we also need to specify the network CIDR for the additional subnet, along with the

master internal IP address:

View the nodes again; 3 more nodes should have launched and be tagged in us-central1-b:

>> kubectl get nodes kubectl get nodes --show-labels--show-labels

NAME STATUS AGE VERSION LABELSNAME STATUS AGE VERSION LABELS

kubernetes-master Ready,SchedulingDisabled 6m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-master Ready,SchedulingDisabled 6m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-87j9 Ready 6m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-87j9 Ready 6m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-9vlv Ready 6m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-9vlv Ready 6m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-a12q Ready 6m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-a12q Ready 6m v1.6.0+fff5156 beta.kubernetes.io/instance-type

KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true MULTIZONEMULTIZONE==true true KUBERNETES_PROVIDERKUBERNETES_PROVIDER==gce gce KUBE_GCE_ZONEKUBE_GCE_ZONE

KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true MULTIZONEMULTIZONE==true true KUBERNETES_PROVIDERKUBERNETES_PROVIDER==aws aws KUBE_AWS_ZONEKUBE_AWS_ZONE

>> kubectl get nodes kubectl get nodes --show-labels--show-labels

NAME STATUS AGE VERSION LABELSNAME STATUS AGE VERSION LABELS

kubernetes-master Ready,SchedulingDisabled 16m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-master Ready,SchedulingDisabled 16m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-281d Ready 2m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-281d Ready 2m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-87j9 Ready 16m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-87j9 Ready 16m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-9vlv Ready 16m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-9vlv Ready 16m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-a12q Ready 17m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-a12q Ready 17m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-pp2f Ready 2m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-pp2f Ready 2m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-wf8i Ready 2m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-wf8i Ready 2m v1.6.0+fff5156 beta.kubernetes.io/instance-type

Volume affinity

Create a volume using the dynamic volume creation (only PersistentVolumes are supported for

zone affinity):

NOTE: For version 1.3+ Kubernetes will distribute dynamic PV claims across the configured

zones. For version 1.2, dynamic persistent volumes were always created in the zone of the

cluster master (here us-central1-a / us-west-2a); that issue (#23330) was addressed in 1.3+.

Now lets validate that Kubernetes automatically labeled the zone & region the PV was created

in.

So now we will create a pod that uses the persistent volume claim. Because GCE PDs / AWS

EBS volumes cannot be attached across zones, this means that this pod can only be created in

the same zone as the volume:

kubectlkubectl createcreate -f-f -- <<EOF<<EOF

{{

 "kind""kind":: "PersistentVolumeClaim""PersistentVolumeClaim",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "claim1""claim1",,

 "annotations""annotations":: {{

 "volume.alpha.kubernetes.io/storage-class""volume.alpha.kubernetes.io/storage-class":: "foo""foo"

 }}

 },},

 "spec""spec":: {{

 "accessModes""accessModes":: [[

 "ReadWriteOnce""ReadWriteOnce"

],],

 "resources""resources":: {{

 "requests""requests":: {{

 "storage""storage":: "5Gi""5Gi"

 }}

 }}

 }}

}}

EOFEOF

>> kubectl get pv kubectl get pv --show-labels--show-labels

NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE LABELSNAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE LABELS

pv-gce-mj4gm 5Gi RWO Bound default/claim1 46s failure-domain.beta.kubernetes.io/regionpv-gce-mj4gm 5Gi RWO Bound default/claim1 46s failure-domain.beta.kubernetes.io/region

https://github.com/kubernetes/kubernetes/issues/23330

Note that the pod was automatically created in the same zone as the volume, as cross-zone

attachments are not generally permitted by cloud providers:

Pods are spread across zones

Pods in a replication controller or service are automatically spread across zones. First, let’s

launch more nodes in a third zone:

GCE:

AWS:

kubectl create -f - <<EOFkubectl create -f - <<EOF

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: mypodmypod

specspec::

 containerscontainers::

 -- namename:: myfrontendmyfrontend

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: ""/var/www/html"/var/www/html"

 namename:: mypdmypd

 volumesvolumes::

 -- namename:: mypdmypd

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: claim1claim1

EOFEOF

>> kubectl describe pod mypod | kubectl describe pod mypod | grep grep NodeNode

Node: kubernetes-minion-9vlv/10.240.0.5Node: kubernetes-minion-9vlv/10.240.0.5

>> kubectl get node kubernetes-minion-9vlv kubectl get node kubernetes-minion-9vlv --show-labels--show-labels

NAME STATUS AGE VERSION LABELSNAME STATUS AGE VERSION LABELS

kubernetes-minion-9vlv Ready 22m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-9vlv Ready 22m v1.6.0+fff5156 beta.kubernetes.io/instance-type

KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true MULTIZONEMULTIZONE==true true KUBERNETES_PROVIDERKUBERNETES_PROVIDER==gce gce KUBE_GCE_ZONEKUBE_GCE_ZONE

KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true MULTIZONEMULTIZONE==true true KUBERNETES_PROVIDERKUBERNETES_PROVIDER==aws aws KUBE_AWS_ZONEKUBE_AWS_ZONE

Verify that you now have nodes in 3 zones:

Create the guestbook-go example, which includes an RC of size 3, running a simple web app:

The pods should be spread across all 3 zones:

Load-balancers span all zones in a cluster; the guestbook-go example includes an example

load-balanced service:

The load balancer correctly targets all the pods, even though they are in multiple zones.

Shutting down the cluster

kubectl get nodes kubectl get nodes --show-labels--show-labels

find kubernetes/examples/guestbook-go/ find kubernetes/examples/guestbook-go/ -name-name '*.json''*.json' | xargs | xargs -I-I {}{} kubectl create kubectl create

>> kubectl describe pod kubectl describe pod -l-l appapp==guestbook | guestbook | grep grep NodeNode

Node: kubernetes-minion-9vlv/10.240.0.5Node: kubernetes-minion-9vlv/10.240.0.5

Node: kubernetes-minion-281d/10.240.0.8Node: kubernetes-minion-281d/10.240.0.8

Node: kubernetes-minion-olsh/10.240.0.11Node: kubernetes-minion-olsh/10.240.0.11

 >> kubectl get node kubernetes-minion-9vlv kubernetes-minion-281d kubernetes-minion-olsh kubectl get node kubernetes-minion-9vlv kubernetes-minion-281d kubernetes-minion-olsh

NAME STATUS AGE VERSION LABELSNAME STATUS AGE VERSION LABELS

kubernetes-minion-9vlv Ready 34m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-9vlv Ready 34m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-281d Ready 20m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-281d Ready 20m v1.6.0+fff5156 beta.kubernetes.io/instance-type

kubernetes-minion-olsh Ready 3m v1.6.0+fff5156 beta.kubernetes.io/instance-typekubernetes-minion-olsh Ready 3m v1.6.0+fff5156 beta.kubernetes.io/instance-type

>> kubectl describe service guestbook | kubectl describe service guestbook | grep grep LoadBalancer.IngressLoadBalancer.Ingress

LoadBalancer Ingress: 130.211.126.21LoadBalancer Ingress: 130.211.126.21

>> ipip==130.211.126.21130.211.126.21

>> curl curl -s-s http:// http://${${ipip}}:3000/env | :3000/env | grep grep HOSTNAMEHOSTNAME

 "HOSTNAME""HOSTNAME": : "guestbook-44sep""guestbook-44sep",,

>> ((for for i i inin `̀seq 20seq 20`̀;; do do curl curl -s-s http:// http://${${ipip}}:3000/env | :3000/env | grep grep HOSTNAMEHOSTNAME;; donedone)) | sort | uniq | sort | uniq

 "HOSTNAME""HOSTNAME": : "guestbook-44sep""guestbook-44sep",,

 "HOSTNAME""HOSTNAME": : "guestbook-hum5n""guestbook-hum5n",,

 "HOSTNAME""HOSTNAME": : "guestbook-ppm40""guestbook-ppm40",,

When you’re done, clean up:

GCE:

AWS:

KUBERNETES_PROVIDERKUBERNETES_PROVIDER==gce gce KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true KUBE_GCE_ZONEKUBE_GCE_ZONE==us-central1-f kubernetes/cluster/kube-down.shus-central1-f kubernetes/cluster/kube-down.sh

KUBERNETES_PROVIDERKUBERNETES_PROVIDER==gce gce KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true KUBE_GCE_ZONEKUBE_GCE_ZONE==us-central1-b kubernetes/cluster/kube-down.shus-central1-b kubernetes/cluster/kube-down.sh

KUBERNETES_PROVIDERKUBERNETES_PROVIDER==gce gce KUBE_GCE_ZONEKUBE_GCE_ZONE==us-central1-a kubernetes/cluster/kube-down.shus-central1-a kubernetes/cluster/kube-down.sh

KUBERNETES_PROVIDERKUBERNETES_PROVIDER==aws aws KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true KUBE_AWS_ZONEKUBE_AWS_ZONE==us-west-2c kubernetes/cluster/kube-down.shus-west-2c kubernetes/cluster/kube-down.sh

KUBERNETES_PROVIDERKUBERNETES_PROVIDER==aws aws KUBE_USE_EXISTING_MASTERKUBE_USE_EXISTING_MASTER==true true KUBE_AWS_ZONEKUBE_AWS_ZONE==us-west-2b kubernetes/cluster/kube-down.shus-west-2b kubernetes/cluster/kube-down.sh

KUBERNETES_PROVIDERKUBERNETES_PROVIDER==aws aws KUBE_AWS_ZONEKUBE_AWS_ZONE==us-west-2a kubernetes/cluster/kube-down.shus-west-2a kubernetes/cluster/kube-down.sh

Building High-Availability Clusters

Introduction

This document describes how to build a high-availability (HA) Kubernetes cluster. This is a

fairly advanced topic. Users who merely want to experiment with Kubernetes are encouraged

to use configurations that are simpler to set up such as Minikube or try Google Kubernetes

Engine for hosted Kubernetes.

Also, at this time high availability support for Kubernetes is not continuously tested in our end-

to-end (e2e) testing. We will be working to add this continuous testing, but for now the single-

node master installations are more heavily tested.

Overview

Setting up a truly reliable, highly available distributed system requires a number of steps. It is

akin to wearing underwear, pants, a belt, suspenders, another pair of underwear, and another

pair of pants. We go into each of these steps in detail, but a summary is given here to help

Introduction

Overview

Initial set-up

Reliable nodes

Establishing a redundant, reliable data storage layer

Clustering etcd

Validating your cluster

Even more reliable storage

Replicated API Servers

Installing configuration files

Starting the API Server

Load balancing

Endpoint reconciler

Master elected components

Installing configuration files

Conclusion

file:///docs/getting-started-guides/minikube/
https://cloud.google.com/kubernetes-engine/

guide and orient the user.

The steps involved are as follows:

Creating the reliable constituent nodes that collectively form our HA master

implementation.

Setting up a redundant, reliable storage layer with clustered etcd.

Starting replicated, load balanced Kubernetes API servers

Setting up master-elected Kubernetes scheduler and controller-manager daemons

Here’s what the system should look like when it’s finished:

Initial set-up

The remainder of this guide assumes that you are setting up a 3-node clustered master, where

each machine is running some flavor of Linux. Examples in the guide are given for Debian

distributions, but they should be easily adaptable to other distributions. Likewise, this set up

should work whether you are running in a public or private cloud provider, or if you are running

on bare metal.

The easiest way to implement an HA Kubernetes cluster is to start with an existing single-

master cluster. The instructions at https://get.k8s.io describe easy installation for single-

master clusters on a variety of platforms.

Reliable nodes

On each master node, we are going to run a number of processes that implement the

Kubernetes API. The first step in making these reliable is to make sure that each automatically

restarts when it fails. To achieve this, we need to install a process watcher. We choose to use

the kubeletkubelet that we run on each of the worker nodes. This is convenient, since we can use

containers to distribute our binaries, we can establish resource limits, and introspect the

resource usage of each daemon. Of course, we also need something to monitor the kubelet

itself (insert who watches the watcher jokes here). For Debian systems, we choose monit, but

there are a number of alternate choices. For example, on systemd-based systems (e.g. RHEL,

https://get.k8s.io

CentOS), you can run ‘systemctl enable kubelet’.

If you are extending from a standard Kubernetes installation, the kubeletkubelet binary should

already be present on your system. You can run which kubeletwhich kubelet to determine if the binary is

in fact installed. If it is not installed, you should install the kubelet binary and default-kubelet

scripts.

If you are using monit, you should also install the monit daemon (apt-get install monitapt-get install monit)

and the monit-kubelet and monit-docker configs.

On systemd systems you

systemctl enablesystemctl enable

kubeletkubelet and

systemctl enablesystemctl enable

dockerdocker .

Establishing a redundant, reliable data storage layer

The central foundation of a highly available solution is a redundant, reliable storage layer. The

number one rule of high-availability is to protect the data. Whatever else happens, whatever

catches on fire, if you have the data, you can rebuild. If you lose the data, you’re done.

Clustered etcd already replicates your storage to all master instances in your cluster. This

means that to lose data, all three nodes would need to have their physical (or virtual) disks fail

at the same time. The probability that this occurs is relatively low, so for many people running

a replicated etcd cluster is likely reliable enough. You can add additional reliability by increasing

the size of the cluster from three to five nodes. If that is still insufficient, you can add even

more redundancy to your storage layer.

Clustering etcd

The full details of clustering etcd are beyond the scope of this document, lots of details are

given on the etcd clustering page. This example walks through a simple cluster set up, using

etcd’s built in discovery to build our cluster.

First, hit the etcd discovery service to create a new token:

On each node, copy the etcd.yaml file into /etc/kubernetes/manifests/etcd.yaml/etc/kubernetes/manifests/etcd.yaml

The kubelet on each node actively monitors the contents of that directory, and it will create an

curl https://discovery.etcd.io/new?sizecurl https://discovery.etcd.io/new?size==33

https://storage.googleapis.com/kubernetes-release/release/v0.19.3/bin/linux/amd64/kubelet
file:///docs/admin/high-availability/default-kubelet
file:///docs/admin/high-availability/monit-kubelet
file:///docs/admin/high-availability/monit-docker
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering.md
file:///docs/admin/high-availability/etcd.yaml

instance of the etcdetcd server from the definition of the pod specified in etcd.yamletcd.yaml .

Note that in etcd.yamletcd.yaml you should substitute the token URL you got above for

${DISCOVERY_TOKEN}${DISCOVERY_TOKEN} on all three machines, and you should substitute a different name (e.g.

node-1node-1) for ${NODE_NAME}${NODE_NAME} and the correct IP address for ${NODE_IP}${NODE_IP} on each machine.

Validating your cluster

Once you copy this into all three nodes, you should have a clustered etcd set up. You can

validate on master with

and

You can also validate that this is working with

etcdctl set fooetcdctl set foo

barbar on one node, and

etcdctl getetcdctl get

foofoo on a different node.

Even more reliable storage

Of course, if you are interested in increased data reliability, there are further options which

make the place where etcd installs its data even more reliable than regular disks (belts and

suspenders, ftw!).

If you use a cloud provider, then they usually provide this for you, for example Persistent Disk

on the Google Cloud Platform. These are block-device persistent storage that can be mounted

onto your virtual machine. Other cloud providers provide similar solutions.

If you are running on physical machines, you can also use network attached redundant storage

using an iSCSI or NFS interface. Alternatively, you can run a clustered file system like Gluster or

Ceph. Finally, you can also run a RAID array on each physical machine.

Regardless of how you choose to implement it, if you chose to use one of these options, you

should make sure that your storage is mounted to each machine. If your storage is shared

between the three masters in your cluster, you should create a different directory on the

kubectl kubectl execexec <pod_name> etcdctl member list <pod_name> etcdctl member list

kubectl kubectl execexec <pod_name> etcdctl cluster-health <pod_name> etcdctl cluster-health

https://cloud.google.com/compute/docs/disks/persistent-disks

storage for each node. Throughout these instructions, we assume that this storage is mounted

to your machine in /var/etcd/data/var/etcd/data .

Replicated API Servers

Once you have replicated etcd set up correctly, we will also install the apiserver using the

kubelet.

Installing configuration files

First you need to create the initial log file, so that Docker mounts a file instead of a directory:

Next, you need to create a /srv/kubernetes//srv/kubernetes/ directory on each node. This directory includes:

basic_auth.csv - basic auth user and password

ca.crt - Certificate Authority cert

known_tokens.csv - tokens that entities (e.g. the kubelet) can use to talk to the apiserver

kubecfg.crt - Client certificate, public key

kubecfg.key - Client certificate, private key

server.cert - Server certificate, public key

server.key - Server certificate, private key

The easiest way to create this directory, may be to copy it from the master node of a working

cluster, or you can manually generate these files yourself.

Starting the API Server

Once these files exist, copy the kube-apiserver.yaml into /etc/kubernetes/manifests//etc/kubernetes/manifests/ on

each master node.

The kubelet monitors this directory, and will automatically create an instance of the

kube-apiserverkube-apiserver container using the pod definition specified in the file.

touch /var/log/kube-apiserver.logtouch /var/log/kube-apiserver.log

file:///docs/admin/high-availability/kube-apiserver.yaml

Load balancing

At this point, you should have 3 apiservers all working correctly. If you set up a network load

balancer, you should be able to access your cluster via that load balancer, and see traffic

balancing between the apiserver instances. Setting up a load balancer will depend on the

specifics of your platform, for example instructions for the Google Cloud Platform can be

found here.

Note, if you are using authentication, you may need to regenerate your certificate to include the

IP address of the balancer, in addition to the IP addresses of the individual nodes.

For pods that you deploy into the cluster, the kuberneteskubernetes service/dns name should provide a

load balanced endpoint for the master automatically.

For external users of the API (e.g. the kubectlkubectl command line interface, continuous build

pipelines, or other clients) you will want to configure them to talk to the external load balancer’s

IP address.

Endpoint reconciler

As mentioned in the previous section, the apiserver is exposed through a service called

kuberneteskubernetes . The endpoints for this service correspond to the apiserver replicas that we just

deployed.

Since updating endpoints and services requires the apiserver to be up, there is special code in

the apiserver to let it update its own endpoints directly. This code is called the “reconciler,”

because it reconciles the list of endpoints stored in etcd, and the list of endpoints that are

actually up and running.

Prior to Kubernetes 1.9, the reconciler expects you to provide the number of endpoints (i.e., the

number of apiserver replicas) through a command-line flag (e.g. --apiserver-count=3--apiserver-count=3). If

more replicas are available, the reconciler trims down the list of endpoints. As a result, if a node

running a replica of the apiserver crashes and gets replaced, the list of endpoints is eventually

updated. However, until the replica gets replaced, its endpoint stays in the list. During that time,

a fraction of the API requests sent to the kuberneteskubernetes service will fail, because they will be

sent to a down endpoint.

This is why the previous section advises you to deploy a load balancer, and access the API

through that load balancer. The load balancer will directly assess the health of the apiserver

replicas, and make sure that requests are not sent to crashed instances.

https://cloud.google.com/compute/docs/load-balancing/

If you do not add the --apiserver-count--apiserver-count flag, the value defaults to 1. Your cluster will work

correctly, but each apiserver replica will continuously try to add itself to the list of endpoints

while removing the other ones, causing a lot of extraneous updates in kube-proxy and other

components.

Starting with Kubernetes 1.9, a new alpha reconciler implementation is available. It uses a

lease that is regularly renewed by each apiserver replica. When a replica is down, it stops

renewing its lease, and the other replicas notice that the lease expired and remove it from the

list of endpoints. You can switch to the new reconciler by adding the flag

--endpoint-reconciler-type=lease--endpoint-reconciler-type=lease when starting your apiserver replicas.

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

If you want to know more, you can check the following resources:

issue kubernetes/kubernetes#22609, which gives additional context

master/reconcilers/mastercount.go, the implementation of the master count reconciler

PR kubernetes/kubernetes#51698, which adds support for the lease reconciler

Master elected components

So far we have set up state storage, and we have set up the API server, but we haven’t run

anything that actually modifies cluster state, such as the controller manager and scheduler. To

achieve this reliably, we only want to have one actor modifying state at a time, but we want

replicated instances of these actors, in case a machine dies. To achieve this, we are going to

use a lease-lock in the API to perform master election. We will use the --leader-elect--leader-elect flag

for each scheduler and controller-manager, using a lease in the API will ensure that only 1

instance of the scheduler and controller-manager are running at once.

The scheduler and controller-manager can be configured to talk to the API server that is on the

same node (i.e. 127.0.0.1), or it can be configured to communicate using the load balanced IP

address of the API servers. Regardless of how they are configured, the scheduler and

controller-manager will complete the leader election process mentioned above when using the

--leader-elect--leader-elect flag.

In case of a failure accessing the API server, the elected leader will not be able to renew the

lease, causing a new leader to be elected. This is especially relevant when configuring the

https://github.com/kubernetes/kubernetes/issues/22609
https://github.com/kubernetes/kubernetes/blob/dd9981d038012c120525c9e6df98b3beb3ef19e1/pkg/master/reconcilers/mastercount.go#L63
https://github.com/kubernetes/kubernetes/pull/51698

scheduler and controller-manager to access the API server via 127.0.0.1, and the API server on

the same node is unavailable.

Installing configuration files

First, create empty log files on each node, so that Docker will mount the files not make new

directories:

Next, set up the descriptions of the scheduler and controller manager pods on each node by

copying kube-scheduler.yaml and kube-controller-manager.yaml into the

/etc/kubernetes/manifests//etc/kubernetes/manifests/ directory.

Conclusion

At this point, you are done (yeah!) with the master components, but you still need to add

worker nodes (boo!).

If you have an existing cluster, this is as simple as reconfiguring your kubelets to talk to the

load-balanced endpoint, and restarting the kubelets on each node.

If you are turning up a fresh cluster, you will need to install the kubelet and kube-proxy on each

worker node, and set the --apiserver--apiserver flag to your replicated endpoint.

touch /var/log/kube-scheduler.logtouch /var/log/kube-scheduler.log

touch /var/log/kube-controller-manager.logtouch /var/log/kube-controller-manager.log

file:///docs/admin/high-availability/kube-scheduler.yaml
file:///docs/admin/high-availability/kube-controller-manager.yaml

Concepts

The Concepts section helps you learn about the parts of the Kubernetes system and the

abstractions Kubernetes uses to represent your cluster, and helps you obtain a deeper

understanding of how Kubernetes works.

Overview

To work with Kubernetes, you use Kubernetes API objects to describe your cluster’s desired

state: what applications or other workloads you want to run, what container images they use,

the number of replicas, what network and disk resources you want to make available, and

more. You set your desired state by creating objects using the Kubernetes API, typically via the

command-line interface, kubectlkubectl . You can also use the Kubernetes API directly to interact

with the cluster and set or modify your desired state.

Once you’ve set your desired state, the Kubernetes Control Plane works to make the cluster’s

current state match the desired state. To do so, Kubernetes performs a variety of tasks

automatically–such as starting or restarting containers, scaling the number of replicas of a

given application, and more. The Kubernetes Control Plane consists of a collection of

processes running on your cluster:

The Kubernetes Master is a collection of three processes that run on a single node in your

cluster, which is designated as the master node. Those processes are: kube-apiserver,

kube-controller-manager and kube-scheduler.

Each individual non-master node in your cluster runs two processes:

kubelet, which communicates with the Kubernetes Master.

kube-proxy, a network proxy which reflects Kubernetes networking services on each

node.

Kubernetes Objects

Kubernetes contains a number of abstractions that represent the state of your system:

file:///docs/admin/kube-apiserver/
file:///docs/admin/kube-controller-manager/
file:///docs/admin/kube-scheduler/
file:///docs/admin/kubelet/
file:///docs/admin/kube-proxy/

deployed containerized applications and workloads, their associated network and disk

resources, and other information about what your cluster is doing. These abstractions are

represented by objects in the Kubernetes API; see the Kubernetes Objects overview for more

details.

The basic Kubernetes objects include:

Pod

Service

Volume

Namespace

In addition, Kubernetes contains a number of higher-level abstractions called Controllers.

Controllers build upon the basic objects, and provide additional functionality and convenience

features. They include:

ReplicaSet

Deployment

StatefulSet

DaemonSet

Job

Kubernetes Control Plane

The various parts of the Kubernetes Control Plane, such as the Kubernetes Master and kubelet

processes, govern how Kubernetes communicates with your cluster. The Control Plane

maintains a record of all of the Kubernetes Objects in the system, and runs continuous control

loops to manage those objects’ state. At any given time, the Control Plane’s control loops will

respond to changes in the cluster and work to make the actual state of all the objects in the

system match the desired state that you provided.

For example, when you use the Kubernetes API to create a Deployment object, you provide a

new desired state for the system. The Kubernetes Control Plane records that object creation,

and carries out your instructions by starting the required applications and scheduling them to

cluster nodes–thus making the cluster’s actual state match the desired state.

file:///docs/concepts/abstractions/overview/
file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/storage/volumes/
file:///docs/concepts/overview/working-with-objects/namespaces/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/

Kubernetes Master

The Kubernetes master is responsible for maintaining the desired state for your cluster. When

you interact with Kubernetes, such as by using the kubectlkubectl command-line interface, you’re

communicating with your cluster’s Kubernetes master.

The “master” refers to a collection of processes managing the cluster state. Typically these

processes are all run on a single node in the cluster, and this node is also referred to as the

master. The master can also be replicated for availability and redundancy.

Kubernetes Nodes

The nodes in a cluster are the machines (VMs, physical servers, etc) that run your applications

and cloud workflows. The Kubernetes master controls each node; you’ll rarely interact with

nodes directly.

Object Metadata

Annotations

What’s next

If you would like to write a concept page, see Using Page Templates for information about the

concept page type and the concept template.

file:///docs/concepts/overview/working-with-objects/annotations/
file:///docs/home/contribute/page-templates/

What is Kubernetes?

This page is an overview of Kubernetes.

Kubernetes is a portable, extensible open-source platform for managing containerized

workloads and services, that facilitates both declarative configuration and automation. It has a

large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.

Google open-sourced the Kubernetes project in 2014. Kubernetes builds upon a decade and a

half of experience that Google has with running production workloads at scale, combined with

best-of-breed ideas and practices from the community.

Why do I need Kubernetes and what can it do?

Kubernetes has a number of features. It can be thought of as:

a container platform

a microservices platform

a portable cloud platform and a lot more.

Kubernetes provides a container-centric management environment. It orchestrates computing,

networking, and storage infrastructure on behalf of user workloads. This provides much of the

simplicity of Platform as a Service (PaaS) with the flexibility of Infrastructure as a Service

(IaaS), and enables portability across infrastructure providers.

How is Kubernetes a platform?

Even though Kubernetes provides a lot of functionality, there are always new scenarios that

would benefit from new features. Application-specific workflows can be streamlined to

accelerate developer velocity. Ad hoc orchestration that is acceptable initially often requires

Why do I need Kubernetes and what can it do?

How is Kubernetes a platform?

What Kubernetes is not

Why containers?

What does Kubernetes mean? K8s?

What’s next

https://research.google.com/pubs/pub43438.html

robust automation at scale. This is why Kubernetes was also designed to serve as a platform

for building an ecosystem of components and tools to make it easier to deploy, scale, and

manage applications.

Labels empower users to organize their resources however they please. Annotations enable

users to decorate resources with custom information to facilitate their workflows and provide

an easy way for management tools to checkpoint state.

Additionally, the Kubernetes control plane is built upon the same APIs that are available to

developers and users. Users can write their own controllers, such as schedulers, with their own

APIs that can be targeted by a general-purpose command-line tool.

This design has enabled a number of other systems to build atop Kubernetes.

What Kubernetes is not

Kubernetes is not a traditional, all-inclusive PaaS (Platform as a Service) system. Since

Kubernetes operates at the container level rather than at the hardware level, it provides some

generally applicable features common to PaaS offerings, such as deployment, scaling, load

balancing, logging, and monitoring. However, Kubernetes is not monolithic, and these default

solutions are optional and pluggable. Kubernetes provides the building blocks for building

developer platforms, but preserves user choice and flexibility where it is important.

Kubernetes:

Does not limit the types of applications supported. Kubernetes aims to support an

extremely diverse variety of workloads, including stateless, stateful, and data-processing

workloads. If an application can run in a container, it should run great on Kubernetes.

Does not deploy source code and does not build your application. Continuous Integration,

Delivery, and Deployment (CI/CD) workflows are determined by organization cultures and

preferences as well as technical requirements.

Does not provide application-level services, such as middleware (e.g., message buses),

data-processing frameworks (for example, Spark), databases (e.g., mysql), caches, nor

cluster storage systems (e.g., Ceph) as built-in services. Such components can run on

Kubernetes, and/or can be accessed by applications running on Kubernetes through

portable mechanisms, such as the Open Service Broker.

Does not dictate logging, monitoring, or alerting solutions. It provides some integrations as

proof of concept, and mechanisms to collect and export metrics.

file:///docs/concepts/overview/working-with-objects/labels/
file:///docs/concepts/overview/working-with-objects/annotations/
file:///docs/concepts/overview/components/
file:///docs/reference/api-overview/
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
file:///docs/concepts/api-extension/custom-resources/
file:///docs/user-guide/kubectl-overview/
https://git.k8s.io/community/contributors/design-proposals/architecture/architecture.md

Does not provide nor mandate a configuration language/system (e.g., jsonnet). It provides

a declarative API that may be targeted by arbitrary forms of declarative specifications.

Does not provide nor adopt any comprehensive machine configuration, maintenance,

management, or self-healing systems.

Additionally, Kubernetes is not a mere orchestration system. In fact, it eliminates the need for

orchestration. The technical definition of orchestration is execution of a defined workflow: first

do A, then B, then C. In contrast, Kubernetes is comprised of a set of independent, composable

control processes that continuously drive the current state towards the provided desired state.

It shouldn’t matter how you get from A to C. Centralized control is also not required. This

results in a system that is easier to use and more powerful, robust, resilient, and extensible.

Why containers?

Looking for reasons why you should be using containers?

The Old Way to deploy applications was to install the applications on a host using the

operating-system package manager. This had the disadvantage of entangling the applications’

executables, configuration, libraries, and lifecycles with each other and with the host OS. One

could build immutable virtual-machine images in order to achieve predictable rollouts and

rollbacks, but VMs are heavyweight and non-portable.

The New Way is to deploy containers based on operating-system-level virtualization rather

than hardware virtualization. These containers are isolated from each other and from the host:

they have their own filesystems, they can’t see each others’ processes, and their

computational resource usage can be bounded. They are easier to build than VMs, and

because they are decoupled from the underlying infrastructure and from the host filesystem,

they are portable across clouds and OS distributions.

Because containers are small and fast, one application can be packed in each container

image. This one-to-one application-to-image relationship unlocks the full benefits of containers.

With containers, immutable container images can be created at build/release time rather than

deployment time, since each application doesn’t need to be composed with the rest of the

application stack, nor married to the production infrastructure environment. Generating

container images at build/release time enables a consistent environment to be carried from

development into production. Similarly, containers are vastly more transparent than VMs,

which facilitates monitoring and management. This is especially true when the containers’

https://github.com/google/jsonnet

process lifecycles are managed by the infrastructure rather than hidden by a process

supervisor inside the container. Finally, with a single application per container, managing the

containers becomes tantamount to managing deployment of the application.

Summary of container benefits:

Agile application creation and deployment : Increased ease and efficiency of container

image creation compared to VM image use.

Continuous development, integration, and deployment: Provides for reliable and frequent

container image build and deployment with quick and easy rollbacks (due to image

immutability).

Dev and Ops separation of concerns : Create application container images at build/release

time rather than deployment time, thereby decoupling applications from infrastructure.

Observability Not only surfaces OS-level information and metrics, but also application

health and other signals.

Environmental consistency across development, testing, and production: Runs the same

on a laptop as it does in the cloud.

Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS, on-prem, Google

Kubernetes Engine, and anywhere else.

Application-centric management: Raises the level of abstraction from running an OS on

virtual hardware to run an application on an OS using logical resources.

Loosely coupled, distributed, elastic, liberated micro-services: Applications are broken

into smaller, independent pieces and can be deployed and managed dynamically – not a

fat monolithic stack running on one big single-purpose machine.

Resource isolation: Predictable application performance.

Resource utilization: High efficiency and density.

What does Kubernetes mean? K8s?

The name Kubernetes originates from Greek, meaning helmsman or pilot, and is the root of

governor and cybernetic. K8s is an abbreviation derived by replacing the 8 letters “ubernete”

with “8”.

What’s next

https://martinfowler.com/articles/microservices.html
http://www.etymonline.com/index.php?term=cybernetics

Ready to Get Started?

For more details, see the Kubernetes Documentation.

file:///docs/setup/
file:///docs/home/

Kubernetes Components

This document outlines the various binary components needed to deliver a functioning

Kubernetes cluster.

Master Components

Master components provide the cluster’s control plane. Master components make global

decisions about the cluster (for example, scheduling), and detecting and responding to cluster

events (starting up a new pod when a replication controller’s ‘replicas’ field is unsatisfied).

Master components can be run on any machine in the cluster. However, for simplicity, set up

scripts typically start all master components on the same machine, and do not run user

containers on this machine. See Building High-Availability Clusters for an example multi-

master-VM setup.

kube-apiserver

Component on the master that exposes the Kubernetes API. It is the front-end for the

Kubernetes control plane.

Master Components

kube-apiserver

etcd

kube-scheduler

kube-controller-manager

cloud-controller-manager

Node Components

kubelet

kube-proxy

Container Runtime

Addons

DNS

Web UI (Dashboard)

Container Resource Monitoring

Cluster-level Logging

file:///docs/admin/high-availability/

It is designed to scale horizontally – that is, it scales by deploying more instances. See

Building High-Availability Clusters.

etcd

Consistent and highly-available key value store used as Kubernetes’ backing store for all

cluster data.

Always have a backup plan for etcd’s data for your Kubernetes cluster. For in-depth

information on etcd, see etcd documentation.

kube-scheduler

Component on the master that watches newly created pods that have no node assigned, and

selects a node for them to run on.

Factors taken into account for scheduling decisions include individual and collective resource

requirements, hardware/software/policy constraints, affinity and anti-affinity specifications,

data locality, inter-workload interference and deadlines.

kube-controller-manager

Component on the master that runs .

Logically, each is a separate process, but to reduce complexity, they are all compiled

into a single binary and run in a single process.

These controllers include:

Node Controller: Responsible for noticing and responding when nodes go down.

Replication Controller: Responsible for maintaining the correct number of pods for every

replication controller object in the system.

Endpoints Controller: Populates the Endpoints object (that is, joins Services & Pods).

Service Account & Token Controllers: Create default accounts and API access tokens for

new namespaces.

cloud-controller-manager

cloud-controller-manager runs controllers that interact with the underlying cloud providers. The

controllers

controller

file:///docs/admin/high-availability/
https://github.com/coreos/etcd/blob/master/Documentation/docs.md
file:///docs/admin/kube-controller-manager/
file:///docs/admin/kube-controller-manager/
file:///docs/tasks/administer-cluster/running-cloud-controller/

cloud-controller-manager binary is an alpha feature introduced in Kubernetes release 1.6.

cloud-controller-manager runs cloud-provider-specific controller loops only. You must disable

these controller loops in the kube-controller-manager. You can disable the controller loops by

setting the --cloud-provider--cloud-provider flag to externalexternal when starting the kube-controller-manager.

cloud-controller-manager allows cloud vendors code and the Kubernetes core to evolve

independent of each other. In prior releases, the core Kubernetes code was dependent upon

cloud-provider-specific code for functionality. In future releases, code specific to cloud vendors

should be maintained by the cloud vendor themselves, and linked to cloud-controller-manager

while running Kubernetes.

The following controllers have cloud provider dependencies:

Node Controller: For checking the cloud provider to determine if a node has been deleted in

the cloud after it stops responding

Route Controller: For setting up routes in the underlying cloud infrastructure

Service Controller: For creating, updating and deleting cloud provider load balancers

Volume Controller: For creating, attaching, and mounting volumes, and interacting with the

cloud provider to orchestrate volumes

Node Components

Node components run on every node, maintaining running pods and providing the Kubernetes

runtime environment.

kubelet

An agent that runs on each node in the cluster. It makes sure that containers are running in a

pod.

The kubelet takes a set of PodSpecs that are provided through various mechanisms and

ensures that the containers described in those PodSpecs are running and healthy. The kubelet

doesn’t manage containers which were not created by Kubernetes.

kube-proxy

kube-proxy enables the Kubernetes service abstraction by maintaining network rules on the

file:///docs/admin/kube-proxy/

host and performing connection forwarding.

Container Runtime

The container runtime is the software that is responsible for running containers. Kubernetes

supports several runtimes: Docker, rkt, runc and any OCI runtime-spec implementation.

Addons

Addons are pods and services that implement cluster features. The pods may be managed by

Deployments, ReplicationControllers, and so on. Namespaced addon objects are created in the

kube-systemkube-system namespace.

Selected addons are described below, for an extended list of available addons please see

Addons.

DNS

While the other addons are not strictly required, all Kubernetes clusters should have cluster

DNS, as many examples rely on it.

Cluster DNS is a DNS server, in addition to the other DNS server(s) in your environment, which

serves DNS records for Kubernetes services.

Containers started by Kubernetes automatically include this DNS server in their DNS searches.

Web UI (Dashboard)

Dashboard is a general purpose, web-based UI for Kubernetes clusters. It allows users to

manage and troubleshoot applications running in the cluster, as well as the cluster itself.

Container Resource Monitoring

Container Resource Monitoring records generic time-series metrics about containers in a

central database, and provides a UI for browsing that data.

Cluster-level Logging

A Cluster-level logging mechanism is responsible for saving container logs to a central log

http://www.docker.com
https://coreos.com/rkt/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runtime-spec
file:///docs/concepts/cluster-administration/addons/
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/tasks/access-application-cluster/web-ui-dashboard/
file:///docs/tasks/debug-application-cluster/resource-usage-monitoring/
file:///docs/concepts/cluster-administration/logging/

store with search/browsing interface.

The Kubernetes API

Overall API conventions are described in the API conventions doc.

API endpoints, resource types and samples are described in API Reference.

Remote access to the API is discussed in the access doc.

The Kubernetes API also serves as the foundation for the declarative configuration schema for

the system. The kubectl command-line tool can be used to create, update, delete, and get API

objects.

Kubernetes also stores its serialized state (currently in etcd) in terms of the API resources.

Kubernetes itself is decomposed into multiple components, which interact through its API.

API changes

In our experience, any system that is successful needs to grow and change as new use cases

emerge or existing ones change. Therefore, we expect the Kubernetes API to continuously

change and grow. However, we intend to not break compatibility with existing clients, for an

extended period of time. In general, new API resources and new resource fields can be

expected to be added frequently. Elimination of resources or fields will require following the

API deprecation policy.

What constitutes a compatible change and how to change the API are detailed by the API

change document.

OpenAPI and Swagger definitions

Complete API details are documented using Swagger v1.2 and OpenAPI. The Kubernetes

apiserver (aka “master”) exposes an API that can be used to retrieve the Swagger v1.2

Kubernetes API spec located at /swaggerapi/swaggerapi .

Starting with Kubernetes 1.4, OpenAPI spec is also available at /swagger.json/swagger.json . While we are

transitioning from Swagger v1.2 to OpenAPI (aka Swagger v2.0), some of the tools such as

https://git.k8s.io/community/contributors/devel/api-conventions.md
file:///docs/reference
file:///docs/admin/accessing-the-api
file:///docs/user-guide/kubectl/
https://coreos.com/docs/distributed-configuration/getting-started-with-etcd/
https://kubernetes.io/docs/reference/deprecation-policy/
https://git.k8s.io/community/contributors/devel/api_changes.md
http://swagger.io/
https://www.openapis.org/
https://git.k8s.io/kubernetes/api/openapi-spec/swagger.json

kubectl and swagger-ui are still using v1.2 spec. OpenAPI spec is in Beta as of Kubernetes 1.5.

Kubernetes implements an alternative Protobuf based serialization format for the API that is

primarily intended for intra-cluster communication, documented in the design proposal and the

IDL files for each schema are located in the Go packages that define the API objects.

API versioning

To make it easier to eliminate fields or restructure resource representations, Kubernetes

supports multiple API versions, each at a different API path, such as /api/v1/api/v1 or

/apis/extensions/v1beta1/apis/extensions/v1beta1 .

We chose to version at the API level rather than at the resource or field level to ensure that the

API presents a clear, consistent view of system resources and behavior, and to enable

controlling access to end-of-lifed and/or experimental APIs. The JSON and Protobuf

serialization schemas follow the same guidelines for schema changes - all descriptions below

cover both formats.

Note that API versioning and Software versioning are only indirectly related. The API and

release versioning proposal describes the relationship between API versioning and software

versioning.

Different API versions imply different levels of stability and support. The criteria for each level

are described in more detail in the API Changes documentation. They are summarized here:

Alpha level:

The version names contain alphaalpha (e.g. v1alpha1v1alpha1).

May be buggy. Enabling the feature may expose bugs. Disabled by default.

Support for feature may be dropped at any time without notice.

The API may change in incompatible ways in a later software release without notice.

Recommended for use only in short-lived testing clusters, due to increased risk of

bugs and lack of long-term support.

Beta level:

The version names contain betabeta (e.g. v2beta3v2beta3).

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/protobuf.md
https://git.k8s.io/community/contributors/design-proposals/release/versioning.md
https://git.k8s.io/community/contributors/devel/api_changes.md#alpha-beta-and-stable-versions

Code is well tested. Enabling the feature is considered safe. Enabled by default.

Support for the overall feature will not be dropped, though details may change.

The schema and/or semantics of objects may change in incompatible ways in a

subsequent beta or stable release. When this happens, we will provide instructions for

migrating to the next version. This may require deleting, editing, and re-creating API

objects. The editing process may require some thought. This may require downtime

for applications that rely on the feature.

Recommended for only non-business-critical uses because of potential for

incompatible changes in subsequent releases. If you have multiple clusters which can

be upgraded independently, you may be able to relax this restriction.

Please do try our beta features and give feedback on them! Once they exit beta, it

may not be practical for us to make more changes.

Stable level:

The version name is vXvX where XX is an integer.

Stable versions of features will appear in released software for many subsequent

versions.

API groups

To make it easier to extend the Kubernetes API, we implemented API groups. The API group is

specified in a REST path and in the apiVersionapiVersion field of a serialized object.

Currently there are several API groups in use:

1. The core group, often referred to as the legacy group, is at the REST path /api/v1/api/v1 and

uses apiVersion: v1apiVersion: v1 .

2. The named groups are at REST path /apis/$GROUP_NAME/$VERSION/apis/$GROUP_NAME/$VERSION , and use

apiVersion: $GROUP_NAME/$VERSIONapiVersion: $GROUP_NAME/$VERSION (e.g.

apiVersion:apiVersion:

batch/v1batch/v1). Full list of

supported API groups can be seen in Kubernetes API reference.

There are two supported paths to extending the API with custom resources:

https://git.k8s.io/community/contributors/design-proposals/api-machinery/api-group.md
file:///docs/reference/
file:///docs/concepts/api-extension/custom-resources/

1. CustomResourceDefinition is for users with very basic CRUD needs.

2. Coming soon: users needing the full set of Kubernetes API semantics can implement their

own apiserver and use the aggregator to make it seamless for clients.

Enabling API groups

Certain resources and API groups are enabled by default. They can be enabled or disabled by

setting --runtime-config--runtime-config on apiserver. --runtime-config--runtime-config accepts comma separated

values. For ex: to disable batch/v1, set --runtime-config=batch/v1=false--runtime-config=batch/v1=false , to enable

batch/v2alpha1, set --runtime-config=batch/v2alpha1--runtime-config=batch/v2alpha1 . The flag accepts comma

separated set of key=value pairs describing runtime configuration of the apiserver.

IMPORTANT: Enabling or disabling groups or resources requires restarting apiserver and

controller-manager to pick up the --runtime-config--runtime-config changes.

Enabling resources in the groups

DaemonSets, Deployments, HorizontalPodAutoscalers, Ingress, Jobs and ReplicaSets are

enabled by default. Other extensions resources can be enabled by setting --runtime-config--runtime-config

on apiserver. --runtime-config--runtime-config accepts comma separated values. For example: to disable

deployments and ingress, set

--runtime---runtime-

config=extensions/v1beta1/deployments=false,extensions/v1beta1/ingress=falseconfig=extensions/v1beta1/deployments=false,extensions/v1beta1/ingress=false

file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
https://git.k8s.io/community/contributors/design-proposals/api-machinery/aggregated-api-servers.md

Understanding Kubernetes Objects

This page explains how Kubernetes objects are represented in the Kubernetes API, and how

you can express them in .yaml.yaml format.

Understanding Kubernetes Objects

Kubernetes Objects are persistent entities in the Kubernetes system. Kubernetes uses these

entities to represent the state of your cluster. Specifically, they can describe:

What containerized applications are running (and on which nodes)

The resources available to those applications

The policies around how those applications behave, such as restart policies, upgrades,

and fault-tolerance

A Kubernetes object is a “record of intent”–once you create the object, the Kubernetes system

will constantly work to ensure that object exists. By creating an object, you’re effectively telling

the Kubernetes system what you want your cluster’s workload to look like; this is your cluster’s

desired state.

To work with Kubernetes objects–whether to create, modify, or delete them–you’ll need to use

the Kubernetes API. When you use the kubectlkubectl command-line interface, for example, the CLI

makes the necessary Kubernetes API calls for you. You can also use the Kubernetes API

directly in your own programs using one of the Client Libraries.

Object Spec and Status

Every Kubernetes object includes two nested object fields that govern the object’s

Understanding Kubernetes Objects

Object Spec and Status

Describing a Kubernetes Object

Required Fields

What’s next

file:///docs/concepts/overview/kubernetes-api/
file:///docs/reference/client-libraries/

configuration: the object spec and the object status. The spec, which you must provide,

describes your desired state for the object–the characteristics that you want the object to

have. The status describes the actual state of the object, and is supplied and updated by the

Kubernetes system. At any given time, the Kubernetes Control Plane actively manages an

object’s actual state to match the desired state you supplied.

For example, a Kubernetes Deployment is an object that can represent an application running

on your cluster. When you create the Deployment, you might set the Deployment spec to

specify that you want three replicas of the application to be running. The Kubernetes system

reads the Deployment spec and starts three instances of your desired application–updating

the status to match your spec. If any of those instances should fail (a status change), the

Kubernetes system responds to the difference between spec and status by making a

correction–in this case, starting a replacement instance.

For more information on the object spec, status, and metadata, see the Kubernetes API

Conventions.

Describing a Kubernetes Object

When you create an object in Kubernetes, you must provide the object spec that describes its

desired state, as well as some basic information about the object (such as a name). When you

use the Kubernetes API to create the object (either directly or via kubectlkubectl), that API request

must include that information as JSON in the request body. Most often, you provide the

information to kubectlkubectl in a .yaml file. kubectlkubectl converts the information to JSON when

making the API request.

Here’s an example .yaml.yaml file that shows the required fields and object spec for a Kubernetes

Deployment:

nginx-deployment.yamlnginx-deployment.yaml

https://git.k8s.io/community/contributors/devel/api-conventions.md
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/overview/working-with-objects/nginx-deployment.yaml

nginx-deployment.yamlnginx-deployment.yaml

One way to create a Deployment using a .yaml.yaml file like the one above is to use the

kubectlkubectl

createcreate command in the kubectlkubectl command-line interface, passing the .yaml.yaml file

as an argument. Here’s an example:

The output is similar to this:

Required Fields

In the .yaml.yaml file for the Kubernetes object you want to create, you’ll need to set values for the

following fields:

apiVersionapiVersion - Which version of the Kubernetes API you’re using to create this object

kindkind - What kind of object you want to create

metadatametadata - Data that helps uniquely identify the object, including a namename string, UID, and

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/user-guide/nginx-deployment.yaml https://k8s.io/docs/user-guide/nginx-deployment.yaml --record--record

deployment deployment "nginx-deployment""nginx-deployment" created created

file:///docs/user-guide/kubectl/v1.10/#create

optional namespacenamespace

You’ll also need to provide the object specspec field. The precise format of the object specspec is

different for every Kubernetes object, and contains nested fields specific to that object. The

Kubernetes API Reference can help you find the spec format for all of the objects you can

create using Kubernetes. For example, the specspec format for a PodPod object can be found here,

and the specspec format for a DeploymentDeployment object can be found here.

What’s next

Learn about the most important basic Kubernetes objects, such as Pod.

file:///docs/reference/generated/kubernetes-api/v1.10/
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#deploymentspec-v1-apps
file:///docs/concepts/workloads/pods/pod-overview/

Names

All objects in the Kubernetes REST API are unambiguously identified by a Name and a UID.

For non-unique user-provided attributes, Kubernetes provides labels and annotations.

See the identifiers design doc for the precise syntax rules for Names and UIDs.

Names

A client-provided string that refers to an object in a resource URL, such as

/api/v1/pods/some-name/api/v1/pods/some-name .

Only one object of a given kind can have a given name at a time. However, if you delete the

object, you can make a new object with the same name.

By convention, the names of Kubernetes resources should be up to maximum length of 253

characters and consist of lower case alphanumeric characters, -- , and .. , but certain

resources have more specific restrictions.

UIDs

A Kubernetes systems-generated string to uniquely identify objects.

Every object created over the whole lifetime of a Kubernetes cluster has a distinct UID. It is

intended to distinguish between historical occurrences of similar entities.

file:///docs/user-guide/labels
file:///docs/concepts/overview/working-with-objects/annotations/
https://git.k8s.io/community/contributors/design-proposals/architecture/identifiers.md

Namespaces

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These

virtual clusters are called namespaces.

When to Use Multiple Namespaces

Namespaces are intended for use in environments with many users spread across multiple

teams, or projects. For clusters with a few to tens of users, you should not need to create or

think about namespaces at all. Start using namespaces when you need the features they

provide.

Namespaces provide a scope for names. Names of resources need to be unique within a

namespace, but not across namespaces.

Namespaces are a way to divide cluster resources between multiple users (via resource

quota).

In future versions of Kubernetes, objects in the same namespace will have the same access

control policies by default.

It is not necessary to use multiple namespaces just to separate slightly different resources,

such as different versions of the same software: use labels to distinguish resources within the

same namespace.

Working with Namespaces

Creation and deletion of namespaces are described in the Admin Guide documentation for

namespaces.

Viewing namespaces

You can list the current namespaces in a cluster using:

file:///docs/concepts/policy/resource-quotas/
file:///docs/user-guide/labels
file:///docs/admin/namespaces

Kubernetes starts with three initial namespaces:

defaultdefault The default namespace for objects with no other namespace

kube-systemkube-system The namespace for objects created by the Kubernetes system

kube-publickube-public The namespace is created automatically and readable by all users

(including those not authenticated). This namespace is mostly reserved for cluster usage,

in case that some resources should be visible and readable publicly throughout the whole

cluster. The public aspect of this namespace is only a convention, not a requirement.

Setting the namespace for a request

To temporarily set the namespace for a request, use the --namespace--namespace flag.

For example:

Setting the namespace preference

You can permanently save the namespace for all subsequent kubectl commands in that

context.

Namespaces and DNS

$ $ kubectl get namespaceskubectl get namespaces

NAME STATUS AGENAME STATUS AGE

default Active 1ddefault Active 1d

kube-system Active 1dkube-system Active 1d

kube-public Active 1dkube-public Active 1d

$ $ kubectl kubectl --namespace--namespace==<insert-namespace-name-here> run nginx <insert-namespace-name-here> run nginx --image--image==nginxnginx

$ $ kubectl kubectl --namespace--namespace==<insert-namespace-name-here> get pods<insert-namespace-name-here> get pods

$ $ kubectl config set-context kubectl config set-context $($(kubectl config current-contextkubectl config current-context)) --namespace--namespace==<insert-namespace-name-here><insert-namespace-name-here>

Validate it# Validate it
$ $ kubectl config view | kubectl config view | grep grep namespace:namespace:

When you create a Service, it creates a corresponding DNS entry. This entry is of the form

<service-name>.<namespace-name>.svc.cluster.local<service-name>.<namespace-name>.svc.cluster.local , which means that if a container

just uses <service-name><service-name> , it will resolve to the service which is local to a namespace. This is

useful for using the same configuration across multiple namespaces such as Development,

Staging and Production. If you want to reach across namespaces, you need to use the fully

qualified domain name (FQDN).

Not All Objects are in a Namespace

Most Kubernetes resources (e.g. pods, services, replication controllers, and others) are in

some namespaces. However namespace resources are not themselves in a namespace. And

low-level resources, such as nodes and persistentVolumes, are not in any namespace.

file:///docs/user-guide/services
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/admin/node

Labels and Selectors

Labels are key/value pairs that are attached to objects, such as pods. Labels are intended to be

used to specify identifying attributes of objects that are meaningful and relevant to users, but

do not directly imply semantics to the core system. Labels can be used to organize and to

select subsets of objects. Labels can be attached to objects at creation time and subsequently

added and modified at any time. Each object can have a set of key/value labels defined. Each

Key must be unique for a given object.

We’ll eventually index and reverse-index labels for efficient queries and watches, use them to

sort and group in UIs and CLIs, etc. We don’t want to pollute labels with non-identifying,

especially large and/or structured, data. Non-identifying information should be recorded using

annotations.

Motivation

Labels enable users to map their own organizational structures onto system objects in a

loosely coupled fashion, without requiring clients to store these mappings.

"labels""labels":: {{

 "key1""key1" :: "value1""value1",,

 "key2""key2" :: "value2""value2"

}}

Motivation

Syntax and character set

Label selectors

Equality-based requirement

Set-based requirement

API

LIST and WATCH filtering

Set references in API objects

Service and ReplicationController

Resources that support set-based requirements

Selecting sets of nodes

file:///docs/concepts/overview/working-with-objects/annotations/

Service deployments and batch processing pipelines are often multi-dimensional entities (e.g.,

multiple partitions or deployments, multiple release tracks, multiple tiers, multiple micro-

services per tier). Management often requires cross-cutting operations, which breaks

encapsulation of strictly hierarchical representations, especially rigid hierarchies determined by

the infrastructure rather than by users.

Example labels:

"release" :"release" :

"stable""stable" ,

"release" :"release" :

"canary""canary"

"environment" :"environment" :

"dev""dev" ,

"environment" :"environment" :

"qa""qa" ,

"environment" :"environment" :

"production""production"

"tier" :"tier" :

"frontend""frontend" ,

"tier" :"tier" :

"backend""backend" ,

"tier" :"tier" :

"cache""cache"

"partition" :"partition" :

"customerA""customerA" ,

"partition" :"partition" :

"customerB""customerB"

"track" :"track" :

"daily""daily" ,

"track" :"track" :

"weekly""weekly"

These are just examples of commonly used labels; you are free to develop your own

conventions. Keep in mind that label Key must be unique for a given object.

Syntax and character set

Labels are key/value pairs. Valid label keys have two segments: an optional prefix and name,

separated by a slash (//). The name segment is required and must be 63 characters or less,

beginning and ending with an alphanumeric character ([a-z0-9A-Z][a-z0-9A-Z]) with dashes (--),

underscores (__), dots (..), and alphanumerics between. The prefix is optional. If specified, the

prefix must be a DNS subdomain: a series of DNS labels separated by dots (..), not longer

than 253 characters in total, followed by a slash (//). If the prefix is omitted, the label Key is

presumed to be private to the user. Automated system components (e.g. kube-schedulerkube-scheduler ,

kube-controller-managerkube-controller-manager , kube-apiserverkube-apiserver , kubectlkubectl , or other third-party automation)

which add labels to end-user objects must specify a prefix. The kubernetes.io/kubernetes.io/ prefix is

reserved for Kubernetes core components.

Valid label values must be 63 characters or less and must be empty or begin and end with an

alphanumeric character ([a-z0-9A-Z][a-z0-9A-Z]) with dashes (--), underscores (__), dots (..), and

alphanumerics between.

Label selectors

Unlike names and UIDs, labels do not provide uniqueness. In general, we expect many objects

to carry the same label(s).

Via a label selector, the client/user can identify a set of objects. The label selector is the core

grouping primitive in Kubernetes.

The API currently supports two types of selectors: equality-based and set-based. A label

selector can be made of multiple requirements which are comma-separated. In the case of

multiple requirements, all must be satisfied so the comma separator acts as a logical AND (

&&&&) operator.

An empty label selector (that is, one with zero requirements) selects every object in the

collection.

A null label selector (which is only possible for optional selector fields) selects no objects.

Note: the label selectors of two controllers must not overlap within a namespace,

otherwise they will fight with each other.

Equality-based requirement

Equality- or inequality-based requirements allow filtering by label keys and values. Matching

objects must satisfy all of the specified label constraints, though they may have additional

labels as well. Three kinds of operators are admitted == , ==== , !=!= . The first two represent

equality (and are simply synonyms), while the latter represents inequality. For example:

The former selects all resources with key equal to environmentenvironment and value equal to

environment = productionenvironment = production

tier != frontendtier != frontend

file:///docs/user-guide/identifiers

productionproduction . The latter selects all resources with key equal to tiertier and value distinct from

frontendfrontend , and all resources with no labels with the tiertier key. One could filter for resources in

productionproduction excluding frontendfrontend using the comma operator:

environment=production,tier!=frontendenvironment=production,tier!=frontend

One usage scenario for equality-based label requirement is for Pods to specify node selection

criteria. For example, the sample Pod below selects nodes with the label “

accelerator=nvidia-tesla-p100accelerator=nvidia-tesla-p100 ”.

Set-based requirement

Set-based label requirements allow filtering keys according to a set of values. Three kinds of

operators are supported: inin , notinnotin and existsexists (only the key identifier). For example:

The first example selects all resources with key equal to environmentenvironment and value equal to

productionproduction or qaqa . The second example selects all resources with key equal to tiertier and

values other than frontendfrontend and backendbackend , and all resources with no labels with the tiertier

key. The third example selects all resources including a label with key partitionpartition ; no values

are checked. The fourth example selects all resources without a label with key partitionpartition ; no

values are checked. Similarly the comma separator acts as an AND operator. So filtering

resources with a partitionpartition key (no matter the value) and with environmentenvironment different than

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: cuda-testcuda-test

specspec::

 containerscontainers::

 -- namename:: cuda-testcuda-test

 imageimage:: ""k8s.gcr.io/cuda-vector-add:v0.1"k8s.gcr.io/cuda-vector-add:v0.1"

 resourcesresources::

 limitslimits::

 nvidia.com/gpunvidia.com/gpu:: 11

 nodeSelectornodeSelector::

 acceleratoraccelerator:: nvidia-tesla-p100nvidia-tesla-p100

environment in (production, qa)environment in (production, qa)

tier notin (frontend, backend)tier notin (frontend, backend)

partitionpartition

!partition!partition

qaqa can be achieved using partition,environment notin (qa)partition,environment notin (qa) . The set-based label

selector is a general form of equality since environment=productionenvironment=production is equivalent to

environment in (production)environment in (production) ; similarly for !=!= and notinnotin .

Set-based requirements can be mixed with equality-based requirements. For example:

partition in (customerA,partition in (customerA,

customerB),environment!=qacustomerB),environment!=qa .

API

LIST and WATCH filtering

LIST and WATCH operations may specify label selectors to filter the sets of objects returned

using a query parameter. Both requirements are permitted (presented here as they would

appear in a URL query string):

equality-based requirements:

?labelSelector=environment%3Dproduction,tier%3Dfrontend?labelSelector=environment%3Dproduction,tier%3Dfrontend

set-based requirements:

??

labelSelector=environment+in+%28production%2Cqa%29%2Ctier+in+%28frontend%29labelSelector=environment+in+%28production%2Cqa%29%2Ctier+in+%28frontend%29

Both label selector styles can be used to list or watch resources via a REST client. For example,

targeting apiserverapiserver with kubectlkubectl and using equality-based one may write:

or using set-based requirements:

As already mentioned set-based requirements are more expressive. For instance, they can

implement the OR operator on values:

$ $ kubectl get pods kubectl get pods -l-l environmentenvironment==production,tierproduction,tier==frontendfrontend

$ $ kubectl get pods kubectl get pods -l-l 'environment in (production),tier in (frontend)''environment in (production),tier in (frontend)'

$ $ kubectl get pods kubectl get pods -l-l 'environment in (production, qa)''environment in (production, qa)'

or restricting negative matching via exists operator:

Set references in API objects

Some Kubernetes objects, such as servicesservices and replicationcontrollersreplicationcontrollers , also use label

selectors to specify sets of other resources, such as pods.

Service and ReplicationController

The set of pods that a serviceservice targets is defined with a label selector. Similarly, the

population of pods that a replicationcontrollerreplicationcontroller should manage is also defined with a

label selector.

Labels selectors for both objects are defined in jsonjson or yamlyaml files using maps, and only

equality-based requirement selectors are supported:

or

this selector (respectively in jsonjson or yamlyaml format) is equivalent to component=rediscomponent=redis or

component in (redis)component in (redis) .

Resources that support set-based requirements

Newer resources, such as JobJob , DeploymentDeployment ,

ReplicaReplica

SetSet , and

DaemonDaemon

SetSet , support set-

based requirements as well.

$ $ kubectl get pods kubectl get pods -l-l 'environment,environment notin (frontend)''environment,environment notin (frontend)'

"selector""selector":: {{

 "component""component" :: "redis""redis",,

}}

selectorselector::

 componentcomponent:: redisredis

file:///docs/user-guide/services
file:///docs/user-guide/replication-controller
file:///docs/user-guide/pods
file:///docs/concepts/jobs/run-to-completion-finite-workloads/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/controllers/daemonset/

matchLabelsmatchLabels is a map of {key,value}{key,value} pairs. A single {key,value}{key,value} in the matchLabelsmatchLabels

map is equivalent to an element of matchExpressionsmatchExpressions , whose keykey field is “key”, the

operatoroperator is “In”, and the valuesvalues array contains only “value”. matchExpressionsmatchExpressions is a list of

pod selector requirements. Valid operators include In, NotIn, Exists, and DoesNotExist. The

values set must be non-empty in the case of In and NotIn. All of the requirements, from both

matchLabelsmatchLabels and matchExpressionsmatchExpressions are ANDed together – they must all be satisfied in

order to match.

Selecting sets of nodes

One use case for selecting over labels is to constrain the set of nodes onto which a pod can

schedule. See the documentation on node selection for more information.

selectorselector::

 matchLabelsmatchLabels::

 componentcomponent:: redisredis

 matchExpressionsmatchExpressions::

 -- {{keykey:: tiertier,, operatoroperator:: InIn,, valuesvalues:: [[cachecache]}]}

 -- {{keykey:: environmentenvironment,, operatoroperator:: NotInNotIn,, valuesvalues:: [[devdev]}]}

file:///docs/concepts/configuration/assign-pod-node/

Annotations

You can use Kubernetes annotations to attach arbitrary non-identifying metadata to objects.

Clients such as tools and libraries can retrieve this metadata.

Attaching metadata to objects

You can use either labels or annotations to attach metadata to Kubernetes objects. Labels can

be used to select objects and to find collections of objects that satisfy certain conditions. In

contrast, annotations are not used to identify and select objects. The metadata in an

annotation can be small or large, structured or unstructured, and can include characters not

permitted by labels.

Annotations, like labels, are key/value maps:

Here are some examples of information that could be recorded in annotations:

Fields managed by a declarative configuration layer. Attaching these fields as annotations

distinguishes them from default values set by clients or servers, and from auto-generated

fields and fields set by auto-sizing or auto-scaling systems.

Build, release, or image information like timestamps, release IDs, git branch, PR numbers,

image hashes, and registry address.

Pointers to logging, monitoring, analytics, or audit repositories.

Client library or tool information that can be used for debugging purposes: for example,

name, version, and build information.

Attaching metadata to objects

What’s next

"annotations": {"annotations": {

 "key1" : "value1", "key1" : "value1",

 "key2" : "value2" "key2" : "value2"

}}

User or tool/system provenance information, such as URLs of related objects from other

ecosystem components.

Lightweight rollout tool metadata: for example, config or checkpoints.

Phone or pager numbers of persons responsible, or directory entries that specify where

that information can be found, such as a team web site.

Instead of using annotations, you could store this type of information in an external database

or directory, but that would make it much harder to produce shared client libraries and tools for

deployment, management, introspection, and the like.

What’s next

Learn more about Labels and Selectors.

file:///docs/concepts/overview/working-with-objects/labels/

Kubernetes Object Management

The kubectlkubectl command-line tool supports several different ways to create and manage

Kubernetes objects. This document provides an overview of the different approaches.

Management techniques

Warning: A Kubernetes object should be managed using only one technique. Mixing and

matching techniques for the same object results in undefined behavior.

Management technique Operates on
Recommended
environment

Supported
writers

Learning
curve

Imperative commands Live objects Development projects 1+ Lowest

Imperative object
configuration

Individual files Production projects 1 Moderate

Declarative object
configuration

Directories of
files

Production projects 1+ Highest

Imperative commands

When using imperative commands, a user operates directly on live objects in a cluster. The

Management techniques

Imperative commands

Examples

Trade-offs

Imperative object configuration

Examples

Trade-offs

Declarative object configuration

Examples

Trade-offs

What’s next

user provides operations to the kubectlkubectl command as arguments or flags.

This is the simplest way to get started or to run a one-off task in a cluster. Because this

technique operates directly on live objects, it provides no history of previous configurations.

Examples

Run an instance of the nginx container by creating a Deployment object:

Do the same thing using a different syntax:

Trade-offs

Advantages compared to object configuration:

Commands are simple, easy to learn and easy to remember.

Commands require only a single step to make changes to the cluster.

Disadvantages compared to object configuration:

Commands do not integrate with change review processes.

Commands do not provide an audit trail associated with changes.

Commands do not provide a source of records except for what is live.

Commands do not provide a template for creating new objects.

Imperative object configuration

In imperative object configuration, the kubectl command specifies the operation (create,

replace, etc.), optional flags and at least one file name. The file specified must contain a full

definition of the object in YAML or JSON format.

See the API reference for more details on object definitions.

kubectl run nginx kubectl run nginx --image--image nginx nginx

kubectl create deployment nginx kubectl create deployment nginx --image--image nginx nginx

file:///docs/reference/generated/kubernetes-api/v1.10/

Warning: The imperative replacereplace command replaces the existing spec with the newly

provided one, dropping all changes to the object missing from the configuration file.

This approach should not be used with resource types whose specs are updated

independently of the configuration file. Services of type LoadBalancerLoadBalancer , for example,

have their externalIPsexternalIPs field updated independently from the configuration by the

cluster.

Examples

Create the objects defined in a configuration file:

Delete the objects defined in two configuration files:

Update the objects defined in a configuration file by overwriting the live configuration:

Trade-offs

Advantages compared to imperative commands:

Object configuration can be stored in a source control system such as Git.

Object configuration can integrate with processes such as reviewing changes before push

and audit trails.

Object configuration provides a template for creating new objects.

Disadvantages compared to imperative commands:

Object configuration requires basic understanding of the object schema.

Object configuration requires the additional step of writing a YAML file.

kubectl create kubectl create -f-f nginx.yaml nginx.yaml

kubectl delete kubectl delete -f-f nginx.yaml nginx.yaml -f-f redis.yaml redis.yaml

kubectl replace kubectl replace -f-f nginx.yaml nginx.yaml

Advantages compared to declarative object configuration:

Imperative object configuration behavior is simpler and easier to understand.

As of Kubernetes version 1.5, imperative object configuration is more mature.

Disadvantages compared to declarative object configuration:

Imperative object configuration works best on files, not directories.

Updates to live objects must be reflected in configuration files, or they will be lost during

the next replacement.

Declarative object configuration

When using declarative object configuration, a user operates on object configuration files

stored locally, however the user does not define the operations to be taken on the files. Create,

update, and delete operations are automatically detected per-object by kubectlkubectl . This enables

working on directories, where different operations might be needed for different objects.

Note: Declarative object configuration retains changes made by other writers, even if the

changes are not merged back to the object configuration file. This is possible by using

the patchpatch API operation to write only observed differences, instead of using the

replacereplace API operation to replace the entire object configuration.

Examples

Process all object configuration files in the configsconfigs directory, and create or patch the live

objects:

Recursively process directories:

kubectl apply kubectl apply -f-f configs/ configs/

kubectl apply kubectl apply -R-R -f-f configs/ configs/

Trade-offs

Advantages compared to imperative object configuration:

Changes made directly to live objects are retained, even if they are not merged back into

the configuration files.

Declarative object configuration has better support for operating on directories and

automatically detecting operation types (create, patch, delete) per-object.

Disadvantages compared to imperative object configuration:

Declarative object configuration is harder to debug and understand results when they are

unexpected.

Partial updates using diffs create complex merge and patch operations.

What’s next

Managing Kubernetes Objects Using Imperative Commands

Managing Kubernetes Objects Using Object Configuration (Imperative)

Managing Kubernetes Objects Using Object Configuration (Declarative)

Kubectl Command Reference

Kubernetes API Reference

file:///docs/concepts/overview/object-management-kubectl/imperative-command/
file:///docs/concepts/overview/object-management-kubectl/imperative-config/
file:///docs/concepts/overview/object-management-kubectl/declarative-config/
file:///docs/user-guide/kubectl/v1.10/
file:///docs/reference/generated/kubernetes-api/v1.10/

Managing Kubernetes Objects Using
Imperative Commands

Kubernetes objects can quickly be created, updated, and deleted directly using imperative

commands built into the kubectlkubectl command-line tool. This document explains how those

commands are organized and how to use them to manage live objects.

Trade-offs

The kubectlkubectl tool supports three kinds of object management:

Imperative commands

Imperative object configuration

Declarative object configuration

See Kubernetes Object Management for a discussion of the advantages and disadvantage of

each kind of object management.

How to create objects

The kubectlkubectl tool supports verb-driven commands for creating some of the most common

object types. The commands are named to be recognizable to users unfamiliar with the

Kubernetes object types.

Trade-offs

How to create objects

How to update objects

How to delete objects

How to view an object

Using setset commands to modify objects before creation

Using --edit--edit to modify objects before creation

What’s next

file:///docs/concepts/overview/object-management-kubectl/overview/

runrun : Create a new Deployment object to run Containers in one or more Pods.

exposeexpose : Create a new Service object to load balance traffic across Pods.

autoscaleautoscale : Create a new Autoscaler object to automatically horizontally scale a

controller, such as a Deployment.

The kubectlkubectl tool also supports creation commands driven by object type. These commands

support more object types and are more explicit about their intent, but require users to know

the type of objects they intend to create.

create <objecttype> [<subtype>]create <objecttype> [<subtype>]

<instancename><instancename>

Some objects types have subtypes that you can specify in the createcreate command. For

example, the Service object has several subtypes including ClusterIP, LoadBalancer, and

NodePort. Here’s an example that creates a Service with subtype NodePort:

In the preceding example, the

create servicecreate service

nodeportnodeport command is called a subcommand

of the create servicecreate service command.

You can use the -h-h flag to find the arguments and flags supported by a subcommand:

How to update objects

The kubectlkubectl command supports verb-driven commands for some common update

operations. These commands are named to enable users unfamiliar with Kubernetes objects

to perform updates without knowing the specific fields that must be set:

scalescale : Horizontally scale a controller to add or remove Pods by updating the replica

count of the controller.

kubectl create service nodeport <myservicename>kubectl create service nodeport <myservicename>

kubectl create service nodeport kubectl create service nodeport -h-h

annotateannotate : Add or remove an annotation from an object.

labellabel : Add or remove a label from an object.

The kubectlkubectl command also supports update commands driven by an aspect of the object.

Setting this aspect may set different fields for different object types:

setset : Set an aspect of an object.

Note: In Kubernetes version 1.5, not every verb-driven command has an associated aspect-

driven command.

The kubectlkubectl tool supports these additional ways to update a live object directly, however they

require a better understanding of the Kubernetes object schema.

editedit : Directly edit the raw configuration of a live object by opening its configuration in an

editor.

patchpatch : Directly modify specific fields of a live object by using a patch string. For more

details on patch strings, see the patch section in API Conventions.

How to delete objects

You can use the deletedelete command to delete an object from a cluster:

delete <type>/<name>delete <type>/<name>

Note: You can use

kubectlkubectl

deletedelete for both imperative commands and imperative object

configuration. The difference is in the arguments passed to the command. To use

kubectlkubectl

deletedelete as an imperative command, pass the object to be deleted as an argument.

Here’s an example that passes a Deployment object named nginx:

How to view an object

kubectl delete deployment/nginxkubectl delete deployment/nginx

https://git.k8s.io/community/contributors/devel/api-conventions.md#patch-operations

There are several commands for printing information about an object:

getget : Prints basic information about matching objects. Use

get -get -

hh to see a list of

options.

describedescribe : Prints aggregated detailed information about matching objects.

logslogs : Prints the stdout and stderr for a container running in a Pod.

Using set commands to modify objects before

creation

There are some object fields that don’t have a flag you can use in a createcreate command. In

some of those cases, you can use a combination of setset and createcreate to specify a value for the

field before object creation. This is done by piping the output of the createcreate command to the

setset command, and then back to the createcreate command. Here’s an example:

1. The

kubectl create service -o yaml --dry-kubectl create service -o yaml --dry-

runrun command creates the configuration

for the Service, but prints it to stdout as YAML instead of sending it to the Kubernetes API

server.

2. The

kubectl set --local -f - -okubectl set --local -f - -o

yamlyaml command reads the configuration from stdin,

and writes the updated configuration to stdout as YAML.

3. The

kubectl create -fkubectl create -f

-- command creates the object using the configuration provided

via stdin.

Using --edit to modify objects before creation

kubectl create service clusterip my-svc kubectl create service clusterip my-svc --clusterip--clusterip=="None""None" -o-o yaml yaml --dry-run--dry-run | kubectl | kubectl

You can use

kubectl create --kubectl create --

editedit to make arbitrary changes to an object before it is

created. Here’s an example:

1. The

kubectl createkubectl create

serviceservice command creates the configuration for the Service and

saves it to /tmp/srv.yaml/tmp/srv.yaml .

2. The

kubectl create --kubectl create --

editedit command opens the configuration file for editing before it

creates the object.

What’s next

Managing Kubernetes Objects Using Object Configuration (Imperative)

Managing Kubernetes Objects Using Object Configuration (Declarative)

Kubectl Command Reference

Kubernetes API Reference

kubectl create service clusterip my-svc kubectl create service clusterip my-svc --clusterip--clusterip=="None""None" -o-o yaml yaml --dry-run--dry-run

kubectl create kubectl create --edit--edit -f-f /tmp/srv.yaml /tmp/srv.yaml

file:///docs/concepts/overview/object-management-kubectl/imperative-config/
file:///docs/concepts/overview/object-management-kubectl/declarative-config/
file:///docs/user-guide/kubectl/v1.10/
file:///docs/reference/generated/kubernetes-api/v1.10/

Imperative Management of Kubernetes
Objects Using Configuration Files

Kubernetes objects can be created, updated, and deleted by using the kubectlkubectl command-line

tool along with an object configuration file written in YAML or JSON. This document explains

how to define and manage objects using configuration files.

Trade-offs

The kubectlkubectl tool supports three kinds of object management:

Imperative commands

Imperative object configuration

Declarative object configuration

See Kubernetes Object Management for a discussion of the advantages and disadvantage of

each kind of object management.

How to create objects

You can use

kubectl create -kubectl create -

ff to create an object from a configuration file. Refer to the

Trade-offs

How to create objects

How to update objects

How to delete objects

How to view an object

Limitations

Creating and editing an object from a URL without saving the configuration

Migrating from imperative commands to imperative object configuration

Defining controller selectors and PodTemplate labels

What’s next

file:///docs/concepts/overview/object-management-kubectl/overview/

kubernetes API reference for details.

kubectl create -fkubectl create -f

<filename|url><filename|url>

How to update objects

Warning: Updating objects with the replacereplace command drops all parts of the spec not

specified in the configuration file. This should not be used with objects whose specs are

partially managed by the cluster, such as Services of type LoadBalancerLoadBalancer , where the

externalIPsexternalIPs field is managed independently from the configuration file. Independently

managed fields must be copied to the configuration file to prevent replacereplace from dropping

them.

You can use

kubectl replace -kubectl replace -

ff to update a live object according to a configuration file.

kubectl replace -fkubectl replace -f

<filename|url><filename|url>

How to delete objects

You can use

kubectl delete -kubectl delete -

ff to delete an object that is described in a configuration file.

kubectl delete -fkubectl delete -f

<filename|url><filename|url>

How to view an object

You can use

kubectl get -kubectl get -

ff to view information about an object that is described in a

configuration file.

file:///docs/reference/generated/kubernetes-api/v1.10/

kubectl get -f <filename|url> -okubectl get -f <filename|url> -o

yamlyaml

The -o yaml-o yaml flag specifies that the full object configuration is printed. Use

kubectl get -kubectl get -

hh

to see a list of options.

Limitations

The createcreate , replacereplace , and deletedelete commands work well when each object’s configuration

is fully defined and recorded in its configuration file. However when a live object is updated,

and the updates are not merged into its configuration file, the updates will be lost the next time

a replacereplace is executed. This can happen if a controller, such as a HorizontalPodAutoscaler,

makes updates directly to a live object. Here’s an example:

1. You create an object from a configuration file.

2. Another source updates the object by changing some field.

3. You replace the object from the configuration file. Changes made by the other source in

step 2 are lost.

If you need to support multiple writers to the same object, you can use kubectl applykubectl apply to

manage the object.

Creating and editing an object from a URL without
saving the configuration

Suppose you have the URL of an object configuration file. You can use

kubectl create --kubectl create --

editedit to make changes to the configuration before the object is created.

This is particularly useful for tutorials and tasks that point to a configuration file that could be

modified by the reader.

kubectl create kubectl create -f-f <url> <url> --edit--edit

Migrating from imperative commands to imperative
object configuration

Migrating from imperative commands to imperative object configuration involves several

manual steps.

1. Export the live object to a local object configuration file:

2. Manually remove the status field from the object configuration file.

3. For subsequent object management, use replacereplace exclusively.

Defining controller selectors and PodTemplate
labels

Warning: Updating selectors on controllers is strongly discouraged.

The recommended approach is to define a single, immutable PodTemplate label used only by

the controller selector with no other semantic meaning.

Example label:

What’s next

kubectl get <kind>/<name> -o yaml --export > <kind>_<name>.yamlkubectl get <kind>/<name> -o yaml --export > <kind>_<name>.yaml

kubectl replace -f <kind>_<name>.yamlkubectl replace -f <kind>_<name>.yaml

selectorselector::

 matchLabelsmatchLabels::

 controller-selectorcontroller-selector:: ""extensions/v1beta1/deployment/nginx"extensions/v1beta1/deployment/nginx"

templatetemplate::

 metadatametadata::

 labelslabels::

 controller-selectorcontroller-selector:: ""extensions/v1beta1/deployment/nginx"extensions/v1beta1/deployment/nginx"

Managing Kubernetes Objects Using Imperative Commands

Managing Kubernetes Objects Using Object Configuration (Declarative)

Kubectl Command Reference

Kubernetes API Reference

file:///docs/concepts/overview/object-management-kubectl/imperative-command/
file:///docs/concepts/overview/object-management-kubectl/declarative-config/
file:///docs/user-guide/kubectl/v1.10/
file:///docs/reference/generated/kubernetes-api/v1.10/

Declarative Management of Kubernetes
Objects Using Configuration Files

Kubernetes objects can be created, updated, and deleted by storing multiple object

configuration files in a directory and using kubectl applykubectl apply to recursively create and update

those objects as needed. This method retains writes made to live objects without merging the

changes back into the object configuration files.

Trade-offs

Before you begin

How to create objects

How to update objects

How to delete objects

Recommended:

kubectl delete -fkubectl delete -f

<filename><filename>

Alternative:

kubectl apply -f <directory/> --prune -lkubectl apply -f <directory/> --prune -l

your=labelyour=label

How to view an object

How apply calculates differences and merges changes

Merge patch calculation

How different types of fields are merged

Merging changes to primitive fields

Merging changes to map fields

Merging changes for fields of type list

Replace the list

Merge individual elements of a list of complex elements:

Merge a list of primitive elements

Default field values

How to clear server-defaulted fields or fields set by other writers

How to change ownership of a field between the configuration file and direct imperative

writers

Changing the owner from a direct imperative writer to a configuration file

Changing the owner from a configuration file to a direct imperative writer

Changing management methods

Migrating from imperative command management to declarative object

configuration

Migrating from imperative object configuration to declarative object configuration

Trade-offs

The kubectlkubectl tool supports three kinds of object management:

Imperative commands

Imperative object configuration

Declarative object configuration

See Kubernetes Object Management for a discussion of the advantages and disadvantage of

each kind of object management.

Before you begin

Declarative object configuration requires a firm understanding of the Kubernetes object

definitions and configuration. Read and complete the following documents if you have not

already:

Managing Kubernetes Objects Using Imperative Commands

Imperative Management of Kubernetes Objects Using Configuration Files

Following are definitions for terms used in this document:

object configuration file / configuration file: A file that defines the configuration for a

Kubernetes object. This topic shows how to pass configuration files to kubectl applykubectl apply .

Configuration files are typically stored in source control, such as Git.

live object configuration / live configuration: The live configuration values of an object, as

observed by the Kubernetes cluster. These are kept in the Kubernetes cluster storage,

typically etcd.

declarative configuration writer / declarative writer: A person or software component that

makes updates to a live object. The live writers referred to in this topic make changes to

Defining controller selectors and PodTemplate labels

Known Issues

What’s next

file:///docs/concepts/overview/object-management-kubectl/overview/
file:///docs/concepts/overview/object-management-kubectl/imperative-command/
file:///docs/concepts/overview/object-management-kubectl/imperative-config/

object configuration files and run kubectl applykubectl apply to write the changes.

How to create objects

Use kubectl applykubectl apply to create all objects, except those that already exist, defined by

configuration files in a specified directory:

This sets the kubectl.kubernetes.io/last-applied-configuration: '{...}'kubectl.kubernetes.io/last-applied-configuration: '{...}' annotation

on each object. The annotation contains the contents of the object configuration file that was

used to create the object.

Note: Add the -R-R flag to recursively process directories.

Here’s an example of an object configuration file:

simple_deployment.yamlsimple_deployment.yaml

Create the object using kubectl applykubectl apply :

kubectl apply kubectl apply -f-f <directory>/ <directory>/

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 minReadySecondsminReadySeconds:: 55

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

Print the live configuration using

kubectlkubectl

getget :

The output shows that the kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration

annotation was written to the live configuration, and it matches the configuration file:

kubectl apply kubectl apply -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

kubectl get kubectl get -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

How to update objects

You can also use kubectl applykubectl apply to update all objects defined in a directory, even if those

objects already exist. This approach accomplishes the following:

1. Sets fields that appear in the configuration file in the live configuration.

2. Clears fields removed from the configuration file in the live configuration.

kind: Deploymentkind: Deployment

metadata:metadata:

 annotations: annotations:

 # ...# ...

 # This is the json representation of simple_deployment.yaml# This is the json representation of simple_deployment.yaml

 # It was written by kubectl apply when the object was created# It was written by kubectl apply when the object was created

 kubectl.kubernetes.io/last-applied-configuration: | kubectl.kubernetes.io/last-applied-configuration: |

 {{"apiVersion""apiVersion"::"apps/v1""apps/v1",,"kind""kind"::"Deployment""Deployment",,

 "metadata""metadata"::{{"annotations""annotations"::{}{},,"name""name"::"nginx-deployment""nginx-deployment",,"namespace""namespace"::"default""default"

 "spec""spec"::{{"minReadySeconds""minReadySeconds":5,:5,"selector""selector"::{{"matchLabels""matchLabels"::{{"app""app":nginx:nginx}}}},,"template""template"

 "spec""spec"::{{"containers""containers":[:[{{"image""image"::"nginx:1.7.9""nginx:1.7.9",,"name""name"::"nginx""nginx",,

 "ports""ports":[:[{{"containerPort""containerPort":80:80}]}]}}}}}]}]}}}}

 # ...# ...

spec:spec:

 # ...# ...

 minReadySeconds: 5 minReadySeconds: 5

 selector: selector:

 matchLabels: matchLabels:

 # ...# ...

 app: nginx app: nginx

 template: template:

 metadata: metadata:

 # ...# ...

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.7.9 - image: nginx:1.7.9

 # ...# ...

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 # ...# ...

 # ...# ...

 # ...# ...

 # ...# ...

Note: Add the -R-R flag to recursively process directories.

Here’s an example configuration file:

simple_deployment.yamlsimple_deployment.yaml

Create the object using kubectl applykubectl apply :

Note: For purposes of illustration, the preceding command refers to a single configuration file

instead of a directory.

Print the live configuration using

kubectlkubectl

getget :

kubectl apply kubectl apply -f-f <directory>/ <directory>/

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 minReadySecondsminReadySeconds:: 55

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl apply kubectl apply -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

kubectl get kubectl get -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

The output shows that the kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration

annotation was written to the live configuration, and it matches the configuration file:

Directly update the replicasreplicas field in the live configuration by using kubectl scalekubectl scale . This

does not use kubectl applykubectl apply :

kind: Deploymentkind: Deployment

metadata:metadata:

 annotations: annotations:

 # ...# ...

 # This is the json representation of simple_deployment.yaml# This is the json representation of simple_deployment.yaml

 # It was written by kubectl apply when the object was created# It was written by kubectl apply when the object was created

 kubectl.kubernetes.io/last-applied-configuration: | kubectl.kubernetes.io/last-applied-configuration: |

 {{"apiVersion""apiVersion"::"apps/v1""apps/v1",,"kind""kind"::"Deployment""Deployment",,

 "metadata""metadata"::{{"annotations""annotations"::{}{},,"name""name"::"nginx-deployment""nginx-deployment",,"namespace""namespace"::"default""default"

 "spec""spec"::{{"minReadySeconds""minReadySeconds":5,:5,"selector""selector"::{{"matchLabels""matchLabels"::{{"app""app":nginx:nginx}}}},,"template""template"

 "spec""spec"::{{"containers""containers":[:[{{"image""image"::"nginx:1.7.9""nginx:1.7.9",,"name""name"::"nginx""nginx",,

 "ports""ports":[:[{{"containerPort""containerPort":80:80}]}]}}}}}]}]}}}}

 # ...# ...

spec:spec:

 # ...# ...

 minReadySeconds: 5 minReadySeconds: 5

 selector: selector:

 matchLabels: matchLabels:

 # ...# ...

 app: nginx app: nginx

 template: template:

 metadata: metadata:

 # ...# ...

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.7.9 - image: nginx:1.7.9

 # ...# ...

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 # ...# ...

 # ...# ...

 # ...# ...

 # ...# ...

kubectl scale deployment/nginx-deployment kubectl scale deployment/nginx-deployment --replicas--replicas==22

Print the live configuration using

kubectlkubectl

getget :

The output shows that the replicasreplicas field has been set to 2, and the

last-applied-configurationlast-applied-configuration annotation does not contain a replicasreplicas field:

Update the simple_deployment.yamlsimple_deployment.yaml configuration file to change the image from

kubectl get kubectl get -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

apiVersion: apps/v1apiVersion: apps/v1

kind: Deploymentkind: Deployment

metadata:metadata:

 annotations: annotations:

 # ... # ...

 # note that the annotation does not contain replicas # note that the annotation does not contain replicas

 # because it was not updated through apply # because it was not updated through apply

 kubectl.kubernetes.io/last-applied-configuration: | kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"apps/v1","kind":"Deployment", {"apiVersion":"apps/v1","kind":"Deployment",

 "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"},

 "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}},

 "spec":{"containers":[{"image":"nginx:1.7.9","name":"nginx", "spec":{"containers":[{"image":"nginx:1.7.9","name":"nginx",

 "ports":[{"containerPort":80}]}]}}}} "ports":[{"containerPort":80}]}]}}}}

 # ... # ...

spec:spec:

 replicas: 2 # written by scale replicas: 2 # written by scale

 # ... # ...

 minReadySeconds: 5 minReadySeconds: 5

 selector: selector:

 matchLabels: matchLabels:

 # ... # ...

 app: nginx app: nginx

 template: template:

 metadata: metadata:

 # ... # ...

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.7.9 - image: nginx:1.7.9

 # ... # ...

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 # ... # ...

nginx:1.7.9nginx:1.7.9 to nginx:1.11.9nginx:1.11.9 , and delete the minReadySecondsminReadySeconds field:

update_deployment.yamlupdate_deployment.yaml

Apply the changes made to the configuration file:

Print the live configuration using

kubectlkubectl

getget :

The output shows the following changes to the live configuration:

The replicasreplicas field retains the value of 2 set by kubectl scalekubectl scale . This is possible

because it is omitted from the configuration file.

The imageimage field has been updated to nginx:1.11.9nginx:1.11.9 from nginx:1.7.9nginx:1.7.9 .

The last-applied-configurationlast-applied-configuration annotation has been updated with the new image.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.11.9nginx:1.11.9 # update the image# update the image

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl apply kubectl apply -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/update_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/update_deployment.yaml

kubectl get -f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml -o yamlkubectl get -f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml -o yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/overview/object-management-kubectl/update_deployment.yaml

The minReadySecondsminReadySeconds field has been cleared.

The last-applied-configurationlast-applied-configuration annotation no longer contains the

minReadySecondsminReadySeconds field.

Warning: Mixing kubectl applykubectl apply with the imperative object configuration commands createcreate

and replacereplace is not supported. This is because createcreate and replacereplace do not retain the

kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration that kubectl applykubectl apply uses to

apiVersion: apps/v1apiVersion: apps/v1

kind: Deploymentkind: Deployment

metadata:metadata:

 annotations: annotations:

 # ...# ...

 # The annotation contains the updated image to nginx 1.11.9,# The annotation contains the updated image to nginx 1.11.9,

 # but does not contain the updated replicas to 2# but does not contain the updated replicas to 2

 kubectl.kubernetes.io/last-applied-configuration: | kubectl.kubernetes.io/last-applied-configuration: |

 {{"apiVersion""apiVersion"::"apps/v1""apps/v1",,"kind""kind"::"Deployment""Deployment",,

 "metadata""metadata"::{{"annotations""annotations"::{}{},,"name""name"::"nginx-deployment""nginx-deployment",,"namespace""namespace"::"default""default"

 "spec""spec"::{{"selector""selector"::{{"matchLabels""matchLabels"::{{"app""app":nginx:nginx}}}},,"template""template"::{{"metadata""metadata"::

 "spec""spec"::{{"containers""containers":[:[{{"image""image"::"nginx:1.11.9""nginx:1.11.9",,"name""name"::"nginx""nginx",,

 "ports""ports":[:[{{"containerPort""containerPort":80:80}]}]}}}}}]}]}}}}

 # ...# ...

spec:spec:

 replicas: 2 replicas: 2 # Set by `kubectl scale`. Ignored by `kubectl apply`.# Set by `kubectl scale`. Ignored by `kubectl apply`.

 # minReadySeconds cleared by `kubectl apply`# minReadySeconds cleared by `kubectl apply`

 # ...# ...

 selector: selector:

 matchLabels: matchLabels:

 # ...# ...

 app: nginx app: nginx

 template: template:

 metadata: metadata:

 # ...# ...

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.11.9 - image: nginx:1.11.9 # Set by `kubectl apply`# Set by `kubectl apply`

 # ...# ...

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 # ...# ...

 # ...# ...

 # ...# ...

 # ...# ...

compute updates.

How to delete objects

There are two approaches to delete objects managed by kubectl applykubectl apply .

Recommended: kubectl delete -f <filename>

Manually deleting objects using the imperative command is the recommended approach, as it

is more explicit about what is being deleted, and less likely to result in the user deleting

something unintentionally:

Alternative:
kubectl apply -f <directory/> --prune -l your=label

Only use this if you know what you are doing.

Warning:

kubectl apply --kubectl apply --

pruneprune is in alpha, and backwards incompatible changes might be

introduced in subsequent releases.

Warning: You must be careful when using this command, so that you do not delete objects

unintentionally.

As an alternative to

kubectlkubectl

deletedelete , you can use kubectl applykubectl apply to identify objects to be

deleted after their configuration files have been removed from the directory. Apply with

--prune--prune queries the API server for all objects matching a set of labels, and attempts to match

the returned live object configurations against the object configuration files. If an object

matches the query, and it does not have a configuration file in the directory, and it does not

have a last-applied-configurationlast-applied-configuration annotation, it is deleted.

Important: Apply with prune should only be run against the root directory containing the object

kubectl delete kubectl delete -f-f <filename> <filename>

kubectl apply kubectl apply -f-f <directory/> <directory/> --prune--prune -l-l <labels> <labels>

configuration files. Running against sub-directories can cause objects to be unintentionally

deleted if they are returned by the label selector query specified with

-l-l

<labels><labels> and do not

appear in the subdirectory.

How to view an object

You can use

kubectlkubectl

getget with -o yaml-o yaml to view the configuration of a live object:

How apply calculates differences and merges
changes

Definition: A patch is an update operation that is scoped to specific fields of an object instead

of the entire object. This enables updating only a specific set of fields on an object without

reading the object first.

When kubectl applykubectl apply updates the live configuration for an object, it does so by sending a

patch request to the API server. The patch defines updates scoped to specific fields of the live

object configuration. The kubectl applykubectl apply command calculates this patch request using the

configuration file, the live configuration, and the last-applied-configurationlast-applied-configuration annotation

stored in the live configuration.

Merge patch calculation

The kubectl applykubectl apply command writes the contents of the configuration file to the

kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration annotation. This is used to identify

fields that have been removed from the configuration file and need to be cleared from the live

configuration. Here are the steps used to calculate which fields should be deleted or set:

1. Calculate the fields to delete. These are the fields present in

last-applied-configurationlast-applied-configuration and missing from the configuration file.

kubectl get kubectl get -f-f <filename|url> <filename|url> -o-o yaml yaml

2. Calculate the fields to add or set. These are the fields present in the configuration file

whose values don’t match the live configuration.

Here’s an example. Suppose this is the configuration file for a Deployment object:

update_deployment.yamlupdate_deployment.yaml

Also, suppose this is the live configuration for the same Deployment object:

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.11.9nginx:1.11.9 # update the image# update the image

 portsports::

 -- containerPortcontainerPort:: 8080

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/overview/object-management-kubectl/update_deployment.yaml

Here are the merge calculations that would be performed by kubectl applykubectl apply :

1. Calculate the fields to delete by reading values from last-applied-configurationlast-applied-configuration and

comparing them to values in the configuration file. In this example, minReadySecondsminReadySeconds

appears in the last-applied-configurationlast-applied-configuration annotation, but does not appear in the

configuration file. Action: Clear minReadySecondsminReadySeconds from the live configuration.

2. Calculate the fields to set by reading values from the configuration file and comparing

them to values in the live configuration. In this example, the value of imageimage in the

apiVersion: apps/v1apiVersion: apps/v1

kind: Deploymentkind: Deployment

metadata:metadata:

 annotations: annotations:

 # ...# ...

 # note that the annotation does not contain replicas# note that the annotation does not contain replicas

 # because it was not updated through apply# because it was not updated through apply

 kubectl.kubernetes.io/last-applied-configuration: | kubectl.kubernetes.io/last-applied-configuration: |

 {{"apiVersion""apiVersion"::"apps/v1""apps/v1",,"kind""kind"::"Deployment""Deployment",,

 "metadata""metadata"::{{"annotations""annotations"::{}{},,"name""name"::"nginx-deployment""nginx-deployment",,"namespace""namespace"::"default""default"

 "spec""spec"::{{"minReadySeconds""minReadySeconds":5,:5,"selector""selector"::{{"matchLabels""matchLabels"::{{"app""app":nginx:nginx}}}},,"template""template"

 "spec""spec"::{{"containers""containers":[:[{{"image""image"::"nginx:1.7.9""nginx:1.7.9",,"name""name"::"nginx""nginx",,

 "ports""ports":[:[{{"containerPort""containerPort":80:80}]}]}}}}}]}]}}}}

 # ...# ...

spec:spec:

 replicas: 2 replicas: 2 # written by scale# written by scale

 # ...# ...

 minReadySeconds: 5 minReadySeconds: 5

 selector: selector:

 matchLabels: matchLabels:

 # ...# ...

 app: nginx app: nginx

 template: template:

 metadata: metadata:

 # ...# ...

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.7.9 - image: nginx:1.7.9

 # ...# ...

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 # ...# ...

configuration file does not match the value in the live configuration. Action: Set the value

of imageimage in the live configuration.

3. Set the last-applied-configurationlast-applied-configuration annotation to match the value of the

configuration file.

4. Merge the results from 1, 2, 3 into a single patch request to the API server.

Here is the live configuration that is the result of the merge:

apiVersion: apps/v1apiVersion: apps/v1

kind: Deploymentkind: Deployment

metadata:metadata:

 annotations: annotations:

 # ...# ...

 # The annotation contains the updated image to nginx 1.11.9,# The annotation contains the updated image to nginx 1.11.9,

 # but does not contain the updated replicas to 2# but does not contain the updated replicas to 2

 kubectl.kubernetes.io/last-applied-configuration: | kubectl.kubernetes.io/last-applied-configuration: |

 {{"apiVersion""apiVersion"::"apps/v1""apps/v1",,"kind""kind"::"Deployment""Deployment",,

 "metadata""metadata"::{{"annotations""annotations"::{}{},,"name""name"::"nginx-deployment""nginx-deployment",,"namespace""namespace"::"default""default"

 "spec""spec"::{{"selector""selector"::{{"matchLabels""matchLabels"::{{"app""app":nginx:nginx}}}},,"template""template"::{{"metadata""metadata"::

 "spec""spec"::{{"containers""containers":[:[{{"image""image"::"nginx:1.11.9""nginx:1.11.9",,"name""name"::"nginx""nginx",,

 "ports""ports":[:[{{"containerPort""containerPort":80:80}]}]}}}}}]}]}}}}

 # ...# ...

spec:spec:

 selector: selector:

 matchLabels: matchLabels:

 # ...# ...

 app: nginx app: nginx

 replicas: 2 replicas: 2 # Set by `kubectl scale`. Ignored by `kubectl apply`.# Set by `kubectl scale`. Ignored by `kubectl apply`.

 # minReadySeconds cleared by `kubectl apply`# minReadySeconds cleared by `kubectl apply`

 # ...# ...

 template: template:

 metadata: metadata:

 # ...# ...

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.11.9 - image: nginx:1.11.9 # Set by `kubectl apply`# Set by `kubectl apply`

 # ...# ...

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 # ...# ...

 # ...# ...

 # ...# ...

 # ...# ...

How different types of fields are merged

How a particular field in a configuration file is merged with the live configuration depends on

the type of the field. There are several types of fields:

primitive: A field of type string, integer, or boolean. For example, imageimage and replicasreplicas are

primitive fields. Action: Replace.

map, also called object: A field of type map or a complex type that contains subfields. For

example, labelslabels , annotationsannotations , specspec and metadatametadata are all maps. Action: Merge

elements or subfields.

list: A field containing a list of items that can be either primitive types or maps. For

example, containerscontainers , portsports , and argsargs are lists. Action: Varies.

When kubectl applykubectl apply updates a map or list field, it typically does not replace the entire field,

but instead updates the individual subelements. For instance, when merging the specspec on a

Deployment, the entire specspec is not replaced. Instead the subfields of specspec , such as

replicasreplicas , are compared and merged.

Merging changes to primitive fields

Primitive fields are replaced or cleared.

Note: ‘-‘ is used for “not applicable” because the value is not used.

Field in object
configuration file

Field in live object
configuration

Field in last-applied-
configuration

Action

Yes Yes -
Set live to configuration
file value.

Yes No -
Set live to local
configuration.

No - Yes
Clear from live
configuration.

No - No
Do nothing. Keep live
value.

Merging changes to map fields

Fields that represent maps are merged by comparing each of the subfields or elements of the

map:

Note: ‘-‘ is used for “not applicable” because the value is not used.

Key in object
configuration file

Key in live object
configuration

Field in last-applied-
configuration

Action

Yes Yes -
Compare sub fields
values.

Yes No -
Set live to local
configuration.

No - Yes
Delete from live
configuration.

No - No
Do nothing. Keep live
value.

Merging changes for fields of type list

Merging changes to a list uses one of three strategies:

Replace the list.

Merge individual elements in a list of complex elements.

Merge a list of primitive elements.

The choice of strategy is made on a per-field basis.

Replace the list

Treat the list the same as a primitive field. Replace or delete the entire list. This preserves

ordering.

Example: Use kubectl applykubectl apply to update the argsargs field of a Container in a Pod. This sets the

value of argsargs in the live configuration to the value in the configuration file. Any argsargs

elements that had previously been added to the live configuration are lost. The order of the

argsargs elements defined in the configuration file is retained in the live configuration.

Explanation: The merge used the configuration file value as the new list value.

Merge individual elements of a list of complex elements:

Treat the list as a map, and treat a specific field of each element as a key. Add, delete, or

update individual elements. This does not preserve ordering.

This merge strategy uses a special tag on each field called a patchMergeKeypatchMergeKey . The

patchMergeKeypatchMergeKey is defined for each field in the Kubernetes source code: types.go When

merging a list of maps, the field specified as the patchMergeKeypatchMergeKey for a given element is used

like a map key for that element.

Example: Use kubectl applykubectl apply to update the containerscontainers field of a PodSpec. This merges the

list as though it was a map where each element is keyed by namename .

last-applied-configuration value# last-applied-configuration value

 argsargs:: [[""a,a, b"b"]]

configuration file value# configuration file value

 argsargs:: [[""a"a",, ""c"c"]]

live configuration# live configuration

 argsargs:: [[""a"a",, ""b"b",, ""d"d"]]

result after merge# result after merge

 argsargs:: [[""a"a",, ""c"c"]]

https://git.k8s.io/api/core/v1/types.go#L2565

Explanation:

The container named “nginx-helper-a” was deleted because no container named “nginx-

helper-a” appeared in the configuration file.

The container named “nginx-helper-b” retained the changes to argsargs in the live

last-applied-configuration value# last-applied-configuration value

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.10nginx:1.10

 -- namename:: nginx-helper-anginx-helper-a # key: nginx-helper-a; will be deleted in result# key: nginx-helper-a; will be deleted in result

 imageimage:: helper:1.3helper:1.3

 -- namename:: nginx-helper-bnginx-helper-b # key: nginx-helper-b; will be retained# key: nginx-helper-b; will be retained

 imageimage:: helper:1.3helper:1.3

configuration file value# configuration file value

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.10nginx:1.10

 -- namename:: nginx-helper-bnginx-helper-b

 imageimage:: helper:1.3helper:1.3

 -- namename:: nginx-helper-cnginx-helper-c # key: nginx-helper-c; will be added in result# key: nginx-helper-c; will be added in result

 imageimage:: helper:1.3helper:1.3

live configuration# live configuration

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.10nginx:1.10

 -- namename:: nginx-helper-anginx-helper-a

 imageimage:: helper:1.3helper:1.3

 -- namename:: nginx-helper-bnginx-helper-b

 imageimage:: helper:1.3helper:1.3

 argsargs:: [[""run"run"]] # Field will be retained# Field will be retained

 -- namename:: nginx-helper-dnginx-helper-d # key: nginx-helper-d; will be retained# key: nginx-helper-d; will be retained

 imageimage:: helper:1.3helper:1.3

result after merge# result after merge

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.10nginx:1.10

 # Element nginx-helper-a was deleted# Element nginx-helper-a was deleted

 -- namename:: nginx-helper-bnginx-helper-b

 imageimage:: helper:1.3helper:1.3

 argsargs:: [[""run"run"]] # Field was retained# Field was retained

 -- namename:: nginx-helper-cnginx-helper-c # Element was added# Element was added

 imageimage:: helper:1.3helper:1.3

 -- namename:: nginx-helper-dnginx-helper-d # Element was ignored# Element was ignored

 imageimage:: helper:1.3helper:1.3

configuration. kubectl applykubectl apply was able to identify that “nginx-helper-b” in the live

configuration was the same “nginx-helper-b” as in the configuration file, even though their

fields had different values (no argsargs in the configuration file). This is because the

patchMergeKeypatchMergeKey field value (name) was identical in both.

The container named “nginx-helper-c” was added because no container with that name

appeared in the live configuration, but one with that name appeared in the configuration

file.

The container named “nginx-helper-d” was retained because no element with that name

appeared in the last-applied-configuration.

Merge a list of primitive elements

As of Kubernetes 1.5, merging lists of primitive elements is not supported.

Note: Which of the above strategies is chosen for a given field is controlled by the

patchStrategypatchStrategy tag in types.go If no patchStrategypatchStrategy is specified for a field of type list, then

the list is replaced.

Default field values

The API server sets certain fields to default values in the live configuration if they are not

specified when the object is created.

Here’s a configuration file for a Deployment. The file does not specify strategystrategy or selectorselector :

simple_deployment.yamlsimple_deployment.yaml

https://git.k8s.io/api/core/v1/types.go#L2565
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

simple_deployment.yamlsimple_deployment.yaml

Create the object using kubectl applykubectl apply :

Print the live configuration using

kubectlkubectl

getget :

The output shows that the API server set several fields to default values in the live

configuration. These fields were not specified in the configuration file.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 minReadySecondsminReadySeconds:: 55

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl apply kubectl apply -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

kubectl get kubectl get -f-f https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml https://k8s.io/docs/concepts/overview/object-management-kubectl/simple_deployment.yaml

Note: Some of the fields’ default values have been derived from the values of other fields that

were specified in the configuration file, such as the selectorselector field.

In a patch request, defaulted fields are not re-defaulted unless they are explicitly cleared as

part of a patch request. This can cause unexpected behavior for fields that are defaulted

based on the values of other fields. When the other fields are later changed, the values

defaulted from them will not be updated unless they are explicitly cleared.

For this reason, it is recommended that certain fields defaulted by the server are explicitly

apiVersion: apps/v1apiVersion: apps/v1

kind: Deploymentkind: Deployment

...# ...

spec:spec:

 selector: selector:

 matchLabels: matchLabels:

 app: nginx app: nginx

 minReadySeconds: 5 minReadySeconds: 5

 replicas: 1 replicas: 1 # defaulted by apiserver# defaulted by apiserver

 selector: selector:

 matchLabels: matchLabels: # defaulted by apiserver - derived from template.metadata.labels# defaulted by apiserver - derived from template.metadata.labels

 app: nginx app: nginx

 strategy: strategy:

 rollingUpdate: rollingUpdate: # defaulted by apiserver - derived from strategy.type# defaulted by apiserver - derived from strategy.type

 maxSurge: 1 maxSurge: 1

 maxUnavailable: 1 maxUnavailable: 1

 typetype: RollingUpdate : RollingUpdate # defaulted apiserver# defaulted apiserver

 template: template:

 metadata: metadata:

 creationTimestamp: null creationTimestamp: null

 labels: labels:

 app: nginx app: nginx

 spec: spec:

 containers: containers:

 - image: nginx:1.7.9 - image: nginx:1.7.9

 imagePullPolicy: IfNotPresent imagePullPolicy: IfNotPresent # defaulted by apiserver# defaulted by apiserver

 name: nginx name: nginx

 ports: ports:

 - containerPort: 80 - containerPort: 80

 protocol: TCP protocol: TCP # defaulted by apiserver# defaulted by apiserver

 resources: resources: {}{} # defaulted by apiserver# defaulted by apiserver

 terminationMessagePath: /dev/termination-log terminationMessagePath: /dev/termination-log # defaulted by apiserver# defaulted by apiserver

 dnsPolicy: ClusterFirst dnsPolicy: ClusterFirst # defaulted by apiserver# defaulted by apiserver

 restartPolicy: Always restartPolicy: Always # defaulted by apiserver# defaulted by apiserver

 securityContext: securityContext: {}{} # defaulted by apiserver# defaulted by apiserver

 terminationGracePeriodSeconds: 30 terminationGracePeriodSeconds: 30 # defaulted by apiserver# defaulted by apiserver

...# ...

defined in the configuration file, even if the desired values match the server defaults. This

makes it easier to recognize conflicting values that will not be re-defaulted by the server.

Example:

last-applied-configuration# last-applied-configuration

specspec::

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

configuration file# configuration file

specspec::

 strategystrategy::

 typetype:: RecreateRecreate # updated value# updated value

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

live configuration# live configuration

specspec::

 strategystrategy::

 typetype:: RollingUpdateRollingUpdate # defaulted value# defaulted value

 rollingUpdaterollingUpdate:: # defaulted value derived from type# defaulted value derived from type

 maxSurge maxSurge :: 11

 maxUnavailablemaxUnavailable:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

result after merge - ERROR!# result after merge - ERROR!

specspec::

Explanation:

1. The user creates a Deployment without defining strategy.typestrategy.type .

2. The server defaults strategy.typestrategy.type to RollingUpdateRollingUpdate and defaults the

strategy.rollingUpdatestrategy.rollingUpdate values.

3. The user changes strategy.typestrategy.type to RecreateRecreate . The strategy.rollingUpdatestrategy.rollingUpdate values

remain at their defaulted values, though the server expects them to be cleared. If the

strategy.rollingUpdatestrategy.rollingUpdate values had been defined initially in the configuration file, it

would have been more clear that they needed to be deleted.

4. Apply fails because strategy.rollingUpdatestrategy.rollingUpdate is not cleared. The

strategy.rollingupdatestrategy.rollingupdate field cannot be defined with a strategy.typestrategy.type of RecreateRecreate .

Recommendation: These fields should be explicitly defined in the object configuration file:

Selectors and PodTemplate labels on workloads, such as Deployment, StatefulSet, Job,

DaemonSet, ReplicaSet, and ReplicationController

Deployment rollout strategy

How to clear server-defaulted fields or fields set by other
writers

As of Kubernetes 1.5, fields that do not appear in the configuration file cannot be cleared by a

merge operation. Here are some workarounds:

specspec::

 strategystrategy::

 typetype:: RecreateRecreate # updated value: incompatible with rollingUpdate# updated value: incompatible with rollingUpdate

 rollingUpdaterollingUpdate:: # defaulted value: incompatible with "type: Recreate"# defaulted value: incompatible with "type: Recreate"

 maxSurge maxSurge :: 11

 maxUnavailablemaxUnavailable:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

Option 1: Remove the field by directly modifying the live object.

Note: As of Kubernetes 1.5, kubectl editkubectl edit does not work with kubectl applykubectl apply . Using these

together will cause unexpected behavior.

Option 2: Remove the field through the configuration file.

1. Add the field to the configuration file to match the live object.

2. Apply the configuration file; this updates the annotation to include the field.

3. Delete the field from the configuration file.

4. Apply the configuration file; this deletes the field from the live object and annotation.

How to change ownership of a field between the
configuration file and direct imperative writers

These are the only methods you should use to change an individual object field:

Use kubectl applykubectl apply .

Write directly to the live configuration without modifying the configuration file: for

example, use kubectl scalekubectl scale .

Changing the owner from a direct imperative writer to a
configuration file

Add the field to the configuration file. For the field, discontinue direct updates to the live

configuration that do not go through kubectl applykubectl apply .

Changing the owner from a configuration file to a direct
imperative writer

As of Kubernetes 1.5, changing ownership of a field from a configuration file to an imperative

writer requires manual steps:

Remove the field from the configuration file.

Remove the field from the kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration

annotation on the live object.

Changing management methods

Kubernetes objects should be managed using only one method at a time. Switching from one

method to another is possible, but is a manual process.

Exception: It is OK to use imperative deletion with declarative management.

Migrating from imperative command management to
declarative object configuration

Migrating from imperative command management to declarative object configuration involves

several manual steps:

1. Export the live object to a local configuration file:

2. Manually remove the statusstatus field from the configuration file.

Note: This step is optional, as kubectl applykubectl apply does not update the status field even if it

is present in the configuration file.

3. Set the kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration annotation on the

object:

4. Change processes to use kubectl applykubectl apply for managing the object exclusively.

Migrating from imperative object configuration to declarative
object configuration

1. Set the kubectl.kubernetes.io/last-applied-configurationkubectl.kubernetes.io/last-applied-configuration annotation on the

object:

kubectl get <kind>/<name> -o yaml --export > <kind>_<name>.yamlkubectl get <kind>/<name> -o yaml --export > <kind>_<name>.yaml

kubectl replace --save-config -f <kind>_<name>.yamlkubectl replace --save-config -f <kind>_<name>.yaml

2. Change processes to use kubectl applykubectl apply for managing the object exclusively.

Defining controller selectors and PodTemplate
labels

Warning: Updating selectors on controllers is strongly discouraged.

The recommended approach is to define a single, immutable PodTemplate label used only by

the controller selector with no other semantic meaning.

Example:

Known Issues

Prior to Kubernetes 1.6, kubectl applykubectl apply did not support operating on objects stored in a

custom resource. For these cluster versions, you should instead use imperative object

configuration.

What’s next

Managing Kubernetes Objects Using Imperative Commands

Imperative Management of Kubernetes Objects Using Configuration Files

Kubectl Command Reference

Kubernetes API Reference

kubectl replace --save-config -f <kind>_<name>.yamlkubectl replace --save-config -f <kind>_<name>.yaml

selectorselector::

 matchLabelsmatchLabels::

 controller-selectorcontroller-selector:: ""extensions/v1beta1/deployment/nginx"extensions/v1beta1/deployment/nginx"

templatetemplate::

 metadatametadata::

 labelslabels::

 controller-selectorcontroller-selector:: ""extensions/v1beta1/deployment/nginx"extensions/v1beta1/deployment/nginx"

file:///docs/concepts/api-extension/custom-resources/
file:///docs/concepts/overview/object-management-kubectl/imperative-config/
file:///docs/concepts/overview/object-management-kubectl/imperative-command/
file:///docs/concepts/overview/object-management-kubectl/imperative-config/
file:///docs/user-guide/kubectl/v1.10/
file:///docs/reference/generated/kubernetes-api/v1.10/

Nodes

What is a node?

A nodenode is a worker machine in Kubernetes, previously known as a minionminion . A node may be a

VM or physical machine, depending on the cluster. Each node has the services necessary to

run pods and is managed by the master components. The services on a node include Docker,

kubelet and kube-proxy. See The Kubernetes Node section in the architecture design doc for

more details.

Node Status

A node’s status contains the following information:

Addresses

Phase deprecated

Condition

Capacity

What is a node?

Node Status

Addresses

Phase

Condition

Capacity

Info

Management

Node Controller

Self-Registration of Nodes

Manual Node Administration

Node capacity

API Object

file:///docs/concepts/workloads/pods/pod/
https://git.k8s.io/community/contributors/design-proposals/architecture/architecture.md#the-kubernetes-node

Info

Each section is described in detail below.

Addresses

The usage of these fields varies depending on your cloud provider or bare metal configuration.

HostName: The hostname as reported by the node’s kernel. Can be overridden via the

kubelet --hostname-override--hostname-override parameter.

ExternalIP: Typically the IP address of the node that is externally routable (available from

outside the cluster).

InternalIP: Typically the IP address of the node that is routable only within the cluster.

Phase

Deprecated: node phase is no longer used.

Condition

The conditionsconditions field describes the status of all RunningRunning nodes.

Node Condition Description

OutOfDiskOutOfDisk
TrueTrue if there is insufficient free space on the node for adding new pods, otherwise

FalseFalse

ReadyReady
TrueTrue if the node is healthy and ready to accept pods, FalseFalse if the node is not

healthy and is not accepting pods, and UnknownUnknown if the node controller has not heard

from the node in the last 40 seconds

MemoryPressureMemoryPressure
TrueTrue if pressure exists on the node memory – that is, if the node memory is low;

otherwise FalseFalse

DiskPressureDiskPressure
TrueTrue if pressure exists on the disk size – that is, if the disk capacity is low; otherwise

FalseFalse

NetworkUnavailableNetworkUnavailable TrueTrue if the network for the node is not correctly configured, otherwise FalseFalse

ConfigOKConfigOK TrueTrue if the kubelet is correctly configured, otherwise FalseFalse

The node condition is represented as a JSON object. For example, the following response

describes a healthy node.

If the Status of the Ready condition is “Unknown” or “False” for longer than the

pod-eviction-timeoutpod-eviction-timeout , an argument is passed to the kube-controller-manager and all of the

Pods on the node are scheduled for deletion by the Node Controller. The default eviction

timeout duration is five minutes. In some cases when the node is unreachable, the apiserver is

unable to communicate with the kubelet on it. The decision to delete the pods cannot be

communicated to the kubelet until it re-establishes communication with the apiserver. In the

meantime, the pods which are scheduled for deletion may continue to run on the partitioned

node.

In versions of Kubernetes prior to 1.5, the node controller would force delete these unreachable

pods from the apiserver. However, in 1.5 and higher, the node controller does not force delete

pods until it is confirmed that they have stopped running in the cluster. One can see these

pods which may be running on an unreachable node as being in the “Terminating” or

“Unknown” states. In cases where Kubernetes cannot deduce from the underlying

infrastructure if a node has permanently left a cluster, the cluster administrator may need to

delete the node object by hand. Deleting the node object from Kubernetes causes all the Pod

objects running on it to be deleted from the apiserver, freeing up their names.

Version 1.8 introduced an alpha feature that automatically creates taints that represent

conditions. To enable this behavior, pass an additional feature gate flag

--feature-gates=...,TaintNodesByCondition=true--feature-gates=...,TaintNodesByCondition=true to the API server, controller manager,

and scheduler. When TaintNodesByConditionTaintNodesByCondition is enabled, the scheduler ignores conditions

when considering a Node; instead it looks at the Node’s taints and a Pod’s tolerations.

Now users can choose between the old scheduling model and a new, more flexible scheduling

model. A Pod that does not have any tolerations gets scheduled according to the old model.

But a Pod that tolerates the taints of a particular Node can be scheduled on that Node.

Note that because of small delay, usually less than one second, between time when condition

is observed and a taint is created, it’s possible that enabling this feature will slightly increase

"conditions""conditions":: [[

 {{

 "type""type":: "Ready""Ready",,

 "status""status":: "True""True"

 }}

]]

file:///docs/admin/kube-controller-manager/
file:///docs/concepts/workloads/pods/pod/#force-deletion-of-pods
file:///docs/concepts/configuration/taint-and-toleration/

number of Pods that are successfully scheduled but rejected by the kubelet.

Capacity

Describes the resources available on the node: CPU, memory and the maximum number of

pods that can be scheduled onto the node.

Info

General information about the node, such as kernel version, Kubernetes version (kubelet and

kube-proxy version), Docker version (if used), OS name. The information is gathered by Kubelet

from the node.

Management

Unlike pods and services, a node is not inherently created by Kubernetes: it is created

externally by cloud providers like Google Compute Engine, or exists in your pool of physical or

virtual machines. What this means is that when Kubernetes creates a node, it is really just

creating an object that represents the node. After creation, Kubernetes will check whether the

node is valid or not. For example, if you try to create a node from the following content:

Kubernetes will create a node object internally (the representation), and validate the node by

health checking based on the metadata.namemetadata.name field (we assume metadata.namemetadata.name can be

resolved). If the node is valid, i.e. all necessary services are running, it is eligible to run a pod;

otherwise, it will be ignored for any cluster activity until it becomes valid. Note that Kubernetes

will keep the object for the invalid node unless it is explicitly deleted by the client, and it will

keep checking to see if it becomes valid.

Currently, there are three components that interact with the Kubernetes node interface: node

{{

 "kind""kind":: "Node""Node",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "10.240.79.157""10.240.79.157",,

 "labels""labels":: {{

 "name""name":: "my-first-k8s-node""my-first-k8s-node"

 }}

 }}

}}

file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/

controller, kubelet, and kubectl.

Node Controller

The node controller is a Kubernetes master component which manages various aspects of

nodes.

The node controller has multiple roles in a node’s life. The first is assigning a CIDR block to the

node when it is registered (if CIDR assignment is turned on).

The second is keeping the node controller’s internal list of nodes up to date with the cloud

provider’s list of available machines. When running in a cloud environment, whenever a node is

unhealthy, the node controller asks the cloud provider if the VM for that node is still available. If

not, the node controller deletes the node from its list of nodes.

The third is monitoring the nodes’ health. The node controller is responsible for updating the

NodeReady condition of NodeStatus to ConditionUnknown when a node becomes

unreachable (i.e. the node controller stops receiving heartbeats for some reason, e.g. due to

the node being down), and then later evicting all the pods from the node (using graceful

termination) if the node continues to be unreachable. (The default timeouts are 40s to start

reporting ConditionUnknown and 5m after that to start evicting pods.) The node controller

checks the state of each node every --node-monitor-period--node-monitor-period seconds.

In Kubernetes 1.4, we updated the logic of the node controller to better handle cases when a

large number of nodes have problems with reaching the master (e.g. because the master has

networking problem). Starting with 1.4, the node controller will look at the state of all nodes in

the cluster when making a decision about pod eviction.

In most cases, node controller limits the eviction rate to --node-eviction-rate--node-eviction-rate (default 0.1)

per second, meaning it won’t evict pods from more than 1 node per 10 seconds.

The node eviction behavior changes when a node in a given availability zone becomes

unhealthy. The node controller checks what percentage of nodes in the zone are unhealthy

(NodeReady condition is ConditionUnknown or ConditionFalse) at the same time. If the

fraction of unhealthy nodes is at least --unhealthy-zone-threshold--unhealthy-zone-threshold (default 0.55) then the

eviction rate is reduced: if the cluster is small (i.e. has less than or equal to

--large-cluster-size-threshold--large-cluster-size-threshold nodes - default 50) then evictions are stopped, otherwise

the eviction rate is reduced to --secondary-node-eviction-rate--secondary-node-eviction-rate (default 0.01) per second.

The reason these policies are implemented per availability zone is because one availability

zone might become partitioned from the master while the others remain connected. If your

cluster does not span multiple cloud provider availability zones, then there is only one

availability zone (the whole cluster).

A key reason for spreading your nodes across availability zones is so that the workload can be

shifted to healthy zones when one entire zone goes down. Therefore, if all nodes in a zone are

unhealthy then node controller evicts at the normal rate --node-eviction-rate--node-eviction-rate . The corner

case is when all zones are completely unhealthy (i.e. there are no healthy nodes in the cluster).

In such case, the node controller assumes that there’s some problem with master connectivity

and stops all evictions until some connectivity is restored.

Starting in Kubernetes 1.6, the NodeController is also responsible for evicting pods that are

running on nodes with NoExecuteNoExecute taints, when the pods do not tolerate the taints.

Additionally, as an alpha feature that is disabled by default, the NodeController is responsible

for adding taints corresponding to node problems like node unreachable or not ready. See this

documentation for details about NoExecuteNoExecute taints and the alpha feature.

Starting in version 1.8, the node controller can be made responsible for creating taints that

represent Node conditions. This is an alpha feature of version 1.8.

Self-Registration of Nodes

When the kubelet flag --register-node--register-node is true (the default), the kubelet will attempt to

register itself with the API server. This is the preferred pattern, used by most distros.

For self-registration, the kubelet is started with the following options:

--kubeconfig--kubeconfig - Path to credentials to authenticate itself to the apiserver.

--cloud-provider--cloud-provider - How to talk to a cloud provider to read metadata about itself.

--register-node--register-node - Automatically register with the API server.

--register-with-taints--register-with-taints - Register the node with the given list of taints (comma

separated <key>=<value>:<effect><key>=<value>:<effect>). No-op if register-noderegister-node is false.

--node-ip--node-ip - IP address of the node.

--node-labels--node-labels - Labels to add when registering the node in the cluster.

--node-status-update-frequency--node-status-update-frequency - Specifies how often kubelet posts node status to

master.

file:///docs/concepts/configuration/taint-and-toleration/

Currently, any kubelet is authorized to create/modify any node resource, but in practice it only

creates/modifies its own. (In the future, we plan to only allow a kubelet to modify its own node

resource.)

Manual Node Administration

A cluster administrator can create and modify node objects.

If the administrator wishes to create node objects manually, set the kubelet flag

--register-node=false--register-node=false .

The administrator can modify node resources (regardless of the setting of --register-node--register-node

). Modifications include setting labels on the node and marking it unschedulable.

Labels on nodes can be used in conjunction with node selectors on pods to control scheduling,

e.g. to constrain a pod to only be eligible to run on a subset of the nodes.

Marking a node as unschedulable will prevent new pods from being scheduled to that node,

but will not affect any existing pods on the node. This is useful as a preparatory step before a

node reboot, etc. For example, to mark a node unschedulable, run this command:

Note that pods which are created by a DaemonSet controller bypass the Kubernetes scheduler,

and do not respect the unschedulable attribute on a node. The assumption is that daemons

belong on the machine even if it is being drained of applications in preparation for a reboot.

Node capacity

The capacity of the node (number of cpus and amount of memory) is part of the node object.

Normally, nodes register themselves and report their capacity when creating the node object. If

you are doing manual node administration, then you need to set node capacity when adding a

node.

The Kubernetes scheduler ensures that there are enough resources for all the pods on a node.

It checks that the sum of the requests of containers on the node is no greater than the node

capacity. It includes all containers started by the kubelet, but not containers started directly by

Docker nor processes not in containers.

If you want to explicitly reserve resources for non-pod processes, you can create a placeholder

pod. Use the following template:

kubectl cordon kubectl cordon $NODENAME$NODENAME

Set the cpucpu and memorymemory values to the amount of resources you want to reserve. Place the file

in the manifest directory (--config=DIR--config=DIR flag of kubelet). Do this on each kubelet where you

want to reserve resources.

API Object

Node is a top-level resource in the Kubernetes REST API. More details about the API object can

be found at: Node API object.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: resource-reserverresource-reserver

specspec::

 containerscontainers::

 -- namename:: sleep-foreversleep-forever

 imageimage:: k8s.gcr.io/pause:0.8.0k8s.gcr.io/pause:0.8.0

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

file:///docs/reference/generated/kubernetes-api/v1.10/#node-v1-core

Master-Node communication

Overview

This document catalogs the communication paths between the master (really the apiserver)

and the Kubernetes cluster. The intent is to allow users to customize their installation to

harden the network configuration such that the cluster can be run on an untrusted network (or

on fully public IPs on a cloud provider).

Cluster -> Master

All communication paths from the cluster to the master terminate at the apiserver (none of the

other master components are designed to expose remote services). In a typical deployment,

the apiserver is configured to listen for remote connections on a secure HTTPS port (443) with

one or more forms of client authentication enabled. One or more forms of authorization should

be enabled, especially if anonymous requests or service account tokens are allowed.

Nodes should be provisioned with the public root certificate for the cluster such that they can

connect securely to the apiserver along with valid client credentials. For example, on a default

GCE deployment, the client credentials provided to the kubelet are in the form of a client

certificate. See kubelet TLS bootstrapping for automated provisioning of kubelet client

certificates.

Pods that wish to connect to the apiserver can do so securely by leveraging a service account

so that Kubernetes will automatically inject the public root certificate and a valid bearer token

into the pod when it is instantiated. The kuberneteskubernetes service (in all namespaces) is configured

with a virtual IP address that is redirected (via kube-proxy) to the HTTPS endpoint on the

Overview

Cluster -> Master

Master -> Cluster

apiserver -> kubelet

apiserver -> nodes, pods, and services

SSH Tunnels

file:///docs/admin/authentication/
file:///docs/admin/authorization/
file:///docs/admin/authentication/#anonymous-requests
file:///docs/admin/authentication/#service-account-tokens
file:///docs/admin/kubelet-tls-bootstrapping/

apiserver.

The master components also communicate with the cluster apiserver over the secure port.

As a result, the default operating mode for connections from the cluster (nodes and pods

running on the nodes) to the master is secured by default and can run over untrusted and/or

public networks.

Master -> Cluster

There are two primary communication paths from the master (apiserver) to the cluster. The

first is from the apiserver to the kubelet process which runs on each node in the cluster. The

second is from the apiserver to any node, pod, or service through the apiserver’s proxy

functionality.

apiserver -> kubelet

The connections from the apiserver to the kubelet are used for:

Fetching logs for pods.

Attaching (through kubectl) to running pods.

Providing the kubelet’s port-forwarding functionality.

These connections terminate at the kubelet’s HTTPS endpoint. By default, the apiserver does

not verify the kubelet’s serving certificate, which makes the connection subject to man-in-the-

middle attacks, and unsafe to run over untrusted and/or public networks.

To verify this connection, use the --kubelet-certificate-authority--kubelet-certificate-authority flag to provide the

apiserver with a root certificate bundle to use to verify the kubelet’s serving certificate.

If that is not possible, use SSH tunneling between the apiserver and kubelet if required to avoid

connecting over an untrusted or public network.

Finally, Kubelet authentication and/or authorization should be enabled to secure the kubelet

API.

apiserver -> nodes, pods, and services

The connections from the apiserver to a node, pod, or service default to plain HTTP

file:///docs/concepts/architecture/master-node-communication/#ssh-tunnels
file:///docs/admin/kubelet-authentication-authorization/

connections and are therefore neither authenticated nor encrypted. They can be run over a

secure HTTPS connection by prefixing https:https: to the node, pod, or service name in the API

URL, but they will not validate the certificate provided by the HTTPS endpoint nor provide client

credentials so while the connection will be encrypted, it will not provide any guarantees of

integrity. These connections are not currently safe to run over untrusted and/or public

networks.

SSH Tunnels

Google Kubernetes Engine uses SSH tunnels to protect the Master -> Cluster communication

paths. In this configuration, the apiserver initiates an SSH tunnel to each node in the cluster

(connecting to the ssh server listening on port 22) and passes all traffic destined for a kubelet,

node, pod, or service through the tunnel. This tunnel ensures that the traffic is not exposed

outside of the private GCE network in which the cluster is running.

https://cloud.google.com/kubernetes-engine/

Concepts Underlying the Cloud Controller
Manager

Cloud Controller Manager

The cloud controller manager (CCM) concept (not to be confused with the binary) was

originally created to allow cloud specific vendor code and the Kubernetes core to evolve

independent of one another. The cloud controller manager runs alongside other master

components such as the Kubernetes controller manager, the API server, and scheduler. It can

also be started as a Kubernetes addon, in which case it runs on top of Kubernetes.

The cloud controller manager’s design is based on a plugin mechanism that allows new cloud

providers to integrate with Kubernetes easily by using plugins. There are plans in place for on-

boarding new cloud providers on Kubernetes and for migrating cloud providers from the old

model to the new CCM model.

This document discusses the concepts behind the cloud controller manager and gives details

about its associated functions.

Here’s the architecture of a Kubernetes cluster without the cloud controller manager:

Design

In the preceding diagram, Kubernetes and the cloud provider are integrated through several

different components:

Kubelet

Kubernetes controller manager

Kubernetes API server

The CCM consolidates all of the cloud-dependent logic from the preceding three components

to create a single point of integration with the cloud. The new architecture with the CCM looks

like this:

Components of the CCM

The CCM breaks away some of the functionality of Kubernetes controller manager (KCM) and

runs it as a separate process. Specifically, it breaks away those controllers in the KCM that are

cloud dependent. The KCM has the following cloud dependent controller loops:

Node controller

Volume controller

Route controller

Service controller

In version 1.9, the CCM runs the following controllers from the preceding list:

Node controller

Route controller

Service controller

Additionally, it runs another controller called the PersistentVolumeLabels controller. This

controller is responsible for setting the zone and region labels on PersistentVolumes created

in GCP and AWS clouds.

Note: Volume controller was deliberately chosen to not be a part of CCM. Due to the

complexity involved and due to the existing efforts to abstract away vendor specific

volume logic, it was decided that volume controller will not be moved to CCM.

The original plan to support volumes using CCM was to use Flex volumes to support pluggable

volumes. However, a competing effort known as CSI is being planned to replace Flex.

Considering these dynamics, we decided to have an intermediate stop gap measure until CSI

becomes ready.

Functions of the CCM

The CCM inherits its functions from components of Kubernetes that are dependent on a cloud

provider. This section is structured based on those components.

1. Kubernetes controller manager

The majority of the CCM’s functions are derived from the KCM. As mentioned in the previous

section, the CCM runs the following control loops:

Node controller

Route controller

Service controller

PersistentVolumeLabels controller

Node controller

The Node controller is responsible for initializing a node by obtaining information about the

nodes running in the cluster from the cloud provider. The node controller performs the

following functions:

1. Initialize a node with cloud specific zone/region labels.

2. Initialize a node with cloud specific instance details, for example, type and size.

3. Obtain the node’s network addresses and hostname.

4. In case a node becomes unresponsive, check the cloud to see if the node has been deleted

from the cloud. If the node has been deleted from the cloud, delete the Kubernetes Node

object.

Route controller

The Route controller is responsible for configuring routes in the cloud appropriately so that

containers on different nodes in the Kubernetes cluster can communicate with each other. The

route controller is only applicable for Google Compute Engine clusters.

Service Controller

The Service controller is responsible for listening to service create, update, and delete events.

Based on the current state of the services in Kubernetes, it configures cloud load balancers

(such as ELB or Google LB) to reflect the state of the services in Kubernetes. Additionally, it

ensures that service backends for cloud load balancers are up to date.

PersistentVolumeLabels controller

The PersistentVolumeLabels controller applies labels on AWS EBS/GCE PD volumes when

they are created. This removes the need for users to manually set the labels on these volumes.

These labels are essential for the scheduling of pods as these volumes are constrained to

work only within the region/zone that they are in. Any Pod using these volumes needs to be

scheduled in the same region/zone.

The PersistentVolumeLabels controller was created specifically for the CCM; that is, it did not

exist before the CCM was created. This was done to move the PV labelling logic in the

Kubernetes API server (it was an admission controller) to the CCM. It does not run on the KCM.

2. Kubelet

The Node controller contains the cloud-dependent functionality of the kubelet. Prior to the

introduction of the CCM, the kubelet was responsible for initializing a node with cloud-specific

details such as IP addresses, region/zone labels and instance type information. The

introduction of the CCM has moved this initialization operation from the kubelet into the CCM.

In this new model, the kubelet initializes a node without cloud-specific information. However, it

adds a taint to the newly created node that makes the node unschedulable until the CCM

initializes the node with cloud-specific information. It then removes this taint.

3. Kubernetes API server

The PersistentVolumeLabels controller moves the cloud-dependent functionality of the

Kubernetes API server to the CCM as described in the preceding sections.

Plugin mechanism

The cloud controller manager uses Go interfaces to allow implementations from any cloud to

be plugged in. Specifically, it uses the CloudProvider Interface defined here.

The implementation of the four shared controllers highlighted above, and some scaffolding

along with the shared cloudprovider interface, will stay in the Kubernetes core.

Implementations specific to cloud providers will be built outside of the core and implement

interfaces defined in the core.

For more information about developing plugins, see Developing Cloud Controller Manager.

Authorization

This section breaks down the access required on various API objects by the CCM to perform

its operations.

Node Controller

The Node controller only works with Node objects. It requires full access to get, list, create,

update, patch, watch, and delete Node objects.

v1/Node:

Get

List

https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/cloud.go
file:///docs/tasks/administer-cluster/developing-cloud-controller-manager/

Create

Update

Patch

Watch

Delete

Route controller

The route controller listens to Node object creation and configures routes appropriately. It

requires get access to Node objects.

v1/Node:

Get

Service controller

The service controller listens to Service object create, update and delete events and then

configures endpoints for those Services appropriately.

To access Services, it requires list, and watch access. To update Services, it requires patch and

update access.

To set up endpoints for the Services, it requires access to create, list, get, watch, and update.

v1/Service:

List

Get

Watch

Patch

Update

PersistentVolumeLabels controller

The PersistentVolumeLabels controller listens on PersistentVolume (PV) create events and

then updates them. This controller requires access to get and update PVs.

v1/PersistentVolume:

Get

List

Watch

Update

Others

The implementation of the core of CCM requires access to create events, and to ensure secure

operation, it requires access to create ServiceAccounts.

v1/Event:

Create

Patch

Update

v1/ServiceAccount:

Create

The RBAC ClusterRole for the CCM looks like this:

apiVersionapiVersion:: rbac.authorization.k8s.io/v1rbac.authorization.k8s.io/v1

kindkind:: ClusterRoleClusterRole

metadatametadata::

 namename:: cloud-controller-managercloud-controller-manager

rulesrules::

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- eventsevents

 verbsverbs::

 -- createcreate

 -- patchpatch

 -- updateupdate

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- nodesnodes

 verbsverbs::

 -- ''*'*'

Vendor Implementations

The following cloud providers have implemented CCMs:

Digital Ocean

Oracle

 -- ''*'*'

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- nodes/statusnodes/status

 verbsverbs::

 -- patchpatch

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- servicesservices

 verbsverbs::

 -- listlist

 -- patchpatch

 -- updateupdate

 -- watchwatch

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- serviceaccountsserviceaccounts

 verbsverbs::

 -- createcreate

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- persistentvolumespersistentvolumes

 verbsverbs::

 -- getget

 -- listlist

 -- updateupdate

 -- watchwatch

-- apiGroupsapiGroups::

 -- """"

 resourcesresources::

 -- endpointsendpoints

 verbsverbs::

 -- createcreate

 -- getget

 -- listlist

 -- watchwatch

 -- updateupdate

Azure

GCE

AWS

Cluster Administration

Complete instructions for configuring and running the CCM are provided here.

file:///docs/tasks/administer-cluster/running-cloud-controller/#cloud-controller-manager

Extending your Kubernetes Cluster

Kubernetes is highly configurable and extensible. As a result, there is rarely a need to fork or

submit patches to the Kubernetes project code.

This guide describes the options for customizing a Kubernetes cluster. It is aimed at

 who want to understand how to adapt their Kubernetes cluster to the needs

of their work environment. Developers who are prospective or Kubernetes

Project will also find it useful as an introduction to what extension points and

patterns exist, and their trade-offs and limitations.

Overview

Customization approaches can be broadly divided into configuration, which only involves

changing flags, local configuration files, or API resources; and extensions, which involve

running additional programs or services. This document is primarily about extensions.

Cluster Operators

Platform Developers

Contributors

Overview

Configuration

Extensions

Extension Patterns

Extension Points

API Extensions

User-Defined Types

Combining New APIs with Automation

Changing Built-in Resources

API Access Extensions

Authentication

Authorization

Dynamic Admission Control

Infrastructure Extensions

Storage Plugins

Device Plugins

Network Plugins

Scheduler Extensions

What’s next

file:///docs/reference/glossary/?all=true#term-cluster-operator
file:///docs/reference/glossary/?all=true#term-platform-developer
file:///docs/reference/glossary/?all=true#term-contributor

Configuration

Configuration files and flags are documented in the Reference section of the online

documentation, under each binary:

kubelet

kube-apiserver

kube-controller-manager

kube-scheduler.

Flags and configuration files may not always be changeable in a hosted Kubernetes service or

a distribution with managed installation. When they are changeable, they are usually only

changeable by the cluster administrator. Also, they are subject to change in future Kubernetes

versions, and setting them may require restarting processes. For those reasons, they should be

used only when there are no other options.

Built-in Policy APIs, such as ResourceQuota, PodSecurityPolicies, NetworkPolicy and Role-

based Access Control (RBAC), are built-in Kubernetes APIs. APIs are typically used with hosted

Kubernetes services and with managed Kubernetes installations. They are declarative and use

the same conventions as other Kubernetes resources like pods, so new cluster configuration

can be repeatable and be managed the same way as applications. And, where they are stable,

they enjoy a defined support policy like other Kubernetes APIs. For these reasons, they are

preferred over configuration files and flags where suitable.

Extensions

Extensions are software components that extend and deeply integrate with Kubernetes. They

adapt it to support new types and new kinds of hardware.

Most cluster administrators will use a hosted or distribution instance of Kubernetes. As a

result, most Kubernetes users will need to install extensions and fewer will need to author new

ones.

Extension Patterns

file:///docs/admin/kubelet/
file:///docs/admin/kube-apiserver/
file:///docs/admin/kube-controller-manager/
file:///docs/admin/kube-scheduler/
file:///docs/concepts/policy/resource-quotas/
file:///docs/concepts/policy/pod-security-policy/
file:///docs/concepts/services-networking/network-policies/
file:///docs/admin/authorization/rbac/
file:///docs/reference/deprecation-policy/

Kubernetes is designed to be automated by writing client programs. Any program that reads

and/or writes to the Kubernetes API can provide useful automation. Automation can run on the

cluster or off it. By following the guidance in this doc you can write highly available and robust

automation. Automation generally works with any Kubernetes cluster, including hosted

clusters and managed installations.

There is a specific pattern for writing client programs that work well with Kubernetes called the

Controller pattern. Controllers typically read an object’s .spec.spec , possibly do things, and then

update the object’s .status.status .

A controller is a client of Kubernetes. When Kubernetes is the client and calls out to a remote

service, it is called a Webhook. The remote service is called a Webhook Backend. Like

Controllers, Webhooks do add a point of failure.

In the webhook model, Kubernetes makes a network request to a remote service. In the Binary

Plugin model, Kubernetes executes a binary (program). Binary plugins are used by the kubelet

(e.g. Flex Volume Plugins and Network Plugins) and by kubectl.

Below is a diagram showing how the extensions points interact with the Kubernetes control

plane.

Extension Points

This diagram shows the extension points in a Kubernetes system.

https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md
file:///docs/concepts/cluster-administration/network-plugins/

1. Users often interact with the Kubernetes API using kubectlkubectl . Kubectl plugins extend the

kubectl binary. They only affect the individual user’s local environment, and so cannot

enforce site-wide policies.

2. The apiserver handles all requests. Several types of extension points in the apiserver allow

authenticating requests, or blocking them based on their content, editing content, and

handling deletion. These are described in the API Access Extensions section.

file:///docs/tasks/extend-kubectl/kubectl-plugins/
file:///docs/concepts/overview/extending#api-access-extensions

3. The apiserver serves various kinds of resources. Built-in resource kinds, like podspods , are

defined by the Kubernetes project and can’t be changed. You can also add resources that

you define, or that other projects have defined, called Custom Resources, as explained in

the Custom Resources section. Custom Resources are often used with API Access

Extensions.

4. The Kubernetes scheduler decides which nodes to place pods on. There are several ways

to extend scheduling. These are described in the Scheduler Extensions section.

5. Much of the behavior of Kubernetes is implemented by programs called Controllers which

are clients of the API-Server. Controllers are often used in conjunction with Custom

Resources.

6. The kubelet runs on servers, and helps pods appear like virtual servers with their own IPs

on the cluster network. Network Plugins allow for different implementations of pod

networking.

7. The kubelet also mounts and unmounts volumes for containers. New types of storage can

be supported via Storage Plugins.

If you are unsure where to start, this flowchart can help. Note that some solutions may involve

several types of extensions.

file:///docs/concepts/overview/extending#user-defined-types
file:///docs/concepts/overview/extending#scheduler-extensions
file:///docs/concepts/overview/extending#network-plugins
file:///docs/concepts/overview/extending#storage-plugins

API Extensions

User-Defined Types

Consider adding a Custom Resource to Kubernetes if you want to define new controllers,

application configuration objects or other declarative APIs, and to manage them using

Kubernetes tools, such as kubectlkubectl .

Do not use a Custom Resource as data storage for application, user, or monitoring data.

For more about Custom Resources, see the Custom Resources concept guide.

Combining New APIs with Automation

Often, when you add a new API, you also add a control loop that reads and/or writes the new

APIs. When the combination of a Custom API and a control loop is used to manage a specific,

usually stateful, application, this is called the Operator pattern. Custom APIs and control loops

can also be used to control other resources, such as storage, policies, and so on.

file:///docs/concepts/api-extension/custom-resources/

Changing Built-in Resources

When you extend the Kubernetes API by adding custom resources, the added resources always

fall into a new API Groups. You cannot replace or change existing API groups. Adding an API

does not directly let you affect the behavior of existing APIs (e.g. Pods), but API Access

Extensions do.

API Access Extensions

When a request reaches the Kubernetes API Server, it is first Authenticated, then Authorized,

then subject to various types of Admission Control. See [Accessing the API] for more on this

flow.

Each of these steps offers extension points.

Kubernetes has several built-in authentication methods that it supports. It can also sit behind

an authenticating proxy, and it can send a token from an Authorization header to a remote

service for verification (a webhook). All of these methods are covered in the Authentication

documentation.

Authentication

Authentication maps headers or certificates in all requests to a username for the client making

the request.

Kubernetes provides several built-in authentication methods, and an Authentication webhook

method if those don’t meet your needs.

Authorization

Authorization determines whether specific users can read, write, and do other operations on

API resources. It just works at the level of whole resources – it doesn’t discriminate based on

arbitrary object fields. If the built-in authorization options don’t meet your needs, and

Authorization webhook allows calling out to user-provided code to make an authorization

decision.

Dynamic Admission Control

After a request is authorized, if it is a write operation, it also goes through Admission Control

steps. In addition to the built-in steps, there are several extensions:

file:///docs/admin/accessing-the-api/
file:///docs/admin/authentication/
file:///docs/admin/authentication
file:///docs/admin/authentication/#webhook-token-authentication
file:///docs/admin/authorization/webhook/
file:///docs/admin/authorization/webhook/
file:///docs/admin/admission-controllers/

The Image Policy webhook restricts what images can be run in containers.

To make arbitrary admission control decisions, a general Admission webhook can be

used. Admission Webhooks can reject creations or updates.

Initializers are controllers that can modify objects before they are created. Initializers can

modify initial object creations but cannot affect updates to objects. Initializers can also

reject objects.

Infrastructure Extensions

Storage Plugins

Flex Volumes allow users to mount volume types without built-in support by having the

Kubelet call a Binary Plugin to mount the volume.

Device Plugins

Device plugins allow a node to discover new Node resources (in addition to the builtin ones like

cpu and memory) via a Device Plugin.

Network Plugins

Different networking fabrics can be supported via node-level Network Plugins.

Scheduler Extensions

The scheduler is a special type of controller that watches pods, and assigns pods to nodes.

The default scheduler can be replaced entirely, while continuing to use other Kubernetes

components, or multiple schedulers can run at the same time.

This is a significant undertaking, and almost all Kubernetes users find they do not need to

modify the scheduler.

The scheduler also supports a webhook that permits a webhook backend (scheduler

extension) to filter and prioritize the nodes chosen for a pod.

What’s next

file:///docs/admin/admission-controllers/#imagepolicywebhook
file:///docs/admin/extensible-admission-controllers/#external-admission-webhooks
file:///docs/admin/extensible-admission-controllers/#initializers
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/flexvolume-deployment.md
file:///docs/concepts/cluster-administration/device-plugins/
file:///docs/admin/network-plugins/
file:///docs/tasks/administer-cluster/configure-multiple-schedulers/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md

Learn more about Custom Resources

Learn about Dynamic admission control

Learn more about Infrastructure extensions

Network Plugins

Device Plugins

Learn about kubectl plugins

See examples of Automation

List of Operators

file:///docs/concepts/api-extension/custom-resources/
file:///docs/admin/extensible-admission-controllers/
file:///docs/concepts/cluster-administration/network-plugins/
file:///docs/concepts/cluster-administration/device-plugins/
file:///docs/tasks/extend-kubectl/kubectl-plugins/
https://github.com/coreos/awesome-kubernetes-extensions

Extending the Kubernetes API with the
aggregation layer

The aggregation layer allows Kubernetes to be extended with additional APIs, beyond what is

offered by the core Kubernetes APIs.

Overview

The aggregation layer enables installing additional Kubernetes-style APIs in your cluster. These

can either be pre-built, existing 3rd party solutions, such as service-catalog, or user-created

APIs like apiserver-builder, which can get you started.

In 1.7 the aggregation layer runs in-process with the kube-apiserver. Until an extension

resource is registered, the aggregation layer will do nothing. To register an API, users must add

an APIService object, which “claims” the URL path in the Kubernetes API. At that point, the

aggregation layer will proxy anything sent to that API path (e.g.

/apis/myextension.mycompany.io/v1/…) to the registered APIService.

Ordinarily, the APIService will be implemented by an extension-apiserver in a pod running in the

cluster. This extension-apiserver will normally need to be paired with one or more controllers if

active management of the added resources is needed. As a result, the apiserver-builder will

actually provide a skeleton for both. As another example, when the service-catalog is installed,

it provides both the extension-apiserver and controller for the services it provides.

What’s next

To get the aggregator working in your environment, configure the aggregation layer.

Then, setup an extension api-server to work with the aggregation layer.

Also, learn how to extend the Kubernetes API using Custom Resource Definitions.

Overview

What’s next

https://github.com/kubernetes-incubator/service-catalog/blob/master/README.md
https://github.com/kubernetes-incubator/apiserver-builder/blob/master/README.md
file:///docs/tasks/access-kubernetes-api/configure-aggregation-layer/
file:///docs/tasks/access-kubernetes-api/setup-extension-api-server/
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

Custom Resources

This page explains custom resources, which are extensions of the Kubernetes API. This page

explains when to add a custom resource to your Kubernetes cluster and when to use a

standalone service. It describes the two methods for adding custom resources and how to

choose between them.

Custom resources

A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a

certain kind. For example, the built-in pods resource contains a collection of Pod objects.

A custom resource is an extension of the Kubernetes API that is not necessarily available on

every Kubernetes cluster. In other words, it represents a customization of a particular

Kubernetes installation.

Custom resources can appear and disappear in a running cluster through dynamic registration,

and cluster admins can update custom resources independently of the cluster itself. Once a

Custom resources

Custom controllers

Should I add a custom resource to my Kubernetes Cluster?

Declarative APIs

Should I use a configMap or a custom resource?

Adding custom resources

CustomResourceDefinitions

API server aggregation

Choosing a method for adding custom resources

Comparing ease of use

Advanced features and flexibility

Common Features

Preparing to install a custom resource

Third party code and new points of failure

Storage

Authentication, authorization, and auditing

Accessing a custom resource

What’s next

file:///docs/concepts/api-extension/custom-resources/
file:///docs/reference/api-overview/
file:///docs/concepts/overview/working-with-objects/kubernetes-objects/

custom resource is installed, users can create and access its objects with kubectl, just as they

do for built-in resources like pods.

Custom controllers

On their own, custom resources simply let you store and retrieve structured data. It is only

when combined with a controller that they become a true declarative API. The controller

interprets the structured data as a record of the user’s desired state, and continually takes

action to achieve and maintain that state.

A custom controller is a controller that users can deploy and update on a running cluster,

independently of the cluster’s own lifecycle. Custom controllers can work with any kind of

resource, but they are especially effective when combined with custom resources. The

Operator pattern is one example of such a combination. It allows developers to encode domain

knowledge for specific applications into an extension of the Kubernetes API.

Should I add a custom resource to my Kubernetes Cluster?

When creating a new API, consider whether to aggregate your API with the Kubernetes cluster

APIs or let your API stand alone.

Consider API aggregation if: Prefer a stand-alone API if:

Your API is Declarative. Your API does not fit the Declarative model.

You want your new types to be readable and writable using

kubectlkubectl .
kubectlkubectl support is not required

You want to view your new types in a Kubernetes UI, such as
dashboard, alongside built-in types.

Kubernetes UI support is not required.

You are developing a new API.
You already have a program that serves your
API and works well.

You are willing to accept the format restriction that Kubernetes puts
on REST resource paths, such as API Groups and Namespaces. (See
the API Overview.)

You need to have specific REST paths to be
compatible with an already defined REST API.

Your resources are naturally scoped to a cluster or to namespaces of
a cluster.

Cluster or namespace scoped resources are a
poor fit; you need control over the specifics of
resource paths.

You want to reuse Kubernetes API support features. You don’t need those features.

Declarative APIs

In a Declarative API, typically:

file:///docs/user-guide/kubectl-overview/
file:///docs/concepts/overview/working-with-objects/kubernetes-objects/#understanding-kubernetes-objects
https://coreos.com/blog/introducing-operators.html
file:///docs/concepts/api-extension/apiserver-aggregation/
file:///docs/concepts/overview/kubernetes-api/

Your API consists of a relatively small number of relatively small objects (resources).

The objects define configuration of applications or infrastructure.

The objects are updated relatively infrequently.

Humans often need to read and write the objects.

The main operations on the objects are CRUD-y (creating, reading, updating and deleting).

Transactions across objects are not required: the API represents a desired state, not an

exact state.

Imperative APIs are not declarative. Signs that your API might not be declarative include:

The client says “do this”, and then gets a synchronous response back when it is done.

The client says “do this”, and then gets an operation ID back, and has to check a separate

Operation objects to determine completion of the request.

You talk about Remote Procedure Calls (RPCs).

Directly storing large amounts of data (e.g. > a few kB per object, or >1000s of objects).

High bandwidth access (10s of requests per second sustained) needed.

Store end-user data (such as images, PII, etc) or other large-scale data processed by

applications.

The natural operations on the objects are not CRUD-y.

The API is not easily modeled as objects.

You chose to represent pending operations with an operation ID or operation object.

Should I use a configMap or a custom resource?

Use a ConfigMap if any of the following apply:

There is an existing, well-documented config file format, such as a mysql.cnfmysql.cnf or

pom.xmlpom.xml .

You want to put the entire config file into one key of a configMap.

The main use of the config file is for a program running in a Pod on your cluster to

consume the file to configure itself.

Consumers of the file prefer to consume via file in a Pod or environment variable in a pod,

rather than the Kubernetes API.

You want to perform rolling updates via Deployment, etc, when the file is updated.

Note: Use a secret for sensitive data, which is similar to a configMap but more secure.

Use a custom resource (CRD or Aggregated API) if most of the following apply:

You want to use Kubernetes client libraries and CLIs to create and update the new

resource.

You want top-level support from kubectl (for example:

kubectl get my-object object-kubectl get my-object object-

namename).

You want to build new automation that watches for updates on the new object, and then

CRUD other objects, or vice versa.

You want to write automation that handles updates to the object.

You want to use Kubernetes API conventions like .spec.spec , .status.status , and .metadata.metadata .

You want the object to be an abstraction over a collection of controlled resources, or a

summarization of other resources.

Adding custom resources

Kubernetes provides two ways to add custom resources to your cluster:

Custom Resource Definitions (CRDs) are easier to use: they do not require any

programming in some cases.

API Aggregation requires programming, but allows more control over API behaviors like

how data is stored and conversion between API versions.

Kubernetes provides these two options to meet the needs of different users, so that neither

ease of use nor flexibility are compromised.

Aggregated APIs are subordinate APIServers that sit behind the primary API server, which acts

file:///docs/concepts/configuration/secret/
file:///docs/concepts/api-extension/custom-resources/
file:///docs/concepts/api-extension/apiserver-aggregation/

as a proxy. This arrangement is called API Aggregation (AA). To users, it simply appears that

the Kubernetes API is extended.

Custom Resource Definitions (CRDS) allow users to create new types of resources without

adding another APIserver. You do not need to understand API Aggregation to use CRDs.

Regardless of whether they are installed via CRDs or AA, the new resources are called Custom

Resources to distinguish them from built-in Kubernetes resources (like pods).

CustomResourceDefinitions

The CustomResourceDefinition (CRD) API resource allows you to define custom resources.

Defining a CRD object creates a new custom resource with a name and schema that you

specify. The Kubernetes API serves and handles the storage of your custom resource.

This frees you from writing your own API server to handle the custom resource, but the generic

nature of the implementation means you have less flexibility than with API server aggregation.

Refer to the Custom Controller example, which uses Custom Resources for a demonstration of

how to register a new custom resource, work with instances of your new resource type, and

setup a controller to handle events.

Note: CRD is the successor to the deprecated ThirdPartyResource (TPR) API, and is

available as of Kubernetes 1.7.

API server aggregation

Usually, each resource in the Kubernetes API requires code that handles REST requests and

manages persistent storage of objects. The main Kubernetes API server handles built-in

resources like pods and services, and can also handle custom resources in a generic way

through CustomResourceDefinitions.

The aggregation layer allows you to provide specialized implementations for your custom

resources by writing and deploying your own standalone API server. The main API server

delegates requests to you for the custom resources that you handle, making them available to

all of its clients.

file:///docs/concepts/api-extension/apiserver-aggregation/
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
https://github.com/kubernetes/sample-controller
file:///docs/concepts/api-extension/apiserver-aggregation/

Choosing a method for adding custom resources

CRDs are easier to use. Aggregated APIs are more flexible. Choose the method that best

meets your needs.

Typically, CRDs are a good fit if:

You have a handful of fields

You are using the resource within your company, or as part of a small open-source project

(as opposed to a commercial product)

Comparing ease of use

CRDs are easier to create than Aggregated APIs.

Custom Resource Definitions Aggregated API

Do not require programming. Users can choose any language for
a CRD controller.

Requires programming in Go and building binary
and image. Users can choose any language for a
CRD controller.

No additional service to run; CRs are handled by API Server. An additional service to create and that could fail.

No ongoing support once the CRD is created. Any bug fixes are
picked up as part of normal Kubernetes Master upgrades.

May need to periodically pickup bug fixes from
upstream and rebuild and update the Aggregated
APIserver.

No need to handle multiple versions of your API. For example:
when you control the client for this resource, you can upgrade it in
sync with the API.

You need to handle multiple versions of your API,
for example: when developing an extension to share
with the world.

Advanced features and flexibility

Aggregated APIs offer more advanced API features and customization of other features, for

example: the storage layer.

Feature Description CRDs
Aggregated
API

Validation

Help users prevent errors and allow you to evolve your API
independently of your clients. These features are most useful
when there are many clients who can’t all update at the same
time.

Beta feature of
CRDs in v1.9.
Checks limited to
what is supported
by OpenAPI v3.0.

Yes, arbitrary
validation
checks

Defaulting See above

No, but can achieve
the same effect with
an Initializer
(requires
programming)

Yes

Allows serving the same object through two API versions. Can

Multi-
versioning

help ease API changes like renaming fields. Less important if
you control your client versions.

No Yes

Custom
Storage

If you need storage with a different performance mode (for
example, time-series database instead of key-value store) or
isolation for security (for example, encryption secrets or
different

No Yes

Custom
Business
Logic

Perform arbitrary checks or actions when creating, reading,
updating or deleting an object

No, but can get
some of the same
effects with
Initializers or
Finalizers (requires
programming)

Yes

Subresources

Add extra operations other than CRUD, such

as "scale" or "exec"

Allows systems like

HorizontalPodAutoscaler and

PodDisruptionBudget interact with your new

resource

Finer-grained access control: user writes

spec section, controller writes status

section.

Allows incrementing object Generation on

custom resource data mutation (requires

separate spec and status sections in the

resource)

No but planned
Yes, any
Subresource

strategic-
merge-patch

The new endpoints support PATCH with

Content-Type: application/strategic-Content-Type: application/strategic-

merge-patch+jsonmerge-patch+json
. Useful for updating objects that may be modified both locally,
and by the server. For more information, see “Update API
Objects in Place Using kubectl patch”

No Yes

Protocol
Buffers

The new resource supports clients that want to use Protocol
Buffers

No Yes

OpenAPI
Schema

Is there an OpenAPI (swagger) schema for the types that can be
dynamically fetched from the server? Is the user protected from
misspelling field names by ensuring only allowed fields are set?

Are types enforced (in other words, don’t put an intint in a

stringstring field?)

No but planned Yes

Feature Description CRDs
Aggregated
API

Common Features

When you create a custom resource, either via a CRDs or an AA, you get many features for

file:///docs/tasks/run-application/update-api-object-kubectl-patch/

your API, compared to implementing it outside the Kubernetes platform:

Feature What it does

CRUD The new endpoints support CRUD basic operations via HTTP and kubectlkubectl

Watch The new endpoints support Kubernetes Watch operations via HTTP

Discovery
Clients like kubectl and dashboard automatically offer list, display, and field edit operations on
your resources

json-patch
The new endpoints support PATCH with

Content-Type: application/json-patch+jsonContent-Type: application/json-patch+json

merge-patch
The new endpoints support PATCH with

Content-Type: application/merge-patch+jsonContent-Type: application/merge-patch+json

HTTPS The new endpoints uses HTTPS

Built-in Authentication Access to the extension uses the core apiserver (aggregation layer) for authentication

Built-in Authorization Access to the extension can reuse the authorization used by the core apiserver (e.g. RBAC)

Finalizers Block deletion of extension resources until external cleanup happens.

Admission Webhooks Set default values and validate extension resources during any create/update/delete operation.

UI/CLI Display Kubectl, dashboard can display extension resources.

Unset vs Empty Clients can distinguish unset fields from zero-valued fields.

Client Libraries
Generation

Kubernetes provides generic client libraries, as well as tools to generate type-specific client
libraries.

Labels and
annotations

Common metadata across objects that tools know how to edit for core and custom resources.

Preparing to install a custom resource

There are several points to be aware of before adding a custom resource to your cluster.

Third party code and new points of failure

While creating a CRD does not automatically add any new points of failure (for example, by

causing third party code to run on your API server), packages (for example, Charts) or other

installation bundles often include CRDs as well as a Deployment of third-party code that

implements the business logic for a new custom resource.

Installing an Aggregated APIserver always involves running a new Deployment.

Storage

Custom resources consume storage space in the same way that ConfigMaps do. Creating too

many custom resources may overload your API server’s storage space.

Aggregated API servers may use the same storage as the main API server, in which case the

same warning applies.

Authentication, authorization, and auditing

CRDs always use the same authentication, authorization, and audit logging as the built-in

resources of your API Server.

If you use RBAC for authorization, most RBAC roles will not grant access to the new resources

(except the cluster-admin role or any role created with wildcard rules). You’ll need to explicitly

grant access to the new resources. CRDs and Aggregated APIs often come bundled with new

role definitions for the types they add.

Aggregated API servers may or may not use the same authentication, authorization, and

auditing as the primary API server.

Accessing a custom resource

Kubernetes client libraries can be used to access custom resources. Not all client libraries

support custom resources. The go and python client libraries do.

When you add a custom resource, you can access it using:

kubectl

The kubernetes dynamic client.

A REST client that you write.

A client generated using Kubernetes client generation tools (generating one is an

advanced undertaking, but some projects may provide a client along with the CRD or AA).

What’s next

Learn how to Extend the Kubernetes API with the aggregation layer.

Learn how to Extend the Kubernetes API with CustomResourceDefinition.

file:///docs/reference/client-libraries/
https://github.com/kubernetes/code-generator
file:///docs/concepts/api-extension/apiserver-aggregation/
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

Learn how to Migrate a ThirdPartyResource to CustomResourceDefinition.

file:///docs/tasks/access-kubernetes-api/migrate-third-party-resource/

Network Plugins

Disclaimer: Network plugins are in alpha. Its contents will change rapidly.

Network plugins in Kubernetes come in a few flavors:

CNI plugins: adhere to the appc/CNI specification, designed for interoperability.

Kubenet plugin: implements basic cbr0cbr0 using the bridgebridge and host-localhost-local CNI plugins

Installation

The kubelet has a single default network plugin, and a default network common to the entire

cluster. It probes for plugins when it starts up, remembers what it found, and executes the

selected plugin at appropriate times in the pod lifecycle (this is only true for Docker, as rkt

manages its own CNI plugins). There are two Kubelet command line parameters to keep in

mind when using plugins:

cni-bin-dircni-bin-dir : Kubelet probes this directory for plugins on startup

network-pluginnetwork-plugin : The network plugin to use from cni-bin-dircni-bin-dir . It must match the name

reported by a plugin probed from the plugin directory. For CNI plugins, this is simply “cni”.

Network Plugin Requirements

Besides providing the NetworkPluginNetworkPlugin interface to configure and clean up pod networking, the

plugin may also need specific support for kube-proxy. The iptables proxy obviously depends on

iptables, and the plugin may need to ensure that container traffic is made available to iptables.

Installation

Network Plugin Requirements

CNI

kubenet

Customizing the MTU (with kubenet)

Usage Summary

https://github.com/kubernetes/kubernetes/tree/v1.10.0/pkg/kubelet/network/plugins.go

For example, if the plugin connects containers to a Linux bridge, the plugin must set the

net/bridge/bridge-nf-call-iptablesnet/bridge/bridge-nf-call-iptables sysctl to 11 to ensure that the iptables proxy

functions correctly. If the plugin does not use a Linux bridge (but instead something like Open

vSwitch or some other mechanism) it should ensure container traffic is appropriately routed

for the proxy.

By default if no kubelet network plugin is specified, the noopnoop plugin is used, which sets

net/bridge/bridge-nf-call-iptables=1net/bridge/bridge-nf-call-iptables=1 to ensure simple configurations (like Docker with

a bridge) work correctly with the iptables proxy.

CNI

The CNI plugin is selected by passing Kubelet the --network-plugin=cni--network-plugin=cni command-line

option. Kubelet reads a file from --cni-conf-dir--cni-conf-dir (default /etc/cni/net.d/etc/cni/net.d) and uses the

CNI configuration from that file to set up each pod’s network. The CNI configuration file must

match the CNI specification, and any required CNI plugins referenced by the configuration

must be present in --cni-bin-dir--cni-bin-dir (default /opt/cni/bin/opt/cni/bin).

If there are multiple CNI configuration files in the directory, the first one in lexicographic order

of file name is used.

In addition to the CNI plugin specified by the configuration file, Kubernetes requires the

standard CNI lolo plugin, at minimum version 0.2.0

Limitation: Due to #31307, HostPortHostPort won’t work with CNI networking plugin at the moment.

That means all hostPorthostPort attribute in pod would be simply ignored.

kubenet

Kubenet is a very basic, simple network plugin, on Linux only. It does not, of itself, implement

more advanced features like cross-node networking or network policy. It is typically used

together with a cloud provider that sets up routing rules for communication between nodes, or

in single-node environments.

Kubenet creates a Linux bridge named cbr0cbr0 and creates a veth pair for each pod with the

host end of each pair connected to cbr0cbr0 . The pod end of the pair is assigned an IP address

allocated from a range assigned to the node either through configuration or by the controller-

manager. cbr0cbr0 is assigned an MTU matching the smallest MTU of an enabled normal

interface on the host.

https://github.com/containernetworking/cni/blob/master/SPEC.md#network-configuration
https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback/loopback.go
https://github.com/kubernetes/kubernetes/issues/31307

The plugin requires a few things:

The standard CNI bridgebridge , lolo and host-localhost-local plugins are required, at minimum

version 0.2.0. Kubenet will first search for them in /opt/cni/bin/opt/cni/bin . Specify cni-bin-dircni-bin-dir

to supply additional search path. The first found match will take effect.

Kubelet must be run with the --network-plugin=kubenet--network-plugin=kubenet argument to enable the plugin

Kubelet should also be run with the --non-masquerade-cidr=<clusterCidr>--non-masquerade-cidr=<clusterCidr> argument

to ensure traffic to IPs outside this range will use IP masquerade.

The node must be assigned an IP subnet through either the --pod-cidr--pod-cidr kubelet

command-line option or the

--allocate-node-cidrs=true --cluster-cidr=--allocate-node-cidrs=true --cluster-cidr=

<cidr><cidr>

controller-manager command-line options.

Customizing the MTU (with kubenet)

The MTU should always be configured correctly to get the best networking performance.

Network plugins will usually try to infer a sensible MTU, but sometimes the logic will not result

in an optimal MTU. For example, if the Docker bridge or another interface has a small MTU,

kubenet will currently select that MTU. Or if you are using IPSEC encapsulation, the MTU must

be reduced, and this calculation is out-of-scope for most network plugins.

Where needed, you can specify the MTU explicitly with the network-plugin-mtunetwork-plugin-mtu kubelet

option. For example, on AWS the eth0eth0 MTU is typically 9001, so you might specify

--network-plugin-mtu=9001--network-plugin-mtu=9001 . If you’re using IPSEC you might reduce it to allow for

encapsulation overhead e.g. --network-plugin-mtu=8873--network-plugin-mtu=8873 .

This option is provided to the network-plugin; currently only kubenet supports

network-plugin-mtunetwork-plugin-mtu .

Usage Summary

--network-plugin=cni--network-plugin=cni specifies that we use the cnicni network plugin with actual CNI

plugin binaries located in --cni-bin-dir--cni-bin-dir (default /opt/cni/bin/opt/cni/bin) and CNI plugin

configuration located in --cni-conf-dir--cni-conf-dir (default /etc/cni/net.d/etc/cni/net.d).

--network-plugin=kubenet--network-plugin=kubenet specifies that we use the kubenetkubenet network plugin with CNI

bridgebridge and host-localhost-local plugins placed in /opt/cni/bin/opt/cni/bin or cni-bin-dircni-bin-dir .

--network-plugin-mtu=9001--network-plugin-mtu=9001 specifies the MTU to use, currently only used by the

kubenetkubenet network plugin.

Device Plugins

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Starting in version 1.8, Kubernetes provides a device plugin framework for vendors to advertise

their resources to the kubelet without changing Kubernetes core code. Instead of writing

custom Kubernetes code, vendors can implement a device plugin that can be deployed

manually or as a DaemonSet. The targeted devices include GPUs, High-performance NICs,

FPGAs, InfiniBand, and other similar computing resources that may require vendor specific

initialization and setup.

Device plugin registration

The device plugins feature is gated by the DevicePluginsDevicePlugins feature gate which is disabled by

default before 1.10. When the device plugins feature is enabled, the kubelet exports a

RegistrationRegistration gRPC service:

A device plugin can register itself with the kubelet through this gRPC service. During the

registration, the device plugin needs to send:

The name of its Unix socket.

The Device Plugin API version against which it was built.

The ResourceNameResourceName it wants to advertise. Here ResourceNameResourceName needs to follow the

extended resource naming scheme as vendor-domain/resourcevendor-domain/resource . For example, an Nvidia

GPU is advertised as nvidia.com/gpunvidia.com/gpu .

Device plugin registration

Device plugin implementation

Device plugin deployment

Examples

service Registration {service Registration {

 rpc Register(RegisterRequest) returns (Empty) {} rpc Register(RegisterRequest) returns (Empty) {}

}}

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#extended-resources

Following a successful registration, the device plugin sends the kubelet the list of devices it

manages, and the kubelet is then in charge of advertising those resources to the API server as

part of the kubelet node status update. For example, after a device plugin registers

vendor-domain/foovendor-domain/foo with the kubelet and reports two healthy devices on a node, the node

status is updated to advertise 2 vendor-domain/foovendor-domain/foo .

Then, users can request devices in a Container specification as they request other types of

resources, with the following limitations:

Extended resources are only supported as integer resources and cannot be

overcommitted.

Devices cannot be shared among Containers.

Suppose a Kubernetes cluster is running a device plugin that advertises resource

vendor-domain/resourcevendor-domain/resource on certain nodes, here is an example user pod requesting this

resource:

Device plugin implementation

The general workflow of a device plugin includes the following steps:

Initialization. During this phase, the device plugin performs vendor specific initialization

and setup to make sure the devices are in a ready state.

The plugin starts a gRPC service, with a Unix socket under host path

/var/lib/kubelet/device-plugins//var/lib/kubelet/device-plugins/ , that implements the following interfaces:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: demo-poddemo-pod

specspec::

 containerscontainers::

 -- namename:: demo-container-1demo-container-1

 imageimage:: gcr.io/google_containers/pause:2.0gcr.io/google_containers/pause:2.0

 resourcesresources::

 limitslimits::

 vendor-domain/resourcevendor-domain/resource:: 22 # requesting 2 vendor-domain/resource# requesting 2 vendor-domain/resource

file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core

The plugin registers itself with the kubelet through the Unix socket at host path

/var/lib/kubelet/device-plugins/kubelet.sock/var/lib/kubelet/device-plugins/kubelet.sock .

After successfully registering itself, the device plugin runs in serving mode, during which it

keeps monitoring device health and reports back to the kubelet upon any device state

changes. It is also responsible for serving AllocateAllocate gRPC requests. During AllocateAllocate ,

the device plugin may do device-specific preparation; for example, GPU cleanup or QRNG

initialization. If the operations succeed, the device plugin returns an AllocateResponseAllocateResponse

that contains container runtime configurations for accessing the allocated devices. The

kubelet passes this information to the container runtime.

A device plugin is expected to detect kubelet restarts and re-register itself with the new kubelet

instance. In the current implementation, a new kubelet instance deletes all the existing Unix

sockets under /var/lib/kubelet/device-plugins/var/lib/kubelet/device-plugins when it starts. A device plugin can

monitor the deletion of its Unix socket and re-register itself upon such an event.

Device plugin deployment

A device plugin can be deployed manually or as a DaemonSet. Being deployed as a DaemonSet

has the benefit that Kubernetes can restart the device plugin if it fails. Otherwise, an extra

mechanism is needed to recover from device plugin failures. The canonical directory

/var/lib/kubelet/device-plugins/var/lib/kubelet/device-plugins requires privileged access, so a device plugin must run

service DevicePlugin {service DevicePlugin {

 // ListAndWatch returns a stream of List of Devices // ListAndWatch returns a stream of List of Devices

 // Whenever a Device state change or a Device disappears, ListAndWatch // Whenever a Device state change or a Device disappears, ListAndWatch

 // returns the new list // returns the new list

 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {} rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device // Allocate is called during container creation so that the Device

 // Plugin can run device specific operations and instruct Kubelet // Plugin can run device specific operations and instruct Kubelet

 // of the steps to make the Device available in the container // of the steps to make the Device available in the container

 rpc Allocate(AllocateRequest) returns (AllocateResponse) {} rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

}}

in a privileged security context. If a device plugin is running as a DaemonSet,

/var/lib/kubelet/device-plugins/var/lib/kubelet/device-plugins must be mounted as a Volume in the plugin’s PodSpec.

Kubernetes device plugin support is still in alpha. As development continues, its API version

can change in incompatible ways. We recommend that device plugin developers do the

following:

Watch for changes in future releases.

Support multiple versions of the device plugin API for backward/forward compatibility.

If you enable the DevicePlugins feature and run device plugins on nodes that need to be

upgraded to a Kubernetes release with a newer device plugin API version, upgrade your device

plugins to support both versions before upgrading these nodes to ensure the continuous

functioning of the device allocations during the upgrade.

Examples

For examples of device plugin implementations, see:

The official NVIDIA GPU device plugin

it requires using nvidia-docker 2.0 which allows you to run GPU enabled docker

containers

The NVIDIA GPU device plugin for COS base OS.

The RDMA device plugin

The Solarflare device plugin

file:///docs/reference/generated/kubernetes-api/v1.10/#volume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/nvidia-docker
https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/hustcat/k8s-rdma-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin

Service Catalog

Service Catalog is an extension API that enables applications running in Kubernetes clusters to

easily use external managed software offerings, such as a datastore service offered by a cloud

provider.

It provides a way to list, provision, and bind with external from

 without needing detailed knowledge about how those services are created or

managed.

A service broker, as defined by the Open service broker API spec, is an endpoint for a set of

managed services offered and maintained by a third-party, which could be a cloud provider

such as AWS, GCP, or Azure. Some examples of managed services are Microsoft Azure Cloud

Queue, Amazon Simple Queue Service, and Google Cloud Pub/Sub, but they can be any

software offering that can be used by an application.

Using Service Catalog, a can browse the list of managed services offered by a

service broker, provision an instance of a managed service, and bind with it to make it available

to an application in the Kubernetes cluster.

Example use case

An wants to use message queuing as part of their application running in

a Kubernetes cluster. However, they do not want to deal with the overhead of setting such a

service up and administering it themselves. Fortunately, there is a cloud provider that offers

Managed Services

Service Brokers

cluster operator

Example use case

Architecture

API Resources

Authentication

Usage

Listing managed services and Service Plans

Provisioning a new instance

Binding to a managed service

Mapping the connection credentials

Pod configuration File

What’s next

application developer

file:///docs/reference/glossary/?all=true#term-managed-service
file:///docs/reference/glossary/?all=true#term-service-broker
https://github.com/openservicebrokerapi/servicebroker/blob/v2.13/spec.md
file:///docs/reference/glossary/?all=true#term-cluster-operator
file:///docs/reference/glossary/?all=true#term-application-developer

message queuing as a managed service through its service broker.

A cluster operator can setup Service Catalog and use it to communicate with the cloud

provider’s service broker to provision an instance of the message queuing service and make it

available to the application within the Kubernetes cluster. The application developer therefore

does not need to be concerned with the implementation details or management of the

message queue. The application can simply use it as a service.

Architecture

Service Catalog uses the Open service broker API to communicate with service brokers, acting

as an intermediary for the Kubernetes API Server to negotiate the initial provisioning and

retrieve the credentials necessary for the application to use a managed service.

It is implemented as an extension API server and a controller, using etcd for storage. It also

uses the aggregation layer available in Kubernetes 1.7+ to present its API.

Service Broker AAPI Server Service Catalog

servicecatalog.k8s.io:

ClusterServiceBroker

ClusterServiceClass

ClusterServicePlan

ServiceInstance

ServiceBinding

Application

…

Service Broker Z

Managed Service 2

Managed Service N

Managed Service 1

Open Service Broker API

List Services

Provision Instance

Bind Instance

…

Bind Instance

Secret:

Connection Credentials

Service Details

Kubernetes

API Resources

Service Catalog installs the servicecatalog.k8s.ioservicecatalog.k8s.io API and provides the following

Kubernetes resources:

https://github.com/openservicebrokerapi/servicebroker
file:///docs/concepts/api-extension/apiserver-aggregation/

ClusterServiceBrokerClusterServiceBroker : An in-cluster representation of a service broker, encapsulating

its server connection details. These are created and managed by cluster operators who

wish to use that broker server to make new types of managed services available within

their cluster.

ClusterServiceClassClusterServiceClass : A managed service offered by a particular service broker. When a

new ClusterServiceBrokerClusterServiceBroker resource is added to the cluster, the Service Catalog

controller connects to the service broker to obtain a list of available managed services. It

then creates a new ClusterServiceClassClusterServiceClass resource corresponding to each managed

service.

ClusterServicePlanClusterServicePlan : A specific offering of a managed service. For example, a managed

service may have different plans available, such as a free tier or paid tier, or it may have

different configuration options, such as using SSD storage or having more resources.

Similar to ClusterServiceClassClusterServiceClass , when a new ClusterServiceBrokerClusterServiceBroker is added to the

cluster, Service Catalog creates a new ClusterServicePlanClusterServicePlan resource corresponding to

each Service Plan available for each managed service.

ServiceInstanceServiceInstance : A provisioned instance of a ClusterServiceClassClusterServiceClass . These are

created by cluster operators to make a specific instance of a managed service available

for use by one or more in-cluster applications. When a new ServiceInstanceServiceInstance resource is

created, the Service Catalog controller connects to the appropriate service broker and

instruct it to provision the service instance.

ServiceBindingServiceBinding : Access credentials to a ServiceInstanceServiceInstance . These are created by

cluster operators who want their applications to make use of a ServiceInstanceServiceInstance . Upon

creation, the Service Catalog controller creates a Kubernetes SecretSecret containing

connection details and credentials for the Service Instance, which can be mounted into

Pods.

Authentication

Service Catalog supports these methods of authentication:

Basic (username/password)

OAuth 2.0 Bearer Token

https://tools.ietf.org/html/rfc6750

Usage

A cluster operator can use Service Catalog API Resources to provision managed services and

make them available within a Kubernetes cluster. The steps involved are:

1. Listing the managed services and Service Plans available from a service broker.

2. Provisioning a new instance of the managed service.

3. Binding to the managed service, which returns the connection credentials.

4. Mapping the connection credentials into the application.

Listing managed services and Service Plans

First, a cluster operator must create a ClusterServiceBrokerClusterServiceBroker resource within the

servicecatalog.k8s.ioservicecatalog.k8s.io group. This resource contains the URL and connection details

necessary to access a service broker endpoint.

This is an example of a ClusterServiceBrokerClusterServiceBroker resource:

The following is a sequence diagram illustrating the steps involved in listing managed services

and Plans available from a service broker:

1. Once the ClusterServiceBrokerClusterServiceBroker resource is added to Service Catalog, it triggers a call

to the external service broker for a list of available services.

2. The service broker returns a list of available managed services and a list of Service Plans,

apiVersionapiVersion:: servicecatalog.k8s.io/v1beta1servicecatalog.k8s.io/v1beta1

kindkind:: ClusterServiceBrokerClusterServiceBroker

metadatametadata::

 namename:: cloud-brokercloud-broker

specspec::

 # Points to the endpoint of a service broker. (This example is not a working URL.)# Points to the endpoint of a service broker. (This example is not a working URL.)

 urlurl:: https://servicebroker.somecloudprovider.com/v1alpha1/projects/service-catalog/brokers/defaulthttps://servicebroker.somecloudprovider.com/v1alpha1/projects/service-catalog/brokers/default

 ##########

 # Additional values can be added here, which may be used to communicate# Additional values can be added here, which may be used to communicate

 # with the service broker, such as bearer token info or a caBundle for TLS.# with the service broker, such as bearer token info or a caBundle for TLS.

 ##########

which are cached locally as ClusterServiceClassClusterServiceClass and ClusterServicePlanClusterServicePlan resources

respectively.

3. A cluster operator can then get the list of available managed services using the following

command:

It should output a list of service names with a format similar to:

They can also view the Service Plans available using the following command:

It should output a list of plan names with a format similar to:

Provisioning a new instance

A cluster operator can initiate the provisioning of a new instance by creating a

ServiceInstanceServiceInstance resource.

This is an example of a ServiceInstanceServiceInstance resource:

 kubectl get clusterserviceclasses -o=custom-columns=SERVICE\ NAME:.metadata.name,EXTERNAL\ NAME:.spec.externalName kubectl get clusterserviceclasses -o=custom-columns=SERVICE\ NAME:.metadata.name,EXTERNAL\ NAME:.spec.externalName

 SERVICE NAME EXTERNAL NAME SERVICE NAME EXTERNAL NAME

 4f6e6cf6-ffdd-425f-a2c7-3c9258ad2468 cloud-provider-service 4f6e6cf6-ffdd-425f-a2c7-3c9258ad2468 cloud-provider-service

 kubectl get clusterserviceplans -o=custom-columns=PLAN\ NAME:.metadata.name,EXTERNAL\ NAME:.spec.externalName kubectl get clusterserviceplans -o=custom-columns=PLAN\ NAME:.metadata.name,EXTERNAL\ NAME:.spec.externalName

 PLAN NAME EXTERNAL NAME PLAN NAME EXTERNAL NAME

 86064792-7ea2-467b-af93-ac9694d96d52 service-plan-name 86064792-7ea2-467b-af93-ac9694d96d52 service-plan-name

The following sequence diagram illustrates the steps involved in provisioning a new instance

of a managed service:

1. When the ServiceInstanceServiceInstance resource is created, Service Catalog initiates a call to the

external service broker to provision an instance of the service.

2. The service broker creates a new instance of the managed service and returns an HTTP

response.

3. A cluster operator can then check the status of the instance to see if it is ready.

Binding to a managed service

After a new instance has been provisioned, a cluster operator must bind to the managed

service to get the connection credentials and service account details necessary for the

application to use the service. This is done by creating a ServiceBindingServiceBinding resource.

The following is an example of a ServiceBindingServiceBinding resource:

apiVersionapiVersion:: servicecatalog.k8s.io/v1beta1servicecatalog.k8s.io/v1beta1

kindkind:: ServiceInstanceServiceInstance

metadatametadata::

 namename:: cloud-queue-instancecloud-queue-instance

 namespacenamespace:: cloud-appscloud-apps

specspec::

 # References one of the previously returned services# References one of the previously returned services

 clusterServiceClassExternalNameclusterServiceClassExternalName:: cloud-provider-servicecloud-provider-service

 clusterServicePlanExternalNameclusterServicePlanExternalName:: service-plan-nameservice-plan-name

 ##########

 # Additional parameters can be added here,# Additional parameters can be added here,

 # which may be used by the service broker.# which may be used by the service broker.

 ##########

The following sequence diagram illustrates the steps involved in binding to a managed service

instance:

1. After the ServiceBindingServiceBinding is created, Service Catalog makes a call to the external service

broker requesting the information necessary to bind with the service instance.

2. The service broker enables the application permissions/roles for the appropriate service

account.

3. The service broker returns the information necessary to connect and access the managed

service instance. This is provider and service-specific so the information returned may

differ between Service Providers and their managed services.

Mapping the connection credentials

After binding, the final step involves mapping the connection credentials and service-specific

information into the application. These pieces of information are stored in secrets that the

application in the cluster can access and use to connect directly with the managed service.

apiVersionapiVersion:: servicecatalog.k8s.io/v1beta1servicecatalog.k8s.io/v1beta1

kindkind:: ServiceBindingServiceBinding

metadatametadata::

 namename:: cloud-queue-bindingcloud-queue-binding

 namespacenamespace:: cloud-appscloud-apps

specspec::

 instanceRefinstanceRef::

 namename:: cloud-queue-instancecloud-queue-instance

 ##########

 # Additional information can be added here, such as a secretName or# Additional information can be added here, such as a secretName or

 # service account parameters, which may be used by the service broker.# service account parameters, which may be used by the service broker.

 ##########

Service BrokerAPI Server Service Catalog

servicecatalog.k8s.io:

ServiceBinding

Application
Managed Service

Instance

Bind Instance

Service Account

Secret:

Connection Credentials

Service Account Details

…

Kubernetes

Pod configuration File

One method to perform this mapping is to use a declarative Pod configuration.

The following example describes how to map service account credentials into the application.

A key called sa-keysa-key is stored in a volume named provider-cloud-keyprovider-cloud-key , and the application

mounts this volume at /var/secrets/provider/key.json/var/secrets/provider/key.json . The environment variable

PROVIDER_APPLICATION_CREDENTIALSPROVIDER_APPLICATION_CREDENTIALS is mapped from the value of the mounted file.

The following example describes how to map secret values into application environment

variables. In this example, the messaging queue topic name is mapped from a secret named

provider-queue-credentialsprovider-queue-credentials with a key named topictopic to the environment variable TOPICTOPIC .

......

 specspec::

 volumesvolumes::

 -- namename:: provider-cloud-keyprovider-cloud-key

 secretsecret::

 secretNamesecretName:: sa-keysa-key

 containerscontainers::

......

 volumeMountsvolumeMounts::

 -- namename:: provider-cloud-keyprovider-cloud-key

 mountPathmountPath:: /var/secrets/provider/var/secrets/provider

 envenv::

 -- namename:: PROVIDER_APPLICATION_CREDENTIALSPROVIDER_APPLICATION_CREDENTIALS

 valuevalue:: ""/var/secrets/provider/key.json"/var/secrets/provider/key.json"

What’s next

If you are familiar with , install Service Catalog using Helm into your

Kubernetes cluster. Alternatively, you can install Service Catalog using the SC tool.

View sample service brokers.

Explore the kubernetes-incubator/service-catalog project.

......

 envenv::

 -- namename:: ""TOPIC"TOPIC"

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: provider-queue-credentialsprovider-queue-credentials

 keykey:: topictopic

Helm Charts

https://github.com/kubernetes/helm/blob/master/docs/charts.md
file:///docs/tasks/service-catalog/install-service-catalog-using-helm/
file:///docs/tasks/service-catalog/install-service-catalog-using-sc/
https://github.com/openservicebrokerapi/servicebroker/blob/master/gettingStarted.md#sample-service-brokers
https://github.com/kubernetes-incubator/service-catalog

Images

You create your Docker image and push it to a registry before referring to it in a Kubernetes

pod.

The imageimage property of a container supports the same syntax as the dockerdocker command does,

including private registries and tags.

Updating Images

The default pull policy is IfNotPresentIfNotPresent which causes the Kubelet to skip pulling an image if it

already exists. If you would like to always force a pull, you can do one of the following:

set the imagePullPolicyimagePullPolicy of the container to AlwaysAlways ;

use :latest:latest as the tag for the image to use;

enable the AlwaysPullImages admission controller.

If you did not specify tag of your image, it will be assumed as :latest:latest , with pull image policy

of AlwaysAlways correspondingly.

Note that you should avoid using :latest:latest tag, see Best Practices for Configuration for more

information.

Updating Images

Using a Private Registry

Using Google Container Registry

Using AWS EC2 Container Registry

Using Azure Container Registry (ACR)

Configuring Nodes to Authenticate to a Private Repository

Pre-pulling Images

Specifying ImagePullSecrets on a Pod

Creating a Secret with a Docker Config

Bypassing kubectl create secrets

Referring to an imagePullSecrets on a Pod

Use Cases

file:///docs/admin/admission-controllers/#alwayspullimages
file:///docs/concepts/configuration/overview/#container-images

Using a Private Registry

Private registries may require keys to read images from them. Credentials can be provided in

several ways:

Using Google Container Registry

Per-cluster

automatically configured on Google Compute Engine or Google Kubernetes Engine

all pods can read the project’s private registry

Using AWS EC2 Container Registry (ECR)

use IAM roles and policies to control access to ECR repositories

automatically refreshes ECR login credentials

Using Azure Container Registry (ACR)

Configuring Nodes to Authenticate to a Private Registry

all pods can read any configured private registries

requires node configuration by cluster administrator

Pre-pulling Images

all pods can use any images cached on a node

requires root access to all nodes to setup

Specifying ImagePullSecrets on a Pod

only pods which provide own keys can access the private registry Each option is

described in more detail below.

Using Google Container Registry

Kubernetes has native support for the Google Container Registry (GCR), when running on

Google Compute Engine (GCE). If you are running your cluster on GCE or Google Kubernetes

Engine, simply use the full image name (e.g. gcr.io/my_project/image:tag).

All pods in a cluster will have read access to images in this registry.

https://cloud.google.com/tools/container-registry/

The kubelet will authenticate to GCR using the instance’s Google service account. The service

account on the instance will have a

https://www.googleapis.com/auth/devstorage.read_onlyhttps://www.googleapis.com/auth/devstorage.read_only , so it can pull from the

project’s GCR, but not push.

Using AWS EC2 Container Registry

Kubernetes has native support for the AWS EC2 Container Registry, when nodes are AWS EC2

instances.

Simply use the full image name (e.g.

ACCOUNT.dkr.ecr.REGION.amazonaws.com/imagename:tagACCOUNT.dkr.ecr.REGION.amazonaws.com/imagename:tag) in the Pod definition.

All users of the cluster who can create pods will be able to run pods that use any of the images

in the ECR registry.

The kubelet will fetch and periodically refresh ECR credentials. It needs the following

permissions to do this:

ecr:GetAuthorizationTokenecr:GetAuthorizationToken

ecr:BatchCheckLayerAvailabilityecr:BatchCheckLayerAvailability

ecr:GetDownloadUrlForLayerecr:GetDownloadUrlForLayer

ecr:GetRepositoryPolicyecr:GetRepositoryPolicy

ecr:DescribeRepositoriesecr:DescribeRepositories

ecr:ListImagesecr:ListImages

ecr:BatchGetImageecr:BatchGetImage

Requirements:

You must be using kubelet version v1.2.0v1.2.0 or newer. (e.g. run

/usr/bin/kubelet --/usr/bin/kubelet --

version=trueversion=true).

If your nodes are in region A and your registry is in a different region B, you need version

v1.3.0v1.3.0 or newer.

https://aws.amazon.com/ecr/

ECR must be offered in your region

Troubleshooting:

Verify all requirements above.

Get $REGION (e.g. us-west-2us-west-2) credentials on your workstation. SSH into the host and run

Docker manually with those creds. Does it work?

Verify kubelet is running with --cloud-provider=aws--cloud-provider=aws .

Check kubelet logs (e.g.

journalctl -ujournalctl -u

kubeletkubelet) for log lines like:

plugins.go:56] Registering credential provider: aws-ecr-plugins.go:56] Registering credential provider: aws-ecr-

keykey

provider.go:91] Refreshing cache for provider:provider.go:91] Refreshing cache for provider:

*aws_credentials.ecrProvider*aws_credentials.ecrProvider

Using Azure Container Registry (ACR)

When using Azure Container Registry you can authenticate using either an admin user or a

service principal. In either case, authentication is done via standard Docker authentication.

These instructions assume the azure-cli command line tool.

You first need to create a registry and generate credentials, complete documentation for this

can be found in the Azure container registry documentation.

Once you have created your container registry, you will use the following credentials to login:

DOCKER_USERDOCKER_USER : service principal, or admin username

DOCKER_PASSWORDDOCKER_PASSWORD : service principal password, or admin user password

DOCKER_REGISTRY_SERVERDOCKER_REGISTRY_SERVER : ${some-registry-name}.azurecr.io${some-registry-name}.azurecr.io

DOCKER_EMAILDOCKER_EMAIL : ${some-email-address}${some-email-address}

Once you have those variables filled in you can configure a Kubernetes Secret and use it to

deploy a Pod.

https://azure.microsoft.com/en-us/services/container-registry/
https://github.com/azure/azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-azure-cli
file:///docs/concepts/containers/_site/images/#specifying-imagepullsecrets-on-a-pod

Configuring Nodes to Authenticate to a Private Repository

Note: if you are running on Google Kubernetes Engine, there will already be a .dockercfg.dockercfg on

each node with credentials for Google Container Registry. You cannot use this approach.

Note: if you are running on AWS EC2 and are using the EC2 Container Registry (ECR), the

kubelet on each node will manage and update the ECR login credentials. You cannot use this

approach.

Note: this approach is suitable if you can control node configuration. It will not work reliably on

GCE, and any other cloud provider that does automatic node replacement.

Docker stores keys for private registries in the $HOME/.dockercfg$HOME/.dockercfg or

$HOME/.docker/config.json$HOME/.docker/config.json file. If you put this in the $HOME$HOME of user rootroot on a kubelet,

then docker will use it.

Here are the recommended steps to configuring your nodes to use a private registry. In this

example, run these on your desktop/laptop:

1. Run

docker logindocker login

[server][server] for each set of credentials you want to use. This updates

$HOME/.docker/config.json$HOME/.docker/config.json .

2. View $HOME/.docker/config.json$HOME/.docker/config.json in an editor to ensure it contains just the credentials

you want to use.

3. Get a list of your nodes, for example:

1. if you want the names:

nodes=$(kubectl get nodes -o jsonpath='{range.items[*].metadata}nodes=$(kubectl get nodes -o jsonpath='{range.items[*].metadata}

{.name} {end}'){.name} {end}')

2. if you want to get the IPs:

nodes=$(kubectl get nodes -o jsonpath='{rangenodes=$(kubectl get nodes -o jsonpath='{range

.items[*].status.addresses[?(@.type=="ExternalIP")]}{.address} {end}').items[*].status.addresses[?(@.type=="ExternalIP")]}{.address} {end}')

4. Copy your local .docker/config.json.docker/config.json to the home directory of root on each node.

1. for example:

for n in $nodes; do scp ~/.docker/config.jsonfor n in $nodes; do scp ~/.docker/config.json

root@$n:/root/.docker/config.json; doneroot@$n:/root/.docker/config.json; done

Verify by creating a pod that uses a private image, e.g.:

If everything is working, then, after a few moments, you should see:

If it failed, then you will see:

You must ensure all nodes in the cluster have the same .docker/config.json.docker/config.json . Otherwise,

pods will run on some nodes and fail to run on others. For example, if you use node

autoscaling, then each instance template needs to include the .docker/config.json.docker/config.json or

mount a drive that contains it.

All pods will have read access to images in any private registry once private registry keys are

added to the .docker/config.json.docker/config.json .

Pre-pulling Images

Note: if you are running on Google Kubernetes Engine, there will already be a .dockercfg.dockercfg on

each node with credentials for Google Container Registry. You cannot use this approach.

$ cat <<EOF > /tmp/private-image-test-1.yaml$ cat <<EOF > /tmp/private-image-test-1.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: private-image-test-1private-image-test-1

specspec::

 containerscontainers::

 -- namename:: uses-private-imageuses-private-image

 imageimage:: $PRIVATE_IMAGE_NAME$PRIVATE_IMAGE_NAME

 imagePullPolicyimagePullPolicy:: AlwaysAlways

 commandcommand:: [[""echo"echo",, ""SUCCESS"SUCCESS"]]

EOFEOF

$ kubectl create -f /tmp/private-image-test-1.yaml$ kubectl create -f /tmp/private-image-test-1.yaml

pod "private-image-test-1" createdpod "private-image-test-1" created

$$

$ $ kubectl logs private-image-test-1kubectl logs private-image-test-1

SUCCESSSUCCESS

$ $ kubectl describe pods/private-image-test-1 | kubectl describe pods/private-image-test-1 | grepgrep "Failed""Failed"

 Fri, 26 Jun 2015 15:36:13 Fri, 26 Jun 2015 15:36:13 -0700-0700 Fri, 26 Jun 2015 15:39:13 Fri, 26 Jun 2015 15:39:13 -0700-0700 19 19

Note: this approach is suitable if you can control node configuration. It will not work reliably on

GCE, and any other cloud provider that does automatic node replacement.

By default, the kubelet will try to pull each image from the specified registry. However, if the

imagePullPolicyimagePullPolicy property of the container is set to IfNotPresentIfNotPresent or NeverNever , then a local

image is used (preferentially or exclusively, respectively).

If you want to rely on pre-pulled images as a substitute for registry authentication, you must

ensure all nodes in the cluster have the same pre-pulled images.

This can be used to preload certain images for speed or as an alternative to authenticating to a

private registry.

All pods will have read access to any pre-pulled images.

Specifying ImagePullSecrets on a Pod

Note: This approach is currently the recommended approach for Google Kubernetes Engine,

GCE, and any cloud-providers where node creation is automated.

Kubernetes supports specifying registry keys on a pod.

Creating a Secret with a Docker Config

Run the following command, substituting the appropriate uppercase values:

If you need access to multiple registries, you can create one secret for each registry. Kubelet

will merge any imagePullSecretsimagePullSecrets into a single virtual .docker/config.json.docker/config.json when pulling

images for your Pods.

Pods can only reference image pull secrets in their own namespace, so this process needs to

be done one time per namespace.

Bypassing kubectl create secrets

If for some reason you need multiple items in a single .docker/config.json.docker/config.json or need control

not given by the above command, then you can create a secret using json or yaml.

$ $ kubectl create secret docker-registry myregistrykey kubectl create secret docker-registry myregistrykey --docker-server--docker-server==DOCKER_REGISTRY_SERVER DOCKER_REGISTRY_SERVER

secret secret "myregistrykey""myregistrykey" created. created.

file:///docs/user-guide/secrets/#creating-a-secret-manually

Be sure to:

set the name of the data item to .dockerconfigjson.dockerconfigjson

base64 encode the docker file and paste that string, unbroken as the value for field

data[".dockerconfigjson"]data[".dockerconfigjson"]

set typetype to kubernetes.io/dockerconfigjsonkubernetes.io/dockerconfigjson

Example:

If you get the error message

error: no objects passed toerror: no objects passed to

createcreate , it may mean the

base64 encoded string is invalid. If you get an error message like

Secret "myregistrykey" is invalid: data[.dockerconfigjson]: invalid valueSecret "myregistrykey" is invalid: data[.dockerconfigjson]: invalid value

...... ,

it means the data was successfully un-base64 encoded, but could not be parsed as a

.docker/config.json.docker/config.json file.

Referring to an imagePullSecrets on a Pod

Now, you can create pods which reference that secret by adding an imagePullSecretsimagePullSecrets

section to a pod definition.

apiVersionapiVersion:: v1v1

kindkind:: SecretSecret

metadatametadata::

 namename:: myregistrykeymyregistrykey

 namespacenamespace:: awesomeappsawesomeapps

datadata::

 .dockerconfigjson.dockerconfigjson:: UmVhbGx5IHJlYWxseSByZWVlZWVlZWVlZWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGx5eXl5eXl5eXl5eXl5eXl5eXl5eSBsbGxsbGxsbGxsbGxsbG9vb29vb29vb29vb29vb29vb29vb29vb29vb25ubm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg==UmVhbGx5IHJlYWxseSByZWVlZWVlZWVlZWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGxsbGx5eXl5eXl5eXl5eXl5eXl5eXl5eSBsbGxsbGxsbGxsbGxsbG9vb29vb29vb29vb29vb29vb29vb29vb29vb25ubm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg==

typetype:: kubernetes.io/dockerconfigjsonkubernetes.io/dockerconfigjson

This needs to be done for each pod that is using a private registry.

However, setting of this field can be automated by setting the imagePullSecrets in a

serviceAccount resource. Check Add ImagePullSecrets to a Service Account for detailed

instructions.

You can use this in conjunction with a per-node .docker/config.json.docker/config.json . The credentials will

be merged. This approach will work on Google Kubernetes Engine.

Use Cases

There are a number of solutions for configuring private registries. Here are some common use

cases and suggested solutions.

1. Cluster running only non-proprietary (e.g. open-source) images. No need to hide images.

1. Use public images on the Docker hub.

1. No configuration required.

2. On GCE/Google Kubernetes Engine, a local mirror is automatically used for

improved speed and availability.

2. Cluster running some proprietary images which should be hidden to those outside the

company, but visible to all cluster users.

1. Use a hosted private Docker registry.

1. It may be hosted on the Docker Hub, or elsewhere.

2. Manually configure .docker/config.json on each node as described above.

2. Or, run an internal private registry behind your firewall with open read access.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: foofoo

 namespacenamespace:: awesomeappsawesomeapps

specspec::

 containerscontainers::

 -- namename:: foofoo

 imageimage:: janedoe/awesomeapp:v1janedoe/awesomeapp:v1

 imagePullSecretsimagePullSecrets::

 -- namename:: myregistrykeymyregistrykey

file:///docs/user-guide/service-accounts
file:///docs/tasks/configure-pod-container/configure-service-account/#add-imagepullsecrets-to-a-service-account
https://docs.docker.com/registry/
https://hub.docker.com/account/signup/

1. No Kubernetes configuration is required.

3. Or, when on GCE/Google Kubernetes Engine, use the project’s Google Container

Registry.

1. It will work better with cluster autoscaling than manual node configuration.

4. Or, on a cluster where changing the node configuration is inconvenient, use

imagePullSecretsimagePullSecrets .

3. Cluster with a proprietary images, a few of which require stricter access control.

1. Ensure AlwaysPullImages admission controller is active. Otherwise, all Pods

potentially have access to all images.

2. Move sensitive data into a “Secret” resource, instead of packaging it in an image.

4. A multi-tenant cluster where each tenant needs own private registry.

1. Ensure AlwaysPullImages admission controller is active. Otherwise, all Pods of all

tenants potentially have access to all images.

2. Run a private registry with authorization required.

3. Generate registry credential for each tenant, put into secret, and populate secret to

each tenant namespace.

4. The tenant adds that secret to imagePullSecrets of each namespace.

file:///docs/admin/admission-controllers/#alwayspullimages
file:///docs/admin/admission-controllers/#alwayspullimages

Container Environment Variables

This page describes the resources available to Containers in the Container environment.

Container environment

The Kubernetes Container environment provides several important resources to Containers:

A filesystem, which is a combination of an image and one or more volumes.

Information about the Container itself.

Information about other objects in the cluster.

Container information

The hostname of a Container is the name of the Pod in which the Container is running. It is

available through the hostnamehostname command or the gethostnamegethostname function call in libc.

The Pod name and namespace are available as environment variables through the downward

API.

User defined environment variables from the Pod definition are also available to the Container,

as are any environment variables specified statically in the Docker image.

Cluster information

A list of all services that were running when a Container was created is available to that

Container as environment variables. Those environment variables match the syntax of Docker

links.

For a service named foo that maps to a Container named bar, the following variables are

defined:

Container environment

Container information

Cluster information

What’s next

file:///docs/concepts/containers/_site/images/
file:///docs/concepts/storage/volumes/
http://man7.org/linux/man-pages/man2/gethostname.2.html
file:///docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/

Services have dedicated IP addresses and are available to the Container via DNS, if DNS addon

is enabled.

What’s next

Learn more about Container lifecycle hooks.

Get hands-on experience attaching handlers to Container lifecycle events.

FOO_SERVICE_HOSTFOO_SERVICE_HOST==<the host the service is running on><the host the service is running on>

FOO_SERVICE_PORTFOO_SERVICE_PORT==<the port the service is running on><the port the service is running on>

http://releases.k8s.io/master/cluster/addons/dns/
file:///docs/concepts/containers/container-lifecycle-hooks/
file:///docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

Container Lifecycle Hooks

This page describes how kubelet managed Containers can use the Container lifecycle hook

framework to run code triggered by events during their management lifecycle.

Overview

Analogous to many programming language frameworks that have component lifecycle hooks,

such as Angular, Kubernetes provides Containers with lifecycle hooks. The hooks enable

Containers to be aware of events in their management lifecycle and run code implemented in a

handler when the corresponding lifecycle hook is executed.

Container hooks

There are two hooks that are exposed to Containers:

PostStartPostStart

This hook executes immediately after a container is created. However, there is no guarantee

that the hook will execute before the container ENTRYPOINT. No parameters are passed to the

handler.

PreStopPreStop

This hook is called immediately before a container is terminated. It is blocking, meaning it is

synchronous, so it must complete before the call to delete the container can be sent. No

parameters are passed to the handler.

Overview

Container hooks

Hook handler implementations

Hook handler execution

Hook delivery guarantees

Debugging Hook handlers

What’s next

A more detailed description of the termination behavior can be found in Termination of Pods.

Hook handler implementations

Containers can access a hook by implementing and registering a handler for that hook. There

are two types of hook handlers that can be implemented for Containers:

Exec - Executes a specific command, such as pre-stop.shpre-stop.sh , inside the cgroups and

namespaces of the Container. Resources consumed by the command are counted against

the Container.

HTTP - Executes an HTTP request against a specific endpoint on the Container.

Hook handler execution

When a Container lifecycle management hook is called, the Kubernetes management system

executes the handler in the Container registered for that hook.

Hook handler calls are synchronous within the context of the Pod containing the Container.

This means that for a PostStartPostStart hook, the Container ENTRYPOINT and hook fire

asynchronously. However, if the hook takes too long to run or hangs, the Container cannot

reach a runningrunning state.

The behavior is similar for a PreStopPreStop hook. If the hook hangs during execution, the Pod phase

stays in a TerminatingTerminating state and is killed after terminationGracePeriodSecondsterminationGracePeriodSeconds of pod

ends. If a PostStartPostStart or PreStopPreStop hook fails, it kills the Container.

Users should make their hook handlers as lightweight as possible. There are cases, however,

when long running commands make sense, such as when saving state prior to stopping a

Container.

Hook delivery guarantees

Hook delivery is intended to be at least once, which means that a hook may be called multiple

times for any given event, such as for PostStartPostStart or PreStopPreStop . It is up to the hook

implementation to handle this correctly.

Generally, only single deliveries are made. If, for example, an HTTP hook receiver is down and

is unable to take traffic, there is no attempt to resend. In some rare cases, however, double

delivery may occur. For instance, if a kubelet restarts in the middle of sending a hook, the hook

file:///docs/concepts/workloads/pods/pod/#termination-of-pods

might be resent after the kubelet comes back up.

Debugging Hook handlers

The logs for a Hook handler are not exposed in Pod events. If a handler fails for some reason, it

broadcasts an event. For PostStartPostStart , this is the FailedPostStartHookFailedPostStartHook event, and for

PreStopPreStop , this is the FailedPreStopHookFailedPreStopHook event. You can see these events by running

kubectl describe podkubectl describe pod

<pod_name><pod_name> . Here is some example output of events from running

this command:

What’s next

Learn more about the Container environment.

Get hands-on experience attaching handlers to Container lifecycle events.

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 --------- -------- ----- ---- ------------- -------- ------ ------- --------- -------- ----- ---- ------------- -------- ------ -------

 1m 1m 1 {default-scheduler } Normal Scheduled Successfully assigned test-1730497541-cq1d2 to gke-test-cluster-default-pool-a07e5d30-siqd 1m 1m 1 {default-scheduler } Normal Scheduled Successfully assigned test-1730497541-cq1d2 to gke-test-cluster-default-pool-a07e5d30-siqd

 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Pulling pulling image "test:1.0" 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Pulling pulling image "test:1.0"

 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Created Created container with docker id 5c6a256a2567; Security:[seccomp=unconfined] 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Created Created container with docker id 5c6a256a2567; Security:[seccomp=unconfined]

 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Pulled Successfully pulled image "test:1.0" 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Pulled Successfully pulled image "test:1.0"

 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Started Started container with docker id 5c6a256a2567 1m 1m 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Started Started container with docker id 5c6a256a2567

 38s 38s 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Killing Killing container with docker id 5c6a256a2567: PostStart handler: Error executing in Docker Container: 1 38s 38s 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Killing Killing container with docker id 5c6a256a2567: PostStart handler: Error executing in Docker Container: 1

 37s 37s 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Killing Killing container with docker id 8df9fdfd7054: PostStart handler: Error executing in Docker Container: 1 37s 37s 1 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Normal Killing Killing container with docker id 8df9fdfd7054: PostStart handler: Error executing in Docker Container: 1

 38s 37s 2 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} Warning FailedSync Error syncing pod, skipping: failed to "StartContainer" for "main" with RunContainerError: "PostStart handler: Error executing in Docker Container: 1" 38s 37s 2 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} Warning FailedSync Error syncing pod, skipping: failed to "StartContainer" for "main" with RunContainerError: "PostStart handler: Error executing in Docker Container: 1"

 1m 22s 2 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Warning FailedPostStartHook 1m 22s 2 {kubelet gke-test-cluster-default-pool-a07e5d30-siqd} spec.containers{main} Warning FailedPostStartHook

file:///docs/concepts/containers/container-environment-variables/
file:///docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

Pod Overview

This page provides an overview of PodPod , the smallest deployable object in the Kubernetes

object model.

Understanding Pods

A Pod is the basic building block of Kubernetes–the smallest and simplest unit in the

Kubernetes object model that you create or deploy. A Pod represents a running process on

your cluster.

A Pod encapsulates an application container (or, in some cases, multiple containers), storage

resources, a unique network IP, and options that govern how the container(s) should run. A

Pod represents a unit of deployment: a single instance of an application in Kubernetes, which

might consist of either a single container or a small number of containers that are tightly

coupled and that share resources.

Docker is the most common container runtime used in a Kubernetes Pod, but Pods support

other container runtimes as well.

Pods in a Kubernetes cluster can be used in two main ways:

Pods that run a single container. The “one-container-per-Pod” model is the most common

Kubernetes use case; in this case, you can think of a Pod as a wrapper around a single

container, and Kubernetes manages the Pods rather than the containers directly.

Pods that run multiple containers that need to work together. A Pod might encapsulate

an application composed of multiple co-located containers that are tightly coupled and

need to share resources. These co-located containers might form a single cohesive unit of

Understanding Pods

How Pods manage multiple Containers

Networking

Storage

Working with Pods

Pods and Controllers

Pod Templates

What’s next

https://www.docker.com

service–one container serving files from a shared volume to the public, while a separate

“sidecar” container refreshes or updates those files. The Pod wraps these containers and

storage resources together as a single manageable entity.

The Kubernetes Blog has some additional information on Pod use cases. For more

information, see:

The Distributed System Toolkit: Patterns for Composite Containers

Container Design Patterns

Each Pod is meant to run a single instance of a given application. If you want to scale your

application horizontally (e.g., run multiple instances), you should use multiple Pods, one for

each instance. In Kubernetes, this is generally referred to as replication. Replicated Pods are

usually created and managed as a group by an abstraction called a Controller. See Pods and

Controllers for more information.

How Pods manage multiple Containers

Pods are designed to support multiple cooperating processes (as containers) that form a

cohesive unit of service. The containers in a Pod are automatically co-located and co-

scheduled on the same physical or virtual machine in the cluster. The containers can share

resources and dependencies, communicate with one another, and coordinate when and how

they are terminated.

Note that grouping multiple co-located and co-managed containers in a single Pod is a

relatively advanced use case. You should use this pattern only in specific instances in which

your containers are tightly coupled. For example, you might have a container that acts as a

web server for files in a shared volume, and a separate “sidecar” container that updates those

files from a remote source, as in the following diagram:

Pods provide two kinds of shared resources for their constituent containers: networking and

storage.

Networking

Each Pod is assigned a unique IP address. Every container in a Pod shares the network

namespace, including the IP address and network ports. Containers inside a Pod can

http://blog.kubernetes.io
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2016/06/container-design-patterns.html

communicate with one another using localhostlocalhost . When containers in a Pod communicate

with entities outside the Pod, they must coordinate how they use the shared network

resources (such as ports).

Storage

A Pod can specify a set of shared storage volumes. All containers in the Pod can access the

shared volumes, allowing those containers to share data. Volumes also allow persistent data

in a Pod to survive in case one of the containers within needs to be restarted. See Volumes for

more information on how Kubernetes implements shared storage in a Pod.

Working with Pods

You’ll rarely create individual Pods directly in Kubernetes–even singleton Pods. This is because

Pods are designed as relatively ephemeral, disposable entities. When a Pod gets created

(directly by you, or indirectly by a Controller), it is scheduled to run on a Node in your cluster.

The Pod remains on that Node until the process is terminated, the pod object is deleted, the

pod is evicted for lack of resources, or the Node fails.

Note: Restarting a container in a Pod should not be confused with restarting the Pod.

The Pod itself does not run, but is an environment the containers run in and persists

until it is deleted.

Pods do not, by themselves, self-heal. If a Pod is scheduled to a Node that fails, or if the

scheduling operation itself fails, the Pod is deleted; likewise, a Pod won’t survive an eviction

due to a lack of resources or Node maintenance. Kubernetes uses a higher-level abstraction,

called a Controller, that handles the work of managing the relatively disposable Pod instances.

Thus, while it is possible to use Pod directly, it’s far more common in Kubernetes to manage

your pods using a Controller. See Pods and Controllers for more information on how

Kubernetes uses Controllers to implement Pod scaling and healing.

Pods and Controllers

A Controller can create and manage multiple Pods for you, handling replication and rollout and

providing self-healing capabilities at cluster scope. For example, if a Node fails, the Controller

might automatically replace the Pod by scheduling an identical replacement on a different

file:///docs/concepts/storage/volumes/

Node.

Some examples of Controllers that contain one or more pods include:

Deployment

StatefulSet

DaemonSet

In general, Controllers use a Pod Template that you provide to create the Pods for which it is

responsible.

Pod Templates

Pod templates are pod specifications which are included in other objects, such as Replication

Controllers, Jobs, and DaemonSets. Controllers use Pod Templates to make actual pods. The

sample below is a simple manifest for a Pod which contains a container that prints a

message.

Rather than specifying the current desired state of all replicas, pod templates are like cookie

cutters. Once a cookie has been cut, the cookie has no relationship to the cutter. There is no

“quantum entanglement”. Subsequent changes to the template or even switching to a new

template has no direct effect on the pods already created. Similarly, pods created by a

replication controller may subsequently be updated directly. This is in deliberate contrast to

pods, which do specify the current desired state of all containers belonging to the pod. This

approach radically simplifies system semantics and increases the flexibility of the primitive.

What’s next

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: myapp-podmyapp-pod

 labelslabels::

 appapp:: myappmyapp

specspec::

 containerscontainers::

 -- namename:: myapp-containermyapp-container

 imageimage:: busyboxbusybox

 commandcommand:: [[''sh'sh',, ''-c'-c',, ''echoecho HelloHello Kubernetes!Kubernetes! &&&& sleepsleep 3600'3600']]

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/concepts/workloads/controllers/replicationcontroller/
file:///docs/concepts/jobs/run-to-completion-finite-workloads/
file:///docs/concepts/workloads/controllers/daemonset/

Learn more about Pod behavior:

Pod Termination

Other Pod Topics

file:///docs/concepts/workloads/pods/pod/#termination-of-pods

Pods

Pods are the smallest deployable units of computing that can be created and managed in

Kubernetes.

What is a Pod?

A pod (as in a pod of whales or pea pod) is a group of one or more containers (such as Docker

containers), with shared storage/network, and a specification for how to run the containers. A

pod’s contents are always co-located and co-scheduled, and run in a shared context. A pod

models an application-specific “logical host” - it contains one or more application containers

which are relatively tightly coupled — in a pre-container world, they would have executed on the

same physical or virtual machine.

While Kubernetes supports more container runtimes than just Docker, Docker is the most

commonly known runtime, and it helps to describe pods in Docker terms.

The shared context of a pod is a set of Linux namespaces, cgroups, and potentially other

facets of isolation - the same things that isolate a Docker container. Within a pod’s context, the

individual applications may have further sub-isolations applied.

Containers within a pod share an IP address and port space, and can find each other via

localhostlocalhost . They can also communicate with each other using standard inter-process

communications like SystemV semaphores or POSIX shared memory. Containers in different

pods have distinct IP addresses and can not communicate by IPC without special

What is a Pod?

Motivation for pods

Management

Resource sharing and communication

Uses of pods

Alternatives considered

Durability of pods (or lack thereof)

Termination of Pods

Force deletion of pods

Privileged mode for pod containers

API Object

configuration. These containers usually communicate with each other via Pod IP addresses.

Applications within a pod also have access to shared volumes, which are defined as part of a

pod and are made available to be mounted into each application’s filesystem.

In terms of Docker constructs, a pod is modelled as a group of Docker containers with shared

namespaces and shared volumes.

Like individual application containers, pods are considered to be relatively ephemeral (rather

than durable) entities. As discussed in life of a pod, pods are created, assigned a unique ID

(UID), and scheduled to nodes where they remain until termination (according to restart policy)

or deletion. If a node dies, the pods scheduled to that node are scheduled for deletion, after a

timeout period. A given pod (as defined by a UID) is not “rescheduled” to a new node; instead, it

can be replaced by an identical pod, with even the same name if desired, but with a new UID

(see replication controller for more details).

When something is said to have the same lifetime as a pod, such as a volume, that means that

it exists as long as that pod (with that UID) exists. If that pod is deleted for any reason, even if

an identical replacement is created, the related thing (e.g. volume) is also destroyed and

created anew.

A multi-container pod that contains a file puller and a web server that uses a persistent volume

for shared storage between the containers.

Motivation for pods

Management

Pods are a model of the pattern of multiple cooperating processes which form a cohesive unit

of service. They simplify application deployment and management by providing a higher-level

abstraction than the set of their constituent applications. Pods serve as unit of deployment,

horizontal scaling, and replication. Colocation (co-scheduling), shared fate (e.g. termination),

coordinated replication, resource sharing, and dependency management are handled

automatically for containers in a pod.

Resource sharing and communication

Pods enable data sharing and communication among their constituents.

file:///docs/concepts/policy/pod-security-policy/
https://www.docker.com/
file:///docs/concepts/storage/volumes/
file:///docs/concepts/workloads/pods/pod-lifecycle/
file:///docs/concepts/workloads/controllers/replicationcontroller/

The applications in a pod all use the same network namespace (same IP and port space), and

can thus “find” each other and communicate using localhostlocalhost . Because of this, applications

in a pod must coordinate their usage of ports. Each pod has an IP address in a flat shared

networking space that has full communication with other physical computers and pods across

the network.

The hostname is set to the pod’s Name for the application containers within the pod. More

details on networking.

In addition to defining the application containers that run in the pod, the pod specifies a set of

shared storage volumes. Volumes enable data to survive container restarts and to be shared

among the applications within the pod.

Uses of pods

Pods can be used to host vertically integrated application stacks (e.g. LAMP), but their primary

motivation is to support co-located, co-managed helper programs, such as:

content management systems, file and data loaders, local cache managers, etc.

log and checkpoint backup, compression, rotation, snapshotting, etc.

data change watchers, log tailers, logging and monitoring adapters, event publishers, etc.

proxies, bridges, and adapters

controllers, managers, configurators, and updaters

Individual pods are not intended to run multiple instances of the same application, in general.

For a longer explanation, see The Distributed System ToolKit: Patterns for Composite

Containers.

Alternatives considered

Why not just run multiple programs in a single (Docker) container?

1. Transparency. Making the containers within the pod visible to the infrastructure enables

the infrastructure to provide services to those containers, such as process management

and resource monitoring. This facilitates a number of conveniences for users.

file:///docs/concepts/cluster-administration/networking/
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

2. Decoupling software dependencies. The individual containers may be versioned, rebuilt

and redeployed independently. Kubernetes may even support live updates of individual

containers someday.

3. Ease of use. Users don’t need to run their own process managers, worry about signal and

exit-code propagation, etc.

4. Efficiency. Because the infrastructure takes on more responsibility, containers can be

lighter weight.

Why not support affinity-based co-scheduling of containers?

That approach would provide co-location, but would not provide most of the benefits of pods,

such as resource sharing, IPC, guaranteed fate sharing, and simplified management.

Durability of pods (or lack thereof)

Pods aren’t intended to be treated as durable entities. They won’t survive scheduling failures,

node failures, or other evictions, such as due to lack of resources, or in the case of node

maintenance.

In general, users shouldn’t need to create pods directly. They should almost always use

controllers even for singletons, for example, Deployments). Controllers provide self-healing

with a cluster scope, as well as replication and rollout management. Controllers like StatefulSet

can also provide support to stateful pods.

The use of collective APIs as the primary user-facing primitive is relatively common among

cluster scheduling systems, including Borg, Marathon, Aurora, and Tupperware.

Pod is exposed as a primitive in order to facilitate:

scheduler and controller pluggability

support for pod-level operations without the need to “proxy” them via controller APIs

decoupling of pod lifetime from controller lifetime, such as for bootstrapping

decoupling of controllers and services — the endpoint controller just watches pods

clean composition of Kubelet-level functionality with cluster-level functionality — Kubelet is

effectively the “pod controller”

high-availability applications, which will expect pods to be replaced in advance of their

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/statefulset.md
https://research.google.com/pubs/pub43438.html
https://mesosphere.github.io/marathon/docs/rest-api.html
http://aurora.apache.org/documentation/latest/reference/configuration/#job-schema
http://www.slideshare.net/Docker/aravindnarayanan-facebook140613153626phpapp02-37588997

termination and certainly in advance of deletion, such as in the case of planned evictions

or image prefetching.

Termination of Pods

Because pods represent running processes on nodes in the cluster, it is important to allow

those processes to gracefully terminate when they are no longer needed (vs being violently

killed with a KILL signal and having no chance to clean up). Users should be able to request

deletion and know when processes terminate, but also be able to ensure that deletes

eventually complete. When a user requests deletion of a pod the system records the intended

grace period before the pod is allowed to be forcefully killed, and a TERM signal is sent to the

main process in each container. Once the grace period has expired the KILL signal is sent to

those processes and the pod is then deleted from the API server. If the Kubelet or the

container manager is restarted while waiting for processes to terminate, the termination will be

retried with the full grace period.

An example flow:

1. User sends command to delete Pod, with default grace period (30s)

2. The Pod in the API server is updated with the time beyond which the Pod is considered

“dead” along with the grace period.

3. Pod shows up as “Terminating” when listed in client commands

4. (simultaneous with 3) When the Kubelet sees that a Pod has been marked as terminating

because the time in 2 has been set, it begins the pod shutdown process.

1. If the pod has defined a preStop hook, it is invoked inside of the pod. If the preStoppreStop

hook is still running after the grace period expires, step 2 is then invoked with a small

(2 second) extended grace period.

2. The processes in the Pod are sent the TERM signal.

5. (simultaneous with 3) Pod is removed from endpoints list for service, and are no longer

considered part of the set of running pods for replication controllers. Pods that shutdown

slowly can continue to serve traffic as load balancers (like the service proxy) remove them

from their rotations.

6. When the grace period expires, any processes still running in the Pod are killed with

file:///docs/concepts/containers/container-lifecycle-hooks/#hook-details

SIGKILL.

7. The Kubelet will finish deleting the Pod on the API server by setting grace period 0

(immediate deletion). The Pod disappears from the API and is no longer visible from the

client.

By default, all deletes are graceful within 30 seconds. The

kubectlkubectl

deletedelete command

supports the --grace-period=<seconds>--grace-period=<seconds> option which allows a user to override the default

and specify their own value. The value 00 force deletes the pod. In kubectl version >= 1.5, you

must specify an additional flag --force--force along with --grace-period=0--grace-period=0 in order to perform

force deletions.

Force deletion of pods

Force deletion of a pod is defined as deletion of a pod from the cluster state and etcd

immediately. When a force deletion is performed, the apiserver does not wait for confirmation

from the kubelet that the pod has been terminated on the node it was running on. It removes

the pod in the API immediately so a new pod can be created with the same name. On the node,

pods that are set to terminate immediately will still be given a small grace period before being

force killed.

Force deletions can be potentially dangerous for some pods and should be performed with

caution. In case of StatefulSet pods, please refer to the task documentation for deleting Pods

from a StatefulSet.

Privileged mode for pod containers

From Kubernetes v1.1, any container in a pod can enable privileged mode, using the

privilegedprivileged flag on the SecurityContextSecurityContext of the container spec. This is useful for

containers that want to use linux capabilities like manipulating the network stack and

accessing devices. Processes within the container get almost the same privileges that are

available to processes outside a container. With privileged mode, it should be easier to write

network and volume plugins as separate pods that don’t need to be compiled into the kubelet.

If the master is running Kubernetes v1.1 or higher, and the nodes are running a version lower

than v1.1, then new privileged pods will be accepted by api-server, but will not be launched.

file:///docs/concepts/workloads/pods/pod/#force-deletion-of-pods
file:///docs/tasks/run-application/force-delete-stateful-set-pod/

They will be pending state. If user calls

kubectl describe podkubectl describe pod

FooPodNameFooPodName , user can see the

reason why the pod is in pending state. The events table in the describe command output will

say:

Error validating pod "FooPodName"."FooPodNamespace" from api, ignoring:Error validating pod "FooPodName"."FooPodNamespace" from api, ignoring:

spec.containers[0].securityContext.privileged: forbidden '<*>spec.containers[0].securityContext.privileged: forbidden '<*>

(0xc2089d3248)true'(0xc2089d3248)true'

If the master is running a version lower than v1.1, then privileged pods cannot be created. If

user attempts to create a pod, that has a privileged container, the user will get the following

error:

The Pod "FooPodName" is invalid.The Pod "FooPodName" is invalid.

spec.containers[0].securityContext.privileged: forbidden '<*>spec.containers[0].securityContext.privileged: forbidden '<*>

(0xc20b222db0)true'(0xc20b222db0)true'

API Object

Pod is a top-level resource in the Kubernetes REST API. More details about the API object can

be found at: Pod API object.

file:///docs/reference/generated/kubernetes-api/v1.10/#pod-v1-core

Pod Lifecycle

This page describes the lifecycle of a Pod.

Pod phase

A Pod’s statusstatus field is a PodStatus object, which has a phasephase field.

The phase of a Pod is a simple, high-level summary of where the Pod is in its lifecycle. The

phase is not intended to be a comprehensive rollup of observations of Container or Pod state,

nor is it intended to be a comprehensive state machine.

The number and meanings of Pod phase values are tightly guarded. Other than what is

documented here, nothing should be assumed about Pods that have a given phasephase value.

Here are the possible values for phasephase :

Pending: The Pod has been accepted by the Kubernetes system, but one or more of the

Container images has not been created. This includes time before being scheduled as well

as time spent downloading images over the network, which could take a while.

Running: The Pod has been bound to a node, and all of the Containers have been created.

At least one Container is still running, or is in the process of starting or restarting.

Succeeded: All Containers in the Pod have terminated in success, and will not be restarted.

Pod phase

Pod conditions

Container probes

When should you use liveness or readiness probes?

Pod and Container status

Restart policy

Pod lifetime

Examples

Advanced liveness probe example

Example states

What’s next

file:///docs/reference/generated/kubernetes-api/v1.10/#podstatus-v1-core

Failed: All Containers in the Pod have terminated, and at least one Container has

terminated in failure. That is, the Container either exited with non-zero status or was

terminated by the system.

Unknown: For some reason the state of the Pod could not be obtained, typically due to an

error in communicating with the host of the Pod.

Pod conditions

A Pod has a PodStatus, which has an array of PodConditions. Each element of the

PodCondition array has a typetype field and a statusstatus field. The typetype field is a string, with

possible values PodScheduled, Ready, Initialized, and Unschedulable. The statusstatus field is a

string, with possible values True, False, and Unknown.

Container probes

A Probe is a diagnostic performed periodically by the kubelet on a Container. To perform a

diagnostic, the kubelet calls a Handler implemented by the Container. There are three types of

handlers:

ExecAction: Executes a specified command inside the Container. The diagnostic is

considered successful if the command exits with a status code of 0.

TCPSocketAction: Performs a TCP check against the Container’s IP address on a specified

port. The diagnostic is considered successful if the port is open.

HTTPGetAction: Performs an HTTP Get request against the Container’s IP address on a

specified port and path. The diagnostic is considered successful if the response has a

status code greater than or equal to 200 and less than 400.

Each probe has one of three results:

Success: The Container passed the diagnostic.

Failure: The Container failed the diagnostic.

Unknown: The diagnostic failed, so no action should be taken.

file:///docs/reference/generated/kubernetes-api/v1.10/#podcondition-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#probe-v1-core
file:///docs/admin/kubelet/
https://godoc.org/k8s.io/kubernetes/pkg/api/v1#Handler
file:///docs/reference/generated/kubernetes-api/v1.10/#execaction-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#tcpsocketaction-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#httpgetaction-v1-core

The kubelet can optionally perform and react to two kinds of probes on running Containers:

livenessProbelivenessProbe : Indicates whether the Container is running. If the liveness probe fails, the

kubelet kills the Container, and the Container is subjected to its restart policy. If a

Container does not provide a liveness probe, the default state is SuccessSuccess .

readinessProbereadinessProbe : Indicates whether the Container is ready to service requests. If the

readiness probe fails, the endpoints controller removes the Pod’s IP address from the

endpoints of all Services that match the Pod. The default state of readiness before the

initial delay is FailureFailure . If a Container does not provide a readiness probe, the default

state is SuccessSuccess .

When should you use liveness or readiness probes?

If the process in your Container is able to crash on its own whenever it encounters an issue or

becomes unhealthy, you do not necessarily need a liveness probe; the kubelet will

automatically perform the correct action in accordance with the Pod’s restartPolicyrestartPolicy .

If you’d like your Container to be killed and restarted if a probe fails, then specify a liveness

probe, and specify a restartPolicyrestartPolicy of Always or OnFailure.

If you’d like to start sending traffic to a Pod only when a probe succeeds, specify a readiness

probe. In this case, the readiness probe might be the same as the liveness probe, but the

existence of the readiness probe in the spec means that the Pod will start without receiving

any traffic and only start receiving traffic after the probe starts succeeding.

If you want your Container to be able to take itself down for maintenance, you can specify a

readiness probe that checks an endpoint specific to readiness that is different from the

liveness probe.

Note that if you just want to be able to drain requests when the Pod is deleted, you do not

necessarily need a readiness probe; on deletion, the Pod automatically puts itself into an

unready state regardless of whether the readiness probe exists. The Pod remains in the

unready state while it waits for the Containers in the Pod to stop.

Pod and Container status

For detailed information about Pod Container status, see PodStatus and ContainerStatus.

file:///docs/reference/generated/kubernetes-api/v1.10/#podstatus-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#containerstatus-v1-core

Note that the information reported as Pod status depends on the current ContainerState.

Restart policy

A PodSpec has a restartPolicyrestartPolicy field with possible values Always, OnFailure, and Never. The

default value is Always. restartPolicyrestartPolicy applies to all Containers in the Pod. restartPolicyrestartPolicy

only refers to restarts of the Containers by the kubelet on the same node. Failed Containers

that are restarted by the kubelet are restarted with an exponential back-off delay (10s, 20s, 40s

…) capped at five minutes, and is reset after ten minutes of successful execution. As discussed

in the Pods document, once bound to a node, a Pod will never be rebound to another node.

Pod lifetime

In general, Pods do not disappear until someone destroys them. This might be a human or a

controller. The only exception to this rule is that Pods with a phasephase of Succeeded or Failed for

more than some duration (determined by the master) will expire and be automatically

destroyed.

Three types of controllers are available:

Use a Job for Pods that are expected to terminate, for example, batch computations. Jobs

are appropriate only for Pods with restartPolicyrestartPolicy equal to OnFailure or Never.

Use a ReplicationController, ReplicaSet, or Deployment for Pods that are not expected to

terminate, for example, web servers. ReplicationControllers are appropriate only for Pods

with a restartPolicyrestartPolicy of Always.

Use a DaemonSet for Pods that need to run one per machine, because they provide a

machine-specific system service.

All three types of controllers contain a PodTemplate. It is recommended to create the

appropriate controller and let it create Pods, rather than directly create Pods yourself. That is

because Pods alone are not resilient to machine failures, but controllers are.

If a node dies or is disconnected from the rest of the cluster, Kubernetes applies a policy for

setting the phasephase of all Pods on the lost node to Failed.

file:///docs/reference/generated/kubernetes-api/v1.10/#containerstatus-v1-core
file:///docs/user-guide/pods/#durability-of-pods-or-lack-thereof
file:///docs/concepts/jobs/run-to-completion-finite-workloads/
file:///docs/concepts/workloads/controllers/replicationcontroller/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/daemonset/

Examples

Advanced liveness probe example

Liveness probes are executed by the kubelet, so all requests are made in the kubelet network

namespace.

Example states

Pod is running and has one Container. Container exits with success.

Log completion event.

If restartPolicyrestartPolicy is:

Always: Restart Container; Pod phasephase stays Running.

OnFailure: Pod phasephase becomes Succeeded.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 labelslabels::

 testtest:: livenessliveness

 namename:: liveness-httpliveness-http

specspec::

 containerscontainers::

 -- argsargs::

 -- /server/server

 imageimage:: k8s.gcr.io/livenessk8s.gcr.io/liveness

 livenessProbelivenessProbe::

 httpGethttpGet::

 # when "host" is not defined, "PodIP" will be used# when "host" is not defined, "PodIP" will be used

 # host: my-host# host: my-host

 # when "scheme" is not defined, "HTTP" scheme will be used. Only "HTTP" and "HTTPS" are allowed# when "scheme" is not defined, "HTTP" scheme will be used. Only "HTTP" and "HTTPS" are allowed

 # scheme: HTTPS# scheme: HTTPS

 pathpath:: /healthz/healthz

 portport:: 80808080

 httpHeadershttpHeaders::

 -- namename:: X-Custom-HeaderX-Custom-Header

 valuevalue:: AwesomeAwesome

 initialDelaySecondsinitialDelaySeconds:: 1515

 timeoutSecondstimeoutSeconds:: 11

 namename:: livenessliveness

Never: Pod phasephase becomes Succeeded.

Pod is running and has one Container. Container exits with failure.

Log failure event.

If restartPolicyrestartPolicy is:

Always: Restart Container; Pod phasephase stays Running.

OnFailure: Restart Container; Pod phasephase stays Running.

Never: Pod phasephase becomes Failed.

Pod is running and has two Containers. Container 1 exits with failure.

Log failure event.

If restartPolicyrestartPolicy is:

Always: Restart Container; Pod phasephase stays Running.

OnFailure: Restart Container; Pod phasephase stays Running.

Never: Do not restart Container; Pod phasephase stays Running.

If Container 1 is not running, and Container 2 exits:

Log failure event.

If restartPolicyrestartPolicy is:

Always: Restart Container; Pod phasephase stays Running.

OnFailure: Restart Container; Pod phasephase stays Running.

Never: Pod phasephase becomes Failed.

Pod is running and has one Container. Container runs out of memory.

Container terminates in failure.

Log OOM event.

If restartPolicyrestartPolicy is:

Always: Restart Container; Pod phasephase stays Running.

OnFailure: Restart Container; Pod phasephase stays Running.

Never: Log failure event; Pod phasephase becomes Failed.

Pod is running, and a disk dies.

Kill all Containers.

Log appropriate event.

Pod phasephase becomes Failed.

If running under a controller, Pod is recreated elsewhere.

Pod is running, and its node is segmented out.

Node controller waits for timeout.

Node controller sets Pod phasephase to Failed.

If running under a controller, Pod is recreated elsewhere.

What’s next

Get hands-on experience attaching handlers to Container lifecycle events.

Get hands-on experience configuring liveness and readiness probes.

Learn more about Container lifecycle hooks.

file:///docs/tasks/configure-pod-container/attach-handler-lifecycle-event/
file:///docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
file:///docs/concepts/containers/container-lifecycle-hooks/

Init Containers

This feature has exited beta in 1.6. Init Containers can be specified in the PodSpec alongside

the app containerscontainers array. The beta annotation value will still be respected and overrides the

PodSpec field value, however, they are deprecated in 1.6 and 1.7. In 1.8, the annotations are no

longer supported and must be converted to the PodSpec field.

This page provides an overview of Init Containers, which are specialized Containers that run

before app Containers and can contain utilities or setup scripts not present in an app image.

Understanding Init Containers

A Pod can have multiple Containers running apps within it, but it can also have one or more Init

Containers, which are run before the app Containers are started.

Init Containers are exactly like regular Containers, except:

They always run to completion.

Each one must complete successfully before the next one is started.

If an Init Container fails for a Pod, Kubernetes restarts the Pod repeatedly until the Init

Container succeeds. However, if the Pod has a restartPolicyrestartPolicy of Never, it is not restarted.

To specify a Container as an Init Container, add the initContainersinitContainers field on the PodSpec as

a JSON array of objects of type Container alongside the app containerscontainers array. The status of

Understanding Init Containers

Differences from regular Containers

What can Init Containers be used for?

Examples

Init Containers in use

Detailed behavior

Resources

Pod restart reasons

Support and compatibility

What’s next

file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core

the init containers is returned in status.initContainerStatusesstatus.initContainerStatuses field as an array of the

container statuses (similar to the status.containerStatusesstatus.containerStatuses field).

Differences from regular Containers

Init Containers support all the fields and features of app Containers, including resource limits,

volumes, and security settings. However, the resource requests and limits for an Init Container

are handled slightly differently, which are documented in Resources below. Also, Init

Containers do not support readiness probes because they must run to completion before the

Pod can be ready.

If multiple Init Containers are specified for a Pod, those Containers are run one at a time in

sequential order. Each must succeed before the next can run. When all of the Init Containers

have run to completion, Kubernetes initializes the Pod and runs the application Containers as

usual.

What can Init Containers be used for?

Because Init Containers have separate images from app Containers, they have some

advantages for start-up related code:

They can contain and run utilities that are not desirable to include in the app Container

image for security reasons.

They can contain utilities or custom code for setup that is not present in an app image. For

example, there is no need to make an image FROMFROM another image just to use a tool like

sedsed , awkawk , pythonpython , or digdig during setup.

The application image builder and deployer roles can work independently without the need

to jointly build a single app image.

They use Linux namespaces so that they have different filesystem views from app

Containers. Consequently, they can be given access to Secrets that app Containers are

not able to access.

They run to completion before any app Containers start, whereas app Containers run in

parallel, so Init Containers provide an easy way to block or delay the startup of app

Containers until some set of preconditions are met.

Examples

Here are some ideas for how to use Init Containers:

Wait for a service to be created with a shell command like:

Register this Pod with a remote server from the downward API with a command like:

Wait for some time before starting the app Container with a command like sleep 60sleep 60 .

Clone a git repository into a volume.

Place values into a configuration file and run a template tool to dynamically generate a

configuration file for the main app Container. For example, place the POD_IP value in a

configuration and generate the main app configuration file using Jinja.

More detailed usage examples can be found in the StatefulSets documentation and the

Production Pods guide.

Init Containers in use

The following yaml file for Kubernetes 1.5 outlines a simple Pod which has two Init Containers.

The first waits for myservicemyservice and the second waits for mydbmydb . Once both containers

complete, the Pod will begin.

for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1

curl -X POST http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d 'instance=$(<POD_NAME>)&ip=$(<POD_IP>)'curl -X POST http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d 'instance=$(<POD_NAME>)&ip=$(<POD_IP>)'

file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/tasks/configure-pod-container/configure-pod-initialization/

There is a new syntax in Kubernetes 1.6, although the old annotation syntax still works for 1.6

and 1.7. The new syntax must be used for 1.8 or greater. We have moved the declaration of

Init Containers to specspec :

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: myapp-podmyapp-pod

 labelslabels::

 appapp:: myappmyapp

 annotationsannotations::

 pod.beta.kubernetes.io/init-containerspod.beta.kubernetes.io/init-containers:: ''[[

 {{

 "name":"name": "init-myservice","init-myservice",

 "image":"image": "busybox","busybox",

 "command":"command": ["sh",["sh", "-c","-c", "until"until nslookupnslookup myservice;myservice; dodo echoecho waitingwaiting

 },},

 {{

 "name":"name": "init-mydb","init-mydb",

 "image":"image": "busybox","busybox",

 "command":"command": ["sh",["sh", "-c","-c", "until"until nslookupnslookup mydb;mydb; dodo echoecho waitingwaiting forfor

 }}

]']'

specspec::

 containerscontainers::

 -- namename:: myapp-containermyapp-container

 imageimage:: busyboxbusybox

 commandcommand:: [[''sh'sh',, ''-c'-c',, ''echoecho TheThe appapp isis running!running! &&&& sleepsleep 3600'3600']]

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: myapp-podmyapp-pod

 labelslabels::

 appapp:: myappmyapp

specspec::

 containerscontainers::

 -- namename:: myapp-containermyapp-container

 imageimage:: busyboxbusybox

 commandcommand:: [[''sh'sh',, ''-c'-c',, ''echoecho TheThe appapp isis running!running! &&&& sleepsleep 3600'3600']]

 initContainersinitContainers::

 -- namename:: init-myserviceinit-myservice

 imageimage:: busyboxbusybox

 commandcommand:: [[''sh'sh',, ''-c'-c',, ''untiluntil nslookupnslookup myservice;myservice; dodo echoecho waitingwaiting forfor myservice;myservice;

 -- namename:: init-mydbinit-mydb

 imageimage:: busyboxbusybox

 commandcommand:: [[''sh'sh',, ''-c'-c',, ''untiluntil nslookupnslookup mydb;mydb; dodo echoecho waitingwaiting forfor mydb;mydb; sleepsleep

1.5 syntax still works on 1.6, but we recommend using 1.6 syntax. In Kubernetes 1.6, Init

Containers were made a field in the API. The beta annotation is still respected in 1.6 and 1.7,

but is not supported in 1.8 or greater.

Yaml file below outlines the mydbmydb and myservicemyservice services:

This Pod can be started and debugged with the following commands:

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: myservicemyservice

specspec::

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: mydbmydb

specspec::

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93779377

Once we start the mydbmydb and myservicemyservice services, we can see the Init Containers complete

and the myapp-podmyapp-pod is created:

$ $ kubectl create kubectl create -f-f myapp.yaml myapp.yaml

pod pod "myapp-pod""myapp-pod" created created

$ $ kubectl get kubectl get -f-f myapp.yaml myapp.yaml

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

myapp-pod 0/1 Init:0/2 0 6mmyapp-pod 0/1 Init:0/2 0 6m

$ $ kubectl describe kubectl describe -f-f myapp.yaml myapp.yaml

Name: myapp-podName: myapp-pod

Namespace: defaultNamespace: default

[[...]...]

Labels: Labels: appapp==myappmyapp

Status: PendingStatus: Pending

[[...]...]

Init Containers:Init Containers:

 init-myservice: init-myservice:

[[...]...]

 State: Running State: Running

[[...]...]

 init-mydb: init-mydb:

[[...]...]

 State: Waiting State: Waiting

 Reason: PodInitializing Reason: PodInitializing

 Ready: False Ready: False

[[...]...]

Containers:Containers:

 myapp-container: myapp-container:

[[...]...]

 State: Waiting State: Waiting

 Reason: PodInitializing Reason: PodInitializing

 Ready: False Ready: False

[[...]...]

Events:Events:

 FirstSeen LastSeen Count From SubObjectPath Type Reason Message FirstSeen LastSeen Count From SubObjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- --------------------------

 16s 16s 1 16s 16s 1 {{default-scheduler default-scheduler }} Normal Scheduled Successfully assigned myapp-pod to 172.17.4.201 Normal Scheduled Successfully assigned myapp-pod to 172.17.4.201

 16s 16s 1 16s 16s 1 {{kubelet 172.17.4.201kubelet 172.17.4.201}} spec.initContainers spec.initContainers

 13s 13s 1 13s 13s 1 {{kubelet 172.17.4.201kubelet 172.17.4.201}} spec.initContainers spec.initContainers

 13s 13s 1 13s 13s 1 {{kubelet 172.17.4.201kubelet 172.17.4.201}} spec.initContainers spec.initContainers

 13s 13s 1 13s 13s 1 {{kubelet 172.17.4.201kubelet 172.17.4.201}} spec.initContainers spec.initContainers

$ $ kubectl logs myapp-pod kubectl logs myapp-pod -c-c init-myservice init-myservice # Inspect the first init container# Inspect the first init container
$ $ kubectl logs myapp-pod kubectl logs myapp-pod -c-c init-mydb init-mydb # Inspect the second init container# Inspect the second init container

This example is very simple but should provide some inspiration for you to create your own Init

Containers.

Detailed behavior

During the startup of a Pod, the Init Containers are started in order, after the network and

volumes are initialized. Each Container must exit successfully before the next is started. If a

Container fails to start due to the runtime or exits with failure, it is retried according to the Pod

restartPolicyrestartPolicy . However, if the Pod restartPolicyrestartPolicy is set to Always, the Init Containers use

RestartPolicyRestartPolicy OnFailure.

A Pod cannot be ReadyReady until all Init Containers have succeeded. The ports on an Init

Container are not aggregated under a service. A Pod that is initializing is in the PendingPending state

but should have a condition InitializingInitializing set to true.

If the Pod is restarted, all Init Containers must execute again.

Changes to the Init Container spec are limited to the container image field. Altering an Init

Container image field is equivalent to restarting the Pod.

Because Init Containers can be restarted, retried, or re-executed, Init Container code should be

idempotent. In particular, code that writes to files on EmptyDirsEmptyDirs should be prepared for the

possibility that an output file already exists.

Init Containers have all of the fields of an app Container. However, Kubernetes prohibits

readinessProbereadinessProbe from being used because Init Containers cannot define readiness distinct

from completion. This is enforced during validation.

Use activeDeadlineSecondsactiveDeadlineSeconds on the Pod and livenessProbelivenessProbe on the Container to prevent

Init Containers from failing forever. The active deadline includes Init Containers.

The name of each app and Init Container in a Pod must be unique; a validation error is thrown

$ $ kubectl create kubectl create -f-f services.yaml services.yaml

service service "myservice""myservice" created created

service service "mydb""mydb" created created

$ $ kubectl get kubectl get -f-f myapp.yaml myapp.yaml

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

myapp-pod 1/1 Running 0 9mmyapp-pod 1/1 Running 0 9m

for any Container sharing a name with another.

Resources

Given the ordering and execution for Init Containers, the following rules for resource usage

apply:

The highest of any particular resource request or limit defined on all Init Containers is the

effective init request/limit

The Pod’s effective request/limit for a resource is the higher of:

the sum of all app Containers request/limit for a resource

the effective init request/limit for a resource

Scheduling is done based on effective requests/limits, which means Init Containers can

reserve resources for initialization that are not used during the life of the Pod.

QoS tier of the Pod’s effective QoS tier is the QoS tier for Init Containers and app

containers alike.

Quota and limits are applied based on the effective Pod request and limit.

Pod level cgroups are based on the effective Pod request and limit, the same as the scheduler.

Pod restart reasons

A Pod can restart, causing re-execution of Init Containers, for the following reasons:

A user updates the PodSpec causing the Init Container image to change. App Container

image changes only restart the app Container.

The Pod infrastructure container is restarted. This is uncommon and would have to be

done by someone with root access to nodes.

All containers in a Pod are terminated while restartPolicyrestartPolicy is set to Always, forcing a

restart, and the Init Container completion record has been lost due to garbage collection.

Support and compatibility

A cluster with Apiserver version 1.6.0 or greater supports Init Containers using the

spec.initContainersspec.initContainers field. Previous versions support Init Containers using the alpha or beta

annotations. The spec.initContainersspec.initContainers field is also mirrored into alpha and beta annotations

so that Kubelets version 1.3.0 or greater can execute Init Containers, and so that a version 1.6

apiserver can safely be rolled back to version 1.5.x without losing Init Container functionality

for existing created pods.

In Apiserver and Kubelet versions 1.8.0 or greater, support for the alpha and beta annotations

is removed, requiring a conversion from the deprecated annotations to the

spec.initContainersspec.initContainers field.

What’s next

Creating a Pod that has an Init Container

file:///docs/tasks/configure-pod-container/configure-pod-initialization/#creating-a-pod-that-has-an-init-container

Pod Preset

This page provides an overview of PodPresets, which are objects for injecting certain

information into pods at creation time. The information can include secrets, volumes, volume

mounts, and environment variables.

Understanding Pod Presets

A

PodPod

PresetPreset is an API resource for injecting additional runtime requirements into a Pod at

creation time. You use label selectors to specify the Pods to which a given Pod Preset applies.

Using a Pod Preset allows pod template authors to not have to explicitly provide all

information for every pod. This way, authors of pod templates consuming a specific service do

not need to know all the details about that service.

For more information about the background, see the design proposal for PodPreset.

How It Works

Kubernetes provides an admission controller (PodPresetPodPreset) which, when enabled, applies Pod

Presets to incoming pod creation requests. When a pod creation request occurs, the system

does the following:

1. Retrieve all PodPresetsPodPresets available for use.

2. Check if the label selectors of any PodPresetPodPreset matches the labels on the pod being

created.

Understanding Pod Presets

How It Works

Disable Pod Preset for a Specific Pod

Enable Pod Preset

What’s next

file:///docs/concepts/overview/working-with-objects/labels/#label-selectors
https://git.k8s.io/community/contributors/design-proposals/service-catalog/pod-preset.md

3. Attempt to merge the various resources defined by the PodPresetPodPreset into the Pod being

created.

4. On error, throw an event documenting the merge error on the pod, and create the pod

without any injected resources from the PodPresetPodPreset .

5. Annotate the resulting modified Pod spec to indicate that it has been modified by a

PodPresetPodPreset . The annotation is of the form

podpreset.admission.kubernetes.io/podpreset-<pod-preset name>: "<resourcepodpreset.admission.kubernetes.io/podpreset-<pod-preset name>: "<resource

version>"version>"

.

Each Pod can be matched zero or more Pod Presets; and each PodPresetPodPreset can be applied to

zero or more pods. When a PodPresetPodPreset is applied to one or more Pods, Kubernetes modifies

the Pod Spec. For changes to EnvEnv , EnvFromEnvFrom , and VolumeMountsVolumeMounts , Kubernetes modifies the

container spec for all containers in the Pod; for changes to VolumeVolume , Kubernetes modifies the

Pod Spec.

Note: A Pod Preset is capable of modifying the spec.containersspec.containers field in a Pod spec

when appropriate. No resource definition from the Pod Preset will be applied to the

initContainersinitContainers field.

Disable Pod Preset for a Specific Pod

There may be instances where you wish for a Pod to not be altered by any Pod Preset

mutations. In these cases, you can add an annotation in the Pod Spec of the form:

podpreset.admission.kubernetes.io/exclude:podpreset.admission.kubernetes.io/exclude:

"true""true" .

Enable Pod Preset

In order to use Pod Presets in your cluster you must ensure the following:

1. You have enabled the API type settings.k8s.io/v1alpha1/podpresetsettings.k8s.io/v1alpha1/podpreset . For example,

this can be done by including settings.k8s.io/v1alpha1=truesettings.k8s.io/v1alpha1=true in the

--runtime-config--runtime-config option for the API server.

2. You have enabled the admission controller PodPresetPodPreset . One way to doing this is to include

PodPresetPodPreset in the --enable-admission-plugins--enable-admission-plugins option value specified for the API

server.

3. You have defined your Pod Presets by creating PodPresetPodPreset objects in the namespace you

will use.

What’s next

Injecting data into a Pod using PodPreset

file:///docs/tasks/inject-data-application/podpreset/

Disruptions

This guide is for application owners who want to build highly available applications, and thus

need to understand what types of Disruptions can happen to Pods.

It is also for Cluster Administrators who want to perform automated cluster actions, like

upgrading and autoscaling clusters.

Voluntary and Involuntary Disruptions

Pods do not disappear until someone (a person or a controller) destroys them, or there is an

unavoidable hardware or system software error.

We call these unavoidable cases involuntary disruptions to an application. Examples are:

a hardware failure of the physical machine backing the node

cluster administrator deletes VM (instance) by mistake

cloud provider or hypervisor failure makes VM disappear

a kernel panic

the node disappears from the cluster due to cluster network partition

eviction of a pod due to the node being out-of-resources.

Except for the out-of-resources condition, all these conditions should be familiar to most users;

they are not specific to Kubernetes.

We call other cases voluntary disruptions. These include both actions initiated by the

application owner and those initiated by a Cluster Administrator. Typical application owner

Voluntary and Involuntary Disruptions

Dealing with Disruptions

How Disruption Budgets Work

PDB Example

Separating Cluster Owner and Application Owner Roles

How to perform Disruptive Actions on your Cluster

What’s next

file:///docs/tasks/administer-cluster/out-of-resource/

actions include:

deleting the deployment or other controller that manages the pod

updating a deployment’s pod template causing a restart

directly deleting a pod (e.g. by accident)

Cluster Administrator actions include:

Draining a node for repair or upgrade.

Draining a node from a cluster to scale the cluster down (learn about Cluster Autoscaling).

Removing a pod from a node to permit something else to fit on that node.

These actions might be taken directly by the cluster administrator, or by automation run by the

cluster administrator, or by your cluster hosting provider.

Ask your cluster administrator or consult your cloud provider or distribution documentation to

determine if any sources of voluntary disruptions are enabled for your cluster. If none are

enabled, you can skip creating Pod Disruption Budgets.

Dealing with Disruptions

Here are some ways to mitigate involuntary disruptions:

Ensure your pod requests the resources it needs.

Replicate your application if you need higher availability. (Learn about running replicated

stateless and stateful applications.)

For even higher availability when running replicated applications, spread applications

across racks (using anti-affinity) or across zones (if using a multi-zone cluster.)

The frequency of voluntary disruptions varies. On a basic Kubernetes cluster, there are no

voluntary disruptions at all. However, your cluster administrator or hosting provider may run

some additional services which cause voluntary disruptions. For example, rolling out node

software updates can cause voluntary disruptions. Also, some implementations of cluster

(node) autoscaling may cause voluntary disruptions to defragment and compact nodes. Your

cluster administrator or hosting provider should have documented what level of voluntary

file:///docs/tasks/administer-cluster/safely-drain-node/
file:///docs/tasks/administer-cluster/cluster-management/#cluster-autoscaler
file:///docs/tasks/configure-pod-container/assign-cpu-ram-container
file:///docs/tasks/run-application/run-stateless-application-deployment/
file:///docs/tasks/run-application/run-replicated-stateful-application/
file:///docs/user-guide/node-selection/#inter-pod-affinity-and-anti-affinity-beta-feature
file:///docs/admin/multiple-zones

disruptions, if any, to expect.

Kubernetes offers features to help run highly available applications at the same time as

frequent voluntary disruptions. We call this set of features Disruption Budgets.

How Disruption Budgets Work

An Application Owner can create a PodDisruptionBudgetPodDisruptionBudget object (PDB) for each application.

A PDB limits the number pods of a replicated application that are down simultaneously from

voluntary disruptions. For example, a quorum-based application would like to ensure that the

number of replicas running is never brought below the number needed for a quorum. A web

front end might want to ensure that the number of replicas serving load never falls below a

certain percentage of the total.

Cluster managers and hosting providers should use tools which respect Pod Disruption

Budgets by calling the Eviction API instead of directly deleting pods. Examples are the

kubectl drainkubectl drain command and the Kubernetes-on-GCE cluster upgrade script (

cluster/gce/upgrade.shcluster/gce/upgrade.sh).

When a cluster administrator wants to drain a node they use the kubectl drainkubectl drain command.

That tool tries to evict all the pods on the machine. The eviction request may be temporarily

rejected, and the tool periodically retries all failed requests until all pods are terminated, or until

a configurable timeout is reached.

A PDB specifies the number of replicas that an application can tolerate having, relative to how

many it is intended to have. For example, a Deployment which has a

spec.replicas:spec.replicas:

55 is

supposed to have 5 pods at any given time. If its PDB allows for there to be 4 at a time, then

the Eviction API will allow voluntary disruption of one, but not two pods, at a time.

The group of pods that comprise the application is specified using a label selector, the same

as the one used by the application’s controller (deployment, stateful-set, etc).

The “intended” number of pods is computed from the .spec.replicas.spec.replicas of the pods controller.

The controller is discovered from the pods using the .metadata.ownerReferences.metadata.ownerReferences of the

object.

PDBs cannot prevent involuntary disruptions from occurring, but they do count against the

budget.

file:///docs/tasks/administer-cluster/safely-drain-node/#the-eviction-api

Pods which are deleted or unavailable due to a rolling upgrade to an application do count

against the disruption budget, but controllers (like deployment and stateful-set) are not limited

by PDBs when doing rolling upgrades – the handling of failures during application updates is

configured in the controller spec. (Learn about updating a deployment.)

When a pod is evicted using the eviction API, it is gracefully terminated (see

terminationGracePeriodSecondsterminationGracePeriodSeconds in PodSpec.)

PDB Example

Consider a cluster with 3 nodes, node-1node-1 through node-3node-3 . The cluster is running several

applications. One of them has 3 replicas initially called pod-apod-a , pod-bpod-b , and pod-cpod-c . Another,

unrelated pod without a PDB, called pod-xpod-x , is also shown. Initially, the pods are laid out as

follows:

node-1 node-2 node-3

pod-a available pod-b available pod-c available

pod-x available

All 3 pods are part of a deployment, and they collectively have a PDB which requires there be at

least 2 of the 3 pods to be available at all times.

For example, assume the cluster administrator wants to reboot into a new kernel version to fix

a bug in the kernel. The cluster administrator first tries to drain node-1node-1 using the

kubectl drainkubectl drain command. That tool tries to evict pod-apod-a and pod-xpod-x . This succeeds

immediately. Both pods go into the terminatingterminating state at the same time. This puts the cluster

in this state:

node-1 draining node-2 node-3

pod-a terminating pod-b available pod-c available

pod-x terminating

The deployment notices that one of the pods is terminating, so it creates a replacement called

pod-dpod-d . Since node-1node-1 is cordoned, it lands on another node. Something has also created

file:///docs/concepts/workloads/controllers/deployment/#updating-a-deployment
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core

pod-ypod-y as a replacement for pod-xpod-x .

(Note: for a StatefulSet, pod-apod-a , which would be called something like pod-1pod-1 , would need to

terminate completely before its replacement, which is also called pod-1pod-1 but has a different

UID, could be created. Otherwise, the example applies to a StatefulSet as well.)

Now the cluster is in this state:

node-1 draining node-2 node-3

pod-a terminating pod-b available pod-c available

pod-x terminating pod-d starting pod-y

At some point, the pods terminate, and the cluster looks like this:

node-1 drained node-2 node-3

 pod-b available pod-c available

 pod-d starting pod-y

At this point, if an impatient cluster administrator tries to drain node-2node-2 or node-3node-3 , the drain

command will block, because there are only 2 available pods for the deployment, and its PDB

requires at least 2. After some time passes, pod-dpod-d becomes available.

The cluster state now looks like this:

node-1 drained node-2 node-3

 pod-b available pod-c available

 pod-d available pod-y

Now, the cluster administrator tries to drain node-2node-2 . The drain command will try to evict the

two pods in some order, say pod-bpod-b first and then pod-dpod-d . It will succeed at evicting pod-bpod-b .

But, when it tries to evict pod-dpod-d , it will be refused because that would leave only one pod

available for the deployment.

The deployment creates a replacement for pod-bpod-b called pod-epod-e . Because there are not

enough resources in the cluster to schedule pod-epod-e the drain will again block. The cluster may

end up in this state:

node-1 drained node-2 node-3 no node

 pod-b available pod-c available pod-e pending

 pod-d available pod-y

At this point, the cluster administrator needs to add a node back to the cluster to proceed with

the upgrade.

You can see how Kubernetes varies the rate at which disruptions can happen, according to:

how many replicas an application needs

how long it takes to gracefully shutdown an instance

how long it takes a new instance to start up

the type of controller

the cluster’s resource capacity

Separating Cluster Owner and Application Owner
Roles

Often, it is useful to think of the Cluster Manager and Application Owner as separate roles with

limited knowledge of each other. This separation of responsibilities may make sense in these

scenarios:

when there are many application teams sharing a Kubernetes cluster, and there is natural

specialization of roles

when third-party tools or services are used to automate cluster management

Pod Disruption Budgets support this separation of roles by providing an interface between the

roles.

If you do not have such a separation of responsibilities in your organization, you may not need

to use Pod Disruption Budgets.

How to perform Disruptive Actions on your Cluster

If you are a Cluster Administrator, and you need to perform a disruptive action on all the nodes

in your cluster, such as a node or system software upgrade, here are some options:

Accept downtime during the upgrade.

Fail over to another complete replica cluster.

No downtime, but may be costly both for the duplicated nodes, and for human effort

to orchestrate the switchover.

Write disruption tolerant applications and use PDBs.

No downtime.

Minimal resource duplication.

Allows more automation of cluster administration.

Writing disruption-tolerant applications is tricky, but the work to tolerate voluntary

disruptions largely overlaps with work to support autoscaling and tolerating

involuntary disruptions.

What’s next

Follow steps to protect your application by configuring a Pod Disruption Budget .

Learn more about draining nodes

file:///docs/tasks/run-application/configure-pdb/
file:///docs/tasks/administer-cluster/safely-drain-node/

ReplicaSet

ReplicaSet is the next-generation Replication Controller. The only difference between a

ReplicaSet and a Replication Controller right now is the selector support. ReplicaSet supports

the new set-based selector requirements as described in the labels user guide whereas a

Replication Controller only supports equality-based selector requirements.

How to use a ReplicaSet

Most kubectlkubectl commands that support Replication Controllers also support ReplicaSets. One

exception is the rolling-updaterolling-update command. If you want the rolling update functionality

please consider using Deployments instead. Also, the rolling-updaterolling-update command is

imperative whereas Deployments are declarative, so we recommend using Deployments

through the rolloutrollout command.

While ReplicaSets can be used independently, today it’s mainly used by Deployments as a

How to use a ReplicaSet

When to use a ReplicaSet

Example

Writing a ReplicaSet Spec

Pod Template

Pod Selector

Labels on a ReplicaSet

Replicas

Working with ReplicaSets

Deleting a ReplicaSet and its Pods

Deleting just a ReplicaSet

Isolating pods from a ReplicaSet

Scaling a ReplicaSet

ReplicaSet as an Horizontal Pod Autoscaler Target

Alternatives to ReplicaSet

Deployment (Recommended)

Bare Pods

Job

DaemonSet

file:///docs/concepts/workloads/controllers/replicationcontroller/
file:///docs/concepts/overview/working-with-objects/labels/#label-selectors
file:///docs/user-guide/kubectl/
file:///docs/user-guide/kubectl/v1.10/#rolling-update
file:///docs/user-guide/kubectl/v1.10/#rolling-update
file:///docs/user-guide/kubectl/v1.10/#rollout
file:///docs/concepts/workloads/controllers/deployment/

mechanism to orchestrate pod creation, deletion and updates. When you use Deployments you

don’t have to worry about managing the ReplicaSets that they create. Deployments own and

manage their ReplicaSets.

When to use a ReplicaSet

A ReplicaSet ensures that a specified number of pod replicas are running at any given time.

However, a Deployment is a higher-level concept that manages ReplicaSets and provides

declarative updates to pods along with a lot of other useful features. Therefore, we

recommend using Deployments instead of directly using ReplicaSets, unless you require

custom update orchestration or don’t require updates at all.

This actually means that you may never need to manipulate ReplicaSet objects: use a

Deployment instead, and define your application in the spec section.

Example

frontend.yamlfrontend.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/frontend.yaml

frontend.yamlfrontend.yaml

Saving this manifest into frontend.yamlfrontend.yaml and submitting it to a Kubernetes cluster should

create the defined ReplicaSet and the pods that it manages.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: ReplicaSetReplicaSet

metadatametadata::

 namename:: frontendfrontend

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

specspec::

 # this replicas value is default# this replicas value is default
 # modify it according to your case# modify it according to your case
 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 tiertier:: frontendfrontend

 matchExpressionsmatchExpressions::

 -- {{keykey:: tiertier,, operatoroperator:: InIn,, valuesvalues:: [[frontendfrontend]}]}

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

 specspec::

 containerscontainers::

 -- namename:: php-redisphp-redis

 imageimage:: gcr.io/google_samples/gb-frontend:v3gcr.io/google_samples/gb-frontend:v3

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 envenv::

 -- namename:: GET_HOSTS_FROMGET_HOSTS_FROM

 valuevalue:: dnsdns

 # If your cluster config does not include a dns service, then to# If your cluster config does not include a dns service, then to
 # instead access environment variables to find service host# instead access environment variables to find service host
 # info, comment out the 'value: dns' line above, and uncomment the# info, comment out the 'value: dns' line above, and uncomment the
 # line below.# line below.
 # value: env# value: env
 portsports::

 -- containerPortcontainerPort:: 8080

Writing a ReplicaSet Spec

As with all other Kubernetes API objects, a ReplicaSet needs the apiVersionapiVersion , kindkind , and

metadatametadata fields. For general information about working with manifests, see object

management using kubectl.

A ReplicaSet also needs a .spec.spec section.

$ $ kubectl create kubectl create -f-f frontend.yaml frontend.yaml

replicaset replicaset "frontend""frontend" created created

$ $ kubectl describe rs/frontendkubectl describe rs/frontend

Name: frontendName: frontend

Namespace: defaultNamespace: default

Selector: Selector: tiertier==frontend,tier frontend,tier inin ((frontendfrontend))

Labels: Labels: appapp==guestbookguestbook

 tiertier==frontendfrontend

Annotations: <none>Annotations: <none>

Replicas: 3 current / 3 desiredReplicas: 3 current / 3 desired

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 FailedPods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

Pod Template:Pod Template:

 Labels: Labels: appapp==guestbookguestbook

 tiertier==frontendfrontend

 Containers: Containers:

 php-redis: php-redis:

 Image: gcr.io/google_samples/gb-frontend:v3 Image: gcr.io/google_samples/gb-frontend:v3

 Port: 80/TCP Port: 80/TCP

 Requests: Requests:

 cpu: 100m cpu: 100m

 memory: 100Mi memory: 100Mi

 Environment: Environment:

 GET_HOSTS_FROM: dns GET_HOSTS_FROM: dns

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ----------------

 1m 1m 1 1m 1m 1 {{replicaset-controller replicaset-controller }} Normal SuccessfulCreate Created pod: frontend-qhloh Normal SuccessfulCreate Created pod: frontend-qhloh

 1m 1m 1 1m 1m 1 {{replicaset-controller replicaset-controller }} Normal SuccessfulCreate Created pod: frontend-dnjpy Normal SuccessfulCreate Created pod: frontend-dnjpy

 1m 1m 1 1m 1m 1 {{replicaset-controller replicaset-controller }} Normal SuccessfulCreate Created pod: frontend-9si5l Normal SuccessfulCreate Created pod: frontend-9si5l

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

frontend-9si5l 1/1 Running 0 1mfrontend-9si5l 1/1 Running 0 1m

frontend-dnjpy 1/1 Running 0 1mfrontend-dnjpy 1/1 Running 0 1m

frontend-qhloh 1/1 Running 0 1mfrontend-qhloh 1/1 Running 0 1m

file:///docs/concepts/overview/object-management-kubectl/overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

Pod Template

The .spec.template.spec.template is the only required field of the .spec.spec . The .spec.template.spec.template is a pod

template. It has exactly the same schema as a pod, except that it is nested and does not have

an apiVersionapiVersion or kindkind .

In addition to required fields of a pod, a pod template in a ReplicaSet must specify appropriate

labels and an appropriate restart policy.

For labels, make sure to not overlap with other controllers. For more information, see pod

selector.

For restart policy, the only allowed value for .spec.template.spec.restartPolicy.spec.template.spec.restartPolicy is

AlwaysAlways , which is the default.

For local container restarts, ReplicaSet delegates to an agent on the node, for example the

Kubelet or Docker.

Pod Selector

The .spec.selector.spec.selector field is a label selector. A ReplicaSet manages all the pods with labels

that match the selector. It does not distinguish between pods that it created or deleted and

pods that another person or process created or deleted. This allows the ReplicaSet to be

replaced without affecting the running pods.

The .spec.template.metadata.labels.spec.template.metadata.labels must match the .spec.selector.spec.selector , or it will be

rejected by the API.

In Kubernetes 1.9 the API version apps/v1apps/v1 on the ReplicaSet kind is the current version and is

enabled by default. The API version apps/v1beta2apps/v1beta2 is deprecated.

Also you should not normally create any pods whose labels match this selector, either directly,

with another ReplicaSet, or with another controller such as a Deployment. If you do so, the

ReplicaSet thinks that it created the other pods. Kubernetes does not stop you from doing this.

If you do end up with multiple controllers that have overlapping selectors, you will have to

manage the deletion yourself.

Labels on a ReplicaSet

The ReplicaSet can itself have labels (.metadata.labels.metadata.labels). Typically, you would set these the

file:///docs/concepts/workloads/pods/pod-overview/#pod-templates
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/pods/pod-lifecycle/
file:///docs/admin/kubelet/
file:///docs/concepts/overview/working-with-objects/labels/

same as the .spec.template.metadata.labels.spec.template.metadata.labels . However, they are allowed to be different,

and the .metadata.labels.metadata.labels do not affect the behavior of the ReplicaSet.

Replicas

You can specify how many pods should run concurrently by setting .spec.replicas.spec.replicas . The

number running at any time may be higher or lower, such as if the replicas were just increased

or decreased, or if a pod is gracefully shut down, and a replacement starts early.

If you do not specify .spec.replicas.spec.replicas , then it defaults to 1.

Working with ReplicaSets

Deleting a ReplicaSet and its Pods

To delete a ReplicaSet and all its pods, use

kubectlkubectl

deletedelete . Kubectl will scale the ReplicaSet

to zero and wait for it to delete each pod before deleting the ReplicaSet itself. If this kubectl

command is interrupted, it can be restarted.

When using the REST API or go client library, you need to do the steps explicitly (scale replicas

to 0, wait for pod deletions, then delete the ReplicaSet).

Deleting just a ReplicaSet

You can delete a ReplicaSet without affecting any of its pods, using

kubectlkubectl

deletedelete with the

--cascade=false--cascade=false option.

When using the REST API or go client library, simply delete the ReplicaSet object.

Once the original is deleted, you can create a new ReplicaSet to replace it. As long as the old

and new .spec.selector.spec.selector are the same, then the new one will adopt the old pods. However, it

will not make any effort to make existing pods match a new, different pod template. To update

pods to a new spec in a controlled way, use a rolling update.

Isolating pods from a ReplicaSet

Pods may be removed from a ReplicaSet’s target set by changing their labels. This technique

file:///docs/user-guide/kubectl/v1.10/#delete
file:///docs/user-guide/kubectl/v1.10/#delete

may be used to remove pods from service for debugging, data recovery, etc. Pods that are

removed in this way will be replaced automatically (assuming that the number of replicas is

not also changed).

Scaling a ReplicaSet

A ReplicaSet can be easily scaled up or down by simply updating the .spec.replicas.spec.replicas field.

The ReplicaSet controller ensures that a desired number of pods with a matching label

selector are available and operational.

ReplicaSet as an Horizontal Pod Autoscaler Target

A ReplicaSet can also be a target for Horizontal Pod Autoscalers (HPA). That is, a ReplicaSet

can be auto-scaled by an HPA. Here is an example HPA targeting the ReplicaSet we created in

the previous example.

hpa-rs.yamlhpa-rs.yaml

Saving this manifest into hpa-rs.yamlhpa-rs.yaml and submitting it to a Kubernetes cluster should

create the defined HPA that autoscales the target ReplicaSet depending on the CPU usage of

the replicated pods.

Alternatively, you can use the kubectl autoscalekubectl autoscale command to accomplish the same (and

it’s easier!)

apiVersionapiVersion:: autoscaling/v1autoscaling/v1

kindkind:: HorizontalPodAutoscalerHorizontalPodAutoscaler

metadatametadata::

 namename:: frontend-scalerfrontend-scaler

specspec::

 scaleTargetRefscaleTargetRef::

 kindkind:: ReplicaSetReplicaSet

 namename:: frontendfrontend

 minReplicasminReplicas:: 33

 maxReplicasmaxReplicas:: 1010

 targetCPUUtilizationPercentagetargetCPUUtilizationPercentage:: 5050

kubectl create kubectl create -f-f hpa-rs.yaml hpa-rs.yaml

file:///docs/tasks/run-application/horizontal-pod-autoscale/
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/hpa-rs.yaml

Alternatives to ReplicaSet

Deployment (Recommended)

DeploymentDeployment is a higher-level API object that updates its underlying ReplicaSets and their Pods

in a similar fashion as

kubectl rolling-kubectl rolling-

updateupdate . Deployments are recommended if you want

this rolling update functionality, because unlike

kubectl rolling-kubectl rolling-

updateupdate , they are

declarative, server-side, and have additional features. For more information on running a

stateless application using a Deployment, please read Run a Stateless Application Using a

Deployment.

Bare Pods

Unlike the case where a user directly created pods, a ReplicaSet replaces pods that are deleted

or terminated for any reason, such as in the case of node failure or disruptive node

maintenance, such as a kernel upgrade. For this reason, we recommend that you use a

ReplicaSet even if your application requires only a single pod. Think of it similarly to a process

supervisor, only it supervises multiple pods across multiple nodes instead of individual

processes on a single node. A ReplicaSet delegates local container restarts to some agent on

the node (for example, Kubelet or Docker).

Job

Use a JobJob instead of a ReplicaSet for pods that are expected to terminate on their own (that

is, batch jobs).

DaemonSet

Use a DaemonSetDaemonSet instead of a ReplicaSet for pods that provide a machine-level function, such

as machine monitoring or machine logging. These pods have a lifetime that is tied to a

machine lifetime: the pod needs to be running on the machine before other pods start, and are

kubectl autoscale rs frontendkubectl autoscale rs frontend

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/tasks/run-application/run-stateless-application-deployment/
file:///docs/concepts/jobs/run-to-completion-finite-workloads/
file:///docs/concepts/workloads/controllers/daemonset/

safe to terminate when the machine is otherwise ready to be rebooted/shutdown.

ReplicationController

NOTE: A DeploymentDeployment that configures a ReplicaSetReplicaSet is now the recommended way to

set up replication.

A ReplicationController ensures that a specified number of pod replicas are running at any one

time. In other words, a ReplicationController makes sure that a pod or a homogeneous set of

pods is always up and available.

How a ReplicationController Works

Running an example ReplicationController

Writing a ReplicationController Spec

Pod Template

Labels on the ReplicationController

Pod Selector

Multiple Replicas

Working with ReplicationControllers

Deleting a ReplicationController and its Pods

Deleting just a ReplicationController

Isolating pods from a ReplicationController

Common usage patterns

Rescheduling

Scaling

Rolling updates

Multiple release tracks

Using ReplicationControllers with Services

Writing programs for Replication

Responsibilities of the ReplicationController

API Object

Alternatives to ReplicationController

ReplicaSet

Deployment (Recommended)

Bare Pods

Job

DaemonSet

For more information

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/

How a ReplicationController Works

If there are too many pods, the ReplicationController terminates the extra pods. If there are too

few, the ReplicationController starts more pods. Unlike manually created pods, the pods

maintained by a ReplicationController are automatically replaced if they fail, are deleted, or are

terminated. For example, your pods are re-created on a node after disruptive maintenance

such as a kernel upgrade. For this reason, you should use a ReplicationController even if your

application requires only a single pod. A ReplicationController is similar to a process

supervisor, but instead of supervising individual processes on a single node, the

ReplicationController supervises multiple pods across multiple nodes.

ReplicationController is often abbreviated to “rc” or “rcs” in discussion, and as a shortcut in

kubectl commands.

A simple case is to create one ReplicationController object to reliably run one instance of a Pod

indefinitely. A more complex use case is to run several identical replicas of a replicated service,

such as web servers.

Running an example ReplicationController

This example ReplicationController config runs three copies of the nginx web server.

replication.yamlreplication.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/replication.yaml

replication.yamlreplication.yaml

Run the example job by downloading the example file and then running this command:

Check on the status of the ReplicationController using this command:

apiVersionapiVersion:: v1v1

kindkind:: ReplicationControllerReplicationController

metadatametadata::

 namename:: nginxnginx

specspec::

 replicasreplicas:: 33

 selectorselector::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 namename:: nginxnginx

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl create kubectl create -f-f ./replication.yaml ./replication.yaml

replicationcontroller replicationcontroller "nginx""nginx" created created

Here, three pods are created, but none is running yet, perhaps because the image is being

pulled. A little later, the same command may show:

To list all the pods that belong to the ReplicationController in a machine readable form, you can

use a command like this:

Here, the selector is the same as the selector for the ReplicationController (seen in the

kubectlkubectl

describedescribe output, and in a different form in replication.yamlreplication.yaml . The

--output=jsonpath--output=jsonpath option specifies an expression that just gets the name from each pod in

the returned list.

$ $ kubectl describe replicationcontrollers/nginxkubectl describe replicationcontrollers/nginx

Name: nginxName: nginx

Namespace: defaultNamespace: default

Selector: Selector: appapp==nginxnginx

Labels: Labels: appapp==nginxnginx

Annotations: <none>Annotations: <none>

Replicas: 3 current / 3 desiredReplicas: 3 current / 3 desired

Pods Status: 0 Running / 3 Waiting / 0 Succeeded / 0 FailedPods Status: 0 Running / 3 Waiting / 0 Succeeded / 0 Failed

Pod Template:Pod Template:

 Labels: Labels: appapp==nginxnginx

 Containers: Containers:

 nginx: nginx:

 Image: nginx Image: nginx

 Port: 80/TCP Port: 80/TCP

 Environment: <none> Environment: <none>

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- --------------------------

 20s 20s 1 20s 20s 1 {{replication-controller replication-controller }} Normal SuccessfulCreate Created pod: nginx-qrm3m Normal SuccessfulCreate Created pod: nginx-qrm3m

 20s 20s 1 20s 20s 1 {{replication-controller replication-controller }} Normal SuccessfulCreate Created pod: nginx-3ntk0 Normal SuccessfulCreate Created pod: nginx-3ntk0

 20s 20s 1 20s 20s 1 {{replication-controller replication-controller }} Normal SuccessfulCreate Created pod: nginx-4ok8v Normal SuccessfulCreate Created pod: nginx-4ok8v

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 FailedPods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

$ pods$ pods==$($(kubectl get pods kubectl get pods --selector--selector==appapp==nginx nginx --output--output==jsonpathjsonpath={={.items..metadata.name.items..metadata.name

echoecho $pods$pods

nginx-3ntk0 nginx-4ok8v nginx-qrm3mnginx-3ntk0 nginx-4ok8v nginx-qrm3m

Writing a ReplicationController Spec

As with all other Kubernetes config, a ReplicationController needs apiVersionapiVersion , kindkind , and

metadatametadata fields. For general information about working with config files, see object

management .

A ReplicationController also needs a .spec.spec section.

Pod Template

The .spec.template.spec.template is the only required field of the .spec.spec .

The .spec.template.spec.template is a pod template. It has exactly the same schema as a pod, except it is

nested and does not have an apiVersionapiVersion or kindkind .

In addition to required fields for a Pod, a pod template in a ReplicationController must specify

appropriate labels and an appropriate restart policy. For labels, make sure not to overlap with

other controllers. See pod selector.

Only a .spec.template.spec.restartPolicy.spec.template.spec.restartPolicy equal to AlwaysAlways is allowed, which is the

default if not specified.

For local container restarts, ReplicationControllers delegate to an agent on the node, for

example the Kubelet or Docker.

Labels on the ReplicationController

The ReplicationController can itself have labels (.metadata.labels.metadata.labels). Typically, you would set

these the same as the .spec.template.metadata.labels.spec.template.metadata.labels ; if .metadata.labels.metadata.labels is not

specified then it defaults to .spec.template.metadata.labels.spec.template.metadata.labels . However, they are allowed

to be different, and the .metadata.labels.metadata.labels do not affect the behavior of the

ReplicationController.

Pod Selector

The .spec.selector.spec.selector field is a label selector. A ReplicationController manages all the pods

with labels that match the selector. It does not distinguish between pods that it created or

file:///docs/concepts/overview/object-management-kubectl/overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
file:///docs/concepts/workloads/pods/pod-overview/#pod-templates
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/pods/pod-lifecycle/
file:///docs/admin/kubelet/
file:///docs/concepts/overview/working-with-objects/labels/#label-selectors

deleted and pods that another person or process created or deleted. This allows the

ReplicationController to be replaced without affecting the running pods.

If specified, the .spec.template.metadata.labels.spec.template.metadata.labels must be equal to the .spec.selector.spec.selector ,

or it will be rejected by the API. If .spec.selector.spec.selector is unspecified, it will be defaulted to

.spec.template.metadata.labels.spec.template.metadata.labels .

Also you should not normally create any pods whose labels match this selector, either directly,

with another ReplicationController, or with another controller such as Job. If you do so, the

ReplicationController thinks that it created the other pods. Kubernetes does not stop you from

doing this.

If you do end up with multiple controllers that have overlapping selectors, you will have to

manage the deletion yourself (see below).

Multiple Replicas

You can specify how many pods should run concurrently by setting .spec.replicas.spec.replicas to the

number of pods you would like to have running concurrently. The number running at any time

may be higher or lower, such as if the replicas were just increased or decreased, or if a pod is

gracefully shutdown, and a replacement starts early.

If you do not specify .spec.replicas.spec.replicas , then it defaults to 1.

Working with ReplicationControllers

Deleting a ReplicationController and its Pods

To delete a ReplicationController and all its pods, use

kubectlkubectl

deletedelete . Kubectl will scale the

ReplicationController to zero and wait for it to delete each pod before deleting the

ReplicationController itself. If this kubectl command is interrupted, it can be restarted.

When using the REST API or go client library, you need to do the steps explicitly (scale replicas

to 0, wait for pod deletions, then delete the ReplicationController).

Deleting just a ReplicationController

You can delete a ReplicationController without affecting any of its pods.

file:///docs/user-guide/kubectl/v1.10/#delete

Using kubectl, specify the --cascade=false--cascade=false option to

kubectlkubectl

deletedelete .

When using the REST API or go client library, simply delete the ReplicationController object.

Once the original is deleted, you can create a new ReplicationController to replace it. As long as

the old and new .spec.selector.spec.selector are the same, then the new one will adopt the old pods.

However, it will not make any effort to make existing pods match a new, different pod

template. To update pods to a new spec in a controlled way, use a rolling update.

Isolating pods from a ReplicationController

Pods may be removed from a ReplicationController’s target set by changing their labels. This

technique may be used to remove pods from service for debugging, data recovery, etc. Pods

that are removed in this way will be replaced automatically (assuming that the number of

replicas is not also changed).

Common usage patterns

Rescheduling

As mentioned above, whether you have 1 pod you want to keep running, or 1000, a

ReplicationController will ensure that the specified number of pods exists, even in the event of

node failure or pod termination (for example, due to an action by another control agent).

Scaling

The ReplicationController makes it easy to scale the number of replicas up or down, either

manually or by an auto-scaling control agent, by simply updating the replicasreplicas field.

Rolling updates

The ReplicationController is designed to facilitate rolling updates to a service by replacing pods

one-by-one.

As explained in #1353, the recommended approach is to create a new ReplicationController

with 1 replica, scale the new (+1) and old (-1) controllers one by one, and then delete the old

controller after it reaches 0 replicas. This predictably updates the set of pods regardless of

unexpected failures.

file:///docs/user-guide/kubectl/v1.10/#delete
http://issue.k8s.io/1353

Ideally, the rolling update controller would take application readiness into account, and would

ensure that a sufficient number of pods were productively serving at any given time.

The two ReplicationControllers would need to create pods with at least one differentiating

label, such as the image tag of the primary container of the pod, since it is typically image

updates that motivate rolling updates.

Rolling update is implemented in the client tool

kubectl rolling-kubectl rolling-

updateupdate . Visit

kubectl rolling-kubectl rolling-

updateupdate task for more concrete examples.

Multiple release tracks

In addition to running multiple releases of an application while a rolling update is in progress,

it’s common to run multiple releases for an extended period of time, or even continuously,

using multiple release tracks. The tracks would be differentiated by labels.

For instance, a service might target all pods with

tier in (frontend), environment intier in (frontend), environment in

(prod)(prod) . Now say you have 10 replicated pods that

make up this tier. But you want to be able to ‘canary’ a new version of this component. You

could set up a ReplicationController with replicasreplicas set to 9 for the bulk of the replicas, with

labels tier=frontend, environment=prod, track=stabletier=frontend, environment=prod, track=stable , and another

ReplicationController with replicasreplicas set to 1 for the canary, with labels

tier=frontend, environment=prod, track=canarytier=frontend, environment=prod, track=canary . Now the service is covering both the

canary and non-canary pods. But you can mess with the ReplicationControllers separately to

test things out, monitor the results, etc.

Using ReplicationControllers with Services

Multiple ReplicationControllers can sit behind a single service, so that, for example, some

traffic goes to the old version, and some goes to the new version.

A ReplicationController will never terminate on its own, but it isn’t expected to be as long-lived

as services. Services may be composed of pods controlled by multiple ReplicationControllers,

and it is expected that many ReplicationControllers may be created and destroyed over the

lifetime of a service (for instance, to perform an update of pods that run the service). Both

file:///docs/user-guide/kubectl/v1.10/#rolling-update
file:///docs/tasks/run-application/rolling-update-replication-controller/

services themselves and their clients should remain oblivious to the ReplicationControllers

that maintain the pods of the services.

Writing programs for Replication

Pods created by a ReplicationController are intended to be fungible and semantically identical,

though their configurations may become heterogeneous over time. This is an obvious fit for

replicated stateless servers, but ReplicationControllers can also be used to maintain availability

of master-elected, sharded, and worker-pool applications. Such applications should use

dynamic work assignment mechanisms, such as the RabbitMQ work queues, as opposed to

static/one-time customization of the configuration of each pod, which is considered an anti-

pattern. Any pod customization performed, such as vertical auto-sizing of resources (for

example, cpu or memory), should be performed by another online controller process, not unlike

the ReplicationController itself.

Responsibilities of the ReplicationController

The ReplicationController simply ensures that the desired number of pods matches its label

selector and are operational. Currently, only terminated pods are excluded from its count. In

the future, readiness and other information available from the system may be taken into

account, we may add more controls over the replacement policy, and we plan to emit events

that could be used by external clients to implement arbitrarily sophisticated replacement

and/or scale-down policies.

The ReplicationController is forever constrained to this narrow responsibility. It itself will not

perform readiness nor liveness probes. Rather than performing auto-scaling, it is intended to

be controlled by an external auto-scaler (as discussed in #492), which would change its

replicasreplicas field. We will not add scheduling policies (for example, spreading) to the

ReplicationController. Nor should it verify that the pods controlled match the currently

specified template, as that would obstruct auto-sizing and other automated processes.

Similarly, completion deadlines, ordering dependencies, configuration expansion, and other

features belong elsewhere. We even plan to factor out the mechanism for bulk pod creation

(#170).

The ReplicationController is intended to be a composable building-block primitive. We expect

higher-level APIs and/or tools to be built on top of it and other complementary primitives for

https://www.rabbitmq.com/tutorials/tutorial-two-python.html
http://issue.k8s.io/620
http://issue.k8s.io/492
http://issue.k8s.io/367#issuecomment-48428019
http://issue.k8s.io/170

user convenience in the future. The “macro” operations currently supported by kubectl (run,

scale, rolling-update) are proof-of-concept examples of this. For instance, we could imagine

something like Asgard managing ReplicationControllers, auto-scalers, services, scheduling

policies, canaries, etc.

API Object

Replication controller is a top-level resource in the Kubernetes REST API. More details about

the API object can be found at: ReplicationController API object.

Alternatives to ReplicationController

ReplicaSet

ReplicaSetReplicaSet is the next-generation ReplicationController that supports the new set-based

label selector. It’s mainly used by DeploymentDeployment as a mechanism to orchestrate pod creation,

deletion and updates. Note that we recommend using Deployments instead of directly using

Replica Sets, unless you require custom update orchestration or don’t require updates at all.

Deployment (Recommended)

DeploymentDeployment is a higher-level API object that updates its underlying Replica Sets and their

Pods in a similar fashion as

kubectl rolling-kubectl rolling-

updateupdate . Deployments are recommended if

you want this rolling update functionality, because unlike

kubectl rolling-kubectl rolling-

updateupdate , they are

declarative, server-side, and have additional features.

Bare Pods

Unlike in the case where a user directly created pods, a ReplicationController replaces pods

that are deleted or terminated for any reason, such as in the case of node failure or disruptive

node maintenance, such as a kernel upgrade. For this reason, we recommend that you use a

ReplicationController even if your application requires only a single pod. Think of it similarly to

a process supervisor, only it supervises multiple pods across multiple nodes instead of

http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html
file:///docs/reference/generated/kubernetes-api/v1.10/#replicationcontroller-v1-core
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/overview/working-with-objects/labels/#set-based-requirement
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/deployment/

individual processes on a single node. A ReplicationController delegates local container

restarts to some agent on the node (for example, Kubelet or Docker).

Job

Use a JobJob instead of a ReplicationController for pods that are expected to terminate on their

own (that is, batch jobs).

DaemonSet

Use a DaemonSetDaemonSet instead of a ReplicationController for pods that provide a machine-level

function, such as machine monitoring or machine logging. These pods have a lifetime that is

tied to a machine lifetime: the pod needs to be running on the machine before other pods start,

and are safe to terminate when the machine is otherwise ready to be rebooted/shutdown.

For more information

Read Run Stateless AP Replication Controller.

file:///docs/concepts/jobs/run-to-completion-finite-workloads/
file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/tutorials/stateless-application/run-stateless-ap-replication-controller/

Deployments

A Deployment controller provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment object, and the Deployment controller changes

the actual state to the desired state at a controlled rate. You can define Deployments to create

new ReplicaSets, or to remove existing Deployments and adopt all their resources with new

Deployments.

Note: You should not manage ReplicaSets owned by a Deployment. All the use cases

should be covered by manipulating the Deployment object. Consider opening an issue in

the main Kubernetes repository if your use case is not covered below.

Use Case

Creating a Deployment

Pod-template-hash label

Updating a Deployment

Rollover (aka multiple updates in-flight)

Label selector updates

Rolling Back a Deployment

Checking Rollout History of a Deployment

Rolling Back to a Previous Revision

Scaling a Deployment

Proportional scaling

Pausing and Resuming a Deployment

Deployment status

Progressing Deployment

Complete Deployment

Failed Deployment

Operating on a failed deployment

Clean up Policy

Use Cases

Canary Deployment

Writing a Deployment Spec

Pod Template

Replicas

Selector

file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/controllers/replicaset/

Use Case

The following are typical use cases for Deployments:

Create a Deployment to rollout a ReplicaSet. The ReplicaSet creates Pods in the

background. Check the status of the rollout to see if it succeeds or not.

Declare the new state of the Pods by updating the PodTemplateSpec of the Deployment. A

new ReplicaSet is created and the Deployment manages moving the Pods from the old

ReplicaSet to the new one at a controlled rate. Each new ReplicaSet updates the revision

of the Deployment.

Rollback to an earlier Deployment revision if the current state of the Deployment is not

stable. Each rollback updates the revision of the Deployment.

Scale up the Deployment to facilitate more load.

Pause the Deployment to apply multiple fixes to its PodTemplateSpec and then resume it

to start a new rollout.

Use the status of the Deployment as an indicator that a rollout has stuck.

Clean up older ReplicaSets that you don’t need anymore.

Creating a Deployment

The following is an example of a Deployment. It creates a ReplicaSet to bring up three nginxnginx

Strategy

Recreate Deployment

Rolling Update Deployment

Max Unavailable

Max Surge

Progress Deadline Seconds

Min Ready Seconds

Rollback To

Revision History Limit

Paused

Alternative to Deployments

kubectl rolling update

Pods:

nginx-deployment.yamlnginx-deployment.yaml

In this example:

A Deployment named nginx-deploymentnginx-deployment is created, indicated by the metadata: namemetadata: name

field.

The Deployment creates three replicated Pods, indicated by the replicasreplicas field.

The selectorselector field defines how the Deployment finds which Pods to manage. In this

case, we simply select on one label defined in the Pod template (app: nginxapp: nginx). However,

more sophisticated selection rules are possible, as long as the Pod template itself

satisfies the rule.

The Pod template’s specification, or template: spectemplate: spec field, indicates that the Pods run

one container, nginxnginx , which runs the nginxnginx Docker Hub image at version 1.7.9.

The Deployment opens port 80 for use by the Pods.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

 labelslabels::

 appapp:: nginxnginx

specspec::

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/nginx-deployment.yaml
https://hub.docker.com/

Note: matchLabelsmatchLabels is a map of {key,value} pairs. A single {key,value} in the

matchLabelsmatchLabels map is equivalent to an element of matchExpressionsmatchExpressions , whose key field

is “key”, the operator is “In”, and the values array contains only “value”. The requirements

are ANDed.

The templatetemplate field contains the following instructions:

The Pods are labeled app: nginxapp: nginx

Create one container and name it nginxnginx .

Run the nginxnginx image at version 1.7.91.7.9 .

Open port 8080 so that the container can send and accept traffic.

To create this Deployment, run the following command:

Note: You can append --record--record to this command to record the current command in

the annotations of the created or updated resource. This is useful for future review,

such as investigating which commands were executed in each Deployment revision.

Next, run

kubectl getkubectl get

deploymentsdeployments . The output is similar to the following:

When you inspect the Deployments in your cluster, the following fields are displayed:

NAMENAME lists the names of the Deployments in the cluster.

DESIREDDESIRED displays the desired number of replicas of the application, which you define

when you create the Deployment. This is the desired state.

kubectl create kubectl create -f-f https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/nginx-deployment.yaml https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/nginx-deployment.yaml

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 3 0 0 0 1snginx-deployment 3 0 0 0 1s

CURRENTCURRENT displays how many replicas are currently running.

UP-TO-DATEUP-TO-DATE displays the number of replicas that have been updated to achieve the

desired state.

AVAILABLEAVAILABLE displays how many replicas of the application are available to your users.

AGEAGE displays the amount of time that the application has been running.

Notice how the values in each field correspond to the values in the Deployment specification:

The number of desired replicas is 3 according to

spec:spec:

replicasreplicas field.

The number of current replicas is 0 according to the .status.replicas.status.replicas field.

The number of up-to-date replicas is 0 according to the .status.updatedReplicas.status.updatedReplicas field.

The number of available replicas is 0 according to the .status.availableReplicas.status.availableReplicas

field.

To see the Deployment rollout status, run

kubectl rollout status deployment/nginx-kubectl rollout status deployment/nginx-

deploymentdeployment . This command returns the

following output:

Run the

kubectl getkubectl get

deploymentsdeployments again a few seconds later:

Notice that the Deployment has created all three replicas, and all replicas are up-to-date (they

contain the latest Pod template) and available (the Pod status is Ready for at least the value of

the Deployment’s .spec.minReadySeconds.spec.minReadySeconds field).

Waiting Waiting for for rollout to finish: 2 out of 3 new replicas have been updated...rollout to finish: 2 out of 3 new replicas have been updated...

deployment deployment "nginx-deployment""nginx-deployment" successfully rolled out successfully rolled out

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 3 3 3 3 18snginx-deployment 3 3 3 3 18s

To see the ReplicaSet (rsrs) created by the deployment, run

kubectl getkubectl get

rsrs :

Notice that the name of the ReplicaSet is always formatted as

[DEPLOYMENT-NAME]-[POD-TEMPLATE-HASH-VALUE][DEPLOYMENT-NAME]-[POD-TEMPLATE-HASH-VALUE] . The hash value is automatically

generated when the Deployment is created.

To see the labels automatically generated for each pod, run

kubectl get pods --show-kubectl get pods --show-

labelslabels . The following output is returned:

The created ReplicaSet ensures that there are three nginxnginx Pods running at all times.

Note: You must specify an appropriate selector and Pod template labels in a

Deployment (in this case, app: nginxapp: nginx). Do not overlap labels or selectors with other

controllers (including other Deployments and StatefulSets). Kubernetes doesn’t stop you

from overlapping, and if multiple controllers have overlapping selectors those controllers

might conflict and behave unexpectedly.

Pod-template-hash label

Note: Do not change this label.

The pod-template-hashpod-template-hash label is added by the Deployment controller to every ReplicaSet that

a Deployment creates or adopts.

This label ensures that child ReplicaSets of a Deployment do not overlap. It is generated by

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-deployment-2035384211 3 3 3 18snginx-deployment-2035384211 3 3 3 18s

NAME READY STATUS RESTARTS AGE LABELSNAME READY STATUS RESTARTS AGE LABELS

nginx-deployment-2035384211-7ci7o 1/1 Running 0 18s nginx-deployment-2035384211-7ci7o 1/1 Running 0 18s

nginx-deployment-2035384211-kzszj 1/1 Running 0 18s nginx-deployment-2035384211-kzszj 1/1 Running 0 18s

nginx-deployment-2035384211-qqcnn 1/1 Running 0 18s nginx-deployment-2035384211-qqcnn 1/1 Running 0 18s

hashing the PodTemplatePodTemplate of the ReplicaSet and using the resulting hash as the label value

that is added to the ReplicaSet selector, Pod template labels, and in any existing Pods that the

ReplicaSet might have.

Updating a Deployment

Note: A Deployment’s rollout is triggered if and only if the Deployment’s pod template

(that is, .spec.template.spec.template) is changed, for example if the labels or container images of

the template are updated. Other updates, such as scaling the Deployment, do not trigger

a rollout.

Suppose that we now want to update the nginx Pods to use the nginx:1.9.1nginx:1.9.1 image instead

of the nginx:1.7.9nginx:1.7.9 image.

Alternatively, we can editedit the Deployment and change

.spec.template.spec.containers[0].image.spec.template.spec.containers[0].image from nginx:1.7.9nginx:1.7.9 to nginx:1.9.1nginx:1.9.1 :

To see the rollout status, run:

After the rollout succeeds, you may want to getget the Deployment:

$ $ kubectl kubectl set set image deployment/nginx-deployment image deployment/nginx-deployment nginxnginx==nginx:1.9.1nginx:1.9.1

deployment deployment "nginx-deployment""nginx-deployment" image updated image updated

$ $ kubectl edit deployment/nginx-deploymentkubectl edit deployment/nginx-deployment

deployment deployment "nginx-deployment""nginx-deployment" edited edited

$ $ kubectl rollout status deployment/nginx-deploymentkubectl rollout status deployment/nginx-deployment

Waiting Waiting for for rollout to finish: 2 out of 3 new replicas have been updated...rollout to finish: 2 out of 3 new replicas have been updated...

deployment deployment "nginx-deployment""nginx-deployment" successfully rolled out successfully rolled out

$ $ kubectl get deploymentskubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 3 3 3 3 36snginx-deployment 3 3 3 3 36s

The number of up-to-date replicas indicates that the Deployment has updated the replicas to

the latest configuration. The current replicas indicates the total replicas this Deployment

manages, and the available replicas indicates the number of current replicas that are available.

We can run

kubectl getkubectl get

rsrs to see that the Deployment updated the Pods by creating a new

ReplicaSet and scaling it up to 3 replicas, as well as scaling down the old ReplicaSet to 0

replicas.

Running get podsget pods should now show only the new Pods:

Next time we want to update these Pods, we only need to update the Deployment’s pod

template again.

Deployment can ensure that only a certain number of Pods may be down while they are being

updated. By default, it ensures that at least 25% less than the desired number of Pods are up

(25% max unavailable).

Deployment can also ensure that only a certain number of Pods may be created above the

desired number of Pods. By default, it ensures that at most 25% more than the desired number

of Pods are up (25% max surge).

For example, if you look at the above Deployment closely, you will see that it first created a new

Pod, then deleted some old Pods and created new ones. It does not kill old Pods until a

sufficient number of new Pods have come up, and does not create new Pods until a sufficient

number of old Pods have been killed. It makes sure that number of available Pods is at least 2

and the number of total Pods is at most 4.

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-deployment-1564180365 3 3 3 6snginx-deployment-1564180365 3 3 3 6s

nginx-deployment-2035384211 0 0 0 36snginx-deployment-2035384211 0 0 0 36s

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

nginx-deployment-1564180365-khku8 1/1 Running 0 14snginx-deployment-1564180365-khku8 1/1 Running 0 14s

nginx-deployment-1564180365-nacti 1/1 Running 0 14snginx-deployment-1564180365-nacti 1/1 Running 0 14s

nginx-deployment-1564180365-z9gth 1/1 Running 0 14snginx-deployment-1564180365-z9gth 1/1 Running 0 14s

Here we see that when we first created the Deployment, it created a ReplicaSet (nginx-

deployment-2035384211) and scaled it up to 3 replicas directly. When we updated the

Deployment, it created a new ReplicaSet (nginx-deployment-1564180365) and scaled it up to 1

and then scaled down the old ReplicaSet to 2, so that at least 2 Pods were available and at

most 4 Pods were created at all times. It then continued scaling up and down the new and the

old ReplicaSet, with the same rolling update strategy. Finally, we’ll have 3 available replicas in

the new ReplicaSet, and the old ReplicaSet is scaled down to 0.

$ $ kubectl describe deploymentskubectl describe deployments

Name: nginx-deploymentName: nginx-deployment

Namespace: defaultNamespace: default

CreationTimestamp: Thu, 30 Nov 2017 10:56:25 +0000CreationTimestamp: Thu, 30 Nov 2017 10:56:25 +0000

Labels: Labels: appapp==nginxnginx

Annotations: deployment.kubernetes.io/revisionAnnotations: deployment.kubernetes.io/revision==22

Selector: Selector: appapp==nginxnginx

Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailableReplicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable

StrategyType: RollingUpdateStrategyType: RollingUpdate

MinReadySeconds: 0MinReadySeconds: 0

RollingUpdateStrategy: 25% max unavailable, 25% max surgeRollingUpdateStrategy: 25% max unavailable, 25% max surge

Pod Template:Pod Template:

 Labels: Labels: appapp==nginxnginx

 Containers: Containers:

 nginx: nginx:

 Image: nginx:1.9.1 Image: nginx:1.9.1

 Port: 80/TCP Port: 80/TCP

 Environment: <none> Environment: <none>

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Conditions:Conditions:

 Type Status Reason Type Status Reason

 -------- ------------ ------------

 Available True MinimumReplicasAvailable Available True MinimumReplicasAvailable

 Progressing True NewReplicaSetAvailable Progressing True NewReplicaSetAvailable

OldReplicaSets: <none>OldReplicaSets: <none>

NewReplicaSet: nginx-deployment-1564180365 NewReplicaSet: nginx-deployment-1564180365 ((3/3 replicas created3/3 replicas created))

Events:Events:

 Type Reason Age From Message Type Reason Age From Message

 -------- ------------ -------- -------- --------------

 Normal ScalingReplicaSet 2m deployment-controller Scaled up replica Normal ScalingReplicaSet 2m deployment-controller Scaled up replica set set

 Normal ScalingReplicaSet 24s deployment-controller Scaled up replica Normal ScalingReplicaSet 24s deployment-controller Scaled up replica set set

 Normal ScalingReplicaSet 22s deployment-controller Scaled down replica Normal ScalingReplicaSet 22s deployment-controller Scaled down replica

 Normal ScalingReplicaSet 22s deployment-controller Scaled up replica Normal ScalingReplicaSet 22s deployment-controller Scaled up replica set set

 Normal ScalingReplicaSet 19s deployment-controller Scaled down replica Normal ScalingReplicaSet 19s deployment-controller Scaled down replica

 Normal ScalingReplicaSet 19s deployment-controller Scaled up replica Normal ScalingReplicaSet 19s deployment-controller Scaled up replica set set

 Normal ScalingReplicaSet 14s deployment-controller Scaled down replica Normal ScalingReplicaSet 14s deployment-controller Scaled down replica

Rollover (aka multiple updates in-flight)

Each time a new deployment object is observed by the Deployment controller, a ReplicaSet is

created to bring up the desired Pods if there is no existing ReplicaSet doing so. Existing

ReplicaSet controlling Pods whose labels match .spec.selector.spec.selector but whose template does

not match .spec.template.spec.template are scaled down. Eventually, the new ReplicaSet will be scaled to

.spec.replicas.spec.replicas and all old ReplicaSets will be scaled to 0.

If you update a Deployment while an existing rollout is in progress, the Deployment will create a

new ReplicaSet as per the update and start scaling that up, and will roll over the ReplicaSet

that it was scaling up previously – it will add it to its list of old ReplicaSets and will start

scaling it down.

For example, suppose you create a Deployment to create 5 replicas of nginx:1.7.9nginx:1.7.9 , but then

updates the Deployment to create 5 replicas of nginx:1.9.1nginx:1.9.1 , when only 3 replicas of

nginx:1.7.9nginx:1.7.9 had been created. In that case, Deployment will immediately start killing the 3

nginx:1.7.9nginx:1.7.9 Pods that it had created, and will start creating nginx:1.9.1nginx:1.9.1 Pods. It will not

wait for 5 replicas of nginx:1.7.9nginx:1.7.9 to be created before changing course.

Label selector updates

It is generally discouraged to make label selector updates and it is suggested to plan your

selectors up front. In any case, if you need to perform a label selector update, exercise great

caution and make sure you have grasped all of the implications.

Note: In API version apps/v1apps/v1 , a Deployment’s label selector is immutable after it gets

created.

Selector additions require the pod template labels in the Deployment spec to be updated

with the new label too, otherwise a validation error is returned. This change is a non-

overlapping one, meaning that the new selector does not select ReplicaSets and Pods

created with the old selector, resulting in orphaning all old ReplicaSets and creating a new

ReplicaSet.

Selector updates – that is, changing the existing value in a selector key – result in the

same behavior as additions.

Selector removals – that is, removing an existing key from the Deployment selector – do

not require any changes in the pod template labels. No existing ReplicaSet is orphaned,

and a new ReplicaSet is not created, but note that the removed label still exists in any

existing Pods and ReplicaSets.

Rolling Back a Deployment

Sometimes you may want to rollback a Deployment; for example, when the Deployment is not

stable, such as crash looping. By default, all of the Deployment’s rollout history is kept in the

system so that you can rollback anytime you want (you can change that by modifying revision

history limit).

Note: A Deployment’s revision is created when a Deployment’s rollout is triggered. This

means that the new revision is created if and only if the Deployment’s pod template (

.spec.template.spec.template) is changed, for example if you update the labels or container images

of the template. Other updates, such as scaling the Deployment, do not create a

Deployment revision, so that we can facilitate simultaneous manual- or auto-scaling.

This means that when you roll back to an earlier revision, only the Deployment’s pod

template part is rolled back.

Suppose that we made a typo while updating the Deployment, by putting the image name as

nginx:1.91nginx:1.91 instead of nginx:1.9.1nginx:1.9.1 :

The rollout will be stuck.

Press Ctrl-C to stop the above rollout status watch. For more information on stuck rollouts,

read more here.

You will also see that both the number of old replicas (nginx-deployment-1564180365 and

nginx-deployment-2035384211) and new replicas (nginx-deployment-3066724191) are 2.

$ $ kubectl kubectl set set image deployment/nginx-deployment image deployment/nginx-deployment nginxnginx==nginx:1.91nginx:1.91

deployment deployment "nginx-deployment""nginx-deployment" image updated image updated

$ $ kubectl rollout status deployments nginx-deploymentkubectl rollout status deployments nginx-deployment

Waiting Waiting for for rollout to finish: 2 out of 3 new replicas have been updated...rollout to finish: 2 out of 3 new replicas have been updated...

Looking at the Pods created, you will see that the 2 Pods created by new ReplicaSet are stuck

in an image pull loop.

Note: The Deployment controller will stop the bad rollout automatically, and will stop

scaling up the new ReplicaSet. This depends on the rollingUpdate parameters (

maxUnavailablemaxUnavailable specifically) that you have specified. Kubernetes by default sets the

value to 1 and spec.replicasspec.replicas to 1 so if you haven’t cared about setting those

parameters, your Deployment can have 100% unavailability by default! This will be fixed

in Kubernetes in a future version.

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-deployment-1564180365 2 2 0 25snginx-deployment-1564180365 2 2 0 25s

nginx-deployment-2035384211 0 0 0 36snginx-deployment-2035384211 0 0 0 36s

nginx-deployment-3066724191 2 2 2 6snginx-deployment-3066724191 2 2 2 6s

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

nginx-deployment-1564180365-70iae 1/1 Running 0 25snginx-deployment-1564180365-70iae 1/1 Running 0 25s

nginx-deployment-1564180365-jbqqo 1/1 Running 0 25snginx-deployment-1564180365-jbqqo 1/1 Running 0 25s

nginx-deployment-3066724191-08mng 0/1 ImagePullBackOff 0 6snginx-deployment-3066724191-08mng 0/1 ImagePullBackOff 0 6s

nginx-deployment-3066724191-eocby 0/1 ImagePullBackOff 0 6snginx-deployment-3066724191-eocby 0/1 ImagePullBackOff 0 6s

To fix this, we need to rollback to a previous revision of Deployment that is stable.

Checking Rollout History of a Deployment

First, check the revisions of this deployment:

Because we recorded the command while creating this Deployment using --record--record , we can

easily see the changes we made in each revision.

To further see the details of each revision, run:

$ $ kubectl describe deploymentkubectl describe deployment

Name: nginx-deploymentName: nginx-deployment

Namespace: defaultNamespace: default

CreationTimestamp: Tue, 15 Mar 2016 14:48:04 CreationTimestamp: Tue, 15 Mar 2016 14:48:04 -0700-0700

Labels: Labels: appapp==nginxnginx

Selector: Selector: appapp==nginxnginx

Replicas: 2 updated | 3 total | 2 available | 2 unavailableReplicas: 2 updated | 3 total | 2 available | 2 unavailable

StrategyType: RollingUpdateStrategyType: RollingUpdate

MinReadySeconds: 0MinReadySeconds: 0

RollingUpdateStrategy: 1 max unavailable, 1 max surgeRollingUpdateStrategy: 1 max unavailable, 1 max surge

OldReplicaSets: nginx-deployment-1564180365 OldReplicaSets: nginx-deployment-1564180365 ((2/2 replicas created2/2 replicas created))

NewReplicaSet: nginx-deployment-3066724191 NewReplicaSet: nginx-deployment-3066724191 ((2/2 replicas created2/2 replicas created))

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ----------------

 1m 1m 1 1m 1m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 22s 22s 1 22s 22s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 22s 22s 1 22s 22s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 22s 22s 1 22s 22s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 21s 21s 1 21s 21s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 21s 21s 1 21s 21s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 13s 13s 1 13s 13s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 13s 13s 1 13s 13s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 13s 13s 1 13s 13s 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

$ $ kubectl rollout kubectl rollout history history deployment/nginx-deploymentdeployment/nginx-deployment

deployments deployments "nginx-deployment""nginx-deployment"

REVISION CHANGE-CAUSEREVISION CHANGE-CAUSE

1 kubectl create 1 kubectl create -f-f docs/user-guide/nginx-deployment.yaml docs/user-guide/nginx-deployment.yaml --record--record

2 kubectl 2 kubectl set set image deployment/nginx-deployment image deployment/nginx-deployment nginxnginx==nginx:1.9.1nginx:1.9.1

3 kubectl 3 kubectl set set image deployment/nginx-deployment image deployment/nginx-deployment nginxnginx==nginx:1.91nginx:1.91

Rolling Back to a Previous Revision

Now we’ve decided to undo the current rollout and rollback to the previous revision:

Alternatively, you can rollback to a specific revision by specify that in --to-revision--to-revision :

For more details about rollout related commands, read kubectl rolloutkubectl rollout .

The Deployment is now rolled back to a previous stable revision. As you can see, a

DeploymentRollbackDeploymentRollback event for rolling back to revision 2 is generated from Deployment

controller.

$ $ kubectl rollout kubectl rollout history history deployment/nginx-deployment deployment/nginx-deployment --revision--revision==22

deployments deployments "nginx-deployment""nginx-deployment" revision 2 revision 2

 Labels: Labels: appapp==nginxnginx

 pod-template-hash pod-template-hash==11590506441159050644

 Annotations: kubernetes.io/change-cause Annotations: kubernetes.io/change-cause==kubectl kubectl set set image deployment/nginx-deployment image deployment/nginx-deployment

 Containers: Containers:

 nginx: nginx:

 Image: nginx:1.9.1 Image: nginx:1.9.1

 Port: 80/TCP Port: 80/TCP

 QoS Tier: QoS Tier:

 cpu: BestEffort cpu: BestEffort

 memory: BestEffort memory: BestEffort

 Environment Variables: <none> Environment Variables: <none>

 No volumes. No volumes.

$ $ kubectl rollout undo deployment/nginx-deploymentkubectl rollout undo deployment/nginx-deployment

deployment deployment "nginx-deployment""nginx-deployment" rolled back rolled back

$ $ kubectl rollout undo deployment/nginx-deployment kubectl rollout undo deployment/nginx-deployment --to-revision--to-revision==22

deployment deployment "nginx-deployment""nginx-deployment" rolled back rolled back

file:///docs/reference/generated/kubectl/kubectl-commands#rollout

Scaling a Deployment

You can scale a Deployment by using the following command:

Assuming horizontal pod autoscaling is enabled in your cluster, you can setup an autoscaler

for your Deployment and choose the minimum and maximum number of Pods you want to run

based on the CPU utilization of your existing Pods.

$ $ kubectl get deploymentkubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 3 3 3 3 30mnginx-deployment 3 3 3 3 30m

$ $ kubectl describe deploymentkubectl describe deployment

Name: nginx-deploymentName: nginx-deployment

Namespace: defaultNamespace: default

CreationTimestamp: Tue, 15 Mar 2016 14:48:04 CreationTimestamp: Tue, 15 Mar 2016 14:48:04 -0700-0700

Labels: Labels: appapp==nginxnginx

Selector: Selector: appapp==nginxnginx

Replicas: 3 updated | 3 total | 3 available | 0 unavailableReplicas: 3 updated | 3 total | 3 available | 0 unavailable

StrategyType: RollingUpdateStrategyType: RollingUpdate

MinReadySeconds: 0MinReadySeconds: 0

RollingUpdateStrategy: 1 max unavailable, 1 max surgeRollingUpdateStrategy: 1 max unavailable, 1 max surge

OldReplicaSets: <none>OldReplicaSets: <none>

NewReplicaSet: nginx-deployment-1564180365 NewReplicaSet: nginx-deployment-1564180365 ((3/3 replicas created3/3 replicas created))

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ----------------

 30m 30m 1 30m 30m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

 29m 29m 1 29m 29m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 2m 2m 1 2m 2m 1 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled down replica Normal ScalingReplicaSet Scaled down replica

 2m 2m 1 2m 2m 1 {{deployment-controller deployment-controller }} Normal DeploymentRollback Rolled back deployment Normal DeploymentRollback Rolled back deployment

 29m 2m 2 29m 2m 2 {{deployment-controller deployment-controller }} Normal ScalingReplicaSet Scaled up replica Normal ScalingReplicaSet Scaled up replica

$ $ kubectl scale deployment nginx-deployment kubectl scale deployment nginx-deployment --replicas--replicas==1010

deployment deployment "nginx-deployment""nginx-deployment" scaled scaled

file:///docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

Proportional scaling

RollingUpdate Deployments support running multiple versions of an application at the same

time. When you or an autoscaler scales a RollingUpdate Deployment that is in the middle of a

rollout (either in progress or paused), then the Deployment controller will balance the additional

replicas in the existing active ReplicaSets (ReplicaSets with Pods) in order to mitigate risk. This

is called proportional scaling.

For example, you are running a Deployment with 10 replicas, maxSurge=3, and

maxUnavailable=2.

You update to a new image which happens to be unresolvable from inside the cluster.

The image update starts a new rollout with ReplicaSet nginx-deployment-1989198191, but it’s

blocked due to the maxUnavailablemaxUnavailable requirement that we mentioned above.

Then a new scaling request for the Deployment comes along. The autoscaler increments the

Deployment replicas to 15. The Deployment controller needs to decide where to add these new

5 replicas. If we weren’t using proportional scaling, all 5 of them would be added in the new

ReplicaSet. With proportional scaling, we spread the additional replicas across all ReplicaSets.

Bigger proportions go to the ReplicaSets with the most replicas and lower proportions go to

ReplicaSets with less replicas. Any leftovers are added to the ReplicaSet with the most replicas.

$ $ kubectl autoscale deployment nginx-deployment kubectl autoscale deployment nginx-deployment --min--min==10 10 --max--max==15 15 --cpu-percent--cpu-percent

deployment deployment "nginx-deployment""nginx-deployment" autoscaled autoscaled

$ $ kubectl get deploykubectl get deploy

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 10 10 10 10 50snginx-deployment 10 10 10 10 50s

$ $ kubectl kubectl set set image deploy/nginx-deployment image deploy/nginx-deployment nginxnginx==nginx:sometagnginx:sometag

deployment deployment "nginx-deployment""nginx-deployment" image updated image updated

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-deployment-1989198191 5 5 0 9snginx-deployment-1989198191 5 5 0 9s

nginx-deployment-618515232 8 8 8 1mnginx-deployment-618515232 8 8 8 1m

ReplicaSets with zero replicas are not scaled up.

In our example above, 3 replicas will be added to the old ReplicaSet and 2 replicas will be

added to the new ReplicaSet. The rollout process should eventually move all replicas to the

new ReplicaSet, assuming the new replicas become healthy.

Pausing and Resuming a Deployment

You can pause a Deployment before triggering one or more updates and then resume it. This

will allow you to apply multiple fixes in between pausing and resuming without triggering

unnecessary rollouts.

For example, with a Deployment that was just created:

Pause by running the following command:

Then update the image of the Deployment:

Notice that no new rollout started:

$ $ kubectl get deploykubectl get deploy

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 15 18 7 8 7mnginx-deployment 15 18 7 8 7m

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-deployment-1989198191 7 7 0 7mnginx-deployment-1989198191 7 7 0 7m

nginx-deployment-618515232 11 11 11 7mnginx-deployment-618515232 11 11 11 7m

$ $ kubectl get deploykubectl get deploy

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx 3 3 3 3 1mnginx 3 3 3 3 1m

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-2142116321 3 3 3 1mnginx-2142116321 3 3 3 1m

$ $ kubectl rollout pause deployment/nginx-deploymentkubectl rollout pause deployment/nginx-deployment

deployment deployment "nginx-deployment""nginx-deployment" paused paused

$ $ kubectl kubectl set set image deploy/nginx-deployment image deploy/nginx-deployment nginxnginx==nginx:1.9.1nginx:1.9.1

deployment deployment "nginx-deployment""nginx-deployment" image updated image updated

You can make as many updates as you wish, for example, update the resources that will be

used:

The initial state of the Deployment prior to pausing it will continue its function, but new

updates to the Deployment will not have any effect as long as the Deployment is paused.

Eventually, resume the Deployment and observe a new ReplicaSet coming up with all the new

updates:

$ $ kubectl rollout kubectl rollout history history deploy/nginx-deploymentdeploy/nginx-deployment

deployments deployments "nginx""nginx"

REVISION CHANGE-CAUSEREVISION CHANGE-CAUSE

1 <none>1 <none>

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-2142116321 3 3 3 2mnginx-2142116321 3 3 3 2m

$ $ kubectl kubectl set set resources deployment nginx-deployment resources deployment nginx-deployment -c-c==nginx nginx --limits--limits==cpucpu==200m,memory200m,memory

deployment deployment "nginx-deployment""nginx-deployment" resource requirements updated resource requirements updated

$ $ kubectl rollout resume deploy/nginx-deploymentkubectl rollout resume deploy/nginx-deployment

deployment deployment "nginx""nginx" resumed resumed

$ $ kubectl get rs kubectl get rs -w-w

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-2142116321 2 2 2 2mnginx-2142116321 2 2 2 2m

nginx-3926361531 2 2 0 6snginx-3926361531 2 2 0 6s

nginx-3926361531 2 2 1 18snginx-3926361531 2 2 1 18s

nginx-2142116321 1 2 2 2mnginx-2142116321 1 2 2 2m

nginx-2142116321 1 2 2 2mnginx-2142116321 1 2 2 2m

nginx-3926361531 3 2 1 18snginx-3926361531 3 2 1 18s

nginx-3926361531 3 2 1 18snginx-3926361531 3 2 1 18s

nginx-2142116321 1 1 1 2mnginx-2142116321 1 1 1 2m

nginx-3926361531 3 3 1 18snginx-3926361531 3 3 1 18s

nginx-3926361531 3 3 2 19snginx-3926361531 3 3 2 19s

nginx-2142116321 0 1 1 2mnginx-2142116321 0 1 1 2m

nginx-2142116321 0 1 1 2mnginx-2142116321 0 1 1 2m

nginx-2142116321 0 0 0 2mnginx-2142116321 0 0 0 2m

nginx-3926361531 3 3 3 20snginx-3926361531 3 3 3 20s

^C^C

$ $ kubectl get rskubectl get rs

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

nginx-2142116321 0 0 0 2mnginx-2142116321 0 0 0 2m

nginx-3926361531 3 3 3 28snginx-3926361531 3 3 3 28s

Note: You cannot rollback a paused Deployment until you resume it.

Deployment status

A Deployment enters various states during its lifecycle. It can be progressing while rolling out a

new ReplicaSet, it can be complete, or it can fail to progress.

Progressing Deployment

Kubernetes marks a Deployment as progressing when one of the following tasks is performed:

The Deployment creates a new ReplicaSet.

The Deployment is scaling up its newest ReplicaSet.

The Deployment is scaling down its older ReplicaSet(s).

New Pods become ready or available (ready for at least MinReadySeconds).

You can monitor the progress for a Deployment by using

kubectl rolloutkubectl rollout

statusstatus .

Complete Deployment

Kubernetes marks a Deployment as complete when it has the following characteristics:

All of the replicas associated with the Deployment have been updated to the latest version

you’ve specified, meaning any updates you’ve requested have been completed.

All of the replicas associated with the Deployment are available.

No old replicas for the Deployment are running.

You can check if a Deployment has completed by using

kubectl rolloutkubectl rollout

statusstatus . If the

rollout completed successfully,

kubectl rolloutkubectl rollout

statusstatus returns a zero exit code.

Failed Deployment

Your Deployment may get stuck trying to deploy its newest ReplicaSet without ever

completing. This can occur due to some of the following factors:

Insufficient quota

Readiness probe failures

Image pull errors

Insufficient permissions

Limit ranges

Application runtime misconfiguration

One way you can detect this condition is to specify a deadline parameter in your Deployment

spec: (spec.progressDeadlineSecondsspec.progressDeadlineSeconds). spec.progressDeadlineSecondsspec.progressDeadlineSeconds denotes the

number of seconds the Deployment controller waits before indicating (in the Deployment

status) that the Deployment progress has stalled.

The following kubectlkubectl command sets the spec with progressDeadlineSecondsprogressDeadlineSeconds to make

the controller report lack of progress for a Deployment after 10 minutes:

Once the deadline has been exceeded, the Deployment controller adds a DeploymentCondition

with the following attributes to the Deployment’s status.conditionsstatus.conditions :

Type=Progressing

Status=False

$ $ kubectl rollout status deploy/nginx-deploymentkubectl rollout status deploy/nginx-deployment

Waiting Waiting for for rollout to finish: 2 of 3 updated replicas are available...rollout to finish: 2 of 3 updated replicas are available...

deployment deployment "nginx""nginx" successfully rolled out successfully rolled out

$ $ echoecho $?$?

00

$ $ kubectl patch deployment/nginx-deployment kubectl patch deployment/nginx-deployment -p-p '{"spec":{"progressDeadlineSeconds":600}}''{"spec":{"progressDeadlineSeconds":600}}'

deployment deployment "nginx-deployment""nginx-deployment" patched patched

Reason=ProgressDeadlineExceeded

See the Kubernetes API conventions for more information on status conditions.

Note: Kubernetes will take no action on a stalled Deployment other than to report a

status condition with Reason=ProgressDeadlineExceededReason=ProgressDeadlineExceeded . Higher level orchestrators

can take advantage of it and act accordingly, for example, rollback the Deployment to its

previous version.

Note: If you pause a Deployment, Kubernetes does not check progress against your

specified deadline. You can safely pause a Deployment in the middle of a rollout and

resume without triggering the condition for exceeding the deadline.

You may experience transient errors with your Deployments, either due to a low timeout that

you have set or due to any other kind of error that can be treated as transient. For example,

let’s suppose you have insufficient quota. If you describe the Deployment you will notice the

following section:

If you run

kubectl get deployment nginx-deployment -okubectl get deployment nginx-deployment -o

yamlyaml , the Deployment status

might look like this:

$ $ kubectl describe deployment nginx-deploymentkubectl describe deployment nginx-deployment

<...><...>

Conditions:Conditions:

 Type Status Reason Type Status Reason

 -------- ------------ ------------

 Available True MinimumReplicasAvailable Available True MinimumReplicasAvailable

 Progressing True ReplicaSetUpdated Progressing True ReplicaSetUpdated

 ReplicaFailure True FailedCreate ReplicaFailure True FailedCreate

<...><...>

https://git.k8s.io/community/contributors/devel/api-conventions.md#typical-status-properties

Eventually, once the Deployment progress deadline is exceeded, Kubernetes updates the

status and the reason for the Progressing condition:

You can address an issue of insufficient quota by scaling down your Deployment, by scaling

down other controllers you may be running, or by increasing quota in your namespace. If you

satisfy the quota conditions and the Deployment controller then completes the Deployment

rollout, you’ll see the Deployment’s status update with a successful condition (Status=TrueStatus=True

and Reason=NewReplicaSetAvailableReason=NewReplicaSetAvailable).

status:status:

 availableReplicas: 2 availableReplicas: 2

 conditions: conditions:

 - lastTransitionTime: 2016-10-04T12:25:39Z - lastTransitionTime: 2016-10-04T12:25:39Z

 lastUpdateTime: 2016-10-04T12:25:39Z lastUpdateTime: 2016-10-04T12:25:39Z

 message: Replica set "nginx-deployment-4262182780" is progressing. message: Replica set "nginx-deployment-4262182780" is progressing.

 reason: ReplicaSetUpdated reason: ReplicaSetUpdated

 status: "True" status: "True"

 type: Progressing type: Progressing

 - lastTransitionTime: 2016-10-04T12:25:42Z - lastTransitionTime: 2016-10-04T12:25:42Z

 lastUpdateTime: 2016-10-04T12:25:42Z lastUpdateTime: 2016-10-04T12:25:42Z

 message: Deployment has minimum availability. message: Deployment has minimum availability.

 reason: MinimumReplicasAvailable reason: MinimumReplicasAvailable

 status: "True" status: "True"

 type: Available type: Available

 - lastTransitionTime: 2016-10-04T12:25:39Z - lastTransitionTime: 2016-10-04T12:25:39Z

 lastUpdateTime: 2016-10-04T12:25:39Z lastUpdateTime: 2016-10-04T12:25:39Z

 message: 'Error creating: pods "nginx-deployment-4262182780-" is forbidden: exceeded quota: message: 'Error creating: pods "nginx-deployment-4262182780-" is forbidden: exceeded quota:

 object-counts, requested: pods=1, used: pods=3, limited: pods=2' object-counts, requested: pods=1, used: pods=3, limited: pods=2'

 reason: FailedCreate reason: FailedCreate

 status: "True" status: "True"

 type: ReplicaFailure type: ReplicaFailure

 observedGeneration: 3 observedGeneration: 3

 replicas: 2 replicas: 2

 unavailableReplicas: 2 unavailableReplicas: 2

Conditions:Conditions:

 Type Status Reason Type Status Reason

 ---- ------ ------ ---- ------ ------

 Available True MinimumReplicasAvailable Available True MinimumReplicasAvailable

 Progressing False ProgressDeadlineExceeded Progressing False ProgressDeadlineExceeded

 ReplicaFailure True FailedCreate ReplicaFailure True FailedCreate

Type=AvailableType=Available with Status=TrueStatus=True means that your Deployment has minimum availability.

Minimum availability is dictated by the parameters specified in the deployment strategy.

Type=ProgressingType=Progressing with Status=TrueStatus=True means that your Deployment is either in the middle of

a rollout and it is progressing or that it has successfully completed its progress and the

minimum required new replicas are available (see the Reason of the condition for the

particulars - in our case Reason=NewReplicaSetAvailableReason=NewReplicaSetAvailable means that the Deployment is

complete).

You can check if a Deployment has failed to progress by using

kubectl rolloutkubectl rollout

statusstatus .

kubectl rolloutkubectl rollout

statusstatus returns a non-zero exit code if the Deployment has exceeded the

progression deadline.

Operating on a failed deployment

All actions that apply to a complete Deployment also apply to a failed Deployment. You can

scale it up/down, roll back to a previous revision, or even pause it if you need to apply multiple

tweaks in the Deployment pod template.

Clean up Policy

You can set .spec.revisionHistoryLimit.spec.revisionHistoryLimit field in a Deployment to specify how many old

ReplicaSets for this Deployment you want to retain. The rest will be garbage-collected in the

background. By default, all revision history will be kept. In a future version, it will default to

Conditions:Conditions:

 Type Status Reason Type Status Reason

 ---- ------ ------ ---- ------ ------

 Available True MinimumReplicasAvailable Available True MinimumReplicasAvailable

 Progressing True NewReplicaSetAvailable Progressing True NewReplicaSetAvailable

$ $ kubectl rollout status deploy/nginx-deploymentkubectl rollout status deploy/nginx-deployment

Waiting Waiting for for rollout to finish: 2 out of 3 new replicas have been updated...rollout to finish: 2 out of 3 new replicas have been updated...

error: deployment error: deployment "nginx""nginx" exceeded its progress deadline exceeded its progress deadline

$ $ echoecho $?$?

11

switch to 2.

Note: Explicitly setting this field to 0, will result in cleaning up all the history of your

Deployment thus that Deployment will not be able to roll back.

Use Cases

Canary Deployment

If you want to roll out releases to a subset of users or servers using the Deployment, you can

create multiple Deployments, one for each release, following the canary pattern described in

managing resources.

Writing a Deployment Spec

As with all other Kubernetes configs, a Deployment needs apiVersionapiVersion , kindkind , and metadatametadata

fields. For general information about working with config files, see deploying applications,

configuring containers, and using kubectl to manage resources documents.

A Deployment also needs a .spec.spec section.

Pod Template

The .spec.template.spec.template is the only required field of the .spec.spec .

The .spec.template.spec.template is a pod template. It has exactly the same schema as a Pod, except it is

nested and does not have an apiVersionapiVersion or kindkind .

In addition to required fields for a Pod, a pod template in a Deployment must specify

appropriate labels and an appropriate restart policy. For labels, make sure not to overlap with

other controllers. See selector).

Only a .spec.template.spec.restartPolicy.spec.template.spec.restartPolicy equal to AlwaysAlways is allowed, which is the

default if not specified.

Replicas

file:///docs/concepts/cluster-administration/manage-deployment/#canary-deployments
file:///docs/tutorials/stateless-application/run-stateless-application-deployment/
file:///docs/concepts/overview/object-management-kubectl/overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
file:///docs/concepts/workloads/pods/pod-overview/#pod-templates
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/pods/pod-lifecycle/

.spec.replicas.spec.replicas is an optional field that specifies the number of desired Pods. It defaults to

1.

Selector

.spec.selector.spec.selector is an optional field that specifies a label selector for the Pods targeted by

this deployment.

.spec.selector.spec.selector must match .spec.template.metadata.labels.spec.template.metadata.labels , or it will be rejected by

the API.

In API version apps/v1apps/v1 , .spec.selector.spec.selector and .metadata.labels.metadata.labels do not default to

.spec.template.metadata.labels.spec.template.metadata.labels if not set. So they must be set explicitly. Also note that

.spec.selector.spec.selector is immutable after creation of the Deployment in apps/v1apps/v1 .

A Deployment may terminate Pods whose labels match the selector if their template is

different from .spec.template.spec.template or if the total number of such Pods exceeds

.spec.replicas.spec.replicas . It brings up new Pods with .spec.template.spec.template if the number of Pods is less

than the desired number.

Note: You should not create other pods whose labels match this selector, either directly,

by creating another Deployment, or by creating another controller such as a ReplicaSet

or a ReplicationController. If you do so, the first Deployment thinks that it created these

other pods. Kubernetes does not stop you from doing this.

If you have multiple controllers that have overlapping selectors, the controllers will fight with

each other and won’t behave correctly.

Strategy

.spec.strategy.spec.strategy specifies the strategy used to replace old Pods by new ones.

.spec.strategy.type.spec.strategy.type can be “Recreate” or “RollingUpdate”. “RollingUpdate” is the default

value.

Recreate Deployment

All existing Pods are killed before new ones are created when

file:///docs/concepts/overview/working-with-objects/labels/

.spec.strategy.type==Recreate.spec.strategy.type==Recreate .

Rolling Update Deployment

The Deployment updates Pods in a rolling update fashion when

.spec.strategy.type==RollingUpdate.spec.strategy.type==RollingUpdate . You can specify maxUnavailablemaxUnavailable and maxSurgemaxSurge

to control the rolling update process.

Max Unavailable

.spec.strategy.rollingUpdate.maxUnavailable.spec.strategy.rollingUpdate.maxUnavailable is an optional field that specifies the

maximum number of Pods that can be unavailable during the update process. The value can

be an absolute number (for example, 5) or a percentage of desired Pods (for example, 10%).

The absolute number is calculated from percentage by rounding down. The value cannot be 0

if .spec.strategy.rollingUpdate.maxSurge.spec.strategy.rollingUpdate.maxSurge is 0. The default value is 25%.

For example, when this value is set to 30%, the old ReplicaSet can be scaled down to 70% of

desired Pods immediately when the rolling update starts. Once new Pods are ready, old

ReplicaSet can be scaled down further, followed by scaling up the new ReplicaSet, ensuring

that the total number of Pods available at all times during the update is at least 70% of the

desired Pods.

Max Surge

.spec.strategy.rollingUpdate.maxSurge.spec.strategy.rollingUpdate.maxSurge is an optional field that specifies the maximum

number of Pods that can be created over the desired number of Pods. The value can be an

absolute number (for example, 5) or a percentage of desired Pods (for example, 10%). The

value cannot be 0 if MaxUnavailableMaxUnavailable is 0. The absolute number is calculated from the

percentage by rounding up. The default value is 25%.

For example, when this value is set to 30%, the new ReplicaSet can be scaled up immediately

when the rolling update starts, such that the total number of old and new Pods does not

exceed 130% of desired Pods. Once old Pods have been killed, the new ReplicaSet can be

scaled up further, ensuring that the total number of Pods running at any time during the update

is at most 130% of desired Pods.

Progress Deadline Seconds

file:///docs/tasks/run-application/rolling-update-replication-controller/

.spec.progressDeadlineSeconds.spec.progressDeadlineSeconds is an optional field that specifies the number of seconds

you want to wait for your Deployment to progress before the system reports back that the

Deployment has failed progressing - surfaced as a condition with Type=ProgressingType=Progressing ,

Status=FalseStatus=False . and Reason=ProgressDeadlineExceededReason=ProgressDeadlineExceeded in the status of the resource. The

deployment controller will keep retrying the Deployment. In the future, once automatic rollback

will be implemented, the deployment controller will roll back a Deployment as soon as it

observes such a condition.

If specified, this field needs to be greater than .spec.minReadySeconds.spec.minReadySeconds .

Min Ready Seconds

.spec.minReadySeconds.spec.minReadySeconds is an optional field that specifies the minimum number of seconds

for which a newly created Pod should be ready without any of its containers crashing, for it to

be considered available. This defaults to 0 (the Pod will be considered available as soon as it is

ready). To learn more about when a Pod is considered ready, see Container Probes.

Rollback To

Field .spec.rollbackTo.spec.rollbackTo has been deprecated in API versions extensions/v1beta1extensions/v1beta1 and

apps/v1beta1apps/v1beta1 , and is no longer supported in API versions starting apps/v1beta2apps/v1beta2 . Instead,

kubectl rollout undokubectl rollout undo as introduced in Rolling Back to a Previous Revision should be used.

Revision History Limit

A Deployment’s revision history is stored in the replica sets it controls.

.spec.revisionHistoryLimit.spec.revisionHistoryLimit is an optional field that specifies the number of old

ReplicaSets to retain to allow rollback. Its ideal value depends on the frequency and stability of

new Deployments. All old ReplicaSets will be kept by default, consuming resources in etcdetcd

and crowding the output of

kubectl getkubectl get

rsrs , if this field is not set. The configuration of each

Deployment revision is stored in its ReplicaSets; therefore, once an old ReplicaSet is deleted,

you lose the ability to rollback to that revision of Deployment.

More specifically, setting this field to zero means that all old ReplicaSets with 0 replica will be

cleaned up. In this case, a new Deployment rollout cannot be undone, since its revision history

file:///docs/concepts/workloads/pods/pod-lifecycle/#container-probes

is cleaned up.

Paused

.spec.paused.spec.paused is an optional boolean field for pausing and resuming a Deployment. The only

difference between a paused Deployment and one that is not paused, is that any changes into

the PodTemplateSpec of the paused Deployment will not trigger new rollouts as long as it is

paused. A Deployment is not paused by default when it is created.

Alternative to Deployments

kubectl rolling update

Kubectl rolling update updates Pods and ReplicationControllers in a similar fashion. But

Deployments are recommended, since they are declarative, server side, and have additional

features, such as rolling back to any previous revision even after the rolling update is done.

file:///docs/user-guide/kubectl/v1.10/#rolling-update

StatefulSets

StatefulSet is the workload API object used to manage stateful applications.

Note: StatefulSets are stable (GA) in 1.9.

Manages the deployment and scaling of a set of , and provides guarantees about the

ordering and uniqueness of these Pods.

Like a , a StatefulSet manages Pods that are based on an identical container spec.

Unlike a Deployment, a StatefulSet maintains a sticky identity for each of their Pods. These

pods are created from the same spec, but are not interchangeable: each has a persistent

identifier that it maintains across any rescheduling.

A StatefulSet operates under the same pattern as any other Controller. You define your desired

state in a StatefulSet object, and the StatefulSet controller makes any necessary updates to get

there from the current state.

Pods

Deployment

Using StatefulSets

Limitations

Components

Pod Selector

Pod Identity

Ordinal Index

Stable Network ID

Stable Storage

Pod Name Label

Deployment and Scaling Guarantees

Pod Management Policies

OrderedReady Pod Management

Parallel Pod Management

Update Strategies

On Delete

Rolling Updates

Partitions

What’s next

file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/concepts/workloads/controllers/deployment/

Using StatefulSets

StatefulSets are valuable for applications that require one or more of the following.

Stable, unique network identifiers.

Stable, persistent storage.

Ordered, graceful deployment and scaling.

Ordered, graceful deletion and termination.

Ordered, automated rolling updates.

In the above, stable is synonymous with persistence across Pod (re)scheduling. If an

application doesn’t require any stable identifiers or ordered deployment, deletion, or scaling,

you should deploy your application with a controller that provides a set of stateless replicas.

Controllers such as Deployment or ReplicaSet may be better suited to your stateless needs.

Limitations

StatefulSet was a beta resource prior to 1.9 and not available in any Kubernetes release

prior to 1.5.

As with all alpha/beta resources, you can disable StatefulSet through the

--runtime-config--runtime-config option passed to the apiserver.

The storage for a given Pod must either be provisioned by a PersistentVolume Provisioner

based on the requested storage classstorage class , or pre-provisioned by an admin.

Deleting and/or scaling a StatefulSet down will not delete the volumes associated with the

StatefulSet. This is done to ensure data safety, which is generally more valuable than an

automatic purge of all related StatefulSet resources.

StatefulSets currently require a Headless Service to be responsible for the network identity

of the Pods. You are responsible for creating this Service.

Components

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/README.md
file:///docs/concepts/services-networking/service/#headless-services

The example below demonstrates the components of a StatefulSet.

A Headless Service, named nginx, is used to control the network domain.

The StatefulSet, named web, has a Spec that indicates that 3 replicas of the nginx

container will be launched in unique Pods.

The volumeClaimTemplates will provide stable storage using PersistentVolumes

provisioned by a PersistentVolume Provisioner.

file:///docs/concepts/storage/persistent-volumes/

Pod Selector

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 appapp:: nginxnginx

specspec::

 portsports::

 -- portport:: 8080

 namename:: webweb

 clusterIPclusterIP:: NoneNone

 selectorselector::

 appapp:: nginxnginx

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: StatefulSetStatefulSet

metadatametadata::

 namename:: webweb

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx # has to match .spec.template.metadata.labels# has to match .spec.template.metadata.labels
 serviceNameserviceName:: ""nginx"nginx"

 replicasreplicas:: 33 # by default is 1# by default is 1
 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx # has to match .spec.selector.matchLabels# has to match .spec.selector.matchLabels
 specspec::

 terminationGracePeriodSecondsterminationGracePeriodSeconds:: 1010

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

 portsports::

 -- containerPortcontainerPort:: 8080

 namename:: webweb

 volumeMountsvolumeMounts::

 -- namename:: wwwwww

 mountPathmountPath:: /usr/share/nginx/html/usr/share/nginx/html

 volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: wwwwww

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 storageClassNamestorageClassName:: ""my-storage-class"my-storage-class"

 resourcesresources::

 requestsrequests::

 storagestorage:: 1Gi1Gi

You must set the spec.selectorspec.selector field of a StatefulSet to match the labels of its

.spec.template.metadata.labels.spec.template.metadata.labels . Prior to Kubernetes 1.8, the spec.selectorspec.selector field was

defaulted when omitted. In 1.8 and later versions, failing to specify a matching Pod Selector

will result in a validation error during StatefulSet creation.

Pod Identity

StatefulSet Pods have a unique identity that is comprised of an ordinal, a stable network

identity, and stable storage. The identity sticks to the Pod, regardless of which node it’s

(re)scheduled on.

Ordinal Index

For a StatefulSet with N replicas, each Pod in the StatefulSet will be assigned an integer

ordinal, from 0 up through N-1, that is unique over the Set.

Stable Network ID

Each Pod in a StatefulSet derives its hostname from the name of the StatefulSet and the

ordinal of the Pod. The pattern for the constructed hostname is

$(statefulset name)-$(statefulset name)-

$(ordinal)$(ordinal) . The example above will create three Pods named

web-0,web-1,web-2web-0,web-1,web-2 . A StatefulSet can use a Headless Service to control the domain of its

Pods. The domain managed by this Service takes the form:

$(service name).$(namespace).svc.cluster.local$(service name).$(namespace).svc.cluster.local , where “cluster.local” is the cluster

domain. As each Pod is created, it gets a matching DNS subdomain, taking the form:

$(podname).$(governing service domain)$(podname).$(governing service domain) , where the governing service is defined by the

serviceNameserviceName field on the StatefulSet.

Here are some examples of choices for Cluster Domain, Service name, StatefulSet name, and

how that affects the DNS names for the StatefulSet’s Pods.

Cluster
Domain

Service
(ns/name)

StatefulSet
(ns/name)

StatefulSet Domain Pod DNS
Pod
Hostname

cluster.local default/nginx default/web nginx.default.svc.cluster.local
web-{0..N-
1}.nginx.default.svc.cluster.local

web-{0..N-1}

web-{0..N-

file:///docs/concepts/services-networking/service/#headless-services

cluster.local foo/nginx foo/web nginx.foo.svc.cluster.local 1}.nginx.foo.svc.cluster.local web-{0..N-1}

kube.local foo/nginx foo/web nginx.foo.svc.kube.local
web-{0..N-
1}.nginx.foo.svc.kube.local

web-{0..N-1}

Cluster
Domain

Service
(ns/name)

StatefulSet
(ns/name)

StatefulSet Domain Pod DNS
Pod
Hostname

Note that Cluster Domain will be set to cluster.localcluster.local unless otherwise configured.

Stable Storage

Kubernetes creates one PersistentVolume for each VolumeClaimTemplate. In the nginx

example above, each Pod will receive a single PersistentVolume with a StorageClass of

my-storage-classmy-storage-class and 1 Gib of provisioned storage. If no StorageClass is specified, then the

default StorageClass will be used. When a Pod is (re)scheduled onto a node, its

volumeMountsvolumeMounts mount the PersistentVolumes associated with its PersistentVolume Claims.

Note that, the PersistentVolumes associated with the Pods’ PersistentVolume Claims are not

deleted when the Pods, or StatefulSet are deleted. This must be done manually.

Pod Name Label

When the StatefulSet controller creates a Pod, it adds a label,

statefulset.kubernetes.io/pod-namestatefulset.kubernetes.io/pod-name , that is set to the name of the Pod. This label allows

you to attach a Service to a specific Pod in the StatefulSet.

Deployment and Scaling Guarantees

For a StatefulSet with N replicas, when Pods are being deployed, they are created

sequentially, in order from {0..N-1}.

When Pods are being deleted, they are terminated in reverse order, from {N-1..0}.

Before a scaling operation is applied to a Pod, all of its predecessors must be Running and

Ready.

Before a Pod is terminated, all of its successors must be completely shutdown.

The StatefulSet should not specify a pod.Spec.TerminationGracePeriodSecondspod.Spec.TerminationGracePeriodSeconds of 0. This

practice is unsafe and strongly discouraged. For further explanation, please refer to force

deleting StatefulSet Pods.

When the nginx example above is created, three Pods will be deployed in the order web-0, web-

file:///docs/concepts/services-networking/dns-pod-service/#how-it-works
file:///docs/concepts/storage/persistent-volumes/
file:///docs/tasks/run-application/force-delete-stateful-set-pod/

1, web-2. web-1 will not be deployed before web-0 is Running and Ready, and web-2 will not be

deployed until web-1 is Running and Ready. If web-0 should fail, after web-1 is Running and

Ready, but before web-2 is launched, web-2 will not be launched until web-0 is successfully

relaunched and becomes Running and Ready.

If a user were to scale the deployed example by patching the StatefulSet such that

replicas=1replicas=1 , web-2 would be terminated first. web-1 would not be terminated until web-2 is

fully shutdown and deleted. If web-0 were to fail after web-2 has been terminated and is

completely shutdown, but prior to web-1’s termination, web-1 would not be terminated until

web-0 is Running and Ready.

Pod Management Policies

In Kubernetes 1.7 and later, StatefulSet allows you to relax its ordering guarantees while

preserving its uniqueness and identity guarantees via its .spec.podManagementPolicy.spec.podManagementPolicy field.

OrderedReady Pod Management

OrderedReadyOrderedReady pod management is the default for StatefulSets. It implements the behavior

described above.

Parallel Pod Management

ParallelParallel pod management tells the StatefulSet controller to launch or terminate all Pods in

parallel, and to not wait for Pods to become Running and Ready or completely terminated prior

to launching or terminating another Pod.

Update Strategies

In Kubernetes 1.7 and later, StatefulSet’s .spec.updateStrategy.spec.updateStrategy field allows you to

configure and disable automated rolling updates for containers, labels, resource request/limits,

and annotations for the Pods in a StatefulSet.

On Delete

The OnDeleteOnDelete update strategy implements the legacy (1.6 and prior) behavior. When a

StatefulSet’s .spec.updateStrategy.type.spec.updateStrategy.type is set to OnDeleteOnDelete , the StatefulSet controller will

file:///docs/user-guide/pod-states/

not automatically update the Pods in a StatefulSet. Users must manually delete Pods to cause

the controller to create new Pods that reflect modifications made to a StatefulSet’s

.spec.template.spec.template .

Rolling Updates

The RollingUpdateRollingUpdate update strategy implements automated, rolling update for the Pods in a

StatefulSet. It is the default strategy when spec.updateStrategyspec.updateStrategy is left unspecified. When a

StatefulSet’s .spec.updateStrategy.type.spec.updateStrategy.type is set to RollingUpdateRollingUpdate , the StatefulSet

controller will delete and recreate each Pod in the StatefulSet. It will proceed in the same order

as Pod termination (from the largest ordinal to the smallest), updating each Pod one at a time.

It will wait until an updated Pod is Running and Ready prior to updating its predecessor.

Partitions

The RollingUpdateRollingUpdate update strategy can be partitioned, by specifying a

.spec.updateStrategy.rollingUpdate.partition.spec.updateStrategy.rollingUpdate.partition . If a partition is specified, all Pods with

an ordinal that is greater than or equal to the partition will be updated when the StatefulSet’s

.spec.template.spec.template is updated. All Pods with an ordinal that is less than the partition will not be

updated, and, even if they are deleted, they will be recreated at the previous version. If a

StatefulSet’s .spec.updateStrategy.rollingUpdate.partition.spec.updateStrategy.rollingUpdate.partition is greater than its

.spec.replicas.spec.replicas , updates to its .spec.template.spec.template will not be propagated to its Pods. In most

cases you will not need to use a partition, but they are useful if you want to stage an update,

roll out a canary, or perform a phased roll out.

What’s next

Follow an example of deploying a stateful application.

Follow an example of deploying Cassandra with Stateful Sets.

file:///docs/tutorials/stateful-application/basic-stateful-set/
file:///docs/tutorials/stateful-application/cassandra/

DaemonSet

What is a DaemonSet?

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added to the

cluster, Pods are added to them. As nodes are removed from the cluster, those Pods are

garbage collected. Deleting a DaemonSet will clean up the Pods it created.

Some typical uses of a DaemonSet are:

running a cluster storage daemon, such as glusterdglusterd , cephceph , on each node.

running a logs collection daemon on every node, such as fluentdfluentd or logstashlogstash .

running a node monitoring daemon on every node, such as Prometheus Node Exporter,

collectdcollectd , Datadog agent, New Relic agent, or Ganglia gmondgmond .

In a simple case, one DaemonSet, covering all nodes, would be used for each type of daemon.

A more complex setup might use multiple DaemonSets for a single type of daemon, but with

different flags and/or different memory and cpu requests for different hardware types.

What is a DaemonSet?

Writing a DaemonSet Spec

Create a DaemonSet

Required Fields

Pod Template

Pod Selector

Running Pods on Only Some Nodes

How Daemon Pods are Scheduled

Communicating with Daemon Pods

Updating a DaemonSet

Alternatives to DaemonSet

Init Scripts

Bare Pods

Static Pods

Deployments

https://github.com/prometheus/node_exporter

Writing a DaemonSet Spec

Create a DaemonSet

You can describe a DaemonSet in a YAML file. For example, the daemonset.yamldaemonset.yaml file below

describes a DaemonSet that runs the fluentd-elasticsearch Docker image:

daemonset.yamldaemonset.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/daemonset.yaml

daemonset.yamldaemonset.yaml

Create a DaemonSet based on the YAML file:

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DaemonSetDaemonSet

metadatametadata::

 namename:: fluentd-elasticsearchfluentd-elasticsearch

 namespacenamespace:: kube-systemkube-system

 labelslabels::

 k8s-appk8s-app:: fluentd-loggingfluentd-logging

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 namename:: fluentd-elasticsearchfluentd-elasticsearch

 templatetemplate::

 metadatametadata::

 labelslabels::

 namename:: fluentd-elasticsearchfluentd-elasticsearch

 specspec::

 tolerationstolerations::

 -- keykey:: node-role.kubernetes.io/masternode-role.kubernetes.io/master

 effecteffect:: NoScheduleNoSchedule

 containerscontainers::

 -- namename:: fluentd-elasticsearchfluentd-elasticsearch

 imageimage:: gcr.io/google-containers/fluentd-elasticsearch:1.20gcr.io/google-containers/fluentd-elasticsearch:1.20

 resourcesresources::

 limitslimits::

 memorymemory:: 200Mi200Mi

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 200Mi200Mi

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 -- namename:: varlibdockercontainersvarlibdockercontainers

 mountPathmountPath:: /var/lib/docker/containers/var/lib/docker/containers

 readOnlyreadOnly:: truetrue

 terminationGracePeriodSecondsterminationGracePeriodSeconds:: 3030

 volumesvolumes::

 -- namename:: varlogvarlog

 hostPathhostPath::

 pathpath:: /var/log/var/log

 -- namename:: varlibdockercontainersvarlibdockercontainers

 hostPathhostPath::

 pathpath:: /var/lib/docker/containers/var/lib/docker/containers

kubectl create -f daemonset.yamlkubectl create -f daemonset.yaml

Required Fields

As with all other Kubernetes config, a DaemonSet needs apiVersionapiVersion , kindkind , and metadatametadata

fields. For general information about working with config files, see deploying applications,

configuring containers, and object management using kubectl documents.

A DaemonSet also needs a .spec.spec section.

Pod Template

The .spec.template.spec.template is one of the required fields in .spec.spec .

The .spec.template.spec.template is a pod template. It has exactly the same schema as a Pod, except it is

nested and does not have an apiVersionapiVersion or kindkind .

In addition to required fields for a Pod, a Pod template in a DaemonSet has to specify

appropriate labels (see pod selector).

A Pod Template in a DaemonSet must have a RestartPolicyRestartPolicy equal to AlwaysAlways , or be

unspecified, which defaults to AlwaysAlways .

Pod Selector

The .spec.selector.spec.selector field is a pod selector. It works the same as the .spec.selector.spec.selector of a

Job.

As of Kubernetes 1.8, you must specify a pod selector that matches the labels of the

.spec.template.spec.template . The pod selector will no longer be defaulted when left empty. Selector

defaulting was not compatible with kubectl applykubectl apply . Also, once a DaemonSet is created, its

spec.selectorspec.selector can not be mutated. Mutating the pod selector can lead to the unintentional

orphaning of Pods, and it was found to be confusing to users.

The spec.selectorspec.selector is an object consisting of two fields:

matchLabelsmatchLabels - works the same as the .spec.selector.spec.selector of a ReplicationController.

matchExpressionsmatchExpressions - allows to build more sophisticated selectors by specifying key, list of

values and an operator that relates the key and values.

When the two are specified the result is ANDed.

file:///docs/user-guide/deploying-applications/
file:///docs/tasks/
file:///docs/concepts/overview/object-management-kubectl/overview/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
file:///docs/concepts/workloads/pods/pod-overview/#pod-templates
file:///docs/concepts/workloads/pods/pod/
file:///docs/user-guide/pod-states
file:///docs/concepts/jobs/run-to-completion-finite-workloads/
file:///docs/concepts/workloads/controllers/replicationcontroller/

If the .spec.selector.spec.selector is specified, it must match the .spec.template.metadata.labels.spec.template.metadata.labels .

Config with these not matching will be rejected by the API.

Also you should not normally create any Pods whose labels match this selector, either directly,

via another DaemonSet, or via other controller such as ReplicaSet. Otherwise, the DaemonSet

controller will think that those Pods were created by it. Kubernetes will not stop you from doing

this. One case where you might want to do this is manually create a Pod with a different value

on a node for testing.

Running Pods on Only Some Nodes

If you specify a .spec.template.spec.nodeSelector.spec.template.spec.nodeSelector , then the DaemonSet controller will

create Pods on nodes which match that node selector. Likewise if you specify a

.spec.template.spec.affinity.spec.template.spec.affinity , then DaemonSet controller will create Pods on nodes

which match that node affinity. If you do not specify either, then the DaemonSet controller will

create Pods on all nodes.

How Daemon Pods are Scheduled

Normally, the machine that a Pod runs on is selected by the Kubernetes scheduler. However,

Pods created by the DaemonSet controller have the machine already selected (

.spec.nodeName.spec.nodeName is specified when the Pod is created, so it is ignored by the scheduler).

Therefore:

The unschedulableunschedulable field of a node is not respected by the DaemonSet controller.

The DaemonSet controller can make Pods even when the scheduler has not been started,

which can help cluster bootstrap.

Daemon Pods do respect taints and tolerations, but they are created with NoExecuteNoExecute

tolerations for the following taints with no tolerationSecondstolerationSeconds :

node.kubernetes.io/not-readynode.kubernetes.io/not-ready

node.alpha.kubernetes.io/unreachablenode.alpha.kubernetes.io/unreachable

This ensures that when the TaintBasedEvictionsTaintBasedEvictions alpha feature is enabled, they will not be

file:///docs/concepts/configuration/assign-pod-node/
file:///docs/concepts/configuration/assign-pod-node/
file:///docs/admin/node/#manual-node-administration
file:///docs/concepts/configuration/taint-and-toleration

evicted when there are node problems such as a network partition. (When the

TaintBasedEvictionsTaintBasedEvictions feature is not enabled, they are also not evicted in these scenarios, but

due to hard-coded behavior of the NodeController rather than due to tolerations).

They also tolerate following NoScheduleNoSchedule taints:

node.kubernetes.io/memory-pressurenode.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressurenode.kubernetes.io/disk-pressure

When the support to critical pods is enabled and the pods in a DaemonSet are labeled as

critical, the Daemon pods are created with an additional NoScheduleNoSchedule toleration for the

node.kubernetes.io/out-of-disknode.kubernetes.io/out-of-disk taint.

Note that all above NoScheduleNoSchedule taints above are created only in version 1.8 or later if the

alpha feature TaintNodesByConditionTaintNodesByCondition is enabled.

Also note that the node-role.kubernetes.io/masternode-role.kubernetes.io/master NoScheduleNoSchedule toleration specified in

the above example is needed on 1.6 or later to schedule on master nodes as this is not a

default toleration.

Communicating with Daemon Pods

Some possible patterns for communicating with Pods in a DaemonSet are:

Push: Pods in the DaemonSet are configured to send updates to another service, such as

a stats database. They do not have clients.

NodeIP and Known Port: Pods in the DaemonSet can use a hostPorthostPort , so that the pods

are reachable via the node IPs. Clients know the list of node IPs somehow, and know the

port by convention.

DNS: Create a headless service with the same pod selector, and then discover

DaemonSets using the endpointsendpoints resource or retrieve multiple A records from DNS.

Service: Create a service with the same Pod selector, and use the service to reach a

daemon on a random node. (No way to reach specific node.)

Updating a DaemonSet

file:///docs/concepts/services-networking/service/#headless-services

If node labels are changed, the DaemonSet will promptly add Pods to newly matching nodes

and delete Pods from newly not-matching nodes.

You can modify the Pods that a DaemonSet creates. However, Pods do not allow all fields to

be updated. Also, the DaemonSet controller will use the original template the next time a node

(even with the same name) is created.

You can delete a DaemonSet. If you specify --cascade=false--cascade=false with kubectlkubectl , then the Pods

will be left on the nodes. You can then create a new DaemonSet with a different template. The

new DaemonSet with the different template will recognize all the existing Pods as having

matching labels. It will not modify or delete them despite a mismatch in the Pod template. You

will need to force new Pod creation by deleting the Pod or deleting the node.

In Kubernetes version 1.6 and later, you can perform a rolling update on a DaemonSet.

Alternatives to DaemonSet

Init Scripts

It is certainly possible to run daemon processes by directly starting them on a node (e.g. using

initinit , upstartdupstartd , or systemdsystemd). This is perfectly fine. However, there are several advantages

to running such processes via a DaemonSet:

Ability to monitor and manage logs for daemons in the same way as applications.

Same config language and tools (e.g. Pod templates, kubectlkubectl) for daemons and

applications.

Running daemons in containers with resource limits increases isolation between daemons

from app containers. However, this can also be accomplished by running the daemons in a

container but not in a Pod (e.g. start directly via Docker).

Bare Pods

It is possible to create Pods directly which specify a particular node to run on. However, a

DaemonSet replaces Pods that are deleted or terminated for any reason, such as in the case of

node failure or disruptive node maintenance, such as a kernel upgrade. For this reason, you

should use a DaemonSet rather than creating individual Pods.

file:///docs/tasks/manage-daemon/update-daemon-set/

Static Pods

It is possible to create Pods by writing a file to a certain directory watched by Kubelet. These

are called static pods. Unlike DaemonSet, static Pods cannot be managed with kubectl or other

Kubernetes API clients. Static Pods do not depend on the apiserver, making them useful in

cluster bootstrapping cases. Also, static Pods may be deprecated in the future.

Deployments

DaemonSets are similar to Deployments in that they both create Pods, and those Pods have

processes which are not expected to terminate (e.g. web servers, storage servers).

Use a Deployment for stateless services, like frontends, where scaling up and down the

number of replicas and rolling out updates are more important than controlling exactly which

host the Pod runs on. Use a DaemonSet when it is important that a copy of a Pod always run

on all or certain hosts, and when it needs to start before other Pods.

file:///docs/concepts/cluster-administration/static-pod/
file:///docs/concepts/workloads/controllers/deployment/

Garbage Collection

The role of the Kubernetes garbage collector is to delete certain objects that once had an

owner, but no longer have an owner.

Note: Garbage collection is a beta feature and is enabled by default in Kubernetes version 1.4

and later.

Owners and dependents

Some Kubernetes objects are owners of other objects. For example, a ReplicaSet is the owner

of a set of Pods. The owned objects are called dependents of the owner object. Every

dependent object has a metadata.ownerReferencesmetadata.ownerReferences field that points to the owning object.

Sometimes, Kubernetes sets the value of ownerReferenceownerReference automatically. For example, when

you create a ReplicaSet, Kubernetes automatically sets the ownerReferenceownerReference field of each Pod

in the ReplicaSet. In 1.8, Kubernetes automatically sets the value of ownerReferenceownerReference for

objects created or adopted by ReplicationController, ReplicaSet, StatefulSet, DaemonSet,

Deployment, Job and CronJob.

You can also specify relationships between owners and dependents by manually setting the

ownerReferenceownerReference field.

Here’s a configuration file for a ReplicaSet that has three Pods:

my-repset.yamlmy-repset.yaml

Owners and dependents

Controlling how the garbage collector deletes dependents

Foreground cascading deletion

Background cascading deletion

Setting the cascading deletion policy

Additional note on Deployments

Known issues

What’s next

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/my-repset.yaml

my-repset.yamlmy-repset.yaml

If you create the ReplicaSet and then view the Pod metadata, you can see OwnerReferences

field:

The output shows that the Pod owner is a ReplicaSet named my-repset:

Controlling how the garbage collector deletes
dependents

When you delete an object, you can specify whether the object’s dependents are also deleted

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: ReplicaSetReplicaSet

metadatametadata::

 namename:: my-repsetmy-repset

specspec::

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 pod-is-forpod-is-for:: garbage-collection-examplegarbage-collection-example

 templatetemplate::

 metadatametadata::

 labelslabels::

 pod-is-forpod-is-for:: garbage-collection-examplegarbage-collection-example

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/concepts/controllers/my-repset.yaml https://k8s.io/docs/concepts/controllers/my-repset.yaml

kubectl get pods kubectl get pods --output--output==yamlyaml

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 ownerReferences: ownerReferences:

 - apiVersion: extensions/v1beta1 - apiVersion: extensions/v1beta1

 controller: controller: truetrue

 blockOwnerDeletion: blockOwnerDeletion: truetrue

 kind: ReplicaSetkind: ReplicaSet

 name: my-repset name: my-repset

 uid: d9607e19-f88f-11e6-a518-42010a800195 uid: d9607e19-f88f-11e6-a518-42010a800195

automatically. Deleting dependents automatically is called cascading deletion. There are two

modes of cascading deletion: background and foreground.

If you delete an object without deleting its dependents automatically, the dependents are said

to be orphaned.

Foreground cascading deletion

In foreground cascading deletion, the root object first enters a “deletion in progress” state. In

the “deletion in progress” state, the following things are true:

The object is still visible via the REST API

The object’s deletionTimestampdeletionTimestamp is set

The object’s metadata.finalizersmetadata.finalizers contains the value “foregroundDeletion”.

Once the “deletion in progress” state is set, the garbage collector deletes the object’s

dependents. Once the garbage collector has deleted all “blocking” dependents (objects with

ownerReference.blockOwnerDeletion=trueownerReference.blockOwnerDeletion=true), it delete the owner object.

Note that in the “foregroundDeletion”, only dependents with

ownerReference.blockOwnerDeletionownerReference.blockOwnerDeletion block the deletion of the owner object. Kubernetes

version 1.7 added an admission controller that controls user access to set

blockOwnerDeletionblockOwnerDeletion to true based on delete permissions on the owner object, so that

unauthorized dependents cannot delay deletion of an owner object.

If an object’s ownerReferencesownerReferences field is set by a controller (such as Deployment or ReplicaSet),

blockOwnerDeletion is set automatically and you do not need to manually modify this field.

Background cascading deletion

In background cascading deletion, Kubernetes deletes the owner object immediately and the

garbage collector then deletes the dependents in the background.

Setting the cascading deletion policy

To control the cascading deletion policy, set the propagationPolicypropagationPolicy field on the

deleteOptionsdeleteOptions argument when deleting an Object. Possible values include “Orphan”,

“Foreground”, or “Background”.

file:///docs/admin/admission-controllers/#ownerreferencespermissionenforcement

Prior to Kubernetes 1.9, the default garbage collection policy for many controller resources

was orphanorphan . This included ReplicationController, ReplicaSet, StatefulSet, DaemonSet, and

Deployment. For kinds in the extensions/v1beta1, apps/v1beta1, and apps/v1beta2 group

versions, unless you specify otherwise, dependent objects are orphaned by default. In

Kubernetes 1.9, for all kinds in the apps/v1 group version, dependent objects are deleted by

default.

Here’s an example that deletes dependents in background:

Here’s an example that deletes dependents in foreground:

Here’s an example that orphans dependents:

kubectl also supports cascading deletion. To delete dependents automatically using kubectl,

set --cascade--cascade to true. To orphan dependents, set --cascade--cascade to false. The default value for

--cascade--cascade is true.

Here’s an example that orphans the dependents of a ReplicaSet:

Additional note on Deployments

kubectl proxy kubectl proxy --port--port==80808080

curl curl -X-X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset

-d-d '{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Background"}''{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Background"}'

-H-H "Content-Type: application/json""Content-Type: application/json"

kubectl proxy kubectl proxy --port--port==80808080

curl curl -X-X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset

-d-d '{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Foreground"}''{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Foreground"}'

-H-H "Content-Type: application/json""Content-Type: application/json"

kubectl proxy kubectl proxy --port--port==80808080

curl curl -X-X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset

-d-d '{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Orphan"}''{"kind":"DeleteOptions","apiVersion":"v1","propagationPolicy":"Orphan"}'

-H-H "Content-Type: application/json""Content-Type: application/json"

kubectl delete replicaset my-repset kubectl delete replicaset my-repset --cascade--cascade==falsefalse

When using cascading deletes with Deployments you must use

propagationPolicy: ForegroundpropagationPolicy: Foreground to delete not only the ReplicaSets created, but also their

Pods. If this type of propagationPolicy is not used, only the ReplicaSets will be deleted, and the

Pods will be orphaned. See kubeadm/#149 for more information.

Known issues

Tracked at #26120

What’s next

Design Doc 1

Design Doc 2

https://github.com/kubernetes/kubeadm/issues/149#issuecomment-284766613
https://github.com/kubernetes/kubernetes/issues/26120
https://git.k8s.io/community/contributors/design-proposals/api-machinery/garbage-collection.md
https://git.k8s.io/community/contributors/design-proposals/api-machinery/synchronous-garbage-collection.md

Jobs - Run to Completion

What is a Job?

A job creates one or more pods and ensures that a specified number of them successfully

terminate. As pods successfully complete, the job tracks the successful completions. When a

specified number of successful completions is reached, the job itself is complete. Deleting a

Job will cleanup the pods it created.

A simple case is to create one Job object in order to reliably run one Pod to completion. The

Job object will start a new Pod if the first pod fails or is deleted (for example due to a node

hardware failure or a node reboot).

A Job can also be used to run multiple pods in parallel.

Running an example Job

What is a Job?

Running an example Job

Writing a Job Spec

Pod Template

Pod Selector

Parallel Jobs

Controlling Parallelism

Handling Pod and Container Failures

Pod Backoff failure policy

Job Termination and Cleanup

Job Patterns

Advanced Usage

Specifying your own pod selector

Alternatives

Bare Pods

Replication Controller

Single Job starts Controller Pod

Cron Jobs

Here is an example Job config. It computes π to 2000 places and prints it out. It takes around

10s to complete.

job.yamljob.yaml

Run the example job by downloading the example file and then running this command:

Check on the status of the job using this command:

apiVersionapiVersion:: batch/v1batch/v1

kindkind:: JobJob

metadatametadata::

 namename:: pipi

specspec::

 templatetemplate::

 specspec::

 containerscontainers::

 -- namename:: pipi

 imageimage:: perlperl

 commandcommand:: [[""perl"perl",, ""-Mbignum=bpi"-Mbignum=bpi",, ""-wle"-wle",, ""printprint bpi(2000)"bpi(2000)"]]

 restartPolicyrestartPolicy:: NeverNever

 backoffLimitbackoffLimit:: 44

$ $ kubectl create kubectl create -f-f ./job.yaml ./job.yaml

job job "pi""pi" created created

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/job.yaml

To view completed pods of a job, use

kubectl getkubectl get

podspods .

To list all the pods that belong to a job in a machine readable form, you can use a command

like this:

Here, the selector is the same as the selector for the job. The --output=jsonpath--output=jsonpath option

specifies an expression that just gets the name from each pod in the returned list.

View the standard output of one of the pods:

$ $ kubectl describe kubectl describe jobsjobs/pi/pi

Name: piName: pi

Namespace: defaultNamespace: default

Selector: controller-uidSelector: controller-uid==b1db589a-2c8d-11e6-b324-0209dc45a495b1db589a-2c8d-11e6-b324-0209dc45a495

Labels: controller-uidLabels: controller-uid==b1db589a-2c8d-11e6-b324-0209dc45a495b1db589a-2c8d-11e6-b324-0209dc45a495

 job-name job-name==pipi

Annotations: <none>Annotations: <none>

Parallelism: 1Parallelism: 1

Completions: 1Completions: 1

Start Time: Tue, 07 Jun 2016 10:56:16 +0200Start Time: Tue, 07 Jun 2016 10:56:16 +0200

Pods Statuses: 0 Running / 1 Succeeded / 0 FailedPods Statuses: 0 Running / 1 Succeeded / 0 Failed

Pod Template:Pod Template:

 Labels: controller-uid Labels: controller-uid==b1db589a-2c8d-11e6-b324-0209dc45a495b1db589a-2c8d-11e6-b324-0209dc45a495

 job-name job-name==pipi

 Containers: Containers:

 pi: pi:

 Image: perl Image: perl

 Port: Port:

 Command: Command:

 perl perl

 -Mbignum-Mbignum==bpibpi

 -wle-wle

 print bpi print bpi((20002000))

 Environment: <none> Environment: <none>

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ----------------

 1m 1m 1 1m 1m 1 {{job-controller job-controller }} Normal SuccessfulCreate Created pod: pi-dtn4q Normal SuccessfulCreate Created pod: pi-dtn4q

$ pods$ pods==$($(kubectl get pods kubectl get pods --selector--selector==job-namejob-name==pi pi --output--output==jsonpathjsonpath={={.items..metadata.name.items..metadata.name

$ $ echoecho $pods$pods

pi-aiw0api-aiw0a

Writing a Job Spec

As with all other Kubernetes config, a Job needs apiVersionapiVersion , kindkind , and metadatametadata fields.

A Job also needs a .spec.spec section.

Pod Template

The .spec.template.spec.template is the only required field of the .spec.spec .

The .spec.template.spec.template is a pod template. It has exactly the same schema as a pod, except it is

nested and does not have an apiVersionapiVersion or kindkind .

In addition to required fields for a Pod, a pod template in a job must specify appropriate labels

(see pod selector) and an appropriate restart policy.

Only a RestartPolicyRestartPolicy equal to NeverNever or OnFailureOnFailure is allowed.

Pod Selector

The .spec.selector.spec.selector field is optional. In almost all cases you should not specify it. See

section specifying your own pod selector.

Parallel Jobs

There are three main types of jobs:

1. Non-parallel Jobs

1. normally only one pod is started, unless the pod fails.

2. job is complete as soon as Pod terminates successfully.

2. Parallel Jobs with a fixed completion count:

1. specify a non-zero positive value for .spec.completions.spec.completions .

$ $ kubectl logs kubectl logs $pods$pods

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744944825537977472684710404753464620804668425906949129331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165346680498862723279178608578438382796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759013.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326459958133904780275901

https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
file:///docs/concepts/workloads/pods/pod-overview/#pod-templates
file:///docs/user-guide/pods
file:///docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

2. the job is complete when there is one successful pod for each value in the range 1 to

.spec.completions.spec.completions .

3. not implemented yet: each pod passed a different index in the range 1 to

.spec.completions.spec.completions .

3. Parallel Jobs with a work queue: - do not specify .spec.completions.spec.completions , default to

.spec.parallelism.spec.parallelism . - the pods must coordinate with themselves or an external service

to determine what each should work on.

1. each pod is independently capable of determining whether or not all its peers are

done, thus the entire Job is done.

2. when any pod terminates with success, no new pods are created.

3. once at least one pod has terminated with success and all pods are terminated, then

the job is completed with success.

4. once any pod has exited with success, no other pod should still be doing any work or

writing any output. They should all be in the process of exiting.

For a Non-parallel job, you can leave both .spec.completions.spec.completions and .spec.parallelism.spec.parallelism

unset. When both are unset, both are defaulted to 1.

For a Fixed Completion Count job, you should set .spec.completions.spec.completions to the number of

completions needed. You can set .spec.parallelism.spec.parallelism , or leave it unset and it will default to 1.

For a Work Queue Job, you must leave .spec.completions.spec.completions unset, and set

.spec.parallelism.spec.parallelism to a non-negative integer.

For more information about how to make use of the different types of job, see the job patterns

section.

Controlling Parallelism

The requested parallelism (.spec.parallelism.spec.parallelism) can be set to any non-negative value. If it is

unspecified, it defaults to 1. If it is specified as 0, then the Job is effectively paused until it is

increased.

Actual parallelism (number of pods running at any instant) may be more or less than requested

parallelism, for a variety of reasons:

For Fixed Completion Count jobs, the actual number of pods running in parallel will not

exceed the number of remaining completions. Higher values of .spec.parallelism.spec.parallelism are

effectively ignored.

For work queue jobs, no new pods are started after any pod has succeeded – remaining

pods are allowed to complete, however.

If the controller has not had time to react.

If the controller failed to create pods for any reason (lack of ResourceQuota, lack of

permission, etc.), then there may be fewer pods than requested.

The controller may throttle new pod creation due to excessive previous pod failures in the

same Job.

When a pod is gracefully shutdown, it takes time to stop.

Handling Pod and Container Failures

A Container in a Pod may fail for a number of reasons, such as because the process in it exited

with a non-zero exit code, or the Container was killed for exceeding a memory limit, etc. If this

happens, and the

.spec.template.spec.restartPolicy =.spec.template.spec.restartPolicy =

"OnFailure""OnFailure" , then the Pod

stays on the node, but the Container is re-run. Therefore, your program needs to handle the

case when it is restarted locally, or else specify

.spec.template.spec.restartPolicy =.spec.template.spec.restartPolicy =

"Never""Never" . See pods-states for more information on

restartPolicyrestartPolicy .

An entire Pod can also fail, for a number of reasons, such as when the pod is kicked off the

node (node is upgraded, rebooted, deleted, etc.), or if a container of the Pod fails and the

.spec.template.spec.restartPolicy =.spec.template.spec.restartPolicy =

"Never""Never" . When a Pod fails, then the Job controller

starts a new Pod. Therefore, your program needs to handle the case when it is restarted in a

new pod. In particular, it needs to handle temporary files, locks, incomplete output and the like

caused by previous runs.

Note that even if you specify

.spec.parallelism =.spec.parallelism =

11 and

.spec.completions =.spec.completions =

11 and

file:///docs/concepts/workloads/pods/pod-lifecycle/#example-states

.spec.template.spec.restartPolicy =.spec.template.spec.restartPolicy =

"Never""Never" , the same program may sometimes be

started twice.

If you do specify .spec.parallelism.spec.parallelism and .spec.completions.spec.completions both greater than 1, then

there may be multiple pods running at once. Therefore, your pods must also be tolerant of

concurrency.

Pod Backoff failure policy

There are situations where you want to fail a Job after some amount of retries due to a logical

error in configuration etc. To do so, set .spec.backoffLimit.spec.backoffLimit to specify the number of retries

before considering a Job as failed. The back-off limit is set by default to 6. Failed Pods

associated with the Job are recreated by the Job controller with an exponential back-off delay

(10s, 20s, 40s …) capped at six minutes, The back-off limit is reset if no new failed Pods appear

before the Job’s next status check.

Note: Due to a known issue #54870, when the spec.template.spec.restartPolicyspec.template.spec.restartPolicy

field is set to “ OnFailureOnFailure ”, the back-off limit may be ineffective. As a short-term

workaround, set the restart policy for the embedded template to “ NeverNever ”.

Job Termination and Cleanup

When a Job completes, no more Pods are created, but the Pods are not deleted either. Since

they are terminated, they don’t show up with

kubectl getkubectl get

podspods , but they will show up with

kubectl get pods -kubectl get pods -

aa . Keeping them around allows you to still view the logs of completed

pods to check for errors, warnings, or other diagnostic output. The job object also remains

after it is completed so that you can view its status. It is up to the user to delete old jobs after

noting their status. Delete the job with kubectlkubectl (e.g.

kubectl deletekubectl delete

jobs/pijobs/pi or

kubectl delete -fkubectl delete -f

./job.yaml./job.yaml). When you delete the job using kubectlkubectl , all the pods it

https://github.com/kubernetes/kubernetes/issues/54870

created are deleted too.

By default, a Job will run uninterrupted unless a Pod fails, at which point the Job defers to the

.spec.backoffLimit.spec.backoffLimit described above. Another way to terminate a Job is by setting an active

deadline. Do this by setting the .spec.activeDeadlineSeconds.spec.activeDeadlineSeconds field of the Job to a number

of seconds.

The activeDeadlineSecondsactiveDeadlineSeconds applies to the duration of the job, no matter how many Pods

are created. Once a Job reaches activeDeadlineSecondsactiveDeadlineSeconds , the Job and all of its Pods are

terminated. The result is that the job has a status with

reason:reason:

DeadlineExceededDeadlineExceeded .

Note that a Job’s .spec.activeDeadlineSeconds.spec.activeDeadlineSeconds takes precedence over its

.spec.backoffLimit.spec.backoffLimit . Therefore, a Job that is retrying one or more failed Pods will not

deploy additional Pods once it reaches the time limit specified by activeDeadlineSecondsactiveDeadlineSeconds ,

even if the backoffLimitbackoffLimit is not yet reached.

Example:

Note that both the Job Spec and the Pod Template Spec within the Job have an

activeDeadlineSecondsactiveDeadlineSeconds field. Ensure that you set this field at the proper level.

Job Patterns

The Job object can be used to support reliable parallel execution of Pods. The Job object is

not designed to support closely-communicating parallel processes, as commonly found in

apiVersionapiVersion:: batch/v1batch/v1

kindkind:: JobJob

metadatametadata::

 namename:: pi-with-timeoutpi-with-timeout

specspec::

 backoffLimitbackoffLimit:: 55

 activeDeadlineSecondsactiveDeadlineSeconds:: 100100

 templatetemplate::

 specspec::

 containerscontainers::

 -- namename:: pipi

 imageimage:: perlperl

 commandcommand:: [[""perl"perl",, ""-Mbignum=bpi"-Mbignum=bpi",, ""-wle"-wle",, ""printprint bpi(2000)"bpi(2000)"]]

 restartPolicyrestartPolicy:: NeverNever

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#detailed-behavior

scientific computing. It does support parallel processing of a set of independent but related

work items. These might be emails to be sent, frames to be rendered, files to be transcoded,

ranges of keys in a NoSQL database to scan, and so on.

In a complex system, there may be multiple different sets of work items. Here we are just

considering one set of work items that the user wants to manage together — a batch job.

There are several different patterns for parallel computation, each with strengths and

weaknesses. The tradeoffs are:

One Job object for each work item, vs. a single Job object for all work items. The latter is

better for large numbers of work items. The former creates some overhead for the user

and for the system to manage large numbers of Job objects.

Number of pods created equals number of work items, vs. each pod can process multiple

work items. The former typically requires less modification to existing code and

containers. The latter is better for large numbers of work items, for similar reasons to the

previous bullet.

Several approaches use a work queue. This requires running a queue service, and

modifications to the existing program or container to make it use the work queue. Other

approaches are easier to adapt to an existing containerised application.

The tradeoffs are summarized here, with columns 2 to 4 corresponding to the above tradeoffs.

The pattern names are also links to examples and more detailed description.

Pattern
Single Job

object
Fewer pods than work

items?
Use app

unmodified?
Works in Kube

1.1?

Job Template Expansion ✓ ✓

Queue with Pod Per Work Item ✓ sometimes ✓

Queue with Variable Pod Count ✓ ✓ ✓

Single Job with Static Work
Assignment

✓ ✓

When you specify completions with .spec.completions.spec.completions , each Pod created by the Job

controller has an identical specspec . This means that all pods will have the same command line

and the same image, the same volumes, and (almost) the same environment variables. These

patterns are different ways to arrange for pods to work on different things.

This table shows the required settings for .spec.parallelism.spec.parallelism and .spec.completions.spec.completions for

file:///docs/tasks/job/parallel-processing-expansion/
file:///docs/tasks/job/coarse-parallel-processing-work-queue/
file:///docs/tasks/job/fine-parallel-processing-work-queue/
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status

each of the patterns. Here, WW is the number of work items.

Pattern .spec.completions.spec.completions .spec.parallelism.spec.parallelism

Job Template Expansion 1 should be 1

Queue with Pod Per Work Item W any

Queue with Variable Pod Count 1 any

Single Job with Static Work Assignment W any

Advanced Usage

Specifying your own pod selector

Normally, when you create a job object, you do not specify spec.selectorspec.selector . The system

defaulting logic adds this field when the job is created. It picks a selector value that will not

overlap with any other jobs.

However, in some cases, you might need to override this automatically set selector. To do this,

you can specify the spec.selectorspec.selector of the job.

Be very careful when doing this. If you specify a label selector which is not unique to the pods

of that job, and which matches unrelated pods, then pods of the unrelated job may be deleted,

or this job may count other pods as completing it, or one or both of the jobs may refuse to

create pods or run to completion. If a non-unique selector is chosen, then other controllers

(e.g. ReplicationController) and their pods may behave in unpredictable ways too. Kubernetes

will not stop you from making a mistake when specifying spec.selectorspec.selector .

Here is an example of a case when you might want to use this feature.

Say job oldold is already running. You want existing pods to keep running, but you want the rest

of the pods it creates to use a different pod template and for the job to have a new name. You

cannot update the job because these fields are not updatable. Therefore, you delete job oldold

but leave its pods running, using

kubectl delete jobs/old --kubectl delete jobs/old --

cascade=falsecascade=false . Before

deleting it, you make a note of what selector it uses:

file:///docs/tasks/job/parallel-processing-expansion/
file:///docs/tasks/job/coarse-parallel-processing-work-queue/
file:///docs/tasks/job/fine-parallel-processing-work-queue/

Then you create a new job with name newnew and you explicitly specify the same selector. Since

the existing pods have label job-uid=a8f3d00d-c6d2-11e5-9f87-42010af00002job-uid=a8f3d00d-c6d2-11e5-9f87-42010af00002 , they are

controlled by job newnew as well.

You need to specify manualSelector: truemanualSelector: true in the new job since you are not using the

selector that the system normally generates for you automatically.

The new Job itself will have a different uid from a8f3d00d-c6d2-11e5-9f87-42010af00002a8f3d00d-c6d2-11e5-9f87-42010af00002 .

Setting manualSelector: truemanualSelector: true tells the system to that you know what you are doing and to

allow this mismatch.

Alternatives

Bare Pods

When the node that a pod is running on reboots or fails, the pod is terminated and will not be

restarted. However, a Job will create new pods to replace terminated ones. For this reason, we

recommend that you use a job rather than a bare pod, even if your application requires only a

single pod.

kind: Jobkind: Job

metadata:metadata:

 name: old name: old

spec:spec:

 selector: selector:

 matchLabels: matchLabels:

 job-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002 job-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002

kind: Jobkind: Job

metadata:metadata:

 name: new name: new

spec:spec:

 manualSelector: true manualSelector: true

 selector: selector:

 matchLabels: matchLabels:

 job-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002 job-uid: a8f3d00d-c6d2-11e5-9f87-42010af00002

Replication Controller

Jobs are complementary to Replication Controllers. A Replication Controller manages pods

which are not expected to terminate (e.g. web servers), and a Job manages pods that are

expected to terminate (e.g. batch jobs).

As discussed in Pod Lifecycle, JobJob is only appropriate for pods with RestartPolicyRestartPolicy equal to

OnFailureOnFailure or NeverNever . (Note: If RestartPolicyRestartPolicy is not set, the default value is AlwaysAlways .)

Single Job starts Controller Pod

Another pattern is for a single Job to create a pod which then creates other pods, acting as a

sort of custom controller for those pods. This allows the most flexibility, but may be somewhat

complicated to get started with and offers less integration with Kubernetes.

One example of this pattern would be a Job which starts a Pod which runs a script that in turn

starts a Spark master controller (see spark example), runs a spark driver, and then cleans up.

An advantage of this approach is that the overall process gets the completion guarantee of a

Job object, but complete control over what pods are created and how work is assigned to

them.

Cron Jobs

Support for creating Jobs at specified times/dates (i.e. cron) is available in Kubernetes 1.4.

More information is available in the cron job documents

file:///docs/user-guide/replication-controller
file:///docs/concepts/workloads/pods/pod-lifecycle/
https://github.com/kubernetes/examples/tree/master/staging/spark/README.md
https://github.com/kubernetes/kubernetes/pull/11980
file:///docs/concepts/workloads/controllers/cron-jobs/

CronJob

What is a cron job?

A Cron Job manages time based Jobs, namely:

Once at a specified point in time

Repeatedly at a specified point in time

One CronJob object is like one line of a crontab (cron table) file. It runs a job periodically on a

given schedule, written in Cron format.

Note: The question mark (??) in the schedule has the same meaning as an asterisk ** , that is,

it stands for any of available value for a given field.

Note: CronJob resource in batch/v2alpha1batch/v2alpha1 API group has been deprecated starting from

cluster version 1.8. You should switch to using batch/v1beta1batch/v1beta1 , instead, which is enabled by

default in the API server. Further in this document, we will be using batch/v1beta1batch/v1beta1 in all the

examples.

A typical use case is:

Schedule a job execution at a given point in time.

What is a cron job?

Prerequisites

Creating a Cron Job

Deleting a Cron Job

Cron Job Limitations

Writing a Cron Job Spec

Schedule

Job Template

Starting Deadline Seconds

Concurrency Policy

Suspend

Jobs History Limits

file:///docs/concepts/workloads/controllers/jobs-run-to-completion/
https://en.wikipedia.org/wiki/Cron

Create a periodic job, e.g. database backup, sending emails.

Prerequisites

You need a working Kubernetes cluster at version >= 1.8 (for CronJob). For previous versions

of cluster (< 1.8) you need to explicitly enable batch/v2alpha1batch/v2alpha1 API by passing

--runtime-config=batch/v2alpha1=true--runtime-config=batch/v2alpha1=true to the API server (see Turn on or off an API

version for your cluster for more), and then restart both the API server and the controller

manager component.

Creating a Cron Job

Here is an example Cron Job. Every minute, it runs a simple job to print current time and then

say hello.

cronjob.yamlcronjob.yaml

Run the example cron job by downloading the example file and then running this command:

apiVersionapiVersion:: batch/v1beta1batch/v1beta1

kindkind:: CronJobCronJob

metadatametadata::

 namename:: hellohello

specspec::

 scheduleschedule:: ""*/1*/1 ** ** ** *"*"

 jobTemplatejobTemplate::

 specspec::

 templatetemplate::

 specspec::

 containerscontainers::

 -- namename:: hellohello

 imageimage:: busyboxbusybox

 argsargs::

 -- /bin/sh/bin/sh

 -- -c-c

 -- date; echo Hello from the Kubernetes clusterdate; echo Hello from the Kubernetes cluster

 restartPolicyrestartPolicy:: OnFailureOnFailure

$ $ kubectl create kubectl create -f-f ./cronjob.yaml ./cronjob.yaml

cronjob cronjob "hello""hello" created created

file:///docs/admin/cluster-management/#turn-on-or-off-an-api-version-for-your-cluster
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/workloads/controllers/cronjob.yaml

Alternatively, use

kubectlkubectl

runrun to create a cron job without writing full config:

After creating the cron job, get its status using this command:

As you can see above, there’s no active job yet, and no job has been scheduled, either.

Watch for the job to be created in around one minute:

Now you’ve seen one running job scheduled by “hello”. We can stop watching it and get the

cron job again:

You should see that “hello” successfully scheduled a job at the time specified in

LAST-SCHEDULELAST-SCHEDULE . There are currently 0 active jobs, meaning that the job that’s scheduled is

completed or failed.

Now, find the pods created by the job last scheduled and view the standard output of one of

the pods. Note that your job name and pod name would be different.

$ $ kubectl run hello kubectl run hello --schedule--schedule=="*/1 * * * *""*/1 * * * *" --restart--restart==OnFailure OnFailure --image--image==busybox busybox

cronjob cronjob "hello""hello" created created

$ $ kubectl get cronjob hellokubectl get cronjob hello

NAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULENAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULE

hello hello **/1 /1 ** ** ** ** False 0 <none> False 0 <none>

$ $ kubectl get kubectl get jobsjobs --watch--watch

NAME DESIRED SUCCESSFUL AGENAME DESIRED SUCCESSFUL AGE

hello-4111706356 1 1 2shello-4111706356 1 1 2s

$ $ kubectl get cronjob hellokubectl get cronjob hello

NAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULENAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULE

hello hello **/1 /1 ** ** ** ** False 0 Mon, 29 Aug 2016 14:34:00 False 0 Mon, 29 Aug 2016 14:34:00 -0700-0700

Deleting a Cron Job

Once you don’t need a cron job anymore, simply delete it with kubectlkubectl :

This stops new jobs from being created and removes all the jobs and pods created by this

cronjob. You can read more about it in garbage collection section.

Cron Job Limitations

A cron job creates a job object about once per execution time of its schedule. We say “about”

because there are certain circumstances where two jobs might be created, or no job might be

created. We attempt to make these rare, but do not completely prevent them. Therefore, jobs

should be idempotent.

If startingDeadlineSecondsstartingDeadlineSeconds is set to a large value or left unset (the default) and if

concurrencyPolicyconcurrencyPolicy is set to AllowAllow , the jobs will always run at least once.

Jobs may fail to run if the CronJob controller is not running or broken for a span of time from

before the start time of the CronJob to start time plus startingDeadlineSecondsstartingDeadlineSeconds , or if the

span covers multiple start times and concurrencyPolicyconcurrencyPolicy does not allow concurrency. For

example, suppose a cron job is set to start at exactly 08:30:0008:30:00 and its

startingDeadlineSecondsstartingDeadlineSeconds is set to 10, if the CronJob controller happens to be down from

Replace "hello-4111706356" with the job name in your system# Replace "hello-4111706356" with the job name in your system
$ pods$ pods==$($(kubectl get pods kubectl get pods --selector--selector==job-namejob-name==hello-4111706356 hello-4111706356 --output--output==jsonpathjsonpath

$ $ echoecho $pods$pods

hello-4111706356-o9qcmhello-4111706356-o9qcm

$ $ kubectl logs kubectl logs $pods$pods

Mon Aug 29 21:34:09 UTC 2016Mon Aug 29 21:34:09 UTC 2016

Hello from the Kubernetes clusterHello from the Kubernetes cluster

$ $ kubectl delete cronjob hellokubectl delete cronjob hello

cronjob cronjob "hello""hello" deleted deleted

file:///docs/concepts/workloads/controllers/garbage-collection/

08:29:0008:29:00 to 08:42:0008:42:00 , the job will not start. Set a longer startingDeadlineSecondsstartingDeadlineSeconds if

starting later is better than not starting at all.

The Cronjob is only responsible for creating Jobs that match its schedule, and the Job in turn

is responsible for the management of the Pods it represents.

Writing a Cron Job Spec

As with all other Kubernetes configs, a cron job needs apiVersionapiVersion , kindkind , and metadatametadata

fields. For general information about working with config files, see deploying applications, and

using kubectl to manage resources documents.

A cron job also needs a .spec.spec section.

Note: All modifications to a cron job, especially its .spec.spec , will be applied only to the next run.

Schedule

The .spec.schedule.spec.schedule is a required field of the .spec.spec . It takes a Cron format string, e.g.

0 * * *0 * * *

** or @hourly@hourly , as schedule time of its jobs to be created and executed.

Job Template

The .spec.jobTemplate.spec.jobTemplate is another required field of the .spec.spec . It is a job template. It has

exactly the same schema as a Job, except it is nested and does not have an apiVersionapiVersion or

kindkind , see Writing a Job Spec.

Starting Deadline Seconds

The .spec.startingDeadlineSeconds.spec.startingDeadlineSeconds field is optional. It stands for the deadline (in

seconds) for starting the job if it misses its scheduled time for any reason. Missed jobs

executions will be counted as failed ones. If not specified, there’s no deadline.

Concurrency Policy

The .spec.concurrencyPolicy.spec.concurrencyPolicy field is also optional. It specifies how to treat concurrent

file:///docs/user-guide/deploying-applications
file:///docs/user-guide/working-with-resources
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
https://en.wikipedia.org/wiki/Cron
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/#writing-a-job-spec

executions of a job created by this cron job. Only one of the following concurrent policies may

be specified:

AllowAllow (default): allows concurrently running jobs

ForbidForbid : forbids concurrent runs, skipping next run if previous hasn’t finished yet

ReplaceReplace : cancels currently running job and replaces it with a new one

Note that concurrency policy only applies to the jobs created by the same cron job. If there are

multiple cron jobs, their respective jobs are always allowed to run concurrently.

Suspend

The .spec.suspend.spec.suspend field is also optional. If set to truetrue , all subsequent executions will be

suspended. It does not apply to already started executions. Defaults to false.

Jobs History Limits

The .spec.successfulJobsHistoryLimit.spec.successfulJobsHistoryLimit and .spec.failedJobsHistoryLimit.spec.failedJobsHistoryLimit fields are

optional. These fields specify how many completed and failed jobs should be kept. By default,

they are set to 3 and 1 respectively. Setting a limit to 00 corresponds to keeping none of the

corresponding kind of jobs after they finish.

Configuration Best Practices

This document highlights and consolidates configuration best practices that are introduced

throughout the user guide, Getting Started documentation, and examples.

This is a living document. If you think of something that is not on this list but might be useful

to others, please don’t hesitate to file an issue or submit a PR.

General Configuration Tips

When defining configurations, specify the latest stable API version.

Configuration files should be stored in version control before being pushed to the cluster.

This allows you to quickly roll back a configuration change if necessary. It also aids cluster

re-creation and restoration.

Write your configuration files using YAML rather than JSON. Though these formats can be

used interchangeably in almost all scenarios, YAML tends to be more user-friendly.

Group related objects into a single file whenever it makes sense. One file is often easier to

manage than several. See the guestbook-all-in-one.yaml file as an example of this syntax.

Note also that many kubectlkubectl commands can be called on a directory. For example, you

can call

kubectlkubectl

createcreate on a directory of config files.

Don’t specify default values unnecessarily: simple, minimal configuration will make errors

less likely.

Put object descriptions in annotations, to allow better introspection.

General Configuration Tips

“Naked” Pods vs ReplicaSets, Deployments, and Jobs

Services

Using Labels

Container Images

Using kubectl

https://github.com/kubernetes/examples/tree/master/guestbook/all-in-one/guestbook-all-in-one.yaml

“Naked” Pods vs ReplicaSets, Deployments, and
Jobs

Don’t use naked Pods (that is, Pods not bound to a ReplicaSet or Deployment) if you can

avoid it. Naked Pods will not be rescheduled in the event of a node failure.

A Deployment, which both creates a ReplicaSet to ensure that the desired number of Pods

is always available, and specifies a strategy to replace Pods (such as RollingUpdate), is

almost always preferable to creating Pods directly, except for some explicit

restartPolicy: NeverrestartPolicy: Never scenarios. A Job may also be appropriate.

Services

Create a Service before its corresponding backend workloads (Deployments or

ReplicaSets), and before any workloads that need to access it. When Kubernetes starts a

container, it provides environment variables pointing to all the Services which were

running when the container was started. For example, if a Service named foofoo exists, all

containers will get the following variables in their initial environment:

If you are writing code that talks to a Service, don’t use these environment variables; use

the DNS name of the Service instead. Service environment variables are provided only for

older software which can’t be modified to use DNS lookups, and are a much less flexible

way of accessing Services.

Don’t specify a hostPorthostPort for a Pod unless it is absolutely necessary. When you bind a

Pod to a hostPorthostPort , it limits the number of places the Pod can be scheduled, because

each < hostIPhostIP , hostPorthostPort , protocolprotocol > combination must be unique. If you don’t specify

the hostIPhostIP and protocolprotocol explicitly, Kubernetes will use 0.0.0.00.0.0.0 as the default

hostIPhostIP and TCPTCP as the default protocolprotocol .

If you only need access to the port for debugging purposes, you can use the apiserver

proxy or kubectl port-forwardkubectl port-forward .

FOO_SERVICE_HOSTFOO_SERVICE_HOST==<the host the Service is running on><the host the Service is running on>

FOO_SERVICE_PORTFOO_SERVICE_PORT==<the port the Service is running on><the port the Service is running on>

file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/deployment/#rolling-update-deployment
file:///docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/tasks/access-application-cluster/access-cluster/#manually-constructing-apiserver-proxy-urls
file:///docs/tasks/access-application-cluster/port-forward-access-application-cluster/

If you explicitly need to expose a Pod’s port on the node, consider using a NodePort

Service before resorting to hostPorthostPort .

Avoid using hostNetworkhostNetwork , for the same reasons as hostPorthostPort .

Use headless Services (which have a ClusterIPClusterIP of NoneNone) for easy service discovery

when you don’t need kube-proxykube-proxy load balancing.

Using Labels

Define and use labels that identify semantic attributes of your application or Deployment,

such as

{ app: myapp, tier: frontend, phase: test, deployment: v3{ app: myapp, tier: frontend, phase: test, deployment: v3

}} . You can

use these labels to select the appropriate Pods for other resources; for example, a Service

that selects all

tier:tier:

frontendfrontend Pods, or all phase: testphase: test components of app: myappapp: myapp .

See the guestbook app for examples of this approach.

A Service can be made to span multiple Deployments by omitting release-specific labels from

its selector. Deployments make it easy to update a running service without downtime.

A desired state of an object is described by a Deployment, and if changes to that spec are

applied, the deployment controller changes the actual state to the desired state at a controlled

rate.

You can manipulate labels for debugging. Because Kubernetes controllers (such as

ReplicaSet) and Services match to Pods using selector labels, removing the relevant labels

from a Pod will stop it from being considered by a controller or from being served traffic by

a Service. If you remove the labels of an existing Pod, its controller will create a new Pod

to take its place. This is a useful way to debug a previously “live” Pod in a “quarantine”

environment. To interactively remove or add labels, use kubectl labelkubectl label .

Container Images

The default imagePullPolicy for a container is IfNotPresentIfNotPresent , which causes the

file:///docs/concepts/services-networking/service/#type-nodeport
file:///docs/concepts/services-networking/service/#headless-
services
file:///docs/concepts/overview/working-with-objects/labels/
https://github.com/kubernetes/examples/tree/master/guestbook/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/reference/generated/kubectl/kubectl-commands#label
file:///docs/concepts/containers/_site/images/#updating-images

kubelet to pull an image only if it does not already exist locally. If you want the image

to be pulled every time Kubernetes starts the container, specify

imagePullPolicy:imagePullPolicy:

AlwaysAlways .

An alternative, but deprecated way to have Kubernetes always pull the image is to use

the :latest:latest tag, which will implicitly set the imagePullPolicyimagePullPolicy to AlwaysAlways .

Note: You should avoid using the :latest:latest tag when deploying containers in

production, because this makes it hard to track which version of the image is running

and hard to roll back.

To make sure the container always uses the same version of the image, you can specify

its digest (for example

sha256:45b23dee08af5e43a7fea6c4cf9c25ccf269ee113168c19722f87876677c5cb2sha256:45b23dee08af5e43a7fea6c4cf9c25ccf269ee113168c19722f87876677c5cb2).

This uniquely identifies a specific version of the image, so it will never be updated by

Kubernetes unless you change the digest value.

Using kubectl

Use

kubectl apply -fkubectl apply -f

<directory><directory> or

kubectl create -fkubectl create -f

<directory><directory> . This looks

for Kubernetes configuration in all .yaml.yaml , .yml.yml , and .json.json files in <directory><directory> and

passes it to applyapply or createcreate .

Use label selectors for getget and deletedelete operations instead of specific object names. See

the sections on label selectors and using labels effectively.

Use

kubectlkubectl

runrun and

kubectlkubectl

exposeexpose to quickly create single-container Deployments

and Services. See Use a Service to Access an Application in a Cluster for an example.

file:///docs/admin/kubelet/
https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier
file:///docs/concepts/overview/working-with-objects/labels/#label-selectors
file:///docs/concepts/cluster-administration/manage-deployment/#using-labels-effectively
file:///docs/tasks/access-application-cluster/service-access-application-cluster/

Managing Compute Resources for
Containers

When you specify a Pod, you can optionally specify how much CPU and memory (RAM) each

Container needs. When Containers have resource requests specified, the scheduler can make

better decisions about which nodes to place Pods on. And when Containers have their limits

specified, contention for resources on a node can be handled in a specified manner. For more

details about the difference between requests and limits, see Resource QoS.

Resource types

CPU and memory are each a resource type. A resource type has a base unit. CPU is specified in

Resource types

Resource requests and limits of Pod and Container

Meaning of CPU

Meaning of memory

How Pods with resource requests are scheduled

How Pods with resource limits are run

Monitoring compute resource usage

Troubleshooting

My Pods are pending with event message failedScheduling

My Container is terminated

Local ephemeral storage

Requests and limits setting for local ephemeral storage

How Pods with ephemeral-storage requests are scheduled

How Pods with ephemeral-storage limits run

Extended Resources

Managing extended resources

Node-level extended resources

Device plugin managed resources

Other resources

Cluster-level extended resources

Consuming extended resources

Planned Improvements

What’s next

file:///docs/concepts/workloads/pods/pod/
https://git.k8s.io/community/contributors/design-proposals/node/resource-qos.md

units of cores, and memory is specified in units of bytes.

CPU and memory are collectively referred to as compute resources, or just resources. Compute

resources are measurable quantities that can be requested, allocated, and consumed. They are

distinct from API resources. API resources, such as Pods and Services are objects that can be

read and modified through the Kubernetes API server.

Resource requests and limits of Pod and Container

Each Container of a Pod can specify one or more of the following:

spec.containers[].resources.limits.cpuspec.containers[].resources.limits.cpu

spec.containers[].resources.limits.memoryspec.containers[].resources.limits.memory

spec.containers[].resources.requests.cpuspec.containers[].resources.requests.cpu

spec.containers[].resources.requests.memoryspec.containers[].resources.requests.memory

Although requests and limits can only be specified on individual Containers, it is convenient to

talk about Pod resource requests and limits. A Pod resource request/limit for a particular

resource type is the sum of the resource requests/limits of that type for each Container in the

Pod.

Meaning of CPU

Limits and requests for CPU resources are measured in cpu units. One cpu, in Kubernetes, is

equivalent to:

1 AWS vCPU

1 GCP Core

1 Azure vCore

1 Hyperthread on a bare-metal Intel processor with Hyperthreading

Fractional requests are allowed. A Container with

spec.containers[].resources.requests.cpuspec.containers[].resources.requests.cpu of 0.50.5 is guaranteed half as much CPU as

file:///docs/concepts/overview/kubernetes-api/
file:///docs/concepts/services-networking/service/

one that asks for 1 CPU. The expression 0.10.1 is equivalent to the expression 100m100m , which can

be read as “one hundred millicpu”. Some people say “one hundred millicores”, and this is

understood to mean the same thing. A request with a decimal point, like 0.10.1 , is converted to

100m100m by the API, and precision finer than 1m1m is not allowed. For this reason, the form 100m100m

might be preferred.

CPU is always requested as an absolute quantity, never as a relative quantity; 0.1 is the same

amount of CPU on a single-core, dual-core, or 48-core machine.

Meaning of memory

Limits and requests for memorymemory are measured in bytes. You can express memory as a plain

integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also use

the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following represent roughly

the same value:

Here’s an example. The following Pod has two Containers. Each Container has a request of

0.25 cpu and 64MiB (226 bytes) of memory. Each Container has a limit of 0.5 cpu and 128MiB

of memory. You can say the Pod has a request of 0.5 cpu and 128 MiB of memory, and a limit

of 1 cpu and 256MiB of memory.

128974848, 129e6, 129M, 123Mi128974848, 129e6, 129M, 123Mi

How Pods with resource requests are scheduled

When you create a Pod, the Kubernetes scheduler selects a node for the Pod to run on. Each

node has a maximum capacity for each of the resource types: the amount of CPU and memory

it can provide for Pods. The scheduler ensures that, for each resource type, the sum of the

resource requests of the scheduled Containers is less than the capacity of the node. Note that

although actual memory or CPU resource usage on nodes is very low, the scheduler still

refuses to place a Pod on a node if the capacity check fails. This protects against a resource

shortage on a node when resource usage later increases, for example, during a daily peak in

request rate.

How Pods with resource limits are run

When the kubelet starts a Container of a Pod, it passes the CPU and memory limits to the

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: dbdb

 imageimage:: mysqlmysql

 envenv::

 -- namename:: MYSQL_ROOT_PASSWORDMYSQL_ROOT_PASSWORD

 valuevalue:: ""password"password"

 resourcesresources::

 requestsrequests::

 memorymemory:: ""64Mi"64Mi"

 cpucpu:: ""250m"250m"

 limitslimits::

 memorymemory:: ""128Mi"128Mi"

 cpucpu:: ""500m"500m"

 -- namename:: wpwp

 imageimage:: wordpresswordpress

 resourcesresources::

 requestsrequests::

 memorymemory:: ""64Mi"64Mi"

 cpucpu:: ""250m"250m"

 limitslimits::

 memorymemory:: ""128Mi"128Mi"

 cpucpu:: ""500m"500m"

container runtime.

When using Docker:

The spec.containers[].resources.requests.cpuspec.containers[].resources.requests.cpu is converted to its core value, which

is potentially fractional, and multiplied by 1024. The greater of this number or 2 is used as

the value of the --cpu-shares--cpu-shares flag in the

dockerdocker

runrun command.

The spec.containers[].resources.limits.cpuspec.containers[].resources.limits.cpu is converted to its millicore value and

multiplied by 100. The resulting value is the total amount of CPU time that a container can

use every 100ms. A container cannot use more than its share of CPU time during this

interval.

Note: The default quota period is 100ms. The minimum resolution of CPU quota is

1ms.

The spec.containers[].resources.limits.memoryspec.containers[].resources.limits.memory is converted to an integer, and

used as the value of the --memory--memory flag in the

dockerdocker

runrun command.

If a Container exceeds its memory limit, it might be terminated. If it is restartable, the kubelet

will restart it, as with any other type of runtime failure.

If a Container exceeds its memory request, it is likely that its Pod will be evicted whenever the

node runs out of memory.

A Container might or might not be allowed to exceed its CPU limit for extended periods of

time. However, it will not be killed for excessive CPU usage.

To determine whether a Container cannot be scheduled or is being killed due to resource

limits, see the Troubleshooting section.

Monitoring compute resource usage

The resource usage of a Pod is reported as part of the Pod status.

If optional monitoring is configured for your cluster, then Pod resource usage can be retrieved

from the monitoring system.

https://docs.docker.com/engine/reference/run/#/cpu-share-constraint
https://docs.docker.com/engine/reference/run/#/user-memory-constraints
http://releases.k8s.io/master/cluster/addons/cluster-monitoring/README.md

Troubleshooting

My Pods are pending with event message failedScheduling

If the scheduler cannot find any node where a Pod can fit, the Pod remains unscheduled until a

place can be found. An event is produced each time the scheduler fails to find a place for the

Pod, like this:

In the preceding example, the Pod named “frontend” fails to be scheduled due to insufficient

CPU resource on the node. Similar error messages can also suggest failure due to insufficient

memory (PodExceedsFreeMemory). In general, if a Pod is pending with a message of this type,

there are several things to try:

Add more nodes to the cluster.

Terminate unneeded Pods to make room for pending Pods.

Check that the Pod is not larger than all the nodes. For example, if all the nodes have a

capacity of

cpu:cpu:

11 , then a Pod with a request of

cpu:cpu:

1.11.1 will never be scheduled.

You can check node capacities and amounts allocated with the

kubectl describekubectl describe

nodesnodes

command. For example:

$ $ kubectl describe pod frontend | kubectl describe pod frontend | grepgrep -A-A 3 Events 3 Events

Events:Events:

 FirstSeen LastSeen Count From Subobject PathReason Message FirstSeen LastSeen Count From Subobject PathReason Message

 36s 5s 6 36s 5s 6 {{scheduler scheduler }} FailedScheduling Failed FailedScheduling Failed for for

In the preceding output, you can see that if a Pod requests more than 1120m CPUs or 6.23Gi

of memory, it will not fit on the node.

By looking at the PodsPods section, you can see which Pods are taking up space on the node.

The amount of resources available to Pods is less than the node capacity, because system

daemons use a portion of the available resources. The allocatableallocatable field NodeStatus gives

the amount of resources that are available to Pods. For more information, see Node

Allocatable Resources.

The resource quota feature can be configured to limit the total amount of resources that can

be consumed. If used in conjunction with namespaces, it can prevent one team from hogging

all the resources.

My Container is terminated

Your Container might get terminated because it is resource-starved. To check whether a

$ $ kubectl describe nodes e2e-test-minion-group-4lw4kubectl describe nodes e2e-test-minion-group-4lw4

Name: e2e-test-minion-group-4lw4Name: e2e-test-minion-group-4lw4

[[... lines removed ... lines removed for for clarity ...]clarity ...]

Capacity:Capacity:

 alpha.kubernetes.io/nvidia-gpu: 0 alpha.kubernetes.io/nvidia-gpu: 0

 cpu: 2 cpu: 2

 memory: 7679792Ki memory: 7679792Ki

 pods: 110 pods: 110

Allocatable:Allocatable:

 alpha.kubernetes.io/nvidia-gpu: 0 alpha.kubernetes.io/nvidia-gpu: 0

 cpu: 1800m cpu: 1800m

 memory: 7474992Ki memory: 7474992Ki

 pods: 110 pods: 110

[[... lines removed ... lines removed for for clarity ...]clarity ...]

Non-terminated Pods: Non-terminated Pods: ((5 5 in in totaltotal))

 Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits

 ------------------ -------- ------------------------ --------------------

 kube-system fluentd-gcp-v1.38-28bv1 100m kube-system fluentd-gcp-v1.38-28bv1 100m ((5%5%)) 0 0 ((0%0%)) 200Mi 200Mi

 kube-system kube-dns-3297075139-61lj3 260m kube-system kube-dns-3297075139-61lj3 260m ((13%13%)) 0 0 ((0%0%)) 100Mi 100Mi

 kube-system kube-proxy-e2e-test-... 100m kube-system kube-proxy-e2e-test-... 100m ((5%5%)) 0 0 ((0%0%)) 0 0

 kube-system monitoring-influxdb-grafana-v4-z1m12 200m kube-system monitoring-influxdb-grafana-v4-z1m12 200m ((10%10%)) 200m 200m ((10%10%))

 kube-system node-problem-detector-v0.1-fj7m3 20m kube-system node-problem-detector-v0.1-fj7m3 20m ((1%1%)) 200m 200m ((10%10%)) 20Mi 20Mi

Allocated resources:Allocated resources:

 ((Total limits may be over 100 percent, i.e., overcommitted.Total limits may be over 100 percent, i.e., overcommitted.))

 CPU Requests CPU Limits Memory Requests Memory Limits CPU Requests CPU Limits Memory Requests Memory Limits

 ------------------------ -------------------- ------------------------------ --------------------------

 680m 680m ((34%34%)) 400m 400m ((20%20%)) 920Mi 920Mi ((12%12%)) 1070Mi 1070Mi ((14%14%))

file:///docs/reference/generated/kubernetes-api/v1.10/#nodestatus-v1-core
https://git.k8s.io/community/contributors/design-proposals/node/node-allocatable.md
file:///docs/concepts/policy/resource-quotas/

Container is being killed because it is hitting a resource limit, call

kubectl describekubectl describe

podpod on

the Pod of interest:

In the preceding example, the

Restart Count:Restart Count:

55 indicates that the simmemleaksimmemleak Container in

the Pod was terminated and restarted five times.

You can call

kubectl getkubectl get

podpod with the

-o go--o go-

template=...template=... option to fetch the status of

previously terminated Containers:

[[12:54:41] 12:54:41] $ $ kubectl describe pod simmemleak-hra99kubectl describe pod simmemleak-hra99

Name: simmemleak-hra99Name: simmemleak-hra99

Namespace: defaultNamespace: default

ImageImage((ss)): saadali/simmemleak: saadali/simmemleak

Node: kubernetes-node-tf0f/10.240.216.66Node: kubernetes-node-tf0f/10.240.216.66

Labels: Labels: namename==simmemleaksimmemleak

Status: RunningStatus: Running

Reason:Reason:

Message:Message:

IP: 10.244.2.75IP: 10.244.2.75

Replication Controllers: simmemleak Replication Controllers: simmemleak ((1/1 replicas created1/1 replicas created))

Containers:Containers:

 simmemleak: simmemleak:

 Image: saadali/simmemleak Image: saadali/simmemleak

 Limits: Limits:

 cpu: 100m cpu: 100m

 memory: 50Mi memory: 50Mi

 State: Running State: Running

 Started: Tue, 07 Jul 2015 12:54:41 Started: Tue, 07 Jul 2015 12:54:41 -0700-0700

 Last Termination State: Terminated Last Termination State: Terminated

 Exit Code: 1 Exit Code: 1

 Started: Fri, 07 Jul 2015 12:54:30 Started: Fri, 07 Jul 2015 12:54:30 -0700-0700

 Finished: Fri, 07 Jul 2015 12:54:33 Finished: Fri, 07 Jul 2015 12:54:33 -0700-0700

 Ready: False Ready: False

 Restart Count: 5 Restart Count: 5

Conditions:Conditions:

 Type Status Type Status

 Ready False Ready False

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Reason Message FirstSeen LastSeen Count From SubobjectPath Reason Message

 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 1 1 {{

 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 1 1 {{

 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 1 1 {{

 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 1 1 {{

 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 Tue, 07 Jul 2015 12:53:51 Tue, 07 Jul 2015 12:53:51 -0700-0700 1 1 {{

You can see that the Container was terminated because of

reason:OOMreason:OOM

KilledKilled , where OOMOOM

stands for Out Of Memory.

Local ephemeral storage

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Kubernetes version 1.8 introduces a new resource, ephemeral-storage for managing local

ephemeral storage. In each Kubernetes node, kubelet’s root directory (/var/lib/kubelet by

default) and log directory (/var/log) are stored on the root partition of the node. This partition is

also shared and consumed by pods via EmptyDir volumes, container logs, image layers and

container writable layers.

This partition is “ephemeral” and applications cannot expect any performance SLAs (Disk IOPS

for example) from this partition. Local ephemeral storage management only applies for the

root partition; the optional partition for image layer and writable layer is out of scope.

Note: If an optional runtime partition is used, root partition will not hold any image layer

or writable layers.

Requests and limits setting for local ephemeral storage

Each Container of a Pod can specify one or more of the following:

spec.containers[].resources.limits.ephemeral-storagespec.containers[].resources.limits.ephemeral-storage

spec.containers[].resources.requests.ephemeral-storagespec.containers[].resources.requests.ephemeral-storage

Limits and requests for ephemeral-storageephemeral-storage are measured in bytes. You can express storage

as a plain integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can

also use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following represent

[[13:59:01] 13:59:01] $ $ kubectl get pod kubectl get pod -o-o go-template go-template=='{{range.status.containerStatuses}}{{"Container Name: "}}{{.name}}{{"\r\nLastState: "}}{{.lastState}}{{end}}''{{range.status.containerStatuses}}{{"Container Name: "}}{{.name}}{{"\r\nLastState: "}}{{.lastState}}{{end}}'

Container Name: simmemleakContainer Name: simmemleak

LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]

roughly the same value:

For example, the following Pod has two Containers. Each Container has a request of 2GiB of

local ephemeral storage. Each Container has a limit of 4GiB of local ephemeral storage.

Therefore, the Pod has a request of 4GiB of local ephemeral storage, and a limit of 8GiB of

storage.

How Pods with ephemeral-storage requests are scheduled

When you create a Pod, the Kubernetes scheduler selects a node for the Pod to run on. Each

node has a maximum amount of local ephemeral storage it can provide for Pods. (For more

information, see “Node Allocatable” The scheduler ensures that the sum of the resource

requests of the scheduled Containers is less than the capacity of the node.

How Pods with ephemeral-storage limits run

For container-level isolation, if a Container’s writable layer and logs usage exceeds its storage

limit, the pod will be evicted. For pod-level isolation, if the sum of the local ephemeral storage

128974848, 129e6, 129M, 123Mi128974848, 129e6, 129M, 123Mi

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: dbdb

 imageimage:: mysqlmysql

 envenv::

 -- namename:: MYSQL_ROOT_PASSWORDMYSQL_ROOT_PASSWORD

 valuevalue:: ""password"password"

 resourcesresources::

 requestsrequests::

 ephemeral-storageephemeral-storage:: ""2Gi"2Gi"

 limitslimits::

 ephemeral-storageephemeral-storage:: ""4Gi"4Gi"

 -- namename:: wpwp

 imageimage:: wordpresswordpress

 resourcesresources::

 requestsrequests::

 ephemeral-storageephemeral-storage:: ""2Gi"2Gi"

 limitslimits::

 ephemeral-storageephemeral-storage:: ""4Gi"4Gi"

file:///docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable

usage from all containers and also the pod’s EmptyDir volumes exceeds the limit, the pod will

be evicted.

Extended Resources

Extended Resources are fully-qualified resource names outside the kubernetes.iokubernetes.io domain.

They allow cluster operators to advertise and users to consume the non-Kubernetes-built-in

resources.

There are two steps required to use Extended Resources. First, the cluster operator must

advertise an Extended Resource. Second, users must request the Extended Resource in Pods.

Managing extended resources

Node-level extended resources

Node-level extended resources are tied to nodes.

Device plugin managed resources

See Device Plugin for how to advertise device plugin managed resources on each node.

Other resources

To advertise a new node-level extended resource, the cluster operator can submit a PATCHPATCH

HTTP request to the API server to specify the available quantity in the status.capacitystatus.capacity for a

node in the cluster. After this operation, the node’s status.capacitystatus.capacity will include a new

resource. The status.allocatablestatus.allocatable field is updated automatically with the new resource

asynchronously by the kubelet. Note that because the scheduler uses the node

status.allocatablestatus.allocatable value when evaluating Pod fitness, there may be a short delay between

patching the node capacity with a new resource and the first pod that requests the resource to

be scheduled on that node.

Example:

Here is an example showing how to use curlcurl to form an HTTP request that advertises five

https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/

“example.com/foo” resources on node k8s-node-1k8s-node-1 whose master is k8s-masterk8s-master .

Note: In the preceding request, ~1~1 is the encoding for the character // in the patch

path. The operation path value in JSON-Patch is interpreted as a JSON-Pointer. For

more details, see IETF RFC 6901, section 3.

Cluster-level extended resources

Cluster-level extended resources are not tied to nodes. They are usually managed by scheduler

extenders, which handle the resource comsumption, quota and so on.

You can specify the extended resources that are handled by scheduler extenders in scheduler

policy configuration.

Example:

The following configuration for a scheduler policy indicates that the cluster-level extended

resource “example.com/foo” is handled by scheduler extender.

The scheduler sends a pod to the scheduler extender only if the pod requests

“example.com/foo”.

The ignoredBySchedulerignoredByScheduler field specifies that the scheduler does not check the

“example.com/foo” resource in its PodFitsResourcesPodFitsResources predicate.

curl curl --header--header "Content-Type: application/json-patch+json""Content-Type: application/json-patch+json" \\

--request--request PATCH PATCH \\

--data--data '[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]''[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]'

http://k8s-master:8080/api/v1/nodes/k8s-node-1/statushttp://k8s-master:8080/api/v1/nodes/k8s-node-1/status

https://tools.ietf.org/html/rfc6901#section-3
https://github.com/kubernetes/kubernetes/blob/release-1.10/pkg/scheduler/api/v1/types.go#L31

Consuming extended resources

Users can consume Extended Resources in Pod specs just like CPU and memory. The

scheduler takes care of the resource accounting so that no more than the available amount is

simultaneously allocated to Pods.

The API server restricts quantities of Extended Resources to whole numbers. Examples of

valid quantities are 33 , 3000m3000m and 3Ki3Ki . Examples of invalid quantities are 0.50.5 and 1500m1500m .

Note: Extended Resources replace Opaque Integer Resources. Users can use any

domain name prefix other than “ kubernetes.iokubernetes.io ” which is reserved.

To consume an Extended Resource in a Pod, include the resource name as a key in the

spec.containers[].resources.limitsspec.containers[].resources.limits map in the container spec.

Note: Extended resources cannot be overcommitted, so request and limit must be equal

if both are present in a container spec.

A Pod is scheduled only if all of the resource requests are satisfied, including CPU, memory

and any Extended Resources. The Pod remains in the PENDINGPENDING state as long as the resource

request cannot be satisfied.

Example:

{{

 "kind""kind":: "Policy""Policy",,

 "apiVersion""apiVersion":: "v1""v1",,

 "extenders""extenders":: [[

 {{

 "urlPrefix""urlPrefix"::"<extender-endpoint>""<extender-endpoint>",,

 "bindVerb""bindVerb":: "bind""bind",,

 "ManagedResources""ManagedResources":: [[

 {{

 "name""name":: "example.com/foo""example.com/foo",,

 "ignoredByScheduler""ignoredByScheduler":: truetrue

 }}

]]

 }}

]]

}}

The Pod below requests 2 CPUs and 1 “example.com/foo” (an extended resource).

Planned Improvements

Kubernetes version 1.5 only allows resource quantities to be specified on a Container. It is

planned to improve accounting for resources that are shared by all Containers in a Pod, such

as emptyDir volumes.

Kubernetes version 1.5 only supports Container requests and limits for CPU and memory. It is

planned to add new resource types, including a node disk space resource, and a framework for

adding custom resource types.

Kubernetes supports overcommitment of resources by supporting multiple levels of Quality of

Service.

In Kubernetes version 1.5, one unit of CPU means different things on different cloud providers,

and on different machine types within the same cloud providers. For example, on AWS, the

capacity of a node is reported in ECUs, while in GCE it is reported in logical cores. We plan to

revise the definition of the cpu resource to allow for more consistency across providers and

platforms.

What’s next

Get hands-on experience assigning Memory resources to containers and pods.

Get hands-on experience assigning CPU resources to containers and pods.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: my-podmy-pod

specspec::

 containerscontainers::

 -- namename:: my-containermy-container

 imageimage:: myimagemyimage

 resourcesresources::

 requestsrequests::

 cpucpu:: 22

 example.com/fooexample.com/foo:: 11

 limitslimits::

 example.com/fooexample.com/foo:: 11

file:///docs/concepts/storage/volumes/#emptydir
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/resources.md
http://issue.k8s.io/168
http://aws.amazon.com/ec2/faqs/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/

Container

ResourceRequirements

file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#resourcerequirements-v1-core

Assigning Pods to Nodes

You can constrain a pod to only be able to run on particular nodes or to prefer to run on

particular nodes. There are several ways to do this, and they all use label selectors to make the

selection. Generally such constraints are unnecessary, as the scheduler will automatically do a

reasonable placement (e.g. spread your pods across nodes, not place the pod on a node with

insufficient free resources, etc.) but there are some circumstances where you may want more

control on a node where a pod lands, e.g. to ensure that a pod ends up on a machine with an

SSD attached to it, or to co-locate pods from two different services that communicate a lot

into the same availability zone.

You can find all the files for these examples in our docs repo here.

nodeSelector

nodeSelectornodeSelector is the simplest form of constraint. nodeSelectornodeSelector is a field of PodSpec. It

specifies a map of key-value pairs. For the pod to be eligible to run on a node, the node must

have each of the indicated key-value pairs as labels (it can have additional labels as well). The

most common usage is one key-value pair.

Let’s walk through an example of how to use nodeSelectornodeSelector .

Step Zero: Prerequisites

nodeSelector

Step Zero: Prerequisites

Step One: Attach label to the node

Step Two: Add a nodeSelector field to your pod configuration

Interlude: built-in node labels

Affinity and anti-affinity

Node affinity (beta feature)

Inter-pod affinity and anti-affinity (beta feature)

An example of a pod that uses pod affinity:

More Practical Use-cases

Always co-located in the same node

Never co-located in the same node

file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/architecture/nodes/
file:///docs/concepts/overview/working-with-objects/labels/
https://github.com/kubernetes/website/tree/master/docs/user-guide/node-selection

This example assumes that you have a basic understanding of Kubernetes pods and that you

have turned up a Kubernetes cluster.

Step One: Attach label to the node

Run

kubectl getkubectl get

nodesnodes to get the names of your cluster’s nodes. Pick out the one that you

want to add a label to, and then run

kubectl label nodes <node-name> <label-key>=<label-kubectl label nodes <node-name> <label-key>=<label-

value>value> to add a label to the

node you’ve chosen. For example, if my node name is ‘kubernetes-foo-node-1.c.a-

robinson.internal’ and my desired label is ‘disktype=ssd’, then I can run

kubectl label nodes kubernetes-foo-node-1.c.a-robinson.internalkubectl label nodes kubernetes-foo-node-1.c.a-robinson.internal

disktype=ssddisktype=ssd .

If this fails with an “invalid command” error, you’re likely using an older version of kubectl that

doesn’t have the labellabel command. In that case, see the previous version of this guide for

instructions on how to manually set labels on a node.

You can verify that it worked by re-running

kubectl get nodes --show-kubectl get nodes --show-

labelslabels and checking

that the node now has a label.

Step Two: Add a nodeSelector field to your pod configuration

Take whatever pod config file you want to run, and add a nodeSelector section to it, like this.

For example, if this is my pod config:

Then add a nodeSelector like so:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 envenv:: testtest

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

https://github.com/kubernetes/kubernetes#documentation
https://github.com/kubernetes/kubernetes/blob/a053dbc313572ed60d89dae9821ecab8bfd676dc/examples/node-selection/README.md

pod.yamlpod.yaml

When you then run

kubectl create -fkubectl create -f

pod.yamlpod.yaml , the pod will get scheduled on the node

that you attached the label to! You can verify that it worked by running

kubectl get pods -okubectl get pods -o

widewide and looking at the “NODE” that the pod was assigned to.

Interlude: built-in node labels

In addition to labels you attach, nodes come pre-populated with a standard set of labels. As of

Kubernetes v1.4 these labels are

kubernetes.io/hostnamekubernetes.io/hostname

failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone

failure-domain.beta.kubernetes.io/regionfailure-domain.beta.kubernetes.io/region

beta.kubernetes.io/instance-typebeta.kubernetes.io/instance-type

beta.kubernetes.io/osbeta.kubernetes.io/os

beta.kubernetes.io/archbeta.kubernetes.io/arch

Note: The value of these labels is cloud provider specific and is not guaranteed to be

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 envenv:: testtest

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 imagePullPolicyimagePullPolicy:: IfNotPresentIfNotPresent

 nodeSelectornodeSelector::

 disktypedisktype:: ssdssd

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/configuration/pod.yaml

reliable. For example, the value of kubernetes.io/hostnamekubernetes.io/hostname may be the same as the

Node name in some environments and a different value in other environments.

Affinity and anti-affinity

nodeSelectornodeSelector provides a very simple way to constrain pods to nodes with particular labels.

The affinity/anti-affinity feature, currently in beta, greatly expands the types of constraints you

can express. The key enhancements are

1. the language is more expressive (not just “AND of exact match”)

2. you can indicate that the rule is “soft”/”preference” rather than a hard requirement, so if the

scheduler can’t satisfy it, the pod will still be scheduled

3. you can constrain against labels on other pods running on the node (or other topological

domain), rather than against labels on the node itself, which allows rules about which pods

can and cannot be co-located

The affinity feature consists of two types of affinity, “node affinity” and “inter-pod affinity/anti-

affinity”. Node affinity is like the existing nodeSelectornodeSelector (but with the first two benefits listed

above), while inter-pod affinity/anti-affinity constrains against pod labels rather than node

labels, as described in the third item listed above, in addition to having the first and second

properties listed above.

nodeSelectornodeSelector continues to work as usual, but will eventually be deprecated, as node affinity

can express everything that nodeSelectornodeSelector can express.

Node affinity (beta feature)

Node affinity was introduced as alpha in Kubernetes 1.2. Node affinity is conceptually similar

to nodeSelectornodeSelector – it allows you to constrain which nodes your pod is eligible to be scheduled

on, based on labels on the node.

There are currently two types of node affinity, called

requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution and

preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution . You can think of them as “hard” and

“soft” respectively, in the sense that the former specifies rules that must be met for a pod to be

scheduled onto a node (just like nodeSelectornodeSelector but using a more expressive syntax), while the

latter specifies preferences that the scheduler will try to enforce but will not guarantee. The

“IgnoredDuringExecution” part of the names means that, similar to how nodeSelectornodeSelector works,

if labels on a node change at runtime such that the affinity rules on a pod are no longer met,

the pod will still continue to run on the node. In the future we plan to offer

requiredDuringSchedulingRequiredDuringExecutionrequiredDuringSchedulingRequiredDuringExecution which will be just like

requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution except that it will evict pods from

nodes that cease to satisfy the pods’ node affinity requirements.

Thus an example of requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution would be “only

run the pod on nodes with Intel CPUs” and an example

preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution would be “try to run this set of pods

in availability zone XYZ, but if it’s not possible, then allow some to run elsewhere”.

Node affinity is specified as field nodeAffinitynodeAffinity of field affinityaffinity in the PodSpec.

Here’s an example of a pod that uses node affinity:

pod-with-node-affinity.yamlpod-with-node-affinity.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/configuration/pod-with-node-affinity.yaml

pod-with-node-affinity.yamlpod-with-node-affinity.yaml

This node affinity rule says the pod can only be placed on a node with a label whose key is

kubernetes.io/e2e-az-namekubernetes.io/e2e-az-name and whose value is either e2e-az1e2e-az1 or e2e-az2e2e-az2 . In addition,

among nodes that meet that criteria, nodes with a label whose key is

another-node-label-keyanother-node-label-key and whose value is another-node-label-valueanother-node-label-value should be

preferred.

You can see the operator InIn being used in the example. The new node affinity syntax

supports the following operators: InIn , NotInNotIn , ExistsExists , DoesNotExistDoesNotExist , GtGt , LtLt . There is no

explicit “node anti-affinity” concept, but NotInNotIn and DoesNotExistDoesNotExist give that behavior.

If you specify both nodeSelectornodeSelector and nodeAffinitynodeAffinity , both must be satisfied for the pod to

be scheduled onto a candidate node.

If you specify multiple nodeSelectorTermsnodeSelectorTerms associated with nodeAffinitynodeAffinity types, then the

pod can be scheduled onto a node if one of the nodeSelectorTermsnodeSelectorTerms is satisfied.

If you specify multiple matchExpressionsmatchExpressions associated with nodeSelectorTermsnodeSelectorTerms , then the

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: with-node-affinitywith-node-affinity

specspec::

 affinityaffinity::

 nodeAffinitynodeAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 nodeSelectorTermsnodeSelectorTerms::

 -- matchExpressionsmatchExpressions::

 -- keykey:: kubernetes.io/e2e-az-namekubernetes.io/e2e-az-name

 operatoroperator:: InIn

 valuesvalues::

 -- e2e-az1e2e-az1

 -- e2e-az2e2e-az2

 preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution::

 -- weightweight:: 11

 preferencepreference::

 matchExpressionsmatchExpressions::

 -- keykey:: another-node-label-keyanother-node-label-key

 operatoroperator:: InIn

 valuesvalues::

 -- another-node-label-valueanother-node-label-value

 containerscontainers::

 -- namename:: with-node-affinitywith-node-affinity

 imageimage:: k8s.gcr.io/pause:2.0k8s.gcr.io/pause:2.0

pod can be scheduled onto a node only if all matchExpressionsmatchExpressions can be satisfied.

If you remove or change the label of the node where the pod is scheduled, the pod won’t be

removed. In other words, the affinity selection works only at the time of scheduling the pod.

For more information on node affinity, see the design doc here.

Inter-pod affinity and anti-affinity (beta feature)

Inter-pod affinity and anti-affinity were introduced in Kubernetes 1.4. Inter-pod affinity and anti-

affinity allow you to constrain which nodes your pod is eligible to be scheduled based on labels

on pods that are already running on the node rather than based on labels on nodes. The rules

are of the form “this pod should (or, in the case of anti-affinity, should not) run in an X if that X

is already running one or more pods that meet rule Y”. Y is expressed as a LabelSelector with

an associated list of namespaces (or “all” namespaces); unlike nodes, because pods are

namespaced (and therefore the labels on pods are implicitly namespaced), a label selector

over pod labels must specify which namespaces the selector should apply to. Conceptually X

is a topology domain like node, rack, cloud provider zone, cloud provider region, etc. You

express it using a topologyKeytopologyKey which is the key for the node label that the system uses to

denote such a topology domain, e.g. see the label keys listed above in the section Interlude:

built-in node labels.

Note: Inter-pod affinity and anti-affinity require substantial amount of processing which can

slow down scheduling in large clusters significantly. We do not recommend using them in

clusters larger than several hundred nodes.

As with node affinity, there are currently two types of pod affinity and anti-affinity, called

requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution and

preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution which denote “hard” vs. “soft”

requirements. See the description in the node affinity section earlier. An example of

requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution affinity would be “co-locate the pods

of service A and service B in the same zone, since they communicate a lot with each other” and

an example preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution anti-affinity would be

“spread the pods from this service across zones” (a hard requirement wouldn’t make sense,

since you probably have more pods than zones).

Inter-pod affinity is specified as field podAffinitypodAffinity of field affinityaffinity in the PodSpec. And

inter-pod anti-affinity is specified as field podAntiAffinitypodAntiAffinity of field affinityaffinity in the

PodSpec.

https://git.k8s.io/community/contributors/design-proposals/scheduling/nodeaffinity.md

An example of a pod that uses pod affinity:

pod-with-pod-affinity.yamlpod-with-pod-affinity.yaml

The affinity on this pod defines one pod affinity rule and one pod anti-affinity rule. In this

example, the podAffinitypodAffinity is requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution while

the podAntiAffinitypodAntiAffinity is preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution . The pod

affinity rule says that the pod can be scheduled onto a node only if that node is in the same

zone as at least one already-running pod that has a label with key “security” and value “S1”.

(More precisely, the pod is eligible to run on node N if node N has a label with key

failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone and some value V such that there is at least

one node in the cluster with key failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone and value V

that is running a pod that has a label with key “security” and value “S1”.) The pod anti-affinity

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: with-pod-affinitywith-pod-affinity

specspec::

 affinityaffinity::

 podAffinitypodAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 -- labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: securitysecurity

 operatoroperator:: InIn

 valuesvalues::

 -- S1S1

 topologyKeytopologyKey:: failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone

 podAntiAffinitypodAntiAffinity::

 preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution::

 -- weightweight:: 100100

 podAffinityTermpodAffinityTerm::

 labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: securitysecurity

 operatoroperator:: InIn

 valuesvalues::

 -- S2S2

 topologyKeytopologyKey:: kubernetes.io/hostnamekubernetes.io/hostname

 containerscontainers::

 -- namename:: with-pod-affinitywith-pod-affinity

 imageimage:: k8s.gcr.io/pause:2.0k8s.gcr.io/pause:2.0

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/configuration/pod-with-pod-affinity.yaml

rule says that the pod prefers not to be scheduled onto a node if that node is already running a

pod with label having key “security” and value “S2”. (If the topologyKeytopologyKey were

failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone then it would mean that the pod cannot be

scheduled onto a node if that node is in the same zone as a pod with label having key

“security” and value “S2”.) See the design doc. For many more examples of pod affinity and

anti-affinity, both the requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution flavor and the

preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution flavor.

The legal operators for pod affinity and anti-affinity are InIn , NotInNotIn , ExistsExists , DoesNotExistDoesNotExist .

In principle, the topologyKeytopologyKey can be any legal label-key. However, for performance and

security reasons, there are some constraints on topologyKey:

1. For affinity and for requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution pod anti-

affinity, empty topologyKeytopologyKey is not allowed.

2. For requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution pod anti-affinity, the

admission controller LimitPodHardAntiAffinityTopologyLimitPodHardAntiAffinityTopology was introduced to limit

topologyKeytopologyKey to kubernetes.io/hostnamekubernetes.io/hostname . If you want to make it available for custom

topologies, you may modify the admission controller, or simply disable it.

3. For preferredDuringSchedulingIgnoredDuringExecutionpreferredDuringSchedulingIgnoredDuringExecution pod anti-affinity, empty

topologyKeytopologyKey is interpreted as “all topologies” (“all topologies” here is now limited to the

combination of kubernetes.io/hostnamekubernetes.io/hostname ,

failure-domain.beta.kubernetes.io/zonefailure-domain.beta.kubernetes.io/zone and

failure-domain.beta.kubernetes.io/regionfailure-domain.beta.kubernetes.io/region).

4. Except for the above cases, the topologyKeytopologyKey can be any legal label-key.

In addition to labelSelectorlabelSelector and topologyKeytopologyKey , you can optionally specify a list

namespacesnamespaces of namespaces which the labelSelectorlabelSelector should match against (this goes at

the same level of the definition as labelSelectorlabelSelector and topologyKeytopologyKey). If omitted, it defaults

to the namespace of the pod where the affinity/anti-affinity definition appears. If defined but

empty, it means “all namespaces”.

All matchExpressionsmatchExpressions associated with

requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution affinity and anti-affinity must be

https://git.k8s.io/community/contributors/design-proposals/scheduling/podaffinity.md

satisfied for the pod to be scheduled onto a node.

More Practical Use-cases

Interpod Affinity and AntiAffinity can be even more useful when they are used with higher level

collections such as ReplicaSets, Statefulsets, Deployments, etc. One can easily configure that

a set of workloads should be co-located in the same defined topology, eg., the same node.

Always co-located in the same node

In a three node cluster, a web application has in-memory cache such as redis. We want the

web-servers to be co-located with the cache as much as possible. Here is the yaml snippet of

a simple redis deployment with three replicas and selector label app=storeapp=store . The deployment

has PodAntiAffinityPodAntiAffinity configured to ensure the scheduler does not co-locate replicas on a

single node.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: redis-cacheredis-cache

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: storestore

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: storestore

 specspec::

 affinityaffinity::

 podAntiAffinitypodAntiAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 -- labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: appapp

 operatoroperator:: InIn

 valuesvalues::

 -- storestore

 topologyKeytopologyKey:: ""kubernetes.io/hostname"kubernetes.io/hostname"

 containerscontainers::

 -- namename:: redis-serverredis-server

 imageimage:: redis:3.2-alpineredis:3.2-alpine

The below yaml snippet of the webserver deployment has podAntiAffinitypodAntiAffinity and

podAffinitypodAffinity configured. This informs the scheduler that all its replicas are to be co-located

with pods that have selector label app=storeapp=store . This will also ensure that each web-server

replica does not co-locate on a single node.

If we create the above two deployments, our three node cluster should look like below.

node-1 node-2 node-3

webserver-1 webserver-2 webserver-3

cache-1 cache-2 cache-3

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: web-serverweb-server

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: web-storeweb-store

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: web-storeweb-store

 specspec::

 affinityaffinity::

 podAntiAffinitypodAntiAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 -- labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: appapp

 operatoroperator:: InIn

 valuesvalues::

 -- web-storeweb-store

 topologyKeytopologyKey:: ""kubernetes.io/hostname"kubernetes.io/hostname"

 podAffinitypodAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 -- labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: appapp

 operatoroperator:: InIn

 valuesvalues::

 -- storestore

 topologyKeytopologyKey:: ""kubernetes.io/hostname"kubernetes.io/hostname"

 containerscontainers::

 -- namename:: web-appweb-app

 imageimage:: nginx:1.12-alpinenginx:1.12-alpine

node-1 node-2 node-3

As you can see, all the 3 replicas of the web-serverweb-server are automatically co-located with the

cache as expected.

Best practice is to configure these highly available stateful workloads such as redis with

AntiAffinity rules for more guaranteed spreading.

Never co-located in the same node

Highly Available database statefulset has one master and three replicas, one may prefer none

of the database instances to be co-located in the same node.

node-1 node-2 node-3 node-4

DB-MASTER DB-REPLICA-1 DB-REPLICA-2 DB-REPLICA-3

Here is an example of Zookeeper statefulset configured with anti-affinity for high availability.

For more information on inter-pod affinity/anti-affinity, see the design doc here.

You may want to check Taints as well, which allow a node to repel a set of pods.

$ kubectl get pods -o wide$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

redis-cache-1450370735-6dzlj 1/1 Running 0 8m 10.192.4.2 kube-node-3redis-cache-1450370735-6dzlj 1/1 Running 0 8m 10.192.4.2 kube-node-3

redis-cache-1450370735-j2j96 1/1 Running 0 8m 10.192.2.2 kube-node-1redis-cache-1450370735-j2j96 1/1 Running 0 8m 10.192.2.2 kube-node-1

redis-cache-1450370735-z73mh 1/1 Running 0 8m 10.192.3.1 kube-node-2redis-cache-1450370735-z73mh 1/1 Running 0 8m 10.192.3.1 kube-node-2

web-server-1287567482-5d4dz 1/1 Running 0 7m 10.192.2.3 kube-node-1web-server-1287567482-5d4dz 1/1 Running 0 7m 10.192.2.3 kube-node-1

web-server-1287567482-6f7v5 1/1 Running 0 7m 10.192.4.3 kube-node-3web-server-1287567482-6f7v5 1/1 Running 0 7m 10.192.4.3 kube-node-3

web-server-1287567482-s330j 1/1 Running 0 7m 10.192.3.2 kube-node-2web-server-1287567482-s330j 1/1 Running 0 7m 10.192.3.2 kube-node-2

https://kubernetes.io/docs/tutorials/stateful-application/zookeeper/#tolerating-node-failure
https://git.k8s.io/community/contributors/design-proposals/scheduling/podaffinity.md
file:///docs/concepts/configuration/taint-and-toleration/

Taints and Tolerations

Node affinity, described here, is a property of pods that attracts them to a set of nodes (either

as a preference or a hard requirement). Taints are the opposite – they allow a node to repel a

set of pods.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate

nodes. One or more taints are applied to a node; this marks that the node should not accept

any pods that do not tolerate the taints. Tolerations are applied to pods, and allow (but do not

require) the pods to schedule onto nodes with matching taints.

Concepts

You add a taint to a node using kubectl taint. For example,

places a taint on node node1node1 . The taint has key keykey , value valuevalue , and taint effect

NoScheduleNoSchedule . This means that no pod will be able to schedule onto node1node1 unless it has a

matching toleration.

To remove the taint added by the command above, you can run:

You specify a toleration for a pod in the PodSpec. Both of the following tolerations “match” the

taint created by the kubectl taintkubectl taint line above, and thus a pod with either toleration would be

able to schedule onto node1node1 :

Concepts

Example Use Cases

Taint based Evictions

Taint Nodes by Condition

kubectl taint nodes node1 kubectl taint nodes node1 keykey==value:NoSchedulevalue:NoSchedule

kubectl taint nodes node1 key:NoSchedule-kubectl taint nodes node1 key:NoSchedule-

file:///docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
file:///docs/user-guide/kubectl/v1.10/#taint

A toleration “matches” a taint if the keys are the same and the effects are the same, and:

the operatoroperator is ExistsExists (in which case no valuevalue should be specified), or

the operatoroperator is EqualEqual and the valuevalue s are equal

OperatorOperator defaults to EqualEqual if not specified.

NOTE: There are two special cases:

An empty keykey with operator ExistsExists matches all keys, values and effects which means

this will tolerate everything.

An empty effecteffect matches all effects with key keykey .

The above example used effecteffect of NoScheduleNoSchedule . Alternatively, you can use effecteffect of

PreferNoSchedulePreferNoSchedule . This is a “preference” or “soft” version of NoScheduleNoSchedule – the system will

try to avoid placing a pod that does not tolerate the taint on the node, but it is not required. The

third kind of effecteffect is NoExecuteNoExecute , described later.

You can put multiple taints on the same node and multiple tolerations on the same pod. The

tolerationstolerations::

-- keykey:: ""key"key"

 operatoroperator:: ""Equal"Equal"

 valuevalue:: ""value"value"

 effecteffect:: ""NoSchedule"NoSchedule"

tolerationstolerations::

-- keykey:: ""key"key"

 operatoroperator:: ""Exists"Exists"

 effecteffect:: ""NoSchedule"NoSchedule"

tolerationstolerations::

-- operatoroperator:: ""Exists"Exists"

tolerationstolerations::

-- keykey:: ""key"key"

 operatoroperator:: ""Exists"Exists"

way Kubernetes processes multiple taints and tolerations is like a filter: start with all of a

node’s taints, then ignore the ones for which the pod has a matching toleration; the remaining

un-ignored taints have the indicated effects on the pod. In particular,

if there is at least one un-ignored taint with effect NoScheduleNoSchedule then Kubernetes will not

schedule the pod onto that node

if there is no un-ignored taint with effect NoScheduleNoSchedule but there is at least one un-ignored

taint with effect PreferNoSchedulePreferNoSchedule then Kubernetes will try to not schedule the pod onto

the node

if there is at least one un-ignored taint with effect NoExecuteNoExecute then the pod will be evicted

from the node (if it is already running on the node), and will not be scheduled onto the

node (if it is not yet running on the node).

For example, imagine you taint a node like this

And a pod has two tolerations:

In this case, the pod will not be able to schedule onto the node, because there is no toleration

matching the third taint. But it will be able to continue running if it is already running on the

node when the taint is added, because the third taint is the only one of the three that is not

tolerated by the pod.

Normally, if a taint with effect NoExecuteNoExecute is added to a node, then any pods that do not

tolerate the taint will be evicted immediately, and any pods that do tolerate the taint will never

be evicted. However, a toleration with NoExecuteNoExecute effect can specify an optional

kubectl taint nodes node1 kubectl taint nodes node1 key1key1==value1:NoSchedulevalue1:NoSchedule

kubectl taint nodes node1 kubectl taint nodes node1 key1key1==value1:NoExecutevalue1:NoExecute

kubectl taint nodes node1 kubectl taint nodes node1 key2key2==value2:NoSchedulevalue2:NoSchedule

tolerationstolerations::

-- keykey:: ""key1"key1"

 operatoroperator:: ""Equal"Equal"

 valuevalue:: ""value1"value1"

 effecteffect:: ""NoSchedule"NoSchedule"

-- keykey:: ""key1"key1"

 operatoroperator:: ""Equal"Equal"

 valuevalue:: ""value1"value1"

 effecteffect:: ""NoExecute"NoExecute"

tolerationSecondstolerationSeconds field that dictates how long the pod will stay bound to the node after the

taint is added. For example,

means that if this pod is running and a matching taint is added to the node, then the pod will

stay bound to the node for 3600 seconds, and then be evicted. If the taint is removed before

that time, the pod will not be evicted.

Example Use Cases

Taints and tolerations are a flexible way to steer pods away from nodes or evict pods that

shouldn’t be running. A few of the use cases are

Dedicated Nodes: If you want to dedicate a set of nodes for exclusive use by a particular

set of users, you can add a taint to those nodes (say,

kubectl taint nodes nodenamekubectl taint nodes nodename

dedicated=groupName:NoSchedulededicated=groupName:NoSchedule) and then add a

corresponding toleration to their pods (this would be done most easily by writing a custom

admission controller). The pods with the tolerations will then be allowed to use the tainted

(dedicated) nodes as well as any other nodes in the cluster. If you want to dedicate the

nodes to them and ensure they only use the dedicated nodes, then you should additionally

add a label similar to the taint to the same set of nodes (e.g. dedicated=groupNamededicated=groupName), and

the admission controller should additionally add a node affinity to require that the pods

can only schedule onto nodes labeled with dedicated=groupNamededicated=groupName .

Nodes with Special Hardware: In a cluster where a small subset of nodes have specialized

hardware (for example GPUs), it is desirable to keep pods that don’t need the specialized

hardware off of those nodes, thus leaving room for later-arriving pods that do need the

specialized hardware. This can be done by tainting the nodes that have the specialized

hardware (e.g.

kubectl taint nodes nodenamekubectl taint nodes nodename

special=true:NoSchedulespecial=true:NoSchedule or

tolerationstolerations::

-- keykey:: ""key1"key1"

 operatoroperator:: ""Equal"Equal"

 valuevalue:: ""value1"value1"

 effecteffect:: ""NoExecute"NoExecute"

 tolerationSecondstolerationSeconds:: 36003600

file:///docs/admin/admission-controllers/

kubectl taint nodes nodenamekubectl taint nodes nodename

special=true:PreferNoSchedulespecial=true:PreferNoSchedule) and adding a

corresponding toleration to pods that use the special hardware. As in the dedicated nodes

use case, it is probably easiest to apply the tolerations using a custom admission

controller). For example, the admission controller could use some characteristic(s) of the

pod to determine that the pod should be allowed to use the special nodes and hence the

admission controller should add the toleration. To ensure that the pods that need the

special hardware only schedule onto the nodes that have the special hardware, you will

need some additional mechanism, e.g. you could represent the special resource using

extended resources and request it as a resource in the PodSpec, or you could label the

nodes that have the special hardware and use node affinity on the pods that need the

hardware.

Taint based Evictions (alpha feature): A per-pod-configurable eviction behavior when there

are node problems, which is described in the next section.

Taint based Evictions

Earlier we mentioned the NoExecuteNoExecute taint effect, which affects pods that are already running

on the node as follows

pods that do not tolerate the taint are evicted immediately

pods that tolerate the taint without specifying tolerationSecondstolerationSeconds in their toleration

specification remain bound forever

pods that tolerate the taint with a specified tolerationSecondstolerationSeconds remain bound for the

specified amount of time

In addition, Kubernetes 1.6 has alpha support for representing node problems. In other words,

the node controller automatically taints a node when certain condition is true. The built-in taints

currently include:

node.kubernetes.io/not-readynode.kubernetes.io/not-ready : Node is not ready. This corresponds to the

NodeCondition ReadyReady being “ FalseFalse ”.

node.alpha.kubernetes.io/unreachablenode.alpha.kubernetes.io/unreachable : Node is unreachable from the node

file:///docs/admin/admission-controllers/
file:///docs/concepts/configuration/manage-compute-resources-container/#extended-resources

controller. This corresponds to the NodeCondition ReadyReady being “ UnknownUnknown ”.

node.kubernetes.io/out-of-disknode.kubernetes.io/out-of-disk : Node becomes out of disk.

node.kubernetes.io/memory-pressurenode.kubernetes.io/memory-pressure : Node has memory pressure.

node.kubernetes.io/disk-pressurenode.kubernetes.io/disk-pressure : Node has disk pressure.

node.kubernetes.io/network-unavailablenode.kubernetes.io/network-unavailable : Node’s network is unavailable.

node.cloudprovider.kubernetes.io/uninitializednode.cloudprovider.kubernetes.io/uninitialized : When kubelet is started with

“external” cloud provider, it sets this taint on a node to mark it as unusable. When a

controller from the cloud-controller-manager initializes this node, kubelet removes this

taint.

When the TaintBasedEvictionsTaintBasedEvictions alpha feature is enabled (you can do this by including

TaintBasedEvictions=trueTaintBasedEvictions=true in --feature-gates--feature-gates for Kubernetes controller manager, such

as --feature-gates=FooBar=true,TaintBasedEvictions=true--feature-gates=FooBar=true,TaintBasedEvictions=true), the taints are

automatically added by the NodeController (or kubelet) and the normal logic for evicting pods

from nodes based on the Ready NodeCondition is disabled. (Note: To maintain the existing

rate limiting behavior of pod evictions due to node problems, the system actually adds the

taints in a rate-limited way. This prevents massive pod evictions in scenarios such as the

master becoming partitioned from the nodes.) This alpha feature, in combination with

tolerationSecondstolerationSeconds , allows a pod to specify how long it should stay bound to a node that

has one or both of these problems.

For example, an application with a lot of local state might want to stay bound to node for a long

time in the event of network partition, in the hope that the partition will recover and thus the

pod eviction can be avoided. The toleration the pod would use in that case would look like

Note that Kubernetes automatically adds a toleration for node.kubernetes.io/not-readynode.kubernetes.io/not-ready

with tolerationSeconds=300tolerationSeconds=300 unless the pod configuration provided by the user already has

a toleration for node.kubernetes.io/not-readynode.kubernetes.io/not-ready . Likewise it adds a toleration for

tolerationstolerations::

-- keykey:: ""node.alpha.kubernetes.io/unreachable"node.alpha.kubernetes.io/unreachable"

 operatoroperator:: ""Exists"Exists"

 effecteffect:: ""NoExecute"NoExecute"

 tolerationSecondstolerationSeconds:: 60006000

file:///docs/concepts/architecture/nodes/

node.alpha.kubernetes.io/unreachablenode.alpha.kubernetes.io/unreachable with tolerationSeconds=300tolerationSeconds=300 unless the pod

configuration provided by the user already has a toleration for

node.alpha.kubernetes.io/unreachablenode.alpha.kubernetes.io/unreachable .

These automatically-added tolerations ensure that the default pod behavior of remaining

bound for 5 minutes after one of these problems is detected is maintained. The two default

tolerations are added by the DefaultTolerationSeconds admission controller.

DaemonSet pods are created with NoExecuteNoExecute tolerations for the following taints with no

tolerationSecondstolerationSeconds :

node.alpha.kubernetes.io/unreachablenode.alpha.kubernetes.io/unreachable

node.kubernetes.io/not-readynode.kubernetes.io/not-ready

This ensures that DaemonSet pods are never evicted due to these problems, which matches

the behavior when this feature is disabled.

Taint Nodes by Condition

Version 1.8 introduces an alpha feature that causes the node controller to create taints

corresponding to Node conditions. When this feature is enabled (you can do this by including

TaintNodesByCondition=trueTaintNodesByCondition=true in the --feature-gates--feature-gates command line flag to the scheduler,

such as --feature-gates=FooBar=true,TaintNodesByCondition=true--feature-gates=FooBar=true,TaintNodesByCondition=true), the scheduler

does not check Node conditions; instead the scheduler checks taints. This assures that Node

conditions don’t affect what’s scheduled onto the Node. The user can choose to ignore some

of the Node’s problems (represented as Node conditions) by adding appropriate Pod

tolerations.

To make sure that turning on this feature doesn’t break DaemonSets, starting in version 1.8,

the DaemonSet controller automatically adds the following NoScheduleNoSchedule tolerations to all

daemons:

node.kubernetes.io/memory-pressurenode.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressurenode.kubernetes.io/disk-pressure

node.kubernetes.io/out-of-disknode.kubernetes.io/out-of-disk (only for critical pods)

https://git.k8s.io/kubernetes/plugin/pkg/admission/defaulttolerationseconds
file:///docs/concepts/workloads/controllers/daemonset/

The above settings ensure backward compatibility, but we understand they may not fit all

user’s needs, which is why cluster admin may choose to add arbitrary tolerations to

DaemonSets.

Secrets

Objects of type secretsecret are intended to hold sensitive information, such as passwords, OAuth

tokens, and ssh keys. Putting this information in a secretsecret is safer and more flexible than

putting it verbatim in a podpod definition or in a docker image. See Secrets design document for

more information.

Overview of Secrets

Overview of Secrets

Built-in Secrets

Service Accounts Automatically Create and Attach Secrets with API

Credentials

Creating your own Secrets

Creating a Secret Using kubectl create secret

Creating a Secret Manually

Decoding a Secret

Using Secrets

Using Secrets as Files from a Pod

Using Secrets as Environment Variables

Using imagePullSecrets

Arranging for imagePullSecrets to be Automatically Attached

Automatic Mounting of Manually Created Secrets

Details

Restrictions

Secret and Pod Lifetime interaction

Use cases

Use-Case: Pod with ssh keys

Use-Case: Pods with prod / test credentials

Use-case: Dotfiles in secret volume

Use-case: Secret visible to one container in a pod

Best practices

Clients that use the secrets API

Security Properties

Protections

Risks

https://git.k8s.io/community/contributors/design-proposals/auth/secrets.md

A Secret is an object that contains a small amount of sensitive data such as a password, a

token, or a key. Such information might otherwise be put in a Pod specification or in an image;

putting it in a Secret object allows for more control over how it is used, and reduces the risk of

accidental exposure.

Users can create secrets, and the system also creates some secrets.

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in two

ways: as files in a volume mounted on one or more of its containers, or used by kubelet when

pulling images for the pod.

Built-in Secrets

Service Accounts Automatically Create and Attach Secrets with API
Credentials

Kubernetes automatically creates secrets which contain credentials for accessing the API and

it automatically modifies your pods to use this type of secret.

The automatic creation and use of API credentials can be disabled or overridden if desired.

However, if all you need to do is securely access the apiserver, this is the recommended

workflow.

See the Service Account documentation for more information on how Service Accounts work.

Creating your own Secrets

Creating a Secret Using kubectl create secret

Say that some pods need to access a database. The username and password that the pods

should use is in the files ./username.txt./username.txt and ./password.txt./password.txt on your local machine.

The

kubectl createkubectl create

secretsecret command packages these files into a Secret and creates the

object on the Apiserver.

Create files needed for rest of example.# Create files needed for rest of example.

$ $ echoecho -n-n "admin""admin" >> ./username.txt ./username.txt

$ $ echoecho -n-n "1f2d1e2e67df""1f2d1e2e67df" >> ./password.txt ./password.txt

file:///docs/concepts/storage/volumes/
file:///docs/tasks/configure-pod-container/configure-service-account/

You can check that the secret was created like this:

Note that neither getget nor describedescribe shows the contents of the file by default. This is to

protect the secret from being exposed accidentally to someone looking or from being stored in

a terminal log.

See decoding a secret for how to see the contents.

Creating a Secret Manually

You can also create a secret object in a file first, in json or yaml format, and then create that

object.

Each item must be base64 encoded:

Now write a secret object that looks like this:

$ $ kubectl create secret generic db-user-pass kubectl create secret generic db-user-pass --from-file--from-file==./username.txt ./username.txt --from-file--from-file

secret secret "db-user-pass""db-user-pass" created created

$ $ kubectl get secretskubectl get secrets

NAME TYPE DATA AGENAME TYPE DATA AGE

db-user-pass Opaque 2 51sdb-user-pass Opaque 2 51s

$ $ kubectl describe secrets/db-user-passkubectl describe secrets/db-user-pass

Name: db-user-passName: db-user-pass

Namespace: defaultNamespace: default

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

Type: OpaqueType: Opaque

DataData

========

password.txt: 12 bytespassword.txt: 12 bytes

username.txt: 5 bytesusername.txt: 5 bytes

$ $ echoecho -n-n "admin""admin" | base64 | base64

YWRtaW4YWRtaW4==

$ $ echoecho -n-n "1f2d1e2e67df""1f2d1e2e67df" | base64 | base64

MWYyZDFlMmU2N2RmMWYyZDFlMmU2N2Rm

The data field is a map. Its keys must consist of alphanumeric characters, ‘-‘, ‘_’ or ‘.’. The

values are arbitrary data, encoded using base64.

Create the secret using

kubectlkubectl

createcreate :

Encoding Note: The serialized JSON and YAML values of secret data are encoded as base64

strings. Newlines are not valid within these strings and must be omitted. When using the

base64base64 utility on Darwin/OS X users should avoid using the -b-b option to split long lines.

Conversely Linux users should add the option

-w-w

00 to base64base64 commands or the pipeline

base64 | tr -dbase64 | tr -d

'\n''\n' if -w-w option is not available.

Decoding a Secret

Secrets can be retrieved via the

kubectl getkubectl get

secretsecret command. For example, to retrieve the

secret created in the previous section:

apiVersionapiVersion:: v1v1

kindkind:: SecretSecret

metadatametadata::

 namename:: mysecretmysecret

typetype:: OpaqueOpaque

datadata::

 usernameusername:: YWRtaW4=YWRtaW4=

 passwordpassword:: MWYyZDFlMmU2N2RmMWYyZDFlMmU2N2Rm

$ $ kubectl create kubectl create -f-f ./secret.yaml ./secret.yaml

secret secret "mysecret""mysecret" created created

file:///docs/user-guide/kubectl/v1.10/#create

Decode the password field:

Using Secrets

Secrets can be mounted as data volumes or be exposed as environment variables to be used

by a container in a pod. They can also be used by other parts of the system, without being

directly exposed to the pod. For example, they can hold credentials that other parts of the

system should use to interact with external systems on your behalf.

Using Secrets as Files from a Pod

To consume a Secret in a volume in a Pod:

1. Create a secret or use an existing one. Multiple pods can reference the same secret.

2. Modify your Pod definition to add a volume under spec.volumes[]spec.volumes[] . Name the volume

anything, and have a spec.volumes[].secret.secretNamespec.volumes[].secret.secretName field equal to the name of

the secret object.

3. Add a spec.containers[].volumeMounts[]spec.containers[].volumeMounts[] to each container that needs the secret.

Specify

spec.containers[].volumeMounts[].readOnly =spec.containers[].volumeMounts[].readOnly =

truetrue and

spec.containers[].volumeMounts[].mountPathspec.containers[].volumeMounts[].mountPath to an unused directory name where

$ $ kubectl get secret mysecret kubectl get secret mysecret -o-o yaml yaml

apiVersion: v1apiVersion: v1

data:data:

 username: username: YWRtaW4YWRtaW4==

 password: MWYyZDFlMmU2N2Rm password: MWYyZDFlMmU2N2Rm

kind: Secretkind: Secret

metadata:metadata:

 creationTimestamp: 2016-01-22T18:41:56Z creationTimestamp: 2016-01-22T18:41:56Z

 name: mysecret name: mysecret

 namespace: default namespace: default

 resourceVersion: resourceVersion: "164619""164619"

 selfLink: /api/v1/namespaces/default/secrets/mysecret selfLink: /api/v1/namespaces/default/secrets/mysecret

 uid: cfee02d6-c137-11e5-8d73-42010af00002 uid: cfee02d6-c137-11e5-8d73-42010af00002

typetype: Opaque: Opaque

$ $ echoecho "MWYyZDFlMmU2N2Rm""MWYyZDFlMmU2N2Rm" | base64 | base64 --decode--decode

1f2d1e2e67df1f2d1e2e67df

you would like the secrets to appear.

4. Modify your image and/or command line so that the program looks for files in that

directory. Each key in the secret datadata map becomes the filename under mountPathmountPath .

This is an example of a pod that mounts a secret in a volume:

Each secret you want to use needs to be referred to in spec.volumesspec.volumes .

If there are multiple containers in the pod, then each container needs its own volumeMountsvolumeMounts

block, but only one spec.volumesspec.volumes is needed per secret.

You can package many files into one secret, or use many secrets, whichever is convenient.

Projection of secret keys to specific paths

We can also control the paths within the volume where Secret keys are projected. You can use

spec.volumes[].secret.itemsspec.volumes[].secret.items field to change target path of each key:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: mypodmypod

specspec::

 containerscontainers::

 -- namename:: mypodmypod

 imageimage:: redisredis

 volumeMountsvolumeMounts::

 -- namename:: foofoo

 mountPathmountPath:: ""/etc/foo"/etc/foo"

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: foofoo

 secretsecret::

 secretNamesecretName:: mysecretmysecret

What will happen:

usernameusername secret is stored under /etc/foo/my-group/my-username/etc/foo/my-group/my-username file instead of

/etc/foo/username/etc/foo/username .

passwordpassword secret is not projected

If spec.volumes[].secret.itemsspec.volumes[].secret.items is used, only keys specified in itemsitems are projected. To

consume all keys from the secret, all of them must be listed in the itemsitems field. All listed keys

must exist in the corresponding secret. Otherwise, the volume is not created.

Secret files permissions

You can also specify the permission mode bits files part of a secret will have. If you don’t

specify any, 06440644 is used by default. You can specify a default mode for the whole secret

volume and override per key if needed.

For example, you can specify a default mode like this:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: mypodmypod

specspec::

 containerscontainers::

 -- namename:: mypodmypod

 imageimage:: redisredis

 volumeMountsvolumeMounts::

 -- namename:: foofoo

 mountPathmountPath:: ""/etc/foo"/etc/foo"

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: foofoo

 secretsecret::

 secretNamesecretName:: mysecretmysecret

 itemsitems::

 -- keykey:: usernameusername

 pathpath:: my-group/my-usernamemy-group/my-username

Then, the secret will be mounted on /etc/foo/etc/foo and all the files created by the secret volume

mount will have permission 04000400 .

Note that the JSON spec doesn’t support octal notation, so use the value 256 for 0400

permissions. If you use yaml instead of json for the pod, you can use octal notation to specify

permissions in a more natural way.

You can also use mapping, as in the previous example, and specify different permission for

different files like this:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: mypodmypod

specspec::

 containerscontainers::

 -- namename:: mypodmypod

 imageimage:: redisredis

 volumeMountsvolumeMounts::

 -- namename:: foofoo

 mountPathmountPath:: ""/etc/foo"/etc/foo"

 volumesvolumes::

 -- namename:: foofoo

 secretsecret::

 secretNamesecretName:: mysecretmysecret

 defaultModedefaultMode:: 256256

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: mypodmypod

specspec::

 containerscontainers::

 -- namename:: mypodmypod

 imageimage:: redisredis

 volumeMountsvolumeMounts::

 -- namename:: foofoo

 mountPathmountPath:: ""/etc/foo"/etc/foo"

 volumesvolumes::

 -- namename:: foofoo

 secretsecret::

 secretNamesecretName:: mysecretmysecret

 itemsitems::

 -- keykey:: usernameusername

 pathpath:: my-group/my-usernamemy-group/my-username

 modemode:: 511511

In this case, the file resulting in /etc/foo/my-group/my-username/etc/foo/my-group/my-username will have permission value

of 07770777 . Owing to JSON limitations, you must specify the mode in decimal notation.

Note that this permission value might be displayed in decimal notation if you read it later.

Consuming Secret Values from Volumes

Inside the container that mounts a secret volume, the secret keys appear as files and the

secret values are base-64 decoded and stored inside these files. This is the result of

commands executed inside the container from the example above:

The program in a container is responsible for reading the secrets from the files.

Mounted Secrets are updated automatically

When a secret being already consumed in a volume is updated, projected keys are eventually

updated as well. Kubelet is checking whether the mounted secret is fresh on every periodic

sync. However, it is using its local ttl-based cache for getting the current value of the secret.

As a result, the total delay from the moment when the secret is updated to the moment when

new keys are projected to the pod can be as long as kubelet sync period + ttl of secrets cache

in kubelet.

Note: A container using a Secret as a subPath volume mount will not receive Secret

updates.

Using Secrets as Environment Variables

To use a secret in an environment variable in a pod:

1. Create a secret or use an existing one. Multiple pods can reference the same secret.

2. Modify your Pod definition in each container that you wish to consume the value of a

secret key to add an environment variable for each secret key you wish to consume. The

environment variable that consumes the secret key should populate the secret’s name and

$ $ lsls /etc/foo/ /etc/foo/

usernameusername

passwordpassword

$ $ catcat /etc/foo/username /etc/foo/username

adminadmin

$ $ catcat /etc/foo/password /etc/foo/password

1f2d1e2e67df1f2d1e2e67df

file:///docs/concepts/storage/volumes#using-subpath

key in env[].valueFrom.secretKeyRefenv[].valueFrom.secretKeyRef .

3. Modify your image and/or command line so that the program looks for values in the

specified environment variables

This is an example of a pod that uses secrets from environment variables:

Consuming Secret Values from Environment Variables

Inside a container that consumes a secret in an environment variables, the secret keys appear

as normal environment variables containing the base-64 decoded values of the secret data.

This is the result of commands executed inside the container from the example above:

Using imagePullSecrets

An imagePullSecret is a way to pass a secret that contains a Docker (or other) image registry

password to the Kubelet so it can pull a private image on behalf of your Pod.

Manually specifying an imagePullSecret

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: secret-env-podsecret-env-pod

specspec::

 containerscontainers::

 -- namename:: mycontainermycontainer

 imageimage:: redisredis

 envenv::

 -- namename:: SECRET_USERNAMESECRET_USERNAME

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: mysecretmysecret

 keykey:: usernameusername

 -- namename:: SECRET_PASSWORDSECRET_PASSWORD

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: mysecretmysecret

 keykey:: passwordpassword

 restartPolicyrestartPolicy:: NeverNever

$ $ echoecho $SECRET_USERNAME$SECRET_USERNAME

adminadmin

$ $ echoecho $SECRET_PASSWORD$SECRET_PASSWORD

1f2d1e2e67df1f2d1e2e67df

Use of imagePullSecrets is described in the images documentation

Arranging for imagePullSecrets to be Automatically Attached

You can manually create an imagePullSecret, and reference it from a serviceAccount. Any

pods created with that serviceAccount or that default to use that serviceAccount, will get their

imagePullSecret field set to that of the service account. See Add ImagePullSecrets to a service

account for a detailed explanation of that process.

Automatic Mounting of Manually Created Secrets

Manually created secrets (e.g. one containing a token for accessing a github account) can be

automatically attached to pods based on their service account. See Injecting Information into

Pods Using a PodPreset for a detailed explanation of that process.

Details

Restrictions

Secret volume sources are validated to ensure that the specified object reference actually

points to an object of type SecretSecret . Therefore, a secret needs to be created before any pods

that depend on it.

Secret API objects reside in a namespace. They can only be referenced by pods in that same

namespace.

Individual secrets are limited to 1MB in size. This is to discourage creation of very large secrets

which would exhaust apiserver and kubelet memory. However, creation of many smaller

secrets could also exhaust memory. More comprehensive limits on memory usage due to

secrets is a planned feature.

Kubelet only supports use of secrets for Pods it gets from the API server. This includes any

pods created using kubectl, or indirectly via a replication controller. It does not include pods

created via the kubelets --manifest-url--manifest-url flag, its --config--config flag, or its REST API (these are

not common ways to create pods.)

Secrets must be created before they are consumed in pods as environment variables unless

they are marked as optional. References to Secrets that do not exist will prevent the pod from

starting.

file:///docs/concepts/containers/_site/images/#specifying-imagepullsecrets-on-a-pod
file:///docs/tasks/configure-pod-container/configure-service-account/#add-imagepullsecrets-to-a-service-account
file:///docs/tasks/inject-data-application/podpreset/

References via secretKeyRefsecretKeyRef to keys that do not exist in a named Secret will prevent the pod

from starting.

Secrets used to populate environment variables via envFromenvFrom that have keys that are

considered invalid environment variable names will have those keys skipped. The pod will be

allowed to start. There will be an event whose reason is InvalidVariableNamesInvalidVariableNames and the

message will contain the list of invalid keys that were skipped. The example shows a pod

which refers to the default/mysecret that contains 2 invalid keys, 1badkey and 2alsobad.

Secret and Pod Lifetime interaction

When a pod is created via the API, there is no check whether a referenced secret exists. Once a

pod is scheduled, the kubelet will try to fetch the secret value. If the secret cannot be fetched

because it does not exist or because of a temporary lack of connection to the API server,

kubelet will periodically retry. It will report an event about the pod explaining the reason it is not

started yet. Once the secret is fetched, the kubelet will create and mount a volume containing

it. None of the pod’s containers will start until all the pod’s volumes are mounted.

Use cases

Use-Case: Pod with ssh keys

Create a secret containing some ssh keys:

Security Note: think carefully before sending your own ssh keys: other users of the cluster may

have access to the secret. Use a service account which you want to be accessible to all the

users with whom you share the Kubernetes cluster, and can revoke if they are compromised.

Now we can create a pod which references the secret with the ssh key and consumes it in a

volume:

$ $ kubectl get eventskubectl get events

LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASONLASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON

0s 0s 1 dapi-test-pod Pod Warning InvalidEnvironmentVariableNames kubelet, 127.0.0.1 Keys 0s 0s 1 dapi-test-pod Pod Warning InvalidEnvironmentVariableNames kubelet, 127.0.0.1 Keys

$ $ kubectl create secret generic ssh-key-secret kubectl create secret generic ssh-key-secret --from-file--from-file==ssh-privatekeyssh-privatekey==/path/to/.ssh/id_rsa /path/to/.ssh/id_rsa

When the container’s command runs, the pieces of the key will be available in:

The container is then free to use the secret data to establish an ssh connection.

Use-Case: Pods with prod / test credentials

This example illustrates a pod which consumes a secret containing prod credentials and

another pod which consumes a secret with test environment credentials.

Make the secrets:

Now make the pods:

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: secret-test-podsecret-test-pod

 labelslabels::

 namename:: secret-testsecret-test

specspec::

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: ssh-key-secretssh-key-secret

 containerscontainers::

 -- namename:: ssh-test-containerssh-test-container

 imageimage:: mySshImagemySshImage

 volumeMountsvolumeMounts::

 -- namename:: secret-volumesecret-volume

 readOnlyreadOnly:: truetrue

 mountPathmountPath:: ""/etc/secret-volume"/etc/secret-volume"

/etc/secret-volume/ssh-publickey/etc/secret-volume/ssh-publickey

/etc/secret-volume/ssh-privatekey/etc/secret-volume/ssh-privatekey

$ $ kubectl create secret generic prod-db-secret kubectl create secret generic prod-db-secret --from-literal--from-literal==usernameusername==produser produser

secret secret "prod-db-secret""prod-db-secret" created created

$ $ kubectl create secret generic test-db-secret kubectl create secret generic test-db-secret --from-literal--from-literal==usernameusername==testuser testuser

secret secret "test-db-secret""test-db-secret" created created

Both containers will have the following files present on their filesystems with the values for

each container’s environment:

Note how the specs for the two pods differ only in one field; this facilitates creating pods with

apiVersionapiVersion:: v1v1

kindkind:: ListList

itemsitems::

-- kindkind:: PodPod

 apiVersionapiVersion:: v1v1

 metadatametadata::

 namename:: prod-db-client-podprod-db-client-pod

 labelslabels::

 namename:: prod-db-clientprod-db-client

 specspec::

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: prod-db-secretprod-db-secret

 containerscontainers::

 -- namename:: db-client-containerdb-client-container

 imageimage:: myClientImagemyClientImage

 volumeMountsvolumeMounts::

 -- namename:: secret-volumesecret-volume

 readOnlyreadOnly:: truetrue

 mountPathmountPath:: ""/etc/secret-volume"/etc/secret-volume"

-- kindkind:: PodPod

 apiVersionapiVersion:: v1v1

 metadatametadata::

 namename:: test-db-client-podtest-db-client-pod

 labelslabels::

 namename:: test-db-clienttest-db-client

 specspec::

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: test-db-secrettest-db-secret

 containerscontainers::

 -- namename:: db-client-containerdb-client-container

 imageimage:: myClientImagemyClientImage

 volumeMountsvolumeMounts::

 -- namename:: secret-volumesecret-volume

 readOnlyreadOnly:: truetrue

 mountPathmountPath:: ""/etc/secret-volume"/etc/secret-volume"

/etc/secret-volume/username/etc/secret-volume/username

/etc/secret-volume/password/etc/secret-volume/password

different capabilities from a common pod config template.

You could further simplify the base pod specification by using two Service Accounts: one

called, say, prod-userprod-user with the prod-db-secretprod-db-secret , and one called, say, test-usertest-user with the

test-db-secrettest-db-secret . Then, the pod spec can be shortened to, for example:

Use-case: Dotfiles in secret volume

In order to make piece of data ‘hidden’ (i.e., in a file whose name begins with a dot character),

simply make that key begin with a dot. For example, when the following secret is mounted into

a volume:

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: prod-db-client-podprod-db-client-pod

 labelslabels::

 namename:: prod-db-clientprod-db-client

specspec::

 serviceAccountserviceAccount:: prod-db-clientprod-db-client

 containerscontainers::

 -- namename:: db-client-containerdb-client-container

 imageimage:: myClientImagemyClientImage

The secret-volumesecret-volume will contain a single file, called .secret-file.secret-file , and the

dotfile-test-containerdotfile-test-container will have this file present at the path

/etc/secret-volume/.secret-file/etc/secret-volume/.secret-file .

NOTE

Files beginning with dot characters are hidden from the output of

ls -ls -

ll ; you must use

ls -ls -

lala to see them when listing directory contents.

Use-case: Secret visible to one container in a pod

Consider a program that needs to handle HTTP requests, do some complex business logic,

and then sign some messages with an HMAC. Because it has complex application logic, there

might be an unnoticed remote file reading exploit in the server, which could expose the private

kindkind:: SecretSecret

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: dotfile-secretdotfile-secret

datadata::

 .secret-file.secret-file:: dmFsdWUtMg0KDQo=dmFsdWUtMg0KDQo=

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: secret-dotfiles-podsecret-dotfiles-pod

specspec::

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: dotfile-secretdotfile-secret

 containerscontainers::

 -- namename:: dotfile-test-containerdotfile-test-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand::

 -- lsls

 -- ""-l"-l"

 -- ""/etc/secret-volume"/etc/secret-volume"

 volumeMountsvolumeMounts::

 -- namename:: secret-volumesecret-volume

 readOnlyreadOnly:: truetrue

 mountPathmountPath:: ""/etc/secret-volume"/etc/secret-volume"

key to an attacker.

This could be divided into two processes in two containers: a frontend container which handles

user interaction and business logic, but which cannot see the private key; and a signer

container that can see the private key, and responds to simple signing requests from the

frontend (e.g. over localhost networking).

With this partitioned approach, an attacker now has to trick the application server into doing

something rather arbitrary, which may be harder than getting it to read a file.

Best practices

Clients that use the secrets API

When deploying applications that interact with the secrets API, access should be limited using

authorization policies such as RBAC.

Secrets often hold values that span a spectrum of importance, many of which can cause

escalations within Kubernetes (e.g. service account tokens) and to external systems. Even if

an individual app can reason about the power of the secrets it expects to interact with, other

apps within the same namespace can render those assumptions invalid.

For these reasons watchwatch and listlist requests for secrets within a namespace are extremely

powerful capabilities and should be avoided, since listing secrets allows the clients to inspect

the values of all secrets that are in that namespace. The ability to watchwatch and listlist all secrets

in a cluster should be reserved for only the most privileged, system-level components.

Applications that need to access the secrets API should perform getget requests on the secrets

they need. This lets administrators restrict access to all secrets while white-listing access to

individual instances that the app needs.

For improved performance over a looping getget , clients can design resources that reference a

secret then watchwatch the resource, re-requesting the secret when the reference changes.

Additionally, a “bulk watch” API to let clients watchwatch individual resources has also been

proposed, and will likely be available in future releases of Kubernetes.

Security Properties

https://kubernetes.io/docs/admin/authorization/
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authorization/rbac/#referring-to-resources
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/bulk_watch.md

Protections

Because secretsecret objects can be created independently of the podspods that use them, there is

less risk of the secret being exposed during the workflow of creating, viewing, and editing

pods. The system can also take additional precautions with secretsecret objects, such as avoiding

writing them to disk where possible.

A secret is only sent to a node if a pod on that node requires it. It is not written to disk. It is

stored in a tmpfs. It is deleted once the pod that depends on it is deleted.

On most Kubernetes-project-maintained distributions, communication between user to the

apiserver, and from apiserver to the kubelets, is protected by SSL/TLS. Secrets are protected

when transmitted over these channels.

Secret data on nodes is stored in tmpfs volumes and thus does not come to rest on the node.

There may be secrets for several pods on the same node. However, only the secrets that a pod

requests are potentially visible within its containers. Therefore, one Pod does not have access

to the secrets of another pod.

There may be several containers in a pod. However, each container in a pod has to request the

secret volume in its volumeMountsvolumeMounts for it to be visible within the container. This can be used to

construct useful security partitions at the Pod level.

Risks

In the API server secret data is stored as plaintext in etcd; therefore:

Administrators should limit access to etcd to admin users

Secret data in the API server is at rest on the disk that etcd uses; admins may want to

wipe/shred disks used by etcd when no longer in use

If you configure the secret through a manifest (JSON or YAML) file which has the secret

data encoded as base64, sharing this file or checking it in to a source repository means

the secret is compromised. Base64 encoding is not an encryption method and is

considered the same as plain text.

Applications still need to protect the value of secret after reading it from the volume, such

as not accidentally logging it or transmitting it to an untrusted party.

A user who can create a pod that uses a secret can also see the value of that secret. Even

if apiserver policy does not allow that user to read the secret object, the user could run a

pod which exposes the secret.

If multiple replicas of etcd are run, then the secrets will be shared between them. By

default, etcd does not secure peer-to-peer communication with SSL/TLS, though this can

be configured.

Currently, anyone with root on any node can read any secret from the apiserver, by

impersonating the kubelet. It is a planned feature to only send secrets to nodes that

actually require them, to restrict the impact of a root exploit on a single node.

Note: As of 1.7 encryption of secret data at rest is supported.

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Organizing Cluster Access Using
kubeconfig Files

Use kubeconfig files to organize information about clusters, users, namespaces, and

authentication mechanisms. The kubectlkubectl command-line tool uses kubeconfig files to find the

information it needs to choose a cluster and communicate with the API server of a cluster.

Note: A file that is used to configure access to clusters is called a kubeconfig file. This is

a generic way of referring to configuration files. It does not mean that there is a file

named kubeconfigkubeconfig .

By default, kubectlkubectl looks for a file named configconfig in the $HOME/.kube$HOME/.kube directory. You can

specify other kubeconfig files by setting the KUBECONFIGKUBECONFIG environment variable or by setting

the --kubeconfig--kubeconfig flag.

For step-by-step instructions on creating and specifying kubeconfig files, see Configure Access

to Multiple Clusters.

Supporting multiple clusters, users, and
authentication mechanisms

Suppose you have several clusters, and your users and components authenticate in a variety

of ways. For example:

A running kubelet might authenticate using certificates.

A user might authenticate using tokens.

Supporting multiple clusters, users, and authentication mechanisms

Context

The KUBECONFIG environment variable

Merging kubeconfig files

File references

What’s next

file:///docs/user-guide/kubectl/v1.10/
file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters

Administrators might have sets of certificates that they provide to individual users.

With kubeconfig files, you can organize your clusters, users, and namespaces. You can also

define contexts to quickly and easily switch between clusters and namespaces.

Context

A context element in a kubeconfig file is used to group access parameters under a convenient

name. Each context has three parameters: cluster, namespace, and user. By default, the

kubectlkubectl command-line tool uses parameters from the current context to communicate with

the cluster.

To choose the current context:

The KUBECONFIG environment variable

The KUBECONFIGKUBECONFIG environment variable holds a list of kubeconfig files. For Linux and Mac, the

list is colon-delimited. For Windows, the list is semicolon-delimited. The KUBECONFIGKUBECONFIG

environment variable is not required. If the KUBECONFIGKUBECONFIG environment variable doesn’t exist,

kubectlkubectl uses the default kubeconfig file, $HOME/.kube/config$HOME/.kube/config .

If the KUBECONFIGKUBECONFIG environment variable does exist, kubectlkubectl uses an effective configuration

that is the result of merging the files listed in the KUBECONFIGKUBECONFIG environment variable.

Merging kubeconfig files

To see your configuration, enter this command:

As described previously, the output might be from a single kubeconfig file, or it might be the

result of merging several kubeconfig files.

kubectl config use-contextkubectl config use-context

kubectl config viewkubectl config view

Here are the rules that kubectlkubectl uses when it merges kubeconfig files:

1. If the --kubeconfig--kubeconfig flag is set, use only the specified file. Do not merge. Only one

instance of this flag is allowed.

Otherwise, if the KUBECONFIGKUBECONFIG environment variable is set, use it as a list of files that

should be merged. Merge the files listed in the KUBECONFIGKUBECONFIG environment variable

according to these rules:

1. Ignore empty filenames.

2. Produce errors for files with content that cannot be deserialized.

3. The first file to set a particular value or map key wins.

4. Never change the value or map key. Example: Preserve the context of the first file to

set current-contextcurrent-context . Example: If two files specify a red-userred-user , use only values

from the first file’s red-userred-user . Even if the second file has non-conflicting entries under

red-userred-user , discard them.

For an example of setting the KUBECONFIGKUBECONFIG environment variable, see Setting the

KUBECONFIG environment variable.

Otherwise, use the default kubeconfig file, $HOME/.kube/config$HOME/.kube/config , with no merging.

2. Determine the context to use based on the first hit in this chain:

1. Use the --context--context command-line flag if it exits.

2. Use the current-contextcurrent-context from the merged kubeconfig files.

An empty context is allowed at this point.

3. Determine the cluster and user. At this point, there might or might not be a context.

Determine the cluster and user based on the first hit in this chain, which is run twice: once

for user and once for cluster:

1. Use a command-line flag if it exists: --user--user or --cluster--cluster .

2. If the context is non-empty, take the user or cluster from the context.

The user and cluster can be empty at this point.

4. Determine the actual cluster information to use. At this point, there might or might not be

file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable

cluster information. Build each piece of the cluster information based on this chain; the

first hit wins:

1. Use command line flags if they exist: --server--server , --certificate-authority--certificate-authority ,

--insecure-skip-tls-verify--insecure-skip-tls-verify .

2. If any cluster information attributes exist from the merged kubeconfig files, use them.

3. If there is no server location, fail.

5. Determine the actual user information to use. Build user information using the same rules

as cluster information, except allow only one authentication technique per user:

1. Use command line flags if they exist: --client-certificate--client-certificate , --client-key--client-key ,

--username--username , --password--password , --token--token .

2. Use the useruser fields from the merged kubeconfig files.

3. If there are two conflicting techniques, fail.

6. For any information still missing, use default values and potentially prompt for

authentication information.

File references

File and path references in a kubeconfig file are relative to the location of the kubeconfig file.

File references on the command line are relative to the current working directory. In

$HOME/.kube/config$HOME/.kube/config , relative paths are stored relatively, and absolute paths are stored

absolutely.

What’s next

Configure Access to Multiple Clusters

kubectl config

file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters/
file:///docs/user-guide/kubectl/v1.10/

Pod Priority and Preemption

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

Pods in Kubernetes 1.8 and later can have priority. Priority indicates the importance of a Pod

relative to other Pods. When a Pod cannot be scheduled, the scheduler tries to preempt (evict)

lower priority Pods to make scheduling of the pending Pod possible. In Kubernetes 1.9 and

later, Priority also affects scheduling order of Pods and out-of-resource eviction ordering on

the Node.

How to use priority and preemption

To use priority and preemption in Kubernetes 1.8 and later, follow these steps:

1. Enable the feature.

2. Add one or more PriorityClasses.

3. Create Pods with priorityClassNamepriorityClassName set to one of the added PriorityClasses. Of course

you do not need to create the Pods directly; normally you would add priorityClassNamepriorityClassName

to the Pod template of a collection object like a Deployment.

The following sections provide more information about these steps.

How to use priority and preemption

Enabling priority and preemption

PriorityClass

Example PriorityClass

Pod priority

Effect of Pod priority on scheduling order

Preemption

User exposed information

Limitations of preemption

Graceful termination of preemption victims

PodDisruptionBudget is supported, but not guaranteed!

Inter-Pod affinity on lower-priority Pods

Cross node preemption

file:///docs/user-guide/pods

Enabling priority and preemption

Pod priority and preemption is disabled by default in Kubernetes 1.8. To enable the feature, set

this command-line flag for the API server, scheduler and kubelet:

Also enable scheduling.k8s.io/v1alpha1 API and Priority admission controller in API server:

After the feature is enabled, you can create PriorityClasses and create Pods with

priorityClassNamepriorityClassName set.

If you try the feature and then decide to disable it, you must remove the PodPriority command-

line flag or set it to false, and then restart the API server and scheduler. After the feature is

disabled, the existing Pods keep their priority fields, but preemption is disabled, and priority

fields are ignored, and you cannot set priorityClassNamepriorityClassName in new Pods.

PriorityClass

A PriorityClass is a non-namespaced object that defines a mapping from a priority class name

to the integer value of the priority. The name is specified in the namename field of the PriorityClass

object’s metadata. The value is specified in the required valuevalue field. The higher the value, the

higher the priority.

A PriorityClass object can have any 32-bit integer value smaller than or equal to 1 billion.

Larger numbers are reserved for critical system Pods that should not normally be preempted

or evicted. A cluster admin should create one PriorityClass object for each such mapping that

they want.

PriorityClass also has two optional fields: globalDefaultglobalDefault and descriptiondescription . The

globalDefaultglobalDefault field indicates that the value of this PriorityClass should be used for Pods

without a priorityClassNamepriorityClassName . Only one PriorityClass with globalDefaultglobalDefault set to true can

--feature-gates=PodPriority=true--feature-gates=PodPriority=true

--runtime-config=scheduling.k8s.io/v1alpha1=true --enable-admission-plugins=Controller-Foo,Controller-Bar,...,Priority--runtime-config=scheduling.k8s.io/v1alpha1=true --enable-admission-plugins=Controller-Foo,Controller-Bar,...,Priority

file:///docs/admin/admission-controllers/

exist in the system. If there is no PriorityClass with globalDefaultglobalDefault set, the priority of Pods

with no priorityClassNamepriorityClassName is zero.

The descriptiondescription field is an arbitrary string. It is meant to tell users of the cluster when they

should use this PriorityClass.

Note 1: If you upgrade your existing cluster and enable this feature, the priority of your

existing Pods will be considered to be zero.

Note 2: Addition of a PriorityClass with globalDefaultglobalDefault set to true does not change the

priorities of existing Pods. The value of such a PriorityClass is used only for Pods

created after the PriorityClass is added.

Note 3: If you delete a PriorityClass, existing Pods that use the name of the deleted

priority class remain unchanged, but you are not able to create more Pods that use the

name of the deleted PriorityClass.

Example PriorityClass

Pod priority

After you have one or more PriorityClasses, you can create Pods that specify one of those

PriorityClass names in their specifications. The priority admission controller uses the

priorityClassNamepriorityClassName field and populates the integer value of the priority. If the priority class is

not found, the Pod is rejected.

apiVersionapiVersion:: scheduling.k8s.io/v1alpha1scheduling.k8s.io/v1alpha1

kindkind:: PriorityClassPriorityClass

metadatametadata::

 namename:: high-priorityhigh-priority

valuevalue:: 10000001000000

globalDefaultglobalDefault:: falsefalse

descriptiondescription:: ""ThisThis prioritypriority classclass shouldshould bebe usedused forfor XYZXYZ serviceservice podspods only."only."

The following YAML is an example of a Pod configuration that uses the PriorityClass created in

the preceding example. The priority admission controller checks the specification and resolves

the priority of the Pod to 1000000.

Effect of Pod priority on scheduling order

In Kubernetes 1.9 and later, when Pod priority is enabled, scheduler orders pending Pods by

their priority and a pending Pod is placed ahead of other pending Pods with lower priority in the

scheduling queue. As a result, the higher priority Pod may by scheduled sooner that Pods with

lower priority if its scheduling requirements are met. If such Pod cannot be scheduled,

scheduler will continue and tries to schedule other lower priority Pods.

Preemption

When Pods are created, they go to a queue and wait to be scheduled. The scheduler picks a

Pod from the queue and tries to schedule it on a Node. If no Node is found that satisfies all the

specified requirements of the Pod, preemption logic is triggered for the pending Pod. Let’s call

the pending Pod P. Preemption logic tries to find a Node where removal of one or more Pods

with lower priority than P would enable P to be scheduled on that Node. If such a Node is

found, one or more lower priority Pods get deleted from the Node. After the Pods are gone, P

can be scheduled on the Node.

User exposed information

When Pod P preempts one or more Pods on Node N, nominatedNodeNamenominatedNodeName field of Pod P’s

status is set to the name of Node N. This field helps scheduler track resources reserved for

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 envenv:: testtest

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 imagePullPolicyimagePullPolicy:: IfNotPresentIfNotPresent

 priorityClassNamepriorityClassName:: high-priorityhigh-priority

Pod P and also gives users information about preemptions in their clusters.

Please note that Pod P is not necessarily scheduled to the “nominated Node”. After victim

Pods are preempted, they get their graceful termination period. If another node becomes

available while scheduler is waiting for the victim Pods to terminate, scheduler will use the

other node to schedule Pod P. As a result nominatedNodeNamenominatedNodeName and nodeNamenodeName of Pod spec

are not always the same. Also, if scheduler preempts Pods on Node N, but then a higher

priority Pod than Pod P arrives, scheduler may give Node N to the new higher priority Pod. In

such a case, scheduler clears nominatedNodeNamenominatedNodeName of Pod P. By doing this, scheduler makes

Pod P eligible to preempt Pods on another Node.

Limitations of preemption

Graceful termination of preemption victims

When Pods are preempted, the victims get their graceful termination period. They have that

much time to finish their work and exit. If they don’t, they are killed. This graceful termination

period creates a time gap between the point that the scheduler preempts Pods and the time

when the pending Pod (P) can be scheduled on the Node (N). In the meantime, the scheduler

keeps scheduling other pending Pods. As victims exit or get terminated, the scheduler tries to

schedule Pods in the pending queue. Therefore, there is usually a time gap between the point

that scheduler preempts victims and the time that Pod P is scheduled. In order to minimize

this gap, one can set graceful termination period of lower priority Pods to zero or a small

number.

PodDisruptionBudget is supported, but not guaranteed!

A Pod Disruption Budget (PDB) allows application owners to limit the number Pods of a

replicated application that are down simultaneously from voluntary disruptions. Kubernetes

1.9 supports PDB when preempting Pods, but respecting PDB is best effort. The Scheduler

tries to find victims whose PDB are not violated by preemption, but if no such victims are

found, preemption will still happen, and lower priority Pods will be removed despite their PDBs

being violated.

Inter-Pod affinity on lower-priority Pods

A Node is considered for preemption only when the answer to this question is yes: “If all the

Pods with lower priority than the pending Pod are removed from the Node, can the pending

https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

Pod be scheduled on the Node?”

Note: Preemption does not necessarily remove all lower-priority Pods. If the pending

Pod can be scheduled by removing fewer than all lower-priority Pods, then only a portion

of the lower-priority Pods are removed. Even so, the answer to the preceding question

must be yes. If the answer is no, the Node is not considered for preemption.

If a pending Pod has inter-pod affinity to one or more of the lower-priority Pods on the Node,

the inter-Pod affinity rule cannot be satisfied in the absence of those lower-priority Pods. In this

case, the scheduler does not preempt any Pods on the Node. Instead, it looks for another

Node. The scheduler might find a suitable Node or it might not. There is no guarantee that the

pending Pod can be scheduled.

Our recommended solution for this problem is to create inter-Pod affinity only towards equal

or higher priority Pods.

Cross node preemption

Suppose a Node N is being considered for preemption so that a pending Pod P can be

scheduled on N. P might become feasible on N only if a Pod on another Node is preempted.

Here’s an example:

Pod P is being considered for Node N.

Pod Q is running on another Node in the same Zone as Node N.

Pod P has Zone-wide anti-affinity with Pod Q (

topologyKey: failure-topologyKey: failure-

domain.beta.kubernetes.io/zonedomain.beta.kubernetes.io/zone).

There are no other cases of anti-affinity between Pod P and other Pods in the Zone.

In order to schedule Pod P on Node N, Pod Q can be preempted, but scheduler does not

perform cross-node preemption. So, Pod P will be deemed unschedulable on Node N.

If Pod Q were removed from its Node, the Pod anti-affinity violation would be gone, and Pod P

could possibly be scheduled on Node N.

We may consider adding cross Node preemption in future versions if we find an algorithm with

reasonable performance. We cannot promise anything at this point, and cross Node

preemption will not be considered a blocker for Beta or GA.

Services

Kubernetes PodsPods are mortal. They are born and when they die, they are not resurrected.

ReplicationControllersReplicationControllers in particular create and destroy PodsPods dynamically (e.g. when

scaling up or down or when doing rolling updates). While each PodPod gets its own IP address,

even those IP addresses cannot be relied upon to be stable over time. This leads to a problem:

if some set of PodsPods (let’s call them backends) provides functionality to other PodsPods (let’s call

them frontends) inside the Kubernetes cluster, how do those frontends find out and keep track

of which backends are in that set?

Enter ServicesServices .

A Kubernetes ServiceService is an abstraction which defines a logical set of PodsPods and a policy by

which to access them - sometimes called a micro-service. The set of PodsPods targeted by a

ServiceService is (usually) determined by a

LabelLabel

SelectorSelector (see below for why you might want a

ServiceService without a selector).

As an example, consider an image-processing backend which is running with 3 replicas. Those

replicas are fungible - frontends do not care which backend they use. While the actual PodsPods

that compose the backend set may change, the frontend clients should not need to be aware

of that or keep track of the list of backends themselves. The ServiceService abstraction enables this

decoupling.

For Kubernetes-native applications, Kubernetes offers a simple EndpointsEndpoints API that is

updated whenever the set of PodsPods in a ServiceService changes. For non-native applications,

Kubernetes offers a virtual-IP-based bridge to Services which redirects to the backend PodsPods .

Defining a service

Services without selectors

Virtual IPs and service proxies

Proxy-mode: userspace

Proxy-mode: iptables

Proxy-mode: ipvs

Multi-Port Services

Choosing your own IP address

file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/controllers/replicationcontroller/
file:///docs/user-guide/kubectl/v1.10/#rolling-update
file:///docs/concepts/overview/working-with-objects/labels/#label-selectors

Defining a service

A ServiceService in Kubernetes is a REST object, similar to a PodPod . Like all of the REST objects, a

ServiceService definition can be POSTed to the apiserver to create a new instance. For example,

suppose you have a set of PodsPods that each expose port 9376 and carry a label "app=MyApp""app=MyApp" .

Why not use round-robin DNS?

Discovering services

Environment variables

DNS

Headless services

With selectors

Without selectors

Publishing services - service types

Type NodePort

Type LoadBalancer

Internal load balancer

SSL support on AWS

PROXY protocol support on AWS

ELB Access Logs on AWS

Connection Draining on AWS

Other ELB annotations

Network Load Balancer support on AWS [alpha]

External IPs

Shortcomings

Future work

The gory details of virtual IPs

Avoiding collisions

IPs and VIPs

Userspace

Iptables

Ipvs

API Object

For More Information

This specification will create a new ServiceService object named “my-service” which targets TCP

port 9376 on any PodPod with the "app=MyApp""app=MyApp" label. This ServiceService will also be assigned an IP

address (sometimes called the “cluster IP”), which is used by the service proxies (see below).

The ServiceService ’s selector will be evaluated continuously and the results will be POSTed to an

EndpointsEndpoints object also named “my-service”.

Note that a ServiceService can map an incoming port to any targetPorttargetPort . By default the

targetPorttargetPort will be set to the same value as the portport field. Perhaps more interesting is that

targetPorttargetPort can be a string, referring to the name of a port in the backend PodsPods . The actual

port number assigned to that name can be different in each backend PodPod . This offers a lot of

flexibility for deploying and evolving your ServicesServices . For example, you can change the port

number that pods expose in the next version of your backend software, without breaking

clients.

Kubernetes ServicesServices support TCPTCP and UDPUDP for protocols. The default is TCPTCP .

Services without selectors

Services generally abstract access to Kubernetes PodsPods , but they can also abstract other kinds

of backends. For example:

You want to have an external database cluster in production, but in test you use your own

databases.

You want to point your service to a service in another NamespaceNamespace or on another cluster.

You are migrating your workload to Kubernetes and some of your backends run outside of

Kubernetes.

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

specspec::

 selectorselector::

 appapp:: MyAppMyApp

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

file:///docs/concepts/overview/working-with-objects/namespaces/

In any of these scenarios you can define a service without a selector:

Because this service has no selector, the corresponding EndpointsEndpoints object will not be created.

You can manually map the service to your own specific endpoints:

NOTE: Endpoint IPs may not be loopback (127.0.0.0/8), link-local (169.254.0.0/16), or link-local

multicast (224.0.0.0/24).

Accessing a ServiceService without a selector works the same as if it had a selector. The traffic will

be routed to endpoints defined by the user (1.2.3.4:93761.2.3.4:9376 in this example).

An ExternalName service is a special case of service that does not have selectors. It does not

define any ports or Endpoints. Rather, it serves as a way to return an alias to an external

service residing outside the cluster.

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

specspec::

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

kindkind:: EndpointsEndpoints

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

subsetssubsets::

 -- addressesaddresses::

 -- ipip:: 1.2.3.41.2.3.4

 portsports::

 -- portport:: 93769376

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

 namespacenamespace:: prodprod

specspec::

 typetype:: ExternalNameExternalName

 externalNameexternalName:: my.database.example.commy.database.example.com

When looking up the host my-service.prod.svc.CLUSTERmy-service.prod.svc.CLUSTER , the cluster DNS service will return

a CNAMECNAME record with the value my.database.example.commy.database.example.com . Accessing such a service works

in the same way as others, with the only difference that the redirection happens at the DNS

level and no proxying or forwarding occurs. Should you later decide to move your database

into your cluster, you can start its pods, add appropriate selectors or endpoints and change the

service typetype .

Virtual IPs and service proxies

Every node in a Kubernetes cluster runs a kube-proxykube-proxy . kube-proxykube-proxy is responsible for

implementing a form of virtual IP for ServicesServices of type other than ExternalNameExternalName . In

Kubernetes v1.0, ServicesServices are a “layer 4” (TCP/UDP over IP) construct, the proxy was purely

in userspace. In Kubernetes v1.1, the IngressIngress API was added (beta) to represent “layer

7”(HTTP) services, iptables proxy was added too, and become the default operating mode

since Kubernetes v1.2. In Kubernetes v1.8.0-beta.0, ipvs proxy was added.

Proxy-mode: userspace

In this mode, kube-proxy watches the Kubernetes master for the addition and removal of

ServiceService and EndpointsEndpoints objects. For each ServiceService it opens a port (randomly chosen) on

the local node. Any connections to this “proxy port” will be proxied to one of the ServiceService ’s

backend PodsPods (as reported in EndpointsEndpoints). Which backend PodPod to use is decided based on

the SessionAffinitySessionAffinity of the ServiceService . Lastly, it installs iptables rules which capture traffic to

the ServiceService ’s clusterIPclusterIP (which is virtual) and PortPort and redirects that traffic to the proxy

port which proxies the backend PodPod . By default, the choice of backend is round robin.

Note that in the above diagram, clusterIPclusterIP is shown as ServiceIPServiceIP .

Proxy-mode: iptables

In this mode, kube-proxy watches the Kubernetes master for the addition and removal of

ServiceService and EndpointsEndpoints objects. For each ServiceService , it installs iptables rules which capture

traffic to the ServiceService ’s clusterIPclusterIP (which is virtual) and PortPort and redirects that traffic to

one of the ServiceService ’s backend sets. For each EndpointsEndpoints object, it installs iptables rules

which select a backend PodPod . By default, the choice of backend is random.

Obviously, iptables need not switch back between userspace and kernelspace, it should be

faster and more reliable than the userspace proxy. However, unlike the userspace proxier, the

iptables proxier cannot automatically retry another PodPod if the one it initially selects does not

respond, so it depends on having working readiness probes.

Note that in the above diagram, clusterIPclusterIP is shown as ServiceIPServiceIP .

Proxy-mode: ipvs

FEATURE STATE: Kubernetes v1.9Kubernetes v1.9 beta

In this mode, kube-proxy watches Kubernetes Services and Endpoints, calls netlinknetlink interface

to create ipvs rules accordingly and syncs ipvs rules with Kubernetes Services and Endpoints

periodically, to make sure ipvs status is consistent with the expectation. When Service is

accessed, traffic will be redirected to one of the backend Pods.

Similar to iptables, Ipvs is based on netfilter hook function, but uses hash table as the

underlying data structure and works in the kernel space. That means ipvs redirects traffic

much faster, and has much better performance when syncing proxy rules. Furthermore, ipvs

provides more options for load balancing algorithm, such as:

rrrr : round-robin

lclc : least connection

dhdh : destination hashing

shsh : source hashing

sedsed : shortest expected delay

nqnq : never queue

Note: ipvs mode assumes IPVS kernel modules are installed on the node before running kube-

proxy. When kube-proxy starts with ipvs proxy mode, kube-proxy would validate if IPVS

modules are installed on the node, if it’s not installed kube-proxy will fall back to iptables proxy

mode.

file:///docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#defining-readiness-probes

In any of these proxy model, any traffic bound for the Service’s IP:Port is proxied to an

appropriate backend without the clients knowing anything about Kubernetes or Services or

Pods. Client-IP based session affinity can be selected by setting

service.spec.sessionAffinityservice.spec.sessionAffinity to “ClientIP” (the default is “None”), and you can set the max

session sticky time by setting the field

service.spec.sessionAffinityConfig.clientIP.timeoutSecondsservice.spec.sessionAffinityConfig.clientIP.timeoutSeconds if you have already set

service.spec.sessionAffinityservice.spec.sessionAffinity to “ClientIP” (the default is “10800”).

Multi-Port Services

Many ServicesServices need to expose more than one port. For this case, Kubernetes supports

multiple port definitions on a ServiceService object. When using multiple ports you must give all of

your ports names, so that endpoints can be disambiguated. For example:

Choosing your own IP address

You can specify your own cluster IP address as part of a ServiceService creation request. To do

this, set the spec.clusterIPspec.clusterIP field. For example, if you already have an existing DNS entry that

you wish to replace, or legacy systems that are configured for a specific IP address and

difficult to re-configure. The IP address that a user chooses must be a valid IP address and

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

specspec::

 selectorselector::

 appapp:: MyAppMyApp

 portsports::

 -- namename:: httphttp

 protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

 -- namename:: httpshttps

 protocolprotocol:: TCPTCP

 portport:: 443443

 targetPorttargetPort:: 93779377

within the service-cluster-ip-rangeservice-cluster-ip-range CIDR range that is specified by flag to the API server.

If the IP address value is invalid, the apiserver returns a 422 HTTP status code to indicate that

the value is invalid.

Why not use round-robin DNS?

A question that pops up every now and then is why we do all this stuff with virtual IPs rather

than just use standard round-robin DNS. There are a few reasons:

There is a long history of DNS libraries not respecting DNS TTLs and caching the results of

name lookups.

Many apps do DNS lookups once and cache the results.

Even if apps and libraries did proper re-resolution, the load of every client re-resolving DNS

over and over would be difficult to manage.

We try to discourage users from doing things that hurt themselves. That said, if enough people

ask for this, we may implement it as an alternative.

Discovering services

Kubernetes supports 2 primary modes of finding a ServiceService - environment variables and DNS.

Environment variables

When a PodPod is run on a NodeNode , the kubelet adds a set of environment variables for each active

ServiceService . It supports both Docker links compatible variables (see makeLinkVariables) and

simpler {SVCNAME}_SERVICE_HOST{SVCNAME}_SERVICE_HOST and {SVCNAME}_SERVICE_PORT{SVCNAME}_SERVICE_PORT variables, where the

Service name is upper-cased and dashes are converted to underscores.

For example, the Service "redis-master""redis-master" which exposes TCP port 6379 and has been

allocated cluster IP address 10.0.0.11 produces the following environment variables:

https://docs.docker.com/userguide/dockerlinks/
http://releases.k8s.io/master/pkg/kubelet/envvars/envvars.go#L49

This does imply an ordering requirement - any ServiceService that a PodPod wants to access must be

created before the PodPod itself, or else the environment variables will not be populated. DNS

does not have this restriction.

DNS

An optional (though strongly recommended) cluster add-on is a DNS server. The DNS server

watches the Kubernetes API for new ServicesServices and creates a set of DNS records for each. If

DNS has been enabled throughout the cluster then all PodsPods should be able to do name

resolution of ServicesServices automatically.

For example, if you have a ServiceService called "my-service""my-service" in Kubernetes NamespaceNamespace

"my-ns""my-ns" a DNS record for "my-service.my-ns""my-service.my-ns" is created. PodsPods which exist in the

"my-ns""my-ns" NamespaceNamespace should be able to find it by simply doing a name lookup for

"my-service""my-service" . PodsPods which exist in other NamespacesNamespaces must qualify the name as

"my-service.my-ns""my-service.my-ns" . The result of these name lookups is the cluster IP.

Kubernetes also supports DNS SRV (service) records for named ports. If the

"my-service.my-ns""my-service.my-ns" ServiceService has a port named "http""http" with protocol TCPTCP , you can do a

DNS SRV query for "_http._tcp.my-service.my-ns""_http._tcp.my-service.my-ns" to discover the port number for

"http""http" .

The Kubernetes DNS server is the only way to access services of type ExternalNameExternalName . More

information is available in the DNS Pods and Services.

Headless services

Sometimes you don’t need or want load-balancing and a single service IP. In this case, you can

REDIS_MASTER_SERVICE_HOSTREDIS_MASTER_SERVICE_HOST==10.0.0.1110.0.0.11

REDIS_MASTER_SERVICE_PORTREDIS_MASTER_SERVICE_PORT==63796379

REDIS_MASTER_PORTREDIS_MASTER_PORT==tcp://10.0.0.11:6379tcp://10.0.0.11:6379

REDIS_MASTER_PORT_6379_TCPREDIS_MASTER_PORT_6379_TCP==tcp://10.0.0.11:6379tcp://10.0.0.11:6379

REDIS_MASTER_PORT_6379_TCP_PROTOREDIS_MASTER_PORT_6379_TCP_PROTO==tcptcp

REDIS_MASTER_PORT_6379_TCP_PORTREDIS_MASTER_PORT_6379_TCP_PORT==63796379

REDIS_MASTER_PORT_6379_TCP_ADDRREDIS_MASTER_PORT_6379_TCP_ADDR==10.0.0.1110.0.0.11

file:///docs/concepts/cluster-administration/addons/
file:///docs/concepts/services-networking/dns-pod-service/

create “headless” services by specifying "None""None" for the cluster IP (spec.clusterIPspec.clusterIP).

This option allows developers to reduce coupling to the Kubernetes system by allowing them

freedom to do discovery their own way. Applications can still use a self-registration pattern

and adapters for other discovery systems could easily be built upon this API.

For such ServicesServices , a cluster IP is not allocated, kube-proxy does not handle these services,

and there is no load balancing or proxying done by the platform for them. How DNS is

automatically configured depends on whether the service has selectors defined.

With selectors

For headless services that define selectors, the endpoints controller creates EndpointsEndpoints

records in the API, and modifies the DNS configuration to return A records (addresses) that

point directly to the PodsPods backing the ServiceService .

Without selectors

For headless services that do not define selectors, the endpoints controller does not create

EndpointsEndpoints records. However, the DNS system looks for and configures either:

CNAME records for ExternalNameExternalName -type services.

A records for any EndpointsEndpoints that share a name with the service, for all other types.

Publishing services - service types

For some parts of your application (e.g. frontends) you may want to expose a Service onto an

external (outside of your cluster) IP address.

Kubernetes ServiceTypesServiceTypes allow you to specify what kind of service you want. The default is

ClusterIPClusterIP .

TypeType values and their behaviors are:

ClusterIPClusterIP : Exposes the service on a cluster-internal IP. Choosing this value makes the

service only reachable from within the cluster. This is the default ServiceTypeServiceType .

NodePortNodePort : Exposes the service on each Node’s IP at a static port (the NodePortNodePort). A

ClusterIPClusterIP service, to which the NodePortNodePort service will route, is automatically created.

You’ll be able to contact the NodePortNodePort service, from outside the cluster, by requesting

<NodeIP>:<NodePort><NodeIP>:<NodePort> .

LoadBalancerLoadBalancer : Exposes the service externally using a cloud provider’s load balancer.

NodePortNodePort and ClusterIPClusterIP services, to which the external load balancer will route, are

automatically created.

ExternalNameExternalName : Maps the service to the contents of the externalNameexternalName field (e.g.

foo.bar.example.comfoo.bar.example.com), by returning a CNAMECNAME record with its value. No proxying of any

kind is set up. This requires version 1.7 or higher of kube-dnskube-dns .

Type NodePort

If you set the typetype field to "NodePort""NodePort" , the Kubernetes master will allocate a port from a

flag-configured range (default: 30000-32767), and each Node will proxy that port (the same

port number on every Node) into your ServiceService . That port will be reported in your ServiceService ’s

spec.ports[*].nodePortspec.ports[*].nodePort field.

If you want to specify particular IP(s) to proxy the port, you can set the

--nodeport-addresses--nodeport-addresses flag in kube-proxy to particular IP block(s) (which is supported since

Kubernetes v1.10). A comma-delimited list of IP blocks (e.g. 10.0.0.0/8, 1.2.3.4/32) is used to

filter addresses local to this node. For example, if you start kube-proxy with flag

--nodeport-addresses=127.0.0.0/8--nodeport-addresses=127.0.0.0/8 , kube-proxy will select only the loopback interface for

NodePort Services. The --nodeport-addresses--nodeport-addresses is defaulted to empty ([][]), which means

select all available interfaces and is in compliance with current NodePort behaviors.

If you want a specific port number, you can specify a value in the nodePortnodePort field, and the

system will allocate you that port or else the API transaction will fail (i.e. you need to take care

about possible port collisions yourself). The value you specify must be in the configured range

for node ports.

This gives developers the freedom to set up their own load balancers, to configure

environments that are not fully supported by Kubernetes, or even to just expose one or more

nodes’ IPs directly.

Note that this Service will be visible as both <NodeIP>:spec.ports[*].nodePort<NodeIP>:spec.ports[*].nodePort and

spec.clusterIP:spec.ports[*].portspec.clusterIP:spec.ports[*].port . (If the --nodeport-addresses--nodeport-addresses flag in kube-proxy is

set, would be filtered NodeIP(s).)

Type LoadBalancer

On cloud providers which support external load balancers, setting the typetype field to

"LoadBalancer""LoadBalancer" will provision a load balancer for your ServiceService . The actual creation of the

load balancer happens asynchronously, and information about the provisioned balancer will be

published in the ServiceService ’s status.loadBalancerstatus.loadBalancer field. For example:

Traffic from the external load balancer will be directed at the backend PodsPods , though exactly

how that works depends on the cloud provider. Some cloud providers allow the

loadBalancerIPloadBalancerIP to be specified. In those cases, the load-balancer will be created with the

user-specified loadBalancerIPloadBalancerIP . If the loadBalancerIPloadBalancerIP field is not specified, an ephemeral

IP will be assigned to the loadBalancer. If the loadBalancerIPloadBalancerIP is specified, but the cloud

provider does not support the feature, the field will be ignored.

Special notes for Azure: To use user-specified public type loadBalancerIPloadBalancerIP , a static type

public IP address resource needs to be created first, and it should be in the same resource

group of the cluster. Specify the assigned IP address as loadBalancerIP. Verify you have

securityGroupName in the cloud provider configuration file.

Internal load balancer

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

specspec::

 selectorselector::

 appapp:: MyAppMyApp

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

 clusterIPclusterIP:: 10.0.171.23910.0.171.239

 loadBalancerIPloadBalancerIP:: 78.11.24.1978.11.24.19

 typetype:: LoadBalancerLoadBalancer

statusstatus::

 loadBalancerloadBalancer::

 ingressingress::

 -- ipip:: 146.148.47.155146.148.47.155

In a mixed environment it is sometimes necessary to route traffic from services inside the

same VPC.

In a split-horizon DNS environment you would need two services to be able to route both

external and internal traffic to your endpoints.

This can be achieved by adding the following annotations to the service based on cloud

provider.

SSL support on AWS

For partial SSL support on clusters running on AWS, starting with 1.3 three annotations can be

added to a LoadBalancerLoadBalancer service:

The first specifies the ARN of the certificate to use. It can be either a certificate from a third

party issuer that was uploaded to IAM or one created within AWS Certificate Manager.

The second annotation specifies which protocol a pod speaks. For HTTPS and SSL, the ELB

will expect the pod to authenticate itself over the encrypted connection.

HTTP and HTTPS will select layer 7 proxying: the ELB will terminate the connection with the

user, parse headers and inject the X-Forwarded-ForX-Forwarded-For header with the user’s IP address (pods

will only see the IP address of the ELB at the other end of its connection) when forwarding

requests.

Select one of the tabs.

Default GCP AWS Azure OpenStack

metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-ssl-certservice.beta.kubernetes.io/aws-load-balancer-ssl-cert:: arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012

metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-backend-protocolservice.beta.kubernetes.io/aws-load-balancer-backend-protocol:: (https|http|ssl|tcp)(https|http|ssl|tcp)

TCP and SSL will select layer 4 proxying: the ELB will forward traffic without modifying the

headers.

In a mixed-use environment where some ports are secured and others are left unencrypted, the

following annotations may be used:

In the above example, if the service contained three ports, 8080 , 443443 , and 84438443 , then 443443 and

84438443 would use the SSL certificate, but 8080 would just be proxied HTTP.

Beginning in 1.9, services can use predefined AWS SSL policies for any HTTPS or SSL listeners.

To see which policies are available for use, run the awscli command:

Any one of those policies can then be specified using the “

service.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policyservice.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policy ” annotation,

for example:

PROXY protocol support on AWS

To enable PROXY protocol support for clusters running on AWS, you can use the following

service annotation:

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-backend-protocolservice.beta.kubernetes.io/aws-load-balancer-backend-protocol:: httphttp

 service.beta.kubernetes.io/aws-load-balancer-ssl-portsservice.beta.kubernetes.io/aws-load-balancer-ssl-ports:: ""443,8443"443,8443"

aws elb describe-load-balancer-policies aws elb describe-load-balancer-policies --query--query 'PolicyDescriptions[].PolicyName''PolicyDescriptions[].PolicyName'

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policyservice.beta.kubernetes.io/aws-load-balancer-ssl-negotiation-policy::

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-proxy-protocolservice.beta.kubernetes.io/aws-load-balancer-proxy-protocol:: ""*"*"

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-security-policy-table.html
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Since version 1.3.0 the use of this annotation applies to all ports proxied by the ELB and cannot

be configured otherwise.

ELB Access Logs on AWS

There are several annotations to manage access logs for ELB services on AWS.

The annotation service.beta.kubernetes.io/aws-load-balancer-access-log-enabledservice.beta.kubernetes.io/aws-load-balancer-access-log-enabled

controls whether access logs are enabled.

The annotation

service.beta.kubernetes.io/aws-load-balancer-access-log-emit-intervalservice.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval controls

the interval in minutes for publishing the access logs. You can specify an interval of either 5 or

60.

The annotation

service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-nameservice.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name controls

the name of the Amazon S3 bucket where load balancer access logs are stored.

The annotation

service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefixservice.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix

specifies the logical hierarchy you created for your Amazon S3 bucket.

Connection Draining on AWS

Connection draining for Classic ELBs can be managed with the annotation

service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabledservice.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled set to

the value of "true""true" . The annotation

service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeoutservice.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout can

also be used to set maximum time, in seconds, to keep the existing connections open before

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-access-log-enabledservice.beta.kubernetes.io/aws-load-balancer-access-log-enabled:: ""true"true"

 # Specifies whether access logs are enabled for the load balancer# Specifies whether access logs are enabled for the load balancer
 service.beta.kubernetes.io/aws-load-balancer-access-log-emit-intervalservice.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval

 # The interval for publishing the access logs. You can specify an interval of either 5 or 60 (minutes).# The interval for publishing the access logs. You can specify an interval of either 5 or 60 (minutes).
 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-nameservice.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name

 # The name of the Amazon S3 bucket where the access logs are stored# The name of the Amazon S3 bucket where the access logs are stored
 service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefixservice.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix

 # The logical hierarchy you created for your Amazon S3 bucket, for example `my-bucket-prefix/prod`# The logical hierarchy you created for your Amazon S3 bucket, for example `my-bucket-prefix/prod`

deregistering the instances.

Other ELB annotations

There are other annotations to manage Classic Elastic Load Balancers that are described

below.

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabledservice.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled

 service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeoutservice.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeoutservice.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout::

 # The time, in seconds, that the connection is allowed to be idle (no data has been sent over the connection) before it is closed by the load balancer# The time, in seconds, that the connection is allowed to be idle (no data has been sent over the connection) before it is closed by the load balancer

 service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-enabledservice.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-enabled

 # Specifies whether cross-zone load balancing is enabled for the load balancer# Specifies whether cross-zone load balancing is enabled for the load balancer

 service.beta.kubernetes.io/aws-load-balancer-additional-resource-tagsservice.beta.kubernetes.io/aws-load-balancer-additional-resource-tags

 # A comma-separated list of key-value pairs which will be recorded as# A comma-separated list of key-value pairs which will be recorded as
 # additional tags in the ELB.# additional tags in the ELB.

 service.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-thresholdservice.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-threshold

 # The number of successive successful health checks required for a backend to# The number of successive successful health checks required for a backend to
 # be considered healthy for traffic. Defaults to 2, must be between 2 and 10# be considered healthy for traffic. Defaults to 2, must be between 2 and 10

 service.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-thresholdservice.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-threshold

 # The number of unsuccessful health checks required for a backend to be# The number of unsuccessful health checks required for a backend to be
 # considered unhealthy for traffic. Defaults to 6, must be between 2 and 10# considered unhealthy for traffic. Defaults to 6, must be between 2 and 10

 service.beta.kubernetes.io/aws-load-balancer-healthcheck-intervalservice.beta.kubernetes.io/aws-load-balancer-healthcheck-interval:: ""20"20"

 # The approximate interval, in seconds, between health checks of an# The approximate interval, in seconds, between health checks of an
 # individual instance. Defaults to 10, must be between 5 and 300# individual instance. Defaults to 10, must be between 5 and 300
 service.beta.kubernetes.io/aws-load-balancer-healthcheck-timeoutservice.beta.kubernetes.io/aws-load-balancer-healthcheck-timeout:: ""5"5"

 # The amount of time, in seconds, during which no response means a failed# The amount of time, in seconds, during which no response means a failed
 # health check. This value must be less than the service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval# health check. This value must be less than the service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval
 # value. Defaults to 5, must be between 2 and 60# value. Defaults to 5, must be between 2 and 60

 service.beta.kubernetes.io/aws-load-balancer-extra-security-groupsservice.beta.kubernetes.io/aws-load-balancer-extra-security-groups:: ""

 # A list of additional security groups to be added to ELB# A list of additional security groups to be added to ELB

Network Load Balancer support on AWS [alpha]

Warning: This is an alpha feature and not recommended for production clusters yet.

Starting in version 1.9.0, Kubernetes supports Network Load Balancer (NLB). To use a Network

Load Balancer on AWS, use the annotation

service.beta.kubernetes.io/aws-load-balancer-typeservice.beta.kubernetes.io/aws-load-balancer-type with the value set to nlbnlb .

Unlike Classic Elastic Load Balancers, Network Load Balancers (NLBs) forward the client’s IP

through to the node. If a service’s spec.externalTrafficPolicyspec.externalTrafficPolicy is set to ClusterCluster , the

client’s IP address will not be propagated to the end pods.

By setting spec.externalTrafficPolicyspec.externalTrafficPolicy to LocalLocal , client IP addresses will be propagated to

the end pods, but this could result in uneven distribution of traffic. Nodes without any pods for

a particular LoadBalancer service will fail the NLB Target Group’s health check on the auto-

assigned spec.healthCheckNodePortspec.healthCheckNodePort and not receive any traffic.

In order to achieve even traffic, either use a DaemonSet, or specify a pod anti-affinity to not

locate pods on the same node.

NLB can also be used with the internal load balancer annotation.

In order for client traffic to reach instances behind an NLB, the Node security groups are

modified with the following IP rules:

Rule Protocol Port(s) IpRange(s) IpRange Description

Health
Check

TCP

NodePort(s) (

spec.healthCheckNodePortspec.healthCheckNodePort
for

spec.externalTrafficPolicyspec.externalTrafficPolicy

= Local= Local
)

VPC CIDR
kubernetes.io/rule/nlb/health=
<loadBalancerName>

Client
Traffic

TCP NodePort(s)
spec.loadBalancerSourceRangesspec.loadBalancerSourceRanges

(defaults to 0.0.0.0/00.0.0.0/0)

kubernetes.io/rule/nlb/client=
<loadBalancerName>

MTU
Discovery

ICMP 3,4
spec.loadBalancerSourceRangesspec.loadBalancerSourceRanges

(defaults to 0.0.0.0/00.0.0.0/0)

kubernetes.io/rule/nlb/mtu=
<loadBalancerName>

 metadatametadata::

 namename:: my-servicemy-service

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-typeservice.beta.kubernetes.io/aws-load-balancer-type:: ""nlb"nlb"

file:///docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
file:///docs/concepts/services-networking/service/#internal-load-balancer

Be aware that if spec.loadBalancerSourceRangesspec.loadBalancerSourceRanges is not set, Kubernetes will allow traffic

from 0.0.0.0/00.0.0.0/0 to the Node Security Group(s). If nodes have public IP addresses, be aware

that non-NLB traffic can also reach all instances in those modified security groups.

In order to limit which client IP’s can access the Network Load Balancer, specify

loadBalancerSourceRangesloadBalancerSourceRanges .

Note: NLB only works with certain instance classes, see the AWS documentation for supported

instance types.

External IPs

If there are external IPs that route to one or more cluster nodes, Kubernetes services can be

exposed on those externalIPsexternalIPs . Traffic that ingresses into the cluster with the external IP (as

destination IP), on the service port, will be routed to one of the service endpoints.

externalIPsexternalIPs are not managed by Kubernetes and are the responsibility of the cluster

administrator.

In the ServiceSpecServiceSpec , externalIPsexternalIPs can be specified along with any of the ServiceTypesServiceTypes . In

the example below, “ my-servicemy-service ” can be accessed by clients on “ 80.11.12.10:8080.11.12.10:80 ”” (

externalIP:portexternalIP:port)

specspec::

 loadBalancerSourceRangesloadBalancerSourceRanges::

 -- ""143.231.0.0/16"143.231.0.0/16"

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: my-servicemy-service

specspec::

 selectorselector::

 appapp:: MyAppMyApp

 portsports::

 -- namename:: httphttp

 protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

 externalIPsexternalIPs::

 -- 80.11.12.1080.11.12.10

http://docs.aws.amazon.com/elasticloadbalancing/latest/network/target-group-register-targets.html#register-deregister-targets

Shortcomings

Using the userspace proxy for VIPs will work at small to medium scale, but will not scale to

very large clusters with thousands of Services. See the original design proposal for portals for

more details.

Using the userspace proxy obscures the source-IP of a packet accessing a ServiceService . This

makes some kinds of firewalling impossible. The iptables proxier does not obscure in-cluster

source IPs, but it does still impact clients coming through a load-balancer or node-port.

The TypeType field is designed as nested functionality - each level adds to the previous. This is not

strictly required on all cloud providers (e.g. Google Compute Engine does not need to allocate a

NodePortNodePort to make LoadBalancerLoadBalancer work, but AWS does) but the current API requires it.

Future work

In the future we envision that the proxy policy can become more nuanced than simple round

robin balancing, for example master-elected or sharded. We also envision that some

ServicesServices will have “real” load balancers, in which case the VIP will simply transport the

packets there.

We intend to improve our support for L7 (HTTP) ServicesServices .

We intend to have more flexible ingress modes for ServicesServices which encompass the current

ClusterIPClusterIP , NodePortNodePort , and LoadBalancerLoadBalancer modes and more.

The gory details of virtual IPs

The previous information should be sufficient for many people who just want to use

ServicesServices . However, there is a lot going on behind the scenes that may be worth

understanding.

Avoiding collisions

One of the primary philosophies of Kubernetes is that users should not be exposed to

situations that could cause their actions to fail through no fault of their own. In this situation,

http://issue.k8s.io/1107

we are looking at network ports - users should not have to choose a port number if that choice

might collide with another user. That is an isolation failure.

In order to allow users to choose a port number for their ServicesServices , we must ensure that no

two ServicesServices can collide. We do that by allocating each ServiceService its own IP address.

To ensure each service receives a unique IP, an internal allocator atomically updates a global

allocation map in etcd prior to creating each service. The map object must exist in the registry

for services to get IPs, otherwise creations will fail with a message indicating an IP could not

be allocated. A background controller is responsible for creating that map (to migrate from

older versions of Kubernetes that used in memory locking) as well as checking for invalid

assignments due to administrator intervention and cleaning up any IPs that were allocated but

which no service currently uses.

IPs and VIPs

Unlike PodPod IP addresses, which actually route to a fixed destination, ServiceService IPs are not

actually answered by a single host. Instead, we use iptablesiptables (packet processing logic in

Linux) to define virtual IP addresses which are transparently redirected as needed. When

clients connect to the VIP, their traffic is automatically transported to an appropriate endpoint.

The environment variables and DNS for ServicesServices are actually populated in terms of the

ServiceService ’s VIP and port.

We support three proxy modes - userspace, iptables and ipvs which operate slightly differently.

Userspace

As an example, consider the image processing application described above. When the backend

ServiceService is created, the Kubernetes master assigns a virtual IP address, for example 10.0.0.1.

Assuming the ServiceService port is 1234, the ServiceService is observed by all of the kube-proxykube-proxy

instances in the cluster. When a proxy sees a new ServiceService , it opens a new random port,

establishes an iptables redirect from the VIP to this new port, and starts accepting connections

on it.

When a client connects to the VIP the iptables rule kicks in, and redirects the packets to the

Service proxyService proxy ’s own port. The Service proxyService proxy chooses a backend, and starts proxying

traffic from the client to the backend.

This means that ServiceService owners can choose any port they want without risk of collision.

Clients can simply connect to an IP and port, without being aware of which PodsPods they are

actually accessing.

Iptables

Again, consider the image processing application described above. When the backend

ServiceService is created, the Kubernetes master assigns a virtual IP address, for example 10.0.0.1.

Assuming the ServiceService port is 1234, the ServiceService is observed by all of the kube-proxykube-proxy

instances in the cluster. When a proxy sees a new ServiceService , it installs a series of iptables rules

which redirect from the VIP to per- ServiceService rules. The per- ServiceService rules link to per-

EndpointEndpoint rules which redirect (Destination NAT) to the backends.

When a client connects to the VIP the iptables rule kicks in. A backend is chosen (either based

on session affinity or randomly) and packets are redirected to the backend. Unlike the

userspace proxy, packets are never copied to userspace, the kube-proxy does not have to be

running for the VIP to work, and the client IP is not altered.

This same basic flow executes when traffic comes in through a node-port or through a load-

balancer, though in those cases the client IP does get altered.

Ipvs

Iptables operations slow down dramatically in large scale cluster e.g 10,000 Services. IPVS is

designed for load balancing and based on in-kernel hash tables. So we can achieve

performance consistency in large number of services from IPVS-based kube-proxy. Meanwhile,

IPVS-based kube-proxy has more sophisticated load balancing algorithms (least conns,

locality, weighted, persistence).

API Object

Service is a top-level resource in the Kubernetes REST API. More details about the API object

can be found at: Service API object.

For More Information

Read Connecting a Front End to a Back End Using a Service .

file:///docs/reference/generated/kubernetes-api/v1.10/#service-v1-core
file:///docs/tasks/access-application-cluster/connecting-frontend-backend/

DNS for Services and Pods

This page provides an overview of DNS support by Kubernetes.

Introduction

Kubernetes DNS schedules a DNS Pod and Service on the cluster, and configures the kubelets

to tell individual containers to use the DNS Service’s IP to resolve DNS names.

What things get DNS names?

Every Service defined in the cluster (including the DNS server itself) is assigned a DNS name.

By default, a client Pod’s DNS search list will include the Pod’s own namespace and the

cluster’s default domain. This is best illustrated by example:

Assume a Service named foofoo in the Kubernetes namespace barbar . A Pod running in

namespace barbar can look up this service by simply doing a DNS query for foofoo . A Pod running

in namespace quuxquux can look up this service by doing a DNS query for foo.barfoo.bar .

The following sections detail the supported record types and layout that is supported. Any

other layout or names or queries that happen to work are considered implementation details

and are subject to change without warning. For more up-to-date specification, see Kubernetes

DNS-Based Service Discovery.

Introduction

What things get DNS names?

Services

A records

SRV records

Pods

A Records

Pod’s hostname and subdomain fields

Pod’s DNS Policy

Pod’s DNS Config

What’s next

https://github.com/kubernetes/dns/blob/master/docs/specification.md

Services

A records

“Normal” (not headless) Services are assigned a DNS A record for a name of the form

my-svc.my-namespace.svc.cluster.localmy-svc.my-namespace.svc.cluster.local . This resolves to the cluster IP of the Service.

“Headless” (without a cluster IP) Services are also assigned a DNS A record for a name of the

form my-svc.my-namespace.svc.cluster.localmy-svc.my-namespace.svc.cluster.local . Unlike normal Services, this resolves to

the set of IPs of the pods selected by the Service. Clients are expected to consume the set or

else use standard round-robin selection from the set.

SRV records

SRV Records are created for named ports that are part of normal or Headless Services. For

each named port, the SRV record would have the form

_my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster.local_my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster.local . For a

regular service, this resolves to the port number and the CNAME:

my-svc.my-namespace.svc.cluster.localmy-svc.my-namespace.svc.cluster.local . For a headless service, this resolves to multiple

answers, one for each pod that is backing the service, and contains the port number and a

CNAME of the pod of the form

auto-generated-name.my-svc.my-namespace.svc.cluster.localauto-generated-name.my-svc.my-namespace.svc.cluster.local .

Pods

A Records

When enabled, pods are assigned a DNS A record in the form of “

pod-ip-address.my-namespace.pod.cluster.localpod-ip-address.my-namespace.pod.cluster.local ”.

For example, a pod with IP 1.2.3.41.2.3.4 in the namespace defaultdefault with a DNS name of

cluster.localcluster.local would have an entry: 1-2-3-4.default.pod.cluster.local1-2-3-4.default.pod.cluster.local .

Pod’s hostname and subdomain fields

Currently when a pod is created, its hostname is the Pod’s metadata.namemetadata.name value.

file:///docs/concepts/services-networking/service/#headless-services

The Pod spec has an optional hostnamehostname field, which can be used to specify the Pod’s

hostname. When specified, it takes precedence over the Pod’s name to be the hostname of the

pod. For example, given a Pod with hostnamehostname set to “ my-hostmy-host ”, the Pod will have its

hostname set to “ my-hostmy-host ”.

The Pod spec also has an optional subdomainsubdomain field which can be used to specify its

subdomain. For example, a Pod with hostnamehostname set to “ foofoo ”, and subdomainsubdomain set to “ barbar ”, in

namespace “ my-namespacemy-namespace ”, will have the fully qualified domain name (FQDN) “

foo.bar.my-namespace.svc.cluster.localfoo.bar.my-namespace.svc.cluster.local ”.

Example:

If there exists a headless service in the same namespace as the pod and with the same name

as the subdomain, the cluster’s KubeDNS Server also returns an A record for the Pod’s fully

qualified hostname. For example, given a Pod with the hostname set to “ busybox-1busybox-1 ” and the

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: default-subdomaindefault-subdomain

specspec::

 selectorselector::

 namename:: busyboxbusybox

 clusterIPclusterIP:: NoneNone

 portsports::

 -- namename:: foofoo # Actually, no port is needed.# Actually, no port is needed.

 portport:: 12341234

 targetPorttargetPort:: 12341234

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: busybox1busybox1

 labelslabels::

 namename:: busyboxbusybox

specspec::

 hostnamehostname:: busybox-1busybox-1

 subdomainsubdomain:: default-subdomaindefault-subdomain

 containerscontainers::

 -- imageimage:: busyboxbusybox

 commandcommand::

 -- sleepsleep

 -- ""3600"3600"

 namename:: busyboxbusybox

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: busybox2busybox2

 labelslabels::

 namename:: busyboxbusybox

specspec::

 hostnamehostname:: busybox-2busybox-2

 subdomainsubdomain:: default-subdomaindefault-subdomain

 containerscontainers::

 -- imageimage:: busyboxbusybox

 commandcommand::

 -- sleepsleep

 -- ""3600"3600"

 namename:: busyboxbusybox

subdomain set to “ default-subdomaindefault-subdomain ”, and a headless Service named “

default-subdomaindefault-subdomain ” in the same namespace, the pod will see its own FQDN as “

busybox-1.default-subdomain.my-namespace.svc.cluster.localbusybox-1.default-subdomain.my-namespace.svc.cluster.local ”. DNS serves an A

record at that name, pointing to the Pod’s IP. Both pods “ busybox1busybox1 ” and “ busybox2busybox2 ” can

have their distinct A records.

The Endpoints object can specify the hostnamehostname for any endpoint addresses, along with its IP.

Pod’s DNS Policy

DNS policies can be set on a per-pod basis. Currently Kubernetes supports the following pod-

specific DNS policies. These policies are specified in the dnsPolicydnsPolicy field of a Pod Spec.

“ DefaultDefault ”: The Pod inherits the name resolution configuration from the node that the

pods run on. See related discussion for more details.

“ ClusterFirstClusterFirst ”: Any DNS query that does not match the configured cluster domain

suffix, such as “ www.kubernetes.iowww.kubernetes.io ”, is forwarded to the upstream nameserver inherited

from the node. Cluster administrators may have extra stub-domain and upstream DNS

servers configured. See related discussion for details on how DNS queries are handled in

those cases.

“ ClusterFirstWithHostNetClusterFirstWithHostNet ”: For Pods running with hostNetwork, you should explicitly

set its DNS policy “ ClusterFirstWithHostNetClusterFirstWithHostNet ”.

“ NoneNone ”: A new option value introduced in Kubernetes v1.9 (Beta in v1.10). It allows a Pod

to ignore DNS settings from the Kubernetes environment. All DNS settings are supposed

to be provided using the dnsConfigdnsConfig field in the Pod Spec. See DNS config subsection

below.

NOTE: “Default” is not the default DNS policy. If dnsPolicydnsPolicy is not explicitly specified,

then “ClusterFirst” is used.

The example below shows a Pod with its DNS policy set to “ ClusterFirstWithHostNetClusterFirstWithHostNet ”

because it has hostNetworkhostNetwork set to truetrue .

file:///docs/tasks/administer-cluster/dns-custom-nameservers/#inheriting-dns-from-the-node
file:///docs/tasks/administer-cluster/dns-custom-nameservers/#impacts-on-pods

Pod’s DNS Config

Kubernetes v1.9 introduces an Alpha feature (Beta in v1.10) that allows users more control on

the DNS settings for a Pod. This feature is enabled by default in v1.10. To enable this feature in

v1.9, the cluster administrator needs to enable the CustomPodDNSCustomPodDNS feature gate on the

apiserver and the kubelet, for example, “ --feature-gates=CustomPodDNS=true,...--feature-gates=CustomPodDNS=true,... ”. When

the feature gate is enabled, users can set the dnsPolicydnsPolicy field of a Pod to “ NoneNone ” and they

can add a new field dnsConfigdnsConfig to a Pod Spec.

The dnsConfigdnsConfig field is optional and it can work with any dnsPolicydnsPolicy settings. However, when

a Pod’s dnsPolicydnsPolicy is set to “ NoneNone ”, the dnsConfigdnsConfig field has to be specified.

Below are the properties a user can specify in the dnsConfigdnsConfig field:

nameserversnameservers : a list of IP addresses that will be used as DNS servers for the Pod. There

can be at most 3 IP addresses specified. When the Pod’s dnsPolicydnsPolicy is set to “ NoneNone ”, the

list must contain at least one IP address, otherwise this property is optional. The servers

listed will be combined to the base nameservers generated from the specified DNS policy

with duplicate addresses removed.

searchessearches : a list of DNS search domains for hostname lookup in the Pod. This property is

optional. When specified, the provided list will be merged into the base search domain

names generated from the chosen DNS policy. Duplicate domain names are removed.

Kubernetes allows for at most 6 search domains.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: busyboxbusybox

 namespacenamespace:: defaultdefault

specspec::

 containerscontainers::

 -- imageimage:: busyboxbusybox

 commandcommand::

 -- sleepsleep

 -- ""3600"3600"

 imagePullPolicyimagePullPolicy:: IfNotPresentIfNotPresent

 namename:: busyboxbusybox

 restartPolicyrestartPolicy:: AlwaysAlways

 hostNetworkhostNetwork:: truetrue

 dnsPolicydnsPolicy:: ClusterFirstWithHostNetClusterFirstWithHostNet

optionsoptions : an optional list of objects where each object may have a namename property

(required) and a valuevalue property (optional). The contents in this property will be merged to

the options generated from the specified DNS policy. Duplicate entries are removed.

The following is an example Pod with custom DNS settings:

custom-dns.yamlcustom-dns.yaml

When the Pod above is created, the container testtest gets the following contents in its

/etc/resolv.conf/etc/resolv.conf file:

What’s next

For guidance on administering DNS configurations, check Configure DNS Service

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namespacenamespace:: defaultdefault

 namename:: dns-exampledns-example

specspec::

 containerscontainers::

 -- namename:: testtest

 imageimage:: nginxnginx

 dnsPolicydnsPolicy:: ""None"None"

 dnsConfigdnsConfig::

 nameserversnameservers::

 -- 1.2.3.41.2.3.4

 searchessearches::

 -- ns1.svc.cluster.localns1.svc.cluster.local

 -- my.dns.search.suffixmy.dns.search.suffix

 optionsoptions::

 -- namename:: ndotsndots

 valuevalue:: ""2"2"

 -- namename:: edns0edns0

nameserver 1.2.3.4nameserver 1.2.3.4

search ns1.svc.cluster.local my.dns.search.suffixsearch ns1.svc.cluster.local my.dns.search.suffix

options ndots:2 edns0options ndots:2 edns0

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/custom-dns.yaml
file:///docs/tasks/administer-cluster/dns-custom-nameservers/

Connecting Applications with Services

The Kubernetes model for connecting containers

Now that you have a continuously running, replicated application you can expose it on a

network. Before discussing the Kubernetes approach to networking, it is worthwhile to

contrast it with the “normal” way networking works with Docker.

By default, Docker uses host-private networking, so containers can talk to other containers only

if they are on the same machine. In order for Docker containers to communicate across

nodes, there must be allocated ports on the machine’s own IP address, which are then

forwarded or proxied to the containers. This obviously means that containers must either

coordinate which ports they use very carefully or ports must be allocated dynamically.

Coordinating ports across multiple developers is very difficult to do at scale and exposes users

to cluster-level issues outside of their control. Kubernetes assumes that pods can

communicate with other pods, regardless of which host they land on. We give every pod its

own cluster-private-IP address so you do not need to explicitly create links between pods or

mapping container ports to host ports. This means that containers within a Pod can all reach

each other’s ports on localhost, and all pods in a cluster can see each other without NAT. The

rest of this document will elaborate on how you can run reliable services on such a networking

model.

This guide uses a simple nginx server to demonstrate proof of concept. The same principles

are embodied in a more complete Jenkins CI application.

The Kubernetes model for connecting containers

Exposing pods to the cluster

Creating a Service

Accessing the Service

Environment Variables

DNS

Securing the Service

Exposing the Service

Further reading

http://blog.kubernetes.io/2015/07/strong-simple-ssl-for-kubernetes.html

Exposing pods to the cluster

We did this in a previous example, but let’s do it once again and focus on the networking

perspective. Create an nginx pod, and note that it has a container port specification:

run-my-nginx.yamlrun-my-nginx.yaml

This makes it accessible from any node in your cluster. Check the nodes the pod is running on:

Check your pods’ IPs:

You should be able to ssh into any node in your cluster and curl both IPs. Note that the

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: my-nginxmy-nginx

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 runrun:: my-nginxmy-nginx

 replicasreplicas:: 22

 templatetemplate::

 metadatametadata::

 labelslabels::

 runrun:: my-nginxmy-nginx

 specspec::

 containerscontainers::

 -- namename:: my-nginxmy-nginx

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl create kubectl create -f-f ./run-my-nginx.yaml ./run-my-nginx.yaml

$ $ kubectl get pods kubectl get pods -l-l runrun==my-nginx my-nginx -o-o wide wide

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

my-nginx-3800858182-jr4a2 1/1 Running 0 13s 10.244.3.4 kubernetes-minion-905mmy-nginx-3800858182-jr4a2 1/1 Running 0 13s 10.244.3.4 kubernetes-minion-905m

my-nginx-3800858182-kna2y 1/1 Running 0 13s 10.244.2.5 kubernetes-minion-ljydmy-nginx-3800858182-kna2y 1/1 Running 0 13s 10.244.2.5 kubernetes-minion-ljyd

$ $ kubectl get pods kubectl get pods -l-l runrun==my-nginx my-nginx -o-o yaml | yaml | grep grep podIPpodIP

 podIP: 10.244.3.4 podIP: 10.244.3.4

 podIP: 10.244.2.5 podIP: 10.244.2.5

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/run-my-nginx.yaml

containers are not using port 80 on the node, nor are there any special NAT rules to route

traffic to the pod. This means you can run multiple nginx pods on the same node all using the

same containerPort and access them from any other pod or node in your cluster using IP. Like

Docker, ports can still be published to the host node’s interfaces, but the need for this is

radically diminished because of the networking model.

You can read more about how we achieve this if you’re curious.

Creating a Service

So we have pods running nginx in a flat, cluster wide, address space. In theory, you could talk

to these pods directly, but what happens when a node dies? The pods die with it, and the

Deployment will create new ones, with different IPs. This is the problem a Service solves.

A Kubernetes Service is an abstraction which defines a logical set of Pods running somewhere

in your cluster, that all provide the same functionality. When created, each Service is assigned

a unique IP address (also called clusterIP). This address is tied to the lifespan of the Service,

and will not change while the Service is alive. Pods can be configured to talk to the Service, and

know that communication to the Service will be automatically load-balanced out to some pod

that is a member of the Service.

You can create a Service for your 2 nginx replicas with

kubectlkubectl

exposeexpose :

This is equivalent to

kubectl create -kubectl create -

ff the following yaml:

nginx-svc.yamlnginx-svc.yaml

$ $ kubectl expose deployment/my-nginxkubectl expose deployment/my-nginx

service service "my-nginx""my-nginx" exposed exposed

file:///docs/concepts/cluster-administration/networking/#how-to-achieve-this
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/nginx-svc.yaml

nginx-svc.yamlnginx-svc.yaml

This specification will create a Service which targets TCP port 80 on any Pod with the

run: my-run: my-

nginxnginx label, and expose it on an abstracted Service port (targetPorttargetPort : is the port

the container accepts traffic on, portport : is the abstracted Service port, which can be any port

other pods use to access the Service). View service API object to see the list of supported

fields in service definition. Check your Service:

As mentioned previously, a Service is backed by a group of pods. These pods are exposed

through endpointsendpoints . The Service’s selector will be evaluated continuously and the results will

be POSTed to an Endpoints object also named my-nginxmy-nginx . When a pod dies, it is automatically

removed from the endpoints, and new pods matching the Service’s selector will automatically

get added to the endpoints. Check the endpoints, and note that the IPs are the same as the

pods created in the first step:

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: my-nginxmy-nginx

 labelslabels::

 runrun:: my-nginxmy-nginx

specspec::

 portsports::

 -- portport:: 8080

 protocolprotocol:: TCPTCP

 selectorselector::

 runrun:: my-nginxmy-nginx

$ $ kubectl get svc my-nginxkubectl get svc my-nginx

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

my-nginx 10.0.162.149 <none> 80/TCP 21smy-nginx 10.0.162.149 <none> 80/TCP 21s

file:///docs/reference/generated/kubernetes-api/v1.10/#service-v1-core

You should now be able to curl the nginx Service on <CLUSTER-IP>:<PORT><CLUSTER-IP>:<PORT> from any node in

your cluster. Note that the Service IP is completely virtual, it never hits the wire, if you’re

curious about how this works you can read more about the service proxy.

Accessing the Service

Kubernetes supports 2 primary modes of finding a Service - environment variables and DNS.

The former works out of the box while the latter requires the kube-dns cluster addon.

Environment Variables

When a Pod runs on a Node, the kubelet adds a set of environment variables for each active

Service. This introduces an ordering problem. To see why, inspect the environment of your

running nginx pods (your pod name will be different):

Note there’s no mention of your Service. This is because you created the replicas before the

Service. Another disadvantage of doing this is that the scheduler might put both pods on the

same machine, which will take your entire Service down if it dies. We can do this the right way

$ $ kubectl describe svc my-nginxkubectl describe svc my-nginx

Name: my-nginxName: my-nginx

Namespace: defaultNamespace: default

Labels: Labels: runrun==my-nginxmy-nginx

Annotations: <none>Annotations: <none>

Selector: Selector: runrun==my-nginxmy-nginx

Type: ClusterIPType: ClusterIP

IP: 10.0.162.149IP: 10.0.162.149

Port: <Port: <unsetunset>> 80/TCP 80/TCP

Endpoints: 10.244.2.5:80,10.244.3.4:80Endpoints: 10.244.2.5:80,10.244.3.4:80

Session Affinity: NoneSession Affinity: None

Events: <none>Events: <none>

$ $ kubectl get ep my-nginxkubectl get ep my-nginx

NAME ENDPOINTS AGENAME ENDPOINTS AGE

my-nginx 10.244.2.5:80,10.244.3.4:80 1mmy-nginx 10.244.2.5:80,10.244.3.4:80 1m

$ $ kubectl kubectl exec exec my-nginx-3800858182-jr4a2 my-nginx-3800858182-jr4a2 ---- printenv | printenv | grep grep SERVICESERVICE

KUBERNETES_SERVICE_HOSTKUBERNETES_SERVICE_HOST==10.0.0.110.0.0.1

KUBERNETES_SERVICE_PORTKUBERNETES_SERVICE_PORT==443443

KUBERNETES_SERVICE_PORT_HTTPSKUBERNETES_SERVICE_PORT_HTTPS==443443

file:///docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
http://releases.k8s.io/master/cluster/addons/dns/README.md

by killing the 2 pods and waiting for the Deployment to recreate them. This time around the

Service exists before the replicas. This will give you scheduler-level Service spreading of your

pods (provided all your nodes have equal capacity), as well as the right environment variables:

You may notice that the pods have different names, since they are killed and recreated.

DNS

Kubernetes offers a DNS cluster addon Service that uses skydns to automatically assign dns

names to other Services. You can check if it’s running on your cluster:

If it isn’t running, you can enable it. The rest of this section will assume you have a Service with

a long lived IP (my-nginx), and a dns server that has assigned a name to that IP (the kube-dns

cluster addon), so you can talk to the Service from any pod in your cluster using standard

methods (e.g. gethostbyname). Let’s run another curl application to test this:

$ $ kubectl scale deployment my-nginx kubectl scale deployment my-nginx --replicas--replicas==00;; kubectl scale deployment my-nginx kubectl scale deployment my-nginx

$ $ kubectl get pods kubectl get pods -l-l runrun==my-nginx my-nginx -o-o wide wide

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

my-nginx-3800858182-e9ihh 1/1 Running 0 5s 10.244.2.7 kubernetes-minion-ljydmy-nginx-3800858182-e9ihh 1/1 Running 0 5s 10.244.2.7 kubernetes-minion-ljyd

my-nginx-3800858182-j4rm4 1/1 Running 0 5s 10.244.3.8 kubernetes-minion-905mmy-nginx-3800858182-j4rm4 1/1 Running 0 5s 10.244.3.8 kubernetes-minion-905m

$ $ kubectl kubectl exec exec my-nginx-3800858182-e9ihh my-nginx-3800858182-e9ihh ---- printenv | printenv | grep grep SERVICESERVICE

KUBERNETES_SERVICE_PORTKUBERNETES_SERVICE_PORT==443443

MY_NGINX_SERVICE_HOSTMY_NGINX_SERVICE_HOST==10.0.162.14910.0.162.149

KUBERNETES_SERVICE_HOSTKUBERNETES_SERVICE_HOST==10.0.0.110.0.0.1

MY_NGINX_SERVICE_PORTMY_NGINX_SERVICE_PORT==8080

KUBERNETES_SERVICE_PORT_HTTPSKUBERNETES_SERVICE_PORT_HTTPS==443443

$ $ kubectl get services kube-dns kubectl get services kube-dns --namespace--namespace==kube-systemkube-system

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

kube-dns 10.0.0.10 <none> 53/UDP,53/TCP 8mkube-dns 10.0.0.10 <none> 53/UDP,53/TCP 8m

$ $ kubectl run curl kubectl run curl --image--image==radial/busyboxplus:curl radial/busyboxplus:curl -i-i --tty--tty

Waiting Waiting for for pod default/curl-131556218-9fnch to be running, status is Pending, pod ready: pod default/curl-131556218-9fnch to be running, status is Pending, pod ready:

Hit enter Hit enter for for command command promptprompt

http://releases.k8s.io/master/cluster/addons/dns/README.md#how-do-i-configure-it

Then, hit enter and run

nslookup my-nslookup my-

nginxnginx :

Securing the Service

Till now we have only accessed the nginx server from within the cluster. Before exposing the

Service to the internet, you want to make sure the communication channel is secure. For this,

you will need:

Self signed certificates for https (unless you already have an identity certificate)

An nginx server configured to use the certificates

A secret that makes the certificates accessible to pods

You can acquire all these from the nginx https example. This requires having go and make

tools installed. If you don’t want to install those, then follow the manual steps later. In short:

Following are the manual steps to follow in case you run into problems running make (on

windows for example):

[[root@curl-131556218-9fnch:/ root@curl-131556218-9fnch:/]]$ $ nslookup my-nginxnslookup my-nginx

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10Address 1: 10.0.0.10

Name: my-nginxName: my-nginx

Address 1: 10.0.162.149Address 1: 10.0.162.149

$ $ make keys secret make keys secret KEYKEY==/tmp/nginx.key /tmp/nginx.key CERTCERT==/tmp/nginx.crt /tmp/nginx.crt SECRETSECRET==/tmp/secret.json/tmp/secret.json

$ $ kubectl create kubectl create -f-f /tmp/secret.json /tmp/secret.json

secret secret "nginxsecret""nginxsecret" created created

$ $ kubectl get secretskubectl get secrets

NAME TYPE DATA AGENAME TYPE DATA AGE

default-token-il9rc kubernetes.io/service-account-token 1 1ddefault-token-il9rc kubernetes.io/service-account-token 1 1d

nginxsecret Opaque 2 1mnginxsecret Opaque 2 1m

file:///docs/concepts/configuration/secret/
https://github.com/kubernetes/examples/tree/master/staging/https-nginx/

Use the output from the previous commands to create a yaml file as follows. The base64

encoded value should all be on a single line.

Now create the secrets using the file:

Now modify your nginx replicas to start an https server using the certificate in the secret, and

the Service, to expose both ports (80 and 443):

nginx-secure-app.yamlnginx-secure-app.yaml

#create a public private key pair#create a public private key pair
openssl req openssl req -x509-x509 -nodes-nodes -days-days 365 365 -newkey-newkey rsa:2048 rsa:2048 -keyout-keyout /d/tmp/nginx.key /d/tmp/nginx.key

#convert the keys to base64 encoding#convert the keys to base64 encoding
catcat /d/tmp/nginx.crt | base64 /d/tmp/nginx.crt | base64

catcat /d/tmp/nginx.key | base64 /d/tmp/nginx.key | base64

apiVersionapiVersion:: ""v1"v1"

kindkind:: ""Secret"Secret"

metadatametadata::

 namename:: ""nginxsecret"nginxsecret"

 namespacenamespace:: ""default"default"

datadata::

 nginx.crtnginx.crt:: ""LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURIekNDQWdlZ0F3SUJBZ0lKQUp5M3lQK0pzMlpJTUEwR0NTcUdTSWIzRFFFQkJRVUFNQ1l4RVRBUEJnTlYKQkFNVENHNW5hVzU0YzNaak1SRXdEd1lEVlFRS0V3aHVaMmx1ZUhOMll6QWVGdzB4TnpFd01qWXdOekEzTVRKYQpGdzB4T0RFd01qWXdOekEzTVRKYU1DWXhFVEFQQmdOVkJBTVRDRzVuYVc1NGMzWmpNUkV3RHdZRFZRUUtFd2h1CloybHVlSE4yWXpDQ0FTSXdEUVlKS29aSWh2Y05BUUVCQlFBRGdnRVBBRENDQVFvQ2dnRUJBSjFxSU1SOVdWM0IKMlZIQlRMRmtobDRONXljMEJxYUhIQktMSnJMcy8vdzZhU3hRS29GbHlJSU94NGUrMlN5ajBFcndCLzlYTnBwbQppeW1CL3JkRldkOXg5UWhBQUxCZkVaTmNiV3NsTVFVcnhBZW50VWt1dk1vLzgvMHRpbGhjc3paenJEYVJ4NEo5Ci82UVRtVVI3a0ZTWUpOWTVQZkR3cGc3dlVvaDZmZ1Voam92VG42eHNVR0M2QURVODBpNXFlZWhNeVI1N2lmU2YKNHZpaXdIY3hnL3lZR1JBRS9mRTRqakxCdmdONjc2SU90S01rZXV3R0ljNDFhd05tNnNTSzRqYUNGeGpYSnZaZQp2by9kTlEybHhHWCtKT2l3SEhXbXNhdGp4WTRaNVk3R1ZoK0QrWnYvcW1mMFgvbVY0Rmo1NzV3ajFMWVBocWtsCmdhSXZYRyt4U1FVQ0F3RUFBYU5RTUU0d0hRWURWUjBPQkJZRUZPNG9OWkI3YXc1OUlsYkROMzhIYkduYnhFVjcKTUI4R0ExVWRJd1FZTUJhQUZPNG9OWkI3YXc1OUlsYkROMzhIYkduYnhFVjdNQXdHQTFVZEV3UUZNQU1CQWY4dwpEUVlKS29aSWh2Y05BUUVGQlFBRGdnRUJBRVhTMW9FU0lFaXdyMDhWcVA0K2NwTHI3TW5FMTducDBvMm14alFvCjRGb0RvRjdRZnZqeE04Tzd2TjB0clcxb2pGSW0vWDE4ZnZaL3k4ZzVaWG40Vm8zc3hKVmRBcStNZC9jTStzUGEKNmJjTkNUekZqeFpUV0UrKzE5NS9zb2dmOUZ3VDVDK3U2Q3B5N0M3MTZvUXRUakViV05VdEt4cXI0Nk1OZWNCMApwRFhWZmdWQTRadkR4NFo3S2RiZDY5eXM3OVFHYmg5ZW1PZ05NZFlsSUswSGt0ejF5WU4vbVpmK3FqTkJqbWZjCkNnMnlwbGQ0Wi8rUUNQZjl3SkoybFIrY2FnT0R4elBWcGxNSEcybzgvTHFDdnh6elZPUDUxeXdLZEtxaUMwSVEKQ0I5T2wwWW5scE9UNEh1b2hSUzBPOStlMm9KdFZsNUIyczRpbDlhZ3RTVXFxUlU9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURIekNDQWdlZ0F3SUJBZ0lKQUp5M3lQK0pzMlpJTUEwR0NTcUdTSWIzRFFFQkJRVUFNQ1l4RVRBUEJnTlYKQkFNVENHNW5hVzU0YzNaak1SRXdEd1lEVlFRS0V3aHVaMmx1ZUhOMll6QWVGdzB4TnpFd01qWXdOekEzTVRKYQpGdzB4T0RFd01qWXdOekEzTVRKYU1DWXhFVEFQQmdOVkJBTVRDRzVuYVc1NGMzWmpNUkV3RHdZRFZRUUtFd2h1CloybHVlSE4yWXpDQ0FTSXdEUVlKS29aSWh2Y05BUUVCQlFBRGdnRVBBRENDQVFvQ2dnRUJBSjFxSU1SOVdWM0IKMlZIQlRMRmtobDRONXljMEJxYUhIQktMSnJMcy8vdzZhU3hRS29GbHlJSU94NGUrMlN5ajBFcndCLzlYTnBwbQppeW1CL3JkRldkOXg5UWhBQUxCZkVaTmNiV3NsTVFVcnhBZW50VWt1dk1vLzgvMHRpbGhjc3paenJEYVJ4NEo5Ci82UVRtVVI3a0ZTWUpOWTVQZkR3cGc3dlVvaDZmZ1Voam92VG42eHNVR0M2QURVODBpNXFlZWhNeVI1N2lmU2YKNHZpaXdIY3hnL3lZR1JBRS9mRTRqakxCdmdONjc2SU90S01rZXV3R0ljNDFhd05tNnNTSzRqYUNGeGpYSnZaZQp2by9kTlEybHhHWCtKT2l3SEhXbXNhdGp4WTRaNVk3R1ZoK0QrWnYvcW1mMFgvbVY0Rmo1NzV3ajFMWVBocWtsCmdhSXZYRyt4U1FVQ0F3RUFBYU5RTUU0d0hRWURWUjBPQkJZRUZPNG9OWkI3YXc1OUlsYkROMzhIYkduYnhFVjcKTUI4R0ExVWRJd1FZTUJhQUZPNG9OWkI3YXc1OUlsYkROMzhIYkduYnhFVjdNQXdHQTFVZEV3UUZNQU1CQWY4dwpEUVlKS29aSWh2Y05BUUVGQlFBRGdnRUJBRVhTMW9FU0lFaXdyMDhWcVA0K2NwTHI3TW5FMTducDBvMm14alFvCjRGb0RvRjdRZnZqeE04Tzd2TjB0clcxb2pGSW0vWDE4ZnZaL3k4ZzVaWG40Vm8zc3hKVmRBcStNZC9jTStzUGEKNmJjTkNUekZqeFpUV0UrKzE5NS9zb2dmOUZ3VDVDK3U2Q3B5N0M3MTZvUXRUakViV05VdEt4cXI0Nk1OZWNCMApwRFhWZmdWQTRadkR4NFo3S2RiZDY5eXM3OVFHYmg5ZW1PZ05NZFlsSUswSGt0ejF5WU4vbVpmK3FqTkJqbWZjCkNnMnlwbGQ0Wi8rUUNQZjl3SkoybFIrY2FnT0R4elBWcGxNSEcybzgvTHFDdnh6elZPUDUxeXdLZEtxaUMwSVEKQ0I5T2wwWW5scE9UNEh1b2hSUzBPOStlMm9KdFZsNUIyczRpbDlhZ3RTVXFxUlU9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"

 nginx.keynginx.key:: ""LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2UUlCQURBTkJna3Foa2lHOXcwQkFRRUZBQVNDQktjd2dnU2pBZ0VBQW9JQkFRQ2RhaURFZlZsZHdkbFIKd1V5eFpJWmVEZWNuTkFhbWh4d1NpeWF5N1AvOE9ta3NVQ3FCWmNpQ0RzZUh2dGtzbzlCSzhBZi9WemFhWm9zcApnZjYzUlZuZmNmVUlRQUN3WHhHVFhHMXJKVEVGSzhRSHA3VkpMcnpLUC9QOUxZcFlYTE0yYzZ3MmtjZUNmZitrCkU1bEVlNUJVbUNUV09UM3c4S1lPNzFLSWVuNEZJWTZMMDUrc2JGQmd1Z0ExUE5JdWFubm9UTWtlZTRuMG4rTDQKb3NCM01ZUDhtQmtRQlAzeE9JNHl3YjREZXUraURyU2pKSHJzQmlIT05Xc0RadXJFaXVJMmdoY1kxeWIyWHI2UAozVFVOcGNSbC9pVG9zQngxcHJHclk4V09HZVdPeGxZZmcvbWIvNnBuOUYvNWxlQlkrZStjSTlTMkQ0YXBKWUdpCkwxeHZzVWtGQWdNQkFBRUNnZ0VBZFhCK0xkbk8ySElOTGo5bWRsb25IUGlHWWVzZ294RGQwci9hQ1Zkank4dlEKTjIwL3FQWkUxek1yall6Ry9kVGhTMmMwc0QxaTBXSjdwR1lGb0xtdXlWTjltY0FXUTM5SjM0VHZaU2FFSWZWNgo5TE1jUHhNTmFsNjRLMFRVbUFQZytGam9QSFlhUUxLOERLOUtnNXNrSE5pOWNzMlY5ckd6VWlVZWtBL0RBUlBTClI3L2ZjUFBacDRuRWVBZmI3WTk1R1llb1p5V21SU3VKdlNyblBESGtUdW1vVlVWdkxMRHRzaG9reUxiTWVtN3oKMmJzVmpwSW1GTHJqbGtmQXlpNHg0WjJrV3YyMFRrdWtsZU1jaVlMbjk4QWxiRi9DSmRLM3QraTRoMTVlR2ZQegpoTnh3bk9QdlVTaDR2Q0o3c2Q5TmtEUGJvS2JneVVHOXBYamZhRGR2UVFLQmdRRFFLM01nUkhkQ1pKNVFqZWFKClFGdXF4cHdnNzhZTjQyL1NwenlUYmtGcVFoQWtyczJxWGx1MDZBRzhrZzIzQkswaHkzaE9zSGgxcXRVK3NHZVAKOWRERHBsUWV0ODZsY2FlR3hoc0V0L1R6cEdtNGFKSm5oNzVVaTVGZk9QTDhPTm1FZ3MxMVRhUldhNzZxelRyMgphRlpjQ2pWV1g0YnRSTHVwSkgrMjZnY0FhUUtCZ1FEQmxVSUUzTnNVOFBBZEYvL25sQVB5VWs1T3lDdWc3dmVyClUycXlrdXFzYnBkSi9hODViT1JhM05IVmpVM25uRGpHVHBWaE9JeXg5TEFrc2RwZEFjVmxvcG9HODhXYk9lMTAKMUdqbnkySmdDK3JVWUZiRGtpUGx1K09IYnRnOXFYcGJMSHBzUVpsMGhucDBYSFNYVm9CMUliQndnMGEyOFVadApCbFBtWmc2d1BRS0JnRHVIUVV2SDZHYTNDVUsxNFdmOFhIcFFnMU16M2VvWTBPQm5iSDRvZUZKZmcraEppSXlnCm9RN3hqWldVR3BIc3AyblRtcHErQWlSNzdyRVhsdlhtOElVU2FsbkNiRGlKY01Pc29RdFBZNS9NczJMRm5LQTQKaENmL0pWb2FtZm1nZEN0ZGtFMXNINE9MR2lJVHdEbTRpb0dWZGIwMllnbzFyb2htNUpLMUI3MkpBb0dBUW01UQpHNDhXOTVhL0w1eSt5dCsyZ3YvUHM2VnBvMjZlTzRNQ3lJazJVem9ZWE9IYnNkODJkaC8xT2sybGdHZlI2K3VuCnc1YytZUXRSTHlhQmd3MUtpbGhFZDBKTWU3cGpUSVpnQWJ0LzVPbnlDak9OVXN2aDJjS2lrQ1Z2dTZsZlBjNkQKckliT2ZIaHhxV0RZK2Q1TGN1YSt2NzJ0RkxhenJsSlBsRzlOZHhrQ2dZRUF5elIzT3UyMDNRVVV6bUlCRkwzZAp4Wm5XZ0JLSEo3TnNxcGFWb2RjL0d5aGVycjFDZzE2MmJaSjJDV2RsZkI0VEdtUjZZdmxTZEFOOFRwUWhFbUtKCnFBLzVzdHdxNWd0WGVLOVJmMWxXK29xNThRNTBxMmk1NVdUTThoSDZhTjlaMTltZ0FGdE5VdGNqQUx2dFYxdEYKWSs4WFJkSHJaRnBIWll2NWkwVW1VbGc9Ci0tLS0tRU5EIFBSSVZBVEUgS0VZLS0tLS0K"LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2UUlCQURBTkJna3Foa2lHOXcwQkFRRUZBQVNDQktjd2dnU2pBZ0VBQW9JQkFRQ2RhaURFZlZsZHdkbFIKd1V5eFpJWmVEZWNuTkFhbWh4d1NpeWF5N1AvOE9ta3NVQ3FCWmNpQ0RzZUh2dGtzbzlCSzhBZi9WemFhWm9zcApnZjYzUlZuZmNmVUlRQUN3WHhHVFhHMXJKVEVGSzhRSHA3VkpMcnpLUC9QOUxZcFlYTE0yYzZ3MmtjZUNmZitrCkU1bEVlNUJVbUNUV09UM3c4S1lPNzFLSWVuNEZJWTZMMDUrc2JGQmd1Z0ExUE5JdWFubm9UTWtlZTRuMG4rTDQKb3NCM01ZUDhtQmtRQlAzeE9JNHl3YjREZXUraURyU2pKSHJzQmlIT05Xc0RadXJFaXVJMmdoY1kxeWIyWHI2UAozVFVOcGNSbC9pVG9zQngxcHJHclk4V09HZVdPeGxZZmcvbWIvNnBuOUYvNWxlQlkrZStjSTlTMkQ0YXBKWUdpCkwxeHZzVWtGQWdNQkFBRUNnZ0VBZFhCK0xkbk8ySElOTGo5bWRsb25IUGlHWWVzZ294RGQwci9hQ1Zkank4dlEKTjIwL3FQWkUxek1yall6Ry9kVGhTMmMwc0QxaTBXSjdwR1lGb0xtdXlWTjltY0FXUTM5SjM0VHZaU2FFSWZWNgo5TE1jUHhNTmFsNjRLMFRVbUFQZytGam9QSFlhUUxLOERLOUtnNXNrSE5pOWNzMlY5ckd6VWlVZWtBL0RBUlBTClI3L2ZjUFBacDRuRWVBZmI3WTk1R1llb1p5V21SU3VKdlNyblBESGtUdW1vVlVWdkxMRHRzaG9reUxiTWVtN3oKMmJzVmpwSW1GTHJqbGtmQXlpNHg0WjJrV3YyMFRrdWtsZU1jaVlMbjk4QWxiRi9DSmRLM3QraTRoMTVlR2ZQegpoTnh3bk9QdlVTaDR2Q0o3c2Q5TmtEUGJvS2JneVVHOXBYamZhRGR2UVFLQmdRRFFLM01nUkhkQ1pKNVFqZWFKClFGdXF4cHdnNzhZTjQyL1NwenlUYmtGcVFoQWtyczJxWGx1MDZBRzhrZzIzQkswaHkzaE9zSGgxcXRVK3NHZVAKOWRERHBsUWV0ODZsY2FlR3hoc0V0L1R6cEdtNGFKSm5oNzVVaTVGZk9QTDhPTm1FZ3MxMVRhUldhNzZxelRyMgphRlpjQ2pWV1g0YnRSTHVwSkgrMjZnY0FhUUtCZ1FEQmxVSUUzTnNVOFBBZEYvL25sQVB5VWs1T3lDdWc3dmVyClUycXlrdXFzYnBkSi9hODViT1JhM05IVmpVM25uRGpHVHBWaE9JeXg5TEFrc2RwZEFjVmxvcG9HODhXYk9lMTAKMUdqbnkySmdDK3JVWUZiRGtpUGx1K09IYnRnOXFYcGJMSHBzUVpsMGhucDBYSFNYVm9CMUliQndnMGEyOFVadApCbFBtWmc2d1BRS0JnRHVIUVV2SDZHYTNDVUsxNFdmOFhIcFFnMU16M2VvWTBPQm5iSDRvZUZKZmcraEppSXlnCm9RN3hqWldVR3BIc3AyblRtcHErQWlSNzdyRVhsdlhtOElVU2FsbkNiRGlKY01Pc29RdFBZNS9NczJMRm5LQTQKaENmL0pWb2FtZm1nZEN0ZGtFMXNINE9MR2lJVHdEbTRpb0dWZGIwMllnbzFyb2htNUpLMUI3MkpBb0dBUW01UQpHNDhXOTVhL0w1eSt5dCsyZ3YvUHM2VnBvMjZlTzRNQ3lJazJVem9ZWE9IYnNkODJkaC8xT2sybGdHZlI2K3VuCnc1YytZUXRSTHlhQmd3MUtpbGhFZDBKTWU3cGpUSVpnQWJ0LzVPbnlDak9OVXN2aDJjS2lrQ1Z2dTZsZlBjNkQKckliT2ZIaHhxV0RZK2Q1TGN1YSt2NzJ0RkxhenJsSlBsRzlOZHhrQ2dZRUF5elIzT3UyMDNRVVV6bUlCRkwzZAp4Wm5XZ0JLSEo3TnNxcGFWb2RjL0d5aGVycjFDZzE2MmJaSjJDV2RsZkI0VEdtUjZZdmxTZEFOOFRwUWhFbUtKCnFBLzVzdHdxNWd0WGVLOVJmMWxXK29xNThRNTBxMmk1NVdUTThoSDZhTjlaMTltZ0FGdE5VdGNqQUx2dFYxdEYKWSs4WFJkSHJaRnBIWll2NWkwVW1VbGc9Ci0tLS0tRU5EIFBSSVZBVEUgS0VZLS0tLS0K"

$ $ kubectl create kubectl create -f-f nginxsecrets.yaml nginxsecrets.yaml

$ $ kubectl get secretskubectl get secrets

NAME TYPE DATA AGENAME TYPE DATA AGE

default-token-il9rc kubernetes.io/service-account-token 1 1ddefault-token-il9rc kubernetes.io/service-account-token 1 1d

nginxsecret Opaque 2 1mnginxsecret Opaque 2 1m

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/nginx-secure-app.yaml

nginx-secure-app.yamlnginx-secure-app.yaml

Noteworthy points about the nginx-secure-app manifest:

It contains both Deployment and Service specification in the same file.

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: my-nginxmy-nginx

 labelslabels::

 runrun:: my-nginxmy-nginx

specspec::

 typetype:: NodePortNodePort

 portsports::

 -- portport:: 80808080

 targetPorttargetPort:: 8080

 protocolprotocol:: TCPTCP

 namename:: httphttp

 -- portport:: 443443

 protocolprotocol:: TCPTCP

 namename:: httpshttps

 selectorselector::

 runrun:: my-nginxmy-nginx

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: my-nginxmy-nginx

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 runrun:: my-nginxmy-nginx

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 runrun:: my-nginxmy-nginx

 specspec::

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: nginxsecretnginxsecret

 containerscontainers::

 -- namename:: nginxhttpsnginxhttps

 imageimage:: bprashanth/nginxhttps:1.0bprashanth/nginxhttps:1.0

 portsports::

 -- containerPortcontainerPort:: 443443

 -- containerPortcontainerPort:: 8080

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /etc/nginx/ssl/etc/nginx/ssl

 namename:: secret-volumesecret-volume

The nginx server serves http traffic on port 80 and https traffic on 443, and nginx Service

exposes both ports.

Each container has access to the keys through a volume mounted at /etc/nginx/ssl. This

is setup before the nginx server is started.

At this point you can reach the nginx server from any node.

Note how we supplied the -k-k parameter to curl in the last step, this is because we don’t know

anything about the pods running nginx at certificate generation time, so we have to tell curl to

ignore the CName mismatch. By creating a Service we linked the CName used in the certificate

with the actual DNS name used by pods during Service lookup. Let’s test this from a pod (the

same secret is being reused for simplicity, the pod only needs nginx.crt to access the Service):

curlpod.yamlcurlpod.yaml

$ $ kubectl delete deployments,svc my-nginxkubectl delete deployments,svc my-nginx;; kubectl create kubectl create -f-f ./nginx-secure-app.yaml ./nginx-secure-app.yaml

$ $ kubectl get pods kubectl get pods -o-o yaml | yaml | grepgrep -i-i podip podip

 podIP: 10.244.3.5 podIP: 10.244.3.5

node node $ $ curl curl -k-k https://10.244.3.5 https://10.244.3.5

......

<h1>Welcome to nginx!</h1><h1>Welcome to nginx!</h1>

https://github.com/kubernetes/examples/tree/master/staging/https-nginx/default.conf
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/curlpod.yaml

curlpod.yamlcurlpod.yaml

Exposing the Service

For some parts of your applications you may want to expose a Service onto an external IP

address. Kubernetes supports two ways of doing this: NodePorts and LoadBalancers. The

Service created in the last section already used NodePortNodePort , so your nginx https replica is ready

to serve traffic on the internet if your node has a public IP.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: curl-deploymentcurl-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: curlpodcurlpod

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: curlpodcurlpod

 specspec::

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: nginxsecretnginxsecret

 containerscontainers::

 -- namename:: curlpodcurlpod

 commandcommand::

 -- shsh

 -- -c-c

 -- while while truetrue; do sleep 1; done; do sleep 1; done

 imageimage:: radial/busyboxplus:curlradial/busyboxplus:curl

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /etc/nginx/ssl/etc/nginx/ssl

 namename:: secret-volumesecret-volume

$ $ kubectl create kubectl create -f-f ./curlpod.yaml ./curlpod.yaml

$ $ kubectl get pods kubectl get pods -l-l appapp==curlpodcurlpod

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

curl-deployment-1515033274-1410r 1/1 Running 0 1mcurl-deployment-1515033274-1410r 1/1 Running 0 1m

$ $ kubectl kubectl exec exec curl-deployment-1515033274-1410r curl-deployment-1515033274-1410r ---- curl https://my-nginx curl https://my-nginx --cacert--cacert

......

<title>Welcome to nginx!</title><title>Welcome to nginx!</title>

......

Let’s now recreate the Service to use a cloud load balancer, just change the TypeType of

my-nginxmy-nginx Service from NodePortNodePort to LoadBalancerLoadBalancer :

The IP address in the EXTERNAL-IPEXTERNAL-IP column is the one that is available on the public internet.

The CLUSTER-IPCLUSTER-IP is only available inside your cluster/private cloud network.

$ $ kubectl get svc my-nginx kubectl get svc my-nginx -o-o yaml | yaml | grep grep nodePort nodePort -C-C 5 5

 uid: 07191fb3-f61a-11e5-8ae5-42010af00002 uid: 07191fb3-f61a-11e5-8ae5-42010af00002

spec:spec:

 clusterIP: 10.0.162.149 clusterIP: 10.0.162.149

 ports: ports:

 - name: http - name: http

 nodePort: 31704 nodePort: 31704

 port: 8080 port: 8080

 protocol: TCP protocol: TCP

 targetPort: 80 targetPort: 80

 - name: https - name: https

 nodePort: 32453 nodePort: 32453

 port: 443 port: 443

 protocol: TCP protocol: TCP

 targetPort: 443 targetPort: 443

 selector: selector:

 run: my-nginx run: my-nginx

$ $ kubectl get nodes kubectl get nodes -o-o yaml | yaml | grep grep ExternalIP ExternalIP -C-C 1 1

 - address: 104.197.41.11 - address: 104.197.41.11

 typetype: ExternalIP: ExternalIP

 allocatable: allocatable:

 - address: 23.251.152.56 - address: 23.251.152.56

 typetype: ExternalIP: ExternalIP

 allocatable: allocatable:

......

$ $ curl https://<EXTERNAL-IP>:<NODE-PORT> curl https://<EXTERNAL-IP>:<NODE-PORT> -k-k

......

<h1>Welcome to nginx!</h1><h1>Welcome to nginx!</h1>

$ $ kubectl edit svc my-nginxkubectl edit svc my-nginx

$ $ kubectl get svc my-nginxkubectl get svc my-nginx

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

my-nginx 10.0.162.149 162.222.184.144 80/TCP,81/TCP,82/TCP 21smy-nginx 10.0.162.149 162.222.184.144 80/TCP,81/TCP,82/TCP 21s

$ $ curl https://<EXTERNAL-IP> curl https://<EXTERNAL-IP> -k-k

......

<title>Welcome to nginx!</title><title>Welcome to nginx!</title>

Note that on AWS, type LoadBalancerLoadBalancer creates an ELB, which uses a (long) hostname, not an

IP. It’s too long to fit in the standard

kubectl getkubectl get

svcsvc output, in fact, so you’ll need to do

kubectl describe service my-kubectl describe service my-

nginxnginx to see it. You’ll see something like this:

Further reading

Kubernetes also supports Federated Services, which can span multiple clusters and cloud

providers, to provide increased availability, better fault tolerance and greater scalability for your

services. See the Federated Services User Guide for further information.

$ $ kubectl describe service my-nginxkubectl describe service my-nginx

......

LoadBalancer Ingress: a320587ffd19711e5a37606cf4a74574-1142138393.us-east-1.elb.amazonaws.comLoadBalancer Ingress: a320587ffd19711e5a37606cf4a74574-1142138393.us-east-1.elb.amazonaws.com

......

file:///docs/concepts/cluster-administration/federation-service-discovery/

Ingress

An API object that manages external access to the services in a cluster, typically HTTP.

Ingress can provide load balancing, SSL termination and name-based virtual hosting.

Terminology

Throughout this doc you will see a few terms that are sometimes used interchangeably

elsewhere, that might cause confusion. This section attempts to clarify them.

Node: A single virtual or physical machine in a Kubernetes cluster.

Cluster: A group of nodes firewalled from the internet, that are the primary compute

resources managed by Kubernetes.

Edge router: A router that enforces the firewall policy for your cluster. This could be a

gateway managed by a cloud provider or a physical piece of hardware.

Cluster network: A set of links, logical or physical, that facilitate communication within a

cluster according to the Kubernetes networking model. Examples of a Cluster network

include Overlays such as flannel or SDNs such as OVS.

Service: A Kubernetes Service that identifies a set of pods using label selectors. Unless

What is Ingress?

Prerequisites

The Ingress Resource

Ingress controllers

Before you begin

Types of Ingress

Single Service Ingress

Simple fanout

Name based virtual hosting

TLS

Loadbalancing

Updating an Ingress

Failing across availability zones

Future Work

Alternatives

file:///docs/concepts/cluster-administration/networking/
https://github.com/coreos/flannel#flannel
https://www.openvswitch.org/
file:///docs/concepts/services-networking/service/

mentioned otherwise, Services are assumed to have virtual IPs only routable within the

cluster network.

What is Ingress?

Typically, services and pods have IPs only routable by the cluster network. All traffic that ends

up at an edge router is either dropped or forwarded elsewhere. Conceptually, this might look

like:

An Ingress is a collection of rules that allow inbound connections to reach the cluster services.

It can be configured to give services externally-reachable URLs, load balance traffic, terminate

SSL, offer name based virtual hosting, and more. Users request ingress by POSTing the

Ingress resource to the API server. An Ingress controller is responsible for fulfilling the Ingress,

usually with a loadbalancer, though it may also configure your edge router or additional

frontends to help handle the traffic in an HA manner.

Prerequisites

Before you start using the Ingress resource, there are a few things you should understand. The

Ingress is a beta resource, not available in any Kubernetes release prior to 1.1. You need an

Ingress controller to satisfy an Ingress, simply creating the resource will have no effect.

GCE/Google Kubernetes Engine deploys an ingress controller on the master. You can deploy

any number of custom ingress controllers in a pod. You must annotate each ingress with the

appropriate class, as indicated here and here.

 internet internet

 | |

 ------------ ------------

 [Services] [Services]

 internet internet

 | |

 [Ingress] [Ingress]

 --|-----|-- --|-----|--

 [Services] [Services]

https://git.k8s.io/ingress#running-multiple-ingress-controllers
https://git.k8s.io/ingress-gce/BETA_LIMITATIONS.md#disabling-glbc

Make sure you review the beta limitations of this controller. In environments other than

GCE/Google Kubernetes Engine, you need to deploy a controller as a pod.

The Ingress Resource

A minimal Ingress might look like:

POSTing this to the API server will have no effect if you have not configured an Ingress

controller.

Lines 1-6: As with all other Kubernetes config, an Ingress needs apiVersionapiVersion , kindkind , and

metadatametadata fields. For general information about working with config files, see deploying

applications, configuring containers, managing resources and ingress configuration rewrite.

Lines 7-9: Ingress spec has all the information needed to configure a loadbalancer or proxy

server. Most importantly, it contains a list of rules matched against all incoming requests.

Currently the Ingress resource only supports http rules.

Lines 10-11: Each http rule contains the following information: A host (e.g.: foo.bar.com,

defaults to * in this example), a list of paths (e.g.: /testpath) each of which has an associated

backend (test:80). Both the host and path must match the content of an incoming request

before the loadbalancer directs traffic to the backend.

Lines 12-14: A backend is a service:port combination as described in the services doc. Ingress

traffic is typically sent directly to the endpoints matching a backend.

Global Parameters: For the sake of simplicity the example Ingress has no global parameters,

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: IngressIngress

metadatametadata::

 namename:: test-ingresstest-ingress

 annotationsannotations::

 nginx.ingress.kubernetes.io/rewrite-targetnginx.ingress.kubernetes.io/rewrite-target:: //

specspec::

 rulesrules::

 -- httphttp::

 pathspaths::

 -- pathpath:: /testpath/testpath

 backendbackend::

 serviceNameserviceName:: testtest

 servicePortservicePort:: 8080

https://github.com/kubernetes/ingress-gce/blob/master/BETA_LIMITATIONS.md#glbc-beta-limitations
https://git.k8s.io/ingress-nginx/README.md
file:///docs/tasks/run-application/run-stateless-application-deployment/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/concepts/cluster-administration/manage-deployment/
https://github.com/kubernetes/ingress-nginx/blob/master/docs/examples/rewrite/README.md
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
file:///docs/concepts/services-networking/service/

see the API reference for a full definition of the resource. One can specify a global default

backend in the absence of which requests that don’t match a path in the spec are sent to the

default backend of the Ingress controller.

Ingress controllers

In order for the Ingress resource to work, the cluster must have an Ingress controller running.

This is unlike other types of controllers, which typically run as part of the

kube-controller-managerkube-controller-manager binary, and which are typically started automatically as part of

cluster creation. You need to choose the ingress controller implementation that is the best fit

for your cluster, or implement one. We currently support and maintain GCE and nginx

controllers.

Before you begin

The following document describes a set of cross platform features exposed through the

Ingress resource. Ideally, all Ingress controllers should fulfill this specification, but we’re not

there yet. We currently support and maintain GCE and nginx controllers. Make sure you review

controller specific docs so you understand the caveats of each one.

Types of Ingress

Single Service Ingress

There are existing Kubernetes concepts that allow you to expose a single service (see

alternatives), however you can do so through an Ingress as well, by specifying a default

backend with no rules.

ingress.yamlingress.yaml

https://releases.k8s.io/master/staging/src/k8s.io/api/extensions/v1beta1/types.go
https://git.k8s.io/ingress-gce/README.md
https://git.k8s.io/ingress-nginx/README.md
https://git.k8s.io/ingress-gce/README.md
https://git.k8s.io/ingress-nginx/README.md
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/ingress.yaml

ingress.yamlingress.yaml

If you create it using

kubectl create -kubectl create -

ff you should see:

Where 107.178.254.228107.178.254.228 is the IP allocated by the Ingress controller to satisfy this Ingress.

The RULERULE column shows that all traffic sent to the IP is directed to the Kubernetes Service

listed under BACKENDBACKEND .

Simple fanout

As described previously, pods within kubernetes have IPs only visible on the cluster network,

so we need something at the edge accepting ingress traffic and proxying it to the right

endpoints. This component is usually a highly available loadbalancer. An Ingress allows you to

keep the number of loadbalancers down to a minimum, for example, a setup like:

would require an Ingress such as:

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: IngressIngress

metadatametadata::

 namename:: test-ingresstest-ingress

specspec::

 backendbackend::

 serviceNameserviceName:: testsvctestsvc

 servicePortservicePort:: 8080

$ $ kubectl get ingkubectl get ing

NAME RULE BACKEND ADDRESSNAME RULE BACKEND ADDRESS

test-ingress - testsvc:80 107.178.254.228test-ingress - testsvc:80 107.178.254.228

foo.bar.com -> 178.91.123.132 -> / foo s1:80foo.bar.com -> 178.91.123.132 -> / foo s1:80

 / bar s2:80 / bar s2:80

When you create the Ingress with

kubectl create -kubectl create -

ff :

The Ingress controller will provision an implementation specific loadbalancer that satisfies the

Ingress, as long as the services (s1, s2) exist. When it has done so, you will see the address of

the loadbalancer under the last column of the Ingress.

Name based virtual hosting

Name-based virtual hosts use multiple host names for the same IP address.

The following Ingress tells the backing loadbalancer to route requests based on the Host

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: IngressIngress

metadatametadata::

 namename:: testtest

 annotationsannotations::

 ingress.kubernetes.io/rewrite-targetingress.kubernetes.io/rewrite-target:: //

specspec::

 rulesrules::

 -- hosthost:: foo.bar.comfoo.bar.com

 httphttp::

 pathspaths::

 -- pathpath:: /foo/foo

 backendbackend::

 serviceNameserviceName:: s1s1

 servicePortservicePort:: 8080

 -- pathpath:: /bar/bar

 backendbackend::

 serviceNameserviceName:: s2s2

 servicePortservicePort:: 8080

$ $ kubectl get ingkubectl get ing

NAME RULE BACKEND ADDRESSNAME RULE BACKEND ADDRESS

testtest - -

 foo.bar.com foo.bar.com

 /foo s1:80 /foo s1:80

 /bar s2:80 /bar s2:80

foo.bar.com --| |-> foo.bar.com s1:80foo.bar.com --| |-> foo.bar.com s1:80

 | 178.91.123.132 | | 178.91.123.132 |

bar.foo.com --| |-> bar.foo.com s2:80bar.foo.com --| |-> bar.foo.com s2:80

https://tools.ietf.org/html/rfc7230#section-5.4

header.

Default Backends: An Ingress with no rules, like the one shown in the previous section, sends

all traffic to a single default backend. You can use the same technique to tell a loadbalancer

where to find your website’s 404 page, by specifying a set of rules and a default backend.

Traffic is routed to your default backend if none of the Hosts in your Ingress match the Host in

the request header, and/or none of the paths match the URL of the request.

TLS

You can secure an Ingress by specifying a secret that contains a TLS private key and

certificate. Currently the Ingress only supports a single TLS port, 443, and assumes TLS

termination. If the TLS configuration section in an Ingress specifies different hosts, they will be

multiplexed on the same port according to the hostname specified through the SNI TLS

extension (provided the Ingress controller supports SNI). The TLS secret must contain keys

named tls.crttls.crt and tls.keytls.key that contain the certificate and private key to use for TLS, e.g.:

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: IngressIngress

metadatametadata::

 namename:: testtest

specspec::

 rulesrules::

 -- hosthost:: foo.bar.comfoo.bar.com

 httphttp::

 pathspaths::

 -- backendbackend::

 serviceNameserviceName:: s1s1

 servicePortservicePort:: 8080

 -- hosthost:: bar.foo.combar.foo.com

 httphttp::

 pathspaths::

 -- backendbackend::

 serviceNameserviceName:: s2s2

 servicePortservicePort:: 8080

apiVersionapiVersion:: v1v1

datadata::

 tls.crttls.crt:: base64 encoded certbase64 encoded cert

 tls.keytls.key:: base64 encoded keybase64 encoded key

kindkind:: SecretSecret

metadatametadata::

 namename:: testsecrettestsecret

 namespacenamespace:: defaultdefault

typetype:: OpaqueOpaque

file:///docs/user-guide/secrets

Referencing this secret in an Ingress will tell the Ingress controller to secure the channel from

the client to the loadbalancer using TLS:

Note that there is a gap between TLS features supported by various Ingress controllers. Please

refer to documentation on nginx, GCE, or any other platform specific Ingress controller to

understand how TLS works in your environment.

Loadbalancing

An Ingress controller is bootstrapped with some load balancing policy settings that it applies

to all Ingress, such as the load balancing algorithm, backend weight scheme, and others. More

advanced load balancing concepts (e.g.: persistent sessions, dynamic weights) are not yet

exposed through the Ingress. You can still get these features through the service loadbalancer.

With time, we plan to distill load balancing patterns that are applicable cross platform into the

Ingress resource.

It’s also worth noting that even though health checks are not exposed directly through the

Ingress, there exist parallel concepts in Kubernetes such as readiness probes which allow you

to achieve the same end result. Please review the controller specific docs to see how they

handle health checks (nginx, GCE).

Updating an Ingress

Say you’d like to add a new Host to an existing Ingress, you can update it by editing the

resource:

typetype:: OpaqueOpaque

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: IngressIngress

metadatametadata::

 namename:: no-rules-mapno-rules-map

specspec::

 tlstls::

 -- secretNamesecretName:: testsecrettestsecret

 backendbackend::

 serviceNameserviceName:: s1s1

 servicePortservicePort:: 8080

https://git.k8s.io/ingress-nginx/README.md#https
https://git.k8s.io/ingress-gce/README.md#frontend-https
https://github.com/kubernetes/ingress-nginx/blob/master/docs/catalog.md
file:///docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://git.k8s.io/ingress-nginx/README.md
https://git.k8s.io/ingress-gce/README.md#health-checks

This should pop up an editor with the existing yaml, modify it to include the new Host:

Saving the yaml will update the resource in the API server, which should tell the Ingress

controller to reconfigure the loadbalancer.

You can achieve the same by invoking

kubectl replace -kubectl replace -

ff on a modified Ingress yaml file.

Failing across availability zones

$ $ kubectl get ingkubectl get ing

NAME RULE BACKEND ADDRESSNAME RULE BACKEND ADDRESS

testtest - 178.91.123.132 - 178.91.123.132

 foo.bar.com foo.bar.com

 /foo s1:80 /foo s1:80

$ $ kubectl edit ing kubectl edit ing testtest

specspec::

 rulesrules::

 -- hosthost:: foo.bar.comfoo.bar.com

 httphttp::

 pathspaths::

 -- backendbackend::

 serviceNameserviceName:: s1s1

 servicePortservicePort:: 8080

 pathpath:: /foo/foo

 -- hosthost:: bar.baz.combar.baz.com

 httphttp::

 pathspaths::

 -- backendbackend::

 serviceNameserviceName:: s2s2

 servicePortservicePort:: 8080

 pathpath:: /foo/foo

....

$ $ kubectl get ingkubectl get ing

NAME RULE BACKEND ADDRESSNAME RULE BACKEND ADDRESS

testtest - 178.91.123.132 - 178.91.123.132

 foo.bar.com foo.bar.com

 /foo s1:80 /foo s1:80

 bar.baz.com bar.baz.com

 /foo s2:80 /foo s2:80

Techniques for spreading traffic across failure domains differs between cloud providers.

Please check the documentation of the relevant Ingress controller for details. Please refer to

the federation doc for details on deploying Ingress in a federated cluster.

Future Work

Various modes of HTTPS/TLS support (e.g.: SNI, re-encryption)

Requesting an IP or Hostname via claims

Combining L4 and L7 Ingress

More Ingress controllers

Please track the L7 and Ingress proposal for more details on the evolution of the resource, and

the Ingress repository for more details on the evolution of various Ingress controllers.

Alternatives

You can expose a Service in multiple ways that don’t directly involve the Ingress resource:

Use Service.Type=LoadBalancer

Use Service.Type=NodePort

Use a Port Proxy

file:///docs/concepts/cluster-administration/federation/
https://github.com/kubernetes/kubernetes/pull/12827
https://github.com/kubernetes/ingress/tree/master
file:///docs/concepts/services-networking/service/#type-loadbalancer
file:///docs/concepts/services-networking/service/#type-nodeport
https://git.k8s.io/contrib/for-demos/proxy-to-service

Network Policies

A network policy is a specification of how groups of pods are allowed to communicate with

each other and other network endpoints.

NetworkPolicyNetworkPolicy resources use labels to select pods and define rules which specify what

traffic is allowed to the selected pods.

Prerequisites

Network policies are implemented by the network plugin, so you must be using a networking

solution which supports NetworkPolicyNetworkPolicy - simply creating the resource without a controller to

implement it will have no effect.

Isolated and Non-isolated Pods

By default, pods are non-isolated; they accept traffic from any source.

Pods become isolated by having a NetworkPolicy that selects them. Once there is any

NetworkPolicy in a namespace selecting a particular pod, that pod will reject any connections

that are not allowed by any NetworkPolicy. (Other pods in the namespace that are not selected

by any NetworkPolicy will continue to accept all traffic.)

Prerequisites

Isolated and Non-isolated Pods

The NetworkPolicyNetworkPolicy Resource

Default policies

Default deny all ingress traffic

Default allow all ingress traffic

Default deny all egress traffic

Default allow all egress traffic

Default deny all ingress and all egress traffic

What’s next?

The NetworkPolicy Resource

See the NetworkPolicy for a full definition of the resource.

An example NetworkPolicyNetworkPolicy might look like this:

POSTing this to the API server will have no effect unless your chosen networking solution

supports network policy.

Mandatory Fields: As with all other Kubernetes config, a NetworkPolicyNetworkPolicy needs apiVersionapiVersion ,

kindkind , and metadatametadata fields. For general information about working with config files, see

Configure Containers Using a ConfigMap, and Object Management.

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

kindkind:: NetworkPolicyNetworkPolicy

metadatametadata::

 namename:: test-network-policytest-network-policy

 namespacenamespace:: defaultdefault

specspec::

 podSelectorpodSelector::

 matchLabelsmatchLabels::

 rolerole:: dbdb

 policyTypespolicyTypes::

 -- IngressIngress

 -- EgressEgress

 ingressingress::

 -- fromfrom::

 -- ipBlockipBlock::

 cidrcidr:: 172.17.0.0/16172.17.0.0/16

 exceptexcept::

 -- 172.17.1.0/24172.17.1.0/24

 -- namespaceSelectornamespaceSelector::

 matchLabelsmatchLabels::

 projectproject:: myprojectmyproject

 -- podSelectorpodSelector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 63796379

 egressegress::

 -- toto::

 -- ipBlockipBlock::

 cidrcidr:: 10.0.0.0/2410.0.0.0/24

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 59785978

file:///docs/reference/generated/kubernetes-api/v1.10/#networkpolicy-v1-networking
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/concepts/overview/object-management-kubectl/overview/

spec: NetworkPolicyNetworkPolicy spec has all the information needed to define a particular network

policy in the given namespace.

podSelector: Each NetworkPolicyNetworkPolicy includes a podSelectorpodSelector which selects the grouping of

pods to which the policy applies. The example policy selects pods with the label “role=db”. An

empty podSelectorpodSelector selects all pods in the namespace.

policyTypes: Each NetworkPolicyNetworkPolicy includes a policyTypespolicyTypes list which may include either

IngressIngress , EgressEgress , or both. The policyTypespolicyTypes field indicates whether or not the given policy

applies to ingress traffic to selected pod, egress traffic from selected pods, or both. If no

policyTypespolicyTypes are specified on a NetworkPolicy then by default IngressIngress will always be set

and EgressEgress will be set if the NetworkPolicy has any egress rules.

ingress: Each NetworkPolicyNetworkPolicy may include a list of whitelist ingressingress rules. Each rule allows

traffic which matches both the fromfrom and portsports sections. The example policy contains a

single rule, which matches traffic on a single port, from one of three sources, the first specified

via an ipBlockipBlock , the second via a namespaceSelectornamespaceSelector and the third via a podSelectorpodSelector .

egress: Each NetworkPolicyNetworkPolicy may include a list of whitelist egressegress rules. Each rule allows

traffic which matches both the toto and portsports sections. The example policy contains a single

rule, which matches traffic on a single port to any destination in 10.0.0.0/2410.0.0.0/24 .

So, the example NetworkPolicy:

1. isolates “role=db” pods in the “default” namespace for both ingress and egress traffic (if

they weren’t already isolated)

2. allows connections to TCP port 6379 of “role=db” pods in the “default” namespace from

any pod in the “default” namespace with the label “role=frontend”

3. allows connections to TCP port 6379 of “role=db” pods in the “default” namespace from

any pod in a namespace with the label “project=myproject”

4. allows connections to TCP port 6379 of “role=db” pods in the “default” namespace from IP

addresses that are in CIDR 172.17.0.0/16 and not in 172.17.1.0/24

5. allows connections from any pod in the “default” namespace with the label “role=db” to

CIDR 10.0.0.0/24 on TCP port 5978

See the Declare Network Policy walkthrough for further examples.

https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status
file:///docs/tasks/administer-cluster/declare-network-policy/

Default policies

By default, if no policies exist in a namespace, then all ingress and egress traffic is allowed to

and from pods in that namespace. The following examples let you change the default behavior

in that namespace.

Default deny all ingress traffic

You can create a “default” isolation policy for a namespace by creating a NetworkPolicy that

selects all pods but does not allow any ingress traffic to those pods.

This ensures that even pods that aren’t selected by any other NetworkPolicy will still be

isolated. This policy does not change the default egress isolation behavior.

Default allow all ingress traffic

If you want to allow all traffic to all pods in a namespace (even if policies are added that cause

some pods to be treated as “isolated”), you can create a policy that explicitly allows all traffic in

that namespace.

Default deny all egress traffic

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

kindkind:: NetworkPolicyNetworkPolicy

metadatametadata::

 namename:: default-denydefault-deny

specspec::

 podSelectorpodSelector:: {}{}

 policyTypespolicyTypes::

 -- IngressIngress

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

kindkind:: NetworkPolicyNetworkPolicy

metadatametadata::

 namename:: allow-allallow-all

specspec::

 podSelectorpodSelector:: {}{}

 ingressingress::

 -- {}{}

You can create a “default” egress isolation policy for a namespace by creating a NetworkPolicy

that selects all pods but does not allow any egress traffic from those pods.

This ensures that even pods that aren’t selected by any other NetworkPolicy will not be

allowed egress traffic. This policy does not change the default ingress isolation behavior.

Default allow all egress traffic

If you want to allow all traffic from all pods in a namespace (even if policies are added that

cause some pods to be treated as “isolated”), you can create a policy that explicitly allows all

egress traffic in that namespace.

Default deny all ingress and all egress traffic

You can create a “default” policy for a namespace which prevents all ingress AND egress

traffic by creating the following NetworkPolicy in that namespace.

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

kindkind:: NetworkPolicyNetworkPolicy

metadatametadata::

 namename:: default-denydefault-deny

specspec::

 podSelectorpodSelector:: {}{}

 policyTypespolicyTypes::

 -- EgressEgress

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

kindkind:: NetworkPolicyNetworkPolicy

metadatametadata::

 namename:: allow-allallow-all

specspec::

 podSelectorpodSelector:: {}{}

 egressegress::

 -- {}{}

 policyTypespolicyTypes::

 -- EgressEgress

This ensures that even pods that aren’t selected by any other NetworkPolicy will not be

allowed ingress or egress traffic.

What’s next?

See the Declare Network Policy walkthrough for further examples.

See more Recipes for common scenarios enabled by the NetworkPolicy resource.

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

kindkind:: NetworkPolicyNetworkPolicy

metadatametadata::

 namename:: default-denydefault-deny

specspec::

 podSelectorpodSelector:: {}{}

 policyTypespolicyTypes::

 -- IngressIngress

 -- EgressEgress

file:///docs/tasks/administer-cluster/declare-network-policy/
https://github.com/ahmetb/kubernetes-network-policy-recipes

Adding entries to Pod /etc/hosts with
HostAliases

Adding entries to a Pod’s /etc/hosts file provides Pod-level override of hostname resolution

when DNS and other options are not applicable. In 1.7, users can add these custom entries

with the HostAliases field in PodSpec.

Modification not using HostAliases is not suggested because the file is managed by Kubelet

and can be overwritten on during Pod creation/restart.

Default Hosts File Content

Lets start an Nginx Pod which is assigned an Pod IP:

The hosts file content would look like this:

Default Hosts File Content

Adding Additional Entries with HostAliases

Limitations

Why Does Kubelet Manage the Hosts File?

$ $ kubectl run nginx kubectl run nginx --image--image nginx nginx --generator--generator==run-pod/v1run-pod/v1

pod pod "nginx""nginx" created created

$ $ kubectl get pods kubectl get pods --output--output==widewide

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

nginx 1/1 Running 0 13s 10.200.0.4 worker0nginx 1/1 Running 0 13s 10.200.0.4 worker0

$ $ kubectl kubectl exec exec nginx nginx ---- catcat /etc/hosts /etc/hosts

Kubernetes-managed hosts file.# Kubernetes-managed hosts file.

127.0.0.1 localhost127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnetfe00::0 ip6-localnet

fe00::0 ip6-mcastprefixfe00::0 ip6-mcastprefix

fe00::1 ip6-allnodesfe00::1 ip6-allnodes

fe00::2 ip6-allroutersfe00::2 ip6-allrouters

10.200.0.4 nginx10.200.0.4 nginx

by default, the hosts file only includes ipv4 and ipv6 boilerplates like localhostlocalhost and its own

hostname.

Adding Additional Entries with HostAliases

In addition to the default boilerplate, we can add additional entries to the hosts file to resolve

foo.localfoo.local , bar.localbar.local to 127.0.0.1127.0.0.1 and foo.remotefoo.remote , bar.remotebar.remote to 10.1.2.310.1.2.3 , we can

by adding HostAliases to the Pod under .spec.hostAliases.spec.hostAliases :

hostaliases-pod.yamlhostaliases-pod.yaml

This Pod can be started with the following commands:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: hostaliases-podhostaliases-pod

specspec::

 restartPolicyrestartPolicy:: NeverNever

 hostAliaseshostAliases::

 -- ipip:: ""127.0.0.1"127.0.0.1"

 hostnameshostnames::

 -- ""foo.local"foo.local"

 -- ""bar.local"bar.local"

 -- ipip:: ""10.1.2.3"10.1.2.3"

 hostnameshostnames::

 -- ""foo.remote"foo.remote"

 -- ""bar.remote"bar.remote"

 containerscontainers::

 -- namename:: cat-hostscat-hosts

 imageimage:: busyboxbusybox

 commandcommand::

 -- catcat

 argsargs::

 -- ""/etc/hosts"/etc/hosts"

$ $ kubectl apply kubectl apply -f-f hostaliases-pod.yaml hostaliases-pod.yaml

pod pod "hostaliases-pod""hostaliases-pod" created created

$ $ kubectl get pod kubectl get pod -o-o==widewide

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

hostaliases-pod 0/1 Completed 0 6s 10.244.135.10 node3hostaliases-pod 0/1 Completed 0 6s 10.244.135.10 node3

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/services-networking/hostaliases-pod.yaml

The hosts file content would look like this:

With the additional entries specified at the bottom.

Limitations

HostAlias is only supported in 1.7+.

HostAlias support in 1.7 is limited to non-hostNetwork Pods because kubelet only manages

the hosts file for non-hostNetwork Pods.

In 1.8, HostAlias is supported for all Pods regardless of network configuration.

Why Does Kubelet Manage the Hosts File?

Kubelet manages the hosts file for each container of the Pod to prevent Docker from

modifying the file after the containers have already been started.

Because of the managed-nature of the file, any user-written content will be overwritten

whenever the hosts file is remounted by Kubelet in the event of a container restart or a Pod

reschedule. Thus, it is not suggested to modify the contents of the file.

$ $ kubectl logs hostaliases-podkubectl logs hostaliases-pod

Kubernetes-managed hosts file.# Kubernetes-managed hosts file.

127.0.0.1 localhost127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnetfe00::0 ip6-localnet

fe00::0 ip6-mcastprefixfe00::0 ip6-mcastprefix

fe00::1 ip6-allnodesfe00::1 ip6-allnodes

fe00::2 ip6-allroutersfe00::2 ip6-allrouters

10.244.135.10 hostaliases-pod10.244.135.10 hostaliases-pod

127.0.0.1 foo.local127.0.0.1 foo.local

127.0.0.1 bar.local127.0.0.1 bar.local

10.1.2.3 foo.remote10.1.2.3 foo.remote

10.1.2.3 bar.remote10.1.2.3 bar.remote

https://github.com/kubernetes/kubernetes/issues/14633
https://github.com/moby/moby/issues/17190

Volumes

On-disk files in a container are ephemeral, which presents some problems for non-trivial

applications when running in containers. First, when a container crashes, kubelet will restart it,

but the files will be lost - the container starts with a clean state. Second, when running

containers together in a PodPod it is often necessary to share files between those containers. The

Kubernetes VolumeVolume abstraction solves both of these problems.

Familiarity with pods is suggested.

Background

Types of Volumes

awsElasticBlockStore

Creating an EBS volume

AWS EBS Example configuration

azureDisk

azureFile

cephfs

configMap

downwardAPI

emptyDir

Example pod

fc (fibre channel)

flocker

gcePersistentDisk

Creating a PD

Example pod

gitRepo

glusterfs

hostPath

Example pod

iscsi

local

nfs

persistentVolumeClaim

projected

Example pod with a secret, a downward API, and a configmap.

Example pod with multiple secrets with a non-default permission mode set.

file:///docs/user-guide/pods

Background

Docker also has a concept of volumes, though it is somewhat looser and less managed. In

Docker, a volume is simply a directory on disk or in another container. Lifetimes are not

managed and until very recently there were only local-disk-backed volumes. Docker now

provides volume drivers, but the functionality is very limited for now (e.g. as of Docker 1.7 only

one volume driver is allowed per container and there is no way to pass parameters to

volumes).

A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the pod that

encloses it. Consequently, a volume outlives any containers that run within the Pod, and data is

preserved across Container restarts. Of course, when a Pod ceases to exist, the volume will

cease to exist, too. Perhaps more importantly than this, Kubernetes supports many types of

volumes, and a Pod can use any number of them simultaneously.

At its core, a volume is just a directory, possibly with some data in it, which is accessible to the

containers in a pod. How that directory comes to be, the medium that backs it, and the

contents of it are determined by the particular volume type used.

To use a volume, a pod specifies what volumes to provide for the pod (the spec.volumesspec.volumes

field) and where to mount those into containers (the spec.containers.volumeMountsspec.containers.volumeMounts field).

portworxVolume

quobyte

rbd

scaleIO

secret

storageOS

vsphereVolume

Creating a VMDK volume

vSphere VMDK Example configuration

Using subPath

Resources

Out-of-Tree Volume Plugins

CSI

FlexVolume

Mount propagation

Configuration

What’s next

https://docs.docker.com/engine/admin/volumes/

A process in a container sees a filesystem view composed from their Docker image and

volumes. The Docker image is at the root of the filesystem hierarchy, and any volumes are

mounted at the specified paths within the image. Volumes can not mount onto other volumes

or have hard links to other volumes. Each container in the Pod must independently specify

where to mount each volume.

Types of Volumes

Kubernetes supports several types of Volumes:

awsElasticBlockStoreawsElasticBlockStore

azureDiskazureDisk

azureFileazureFile

cephfscephfs

configMapconfigMap

csicsi

downwardAPIdownwardAPI

emptyDiremptyDir

fcfc (fibre channel)

flockerflocker

gcePersistentDiskgcePersistentDisk

gitRepogitRepo

glusterfsglusterfs

hostPathhostPath

iscsiiscsi

locallocal

https://docs.docker.com/userguide/dockerimages/

nfsnfs

persistentVolumeClaimpersistentVolumeClaim

projectedprojected

portworxVolumeportworxVolume

quobytequobyte

rbdrbd

scaleIOscaleIO

secretsecret

storageosstorageos

vsphereVolumevsphereVolume

We welcome additional contributions.

awsElasticBlockStore

An awsElasticBlockStoreawsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume

into your pod. Unlike emptyDiremptyDir , which is erased when a Pod is removed, the contents of an

EBS volume are preserved and the volume is merely unmounted. This means that an EBS

volume can be pre-populated with data, and that data can be “handed off” between pods.

Important: You must create an EBS volume using

aws ec2 create-aws ec2 create-

volumevolume or the AWS

API before you can use it.

There are some restrictions when using an awsElasticBlockStoreawsElasticBlockStore volume:

the nodes on which pods are running must be AWS EC2 instances

those instances need to be in the same region and availability-zone as the EBS volume

EBS only supports a single EC2 instance mounting a volume

http://aws.amazon.com/ebs/

Creating an EBS volume

Before you can use an EBS volume with a pod, you need to create it.

Make sure the zone matches the zone you brought up your cluster in. (And also check that the

size and EBS volume type are suitable for your use!)

AWS EBS Example configuration

azureDisk

A azureDiskazureDisk is used to mount a Microsoft Azure Data Disk into a Pod.

More details can be found here.

azureFile

A azureFileazureFile is used to mount a Microsoft Azure File Volume (SMB 2.1 and 3.0) into a Pod.

More details can be found here.

cephfs

aws ec2 create-volume aws ec2 create-volume --availability-zone--availability-zone==eu-west-1a eu-west-1a --size--size==10 10 --volume-type--volume-type==gp2gp2

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-ebstest-ebs

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: test-containertest-container

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /test-ebs/test-ebs

 namename:: test-volumetest-volume

 volumesvolumes::

 -- namename:: test-volumetest-volume

 # This AWS EBS volume must already exist.# This AWS EBS volume must already exist.

 awsElasticBlockStoreawsElasticBlockStore::

 volumeIDvolumeID:: <volume-id><volume-id>

 fsTypefsType:: ext4ext4

https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-about-disks-vhds/
https://github.com/kubernetes/examples/tree/master/staging/volumes/azure_disk/README.md
https://github.com/kubernetes/examples/tree/master/staging/volumes/azure_file/README.md

A cephfscephfs volume allows an existing CephFS volume to be mounted into your pod. Unlike

emptyDiremptyDir , which is erased when a Pod is removed, the contents of a cephfscephfs volume are

preserved and the volume is merely unmounted. This means that a CephFS volume can be pre-

populated with data, and that data can be “handed off” between pods. CephFS can be mounted

by multiple writers simultaneously.

Important: You must have your own Ceph server running with the share exported before

you can use it.

See the CephFS example for more details.

configMap

The configMapconfigMap resource provides a way to inject configuration data into Pods. The data

stored in a ConfigMapConfigMap object can be referenced in a volume of type configMapconfigMap and then

consumed by containerized applications running in a Pod.

When referencing a configMapconfigMap object, you can simply provide its name in the volume to

reference it. You can also customize the path to use for a specific entry in the ConfigMap. For

example, to mount the log-configlog-config ConfigMap onto a Pod called configmap-podconfigmap-pod , you might

use the YAML below:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: configmap-podconfigmap-pod

specspec::

 containerscontainers::

 -- namename:: testtest

 imageimage:: busyboxbusybox

 volumeMountsvolumeMounts::

 -- namename:: config-volconfig-vol

 mountPathmountPath:: /etc/config/etc/config

 volumesvolumes::

 -- namename:: config-volconfig-vol

 configMapconfigMap::

 namename:: log-configlog-config

 itemsitems::

 -- keykey:: log_levellog_level

 pathpath:: log_levellog_level

https://github.com/kubernetes/examples/tree/master/staging/volumes/cephfs/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

The log-configlog-config ConfigMap is mounted as a volume, and all contents stored in its

log_levellog_level entry are mounted into the Pod at path “ /etc/config/log_level/etc/config/log_level ”. Note that this

path is derived from the volume’s mountPathmountPath and the pathpath keyed with log_levellog_level .

Note: A container using a ConfigMap as a subPath volume mount will not receive

ConfigMap updates.

downwardAPI

A downwardAPIdownwardAPI volume is used to make downward API data available to applications. It

mounts a directory and writes the requested data in plain text files.

Note: A container using Downward API as a subPath volume mount will not receive

Downward API updates.

See the downwardAPIdownwardAPI volume example for more details.

emptyDir

An emptyDiremptyDir volume is first created when a Pod is assigned to a Node, and exists as long as

that Pod is running on that node. As the name says, it is initially empty. Containers in the pod

can all read and write the same files in the emptyDiremptyDir volume, though that volume can be

mounted at the same or different paths in each container. When a Pod is removed from a node

for any reason, the data in the emptyDiremptyDir is deleted forever.

Note: a container crashing does NOT remove a pod from a node, so the data in an

emptyDiremptyDir volume is safe across container crashes.

Some uses for an emptyDiremptyDir are:

scratch space, such as for a disk-based merge sort

checkpointing a long computation for recovery from crashes

holding files that a content-manager container fetches while a webserver container serves

file:///docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/

the data

By default, emptyDiremptyDir volumes are stored on whatever medium is backing the node - that

might be disk or SSD or network storage, depending on your environment. However, you can

set the emptyDir.mediumemptyDir.medium field to "Memory""Memory" to tell Kubernetes to mount a tmpfs (RAM-

backed filesystem) for you instead. While tmpfs is very fast, be aware that unlike disks, tmpfs

is cleared on node reboot and any files you write will count against your container’s memory

limit.

Example pod

fc (fibre channel)

An fcfc volume allows an existing fibre channel volume to be mounted in a pod. You can

specify single or multiple target World Wide Names using the parameter targetWWNstargetWWNs in your

volume configuration. If multiple WWNs are specified, targetWWNs expect that those WWNs

are from multi-path connections.

Important: You must configure FC SAN Zoning to allocate and mask those LUNs

(volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.

See the FC example for more details.

flocker

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-pdtest-pd

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: test-containertest-container

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

https://github.com/kubernetes/examples/tree/master/staging/volumes/fibre_channel

Flocker is an open-source clustered container data volume manager. It provides management

and orchestration of data volumes backed by a variety of storage backends.

A flockerflocker volume allows a Flocker dataset to be mounted into a pod. If the dataset does not

already exist in Flocker, it needs to be first created with the Flocker CLI or by using the Flocker

API. If the dataset already exists it will be reattached by Flocker to the node that the pod is

scheduled. This means data can be “handed off” between pods as required.

Important: You must have your own Flocker installation running before you can use it.

See the Flocker example for more details.

gcePersistentDisk

A gcePersistentDiskgcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into

your pod. Unlike emptyDiremptyDir , which is erased when a Pod is removed, the contents of a PD are

preserved and the volume is merely unmounted. This means that a PD can be pre-populated

with data, and that data can be “handed off” between pods.

Important: You must create a PD using gcloudgcloud or the GCE API or UI before you can use

it.

There are some restrictions when using a gcePersistentDiskgcePersistentDisk :

the nodes on which pods are running must be GCE VMs

those VMs need to be in the same GCE project and zone as the PD

A feature of PD is that they can be mounted as read-only by multiple consumers

simultaneously. This means that you can pre-populate a PD with your dataset and then serve it

in parallel from as many pods as you need. Unfortunately, PDs can only be mounted by a single

consumer in read-write mode - no simultaneous writers allowed.

Using a PD on a pod controlled by a ReplicationController will fail unless the PD is read-only or

the replica count is 0 or 1.

Creating a PD

https://github.com/ClusterHQ/flocker
https://github.com/kubernetes/examples/tree/master/staging/volumes/flocker
http://cloud.google.com/compute/docs/disks

Before you can use a GCE PD with a pod, you need to create it.

Example pod

gitRepo

A gitRepogitRepo volume is an example of what can be done as a volume plugin. It mounts an empty

directory and clones a git repository into it for your pod to use. In the future, such volumes may

be moved to an even more decoupled model, rather than extending the Kubernetes API for

every such use case.

Here is an example for gitRepo volume:

gcloud compute disks create gcloud compute disks create --size--size==500GB 500GB --zone--zone==us-central1-a my-data-diskus-central1-a my-data-disk

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-pdtest-pd

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: test-containertest-container

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /test-pd/test-pd

 namename:: test-volumetest-volume

 volumesvolumes::

 -- namename:: test-volumetest-volume

 # This GCE PD must already exist.# This GCE PD must already exist.

 gcePersistentDiskgcePersistentDisk::

 pdNamepdName:: my-data-diskmy-data-disk

 fsTypefsType:: ext4ext4

glusterfs

A glusterfsglusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be

mounted into your pod. Unlike emptyDiremptyDir , which is erased when a Pod is removed, the

contents of a glusterfsglusterfs volume are preserved and the volume is merely unmounted. This

means that a glusterfs volume can be pre-populated with data, and that data can be “handed

off” between pods. GlusterFS can be mounted by multiple writers simultaneously.

Important: You must have your own GlusterFS installation running before you can use it.

See the GlusterFS example for more details.

hostPath

A hostPathhostPath volume mounts a file or directory from the host node’s filesystem into your pod.

This is not something that most Pods will need, but it offers a powerful escape hatch for some

applications.

For example, some uses for a hostPathhostPath are:

running a container that needs access to Docker internals; use a hostPathhostPath of

/var/lib/docker/var/lib/docker

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: serverserver

specspec::

 containerscontainers::

 -- imageimage:: nginxnginx

 namename:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /mypath/mypath

 namename:: git-volumegit-volume

 volumesvolumes::

 -- namename:: git-volumegit-volume

 gitRepogitRepo::

 repositoryrepository:: ""git@somewhere:me/my-git-repository.git"git@somewhere:me/my-git-repository.git"

 revisionrevision:: ""22f1d8406d464b0c0874075539c1f2e96c253775"22f1d8406d464b0c0874075539c1f2e96c253775"

http://www.gluster.org
https://github.com/kubernetes/examples/tree/master/staging/volumes/glusterfs

running cAdvisor in a container; use a hostPathhostPath of /sys/sys

allowing a pod to specify whether a given hostPathhostPath should exist prior to the pod running,

whether it should be created, and what it should exist as

In addition to the required pathpath property, user can optionally specify a typetype for a hostPathhostPath

volume.

The supported values for field typetype are:

Value Behavior

Empty string (default) is for backward compatibility, which means that no checks will be
performed before mounting the hostPath volume.

DirectoryOrCreateDirectoryOrCreate
If nothing exists at the given path, an empty directory will be created there as needed with
permission set to 0755, having the same group and ownership with Kubelet.

DirectoryDirectory A directory must exist at the given path

FileOrCreateFileOrCreate
If nothing exists at the given path, an empty file will be created there as needed with
permission set to 0644, having the same group and ownership with Kubelet.

FileFile A file must exist at the given path

SocketSocket A UNIX socket must exist at the given path

CharDeviceCharDevice A character device must exist at the given path

BlockDeviceBlockDevice A block device must exist at the given path

Watch out when using this type of volume, because:

pods with identical configuration (such as created from a podTemplate) may behave

differently on different nodes due to different files on the nodes

when Kubernetes adds resource-aware scheduling, as is planned, it will not be able to

account for resources used by a hostPathhostPath

the files or directories created on the underlying hosts are only writable by root. You either

need to run your process as root in a privileged container or modify the file permissions on

the host to be able to write to a hostPathhostPath volume

Example pod

file:///docs/user-guide/security-context

iscsi

An iscsiiscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your pod.

Unlike emptyDiremptyDir , which is erased when a Pod is removed, the contents of an iscsiiscsi volume

are preserved and the volume is merely unmounted. This means that an iscsi volume can be

pre-populated with data, and that data can be “handed off” between pods.

Important: You must have your own iSCSI server running with the volume created

before you can use it.

A feature of iSCSI is that it can be mounted as read-only by multiple consumers

simultaneously. This means that you can pre-populate a volume with your dataset and then

serve it in parallel from as many pods as you need. Unfortunately, iSCSI volumes can only be

mounted by a single consumer in read-write mode - no simultaneous writers allowed.

See the iSCSI example for more details.

local

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-pdtest-pd

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: test-containertest-container

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /test-pd/test-pd

 namename:: test-volumetest-volume

 volumesvolumes::

 -- namename:: test-volumetest-volume

 hostPathhostPath::

 # directory location on host# directory location on host

 pathpath:: /data/data

 # this field is optional# this field is optional

 typetype:: DirectoryDirectory

https://github.com/kubernetes/examples/tree/master/staging/volumes/iscsi

Note: The alpha PersistentVolume NodeAffinity annotation has been deprecated and

will be removed in a future release. Existing PersistentVolumes using this annotation

must be updated by the user to use the new PersistentVolume NodeAffinityNodeAffinity field.

A locallocal volume represents a mounted local storage device such as a disk, partition or

directory.

Local volumes can only be used as a statically created PersistentVolume. Dynamic

provisioning is not supported yet.

Compared to hostPathhostPath volumes, local volumes can be used in a durable and portable manner

without manually scheduling pods to nodes, as the system is aware of the volume’s node

constraints by looking at the node affinity on the PersistentVolume.

However, local volumes are still subject to the availability of the underlying node and are not

suitable for all applications. If a node becomes unhealthy, then the local volume will also

become inaccessible, and a pod using it will not be able to run. Applications using local

volumes must be able to tolerate this reduced availability, as well as potential data loss,

depending on the durability characteristics of the underlying disk.

The following is an example PersistentVolume spec using a locallocal volume and

nodeAffinitynodeAffinity :

PersistentVolume nodeAffinitynodeAffinity is required when using local volumes. It enables the

Kubernetes scheduler to correctly schedule pods using local volumes to the correct node.

PersistentVolume volumeModevolumeMode can now be set to “Block” (instead of the default value

“Filesystem”) to expose the local volume as a raw block device. The volumeModevolumeMode field requires

BlockVolumeBlockVolume Alpha feature gate to be enabled.

When using local volumes, it is recommended to create a StorageClass with

volumeBindingModevolumeBindingMode set to WaitForFirstConsumerWaitForFirstConsumer . See the example. Delaying volume

binding ensures that the PersistentVolumeClaim binding decision will also be evaluated with

any other node constraints the pod may have, such as node resource requirements, node

selectors, pod affinity, and pod anti-affinity.

An external static provisioner can be run separately for improved management of the local

volume lifecycle. Note that this provisioner does not support dynamic provisioning yet. For an

example on how to run an external local provisioner, see the local volume provisioner user

guide.

Note: The local PersistentVolume requires manual cleanup and deletion by the user if

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumePersistentVolume

metadatametadata::

 namename:: example-pvexample-pv

specspec::

 capacitycapacity::

 storagestorage:: 100Gi100Gi

 # volumeMode field requires BlockVolume Alpha feature gate to be enabled.# volumeMode field requires BlockVolume Alpha feature gate to be enabled.

 volumeModevolumeMode:: FilesystemFilesystem

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 persistentVolumeReclaimPolicypersistentVolumeReclaimPolicy:: DeleteDelete

 storageClassNamestorageClassName:: local-storagelocal-storage

 locallocal::

 pathpath:: /mnt/disks/ssd1/mnt/disks/ssd1

 nodeAffinitynodeAffinity::

 requiredrequired::

 nodeSelectorTermsnodeSelectorTerms::

 -- matchExpressionsmatchExpressions::

 -- keykey:: kubernetes.io/hostnamekubernetes.io/hostname

 operatoroperator:: InIn

 valuesvalues::

 -- example-nodeexample-node

file:///docs/concepts/storage/storage-classes/#local
https://github.com/kubernetes-incubator/external-storage/tree/master/local-volume

the external static provisioner is not used to manage the volume lifecycle.

nfs

An nfsnfs volume allows an existing NFS (Network File System) share to be mounted into your

pod. Unlike emptyDiremptyDir , which is erased when a Pod is removed, the contents of an nfsnfs

volume are preserved and the volume is merely unmounted. This means that an NFS volume

can be pre-populated with data, and that data can be “handed off” between pods. NFS can be

mounted by multiple writers simultaneously.

Important: You must have your own NFS server running with the share exported before

you can use it.

See the NFS example for more details.

persistentVolumeClaim

A persistentVolumeClaimpersistentVolumeClaim volume is used to mount a PersistentVolume into a pod.

PersistentVolumes are a way for users to “claim” durable storage (such as a GCE

PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud

environment.

See the PersistentVolumes example for more details.

projected

A projectedprojected volume maps several existing volume sources into the same directory.

Currently, the following types of volume sources can be projected:

secretsecret

downwardAPIdownwardAPI

configMapconfigMap

All sources are required to be in the same namespace as the pod. For more details, see the all-

in-one volume design document.

https://github.com/kubernetes/examples/tree/master/staging/volumes/nfs
file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/all-in-one-volume.md

Example pod with a secret, a downward API, and a configmap.

Example pod with multiple secrets with a non-default permission mode
set.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: volume-testvolume-test

specspec::

 containerscontainers::

 -- namename:: container-testcontainer-test

 imageimage:: busyboxbusybox

 volumeMountsvolumeMounts::

 -- namename:: all-in-oneall-in-one

 mountPathmountPath:: ""/projected-volume"/projected-volume"

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: all-in-oneall-in-one

 projectedprojected::

 sourcessources::

 -- secretsecret::

 namename:: mysecretmysecret

 itemsitems::

 -- keykey:: usernameusername

 pathpath:: my-group/my-usernamemy-group/my-username

 -- downwardAPIdownwardAPI::

 itemsitems::

 -- pathpath:: ""labels"labels"

 fieldReffieldRef::

 fieldPathfieldPath:: metadata.labelsmetadata.labels

 -- pathpath:: ""cpu_limit"cpu_limit"

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: container-testcontainer-test

 resourceresource:: limits.cpulimits.cpu

 -- configMapconfigMap::

 namename:: myconfigmapmyconfigmap

 itemsitems::

 -- keykey:: configconfig

 pathpath:: my-group/my-configmy-group/my-config

Each projected volume source is listed in the spec under sourcessources . The parameters are nearly

the same with two exceptions:

For secrets, the secretNamesecretName field has been changed to namename to be consistent with

ConfigMap naming.

The defaultModedefaultMode can only be specified at the projected level and not for each volume

source. However, as illustrated above, you can explicitly set the modemode for each individual

projection.

Note: A container using a projected volume source as a subPath volume mount will not

receive updates for those volume sources.

portworxVolume

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: volume-testvolume-test

specspec::

 containerscontainers::

 -- namename:: container-testcontainer-test

 imageimage:: busyboxbusybox

 volumeMountsvolumeMounts::

 -- namename:: all-in-oneall-in-one

 mountPathmountPath:: ""/projected-volume"/projected-volume"

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: all-in-oneall-in-one

 projectedprojected::

 sourcessources::

 -- secretsecret::

 namename:: mysecretmysecret

 itemsitems::

 -- keykey:: usernameusername

 pathpath:: my-group/my-usernamemy-group/my-username

 -- secretsecret::

 namename:: mysecret2mysecret2

 itemsitems::

 -- keykey:: passwordpassword

 pathpath:: my-group/my-passwordmy-group/my-password

 modemode:: 511511

A portworxVolumeportworxVolume is an elastic block storage layer that runs hyperconverged with

Kubernetes. Portworx fingerprints storage in a server, tiers based on capabilities, and

aggregates capacity across multiple servers. Portworx runs in-guest in virtual machines or on

bare metal Linux nodes.

A portworxVolumeportworxVolume can be dynamically created through Kubernetes or it can also be pre-

provisioned and referenced inside a Kubernetes pod. Here is an example pod referencing a pre-

provisioned PortworxVolume:

Important: Make sure you have an existing PortworxVolume with name pxvolpxvol before

using it in the pod.

More details and examples can be found here.

quobyte

A quobytequobyte volume allows an existing Quobyte volume to be mounted into your pod.

Important: You must have your own Quobyte setup running with the volumes created

before you can use it.

See the Quobyte example for more details.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-portworx-volume-podtest-portworx-volume-pod

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: test-containertest-container

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /mnt/mnt

 namename:: pxvolpxvol

 volumesvolumes::

 -- namename:: pxvolpxvol

 # This Portworx volume must already exist.# This Portworx volume must already exist.

 portworxVolumeportworxVolume::

 volumeIDvolumeID:: ""pxvol"pxvol"

 fsTypefsType:: ""<fs-type>"<fs-type>"

https://github.com/kubernetes/examples/tree/master/staging/volumes/portworx/README.md
http://www.quobyte.com
https://github.com/kubernetes/examples/tree/master/staging/volumes/quobyte

rbd

An rbdrbd volume allows a Rados Block Device volume to be mounted into your pod. Unlike

emptyDiremptyDir , which is erased when a Pod is removed, the contents of a rbdrbd volume are

preserved and the volume is merely unmounted. This means that a RBD volume can be pre-

populated with data, and that data can be “handed off” between pods.

Important: You must have your own Ceph installation running before you can use RBD.

A feature of RBD is that it can be mounted as read-only by multiple consumers

simultaneously. This means that you can pre-populate a volume with your dataset and then

serve it in parallel from as many pods as you need. Unfortunately, RBD volumes can only be

mounted by a single consumer in read-write mode - no simultaneous writers allowed.

See the RBD example for more details.

scaleIO

ScaleIO is a software-based storage platform that can use existing hardware to create clusters

of scalable shared block networked storage. The scaleIOscaleIO volume plugin allows deployed

pods to access existing ScaleIO volumes (or it can dynamically provision new volumes for

persistent volume claims, see ScaleIO Persistent Volumes).

Important: You must have an existing ScaleIO cluster already setup and running with the

volumes created before you can use them.

The following is an example pod configuration with ScaleIO:

http://ceph.com/docs/master/rbd/rbd/
https://github.com/kubernetes/examples/tree/master/staging/volumes/rbd
file:///docs/concepts/storage/persistent-volumes/#scaleio

For further detail, please the see the ScaleIO examples.

secret

A secretsecret volume is used to pass sensitive information, such as passwords, to pods. You can

store secrets in the Kubernetes API and mount them as files for use by pods without coupling

to Kubernetes directly. secretsecret volumes are backed by tmpfs (a RAM-backed filesystem) so

they are never written to non-volatile storage.

Important: You must create a secret in the Kubernetes API before you can use it.

Note: A container using a Secret as a subPath volume mount will not receive Secret

updates.

Secrets are described in more detail here.

storageOS

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: pod-0pod-0

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: pod-0pod-0

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /test-pd/test-pd

 namename:: vol-0vol-0

 volumesvolumes::

 -- namename:: vol-0vol-0

 scaleIOscaleIO::

 gatewaygateway:: https://localhost:443/apihttps://localhost:443/api

 systemsystem:: scaleioscaleio

 protectionDomainprotectionDomain:: sd0sd0

 storagePoolstoragePool:: sp1sp1

 volumeNamevolumeName:: vol-0vol-0

 secretRefsecretRef::

 namename:: sio-secretsio-secret

 fsTypefsType:: xfsxfs

https://github.com/kubernetes/examples/tree/master/staging/volumes/scaleio
file:///docs/user-guide/secrets

A storageosstorageos volume allows an existing StorageOS volume to be mounted into your pod.

StorageOS runs as a container within your Kubernetes environment, making local or attached

storage accessible from any node within the Kubernetes cluster. Data can be replicated to

protect against node failure. Thin provisioning and compression can improve utilization and

reduce cost.

At its core, StorageOS provides block storage to containers, accessible via a file system.

The StorageOS container requires 64-bit Linux and has no additional dependencies. A free

developer license is available.

Important: You must run the StorageOS container on each node that wants to access

StorageOS volumes or that will contribute storage capacity to the pool. For installation

instructions, consult the StorageOS documentation.

For more information including Dynamic Provisioning and Persistent Volume Claims, please

see the StorageOS examples.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 labelslabels::

 namename:: redisredis

 rolerole:: mastermaster

 namename:: test-storageos-redistest-storageos-redis

specspec::

 containerscontainers::

 -- namename:: mastermaster

 imageimage:: kubernetes/redis:v1kubernetes/redis:v1

 envenv::

 -- namename:: MASTERMASTER

 valuevalue:: ""true"true"

 portsports::

 -- containerPortcontainerPort:: 63796379

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /redis-master-data/redis-master-data

 namename:: redis-dataredis-data

 volumesvolumes::

 -- namename:: redis-dataredis-data

 storageosstorageos::

 # The `redis-vol01` volume must already exist within StorageOS in the `default` namespace.# The `redis-vol01` volume must already exist within StorageOS in the `default` namespace.

 volumeNamevolumeName:: redis-vol01redis-vol01

 fsTypefsType:: ext4ext4

https://www.storageos.com
https://docs.storageos.com
https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/storageos

vsphereVolume

Prerequisite: Kubernetes with vSphere Cloud Provider configured. For cloudprovider

configuration please refer vSphere getting started guide.

A vsphereVolumevsphereVolume is used to mount a vSphere VMDK Volume into your Pod. The contents of a

volume are preserved when it is unmounted. It supports both VMFS and VSAN datastore.

Important: You must create VMDK using one of the following method before using with

POD.

Creating a VMDK volume

Choose one of the following methods to create a VMDK.

vSphere VMDK Example configuration

First ssh into ESX, then use the following command to create a VMDK:

Create using vmkfstools Create using vmware-vdiskmanager

vmkfstools -c 2G /vmfs/volumes/DatastoreName/volumes/myDisk.vmdkvmkfstools -c 2G /vmfs/volumes/DatastoreName/volumes/myDisk.vmdk

https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/

More examples can be found here.

Using subPath

Sometimes, it is useful to share one volume for multiple uses in a single pod. The

volumeMounts.subPathvolumeMounts.subPath property can be used to specify a sub-path inside the referenced

volume instead of its root.

Here is an example of a pod with a LAMP stack (Linux Apache Mysql PHP) using a single,

shared volume. The HTML contents are mapped to its htmlhtml folder, and the databases will be

stored in its mysqlmysql folder:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-vmdktest-vmdk

specspec::

 containerscontainers::

 -- imageimage:: k8s.gcr.io/test-webserverk8s.gcr.io/test-webserver

 namename:: test-containertest-container

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /test-vmdk/test-vmdk

 namename:: test-volumetest-volume

 volumesvolumes::

 -- namename:: test-volumetest-volume

 # This VMDK volume must already exist.# This VMDK volume must already exist.

 vsphereVolumevsphereVolume::

 volumePathvolumePath:: ""[DatastoreName][DatastoreName] volumes/myDisk"volumes/myDisk"

 fsTypefsType:: ext4ext4

https://github.com/kubernetes/examples/tree/master/staging/volumes/vsphere

Resources

The storage media (Disk, SSD, etc.) of an emptyDiremptyDir volume is determined by the medium of

the filesystem holding the kubelet root dir (typically /var/lib/kubelet/var/lib/kubelet). There is no limit on

how much space an emptyDiremptyDir or hostPathhostPath volume can consume, and no isolation between

containers or between pods.

In the future, we expect that emptyDiremptyDir and hostPathhostPath volumes will be able to request a

certain amount of space using a resource specification, and to select the type of media to use,

for clusters that have several media types.

Out-of-Tree Volume Plugins

The Out-of-tree volume plugins include the Container Storage Interface (CSICSI) and

FlexVolumeFlexVolume . They enable storage vendors to create custom storage plugins without adding

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: my-lamp-sitemy-lamp-site

specspec::

 containerscontainers::

 -- namename:: mysqlmysql

 imageimage:: mysqlmysql

 envenv::

 -- namename:: MYSQL_ROOT_PASSWORDMYSQL_ROOT_PASSWORD

 valuevalue:: ""rootpasswd"rootpasswd"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /var/lib/mysql/var/lib/mysql

 namename:: site-datasite-data

 subPathsubPath:: mysqlmysql

 -- namename:: phpphp

 imageimage:: php:7.0-apachephp:7.0-apache

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /var/www/html/var/www/html

 namename:: site-datasite-data

 subPathsubPath:: htmlhtml

 volumesvolumes::

 -- namename:: site-datasite-data

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: my-lamp-site-datamy-lamp-site-data

file:///docs/user-guide/compute-resources

them to the Kubernetes repository.

Before the introduction of CSICSI and FlexVolumeFlexVolume , all volume plugins (like volume types listed

above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core

Kubernetes binaries and extend the core Kubernetes API. This meant that adding a new

storage system to Kubernetes (a volume plugin) required checking code into the core

Kubernetes code repository.

Both CSICSI and FlexVolumeFlexVolume allow volume plugins to be developed independent of the

Kubernetes code base, and deployed (installed) on Kubernetes clusters as extensions.

For storage vendors looking to create an out-of-tree volume plugin, please refer to this FAQ.

CSI

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Container Storage Interface (CSI) defines a standard interface for container orchestration

systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.

Please read the CSI design proposal for more information.

CSI support was introduced as alpha in Kubernetes v1.9 and moved to beta in Kubernets

v1.10.

Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the

csicsi volume type to attach, mount, etc. the volumes exposed by the CSI driver.

The csicsi volume type does not support direct reference from pod and may only be referenced

in a pod via a PersistentVolumeClaimPersistentVolumeClaim object.

The following fields are available to storage administrators to configure a CSI persistent

volume:

driverdriver : A string value that specifies the name of the volume driver to use. This value

must corespond to the value returned in the GetPluginInfoResponseGetPluginInfoResponse by the CSI driver as

defined in the CSI spec. It is used by Kubernetes to identify which CSI driver to call out to,

and by CSI driver components to identify which PV objects belong to the CSI driver.

volumeHandlevolumeHandle : A string value that uniquely identifies the volume. This value must

correspond to the value returned in the volume.idvolume.id field of the CreateVolumeResponseCreateVolumeResponse

by the CSI driver as defined in the CSI spec. The value is passed as volume_idvolume_id on all calls

https://github.com/kubernetes/community/blob/master/sig-storage/volume-plugin-faq.md
https://github.com/container-storage-interface/spec/blob/master/spec.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md
https://github.com/container-storage-interface/spec/blob/master/spec.md#getplugininfo
https://github.com/container-storage-interface/spec/blob/master/spec.md#createvolume

to the CSI volume driver when referencing the volume.

readOnlyreadOnly : An optional boolean value indicating whether the volume is to be

“ControllerPublished” (attached) as read only. Default is false. This value is passed to the

CSI driver via the readonlyreadonly field in the ControllerPublishVolumeRequestControllerPublishVolumeRequest .

fsTypefsType : If the PV’s VolumeModeVolumeMode is FilesystemFilesystem then this field may be used to specify

the filesystem that should be used to mount the volume. If the volume has not been

formated and formating is supported, this value will be used to format the volume. If a

value is not specified, ext4ext4 is assumed. This value is passed to the CSI driver via the

VolumeCapabilityVolumeCapability field of ControllerPublishVolumeRequestControllerPublishVolumeRequest ,

NodeStageVolumeRequestNodeStageVolumeRequest , and NodePublishVolumeRequestNodePublishVolumeRequest .

volumeAttributesvolumeAttributes : A map of string to string that specifies static properties of a volume.

This map must corespond to the map returned in the volume.attributesvolume.attributes field of the

CreateVolumeResponseCreateVolumeResponse by the CSI driver as defined in the CSI spec. The map is passed

to the CSI driver via the volume_attributesvolume_attributes field in the

ControllerPublishVolumeRequestControllerPublishVolumeRequest , NodeStageVolumeRequestNodeStageVolumeRequest , and

NodePublishVolumeRequestNodePublishVolumeRequest .

controllerPublishSecretRefcontrollerPublishSecretRef : A reference to the secret object containing sensitive

information to pass to the CSI driver to complete the CSI ControllerPublishVolumeControllerPublishVolume and

ControllerUnpublishVolumeControllerUnpublishVolume calls. This field is optional, and may be empty if no secret

is required. If the secret object contains more than one secret, all secrets are passed.

nodeStageSecretRefnodeStageSecretRef : A reference to the secret object containing sensitive information to

pass to the CSI driver to complete the CSI NodeStageVolumeNodeStageVolume call. This field is optional,

and may be empty if no secret is required. If the secret object contains more than one

secret, all secrets are passed.

nodePublishSecretRefnodePublishSecretRef : A reference to the secret object containing sensitive information

to pass to the CSI driver to complete the CSI NodePublishVolumeNodePublishVolume call. This field is

optional, and may be empty if no secret is required. If the secret object contains more than

one secret, all secrets are passed.

FlexVolume

https://github.com/container-storage-interface/spec/blob/master/spec.md#createvolume

FlexVolumeFlexVolume is an out-of-tree plugin interface that has existed in Kubernetes since version 1.2

(before CSI). It uses an exec-based model to interface with drivers. FlexVolume driver binaries

must be installed in a pre-defined volume plugin path on each node (and in some cases

master).

Pods interact with FlexVolume drivers through the flexVolumeflexVolume in-tree plugin. More details

can be found here.

Mount propagation

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Mount propagation allows for sharing volumes mounted by a Container to other Containers in

the same Pod, or even to other Pods on the same node.

If the “ MountPropagationMountPropagation ” feature is disabled, volume mounts in pods are not propagated.

That is, Containers run with privateprivate mount propagation as described in the Linux kernel

documentation.

Mount propagation of a volume is controlled by mountPropagationmountPropagation field in

Container.volumeMounts. Its values are:

HostToContainerHostToContainer - This volume mount will receive all subsequent mounts that are

mounted to this volume or any of its subdirectories. This is the default mode.

In other words, if the host mounts anything inside the volume mount, the Container will

see it mounted there.

Similarly, if any pod with BidirectionalBidirectional mount propagation to the same volume mounts

anything there, the Container with HostToContainerHostToContainer mount propagation will see it.

This mode is equal to rslaverslave mount propagation as described in the Linux kernel

documentation

BidirectionalBidirectional - This volume mount behaves the same the HostToContainerHostToContainer mount. In

addition, all volume mounts created by the Container will be propagated back to the host

and to all Containers of all Pods that use the same volume.

A typical use case for this mode is a Pod with a FlexVolumeFlexVolume driver or a Pod that needs to

mount something on the host using a hostPathhostPath volume.

https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md
https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt

This mode is equal to rsharedrshared mount propagation as described in the Linux kernel

documentation

Caution: BidirectionalBidirectional mount propagation can be dangerous. It can damage the host

operating system and therefore it is allowed only in privileged Containers. Familiarity

with Linux kernel behavior is strongly recommended. In addition, any volume mounts

created by Containers in Pods must be destroyed (unmounted) by the Containers on

termination.

Configuration

Before mount propagation can work properly on some deployments (CoreOS, RedHat/Centos,

Ubuntu) mount share must be configured correctly in Docker as shown below.

Edit your Docker’s systemdsystemd service file. Set MountFlagsMountFlags as follows:

Or, remove MountFlags=slaveMountFlags=slave if present. Then restart the Docker daemon:

What’s next

Follow an example of deploying WordPress and MySQL with Persistent Volumes.

MountFlagsMountFlags==sharedshared

$ $ sudo sudo systemctl daemon-reloadsystemctl daemon-reload

$ $ sudo sudo systemctl restart dockersystemctl restart docker

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
file:///docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

Persistent Volumes

This document describes the current state of PersistentVolumesPersistentVolumes in Kubernetes. Familiarity

with volumes is suggested.

Introduction

Lifecycle of a volume and claim

Provisioning

Static

Dynamic

Binding

Using

Storage Object in Use Protection

Reclaiming

Retain

Delete

Recycle

Expanding Persistent Volumes Claims

Types of Persistent Volumes

Persistent Volumes

Capacity

Volume Mode

Access Modes

Class

Reclaim Policy

Mount Options

Phase

PersistentVolumeClaims

Access Modes

Volume Modes

Resources

Selector

Class

Claims As Volumes

A Note on Namespaces

Raw Block Volume Support

Persistent Volumes using a Raw Block Volume

Persistent Volume Claim requesting a Raw Block Volume

Pod specification adding Raw Block Device path in container

file:///docs/concepts/storage/volumes/

Introduction

Managing storage is a distinct problem from managing compute. The PersistentVolumePersistentVolume

subsystem provides an API for users and administrators that abstracts details of how storage

is provided from how it is consumed. To do this we introduce two new API resources:

PersistentVolumePersistentVolume and PersistentVolumeClaimPersistentVolumeClaim .

A PersistentVolumePersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an

administrator. It is a resource in the cluster just like a node is a cluster resource. PVs are

volume plugins like Volumes, but have a lifecycle independent of any individual pod that uses

the PV. This API object captures the details of the implementation of the storage, be that NFS,

iSCSI, or a cloud-provider-specific storage system.

A PersistentVolumeClaimPersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a pod.

Pods consume node resources and PVCs consume PV resources. Pods can request specific

levels of resources (CPU and Memory). Claims can request specific size and access modes

(e.g., can be mounted once read/write or many times read-only).

While PersistentVolumeClaimsPersistentVolumeClaims allow a user to consume abstract storage resources, it is

common that users need PersistentVolumesPersistentVolumes with varying properties, such as performance,

for different problems. Cluster administrators need to be able to offer a variety of

PersistentVolumesPersistentVolumes that differ in more ways than just size and access modes, without

exposing users to the details of how those volumes are implemented. For these needs there is

the StorageClassStorageClass resource.

Please see the detailed walkthrough with working examples.

Lifecycle of a volume and claim

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim

checks to the resource. The interaction between PVs and PVCs follows this lifecycle:

Provisioning

Binding Block Volumes

Writing Portable Configuration

file:///docs/tasks/configure-pod-container/configure-persistent-volume-storage/

There are two ways PVs may be provisioned: statically or dynamically.

Static

A cluster administrator creates a number of PVs. They carry the details of the real storage

which is available for use by cluster users. They exist in the Kubernetes API and are available

for consumption.

Dynamic

When none of the static PVs the administrator created matches a user’s

PersistentVolumeClaimPersistentVolumeClaim , the cluster may try to dynamically provision a volume specially for

the PVC. This provisioning is based on StorageClassesStorageClasses : the PVC must request a storage

class and the administrator must have created and configured that class in order for dynamic

provisioning to occur. Claims that request the class """" effectively disable dynamic

provisioning for themselves.

To enable dynamic storage provisioning based on storage class, the cluster administrator

needs to enable the DefaultStorageClassDefaultStorageClass admission controller on the API server. This can

be done, for example, by ensuring that DefaultStorageClassDefaultStorageClass is among the comma-

delimited, ordered list of values for the --enable-admission-plugins--enable-admission-plugins flag of the API server

component. For more information on API server command line flags, please check kube-

apiserver documentation.

Binding

A user creates, or has already created in the case of dynamic provisioning, a

PersistentVolumeClaimPersistentVolumeClaim with a specific amount of storage requested and with certain

access modes. A control loop in the master watches for new PVCs, finds a matching PV (if

possible), and binds them together. If a PV was dynamically provisioned for a new PVC, the

loop will always bind that PV to the PVC. Otherwise, the user will always get at least what they

asked for, but the volume may be in excess of what was requested. Once bound,

PersistentVolumeClaimPersistentVolumeClaim binds are exclusive, regardless of how they were bound. A PVC to

PV binding is a one-to-one mapping.

Claims will remain unbound indefinitely if a matching volume does not exist. Claims will be

bound as matching volumes become available. For example, a cluster provisioned with many

50Gi PVs would not match a PVC requesting 100Gi. The PVC can be bound when a 100Gi PV is

file:///docs/concepts/storage/storage-classes/
file:///docs/admin/admission-controllers/#defaultstorageclass
file:///docs/admin/kube-apiserver/

added to the cluster.

Using

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and

mounts that volume for a pod. For volumes which support multiple access modes, the user

specifies which mode desired when using their claim as a volume in a pod.

Once a user has a claim and that claim is bound, the bound PV belongs to the user for as long

as they need it. Users schedule Pods and access their claimed PVs by including a

persistentVolumeClaimpersistentVolumeClaim in their Pod’s volumes block. See below for syntax details.

Storage Object in Use Protection

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

The purpose of the Storage Object in Use Protection feature is to ensure that Persistent

Volume Claims (PVCs) in active use by a pod and Persistent Volume (PVs) that are bound to

PVCs are not removed from the system as this may result in data loss.

Note: PVC is in active use by a pod when the pod status is PendingPending and the pod is

assigned to a node or the pod status is RunningRunning .

When the Storage Object in Use Protection beta feature is enabled, if a user deletes a PVC in

active use by a pod, the PVC is not removed immediately. PVC removal is postponed until the

PVC is no longer actively used by any pods, and also if admin deletes a PV that is bound to a

PVC, the PV is not removed immediately. PV removal is postponed until the PV is not bound to

a PVC any more.

You can see that a PVC is protected when the PVC’s status is TerminatingTerminating and the

FinalizersFinalizers list includes kubernetes.io/pvc-protectionkubernetes.io/pvc-protection :

file:///docs/tasks/administer-cluster/storage-object-in-use-protection/

You can see that a PV is protected when the PV’s status is TerminatingTerminating and the

FinalizersFinalizers list includes kubernetes.io/pv-protectionkubernetes.io/pv-protection too:

Reclaiming

When a user is done with their volume, they can delete the PVC objects from the API which

allows reclamation of the resource. The reclaim policy for a PersistentVolumePersistentVolume tells the

cluster what to do with the volume after it has been released of its claim. Currently, volumes

can either be Retained, Recycled or Deleted.

Retain

The RetainRetain reclaim policy allows for manual reclamation of the resource. When the

kubectl describe pvc hostpathkubectl describe pvc hostpath

Name: hostpathName: hostpath

Namespace: defaultNamespace: default

StorageClass: example-hostpathStorageClass: example-hostpath

Status: TerminatingStatus: Terminating

Volume: Volume:

Labels: <none>Labels: <none>

Annotations: volume.beta.kubernetes.io/storage-classAnnotations: volume.beta.kubernetes.io/storage-class==example-hostpathexample-hostpath

 volume.beta.kubernetes.io/storage-provisioner volume.beta.kubernetes.io/storage-provisioner==example.com/hostpathexample.com/hostpath

Finalizers: Finalizers: [[kubernetes.io/pvc-protection]kubernetes.io/pvc-protection]

......

kubectl describe pv task-pv-volumekubectl describe pv task-pv-volume

Name: task-pv-volumeName: task-pv-volume

Labels: Labels: typetype==locallocal

Annotations: <none>Annotations: <none>

Finalizers: Finalizers: [[kubernetes.io/pv-protection]kubernetes.io/pv-protection]

StorageClass: standardStorageClass: standard

Status: AvailableStatus: Available

Claim: Claim:

Reclaim Policy: DeleteReclaim Policy: Delete

Access Modes: RWOAccess Modes: RWO

Capacity: 1GiCapacity: 1Gi

Message: Message:

Source:Source:

 Type: HostPath Type: HostPath ((bare host directory volumebare host directory volume))

 Path: /tmp/data Path: /tmp/data

 HostPathType: HostPathType:

Events: <none>Events: <none>

PersistentVolumeClaimPersistentVolumeClaim is deleted, the PersistentVolumePersistentVolume still exists and the volume is

considered “released”. But it is not yet available for another claim because the previous

claimant’s data remains on the volume. An administrator can manually reclaim the volume

with the following steps.

1. Delete the PersistentVolumePersistentVolume . The associated storage asset in external infrastructure

(such as an AWS EBS, GCE PD, Azure Disk, or Cinder volume) still exists after the PV is

deleted.

2. Manually clean up the data on the associated storage asset accordingly.

3. Manually delete the associated storage asset, or if you want to reuse the same storage

asset, create a new PersistentVolumePersistentVolume with the storage asset definition.

Delete

For volume plugins that support the DeleteDelete reclaim policy, deletion removes both the

PersistentVolumePersistentVolume object from Kubernetes, as well as the associated storage asset in the

external infrastructure, such as an AWS EBS, GCE PD, Azure Disk, or Cinder volume. Volumes

that were dynamically provisioned inherit the reclaim policy of their StorageClassStorageClass , which

defaults to DeleteDelete . The administrator should configure the StorageClassStorageClass according to

users’ expectations, otherwise the PV must be edited or patched after it is created. See

Change the Reclaim Policy of a PersistentVolume.

Recycle

Warning: The RecycleRecycle reclaim policy is deprecated. Instead, the recommended

approach is to use dynamic provisioning.

If supported by the underlying volume plugin, the RecycleRecycle reclaim policy performs a basic

scrub (

rm -rfrm -rf

/thevolume/*/thevolume/*) on the volume and makes it available again for a new claim.

However, an administrator can configure a custom recycler pod template using the Kubernetes

controller manager command line arguments as described here. The custom recycler pod

template must contain a volumesvolumes specification, as shown in the example below:

file:///docs/tasks/administer-cluster/change-pv-reclaim-policy/
file:///docs/admin/kube-controller-manager/

However, the particular path specified in the custom recycler pod template in the volumesvolumes

part is replaced with the particular path of the volume that is being recycled.

Expanding Persistent Volumes Claims

Kubernetes 1.8 added Alpha support for expanding persistent volumes. In v1.9, the following

volume types support expanding Persistent volume claims:

gcePersistentDisk

awsElasticBlockStore

Cinder

glusterfs

rbd

Administrator can allow expanding persistent volume claims by setting

ExpandPersistentVolumesExpandPersistentVolumes feature gate to true. Administrator should also enable

PersistentVolumeClaimResizePersistentVolumeClaimResize admission plugin to perform additional validations of

volumes that can be resized.

Once PersistentVolumeClaimResizePersistentVolumeClaimResize admission plug-in has been turned on, resizing will

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: pv-recyclerpv-recycler

 namespacenamespace:: defaultdefault

specspec::

 restartPolicyrestartPolicy:: NeverNever

 volumesvolumes::

 -- namename:: volvol

 hostPathhostPath::

 pathpath:: /any/path/it/will/be/replaced/any/path/it/will/be/replaced

 containerscontainers::

 -- namename:: pv-recyclerpv-recycler

 imageimage:: ""k8s.gcr.io/busybox"k8s.gcr.io/busybox"

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""testtest -e-e /scrub/scrub &&&& rmrm -rf-rf /scrub/..?*/scrub/..?* /scrub/.[!.]*/scrub/.[!.]*

 volumeMountsvolumeMounts::

 -- namename:: volvol

 mountPathmountPath:: /scrub/scrub

file:///docs/admin/admission-controllers/#persistentvolumeclaimresize

only be allowed for storage classes whose allowVolumeExpansionallowVolumeExpansion field is set to true.

Once both feature gate and the aforementioned admission plug-in are turned on, a user can

request larger volume for their PersistentVolumeClaimPersistentVolumeClaim by simply editing the claim and

requesting a larger size. This in turn will trigger expansion of the volume that is backing the

underlying PersistentVolumePersistentVolume .

Under no circumstances will a new PersistentVolumePersistentVolume be created to satisfy the claim.

Kubernetes will instead attempt to resize the existing volume.

For expanding volumes containing a file system, file system resizing is only performed when a

new Pod is started using the PersistentVolumeClaimPersistentVolumeClaim in ReadWrite mode. In other words, if a

volume being expanded is used in a pod or deployment, you will need to delete and recreate the

pod for file system resizing to take place. Also, file system resizing is only supported for

following file system types:

XFS

Ext3, Ext4

Note: Expanding EBS volumes is a time consuming operation. Also, there is a per-

volume quota of one modification every 6 hours.

Types of Persistent Volumes

PersistentVolumePersistentVolume types are implemented as plugins. Kubernetes currently supports the

following plugins:

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: gluster-vol-defaultgluster-vol-default

provisionerprovisioner:: kubernetes.io/glusterfskubernetes.io/glusterfs

parametersparameters::

 resturlresturl:: ""http://192.168.10.100:8080"http://192.168.10.100:8080"

 restuserrestuser:: """"

 secretNamespacesecretNamespace:: """"

 secretNamesecretName:: """"

allowVolumeExpansionallowVolumeExpansion:: truetrue

GCEPersistentDisk

AWSElasticBlockStore

AzureFile

AzureDisk

FC (Fibre Channel)**

FlexVolume

Flocker

NFS

iSCSI

RBD (Ceph Block Device)

CephFS

Cinder (OpenStack block storage)

Glusterfs

VsphereVolume

Quobyte Volumes

HostPath (Single node testing only – local storage is not supported in any way and WILL

NOT WORK in a multi-node cluster)

VMware Photon

Portworx Volumes

ScaleIO Volumes

StorageOS

Raw Block Support exists for these plugins only.

Persistent Volumes

Each PV contains a spec and status, which is the specification and status of the volume.

Capacity

Generally, a PV will have a specific storage capacity. This is set using the PV’s capacitycapacity

attribute. See the Kubernetes Resource Model to understand the units expected by capacitycapacity .

Currently, storage size is the only resource that can be set or requested. Future attributes may

include IOPS, throughput, etc.

Volume Mode

Prior to v1.9, the default behavior for all volume plugins was to create a filesystem on the

persistent volume. With v1.9, the user can specify a volumeModevolumeMode which will now support raw

block devices in addition to file systems. Valid values for volumeModevolumeMode are “Filesystem” or

“Block”. If left unspecified, volumeModevolumeMode defaults to “Filesystem” internally. This is an optional

API parameter.

Note: This feature is alpha in v1.9 and may change in the future.

Access Modes

A PersistentVolumePersistentVolume can be mounted on a host in any way supported by the resource

provider. As shown in the table below, providers will have different capabilities and each PV’s

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumePersistentVolume

metadatametadata::

 namename:: pv0003pv0003

specspec::

 capacitycapacity::

 storagestorage:: 5Gi5Gi

 volumeModevolumeMode:: FilesystemFilesystem

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 persistentVolumeReclaimPolicypersistentVolumeReclaimPolicy:: RecycleRecycle

 storageClassNamestorageClassName:: slowslow

 mountOptionsmountOptions::

 -- hardhard

 -- nfsvers=4.1nfsvers=4.1

 nfsnfs::

 pathpath:: /tmp/tmp

 serverserver:: 172.17.0.2172.17.0.2

https://git.k8s.io/community/contributors/design-proposals/scheduling/resources.md

access modes are set to the specific modes supported by that particular volume. For example,

NFS can support multiple read/write clients, but a specific NFS PV might be exported on the

server as read-only. Each PV gets its own set of access modes describing that specific PV’s

capabilities.

The access modes are:

ReadWriteOnce – the volume can be mounted as read-write by a single node

ReadOnlyMany – the volume can be mounted read-only by many nodes

ReadWriteMany – the volume can be mounted as read-write by many nodes

In the CLI, the access modes are abbreviated to:

RWO - ReadWriteOnce

ROX - ReadOnlyMany

RWX - ReadWriteMany

Important! A volume can only be mounted using one access mode at a time, even if it supports

many. For example, a GCEPersistentDisk can be mounted as ReadWriteOnce by a single node

or ReadOnlyMany by many nodes, but not at the same time.

Volume Plugin ReadWriteOnce ReadOnlyMany ReadWriteMany

AWSElasticBlockStore ✓ - -

AzureFile ✓ ✓ ✓

AzureDisk ✓ - -

CephFS ✓ ✓ ✓

Cinder ✓ - -

FC ✓ ✓ -

FlexVolume ✓ ✓ -

Flocker ✓ - -

GCEPersistentDisk ✓ ✓ -

Glusterfs ✓ ✓ ✓

HostPath ✓ - -

iSCSI ✓ ✓ -

PhotonPersistentDisk ✓ - -

Quobyte ✓ ✓ ✓

NFS ✓ ✓ ✓

RBD ✓ ✓ -

VsphereVolume ✓ - - (works when pods are collocated)

PortworxVolume ✓ - ✓

ScaleIO ✓ ✓ -

StorageOS ✓ - -

Volume Plugin ReadWriteOnce ReadOnlyMany ReadWriteMany

Class

A PV can have a class, which is specified by setting the storageClassNamestorageClassName attribute to the

name of a StorageClass. A PV of a particular class can only be bound to PVCs requesting that

class. A PV with no storageClassNamestorageClassName has no class and can only be bound to PVCs that

request no particular class.

In the past, the annotation volume.beta.kubernetes.io/storage-classvolume.beta.kubernetes.io/storage-class was used instead

of the storageClassNamestorageClassName attribute. This annotation is still working, however it will become

fully deprecated in a future Kubernetes release.

Reclaim Policy

Current reclaim policies are:

Retain – manual reclamation

Recycle – basic scrub (

rm -rfrm -rf

/thevolume/*/thevolume/*)

Delete – associated storage asset such as AWS EBS, GCE PD, Azure Disk, or OpenStack

Cinder volume is deleted

Currently, only NFS and HostPath support recycling. AWS EBS, GCE PD, Azure Disk, and Cinder

volumes support deletion.

Mount Options

A Kubernetes administrator can specify additional mount options for when a Persistent

Volume is mounted on a node.

file:///docs/concepts/storage/storage-classes/

Note: Not all Persistent volume types support mount options.

The following volume types support mount options:

GCEPersistentDisk

AWSElasticBlockStore

AzureFile

AzureDisk

NFS

iSCSI

RBD (Ceph Block Device)

CephFS

Cinder (OpenStack block storage)

Glusterfs

VsphereVolume

Quobyte Volumes

VMware Photon

Mount options are not validated, so mount will simply fail if one is invalid.

In the past, the annotation volume.beta.kubernetes.io/mount-optionsvolume.beta.kubernetes.io/mount-options was used instead

of the mountOptionsmountOptions attribute. This annotation is still working, however it will become fully

deprecated in a future Kubernetes release.

Phase

A volume will be in one of the following phases:

Available – a free resource that is not yet bound to a claim

Bound – the volume is bound to a claim

Released – the claim has been deleted, but the resource is not yet reclaimed by the cluster

Failed – the volume has failed its automatic reclamation

The CLI will show the name of the PVC bound to the PV.

PersistentVolumeClaims

Each PVC contains a spec and status, which is the specification and status of the claim.

Access Modes

Claims use the same conventions as volumes when requesting storage with specific access

modes.

Volume Modes

Claims use the same convention as volumes to indicates the consumption of the volume as

either a filesystem or block device.

Resources

Claims, like pods, can request specific quantities of a resource. In this case, the request is for

storage. The same resource model applies to both volumes and claims.

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: myclaimmyclaim

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 volumeModevolumeMode:: FilesystemFilesystem

 resourcesresources::

 requestsrequests::

 storagestorage:: 8Gi8Gi

 storageClassNamestorageClassName:: slowslow

 selectorselector::

 matchLabelsmatchLabels::

 releaserelease:: ""stable"stable"

 matchExpressionsmatchExpressions::

 -- {{keykey:: environmentenvironment,, operatoroperator:: InIn,, valuesvalues:: [[devdev]}]}

https://git.k8s.io/community/contributors/design-proposals/scheduling/resources.md

Selector

Claims can specify a label selector to further filter the set of volumes. Only the volumes whose

labels match the selector can be bound to the claim. The selector can consist of two fields:

matchLabelsmatchLabels - the volume must have a label with this value

matchExpressionsmatchExpressions - a list of requirements made by specifying key, list of values, and

operator that relates the key and values. Valid operators include In, NotIn, Exists, and

DoesNotExist.

All of the requirements, from both matchLabelsmatchLabels and matchExpressionsmatchExpressions are ANDed together

– they must all be satisfied in order to match.

Class

A claim can request a particular class by specifying the name of a StorageClass using the

attribute storageClassNamestorageClassName . Only PVs of the requested class, ones with the same

storageClassNamestorageClassName as the PVC, can be bound to the PVC.

PVCs don’t necessarily have to request a class. A PVC with its storageClassNamestorageClassName set equal to

"""" is always interpreted to be requesting a PV with no class, so it can only be bound to PVs

with no class (no annotation or one set equal to """"). A PVC with no storageClassNamestorageClassName is

not quite the same and is treated differently by the cluster depending on whether the

DefaultStorageClassDefaultStorageClass admission plugin is turned on.

If the admission plugin is turned on, the administrator may specify a default

StorageClassStorageClass . All PVCs that have no storageClassNamestorageClassName can be bound only to PVs of

that default. Specifying a default StorageClassStorageClass is done by setting the annotation

storageclass.kubernetes.io/is-default-classstorageclass.kubernetes.io/is-default-class equal to “true” in a StorageClassStorageClass

object. If the administrator does not specify a default, the cluster responds to PVC creation

as if the admission plugin were turned off. If more than one default is specified, the

admission plugin forbids the creation of all PVCs.

If the admission plugin is turned off, there is no notion of a default StorageClassStorageClass . All

PVCs that have no storageClassNamestorageClassName can be bound only to PVs that have no class. In

this case, the PVCs that have no storageClassNamestorageClassName are treated the same way as PVCs

file:///docs/concepts/overview/working-with-objects/labels/#label-selectors
file:///docs/concepts/storage/storage-classes/
file:///docs/admin/admission-controllers/#defaultstorageclass

that have their storageClassNamestorageClassName set to """" .

Depending on installation method, a default StorageClass may be deployed to Kubernetes

cluster by addon manager during installation.

When a PVC specifies a selectorselector in addition to requesting a StorageClassStorageClass , the

requirements are ANDed together: only a PV of the requested class and with the requested

labels may be bound to the PVC.

Note: Currently, a PVC with a non-empty selectorselector can’t have a PV dynamically

provisioned for it.

In the past, the annotation volume.beta.kubernetes.io/storage-classvolume.beta.kubernetes.io/storage-class was used instead

of storageClassNamestorageClassName attribute. This annotation is still working, however it won’t be supported

in a future Kubernetes release.

Claims As Volumes

Pods access storage by using the claim as a volume. Claims must exist in the same

namespace as the pod using the claim. The cluster finds the claim in the pod’s namespace

and uses it to get the PersistentVolumePersistentVolume backing the claim. The volume is then mounted to

the host and into the pod.

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: mypodmypod

specspec::

 containerscontainers::

 -- namename:: myfrontendmyfrontend

 imageimage:: dockerfile/nginxdockerfile/nginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: ""/var/www/html"/var/www/html"

 namename:: mypdmypd

 volumesvolumes::

 -- namename:: mypdmypd

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: myclaimmyclaim

A Note on Namespaces

PersistentVolumesPersistentVolumes binds are exclusive, and since PersistentVolumeClaimsPersistentVolumeClaims are

namespaced objects, mounting claims with “Many” modes (ROXROX , RWXRWX) is only possible within

one namespace.

Raw Block Volume Support

Static provisioning support for Raw Block Volumes is included as an alpha feature for v1.9.

With this change are some new API fields that need to be used to facilitate this functionality.

Kubernetes v1.10 supports only Fibre Channel and Local Volume plugins for this feature.

Persistent Volumes using a Raw Block Volume

Persistent Volume Claim requesting a Raw Block Volume

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumePersistentVolume

metadatametadata::

 namename:: block-pvblock-pv

specspec::

 capacitycapacity::

 storagestorage:: 10Gi10Gi

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 volumeModevolumeMode:: BlockBlock

 persistentVolumeReclaimPolicypersistentVolumeReclaimPolicy:: RetainRetain

 fcfc::

 targetWWNstargetWWNs:: [[""50060e801049cfd1"50060e801049cfd1"]]

 lunlun:: 00

 readOnlyreadOnly:: falsefalse

Pod specification adding Raw Block Device path in container

Note: When adding a raw block device for a Pod, we specify the device path in the

container instead of a mount path.

Binding Block Volumes

If a user requests a raw block volume by indicating this using the volumeModevolumeMode field in the

PersistentVolumeClaimPersistentVolumeClaim spec, the binding rules differ slightly from previous releases that

didn’t consider this mode as part of the spec. Listed is a table of possible combinations the

user and admin might specify for requesting a raw block device. The table indicates if the

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

metadatametadata::

 namename:: block-pvcblock-pvc

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 volumeModevolumeMode:: BlockBlock

 resourcesresources::

 requestsrequests::

 storagestorage:: 10Gi10Gi

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: pod-with-block-volumepod-with-block-volume

specspec::

 containerscontainers::

 -- namename:: fc-containerfc-container

 imageimage:: fedora:26fedora:26

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c"]]

 argsargs:: [[""tailtail -f-f /dev/null"/dev/null"]]

 volumeDevicesvolumeDevices::

 -- namename:: datadata

 devicePathdevicePath:: /dev/xvda/dev/xvda

 volumesvolumes::

 -- namename:: datadata

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: block-pvcblock-pvc

volume will be bound or not given the combinations: Volume binding matrix for statically

provisioned volumes:

PV volumeMode PVC volumeMode Result

unspecified unspecified BIND

unspecified Block NO BIND

unspecified Filesystem BIND

Block unspecified NO BIND

Block Block BIND

Block Filesystem NO BIND

Filesystem Filesystem BIND

Filesystem Block NO BIND

Filesystem unspecified BIND

Note: Only statically provisioned volumes are supported for alpha release.

Administrators should take care to consider these values when working with raw block

devices.

Writing Portable Configuration

If you’re writing configuration templates or examples that run on a wide range of clusters and

need persistent storage, we recommend that you use the following pattern:

Do include PersistentVolumeClaim objects in your bundle of config (alongside

Deployments, ConfigMaps, etc).

Do not include PersistentVolume objects in the config, since the user instantiating the

config may not have permission to create PersistentVolumes.

Give the user the option of providing a storage class name when instantiating the

template.

If the user provides a storage class name, put that value into the

persistentVolumeClaim.storageClassNamepersistentVolumeClaim.storageClassName field. This will cause the PVC to match

the right storage class if the cluster has StorageClasses enabled by the admin.

If the user does not provide a storage class name, leave the

persistentVolumeClaim.storageClassNamepersistentVolumeClaim.storageClassName field as nil.

This will cause a PV to be automatically provisioned for the user with the default

StorageClass in the cluster. Many cluster environments have a default

StorageClass installed, or administrators can create their own default

StorageClass.

In your tooling, do watch for PVCs that are not getting bound after some time and surface

this to the user, as this may indicate that the cluster has no dynamic storage support (in

which case the user should create a matching PV) or the cluster has no storage system (in

which case the user cannot deploy config requiring PVCs).

Storage Classes

This document describes the concept of StorageClassStorageClass in Kubernetes. Familiarity with

volumes and persistent volumes is suggested.

Introduction

A StorageClassStorageClass provides a way for administrators to describe the “classes” of storage they

offer. Different classes might map to quality-of-service levels, or to backup policies, or to

arbitrary policies determined by the cluster administrators. Kubernetes itself is unopinionated

about what classes represent. This concept is sometimes called “profiles” in other storage

systems.

Introduction

The StorageClass Resource

Provisioner

Reclaim Policy

Mount Options

Parameters

AWS

GCE

Glusterfs

OpenStack Cinder

vSphere

Ceph RBD

Quobyte

Azure Disk

Azure Unmanaged Disk Storage Class

New Azure Disk Storage Class (starting from v1.7.2)

Azure File

Portworx Volume

ScaleIO

StorageOS

Local

file:///docs/concepts/storage/volumes/
file:///docs/concepts/storage/persistent-volumes

The StorageClass Resource

Each StorageClassStorageClass contains the fields provisionerprovisioner , parametersparameters , and reclaimPolicyreclaimPolicy ,

which are used when a PersistentVolumePersistentVolume belonging to the class needs to be dynamically

provisioned.

The name of a StorageClassStorageClass object is significant, and is how users can request a particular

class. Administrators set the name and other parameters of a class when first creating

StorageClassStorageClass objects, and the objects cannot be updated once they are created.

Administrators can specify a default StorageClassStorageClass just for PVCs that don’t request any

particular class to bind to: see the PersistentVolumeClaimPersistentVolumeClaim section for details.

Provisioner

Storage classes have a provisioner that determines what volume plugin is used for

provisioning PVs. This field must be specified.

Volume Plugin Internal Provisioner Config Example

AWSElasticBlockStore ✓ AWS

AzureFile ✓ Azure File

AzureDisk ✓ Azure Disk

CephFS - -

Cinder ✓ OpenStack Cinder

FC - -

FlexVolume - -

Flocker ✓ -

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: standardstandard

provisionerprovisioner:: kubernetes.io/aws-ebskubernetes.io/aws-ebs

parametersparameters::

 typetype:: gp2gp2

reclaimPolicyreclaimPolicy:: RetainRetain

mountOptionsmountOptions::

 -- debugdebug

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1

GCEPersistentDisk ✓ GCE

Glusterfs ✓ Glusterfs

iSCSI - -

PhotonPersistentDisk ✓ -

Quobyte ✓ Quobyte

NFS - -

RBD ✓ Ceph RBD

VsphereVolume ✓ vSphere

PortworxVolume ✓ Portworx Volume

ScaleIO ✓ ScaleIO

StorageOS ✓ StorageOS

Local - Local

Volume Plugin Internal Provisioner Config Example

You are not restricted to specifying the “internal” provisioners listed here (whose names are

prefixed with “kubernetes.io” and shipped alongside Kubernetes). You can also run and specify

external provisioners, which are independent programs that follow a specification defined by

Kubernetes. Authors of external provisioners have full discretion over where their code lives,

how the provisioner is shipped, how it needs to be run, what volume plugin it uses (including

Flex), etc. The repository kubernetes-incubator/external-storage houses a library for writing

external provisioners that implements the bulk of the specification plus various community-

maintained external provisioners.

For example, NFS doesn’t provide an internal provisioner, but an external provisioner can be

used. Some external provisioners are listed under the repository kubernetes-

incubator/external-storage. There are also cases when 3rd party storage vendors provide their

own external provisioner.

Reclaim Policy

Persistent Volumes that are dynamically created by a storage class will have the reclaim policy

specified in the reclaimPolicyreclaimPolicy field of the class, which can be either DeleteDelete or RetainRetain . If

no reclaimPolicyreclaimPolicy is specified when a StorageClassStorageClass object is created, it will default to

DeleteDelete .

Persistent Volumes that are created manually and managed via a storage class will have

whatever reclaim policy they were assigned at creation.

https://git.k8s.io/community/contributors/design-proposals/storage/volume-provisioning.md
https://github.com/kubernetes-incubator/external-storage
https://github.com/kubernetes-incubator/external-storage

Mount Options

Persistent Volumes that are dynamically created by a storage class will have the mount

options specified in the mountOptionsmountOptions field of the class.

If the volume plugin does not support mount options but mount options are specified,

provisioning will fail. Mount options are not validated on neither the class nor PV, so mount of

the PV will simply fail if one is invalid.

Parameters

Storage classes have parameters that describe volumes belonging to the storage class.

Different parameters may be accepted depending on the provisionerprovisioner . For example, the

value io1io1 , for the parameter typetype , and the parameter iopsPerGBiopsPerGB are specific to EBS. When

a parameter is omitted, some default is used.

AWS

typetype : io1io1 , gp2gp2 , sc1sc1 , st1st1 . See AWS docs for details. Default: gp2gp2 .

zonezone : AWS zone. If neither zonezone nor zoneszones is specified, volumes are generally round-

robin-ed across all active zones where Kubernetes cluster has a node. zonezone and zoneszones

parameters must not be used at the same time.

zoneszones : A comma separated list of AWS zone(s). If neither zonezone nor zoneszones is specified,

volumes are generally round-robin-ed across all active zones where Kubernetes cluster

has a node. zonezone and zoneszones parameters must not be used at the same time.

iopsPerGBiopsPerGB : only for io1io1 volumes. I/O operations per second per GiB. AWS volume plugin

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/aws-ebskubernetes.io/aws-ebs

parametersparameters::

 typetype:: io1io1

 zoneszones:: us-east-1d, us-east-1cus-east-1d, us-east-1c

 iopsPerGBiopsPerGB:: ""10"10"

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

multiplies this with size of requested volume to compute IOPS of the volume and caps it at

20 000 IOPS (maximum supported by AWS, see AWS docs. A string is expected here, i.e.

"10""10" , not 1010 .

encryptedencrypted : denotes whether the EBS volume should be encrypted or not. Valid values are

"true""true" or "false""false" . A string is expected here, i.e. "true""true" , not truetrue .

kmsKeyIdkmsKeyId : optional. The full Amazon Resource Name of the key to use when encrypting

the volume. If none is supplied but encryptedencrypted is true, a key is generated by AWS. See

AWS docs for valid ARN value.

GCE

typetype : pd-standardpd-standard or pd-ssdpd-ssd . Default: pd-standardpd-standard

zonezone : GCE zone. If neither zonezone nor zoneszones is specified, volumes are generally round-

robin-ed across all active zones where Kubernetes cluster has a node. zonezone and zoneszones

parameters must not be used at the same time.

zoneszones : A comma separated list of GCE zone(s). If neither zonezone nor zoneszones is specified,

volumes are generally round-robin-ed across all active zones where Kubernetes cluster

has a node. zonezone and zoneszones parameters must not be used at the same time.

Glusterfs

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/gce-pdkubernetes.io/gce-pd

parametersparameters::

 typetype:: pd-standardpd-standard

 zoneszones:: us-central1-a, us-central1-bus-central1-a, us-central1-b

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

resturlresturl : Gluster REST service/Heketi service url which provision gluster volumes on

demand. The general format should be IPaddress:PortIPaddress:Port and this is a mandatory

parameter for GlusterFS dynamic provisioner. If Heketi service is exposed as a routable

service in openshift/kubernetes setup, this can have a format similar to

http://heketi-storage-project.cloudapps.mystorage.comhttp://heketi-storage-project.cloudapps.mystorage.com where the fqdn is a

resolvable Heketi service url.

restauthenabledrestauthenabled : Gluster REST service authentication boolean that enables

authentication to the REST server. If this value is "true""true" , restuserrestuser and restuserkeyrestuserkey

or secretNamespacesecretNamespace + secretNamesecretName have to be filled. This option is deprecated,

authentication is enabled when any of restuserrestuser , restuserkeyrestuserkey , secretNamesecretName or

secretNamespacesecretNamespace is specified.

restuserrestuser : Gluster REST service/Heketi user who has access to create volumes in the

Gluster Trusted Pool.

restuserkeyrestuserkey : Gluster REST service/Heketi user’s password which will be used for

authentication to the REST server. This parameter is deprecated in favor of

secretNamespacesecretNamespace + secretNamesecretName .

secretNamespacesecretNamespace , secretNamesecretName : Identification of Secret instance that contains user

password to use when talking to Gluster REST service. These parameters are optional,

empty password will be used when both secretNamespacesecretNamespace and secretNamesecretName are

omitted. The provided secret must have type "kubernetes.io/glusterfs""kubernetes.io/glusterfs" , e.g. created

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

kindkind:: StorageClassStorageClass

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/glusterfskubernetes.io/glusterfs

parametersparameters::

 resturlresturl:: ""http://127.0.0.1:8081"http://127.0.0.1:8081"

 clusteridclusterid:: ""630372ccdc720a92c681fb928f27b53f"630372ccdc720a92c681fb928f27b53f"

 restauthenabledrestauthenabled:: ""true"true"

 restuserrestuser:: ""admin"admin"

 secretNamespacesecretNamespace:: ""default"default"

 secretNamesecretName:: ""heketi-secret"heketi-secret"

 gidMingidMin:: ""40000"40000"

 gidMaxgidMax:: ""50000"50000"

 volumetypevolumetype:: ""replicate:3"replicate:3"

in this way:

Example of a secret can be found in glusterfs-provisioning-secret.yaml.

clusteridclusterid : 630372ccdc720a92c681fb928f27b53f630372ccdc720a92c681fb928f27b53f is the ID of the cluster which will be

used by Heketi when provisioning the volume. It can also be a list of clusterids, for

example:

"8452344e2becec931ece4e33c4674e4e,42982310de6c63381718ccfa6d8cf397""8452344e2becec931ece4e33c4674e4e,42982310de6c63381718ccfa6d8cf397" . This is

an optional parameter.

gidMingidMin , gidMaxgidMax : The minimum and maximum value of GID range for the storage class.

A unique value (GID) in this range (gidMin-gidMax) will be used for dynamically

provisioned volumes. These are optional values. If not specified, the volume will be

provisioned with a value between 2000-2147483647 which are defaults for gidMin and

gidMax respectively.

volumetypevolumetype : The volume type and its parameters can be configured with this optional

value. If the volume type is not mentioned, it’s up to the provisioner to decide the volume

type. For example: ‘Replica volume’:

volumetype:volumetype:

replicate:3replicate:3 where ‘3’ is replica

count. ‘Disperse/EC volume’: volumetype: disperse:4:2volumetype: disperse:4:2 where ‘4’ is data and ‘2’ is the

redundancy count. ‘Distribute volume’: volumetype: nonevolumetype: none

For available volume types and administration options, refer to the Administration Guide.

For further reference information, see How to configure Heketi.

When persistent volumes are dynamically provisioned, the Gluster plugin automatically

creates an endpoint and a headless service in the name gluster-dynamic-<claimname>gluster-dynamic-<claimname> .

The dynamic endpoint and service are automatically deleted when the persistent volume

claim is deleted.

OpenStack Cinder

kubectl create secret generic heketi-secret \kubectl create secret generic heketi-secret \

 --type="kubernetes.io/glusterfs" --from-literal=key='opensesame' \ --type="kubernetes.io/glusterfs" --from-literal=key='opensesame' \

 --namespace=default --namespace=default

https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/glusterfs/glusterfs-secret.yaml
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/part-Overview.html
https://github.com/heketi/heketi/wiki/Setting-up-the-topology

typetype : VolumeType created in Cinder. Default is empty.

availabilityavailability : Availability Zone. If not specified, volumes are generally round-robin-ed

across all active zones where Kubernetes cluster has a node.

vSphere

1. Create a StorageClass with a user specified disk format.

diskformatdiskformat : thinthin , zeroedthickzeroedthick and eagerzeroedthickeagerzeroedthick . Default: "thin""thin" .

2. Create a StorageClass with a disk format on a user specified datastore.

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: goldgold

provisionerprovisioner:: kubernetes.io/cinderkubernetes.io/cinder

parametersparameters::

 typetype:: fastfast

 availabilityavailability:: novanova

 kind: StorageClass kind: StorageClass

 apiVersion: storage.k8s.io/v1 apiVersion: storage.k8s.io/v1

 metadata: metadata:

 name: fast name: fast

 provisioner: kubernetes.io/vsphere-volume provisioner: kubernetes.io/vsphere-volume

 parameters: parameters:

 diskformat: zeroedthick diskformat: zeroedthick

https://docs.openstack.org/user-guide/dashboard-manage-volumes.html

datastoredatastore : The user can also specify the datastore in the StorageClass. The volume will

be created on the datastore specified in the storage class, which in this case is

VSANDatastoreVSANDatastore . This field is optional. If the datastore is not specified, then the volume

will be created on the datastore specified in the vSphere config file used to initialize the

vSphere Cloud Provider.

3. Storage Policy Management inside kubernetes

1. Using existing vCenter SPBM policy

One of the most important features of vSphere for Storage Management is policy

based Management. Storage Policy Based Management (SPBM) is a storage policy

framework that provides a single unified control plane across a broad range of data

services and storage solutions. SPBM enables vSphere administrators to overcome

upfront storage provisioning challenges, such as capacity planning, differentiated

service levels and managing capacity headroom.

The SPBM policies can be specified in the StorageClass using the

storagePolicyNamestoragePolicyName parameter.

2. Virtual SAN policy support inside Kubernetes

Vsphere Infrastructure (VI) Admins will have the ability to specify custom Virtual SAN

Storage Capabilities during dynamic volume provisioning. You can now define storage

requirements, such as performance and availability, in the form of storage capabilities

during dynamic volume provisioning. The storage capability requirements are

converted into a Virtual SAN policy which are then pushed down to the Virtual SAN

layer when a persistent volume (virtual disk) is being created. The virtual disk is

distributed across the Virtual SAN datastore to meet the requirements.

 kind: StorageClass kind: StorageClass

 apiVersion: storage.k8s.io/v1 apiVersion: storage.k8s.io/v1

 metadata: metadata:

 name: fast name: fast

 provisioner: kubernetes.io/vsphere-volume provisioner: kubernetes.io/vsphere-volume

 parameters: parameters:

 diskformat: zeroedthick diskformat: zeroedthick

 datastore: VSANDatastore datastore: VSANDatastore

You can see Storage Policy Based Management for dynamic provisioning of volumes

for more details on how to use storage policies for persistent volumes management.

There are few vSphere examples which you try out for persistent volume management inside

Kubernetes for vSphere.

Ceph RBD

monitorsmonitors : Ceph monitors, comma delimited. This parameter is required.

adminIdadminId : Ceph client ID that is capable of creating images in the pool. Default is “admin”.

adminSecretNamespaceadminSecretNamespace : The namespace for adminSecretadminSecret . Default is “default”.

adminSecretadminSecret : Secret Name for adminIdadminId . This parameter is required. The provided secret

must have type “kubernetes.io/rbd”.

poolpool : Ceph RBD pool. Default is “rbd”.

userIduserId : Ceph client ID that is used to map the RBD image. Default is the same as

adminIdadminId .

userSecretNameuserSecretName : The name of Ceph Secret for userIduserId to map RBD image. It must exist

in the same namespace as PVCs. This parameter is required. The provided secret must

have type “kubernetes.io/rbd”, e.g. created in this way:

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: fastfast

provisionerprovisioner:: kubernetes.io/rbdkubernetes.io/rbd

parametersparameters::

 monitorsmonitors:: 10.16.153.105:678910.16.153.105:6789

 adminIdadminId:: kubekube

 adminSecretNameadminSecretName:: ceph-secretceph-secret

 adminSecretNamespaceadminSecretNamespace:: kube-systemkube-system

 poolpool:: kubekube

 userIduserId:: kubekube

 userSecretNameuserSecretName:: ceph-secret-userceph-secret-user

 fsTypefsType:: ext4ext4

 imageFormatimageFormat:: ""2"2"

 imageFeaturesimageFeatures:: ""layering"layering"

https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/policy-based-mgmt.html
https://github.com/kubernetes/examples/tree/master/staging/volumes/vsphere

fsTypefsType : fsType that is supported by kubernetes. Default: "ext4""ext4" .

imageFormatimageFormat : Ceph RBD image format, “1” or “2”. Default is “1”.

imageFeaturesimageFeatures : This parameter is optional and should only be used if you set

imageFormatimageFormat to “2”. Currently supported features are layeringlayering only. Default is “”, and no

features are turned on.

Quobyte

quobyteAPIServerquobyteAPIServer : API Server of Quobyte in the format

"http(s)://api-server:7860""http(s)://api-server:7860"

registryregistry : Quobyte registry to use to mount the volume. You can specify the registry as

<host>:<port><host>:<port> pair or if you want to specify multiple registries you just have to put a

comma between them e.q. <host1>:<port>,<host2>:<port>,<host3>:<port><host1>:<port>,<host2>:<port>,<host3>:<port> . The

host can be an IP address or if you have a working DNS you can also provide the DNS

names.

kubectl create secret generic ceph-secret --type="kubernetes.io/rbd" \kubectl create secret generic ceph-secret --type="kubernetes.io/rbd" \

 --from-literal=key='QVFEQ1pMdFhPUnQrSmhBQUFYaERWNHJsZ3BsMmNjcDR6RFZST0E9PQ==' \ --from-literal=key='QVFEQ1pMdFhPUnQrSmhBQUFYaERWNHJsZ3BsMmNjcDR6RFZST0E9PQ==' \

 --namespace=kube-system --namespace=kube-system

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

kindkind:: StorageClassStorageClass

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/quobytekubernetes.io/quobyte

parametersparameters::

 quobyteAPIServerquobyteAPIServer:: ""http://138.68.74.142:7860"http://138.68.74.142:7860"

 registryregistry:: ""138.68.74.142:7861"138.68.74.142:7861"

 adminSecretNameadminSecretName:: ""quobyte-admin-secret"quobyte-admin-secret"

 adminSecretNamespaceadminSecretNamespace:: ""kube-system"kube-system"

 useruser:: ""root"root"

 groupgroup:: ""root"root"

 quobyteConfigquobyteConfig:: ""BASE"BASE"

 quobyteTenantquobyteTenant:: ""DEFAULT"DEFAULT"

adminSecretNamespaceadminSecretNamespace : The namespace for adminSecretNameadminSecretName . Default is “default”.

adminSecretNameadminSecretName : secret that holds information about the Quobyte user and the

password to authenticate against the API server. The provided secret must have type

“kubernetes.io/quobyte”, e.g. created in this way:

useruser : maps all access to this user. Default is “root”.

groupgroup : maps all access to this group. Default is “nfsnobody”.

quobyteConfigquobyteConfig : use the specified configuration to create the volume. You can create a

new configuration or modify an existing one with the Web console or the quobyte CLI.

Default is “BASE”.

quobyteTenantquobyteTenant : use the specified tenant ID to create/delete the volume. This Quobyte

tenant has to be already present in Quobyte. Default is “DEFAULT”.

Azure Disk

Azure Unmanaged Disk Storage Class

skuNameskuName : Azure storage account Sku tier. Default is empty.

locationlocation : Azure storage account location. Default is empty.

kubectl create secret generic quobyte-admin-secret \kubectl create secret generic quobyte-admin-secret \

 --type="kubernetes.io/quobyte" --from-literal=key='opensesame' \ --type="kubernetes.io/quobyte" --from-literal=key='opensesame' \

 --namespace=kube-system --namespace=kube-system

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/azure-diskkubernetes.io/azure-disk

parametersparameters::

 skuNameskuName:: Standard_LRSStandard_LRS

 locationlocation:: eastuseastus

 storageAccountstorageAccount:: azure_storage_account_nameazure_storage_account_name

storageAccountstorageAccount : Azure storage account name. If a storage account is provided, it must

reside in the same resource group as the cluster, and locationlocation is ignored. If a storage

account is not provided, a new storage account will be created in the same resource group

as the cluster.

New Azure Disk Storage Class (starting from v1.7.2)

storageaccounttypestorageaccounttype : Azure storage account Sku tier. Default is empty.

kindkind : Possible values are sharedshared (default), dedicateddedicated , and managedmanaged . When kindkind is

sharedshared , all unmanaged disks are created in a few shared storage accounts in the same

resource group as the cluster. When kindkind is dedicateddedicated , a new dedicated storage

account will be created for the new unmanaged disk in the same resource group as the

cluster. When kindkind is managedmanaged , all managed disks are created in the same resource

group as the cluster.

Premium VM can attach both Standard_LRS and Premium_LRS disks, while Standard VM

can only attach Standard_LRS disks.

Managed VM can only attach managed disks and unmanaged VM can only attach

unmanaged disks.

Azure File

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/azure-diskkubernetes.io/azure-disk

parametersparameters::

 storageaccounttypestorageaccounttype:: Standard_LRSStandard_LRS

 kindkind:: SharedShared

skuNameskuName : Azure storage account Sku tier. Default is empty.

locationlocation : Azure storage account location. Default is empty.

storageAccountstorageAccount : Azure storage account name. Default is empty. If a storage account is

not provided, all storage accounts associated with the resource group are searched to find

one that matches skuNameskuName and locationlocation . If a storage account is provided, it must

reside in the same resource group as the cluster, and skuNameskuName and locationlocation are

ignored.

During provision, a secret is created for mounting credentials. If the cluster has enabled both

RBAC and Controller Roles, add the createcreate permission of resource secretsecret for clusterrole

system:controller:persistent-volume-bindersystem:controller:persistent-volume-binder .

Portworx Volume

fsfs : filesystem to be laid out: [none/xfs/ext4] (default: ext4ext4).

block_sizeblock_size : block size in Kbytes (default: 3232).

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: azurefileazurefile

provisionerprovisioner:: kubernetes.io/azure-filekubernetes.io/azure-file

parametersparameters::

 skuNameskuName:: Standard_LRSStandard_LRS

 locationlocation:: eastuseastus

 storageAccountstorageAccount:: azure_storage_account_nameazure_storage_account_name

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: portworx-io-priority-highportworx-io-priority-high

provisionerprovisioner:: kubernetes.io/portworx-volumekubernetes.io/portworx-volume

parametersparameters::

 replrepl:: ""1"1"

 snap_intervalsnap_interval:: ""70"70"

 io_priorityio_priority:: ""high"high"

file:///docs/admin/authorization/rbac/
file:///docs/admin/authorization/rbac/#controller-roles

replrepl : number of synchronous replicas to be provided in the form of replication factor

[1..3] (default: 11) A string is expected here i.e. "1""1" and not 11 .

io_priorityio_priority : determines whether the volume will be created from higher performance

or a lower priority storage [high/medium/low] (default: lowlow).

snap_intervalsnap_interval : clock/time interval in minutes for when to trigger snapshots. Snapshots

are incremental based on difference with the prior snapshot, 0 disables snaps (default: 00).

A string is expected here i.e. "70""70" and not 7070 .

aggregation_levelaggregation_level : specifies the number of chunks the volume would be distributed

into, 0 indicates a non-aggregated volume (default: 00). A string is expected here i.e. "0""0"

and not 00

ephemeralephemeral : specifies whether the volume should be cleaned-up after unmount or should

be persistent. emptyDiremptyDir use case can set this value to true and persistent volumespersistent volumes

use case such as for databases like Cassandra should set to false, [true/false] (default

falsefalse). A string is expected here i.e. "true""true" and not truetrue .

ScaleIO

provisionerprovisioner : attribute is set to kubernetes.io/scaleiokubernetes.io/scaleio

gatewaygateway : address to a ScaleIO API gateway (required)

systemsystem : the name of the ScaleIO system (required)

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/scaleiokubernetes.io/scaleio

parametersparameters::

 gatewaygateway:: https://192.168.99.200:443/apihttps://192.168.99.200:443/api

 systemsystem:: scaleioscaleio

 protectionDomainprotectionDomain:: pd0pd0

 storagePoolstoragePool:: sp1sp1

 storageModestorageMode:: ThinProvisionedThinProvisioned

 secretRefsecretRef:: sio-secretsio-secret

 readOnlyreadOnly:: falsefalse

 fsTypefsType:: xfsxfs

protectionDomainprotectionDomain : the name of the ScaleIO protection domain (required)

storagePoolstoragePool : the name of the volume storage pool (required)

storageModestorageMode : the storage provision mode: ThinProvisionedThinProvisioned (default) or

ThickProvisionedThickProvisioned

secretRefsecretRef : reference to a configured Secret object (required)

readOnlyreadOnly : specifies the access mode to the mounted volume (default false)

fsTypefsType : the file system to use for the volume (default ext4)

The ScaleIO Kubernetes volume plugin requires a configured Secret object. The secret must be

created with type kubernetes.io/scaleiokubernetes.io/scaleio and use the same namespace value as that of the

PVC where it is referenced as shown in the following command:

StorageOS

poolpool : The name of the StorageOS distributed capacity pool to provision the volume from.

Uses the defaultdefault pool which is normally present if not specified.

descriptiondescription : The description to assign to volumes that were created dynamically. All

volume descriptions will be the same for the storage class, but different storage classes

can be used to allow descriptions for different use cases. Defaults to

kubectl create secret generic sio-secret kubectl create secret generic sio-secret --type--type=="kubernetes.io/scaleio""kubernetes.io/scaleio" \\

--from-literal--from-literal==usernameusername==sioadmin sioadmin --from-literal--from-literal==passwordpassword==d2NABDNjMAd2NABDNjMA==== \\

--namespace--namespace==defaultdefault

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: fastfast

provisionerprovisioner:: kubernetes.io/storageoskubernetes.io/storageos

parametersparameters::

 poolpool:: defaultdefault

 descriptiondescription:: Kubernetes volumeKubernetes volume

 fsTypefsType:: ext4ext4

 adminSecretNamespaceadminSecretNamespace:: defaultdefault

 adminSecretNameadminSecretName:: storageos-secretstorageos-secret

KubernetesKubernetes

volumevolume .

fsTypefsType : The default filesystem type to request. Note that user-defined rules within

StorageOS may override this value. Defaults to ext4ext4 .

adminSecretNamespaceadminSecretNamespace : The namespace where the API configuration secret is located.

Required if adminSecretName set.

adminSecretNameadminSecretName : The name of the secret to use for obtaining the StorageOS API

credentials. If not specified, default values will be attempted.

The StorageOS Kubernetes volume plugin can use a Secret object to specify an endpoint and

credentials to access the StorageOS API. This is only required when the defaults have been

changed. The secret must be created with type kubernetes.io/storageoskubernetes.io/storageos as shown in the

following command:

Secrets used for dynamically provisioned volumes may be created in any namespace and

referenced with the adminSecretNamespaceadminSecretNamespace parameter. Secrets used by pre-provisioned

volumes must be created in the same namespace as the PVC that references it.

Local

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Local volumes do not support dynamic provisioning yet, however a StorageClass should still

kubectl create secret generic storageos-secret kubectl create secret generic storageos-secret \\

--type--type=="kubernetes.io/storageos""kubernetes.io/storageos" \\

--from-literal--from-literal==apiAddressapiAddress==tcp://localhost:5705 tcp://localhost:5705 \\

--from-literal--from-literal==apiUsernameapiUsername==storageos storageos \\

--from-literal--from-literal==apiPasswordapiPassword==storageos storageos \\

--namespace--namespace==defaultdefault

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: local-storagelocal-storage

provisionerprovisioner:: kubernetes.io/no-provisionerkubernetes.io/no-provisioner

volumeBindingModevolumeBindingMode:: WaitForFirstConsumerWaitForFirstConsumer

be created to delay volume binding until pod scheduling. This is specified by the

WaitForFirstConsumerWaitForFirstConsumer volume binding mode.

Delaying volume binding allows the scheduler to consider all of a pod’s scheduling constraints

when choosing an appropriate PersistentVolume for a PersistentVolumeClaim.

Dynamic Volume Provisioning

Dynamic volume provisioning allows storage volumes to be created on-demand. Without

dynamic provisioning, cluster administrators have to manually make calls to their cloud or

storage provider to create new storage volumes, and then create PersistentVolumePersistentVolume objects

to represent them in Kubernetes. The dynamic provisioning feature eliminates the need for

cluster administrators to pre-provision storage. Instead, it automatically provisions storage

when it is requested by users.

Background

The implementation of dynamic volume provisioning is based on the API object

StorageClassStorageClass from the API group storage.k8s.iostorage.k8s.io . A cluster administrator can define as

many StorageClassStorageClass objects as needed, each specifying a volume plugin (aka provisioner)

that provisions a volume and the set of parameters to pass to that provisioner when

provisioning. A cluster administrator can define and expose multiple flavors of storage (from

the same or different storage systems) within a cluster, each with a custom set of parameters.

This design also ensures that end users don’t have to worry about the complexity and nuances

of how storage is provisioned, but still have the ability to select from multiple storage options.

More information on storage classes can be found here.

Enabling Dynamic Provisioning

To enable dynamic provisioning, a cluster administrator needs to pre-create one or more

StorageClass objects for users. StorageClass objects define which provisioner should be used

and what parameters should be passed to that provisioner when dynamic provisioning is

invoked. The following manifest creates a storage class “slow” which provisions standard disk-

Background

Enabling Dynamic Provisioning

Using Dynamic Provisioning

Defaulting Behavior

file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/storage/persistent-volumes/#storageclasses

like persistent disks.

The following manifest creates a storage class “fast” which provisions SSD-like persistent

disks.

Using Dynamic Provisioning

Users request dynamically provisioned storage by including a storage class in their

PersistentVolumeClaimPersistentVolumeClaim . Before Kubernetes v1.6, this was done via the

volume.beta.kubernetes.io/storage-classvolume.beta.kubernetes.io/storage-class annotation. However, this annotation is

deprecated since v1.6. Users now can and should instead use the storageClassNamestorageClassName field of

the PersistentVolumeClaimPersistentVolumeClaim object. The value of this field must match the name of a

StorageClassStorageClass configured by the administrator (see below).

To select the “fast” storage class, for example, a user would create the following

PersistentVolumeClaimPersistentVolumeClaim :

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

kindkind:: StorageClassStorageClass

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/gce-pdkubernetes.io/gce-pd

parametersparameters::

 typetype:: pd-standardpd-standard

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

kindkind:: StorageClassStorageClass

metadatametadata::

 namename:: fastfast

provisionerprovisioner:: kubernetes.io/gce-pdkubernetes.io/gce-pd

parametersparameters::

 typetype:: pd-ssdpd-ssd

This claim results in an SSD-like Persistent Disk being automatically provisioned. When the

claim is deleted, the volume is destroyed.

Defaulting Behavior

Dynamic provisioning can be enabled on a cluster such that all claims are dynamically

provisioned if no storage class is specified. A cluster administrator can enable this behavior by:

Marking one StorageClassStorageClass object as default;

Making sure that the DefaultStorageClassDefaultStorageClass admission controller is enabled on the API

server.

An administrator can mark a specific StorageClassStorageClass as default by adding the

storageclass.kubernetes.io/is-default-classstorageclass.kubernetes.io/is-default-class annotation to it. When a default

StorageClassStorageClass exists in a cluster and a user creates a PersistentVolumeClaimPersistentVolumeClaim with

storageClassNamestorageClassName unspecified, the DefaultStorageClassDefaultStorageClass admission controller

automatically adds the storageClassNamestorageClassName field pointing to the default storage class.

Note that there can be at most one default storage class on a cluster, or a

PersistentVolumeClaimPersistentVolumeClaim without storageClassNamestorageClassName explicitly specified cannot be created.

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

metadatametadata::

 namename:: claim1claim1

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 storageClassNamestorageClassName:: fastfast

 resourcesresources::

 requestsrequests::

 storagestorage:: 30Gi30Gi

file:///docs/admin/admission-controllers/#defaultstorageclass

Cluster Administration Overview

The cluster administration overview is for anyone creating or administering a Kubernetes

cluster. It assumes some familiarity with core Kubernetes concepts.

Planning a cluster

See the guides in Picking the Right Solution for examples of how to plan, set up, and configure

Kubernetes clusters. The solutions listed in this article are called distros.

Before choosing a guide, here are some considerations:

Do you just want to try out Kubernetes on your computer, or do you want to build a high-

availability, multi-node cluster? Choose distros best suited for your needs.

If you are designing for high-availability , learn about configuring clusters in multiple

zones.

Will you be using a hosted Kubernetes cluster, such as Google Kubernetes Engine, or

hosting your own cluster?

Will your cluster be on-premises, or in the cloud (IaaS)? Kubernetes does not directly

support hybrid clusters. Instead, you can set up multiple clusters.

If you are configuring Kubernetes on-premises , consider which networking model fits

best.

Will you be running Kubernetes on “bare metal” hardware or on virtual machines (VMs)?

Do you just want to run a cluster, or do you expect to do active development of

Kubernetes project code? If the latter, choose an actively-developed distro. Some distros

only use binary releases, but offer a greater variety of choices.

Planning a cluster

Managing a cluster

Securing a cluster

Securing the kubelet

Optional Cluster Services

file:///docs/concepts/
file:///docs/setup/pick-right-solution/
file:///docs/concepts/cluster-administration/federation/
https://cloud.google.com/kubernetes-engine/
file:///docs/concepts/cluster-administration/networking/

Familiarize yourself with the components needed to run a cluster.

Note: Not all distros are actively maintained. Choose distros which have been tested with a

recent version of Kubernetes.

If you are using a guide involving Salt, see Configuring Kubernetes with Salt.

Managing a cluster

Managing a cluster describes several topics related to the lifecycle of a cluster: creating a

new cluster, upgrading your cluster’s master and worker nodes, performing node

maintenance (e.g. kernel upgrades), and upgrading the Kubernetes API version of a

running cluster.

Learn how to manage nodes.

Learn how to set up and manage the resource quota for shared clusters.

Securing a cluster

Certificates describes the steps to generate certificates using different tool chains.

Kubernetes Container Environment describes the environment for Kubelet managed

containers on a Kubernetes node.

Controlling Access to the Kubernetes API describes how to set up permissions for users

and service accounts.

Authenticating explains authentication in Kubernetes, including the various authentication

options.

Authorization is separate from authentication, and controls how HTTP calls are handled.

Using Admission Controllers explains plug-ins which intercepts requests to the Kubernetes

API server after authentication and authorization.

Using Sysctls in a Kubernetes Cluster describes to an administrator how to use the

sysctlsysctl command-line tool to set kernel parameters .

Auditing describes how to interact with Kubernetes’ audit logs.

file:///docs/admin/cluster-components/
file:///docs/admin/salt/
file:///docs/tasks/administer-cluster/cluster-management/
file:///docs/concepts/nodes/node/
file:///docs/concepts/policy/resource-quotas/
file:///docs/concepts/cluster-administration/certificates/
file:///docs/concepts/containers/container-environment-variables/
file:///docs/admin/accessing-the-api/
file:///docs/admin/authentication/
file:///docs/admin/authorization/
file:///docs/admin/admission-controllers/
file:///docs/concepts/cluster-administration/sysctl-cluster/
file:///docs/tasks/debug-application-cluster/audit/

Securing the kubelet

Master-Node communication

TLS bootstrapping

Kubelet authentication/authorization

Optional Cluster Services

DNS Integration with SkyDNS describes how to resolve a DNS name directly to a

Kubernetes service.

Logging and Monitoring Cluster Activity explains how logging in Kubernetes works and

how to implement it.

file:///docs/concepts/architecture/master-node-communication/
file:///docs/admin/kubelet-tls-bootstrapping/
file:///docs/admin/kubelet-authentication-authorization/
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/concepts/cluster-administration/logging/

Certificates

Creating Certificates

When using client certificate authentication, you can generate certificates manually through

easyrsaeasyrsa , opensslopenssl or cfsslcfssl .

easyrsa

easyrsa can manually generate certificates for your cluster.

1. Download, unpack, and initialize the patched version of easyrsa3.

2. Generate a CA. (--batch--batch set automatic mode. --req-cn--req-cn default CN to use.)

3. Generate server certificate and key. The argument --subject-alt-name--subject-alt-name sets the

possible IPs and DNS names the API server will be accessed with. The

MASTER_CLUSTER_IPMASTER_CLUSTER_IP is usually the first IP from the service CIDR that is specified as the

Creating Certificates

easyrsa

openssl

cfssl

Distributing Self-Signed CA Certificate

Certificates API

curl -LO https://storage.googleapis.com/kubernetes-release/easy-rsa/easy-rsa.tar.gzcurl -LO https://storage.googleapis.com/kubernetes-release/easy-rsa/easy-rsa.tar.gz

tar xzf easy-rsa.tar.gztar xzf easy-rsa.tar.gz

cd easy-rsa-master/easyrsa3cd easy-rsa-master/easyrsa3

./easyrsa init-pki./easyrsa init-pki

./easyrsa --batch "--req-cn=${MASTER_IP}@`date +%s`" build-ca nopass./easyrsa --batch "--req-cn=${MASTER_IP}@`date +%s`" build-ca nopass

--service-cluster-ip-range--service-cluster-ip-range argument for both the API server and the controller

manager component. The argument --days--days is used to set the number of days after

which the certificate expires. The sample below also assume that you are using

cluster.localcluster.local as the default DNS domain name.

4. Copy pki/ca.crtpki/ca.crt , pki/issued/server.crtpki/issued/server.crt , and pki/private/server.keypki/private/server.key to your

directory.

5. Fill in and add the following parameters into the API server start parameters:

openssl

openssl can manually generate certificates for your cluster.

1. Generate a ca.key with 2048bit:

2. According to the ca.key generate a ca.crt (use -days to set the certificate effective time):

./easyrsa --subject-alt-name="IP:${MASTER_IP},"\./easyrsa --subject-alt-name="IP:${MASTER_IP},"\

"IP:${MASTER_CLUSTER_IP},"\"IP:${MASTER_CLUSTER_IP},"\

"DNS:kubernetes,"\"DNS:kubernetes,"\

"DNS:kubernetes.default,"\"DNS:kubernetes.default,"\

"DNS:kubernetes.default.svc,"\"DNS:kubernetes.default.svc,"\

"DNS:kubernetes.default.svc.cluster,"\"DNS:kubernetes.default.svc.cluster,"\

"DNS:kubernetes.default.svc.cluster.local" \"DNS:kubernetes.default.svc.cluster.local" \

--days=10000 \--days=10000 \

build-server-full server nopassbuild-server-full server nopass

--client-ca-file=/yourdirectory/ca.crt--client-ca-file=/yourdirectory/ca.crt

--tls-cert-file=/yourdirectory/server.crt--tls-cert-file=/yourdirectory/server.crt

--tls-private-key-file=/yourdirectory/server.key--tls-private-key-file=/yourdirectory/server.key

openssl genrsa -out ca.key 2048openssl genrsa -out ca.key 2048

3. Generate a server.key with 2048bit:

4. Create a config file for generating a Certificate Signing Request (CSR). Be sure to

substitute the values marked with angle brackets (e.g. <MASTER_IP><MASTER_IP>) with real values

before saving this to a file (e.g. csr.confcsr.conf). Note that the value for MASTER_CLUSTER_IPMASTER_CLUSTER_IP

is the service cluster IP for the API server as described in previous subsection. The sample

below also assume that you are using cluster.localcluster.local as the default DNS domain name.

openssl req -x509 -new -nodes -key ca.key -subj "/CN=${MASTER_IP}" -days 10000 -out ca.crtopenssl req -x509 -new -nodes -key ca.key -subj "/CN=${MASTER_IP}" -days 10000 -out ca.crt

openssl genrsa -out server.key 2048openssl genrsa -out server.key 2048

5. Generate the certificate signing request based on the config file:

[req][req]

default_bits = 2048default_bits = 2048

prompt = noprompt = no

default_md = sha256default_md = sha256

req_extensions = req_extreq_extensions = req_ext

distinguished_name = dndistinguished_name = dn

[dn][dn]

C = <country>C = <country>

ST = <state>ST = <state>

L = <city>L = <city>

O = <organization>O = <organization>

OU = <organization unit>OU = <organization unit>

CN = <MASTER_IP>CN = <MASTER_IP>

[req_ext][req_ext]

subjectAltName = @alt_namessubjectAltName = @alt_names

[alt_names][alt_names]

DNS.1 = kubernetesDNS.1 = kubernetes

DNS.2 = kubernetes.defaultDNS.2 = kubernetes.default

DNS.3 = kubernetes.default.svcDNS.3 = kubernetes.default.svc

DNS.4 = kubernetes.default.svc.clusterDNS.4 = kubernetes.default.svc.cluster

DNS.5 = kubernetes.default.svc.cluster.localDNS.5 = kubernetes.default.svc.cluster.local

IP.1 = <MASTER_IP>IP.1 = <MASTER_IP>

IP.2 = <MASTER_CLUSTER_IP>IP.2 = <MASTER_CLUSTER_IP>

[v3_ext][v3_ext]

authorityKeyIdentifier=keyid,issuer:alwaysauthorityKeyIdentifier=keyid,issuer:always

basicConstraints=CA:FALSEbasicConstraints=CA:FALSE

keyUsage=keyEncipherment,dataEnciphermentkeyUsage=keyEncipherment,dataEncipherment

extendedKeyUsage=serverAuth,clientAuthextendedKeyUsage=serverAuth,clientAuth

subjectAltName=@alt_namessubjectAltName=@alt_names

6. Generate the server certificate using the ca.key, ca.crt and server.csr:

7. View the certificate:

Finally, add the same parameters into the API server start parameters.

cfssl

cfssl is another tool for certificate generation.

1. Download, unpack and prepare the command line tools as shown below. Note that you

may need to adapt the sample commands based on the hardware architecture and cfssl

version you are using.

2. Create a directory to hold the artifacts and initialize cfssl:

openssl req -new -key server.key -out server.csr -config csr.confopenssl req -new -key server.key -out server.csr -config csr.conf

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key \openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key \

-CAcreateserial -out server.crt -days 10000 \-CAcreateserial -out server.crt -days 10000 \

-extensions v3_ext -extfile csr.conf-extensions v3_ext -extfile csr.conf

openssl x509 -noout -text -in ./server.crtopenssl x509 -noout -text -in ./server.crt

curl -LO https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o cfsslcurl -LO https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o cfssl

chmod +x cfsslchmod +x cfssl

curl -LO https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o cfssljsoncurl -LO https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o cfssljson

chmod +x cfssljsonchmod +x cfssljson

curl -LO https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o cfssl-certinfocurl -LO https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o cfssl-certinfo

chmod +x cfssl-certinfochmod +x cfssl-certinfo

3. Create a JSON config file for generating the CA file, for example, ca-config.jsonca-config.json :

4. Create a JSON config file for CA certificate signing request (CSR), for example,

ca-csr.jsonca-csr.json . Be sure the replace the values marked with angle brackets with real values

you want to use.

mkdir certmkdir cert

cd certcd cert

../cfssl print-defaults config > config.json../cfssl print-defaults config > config.json

../cfssl print-defaults csr > csr.json../cfssl print-defaults csr > csr.json

{{

 "signing": { "signing": {

 "default": { "default": {

 "expiry": "8760h" "expiry": "8760h"

 }, },

 "profiles": { "profiles": {

 "kubernetes": { "kubernetes": {

 "usages": ["usages": [

 "signing", "signing",

 "key encipherment", "key encipherment",

 "server auth", "server auth",

 "client auth" "client auth"

],],

 "expiry": "8760h" "expiry": "8760h"

 } }

 } }

 } }

}}

5. Generate CA key (ca-key.pemca-key.pem) and certificate (ca.pemca.pem):

6. Create a JSON config file for generating keys and certificates for the API server as shown

below. Be sure to replace the values in angle brackets with real values you want to use.

The MASTER_CLUSTER_IPMASTER_CLUSTER_IP is the service cluster IP for the API server as described in

previous subsection. The sample below also assume that you are using cluster.localcluster.local

as the default DNS domain name.

{{

 "CN": "kubernetes", "CN": "kubernetes",

 "key": { "key": {

 "algo": "rsa", "algo": "rsa",

 "size": 2048 "size": 2048

 }, },

 "names":[{ "names":[{

 "C": "<country>", "C": "<country>",

 "ST": "<state>", "ST": "<state>",

 "L": "<city>", "L": "<city>",

 "O": "<organization>", "O": "<organization>",

 "OU": "<organization unit>" "OU": "<organization unit>"

 }] }]

}}

../cfssl gencert -initca ca-csr.json | ../cfssljson -bare ca../cfssl gencert -initca ca-csr.json | ../cfssljson -bare ca

7. Generate the key and certificate for the API server, which are by default saved into file

server-key.pemserver-key.pem and server.pemserver.pem respectively:

Distributing Self-Signed CA Certificate

{{

 "CN": "kubernetes", "CN": "kubernetes",

 "hosts": ["hosts": [

 "127.0.0.1", "127.0.0.1",

 "<MASTER_IP>", "<MASTER_IP>",

 "<MASTER_CLUSTER_IP>", "<MASTER_CLUSTER_IP>",

 "kubernetes", "kubernetes",

 "kubernetes.default", "kubernetes.default",

 "kubernetes.default.svc", "kubernetes.default.svc",

 "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster",

 "kubernetes.default.svc.cluster.local" "kubernetes.default.svc.cluster.local"

],],

 "key": { "key": {

 "algo": "rsa", "algo": "rsa",

 "size": 2048 "size": 2048

 }, },

 "names": [{ "names": [{

 "C": "<country>", "C": "<country>",

 "ST": "<state>", "ST": "<state>",

 "L": "<city>", "L": "<city>",

 "O": "<organization>", "O": "<organization>",

 "OU": "<organization unit>" "OU": "<organization unit>"

 }] }]

} }

../cfssl gencert -ca=ca.pem -ca-key=ca-key.pem \../cfssl gencert -ca=ca.pem -ca-key=ca-key.pem \

--config=ca-config.json -profile=kubernetes \--config=ca-config.json -profile=kubernetes \

server-csr.json | ../cfssljson -bare serverserver-csr.json | ../cfssljson -bare server

A client node may refuse to recognize a self-signed CA certificate as valid. For a non-

production deployment, or for a deployment that runs behind a company firewall, you can

distribute a self-signed CA certificate to all clients and refresh the local list for valid certificates.

On each client, perform the following operations:

Certificates API

You can use the certificates.k8s.iocertificates.k8s.io API to provision x509 certificates to use for

authentication as documented here.

$ $ sudo sudo cp ca.crt /usr/local/share/ca-certificates/kubernetes.crtcp ca.crt /usr/local/share/ca-certificates/kubernetes.crt

$ $ sudo sudo update-ca-certificatesupdate-ca-certificates

Updating certificates Updating certificates inin /etc/ssl/certs... /etc/ssl/certs...

1 added, 0 removed1 added, 0 removed;; donedone..

Running hooks Running hooks inin /etc/ca-certificates/update.d.... /etc/ca-certificates/update.d....

donedone..

file:///docs/tasks/tls/managing-tls-in-a-cluster

Cloud Providers

This page explains how to manage Kubernetes running on a specific cloud provider.

AWS

This section describes all the possible configurations which can be used when running

Kubernetes on Amazon Web Services.

Load Balancers

You can setup external load balancers to use specific features in AWS by configuring the

annotations as shown below.

AWS

Load Balancers

OpenStack

cloud.conf

Typical configuration

Global

Load Balancer

Block Storage

Metadata

Router

file:///docs/tasks/access-application-cluster/create-external-load-balancer/

Different settings can be applied to a load balancer service in AWS using annotations. The

following describes the annotations supported on AWS ELBs:

service.beta.kubernetes.io/aws-load-balancer-access-log-emit-intervalservice.beta.kubernetes.io/aws-load-balancer-access-log-emit-interval :

Used to specify access log emit interval.

service.beta.kubernetes.io/aws-load-balancer-access-log-enabledservice.beta.kubernetes.io/aws-load-balancer-access-log-enabled : Used on the

service to enable or disable access logs.

service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-nameservice.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-name :

Used to specify access log s3 bucket name.

service.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefixservice.beta.kubernetes.io/aws-load-balancer-access-log-s3-bucket-prefix :

Used to specify access log s3 bucket prefix.

service.beta.kubernetes.io/aws-load-balancer-additional-resource-tagsservice.beta.kubernetes.io/aws-load-balancer-additional-resource-tags :

Used on the service to specify a comma-separated list of key-value pairs which will be

recorded as additional tags in the ELB. For example:

"Key1=Val1,Key2=Val2,KeyNoVal1=,KeyNoVal2""Key1=Val1,Key2=Val2,KeyNoVal1=,KeyNoVal2" .

service.beta.kubernetes.io/aws-load-balancer-backend-protocolservice.beta.kubernetes.io/aws-load-balancer-backend-protocol : Used on the

service to specify the protocol spoken by the backend (pod) behind a listener. If httphttp

(default) or httpshttps , an HTTPS listener that terminates the connection and parses headers

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: exampleexample

 namespacenamespace:: kube-systemkube-system

 labelslabels::

 runrun:: exampleexample

 annotationsannotations::

 service.beta.kubernetes.io/aws-load-balancer-ssl-certservice.beta.kubernetes.io/aws-load-balancer-ssl-cert:: arn:aws:acm:xx-xxxx-x:xxxxxxxxx:xxxxxxx/xxxxx-xxxx-xxxx-xxxx-xxxxxxxxxarn:aws:acm:xx-xxxx-x:xxxxxxxxx:xxxxxxx/xxxxx-xxxx-xxxx-xxxx-xxxxxxxxx

 service.beta.kubernetes.io/aws-load-balancer-backend-protocolservice.beta.kubernetes.io/aws-load-balancer-backend-protocol:: httphttp

specspec::

 typetype:: LoadBalancerLoadBalancer

 portsports::

 -- portport:: 443443

 targetPorttargetPort:: 55565556

 protocolprotocol:: TCPTCP

 selectorselector::

 appapp:: exampleexample

is created. If set to sslssl or tcptcp , a “raw” SSL listener is used. If set to httphttp and

aws-load-balancer-ssl-certaws-load-balancer-ssl-cert is not used then a HTTP listener is used.

service.beta.kubernetes.io/aws-load-balancer-ssl-certservice.beta.kubernetes.io/aws-load-balancer-ssl-cert : Used on the service to

request a secure listener. Value is a valid certificate ARN. For more, see ELB Listener

Config CertARN is an IAM or CM certificate ARN, e.g.

arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-

123456789012123456789012

.

service.beta.kubernetes.io/aws-load-balancer-connection-draining-enabledservice.beta.kubernetes.io/aws-load-balancer-connection-draining-enabled :

Used on the service to enable or disable connection draining.

service.beta.kubernetes.io/aws-load-balancer-connection-draining-timeoutservice.beta.kubernetes.io/aws-load-balancer-connection-draining-timeout :

Used on the service to specify a connection draining timeout.

service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeoutservice.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout : Used

on the service to specify the idle connection timeout.

service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-balancing-

enabledenabled

: Used on the service to enable or disable cross-zone load balancing.

service.beta.kubernetes.io/aws-load-balancer-extra-security-groupsservice.beta.kubernetes.io/aws-load-balancer-extra-security-groups : Used on

the service to specify additional security groups to be added to ELB created

service.beta.kubernetes.io/aws-load-balancer-internalservice.beta.kubernetes.io/aws-load-balancer-internal : Used on the service to

indicate that we want an internal ELB.

service.beta.kubernetes.io/aws-load-balancer-proxy-protocolservice.beta.kubernetes.io/aws-load-balancer-proxy-protocol : Used on the

service to enable the proxy protocol on an ELB. Right now we only accept the value **

which means enable the proxy protocol on all ELB backends. In the future we could adjust

this to allow setting the proxy protocol only on certain backends.

service.beta.kubernetes.io/aws-load-balancer-ssl-portsservice.beta.kubernetes.io/aws-load-balancer-ssl-ports : Used on the service to

specify a comma-separated list of ports that will use SSL/HTTPS listeners. Defaults to **

(all)

The information for the annotations for AWS is taken from the comments on aws.go

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html
https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/providers/aws/aws.go

OpenStack

This section describes all the possible configurations which can be used when using

OpenStack with Kubernetes. The OpenStack cloud provider implementation for Kubernetes

supports the use of these OpenStack services from the underlying cloud, where available:

Service API Version(s) Required

Block Storage (Cinder) V1†, V2, V3 No

Compute (Nova) V2 No

Identity (Keystone) V2‡, V3 Yes

Load Balancing (Neutron) V1§, V2 No

Load Balancing (Octavia) V2 No

† Block Storage V1 API support is deprecated, Block Storage V3 API support was added in

Kubernetes 1.9.

‡ Identity V2 API support is deprecated and will be removed from the provider in a future

release. As of the “Queens” release, OpenStack will no longer expose the Identity V2 API.

§ Load Balancing V1 API support was removed in Kubernetes 1.9.

Service discovery is achieved by listing the service catalog managed by OpenStack Identity

(Keystone) using the auth-urlauth-url provided in the provider configuration. The provider will

gracefully degrade in functionality when OpenStack services other than Keystone are not

available and simply disclaim support for impacted features. Certain features are also enabled

or disabled based on the list of extensions published by Neutron in the underlying cloud.

cloud.conf

Kubernetes knows how to interact with OpenStack via the file cloud.conf. It is the file that will

provide Kubernetes with credentials and location for the OpenStack auth endpoint. You can

create a cloud.conf file by specifying the following details in it

Typical configuration

This is an example of a typical configuration that touches the values that most often need to

be set. It points the provider at the OpenStack cloud’s Keystone endpoint, provides details for

how to authenticate with it, and configures the load balancer:

Global

These configuration options for the OpenStack provider pertain to its global configuration and

should appear in the [Global][Global] section of the cloud.confcloud.conf file:

auth-urlauth-url (Required): The URL of the keystone API used to authenticate. On OpenStack

control panels, this can be found at Access and Security > API Access > Credentials.

usernameusername (Required): Refers to the username of a valid user set in keystone.

passwordpassword (Required): Refers to the password of a valid user set in keystone.

tenant-idtenant-id (Required): Used to specify the id of the project where you want to create your

resources.

tenant-nametenant-name (Optional): Used to specify the name of the project where you want to

create your resources.

trust-idtrust-id (Optional): Used to specify the identifier of the trust to use for authorization. A

trust represents a user’s (the trustor) authorization to delegate roles to another user (the

trustee), and optionally allow the trustee to impersonate the trustor. Available trusts are

found under the /v3/OS-TRUST/trusts/v3/OS-TRUST/trusts endpoint of the Keystone API.

domain-iddomain-id (Optional): Used to specify the id of the domain your user belongs to.

domain-namedomain-name (Optional): Used to specify the name of the domain your user belongs to.

regionregion (Optional): Used to specify the identifier of the region to use when running on a

multi-region OpenStack cloud. A region is a general division of an OpenStack deployment.

[[GlobalGlobal]]

username=userusername=user

password=passpassword=pass

auth-url=https://<keystone_ip>/identity/v3auth-url=https://<keystone_ip>/identity/v3

tenant-id=c869168a828847f39f7f06edd7305637tenant-id=c869168a828847f39f7f06edd7305637

domain-id=2a73b8f597c04551a0fdc8e95544be8adomain-id=2a73b8f597c04551a0fdc8e95544be8a

[[LoadBalancerLoadBalancer]]

subnet-id=6937f8fa-858d-4bc9-a3a5-18d2c957166asubnet-id=6937f8fa-858d-4bc9-a3a5-18d2c957166a

Although a region does not have a strict geographical connotation, a deployment can use a

geographical name for a region identifier such as us-eastus-east . Available regions are found

under the /v3/regions/v3/regions endpoint of the Keystone API.

ca-fileca-file (Optional): Used to specify the path to your custom CA file.

When using Keystone V3 - which changes tenant to project - the tenant-idtenant-id value is

automatically mapped to the project construct in the API.

Load Balancer

These configuration options for the OpenStack provider pertain to the load balancer and

should appear in the [LoadBalancer][LoadBalancer] section of the cloud.confcloud.conf file:

lb-versionlb-version (Optional): Used to override automatic version detection. Valid values are

v1v1 or v2v2 . Where no value is provided automatic detection will select the highest

supported version exposed by the underlying OpenStack cloud.

use-octaviause-octavia (Optional): Used to determine whether to look for and use an Octavia

LBaaS V2 service catalog endpoint. Valid values are truetrue or falsefalse . Where truetrue is

specified and an Octaiva LBaaS V2 entry can not be found, the provider will fall back and

attempt to find a Neutron LBaaS V2 endpoint instead. The default value is falsefalse .

subnet-idsubnet-id (Optional): Used to specify the id of the subnet you want to create your

loadbalancer on. Can be found at Network > Networks. Click on the respective network to

get its subnets.

floating-network-idfloating-network-id (Optional): If specified, will create a floating IP for the load

balancer.

lb-methodlb-method (Optional): Used to specify algorithm by which load will be distributed

amongst members of the load balancer pool. The value can be ROUND_ROBINROUND_ROBIN ,

LEAST_CONNECTIONSLEAST_CONNECTIONS , or SOURCE_IPSOURCE_IP . The default behavior if none is specified is

ROUND_ROBINROUND_ROBIN .

lb-providerlb-provider (Optional): Used to specify the provider of the load balancer. If not

specified, the default provider service configured in neutron will be used.

create-monitorcreate-monitor (Optional): Indicates whether or not to create a health monitor for the

Neutron load balancer. Valid values are truetrue and falsefalse . The default is falsefalse . When

truetrue is specified then monitor-delaymonitor-delay , monitor-timeoutmonitor-timeout , and monitor-max-retriesmonitor-max-retries

must also be set.

monitor-delaymonitor-delay (Optional): The time, in seconds, between sending probes to members of

the load balancer.

monitor-timeoutmonitor-timeout (Optional): Maximum number of seconds for a monitor to wait for a

ping reply before it times out. The value must be less than the delay value.

monitor-max-retriesmonitor-max-retries (Optional): Number of permissible ping failures before changing

the load balancer member’s status to INACTIVE. Must be a number between 1 and 10.

manage-security-groupsmanage-security-groups (Optional): Determines whether or not the load balancer

should automatically manage the security group rules. Valid values are truetrue and falsefalse .

The default is falsefalse . When truetrue is specified node-security-groupnode-security-group must also be

supplied.

node-security-groupnode-security-group (Optional): ID of the security group to manage.

Block Storage

These configuration options for the OpenStack provider pertain to block storage and should

appear in the [BlockStorage][BlockStorage] section of the cloud.confcloud.conf file:

bs-versionbs-version (Optional): Used to override automatic version detection. Valid values are

v1v1 , v2v2 , v3v3 and autoauto . When autoauto is specified automatic detection will select the

highest supported version exposed by the underlying OpenStack cloud. The default value if

none is provided is autoauto .

trust-device-pathtrust-device-path (Optional): In most scenarios the block device names provided by

Cinder (e.g. /dev/vda/dev/vda) can not be trusted. This boolean toggles this behavior. Setting it to

truetrue results in trusting the block device names provided by Cinder. The default value of

falsefalse results in the discovery of the device path based on its serial number and

/dev/disk/by-id/dev/disk/by-id mapping and is the recommended approach.

ignore-volume-azignore-volume-az (Optional): Used to influence availability zone use when attaching

Cinder volumes. When Nova and Cinder have different availability zones, this should be set

to truetrue . This is most commonly the case where there are many Nova availability zones

but only one Cinder availability zone. The default value is falsefalse to preserve the behavior

used in earlier releases, but may change in the future.

If deploying Kubernetes versions <= 1.8 on an OpenStack deployment that uses paths rather

than ports to differentiate between endpoints it may be necessary to explicitly set the

bs-versionbs-version parameter. A path based endpoint is of the form http://foo.bar/volumehttp://foo.bar/volume while

a port based endpoint is of the form http://foo.bar:xxxhttp://foo.bar:xxx .

In environments that use path based endpoints and Kubernetes is using the older auto-

detection logic a

BS API version autodetectionBS API version autodetection

failed.failed. error will be returned on

attempting volume detachment. To workaround this issue it is possible to force the use of

Cinder API version 2 by adding this to the cloud provider configuration:

Metadata

These configuration options for the OpenStack provider pertain to metadata and should

appear in the [Metadata][Metadata] section of the cloud.confcloud.conf file:

search-ordersearch-order (Optional): This configuration key influences the way that the provider

retrieves metadata relating to the instance(s) in which it runs. The default value of

configDrive,metadataServiceconfigDrive,metadataService results in the provider retrieving metadata relating to the

instance from the config drive first if available and then the metadata service. Alternative

values are:

configDriveconfigDrive - Only retrieve instance metadata from the configuration drive.

metadataServicemetadataService - Only retrieve instance metadata from the metadata service.

metadataService,configDrivemetadataService,configDrive - Retrieve instance metadata from the metadata

service first if available, then the configuration drive.

Influencing this behavior may be desirable as the metadata on the configuration drive may

grow stale over time, whereas the metadata service always provides the most up to date

view. Not all OpenStack clouds provide both configuration drive and metadata service

[[BlockStorageBlockStorage]]

bs-version=v2bs-version=v2

though and only one or the other may be available which is why the default is to check

both.

Router

These configuration options for the OpenStack provider pertain to the kubenet Kubernetes

network plugin and should appear in the [Router][Router] section of the cloud.confcloud.conf file:

router-idrouter-id (Optional): If the underlying cloud’s Neutron deployment supports the

extraroutesextraroutes extension then use router-idrouter-id to specify a router to add routes to. The

router chosen must span the private networks containing your cluster nodes (typically

there is only one node network, and this value should be the default router for the node

network). This value is required to use kubenet on OpenStack.

https://kubernetes.io/docs/concepts/cluster-administration/network-plugins/#kubenet
https://kubernetes.io/docs/concepts/cluster-administration/network-plugins/#kubenet

Managing Resources

You’ve deployed your application and exposed it via a service. Now what? Kubernetes provides

a number of tools to help you manage your application deployment, including scaling and

updating. Among the features that we will discuss in more depth are configuration files and

labels.

Organizing resource configurations

Many applications require multiple resources to be created, such as a Deployment and a

Service. Management of multiple resources can be simplified by grouping them together in the

same file (separated by ------ in YAML). For example:

nginx-app.yamlnginx-app.yaml

Organizing resource configurations

Bulk operations in kubectl

Using labels effectively

Canary deployments

Updating labels

Updating annotations

Scaling your application

In-place updates of resources

kubectl apply

kubectl edit

kubectl patch

Disruptive updates

Updating your application without a service outage

What’s next?

file:///docs/concepts/configuration/overview/
file:///docs/concepts/overview/working-with-objects/labels/
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/nginx-app.yaml

nginx-app.yamlnginx-app.yaml

Multiple resources can be created the same way as a single resource:

The resources will be created in the order they appear in the file. Therefore, it’s best to specify

the service first, since that will ensure the scheduler can spread the pods associated with the

service as they are created by the controller(s), such as Deployment.

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: my-nginx-svcmy-nginx-svc

 labelslabels::

 appapp:: nginxnginx

specspec::

 typetype:: LoadBalancerLoadBalancer

 portsports::

 -- portport:: 8080

 selectorselector::

 appapp:: nginxnginx

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: my-nginxmy-nginx

 labelslabels::

 appapp:: nginxnginx

specspec::

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/concepts/cluster-administration/nginx-app.yaml https://k8s.io/docs/concepts/cluster-administration/nginx-app.yaml

service service "my-nginx-svc""my-nginx-svc" created created

deployment deployment "my-nginx""my-nginx" created created

kubectlkubectl

createcreate also accepts multiple -f-f arguments:

And a directory can be specified rather than or in addition to individual files:

kubectlkubectl will read any files with suffixes .yaml.yaml , .yml.yml , or .json.json .

It is a recommended practice to put resources related to the same microservice or application

tier into the same file, and to group all of the files associated with your application in the same

directory. If the tiers of your application bind to each other using DNS, then you can then simply

deploy all of the components of your stack en masse.

A URL can also be specified as a configuration source, which is handy for deploying directly

from configuration files checked into github:

Bulk operations in kubectl

Resource creation isn’t the only operation that kubectlkubectl can perform in bulk. It can also extract

resource names from configuration files in order to perform other operations, in particular to

delete the same resources you created:

In the case of just two resources, it’s also easy to specify both on the command line using the

resource/name syntax:

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/concepts/cluster-administration/nginx/nginx-svc.yaml https://k8s.io/docs/concepts/cluster-administration/nginx/nginx-svc.yaml

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/concepts/cluster-administration/nginx/ https://k8s.io/docs/concepts/cluster-administration/nginx/

$ $ kubectl create kubectl create -f-f https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/nginx-deployment.yaml https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/nginx-deployment.yaml

deployment deployment "nginx-deployment""nginx-deployment" created created

$ $ kubectl delete kubectl delete -f-f https://k8s.io/docs/concepts/cluster-administration/nginx-app.yaml https://k8s.io/docs/concepts/cluster-administration/nginx-app.yaml

deployment deployment "my-nginx""my-nginx" deleted deleted

service service "my-nginx-svc""my-nginx-svc" deleted deleted

For larger numbers of resources, you’ll find it easier to specify the selector (label query)

specified using -l-l or --selector--selector , to filter resources by their labels:

Because kubectlkubectl outputs resource names in the same syntax it accepts, it’s easy to chain

operations using $()$() or xargsxargs :

With the above commands, we first create resources under

docs/concepts/cluster-administration/nginx/docs/concepts/cluster-administration/nginx/ and print the resources created with

-o name-o name output format (print each resource as resource/name). Then we grepgrep only the

“service”, and then print it with

kubectlkubectl

getget .

If you happen to organize your resources across several subdirectories within a particular

directory, you can recursively perform the operations on the subdirectories also, by specifying

--recursive--recursive or -R-R alongside the --filename,-f--filename,-f flag.

For instance, assume there is a directory project/k8s/developmentproject/k8s/development that holds all of the

manifests needed for the development environment, organized by resource type:

$ $ kubectl delete deployments/my-nginx services/my-nginx-svckubectl delete deployments/my-nginx services/my-nginx-svc

$ $ kubectl delete deployment,services kubectl delete deployment,services -l-l appapp==nginxnginx

deployment deployment "my-nginx""my-nginx" deleted deleted

service service "my-nginx-svc""my-nginx-svc" deleted deleted

$ $ kubectl get kubectl get $($(kubectl create kubectl create -f-f docs/concepts/cluster-administration/nginx/ docs/concepts/cluster-administration/nginx/

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

my-nginx-svc 10.0.0.208 <pending> 80/TCP 0smy-nginx-svc 10.0.0.208 <pending> 80/TCP 0s

project/k8s/developmentproject/k8s/development

├── configmap configmap

│ └── my-configmap.yaml my-configmap.yaml

├── deployment deployment

│ └── my-deployment.yaml my-deployment.yaml

└── pvc pvc

 └── my-pvc.yaml my-pvc.yaml

By default, performing a bulk operation on project/k8s/developmentproject/k8s/development will stop at the first

level of the directory, not processing any subdirectories. If we had tried to create the resources

in this directory using the following command, we would have encountered an error:

Instead, specify the --recursive--recursive or -R-R flag with the --filename,-f--filename,-f flag as such:

The --recursive--recursive flag works with any operation that accepts the --filename,-f--filename,-f flag such

as: kubectl {create,get,delete,describe,rollout} etc.kubectl {create,get,delete,describe,rollout} etc.

The --recursive--recursive flag also works when multiple -f-f arguments are provided:

If you’re interested in learning more about kubectlkubectl , go ahead and read kubectl Overview.

Using labels effectively

The examples we’ve used so far apply at most a single label to any resource. There are many

scenarios where multiple labels should be used to distinguish sets from one another.

For instance, different applications would use different values for the appapp label, but a multi-tier

application, such as the guestbook example, would additionally need to distinguish each tier.

The frontend could carry the following labels:

$ $ kubectl create kubectl create -f-f project/k8s/development project/k8s/development

error: you must provide one or more resources by argument or filename error: you must provide one or more resources by argument or filename ((.json|.yaml|.yml|stdin.json|.yaml|.yml|stdin

$ $ kubectl create kubectl create -f-f project/k8s/development project/k8s/development --recursive--recursive

configmap configmap "my-config""my-config" created created

deployment deployment "my-deployment""my-deployment" created created

persistentvolumeclaim persistentvolumeclaim "my-pvc""my-pvc" created created

$ $ kubectl create kubectl create -f-f project/k8s/namespaces project/k8s/namespaces -f-f project/k8s/development project/k8s/development --recursive--recursive

namespace namespace "development""development" created created

namespace namespace "staging""staging" created created

configmap configmap "my-config""my-config" created created

deployment deployment "my-deployment""my-deployment" created created

persistentvolumeclaim persistentvolumeclaim "my-pvc""my-pvc" created created

file:///docs/reference/kubectl/overview/
https://github.com/kubernetes/examples/tree/master/guestbook/

while the Redis master and slave would have different tiertier labels, and perhaps even an

additional rolerole label:

and

The labels allow us to slice and dice our resources along any dimension specified by a label:

Canary deployments

Another scenario where multiple labels are needed is to distinguish deployments of different

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: backendbackend

 rolerole:: mastermaster

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: backendbackend

 rolerole:: slaveslave

$ $ kubectl create kubectl create -f-f examples/guestbook/all-in-one/guestbook-all-in-one.yaml examples/guestbook/all-in-one/guestbook-all-in-one.yaml

$ $ kubectl get pods kubectl get pods -Lapp-Lapp -Ltier-Ltier -Lrole-Lrole

NAME READY STATUS RESTARTS AGE APP TIER ROLENAME READY STATUS RESTARTS AGE APP TIER ROLE

guestbook-fe-4nlpb 1/1 Running 0 1m guestbook frontend <none>guestbook-fe-4nlpb 1/1 Running 0 1m guestbook frontend <none>

guestbook-fe-ght6d 1/1 Running 0 1m guestbook frontend <none>guestbook-fe-ght6d 1/1 Running 0 1m guestbook frontend <none>

guestbook-fe-jpy62 1/1 Running 0 1m guestbook frontend <none>guestbook-fe-jpy62 1/1 Running 0 1m guestbook frontend <none>

guestbook-redis-master-5pg3b 1/1 Running 0 1m guestbook backend masterguestbook-redis-master-5pg3b 1/1 Running 0 1m guestbook backend master

guestbook-redis-slave-2q2yf 1/1 Running 0 1m guestbook backend slaveguestbook-redis-slave-2q2yf 1/1 Running 0 1m guestbook backend slave

guestbook-redis-slave-qgazl 1/1 Running 0 1m guestbook backend slaveguestbook-redis-slave-qgazl 1/1 Running 0 1m guestbook backend slave

my-nginx-divi2 1/1 Running 0 29m nginx <none> <none>my-nginx-divi2 1/1 Running 0 29m nginx <none> <none>

my-nginx-o0ef1 1/1 Running 0 29m nginx <none> <none>my-nginx-o0ef1 1/1 Running 0 29m nginx <none> <none>

$ $ kubectl get pods kubectl get pods -lapp-lapp==guestbook,roleguestbook,role==slaveslave

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

guestbook-redis-slave-2q2yf 1/1 Running 0 3mguestbook-redis-slave-2q2yf 1/1 Running 0 3m

guestbook-redis-slave-qgazl 1/1 Running 0 3mguestbook-redis-slave-qgazl 1/1 Running 0 3m

releases or configurations of the same component. It is common practice to deploy a canary

of a new application release (specified via image tag in the pod template) side by side with the

previous release so that the new release can receive live production traffic before fully rolling it

out.

For instance, you can use a tracktrack label to differentiate different releases.

The primary, stable release would have a tracktrack label with value as stablestable :

and then you can create a new release of the guestbook frontend that carries the tracktrack label

with different value (i.e. canarycanary), so that two sets of pods would not overlap:

The frontend service would span both sets of replicas by selecting the common subset of their

labels (i.e. omitting the tracktrack label), so that the traffic will be redirected to both applications:

You can tweak the number of replicas of the stable and canary releases to determine the ratio

of each release that will receive live production traffic (in this case, 3:1). Once you’re confident,

you can update the stable track to the new application release and remove the canary one.

 namename:: frontendfrontend

 replicasreplicas:: 33

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

 tracktrack:: stablestable

 imageimage:: gb-frontend:v3gb-frontend:v3

 namename:: frontend-canaryfrontend-canary

 replicasreplicas:: 11

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

 tracktrack:: canarycanary

 imageimage:: gb-frontend:v4gb-frontend:v4

 selectorselector::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

For a more concrete example, check the tutorial of deploying Ghost.

Updating labels

Sometimes existing pods and other resources need to be relabeled before creating new

resources. This can be done with kubectl labelkubectl label . For example, if you want to label all your

nginx pods as frontend tier, simply run:

This first filters all pods with the label “app=nginx”, and then labels them with the “tier=fe”. To

see the pods you just labeled, run:

This outputs all “app=nginx” pods, with an additional label column of pods’ tier (specified with

-L-L or --label-columns--label-columns).

For more information, please see labels and kubectl label.

Updating annotations

Sometimes you would want to attach annotations to resources. Annotations are arbitrary non-

identifying metadata for retrieval by API clients such as tools, libraries, etc. This can be done

with

kubectlkubectl

annotateannotate . For example:

$ $ kubectl label pods kubectl label pods -l-l appapp==nginx nginx tiertier==fefe

pod pod "my-nginx-2035384211-j5fhi""my-nginx-2035384211-j5fhi" labeled labeled

pod pod "my-nginx-2035384211-u2c7e""my-nginx-2035384211-u2c7e" labeled labeled

pod pod "my-nginx-2035384211-u3t6x""my-nginx-2035384211-u3t6x" labeled labeled

$ $ kubectl get pods kubectl get pods -l-l appapp==nginx nginx -L-L tier tier

NAME READY STATUS RESTARTS AGE TIERNAME READY STATUS RESTARTS AGE TIER

my-nginx-2035384211-j5fhi 1/1 Running 0 23m femy-nginx-2035384211-j5fhi 1/1 Running 0 23m fe

my-nginx-2035384211-u2c7e 1/1 Running 0 23m femy-nginx-2035384211-u2c7e 1/1 Running 0 23m fe

my-nginx-2035384211-u3t6x 1/1 Running 0 23m femy-nginx-2035384211-u3t6x 1/1 Running 0 23m fe

https://github.com/kelseyhightower/talks/tree/master/kubecon-eu-2016/demo#deploy-a-canary
file:///docs/concepts/overview/working-with-objects/labels/
file:///docs/reference/generated/kubectl/kubectl-commands/#label

For more information, please see annotations and kubectl annotate document.

Scaling your application

When load on your application grows or shrinks, it’s easy to scale with kubectlkubectl . For instance,

to decrease the number of nginx replicas from 3 to 1, do:

Now you only have one pod managed by the deployment.

To have the system automatically choose the number of nginx replicas as needed, ranging

from 1 to 3, do:

Now your nginx replicas will be scaled up and down as needed, automatically.

For more information, please see kubectl scale, kubectl autoscale and horizontal pod

autoscaler document.

In-place updates of resources

$ $ kubectl annotate pods my-nginx-v4-9gw19 kubectl annotate pods my-nginx-v4-9gw19 descriptiondescription=='my frontend running nginx''my frontend running nginx'

$ $ kubectl get pods my-nginx-v4-9gw19 kubectl get pods my-nginx-v4-9gw19 -o-o yaml yaml

apiversion: v1apiversion: v1

kind: podkind: pod

metadata:metadata:

 annotations: annotations:

 description: my frontend running nginx description: my frontend running nginx

......

$ $ kubectl scale deployment/my-nginx kubectl scale deployment/my-nginx --replicas--replicas==11

deployment deployment "my-nginx""my-nginx" scaled scaled

$ $ kubectl get pods kubectl get pods -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

my-nginx-2035384211-j5fhi 1/1 Running 0 30mmy-nginx-2035384211-j5fhi 1/1 Running 0 30m

$ $ kubectl autoscale deployment/my-nginx kubectl autoscale deployment/my-nginx --min--min==1 1 --max--max==33

deployment deployment "my-nginx""my-nginx" autoscaled autoscaled

file:///docs/concepts/overview/working-with-objects/annotations/
file:///docs/reference/generated/kubectl/kubectl-commands/#annotate
file:///docs/reference/generated/kubectl/kubectl-commands/#scale
file:///docs/reference/generated/kubectl/kubectl-commands/#autoscale
file:///docs/tasks/run-application/horizontal-pod-autoscale/

Sometimes it’s necessary to make narrow, non-disruptive updates to resources you’ve created.

kubectl apply

It is suggested to maintain a set of configuration files in source control (see configuration as

code), so that they can be maintained and versioned along with the code for the resources they

configure. Then, you can use kubectl applykubectl apply to push your configuration changes to the

cluster.

This command will compare the version of the configuration that you’re pushing with the

previous version and apply the changes you’ve made, without overwriting any automated

changes to properties you haven’t specified.

Note that kubectl applykubectl apply attaches an annotation to the resource in order to determine the

changes to the configuration since the previous invocation. When it’s invoked,

kubectl applykubectl apply does a three-way diff between the previous configuration, the provided input

and the current configuration of the resource, in order to determine how to modify the

resource.

Currently, resources are created without this annotation, so the first invocation of

kubectl applykubectl apply will fall back to a two-way diff between the provided input and the current

configuration of the resource. During this first invocation, it cannot detect the deletion of

properties set when the resource was created. For this reason, it will not remove them.

All subsequent calls to kubectl applykubectl apply , and other commands that modify the configuration,

such as kubectl replacekubectl replace and kubectl editkubectl edit , will update the annotation, allowing

subsequent calls to kubectl applykubectl apply to detect and perform deletions using a three-way diff.

Note: To use apply, always create resource initially with either kubectl applykubectl apply or

kubectl create --save-kubectl create --save-

configconfig .

$ $ kubectl apply kubectl apply -f-f docs/concepts/cluster-administration/nginx/nginx-deployment.yaml docs/concepts/cluster-administration/nginx/nginx-deployment.yaml

deployment deployment "my-nginx""my-nginx" configured configured

http://martinfowler.com/bliki/InfrastructureAsCode.html
file:///docs/reference/generated/kubectl/kubectl-commands/#apply

kubectl edit

Alternatively, you may also update resources with kubectl editkubectl edit :

This is equivalent to first getget the resource, edit it in text editor, and then applyapply the resource

with the updated version:

This allows you to do more significant changes more easily. Note that you can specify the

editor with your EDITOREDITOR or KUBE_EDITORKUBE_EDITOR environment variables.

For more information, please see kubectl edit document.

kubectl patch

You can use kubectl patchkubectl patch to update API objects in place. This command supports JSON

patch, JSON merge patch, and strategic merge patch. See Update API Objects in Place Using

kubectl patch and kubectl patch.

Disruptive updates

In some cases, you may need to update resource fields that cannot be updated once initialized,

or you may just want to make a recursive change immediately, such as to fix broken pods

created by a Deployment. To change such fields, use

replace --replace --

forceforce , which deletes and re-

creates the resource. In this case, you can simply modify your original configuration file:

$ $ kubectl edit deployment/my-nginxkubectl edit deployment/my-nginx

$ $ kubectl get deployment my-nginx kubectl get deployment my-nginx -o-o yaml yaml >> /tmp/nginx.yaml /tmp/nginx.yaml

$ $ vi /tmp/nginx.yamlvi /tmp/nginx.yaml

do some edit, and then save the file# do some edit, and then save the file
$ $ kubectl apply kubectl apply -f-f /tmp/nginx.yaml /tmp/nginx.yaml

deployment deployment "my-nginx""my-nginx" configured configured

$ $ rm /tmp/nginx.yamlrm /tmp/nginx.yaml

$ $ kubectl replace kubectl replace -f-f docs/concepts/cluster-administration/nginx/nginx-deployment.yaml docs/concepts/cluster-administration/nginx/nginx-deployment.yaml

deployment deployment "my-nginx""my-nginx" deleted deleted

deployment deployment "my-nginx""my-nginx" replaced replaced

file:///docs/reference/generated/kubectl/kubectl-commands/#edit
file:///docs/tasks/run-application/update-api-object-kubectl-patch/
file:///docs/reference/generated/kubectl/kubectl-commands/#patch

Updating your application without a service outage

At some point, you’ll eventually need to update your deployed application, typically by

specifying a new image or image tag, as in the canary deployment scenario above. kubectlkubectl

supports several update operations, each of which is applicable to different scenarios.

We’ll guide you through how to create and update applications with Deployments. If your

deployed application is managed by Replication Controllers, you should read how to use

kubectl rolling-kubectl rolling-

updateupdate instead.

Let’s say you were running version 1.7.9 of nginx:

To update to version 1.9.1, simply change .spec.template.spec.containers[0].image.spec.template.spec.containers[0].image

from nginx:1.7.9nginx:1.7.9 to nginx:1.9.1nginx:1.9.1 , with the kubectl commands we learned above.

That’s it! The Deployment will declaratively update the deployed nginx application progressively

behind the scene. It ensures that only a certain number of old replicas may be down while they

are being updated, and only a certain number of new replicas may be created above the

desired number of pods. To learn more details about it, visit Deployment page.

What’s next?

Learn about how to use kubectlkubectl for application introspection and debugging.

Configuration Best Practices and Tips

$ $ kubectl run my-nginx kubectl run my-nginx --image--image==nginx:1.7.9 nginx:1.7.9 --replicas--replicas==33

deployment deployment "my-nginx""my-nginx" created created

$ $ kubectl edit deployment/my-nginxkubectl edit deployment/my-nginx

file:///docs/tasks/run-application/rolling-update-replication-controller/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/tasks/debug-application-cluster/debug-application-introspection/
file:///docs/concepts/configuration/overview/

Cluster Networking

Kubernetes approaches networking somewhat differently than Docker does by default. There

are 4 distinct networking problems to solve:

1. Highly-coupled container-to-container communications: this is solved by pods and

localhostlocalhost communications.

2. Pod-to-Pod communications: this is the primary focus of this document.

3. Pod-to-Service communications: this is covered by services.

4. External-to-Service communications: this is covered by services.

Summary

Summary

Docker model

Kubernetes model

How to achieve this

ACI

Big Cloud Fabric from Big Switch Networks

Cilium

Contiv

Contrail

Flannel

Google Compute Engine (GCE)

Kube-router

L2 networks and linux bridging

Multus (a Multi Network plugin)

NSX-T

Nuage Networks VCS (Virtualized Cloud Services)

OpenVSwitch

OVN (Open Virtual Networking)

Project Calico

Romana

Weave Net from Weaveworks

CNI-Genie from Huawei

Other reading

file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/service/

Kubernetes assumes that pods can communicate with other pods, regardless of which host

they land on. Every pod gets its own IP address so you do not need to explicitly create links

between pods and you almost never need to deal with mapping container ports to host ports.

This creates a clean, backwards-compatible model where pods can be treated much like VMs

or physical hosts from the perspectives of port allocation, naming, service discovery, load

balancing, application configuration, and migration.

There are requirements imposed on how you set up your cluster networking to achieve this.

Docker model

Before discussing the Kubernetes approach to networking, it is worthwhile to review the

“normal” way that networking works with Docker. By default, Docker uses host-private

networking. It creates a virtual bridge, called docker0docker0 by default, and allocates a subnet from

one of the private address blocks defined in RFC1918 for that bridge. For each container that

Docker creates, it allocates a virtual Ethernet device (called vethveth) which is attached to the

bridge. The veth is mapped to appear as eth0eth0 in the container, using Linux namespaces. The

in-container eth0eth0 interface is given an IP address from the bridge’s address range.

The result is that Docker containers can talk to other containers only if they are on the same

machine (and thus the same virtual bridge). Containers on different machines can not reach

each other - in fact they may end up with the exact same network ranges and IP addresses.

In order for Docker containers to communicate across nodes, there must be allocated ports on

the machine’s own IP address, which are then forwarded or proxied to the containers. This

obviously means that containers must either coordinate which ports they use very carefully or

ports must be allocated dynamically.

Kubernetes model

Coordinating ports across multiple developers is very difficult to do at scale and exposes users

to cluster-level issues outside of their control. Dynamic port allocation brings a lot of

complications to the system - every application has to take ports as flags, the API servers have

to know how to insert dynamic port numbers into configuration blocks, services have to know

how to find each other, etc. Rather than deal with this, Kubernetes takes a different approach.

https://tools.ietf.org/html/rfc1918

Kubernetes imposes the following fundamental requirements on any networking

implementation (barring any intentional network segmentation policies):

all containers can communicate with all other containers without NAT

all nodes can communicate with all containers (and vice-versa) without NAT

the IP that a container sees itself as is the same IP that others see it as

What this means in practice is that you can not just take two computers running Docker and

expect Kubernetes to work. You must ensure that the fundamental requirements are met.

This model is not only less complex overall, but it is principally compatible with the desire for

Kubernetes to enable low-friction porting of apps from VMs to containers. If your job

previously ran in a VM, your VM had an IP and could talk to other VMs in your project. This is

the same basic model.

Until now this document has talked about containers. In reality, Kubernetes applies IP

addresses at the PodPod scope - containers within a PodPod share their network namespaces -

including their IP address. This means that containers within a PodPod can all reach each other’s

ports on localhostlocalhost . This does imply that containers within a PodPod must coordinate port

usage, but this is no different than processes in a VM. This is called the “IP-per-pod” model.

This is implemented, using Docker, as a “pod container” which holds the network namespace

open while “app containers” (the things the user specified) join that namespace with Docker’s

--net=container:<id>--net=container:<id> function.

As with Docker, it is possible to request host ports, but this is reduced to a very niche

operation. In this case a port will be allocated on the host NodeNode and traffic will be forwarded to

the PodPod . The PodPod itself is blind to the existence or non-existence of host ports.

How to achieve this

There are a number of ways that this network model can be implemented. This document is

not an exhaustive study of the various methods, but hopefully serves as an introduction to

various technologies and serves as a jumping-off point.

The following networking options are sorted alphabetically - the order does not imply any

preferential status.

ACI

Cisco Application Centric Infrastructure offers an integrated overlay and underlay SDN solution

that supports containers, virtual machines, and bare metal servers. ACI provides container

networking integration for ACI. An overview of the integration is provided here.

Big Cloud Fabric from Big Switch Networks

Big Cloud Fabric is a cloud native networking architecture, designed to run Kubernetes in

private cloud/on-premise environments. Using unified physical & virtual SDN, Big Cloud Fabric

tackles inherent container networking problems such as load balancing, visibility,

troubleshooting, security policies & container traffic monitoring.

With the help of the Big Cloud Fabric’s virtual pod multi-tenant architecture, container

orchestration systems such as Kubernetes, RedHat Openshift, Mesosphere DC/OS & Docker

Swarm will be natively integrated along side with VM orchestration systems such as VMware,

OpenStack & Nutanix. Customers will be able to securely inter-connect any number of these

clusters and enable inter-tenant communication between them if needed.

BCF was recognized by Gartner as a visionary in the latest Magic Quadrant. One of the BCF

Kubernetes on premise deployments (which includes Kubernetes, DC/OS & VMware running

on multiple DCs across different geographic regions) is also referenced here.

Cilium

Cilium is open source software for providing and transparently securing network connectivity

between application containers. Cilium is L7/HTTP aware and can enforce network policies on

L3-L7 using an identity based security model that is decoupled from network addressing.

Contiv

Contiv provides configurable networking (native l3 using BGP, overlay using vxlan, classic l2, or

Cisco-SDN/ACI) for various use cases. Contiv is all open sourced.

Contrail

Contrail, based on OpenContrail, is a truly open, multi-cloud network virtualization and policy

management platform. Contrail / OpenContrail is integrated with various orchestration

systems such as Kubernetes, OpenShift, OpenStack and Mesos, and provides different

isolation modes for virtual machines, containers/pods and bare metal workloads.

https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.github.com/noironetworks/aci-containers
https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/solution-overview-c22-739493.pdf
https://www.bigswitch.com/container-network-automation
http://go.bigswitch.com/17GatedDocuments-MagicQuadrantforDataCenterNetworking_Reg.html
https://portworx.com/architects-corner-kubernetes-satya-komala-nio/
https://github.com/cilium/cilium
https://github.com/contiv/netplugin
http://contiv.io
http://www.juniper.net/us/en/products-services/sdn/contrail/contrail-networking/
http://www.opencontrail.org

Flannel

Flannel is a very simple overlay network that satisfies the Kubernetes requirements. Many

people have reported success with Flannel and Kubernetes.

Google Compute Engine (GCE)

For the Google Compute Engine cluster configuration scripts, advanced routing is used to

assign each VM a subnet (default is /24/24 - 254 IPs). Any traffic bound for that subnet will be

routed directly to the VM by the GCE network fabric. This is in addition to the “main” IP address

assigned to the VM, which is NAT’ed for outbound internet access. A linux bridge (called cbr0cbr0

) is configured to exist on that subnet, and is passed to docker’s --bridge--bridge flag.

Docker is started with:

This bridge is created by Kubelet (controlled by the --network-plugin=kubenet--network-plugin=kubenet flag)

according to the NodeNode ’s spec.podCIDRspec.podCIDR .

Docker will now allocate IPs from the cbr-cidrcbr-cidr block. Containers can reach each other and

NodesNodes over the cbr0cbr0 bridge. Those IPs are all routable within the GCE project network.

GCE itself does not know anything about these IPs, though, so it will not NAT them for

outbound internet traffic. To achieve that an iptables rule is used to masquerade (aka SNAT -

to make it seem as if packets came from the NodeNode itself) traffic that is bound for IPs outside

the GCE project network (10.0.0.0/8).

Lastly IP forwarding is enabled in the kernel (so the kernel will process packets for bridged

containers):

The result of all this is that all PodsPods can reach each other and can egress traffic to the

DOCKER_OPTSDOCKER_OPTS=="--bridge=cbr0 --iptables=false --ip-masq=false""--bridge=cbr0 --iptables=false --ip-masq=false"

iptables iptables -t-t nat nat -A-A POSTROUTING POSTROUTING !! -d-d 10.0.0.0/8 10.0.0.0/8 -o-o eth0 eth0 -j-j MASQUERADE MASQUERADE

sysctl net.ipv4.ip_forwardsysctl net.ipv4.ip_forward==11

https://github.com/coreos/flannel#flannel
https://cloud.google.com/vpc/docs/routes

internet.

Kube-router

Kube-router is a purpose-built networking solution for Kubernetes that aims to provide high

performance and operational simplicity. Kube-router provides a Linux LVS/IPVS-based service

proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and

iptables/ipset-based network policy enforcer.

L2 networks and linux bridging

If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you

should be able to do something similar to the above GCE setup. Note that these instructions

have only been tried very casually - it seems to work, but has not been thoroughly tested. If you

use this technique and perfect the process, please let us know.

Follow the “With Linux Bridge devices” section of this very nice tutorial from Lars Kellogg-

Stedman.

Multus (a Multi Network plugin)

Multus is a Multi CNI plugin to support the Multi Networking feature in Kubernetes using CRD

based network objects in Kubernetes.

Multus supports all reference plugins (eg. Flannel, DHCP, Macvlan) that implement the CNI

specification and 3rd party plugins (eg. Calico, Weave, Cilium, Contiv). In addition to it, Multus

supports SRIOV, DPDK, OVS-DPDK & VPP workloads in Kubernetes with both cloud native and

NFV based applications in Kubernetes.

NSX-T

VMware NSX-T is a network virtualization and security platform. NSX-T can provide network

virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging

application frameworks and architectures that have heterogeneous endpoints and technology

stacks. In addition to vSphere hypervisors, these environments include other hypervisors such

as KVM, containers, and bare metal.

NSX-T Container Plug-in (NCP) provides integration between NSX-T and container

orchestrators such as Kubernetes, as well as integration between NSX-T and container-based

CaaS/PaaS platforms such as Pivotal Container Service (PKS) and Openshift.

https://github.com/cloudnativelabs/kube-router
http://www.linuxvirtualserver.org/software/ipvs.html
http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/
https://github.com/Intel-Corp/multus-cni
https://github.com/containernetworking/plugins
https://github.com/containernetworking/plugins/tree/master/plugins/meta/flannel
https://github.com/containernetworking/plugins/tree/master/plugins/ipam/dhcp
https://github.com/containernetworking/plugins/tree/master/plugins/main/macvlan
https://github.com/projectcalico/cni-plugin
https://github.com/weaveworks/weave
https://github.com/cilium/cilium
https://github.com/contiv/netplugin
https://github.com/hustcat/sriov-cni
https://github.com/Intel-Corp/sriov-cni
https://github.com/intel/vhost-user-net-plugin
https://docs.vmware.com/en/VMware-NSX-T/index.html
https://docs.vmware.com/en/VMware-NSX-T/2.0/nsxt_20_ncp_kubernetes.pdf

Nuage Networks VCS (Virtualized Cloud Services)

Nuage provides a highly scalable policy-based Software-Defined Networking (SDN) platform.

Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN

Controller built on open standards.

The Nuage platform uses overlays to provide seamless policy-based networking between

Kubernetes Pods and non-Kubernetes environments (VMs and bare metal servers). Nuage’s

policy abstraction model is designed with applications in mind and makes it easy to declare

fine-grained policies for applications.The platform’s real-time analytics engine enables visibility

and security monitoring for Kubernetes applications.

OpenVSwitch

OpenVSwitch is a somewhat more mature but also complicated way to build an overlay

network. This is endorsed by several of the “Big Shops” for networking.

OVN (Open Virtual Networking)

OVN is an opensource network virtualization solution developed by the Open vSwitch

community. It lets one create logical switches, logical routers, stateful ACLs, load-balancers etc

to build different virtual networking topologies. The project has a specific Kubernetes plugin

and documentation at ovn-kubernetes.

Project Calico

Project Calico is an open source container networking provider and network policy engine.

Calico provides a highly scalable networking and network policy solution for connecting

Kubernetes pods based on the same IP networking principles as the internet. Calico can be

deployed without encapsulation or overlays to provide high-performance, high-scale data

center networking. Calico also provides fine-grained, intent based network security policy for

Kubernetes pods via its distributed firewall.

Calico can also be run in policy enforcement mode in conjunction with other networking

solutions such as Flannel, aka canal, or native GCE networking.

Romana

http://www.nuagenetworks.net
https://www.openvswitch.org/
https://github.com/openvswitch/ovn-kubernetes
http://docs.projectcalico.org/
https://github.com/tigera/canal

Romana is an open source network and security automation solution that lets you deploy

Kubernetes without an overlay network. Romana supports Kubernetes Network Policy to

provide isolation across network namespaces.

Weave Net from Weaveworks

Weave Net is a resilient and simple to use network for Kubernetes and its hosted applications.

Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any

configuration or extra code to run, and in both cases, the network provides one IP address per

pod - as is standard for Kubernetes.

CNI-Genie from Huawei

CNI-Genie is a CNI plugin that enables Kubernetes to simultaneously have access to different

implementations of the Kubernetes network model in runtime. This includes any

implementation that runs as a CNI plugin, such as Flannel, Calico, Romana, Weave-net.

CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI

plugin.

Other reading

The early design of the networking model and its rationale, and some future plans are

described in more detail in the networking design document.

http://romana.io
file:///docs/concepts/services-networking/network-policies/
https://www.weave.works/products/weave-net/
https://www.weave.works/docs/net/latest/cni-plugin/
https://github.com/Huawei-PaaS/CNI-Genie
https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-cni-plugins/README.md#what-cni-genie-feature-1-multiple-cni-plugins-enables
https://git.k8s.io/website/docs/concepts/cluster-administration/networking.md#kubernetes-model
https://github.com/containernetworking/cni#3rd-party-plugins
https://github.com/coreos/flannel#flannel
http://docs.projectcalico.org/
http://romana.io
https://www.weave.works/products/weave-net/
https://github.com/Huawei-PaaS/CNI-Genie/blob/master/docs/multiple-ips/README.md#feature-2-extension-cni-genie-multiple-ip-addresses-per-pod
https://git.k8s.io/community/contributors/design-proposals/network/networking.md

Network Plugins

Installation
Network Plugin Requirements

CNI
kubenet
Customizing the MTU (with kubenet)

Usage Summary

Disclaimer: Network plugins are in alpha. Its contents will change rapidly.

Network plugins in Kubernetes come in a few flavors:

CNI plugins: adhere to the appc/CNI specification, designed for interoperability.
Kubenet plugin: implements basic cbr0 using the bridge and host-local CNI plugins

Installation

The kubelet has a single default network plugin, and a default network common to the entire
cluster. It probes for plugins when it starts up, remembers what it found, and executes the
selected plugin at appropriate times in the pod lifecycle (this is only true for Docker, as rkt
manages its own CNI plugins). There are two Kubelet command line parameters to keep in mind
when using plugins:

cni-bin-dir: Kubelet probes this directory for plugins on startup
network-plugin: The network plugin to use from cni-bin-dir. It must match the name reported by
a plugin probed from the plugin directory. For CNI plugins, this is simply “cni”.

Network Plugin Requirements

Besides providing the NetworkPlugin interface to configure and clean up pod networking, the plugin
may also need specific support for kube-proxy. The iptables proxy obviously depends on
iptables, and the plugin may need to ensure that container traffic is made available to iptables.
For example, if the plugin connects containers to a Linux bridge, the plugin must set the
net/bridge/bridge-nf-call-iptables sysctl to 1 to ensure that the iptables proxy functions correctly. If the
plugin does not use a Linux bridge (but instead something like Open vSwitch or some other
mechanism) it should ensure container traffic is appropriately routed for the proxy.

By default if no kubelet network plugin is specified, the noop plugin is used, which sets
net/bridge/bridge-nf-call-iptables=1 to ensure simple configurations (like Docker with a bridge) work
correctly with the iptables proxy.

CNI

The CNI plugin is selected by passing Kubelet the --network-plugin=cni command-line option.
Kubelet reads a file from --cni-conf-dir (default /etc/cni/net.d) and uses the CNI configuration from that
file to set up each pod’s network. The CNI configuration file must match the CNI specification,
and any required CNI plugins referenced by the configuration must be present in --cni-bin-dir

(default /opt/cni/bin).

If there are multiple CNI configuration files in the directory, the first one in lexicographic order of
file name is used.

In addition to the CNI plugin specified by the configuration file, Kubernetes requires the standard
CNI lo plugin, at minimum version 0.2.0

https://github.com/kubernetes/kubernetes/tree/v1.10.0/pkg/kubelet/network/plugins.go
https://github.com/containernetworking/cni/blob/master/SPEC.md#network-configuration
https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback/loopback.go

Limitation: Due to #31307, HostPort won’t work with CNI networking plugin at the moment. That
means all hostPort attribute in pod would be simply ignored.

kubenet

Kubenet is a very basic, simple network plugin, on Linux only. It does not, of itself, implement
more advanced features like cross-node networking or network policy. It is typically used
together with a cloud provider that sets up routing rules for communication between nodes, or in
single-node environments.

Kubenet creates a Linux bridge named cbr0 and creates a veth pair for each pod with the host
end of each pair connected to cbr0. The pod end of the pair is assigned an IP address allocated
from a range assigned to the node either through configuration or by the controller-manager. cbr0

is assigned an MTU matching the smallest MTU of an enabled normal interface on the host.

The plugin requires a few things:

The standard CNI bridge, lo and host-local plugins are required, at minimum version 0.2.0.
Kubenet will first search for them in /opt/cni/bin. Specify cni-bin-dir to supply additional search
path. The first found match will take effect.
Kubelet must be run with the --network-plugin=kubenet argument to enable the plugin
Kubelet should also be run with the --non-masquerade-cidr=<clusterCidr> argument to ensure
traffic to IPs outside this range will use IP masquerade.
The node must be assigned an IP subnet through either the --pod-cidr kubelet command-line
option or the --allocate-node-cidrs=true --cluster-cidr=<cidr> controller-manager command-line
options.

Customizing the MTU (with kubenet)

The MTU should always be configured correctly to get the best networking performance.
Network plugins will usually try to infer a sensible MTU, but sometimes the logic will not result in
an optimal MTU. For example, if the Docker bridge or another interface has a small MTU,
kubenet will currently select that MTU. Or if you are using IPSEC encapsulation, the MTU must
be reduced, and this calculation is out-of-scope for most network plugins.

Where needed, you can specify the MTU explicitly with the network-plugin-mtu kubelet option. For
example, on AWS the eth0 MTU is typically 9001, so you might specify --network-plugin-mtu=9001. If
you’re using IPSEC you might reduce it to allow for encapsulation overhead e.g. --network-plugin-

mtu=8873.

This option is provided to the network-plugin; currently only kubenet supports network-plugin-

mtu.

Usage Summary

--network-plugin=cni specifies that we use the cni network plugin with actual CNI plugin binaries
located in --cni-bin-dir (default /opt/cni/bin) and CNI plugin configuration located in --cni-conf-dir

(default /etc/cni/net.d).
--network-plugin=kubenet specifies that we use the kubenet network plugin with CNI bridge and
host-local plugins placed in /opt/cni/bin or cni-bin-dir.
--network-plugin-mtu=9001 specifies the MTU to use, currently only used by the kubenet network
plugin.

https://github.com/kubernetes/kubernetes/issues/31307

Logging Architecture

Application and systems logs can help you understand what is happening inside your cluster.

The logs are particularly useful for debugging problems and monitoring cluster activity. Most

modern applications have some kind of logging mechanism; as such, most container engines

are likewise designed to support some kind of logging. The easiest and most embraced

logging method for containerized applications is to write to the standard output and standard

error streams.

However, the native functionality provided by a container engine or runtime is usually not

enough for a complete logging solution. For example, if a container crashes, a pod is evicted, or

a node dies, you’ll usually still want to access your application’s logs. As such, logs should

have a separate storage and lifecycle independent of nodes, pods, or containers. This concept

is called cluster-level-logging. Cluster-level logging requires a separate backend to store,

analyze, and query logs. Kubernetes provides no native storage solution for log data, but you

can integrate many existing logging solutions into your Kubernetes cluster.

Cluster-level logging architectures are described in assumption that a logging backend is

present inside or outside of your cluster. If you’re not interested in having cluster-level logging,

you might still find the description of how logs are stored and handled on the node to be

useful.

Basic logging in Kubernetes

In this section, you can see an example of basic logging in Kubernetes that outputs data to the

Basic logging in Kubernetes

Logging at the node level

System component logs

Cluster-level logging architectures

Using a node logging agent

Using a sidecar container with the logging agent

Streaming sidecar container

Sidecar container with a logging agent

Exposing logs directly from the application

standard output stream. This demonstration uses a pod specification with a container that

writes some text to standard output once per second.

counter-pod.yamlcounter-pod.yaml

To run this pod, use the following command:

To fetch the logs, use the kubectl logskubectl logs command, as follows:

You can use kubectl logskubectl logs to retrieve logs from a previous instantiation of a container with

--previous--previous flag, in case the container has crashed. If your pod has multiple containers, you

should specify which container’s logs you want to access by appending a container name to

the command. See the kubectl logskubectl logs documentation for more details.

Logging at the node level

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: countercounter

specspec::

 containerscontainers::

 -- namename:: countcount

 imageimage:: busyboxbusybox

 argsargs:: [[/bin/sh/bin/sh,, -c-c,,

 ''i=0;i=0; whilewhile true;true; dodo echoecho "$i:"$i: $(date)";$(date)"; i=$((i+1));i=$((i+1)); sleepsleep 1;1; done'done'

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.yaml https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.yaml

pod pod "counter""counter" created created

$ $ kubectl logs counterkubectl logs counter

0: Mon Jan 1 00:00:00 UTC 20010: Mon Jan 1 00:00:00 UTC 2001

1: Mon Jan 1 00:00:01 UTC 20011: Mon Jan 1 00:00:01 UTC 2001

2: Mon Jan 1 00:00:02 UTC 20012: Mon Jan 1 00:00:02 UTC 2001

......

file:///docs/concepts/cluster-administration/counter-pod.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/counter-pod.yaml
file:///docs/user-guide/kubectl/v1.10/#logs

Everything a containerized application writes to stdoutstdout and stderrstderr is handled and

redirected somewhere by a container engine. For example, the Docker container engine

redirects those two streams to a logging driver, which is configured in Kubernetes to write to a

file in json format.

Note: The Docker json logging driver treats each line as a separate message. When using the

Docker logging driver, there is no direct support for multi-line messages. You need to handle

multi-line messages at the logging agent level or higher.

By default, if a container restarts, the kubelet keeps one terminated container with its logs. If a

pod is evicted from the node, all corresponding containers are also evicted, along with their

logs.

An important consideration in node-level logging is implementing log rotation, so that logs

don’t consume all available storage on the node. Kubernetes currently is not responsible for

rotating logs, but rather a deployment tool should set up a solution to address that. For

example, in Kubernetes clusters, deployed by the kube-up.shkube-up.sh script, there is a logrotatelogrotate

tool configured to run each hour. You can also set up a container runtime to rotate

application’s logs automatically, e.g. by using Docker’s log-optlog-opt . In the kube-up.shkube-up.sh script,

the latter approach is used for COS image on GCP, and the former approach is used in any

other environment. In both cases, by default rotation is configured to take place when log file

exceeds 10MB.

As an example, you can find detailed information about how kube-up.shkube-up.sh sets up logging for

COS image on GCP in the corresponding script.

When you run kubectl logskubectl logs as in the basic logging example, the kubelet on the node

https://docs.docker.com/engine/admin/logging/overview
https://linux.die.net/man/8/logrotate
https://github.com/kubernetes/kubernetes/blob/master/cluster/gce/gci/configure-helper.sh
file:///docs/user-guide/kubectl/v1.10/#logs

handles the request and reads directly from the log file, returning the contents in the response.

Note: currently, if some external system has performed the rotation, only the contents of the

latest log file will be available through kubectl logskubectl logs . E.g. if there’s a 10MB file, logrotatelogrotate

performs the rotation and there are two files, one 10MB in size and one empty, kubectl logskubectl logs

will return an empty response.

System component logs

There are two types of system components: those that run in a container and those that do not

run in a container. For example:

The Kubernetes scheduler and kube-proxy run in a container.

The kubelet and container runtime, for example Docker, do not run in containers.

On machines with systemd, the kubelet and container runtime write to journald. If systemd is

not present, they write to .log.log files in the /var/log/var/log directory. System components inside

containers always write to the /var/log/var/log directory, bypassing the default logging mechanism.

They use the glog logging library. You can find the conventions for logging severity for those

components in the development docs on logging.

Similarly to the container logs, system component logs in the /var/log/var/log directory should be

rotated. In Kubernetes clusters brought up by the kube-up.shkube-up.sh script, those logs are

configured to be rotated by the logrotatelogrotate tool daily or once the size exceeds 100MB.

Cluster-level logging architectures

While Kubernetes does not provide a native solution for cluster-level logging, there are several

common approaches you can consider. Here are some options:

Use a node-level logging agent that runs on every node.

Include a dedicated sidecar container for logging in an application pod.

Push logs directly to a backend from within an application.

Using a node logging agent

https://godoc.org/github.com/golang/glog
https://git.k8s.io/community/contributors/devel/logging.md

You can implement cluster-level logging by including a node-level logging agent on each node.

The logging agent is a dedicated tool that exposes logs or pushes logs to a backend.

Commonly, the logging agent is a container that has access to a directory with log files from

all of the application containers on that node.

Because the logging agent must run on every node, it’s common to implement it as either a

DaemonSet replica, a manifest pod, or a dedicated native process on the node. However the

latter two approaches are deprecated and highly discouraged.

Using a node-level logging agent is the most common and encouraged approach for a

Kubernetes cluster, because it creates only one agent per node, and it doesn’t require any

changes to the applications running on the node. However, node-level logging only works for

applications’ standard output and standard error.

Kubernetes doesn’t specify a logging agent, but two optional logging agents are packaged with

the Kubernetes release: Stackdriver Logging for use with Google Cloud Platform, and

Elasticsearch. You can find more information and instructions in the dedicated documents.

Both use fluentd with custom configuration as an agent on the node.

Using a sidecar container with the logging agent

You can use a sidecar container in one of the following ways:

The sidecar container streams application logs to its own stdoutstdout .

The sidecar container runs a logging agent, which is configured to pick up logs from an

file:///docs/user-guide/logging/stackdriver
file:///docs/user-guide/logging/elasticsearch
http://www.fluentd.org/

application container.

Streaming sidecar container

By having your sidecar containers stream to their own stdoutstdout and stderrstderr streams, you can

take advantage of the kubelet and the logging agent that already run on each node. The

sidecar containers read logs from a file, a socket, or the journald. Each individual sidecar

container prints log to its own stdoutstdout or stderrstderr stream.

This approach allows you to separate several log streams from different parts of your

application, some of which can lack support for writing to stdoutstdout or stderrstderr . The logic

behind redirecting logs is minimal, so it’s hardly a significant overhead. Additionally, because

stdoutstdout and stderrstderr are handled by the kubelet, you can use built-in tools like kubectl logskubectl logs .

Consider the following example. A pod runs a single container, and the container writes to two

different log files, using two different formats. Here’s a configuration file for the Pod:

two-files-counter-pod.yamltwo-files-counter-pod.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/two-files-counter-pod.yaml

two-files-counter-pod.yamltwo-files-counter-pod.yaml

It would be a mess to have log entries of different formats in the same log stream, even if you

managed to redirect both components to the stdoutstdout stream of the container. Instead, you

could introduce two sidecar containers. Each sidecar container could tail a particular log file

from a shared volume and then redirect the logs to its own stdoutstdout stream.

Here’s a configuration file for a pod that has two sidecar containers:

two-files-counter-pod-streaming-sidecar.yamltwo-files-counter-pod-streaming-sidecar.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: countercounter

specspec::

 containerscontainers::

 -- namename:: countcount

 imageimage:: busyboxbusybox

 argsargs::

 -- /bin/sh/bin/sh

 -- -c-c

 -- >>

 i=0;i=0;

 while true;while true;

 dodo

 echo "$i: $(date)" >> /var/log/1.log;echo "$i: $(date)" >> /var/log/1.log;

 echo "$(date) INFO $i" >> /var/log/2.log;echo "$(date) INFO $i" >> /var/log/2.log;

 i=$((i+1));i=$((i+1));

 sleep 1;sleep 1;

 donedone

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 volumesvolumes::

 -- namename:: varlogvarlog

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/two-files-counter-pod-streaming-sidecar.yaml

two-files-counter-pod-streaming-sidecar.yamltwo-files-counter-pod-streaming-sidecar.yaml

Now when you run this pod, you can access each log stream separately by running the

following commands:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: countercounter

specspec::

 containerscontainers::

 -- namename:: countcount

 imageimage:: busyboxbusybox

 argsargs::

 -- /bin/sh/bin/sh

 -- -c-c

 -- >>

 i=0;i=0;

 while true;while true;

 dodo

 echo "$i: $(date)" >> /var/log/1.log;echo "$i: $(date)" >> /var/log/1.log;

 echo "$(date) INFO $i" >> /var/log/2.log;echo "$(date) INFO $i" >> /var/log/2.log;

 i=$((i+1));i=$((i+1));

 sleep 1;sleep 1;

 donedone

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 -- namename:: count-log-1count-log-1

 imageimage:: busyboxbusybox

 argsargs:: [[/bin/sh/bin/sh,, -c-c,, ''tailtail -n+1-n+1 -f-f /var/log/1.log'/var/log/1.log']]

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 -- namename:: count-log-2count-log-2

 imageimage:: busyboxbusybox

 argsargs:: [[/bin/sh/bin/sh,, -c-c,, ''tailtail -n+1-n+1 -f-f /var/log/2.log'/var/log/2.log']]

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 volumesvolumes::

 -- namename:: varlogvarlog

 emptyDiremptyDir:: {}{}

$ $ kubectl logs counter count-log-1kubectl logs counter count-log-1

0: Mon Jan 1 00:00:00 UTC 20010: Mon Jan 1 00:00:00 UTC 2001

1: Mon Jan 1 00:00:01 UTC 20011: Mon Jan 1 00:00:01 UTC 2001

2: Mon Jan 1 00:00:02 UTC 20012: Mon Jan 1 00:00:02 UTC 2001

......

The node-level agent installed in your cluster picks up those log streams automatically without

any further configuration. If you like, you can configure the agent to parse log lines depending

on the source container.

Note, that despite low CPU and memory usage (order of couple of millicores for cpu and order

of several megabytes for memory), writing logs to a file and then streaming them to stdoutstdout

can double disk usage. If you have an application that writes to a single file, it’s generally better

to set /dev/stdout/dev/stdout as destination rather than implementing the streaming sidecar container

approach.

Sidecar containers can also be used to rotate log files that cannot be rotated by the application

itself. An example of this approach is a small container running logrotate periodically.

However, it’s recommended to use stdoutstdout and stderrstderr directly and leave rotation and

retention policies to the kubelet.

Sidecar container with a logging agent

If the node-level logging agent is not flexible enough for your situation, you can create a

sidecar container with a separate logging agent that you have configured specifically to run

with your application.

Note: Using a logging agent in a sidecar container can lead to significant resource

consumption. Moreover, you won’t be able to access those logs using kubectl logskubectl logs

$ $ kubectl logs counter count-log-2kubectl logs counter count-log-2

Mon Jan 1 00:00:00 UTC 2001 INFO 0Mon Jan 1 00:00:00 UTC 2001 INFO 0

Mon Jan 1 00:00:01 UTC 2001 INFO 1Mon Jan 1 00:00:01 UTC 2001 INFO 1

Mon Jan 1 00:00:02 UTC 2001 INFO 2Mon Jan 1 00:00:02 UTC 2001 INFO 2

......

https://github.com/samsung-cnct/logrotate

command, because they are not controlled by the kubelet.

As an example, you could use Stackdriver, which uses fluentd as a logging agent. Here are two

configuration files that you can use to implement this approach. The first file contains a

ConfigMap to configure fluentd.

fluentd-sidecar-config.yamlfluentd-sidecar-config.yaml

Note: The configuration of fluentd is beyond the scope of this article. For information about

configuring fluentd, see the official fluentd documentation.

The second file describes a pod that has a sidecar container running fluentd. The pod mounts

a volume where fluentd can pick up its configuration data.

two-files-counter-pod-agent-sidecar.yamltwo-files-counter-pod-agent-sidecar.yaml

apiVersionapiVersion:: v1v1

datadata::

 fluentd.conffluentd.conf:: ||

 <source><source>

 type tailtype tail

 format noneformat none

 path /var/log/1.logpath /var/log/1.log

 pos_file /var/log/1.log.pospos_file /var/log/1.log.pos

 tag count.format1tag count.format1

 </source></source>

 <source><source>

 type tailtype tail

 format noneformat none

 path /var/log/2.logpath /var/log/2.log

 pos_file /var/log/2.log.pospos_file /var/log/2.log.pos

 tag count.format2tag count.format2

 </source></source>

 <match **><match **>

 type google_cloudtype google_cloud

 </match></match>

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: fluentd-configfluentd-config

file:///docs/tasks/debug-application-cluster/logging-stackdriver/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/fluentd-sidecar-config.yaml
http://docs.fluentd.org/
https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/cluster-administration/two-files-counter-pod-agent-sidecar.yaml

two-files-counter-pod-agent-sidecar.yamltwo-files-counter-pod-agent-sidecar.yaml

After some time you can find log messages in the Stackdriver interface.

Remember, that this is just an example and you can actually replace fluentd with any logging

agent, reading from any source inside an application container.

Exposing logs directly from the application

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: countercounter

specspec::

 containerscontainers::

 -- namename:: countcount

 imageimage:: busyboxbusybox

 argsargs::

 -- /bin/sh/bin/sh

 -- -c-c

 -- >>

 i=0;i=0;

 while true;while true;

 dodo

 echo "$i: $(date)" >> /var/log/1.log;echo "$i: $(date)" >> /var/log/1.log;

 echo "$(date) INFO $i" >> /var/log/2.log;echo "$(date) INFO $i" >> /var/log/2.log;

 i=$((i+1));i=$((i+1));

 sleep 1;sleep 1;

 donedone

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 -- namename:: count-agentcount-agent

 imageimage:: k8s.gcr.io/fluentd-gcp:1.30k8s.gcr.io/fluentd-gcp:1.30

 envenv::

 -- namename:: FLUENTD_ARGSFLUENTD_ARGS

 valuevalue:: -c /etc/fluentd-config/fluentd.conf-c /etc/fluentd-config/fluentd.conf

 volumeMountsvolumeMounts::

 -- namename:: varlogvarlog

 mountPathmountPath:: /var/log/var/log

 -- namename:: config-volumeconfig-volume

 mountPathmountPath:: /etc/fluentd-config/etc/fluentd-config

 volumesvolumes::

 -- namename:: varlogvarlog

 emptyDiremptyDir:: {}{}

 -- namename:: config-volumeconfig-volume

 configMapconfigMap::

 namename:: fluentd-configfluentd-config

You can implement cluster-level logging by exposing or pushing logs directly from every

application; however, the implementation for such a logging mechanism is outside the scope

of Kubernetes.

Configuring kubelet Garbage Collection

Garbage collection is a helpful function of kubelet that will clean up unused images and unused

containers. Kubelet will perform garbage collection for containers every minute and garbage

collection for images every five minutes.

External garbage collection tools are not recommended as these tools can potentially break

the behavior of kubelet by removing containers expected to exist.

Image Collection

Kubernetes manages lifecycle of all images through imageManager, with the cooperation of

cadvisor.

The policy for garbage collecting images takes two factors into consideration:

HighThresholdPercentHighThresholdPercent and LowThresholdPercentLowThresholdPercent . Disk usage above the high threshold

will trigger garbage collection. The garbage collection will delete least recently used images

until the low threshold has been met.

Container Collection

The policy for garbage collecting containers considers three user-defined variables. MinAgeMinAge is

the minimum age at which a container can be garbage collected. MaxPerPodContainerMaxPerPodContainer is the

maximum number of dead containers every single pod (UID, container name) pair is allowed to

have. MaxContainersMaxContainers is the maximum number of total dead containers. These variables can

be individually disabled by setting MinAgeMinAge to zero and setting MaxPerPodContainerMaxPerPodContainer and

MaxContainersMaxContainers respectively to less than zero.

Kubelet will act on containers that are unidentified, deleted, or outside of the boundaries set by

the previously mentioned flags. The oldest containers will generally be removed first.

MaxPerPodContainerMaxPerPodContainer and MaxContainerMaxContainer may potentially conflict with each other in

Image Collection

Container Collection

User Configuration

Deprecation

situations where retaining the maximum number of containers per pod (

MaxPerPodContainerMaxPerPodContainer) would go outside the allowable range of global dead containers (

MaxContainersMaxContainers). MaxPerPodContainerMaxPerPodContainer would be adjusted in this situation: A worst case

scenario would be to downgrade MaxPerPodContainerMaxPerPodContainer to 1 and evict the oldest containers.

Additionally, containers owned by pods that have been deleted are removed once they are

older than MinAgeMinAge .

Containers that are not managed by kubelet are not subject to container garbage collection.

User Configuration

Users can adjust the following thresholds to tune image garbage collection with the following

kubelet flags :

1. image-gc-high-thresholdimage-gc-high-threshold , the percent of disk usage which triggers image garbage

collection. Default is 90%.

2. image-gc-low-thresholdimage-gc-low-threshold , the percent of disk usage to which image garbage collection

attempts to free. Default is 80%.

We also allow users to customize garbage collection policy through the following kubelet

flags:

1. minimum-container-ttl-durationminimum-container-ttl-duration , minimum age for a finished container before it is

garbage collected. Default is 0 minute, which means every finished container will be

garbage collected.

2. maximum-dead-containers-per-containermaximum-dead-containers-per-container , maximum number of old instances to be

retained per container. Default is 1.

3. maximum-dead-containersmaximum-dead-containers , maximum number of old instances of containers to retain

globally. Default is -1, which means there is no global limit.

Containers can potentially be garbage collected before their usefulness has expired. These

containers can contain logs and other data that can be useful for troubleshooting. A

sufficiently large value for maximum-dead-containers-per-containermaximum-dead-containers-per-container is highly

recommended to allow at least 1 dead container to be retained per expected container. A

larger value for maximum-dead-containersmaximum-dead-containers is also recommended for a similar reason. See

this issue for more details.

https://github.com/kubernetes/kubernetes/issues/13287

Deprecation

Some kubelet Garbage Collection features in this doc will be replaced by kubelet eviction in the

future.

Including:

Existing Flag New Flag Rationale

--image-gc-high---image-gc-high-

thresholdthreshold

--eviction-hard--eviction-hard or

--eviction-soft--eviction-soft

existing eviction signals can trigger
image garbage collection

--image-gc-low---image-gc-low-

thresholdthreshold

--eviction-minimum---eviction-minimum-

reclaimreclaim

eviction reclaims achieve the same
behavior

--maximum-dead---maximum-dead-

containerscontainers

deprecated once old logs are stored
outside of container’s context

--maximum-dead---maximum-dead-

containers-per-containers-per-

containercontainer

deprecated once old logs are stored
outside of container’s context

--minimum-container---minimum-container-

ttl-durationttl-duration

deprecated once old logs are stored
outside of container’s context

--low-diskspace---low-diskspace-

threshold-mbthreshold-mb

--eviction-hard--eviction-hard or

eviction-softeviction-soft

eviction generalizes disk thresholds to
other resources

--outofdisk-transition---outofdisk-transition-

frequencyfrequency

--eviction-pressure---eviction-pressure-

transition-periodtransition-period

eviction generalizes disk pressure
transition to other resources

See Configuring Out Of Resource Handling for more details.

file:///docs/tasks/administer-cluster/out-of-resource/

Federation

This page explains why and how to manage multiple Kubernetes clusters using federation.

Why federation

Federation makes it easy to manage multiple clusters. It does so by providing 2 major building

blocks:

Sync resources across clusters: Federation provides the ability to keep resources in

multiple clusters in sync. For example, you can ensure that the same deployment exists in

multiple clusters.

Cross cluster discovery: Federation provides the ability to auto-configure DNS servers and

load balancers with backends from all clusters. For example, you can ensure that a global

VIP or DNS record can be used to access backends from multiple clusters.

Some other use cases that federation enables are:

High Availability: By spreading load across clusters and auto configuring DNS servers and

load balancers, federation minimises the impact of cluster failure.

Avoiding provider lock-in: By making it easier to migrate applications across clusters,

federation prevents cluster provider lock-in.

Federation is not helpful unless you have multiple clusters. Some of the reasons why you

might want multiple clusters are:

Why federation

Caveats

Hybrid cloud capabilities

Setting up federation

API resources

Cascading deletion

Scope of a single cluster

Selecting the right number of clusters

What’s next

Low latency: Having clusters in multiple regions minimises latency by serving users from

the cluster that is closest to them.

Fault isolation: It might be better to have multiple small clusters rather than a single large

cluster for fault isolation (for example: multiple clusters in different availability zones of a

cloud provider).

Scalability: There are scalability limits to a single kubernetes cluster (this should not be the

case for most users. For more details: Kubernetes Scaling and Performance Goals).

Hybrid cloud: You can have multiple clusters on different cloud providers or on-premises

data centers.

Caveats

While there are a lot of attractive use cases for federation, there are also some caveats:

Increased network bandwidth and cost: The federation control plane watches all clusters

to ensure that the current state is as expected. This can lead to significant network cost if

the clusters are running in different regions on a cloud provider or on different cloud

providers.

Reduced cross cluster isolation: A bug in the federation control plane can impact all

clusters. This is mitigated by keeping the logic in federation control plane to a minimum. It

mostly delegates to the control plane in kubernetes clusters whenever it can. The design

and implementation also errs on the side of safety and avoiding multi-cluster outage.

Maturity: The federation project is relatively new and is not very mature. Not all resources

are available and many are still alpha. Issue 88 enumerates known issues with the system

that the team is busy solving.

Hybrid cloud capabilities

Federations of Kubernetes Clusters can include clusters running in different cloud providers

(e.g. Google Cloud, AWS), and on-premises (e.g. on OpenStack). Kubefed is the recommended

way to deploy federated clusters.

Thereafter, your API resources can span different clusters and cloud providers.

Setting up federation

https://git.k8s.io/community/sig-scalability/goals.md
https://github.com/kubernetes/federation/issues/88
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/

To be able to federate multiple clusters, you first need to set up a federation control plane.

Follow the setup guide to set up the federation control plane.

API resources

Once you have the control plane set up, you can start creating federation API resources. The

following guides explain some of the resources in detail:

Cluster

ConfigMap

DaemonSets

Deployment

Events

Hpa

Ingress

Jobs

Namespaces

ReplicaSets

Secrets

Services

The API reference docs list all the resources supported by federation apiserver.

Cascading deletion

Kubernetes version 1.6 includes support for cascading deletion of federated resources. With

cascading deletion, when you delete a resource from the federation control plane, you also

delete the corresponding resources in all underlying clusters.

Cascading deletion is not enabled by default when using the REST API. To enable it, set the

option DeleteOptions.orphanDependents=falseDeleteOptions.orphanDependents=false when you delete a resource from the

file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
file:///docs/tasks/administer-federation/cluster/
file:///docs/tasks/administer-federation/configmap/
file:///docs/tasks/administer-federation/daemonset/
file:///docs/tasks/administer-federation/deployment/
file:///docs/tasks/administer-federation/events/
file:///docs/tasks/administer-federation/hpa/
file:///docs/tasks/administer-federation/ingress/
file:///docs/tasks/administer-federation/job/
file:///docs/tasks/administer-federation/namespaces/
file:///docs/tasks/administer-federation/replicaset/
file:///docs/tasks/administer-federation/secret/
file:///docs/concepts/cluster-administration/federation-service-discovery/
file:///docs/reference/generated/federation/

federation control plane using the REST API. Using

kubectlkubectl

deletedelete enables cascading

deletion by default. You can disable it by running

kubectl delete --kubectl delete --

cascade=falsecascade=false

Note: Kubernetes version 1.5 included cascading deletion support for a subset of federation

resources.

Scope of a single cluster

On IaaS providers such as Google Compute Engine or Amazon Web Services, a VM exists in a

zone or availability zone. We suggest that all the VMs in a Kubernetes cluster should be in the

same availability zone, because:

compared to having a single global Kubernetes cluster, there are fewer single-points of

failure.

compared to a cluster that spans availability zones, it is easier to reason about the

availability properties of a single-zone cluster.

when the Kubernetes developers are designing the system (e.g. making assumptions

about latency, bandwidth, or correlated failures) they are assuming all the machines are in

a single data center, or otherwise closely connected.

It is recommended to run fewer clusters with more VMs per availability zone; but it is possible

to run multiple clusters per availability zones.

Reasons to prefer fewer clusters per availability zone are:

improved bin packing of Pods in some cases with more nodes in one cluster (less

resource fragmentation).

reduced operational overhead (though the advantage is diminished as ops tooling and

processes mature).

reduced costs for per-cluster fixed resource costs, e.g. apiserver VMs (but small as a

percentage of overall cluster cost for medium to large clusters).

Reasons to have multiple clusters include:

https://cloud.google.com/compute/docs/zones
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

strict security policies requiring isolation of one class of work from another (but, see

Partitioning Clusters below).

test clusters to canary new Kubernetes releases or other cluster software.

Selecting the right number of clusters

The selection of the number of Kubernetes clusters may be a relatively static choice, only

revisited occasionally. By contrast, the number of nodes in a cluster and the number of pods in

a service may change frequently according to load and growth.

To pick the number of clusters, first, decide which regions you need to be in to have adequate

latency to all your end users, for services that will run on Kubernetes (if you use a Content

Distribution Network, the latency requirements for the CDN-hosted content need not be

considered). Legal issues might influence this as well. For example, a company with a global

customer base might decide to have clusters in US, EU, AP, and SA regions. Call the number of

regions to be in RR .

Second, decide how many clusters should be able to be unavailable at the same time, while

still being available. Call the number that can be unavailable UU . If you are not sure, then 1 is a

fine choice.

If it is allowable for load-balancing to direct traffic to any region in the event of a cluster failure,

then you need at least the larger of RR or

U +U +

11 clusters. If it is not (e.g. you want to ensure

low latency for all users in the event of a cluster failure), then you need to have

R * (U +R * (U +

1)1)

clusters (

U +U +

11 in each of RR regions). In any case, try to put each cluster in a different zone.

Finally, if any of your clusters would need more than the maximum recommended number of

nodes for a Kubernetes cluster, then you may need even more clusters. Kubernetes v1.3

supports clusters up to 1000 nodes in size. Kubernetes v1.8 supports clusters up to 5000

nodes. See Building Large Clusters for more guidance.

What’s next

file:///docs/admin/cluster-large/

Learn more about the Federation proposal.

See this setup guide for cluster federation.

See this Kubecon2016 talk on federation

See this Kubecon2017 Europe update on federation

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multicluster/federation.md
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://www.youtube.com/watch?v=pq9lbkmxpS8
https://www.youtube.com/watch?v=kwOvOLnFYck

Proxies in Kubernetes

This page explains proxies used with Kubernetes.

Proxies

There are several different proxies you may encounter when using Kubernetes:

1. The kubectl proxy:

1. runs on a user’s desktop or in a pod

2. proxies from a localhost address to the Kubernetes apiserver

3. client to proxy uses HTTP

4. proxy to apiserver uses HTTPS

5. locates apiserver

6. adds authentication headers

2. The apiserver proxy:

1. is a bastion built into the apiserver

2. connects a user outside of the cluster to cluster IPs which otherwise might not be

reachable

3. runs in the apiserver processes

4. client to proxy uses HTTPS (or http if apiserver so configured)

5. proxy to target may use HTTP or HTTPS as chosen by proxy using available

information

6. can be used to reach a Node, Pod, or Service

7. does load balancing when used to reach a Service

Proxies

Requesting redirects

file:///docs/tasks/access-application-cluster/access-cluster/#directly-accessing-the-rest-api
file:///docs/tasks/access-application-cluster/access-cluster/#discovering-builtin-services

3. The kube proxy:

1. runs on each node

2. proxies UDP and TCP

3. does not understand HTTP

4. provides load balancing

5. is just used to reach services

4. A Proxy/Load-balancer in front of apiserver(s):

1. existence and implementation varies from cluster to cluster (e.g. nginx)

2. sits between all clients and one or more apiservers

3. acts as load balancer if there are several apiservers.

5. Cloud Load Balancers on external services:

1. are provided by some cloud providers (e.g. AWS ELB, Google Cloud Load Balancer)

2. are created automatically when the Kubernetes service has type LoadBalancerLoadBalancer

3. use UDP/TCP only

4. implementation varies by cloud provider.

Kubernetes users will typically not need to worry about anything other than the first two types.

The cluster admin will typically ensure that the latter types are setup correctly.

Requesting redirects

Proxies have replaced redirect capabilities. Redirects have been deprecated.

file:///docs/concepts/services-networking/service/#ips-and-vips

Controller manager metrics

Controller manager metrics provide important insight into the performance and health of the

controller manager.

What are controller manager metrics

Controller manager metrics provide important insight into the performance and health of the

controller manager. These metrics include common Go language runtime metrics such as

go_routine count and controller specific metrics such as etcd request latencies or

Cloudprovider (AWS, GCE, OpenStack) API latencies that can be used to gauge the health of a

cluster.

Starting from Kubernetes 1.7, detailed Cloudprovider metrics are available for storage

operations for GCE, AWS, Vsphere and OpenStack. These metrics can be used to monitor

health of persistent volume operations.

For example, for GCE these metrics are called:

Configuration

In a cluster, controller-manager metrics are available from

http://localhost:10252/metricshttp://localhost:10252/metrics from the host where the controller-manager is running.

The metrics are emitted in prometheus format and are human readable.

What are controller manager metrics

Configuration

cloudprovider_gce_api_request_duration_seconds { request = "instance_list"}cloudprovider_gce_api_request_duration_seconds { request = "instance_list"}

cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"}cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"}

cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"}cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"}

cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"}cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"}

cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"}cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"}

cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}

https://prometheus.io/docs/instrumenting/exposition_formats/

In a production environment you may want to configure prometheus or some other metrics

scraper to periodically gather these metrics and make them available in some kind of time

series database.

Device Plugins

FEATURE STATE: Kubernetes v1.10 beta

Starting in version 1.8, Kubernetes provides a device plugin framework for vendors to advertise
their resources to the kubelet without changing Kubernetes core code. Instead of writing custom
Kubernetes code, vendors can implement a device plugin that can be deployed manually or as a
DaemonSet. The targeted devices include GPUs, High-performance NICs, FPGAs, InfiniBand,
and other similar computing resources that may require vendor specific initialization and setup.

Device plugin registration
Device plugin implementation
Device plugin deployment
Examples

Device plugin registration

The device plugins feature is gated by the DevicePlugins feature gate which is disabled by default
before 1.10. When the device plugins feature is enabled, the kubelet exports a Registration gRPC
service:

service Registration {
 rpc Register(RegisterRequest) returns (Empty) {}
}

A device plugin can register itself with the kubelet through this gRPC service. During the
registration, the device plugin needs to send:

The name of its Unix socket.
The Device Plugin API version against which it was built.
The ResourceName it wants to advertise. Here ResourceName needs to follow the extended
resource naming scheme as vendor-domain/resource. For example, an Nvidia GPU is
advertised as nvidia.com/gpu.

Following a successful registration, the device plugin sends the kubelet the list of devices it
manages, and the kubelet is then in charge of advertising those resources to the API server as
part of the kubelet node status update. For example, after a device plugin registers vendor-

domain/foo with the kubelet and reports two healthy devices on a node, the node status is updated
to advertise 2 vendor-domain/foo.

Then, users can request devices in a Container specification as they request other types of
resources, with the following limitations:

Extended resources are only supported as integer resources and cannot be
overcommitted.
Devices cannot be shared among Containers.

Suppose a Kubernetes cluster is running a device plugin that advertises resource vendor-

domain/resource on certain nodes, here is an example user pod requesting this resource:

apiVersion: v1
kind: Pod
metadata:
 name: demo-pod
spec:
 containers:
 - name: demo-container-1
 image: gcr.io/google_containers/pause:2.0

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#extended-resources
file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core

 resources:
 limits:
 vendor-domain/resource: 2 # requesting 2 vendor-domain/resource

Device plugin implementation

The general workflow of a device plugin includes the following steps:

Initialization. During this phase, the device plugin performs vendor specific initialization and
setup to make sure the devices are in a ready state.

The plugin starts a gRPC service, with a Unix socket under host path /var/lib/kubelet/device-

plugins/, that implements the following interfaces:

service DevicePlugin {
 // ListAndWatch returns a stream of List of Devices
 // Whenever a Device state change or a Device disappears, ListAndWatch
 // returns the new list
 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device
 // Plugin can run device specific operations and instruct Kubelet
 // of the steps to make the Device available in the container
 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}
}

The plugin registers itself with the kubelet through the Unix socket at host path
/var/lib/kubelet/device-plugins/kubelet.sock.

After successfully registering itself, the device plugin runs in serving mode, during which it
keeps monitoring device health and reports back to the kubelet upon any device state
changes. It is also responsible for serving Allocate gRPC requests. During Allocate, the device
plugin may do device-specific preparation; for example, GPU cleanup or QRNG
initialization. If the operations succeed, the device plugin returns an AllocateResponse that
contains container runtime configurations for accessing the allocated devices. The kubelet
passes this information to the container runtime.

A device plugin is expected to detect kubelet restarts and re-register itself with the new kubelet
instance. In the current implementation, a new kubelet instance deletes all the existing Unix
sockets under /var/lib/kubelet/device-plugins when it starts. A device plugin can monitor the deletion of
its Unix socket and re-register itself upon such an event.

Device plugin deployment

A device plugin can be deployed manually or as a DaemonSet. Being deployed as a DaemonSet
has the benefit that Kubernetes can restart the device plugin if it fails. Otherwise, an extra
mechanism is needed to recover from device plugin failures. The canonical directory
/var/lib/kubelet/device-plugins requires privileged access, so a device plugin must run in a privileged
security context. If a device plugin is running as a DaemonSet, /var/lib/kubelet/device-plugins must be
mounted as a Volume in the plugin’s PodSpec.

Kubernetes device plugin support is still in alpha. As development continues, its API version can
change in incompatible ways. We recommend that device plugin developers do the following:

Watch for changes in future releases.
Support multiple versions of the device plugin API for backward/forward compatibility.

If you enable the DevicePlugins feature and run device plugins on nodes that need to be

file:///docs/reference/generated/kubernetes-api/v1.10/#volume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core

upgraded to a Kubernetes release with a newer device plugin API version, upgrade your device
plugins to support both versions before upgrading these nodes to ensure the continuous
functioning of the device allocations during the upgrade.

Examples

For examples of device plugin implementations, see:

The official NVIDIA GPU device plugin
it requires using nvidia-docker 2.0 which allows you to run GPU enabled docker
containers

The NVIDIA GPU device plugin for COS base OS.
The RDMA device plugin
The Solarflare device plugin

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/nvidia-docker
https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/hustcat/k8s-rdma-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin

Resource Quotas

When several users or teams share a cluster with a fixed number of nodes, there is a concern

that one team could use more than its fair share of resources.

Resource quotas are a tool for administrators to address this concern.

A resource quota, defined by a ResourceQuotaResourceQuota object, provides constraints that limit

aggregate resource consumption per namespace. It can limit the quantity of objects that can

be created in a namespace by type, as well as the total amount of compute resources that may

be consumed by resources in that project.

Resource quotas work like this:

Different teams work in different namespaces. Currently this is voluntary, but support for

making this mandatory via ACLs is planned.

The administrator creates one or more ResourceQuotasResourceQuotas for each namespace.

Users create resources (pods, services, etc.) in the namespace, and the quota system

tracks usage to ensure it does not exceed hard resource limits defined in a

ResourceQuotaResourceQuota .

If creating or updating a resource violates a quota constraint, the request will fail with

HTTP status code 403 FORBIDDEN403 FORBIDDEN with a message explaining the constraint that would

have been violated.

If quota is enabled in a namespace for compute resources like cpucpu and memorymemory , users

must specify requests or limits for those values; otherwise, the quota system may reject

pod creation. Hint: Use the LimitRangerLimitRanger admission controller to force defaults for pods

that make no compute resource requirements. See the walkthrough for an example of

how to avoid this problem.

Examples of policies that could be created using namespaces and quotas are:

In a cluster with a capacity of 32 GiB RAM, and 16 cores, let team A use 20 GiB and 10

cores, let B use 10GiB and 4 cores, and hold 2GiB and 2 cores in reserve for future

allocation.

file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/

Limit the “testing” namespace to using 1 core and 1GiB RAM. Let the “production”

namespace use any amount.

In the case where the total capacity of the cluster is less than the sum of the quotas of the

namespaces, there may be contention for resources. This is handled on a first-come-first-

served basis.

Neither contention nor changes to quota will affect already created resources.

Enabling Resource Quota

Resource Quota support is enabled by default for many Kubernetes distributions. It is enabled

when the apiserver --enable-admission-plugins=--enable-admission-plugins= flag has ResourceQuotaResourceQuota as one of its

arguments.

A resource quota is enforced in a particular namespace when there is a ResourceQuotaResourceQuota in

that namespace.

Compute Resource Quota

You can limit the total sum of compute resources that can be requested in a given namespace.

The following resource types are supported:

Resource Name Description

cpucpu Across all pods in a non-terminal state, the sum of CPU requests cannot exceed this value.

limits.cpulimits.cpu Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

limits.memorylimits.memory Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

memorymemory
Across all pods in a non-terminal state, the sum of memory requests cannot exceed this
value.

requests.cpurequests.cpu Across all pods in a non-terminal state, the sum of CPU requests cannot exceed this value.

requests.memoryrequests.memory
Across all pods in a non-terminal state, the sum of memory requests cannot exceed this
value.

Storage Resource Quota

file:///docs/user-guide/compute-resources

You can limit the total sum of storage resources that can be requested in a given namespace.

In addition, you can limit consumption of storage resources based on associated storage-

class.

Resource Name Description

requests.storagerequests.storage

Across all persistent
volume claims, the sum of
storage requests cannot
exceed this value.

persistentvolumeclaimspersistentvolumeclaims

The total number of
persistent volume claims
that can exist in the
namespace.

<storage-class-<storage-class-

name>.storageclass.storage.k8s.io/requests.storagename>.storageclass.storage.k8s.io/requests.storage

Across all persistent
volume claims associated
with the storage-class-
name, the sum of storage
requests cannot exceed
this value.

<storage-class-<storage-class-

name>.storageclass.storage.k8s.io/persistentvolumeclaimsname>.storageclass.storage.k8s.io/persistentvolumeclaims

Across all persistent
volume claims associated
with the storage-class-
name, the total number of
persistent volume claims
that can exist in the
namespace.

For example, if an operator wants to quota storage with goldgold storage class separate from

bronzebronze storage class, the operator can define a quota as follows:

gold.storageclass.storage.k8s.io/requests.storage: 500Gigold.storageclass.storage.k8s.io/requests.storage: 500Gi

bronze.storageclass.storage.k8s.io/requests.storage: 100Gibronze.storageclass.storage.k8s.io/requests.storage: 100Gi

In release 1.8, quota support for local ephemeral storage is added as an alpha feature:

Resource Name Description

requests.ephemeral-requests.ephemeral-

storagestorage
Across all pods in the namespace, the sum of local ephemeral storage requests
cannot exceed this value.

limits.ephemeral-limits.ephemeral-

storagestorage
Across all pods in the namespace, the sum of local ephemeral storage limits cannot
exceed this value.

Object Count Quota

file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

The 1.9 release added support to quota all standard namespaced resource types using the

following syntax:

count/<resource>.<group>count/<resource>.<group>

Here is an example set of resources users may want to put under object count quota:

count/persistentvolumeclaimscount/persistentvolumeclaims

count/servicescount/services

count/secretscount/secrets

count/configmapscount/configmaps

count/replicationcontrollerscount/replicationcontrollers

count/deployments.appscount/deployments.apps

count/replicasets.appscount/replicasets.apps

count/statefulsets.appscount/statefulsets.apps

count/jobs.batchcount/jobs.batch

count/cronjobs.batchcount/cronjobs.batch

count/deployments.extensionscount/deployments.extensions

When using count/*count/* resource quota, an object is charged against the quota if it exists in

server storage. These types of quotas are useful to protect against exhaustion of storage

resources. For example, you may want to quota the number of secrets in a server given their

large size. Too many secrets in a cluster can actually prevent servers and controllers from

starting! You may choose to quota jobs to protect against a poorly configured cronjob creating

too many jobs in a namespace causing a denial of service.

Prior to the 1.9 release, it was possible to do generic object count quota on a limited set of

resources. In addition, it is possible to further constrain quota for particular resources by their

type.

The following types are supported:

Resource Name Description

configmapsconfigmaps The total number of config maps that can exist in the namespace.

persistentvolumeclaimspersistentvolumeclaims The total number of persistent volume claims that can exist in the namespace.

podspods

The total number of pods in a non-terminal state that can exist in the namespace.
A pod is in a terminal state if

status.phase in (Failed,status.phase in (Failed,

Succeeded)Succeeded) is true.

replicationcontrollersreplicationcontrollers The total number of replication controllers that can exist in the namespace.

resourcequotasresourcequotas The total number of resource quotas that can exist in the namespace.

servicesservices The total number of services that can exist in the namespace.

services.loadbalancersservices.loadbalancers
The total number of services of type load balancer that can exist in the
namespace.

services.nodeportsservices.nodeports The total number of services of type node port that can exist in the namespace.

secretssecrets The total number of secrets that can exist in the namespace.

For example, podspods quota counts and enforces a maximum on the number of podspods created in

a single namespace that are not terminal. You might want to set a podspods quota on a

namespace to avoid the case where a user creates many small pods and exhausts the

cluster’s supply of Pod IPs.

Quota Scopes

Each quota can have an associated set of scopes. A quota will only measure usage for a

resource if it matches the intersection of enumerated scopes.

When a scope is added to the quota, it limits the number of resources it supports to those that

pertain to the scope. Resources specified on the quota outside of the allowed set results in a

validation error.

Scope Description

TerminatingTerminating
Match pods where

spec.activeDeadlineSeconds >=spec.activeDeadlineSeconds >=

00

file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
file:///docs/admin/admission-controllers/#resourcequota

NotTerminatingNotTerminating

Match pods where

spec.activeDeadlineSeconds isspec.activeDeadlineSeconds is

nilnil

BestEffortBestEffort Match pods that have best effort quality of service.

NotBestEffortNotBestEffort Match pods that do not have best effort quality of service.

Scope Description

The BestEffortBestEffort scope restricts a quota to tracking the following resource: podspods

The TerminatingTerminating , NotTerminatingNotTerminating , and NotBestEffortNotBestEffort scopes restrict a quota to tracking

the following resources:

cpucpu

limits.cpulimits.cpu

limits.memorylimits.memory

memorymemory

podspods

requests.cpurequests.cpu

requests.memoryrequests.memory

Requests vs Limits

When allocating compute resources, each container may specify a request and a limit value for

either CPU or memory. The quota can be configured to quota either value.

If the quota has a value specified for requests.cpurequests.cpu or requests.memoryrequests.memory , then it requires

that every incoming container makes an explicit request for those resources. If the quota has a

value specified for limits.cpulimits.cpu or limits.memorylimits.memory , then it requires that every incoming

container specifies an explicit limit for those resources.

Viewing and Setting Quotas

Kubectl supports creating, updating, and viewing quotas:

kubectl create namespace myspacekubectl create namespace myspace

catcat <<<<EOFEOF > compute-resources.yaml > compute-resources.yaml

apiVersion: v1apiVersion: v1

kind: ResourceQuotakind: ResourceQuota

metadata:metadata:

 name: compute-resources name: compute-resources

spec:spec:

 hard: hard:

 pods: "4" pods: "4"

 requests.cpu: "1" requests.cpu: "1"

 requests.memory: 1Gi requests.memory: 1Gi

 limits.cpu: "2" limits.cpu: "2"

 limits.memory: 2Gi limits.memory: 2Gi

EOFEOF

kubectl create kubectl create -f-f ./compute-resources.yaml ./compute-resources.yaml --namespace--namespace==myspacemyspace

catcat <<<<EOFEOF > object-counts.yaml > object-counts.yaml

apiVersion: v1apiVersion: v1

kind: ResourceQuotakind: ResourceQuota

metadata:metadata:

 name: object-counts name: object-counts

spec:spec:

 hard: hard:

 configmaps: "10" configmaps: "10"

 persistentvolumeclaims: "4" persistentvolumeclaims: "4"

 replicationcontrollers: "20" replicationcontrollers: "20"

 secrets: "10" secrets: "10"

 services: "10" services: "10"

 services.loadbalancers: "2" services.loadbalancers: "2"

EOFEOF

kubectl create kubectl create -f-f ./object-counts.yaml ./object-counts.yaml --namespace--namespace==myspacemyspace

kubectl get quota kubectl get quota --namespace--namespace==myspacemyspace

NAME AGENAME AGE

compute-resources 30scompute-resources 30s

object-counts 32sobject-counts 32s

kubectl describe quota compute-resources kubectl describe quota compute-resources --namespace--namespace==myspacemyspace

Name: compute-resourcesName: compute-resources

Namespace: myspaceNamespace: myspace

Resource Used HardResource Used Hard

---------------- -------- --------

limits.cpu 0 2limits.cpu 0 2

limits.memory 0 2Gilimits.memory 0 2Gi

pods 0 4pods 0 4

requests.cpu 0 1requests.cpu 0 1

requests.memory 0 1Girequests.memory 0 1Gi

kubectl describe quota object-counts kubectl describe quota object-counts --namespace--namespace==myspacemyspace

Name: object-countsName: object-counts

Namespace: myspaceNamespace: myspace

Resource Used HardResource Used Hard

---------------- -------- --------

Kubectl also supports object count quota for all standard namespaced resources using the

syntax count/<resource>.<group>count/<resource>.<group> :

Quota and Cluster Capacity

ResourceQuotasResourceQuotas are independent of the cluster capacity. They are expressed in absolute

units. So, if you add nodes to your cluster, this does not automatically give each namespace

the ability to consume more resources.

Sometimes more complex policies may be desired, such as:

Proportionally divide total cluster resources among several teams.

Allow each tenant to grow resource usage as needed, but have a generous limit to prevent

accidental resource exhaustion.

Detect demand from one namespace, add nodes, and increase quota.

Such policies could be implemented using ResourceQuotasResourceQuotas as building blocks, by writing a

---------------- -------- --------

configmaps 0 10configmaps 0 10

persistentvolumeclaims 0 4persistentvolumeclaims 0 4

replicationcontrollers 0 20replicationcontrollers 0 20

secrets 1 10secrets 1 10

services 0 10services 0 10

services.loadbalancers 0 2services.loadbalancers 0 2

kubectl create namespace myspacekubectl create namespace myspace

kubectl create quota kubectl create quota testtest --hard--hard==count/deployments.extensionscount/deployments.extensions==2,count/replicasets.extensions2,count/replicasets.extensions

kubectl run nginx kubectl run nginx --image--image==nginx nginx --replicas--replicas==2 2 --namespace--namespace==myspacemyspace

kubectl describe quota kubectl describe quota --namespace--namespace==myspacemyspace

Name: Name: testtest

Namespace: myspaceNamespace: myspace

Resource Used HardResource Used Hard

---------------- -------- --------

count/deployments.extensions 1 2count/deployments.extensions 1 2

count/pods 2 3count/pods 2 3

count/replicasets.extensions 1 4count/replicasets.extensions 1 4

count/secrets 1 4count/secrets 1 4

“controller” that watches the quota usage and adjusts the quota hard limits of each

namespace according to other signals.

Note that resource quota divides up aggregate cluster resources, but it creates no restrictions

around nodes: pods from several namespaces may run on the same node.

Example

See a detailed example for how to use resource quota.

Read More

See ResourceQuota design doc for more information.

file:///docs/tasks/administer-cluster/quota-api-object/
https://git.k8s.io/community/contributors/design-proposals/resource-management/admission_control_resource_quota.md

Pod Security Policies

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Pod Security Policies enable fine-grained authorization of pod creation and updates.

What is a Pod Security Policy?

A Pod Security Policy is a cluster-level resource that controls security sensitive aspects of the

pod specification. The PodSecurityPolicyPodSecurityPolicy objects define a set of conditions that a pod must

run with in order to be accepted into the system, as well as defaults for the related fields. They

allow an administrator to control the following:

What is a Pod Security Policy?

Enabling Pod Security Policies

Authorizing Policies

Via RBAC

Troubleshooting

Policy Order

Example

Set up

Create a policy and a pod

Run another pod

Clean up

Example Policies

Policy Reference

Privileged

Host namespaces

Volumes and file systems

FlexVolume drivers

Users and groups

Privilege Escalation

Capabilities

SELinux

AppArmor

Seccomp

Sysctl

Control Aspect Field Names

Running of privileged containers privilegedprivileged

Usage of the root namespaces hostPIDhostPID , hostIPChostIPC

Usage of host networking and ports hostNetworkhostNetwork , hostPortshostPorts

Usage of volume types volumesvolumes

Usage of the host filesystem allowedHostPathsallowedHostPaths

White list of FlexVolume drivers allowedFlexVolumesallowedFlexVolumes

Allocating an FSGroup that owns the
pod’s volumes

fsGroupfsGroup

Requiring the use of a read only root
file system

readOnlyRootFilesystemreadOnlyRootFilesystem

The user and group IDs of the
container

runAsUserrunAsUser , supplementalGroupssupplementalGroups

Restricting escalation to root
privileges

allowPrivilegeEscalationallowPrivilegeEscalation ,

defaultAllowPrivilegeEscalationdefaultAllowPrivilegeEscalation

Linux capabilities
defaultAddCapabilitiesdefaultAddCapabilities , requiredDropCapabilitiesrequiredDropCapabilities ,

allowedCapabilitiesallowedCapabilities

The SELinux context of the container seLinuxseLinux

The AppArmor profile used by
containers

annotations

The seccomp profile used by
containers

annotations

The sysctl profile used by containers annotations

Enabling Pod Security Policies

Pod security policy control is implemented as an optional (but recommended) admission

controller. PodSecurityPolicies are enforced by enabling the admission controller, but doing so

without authorizing any policies will prevent any pods from being created in the cluster.

Since the pod security policy API (policy/v1beta1/podsecuritypolicypolicy/v1beta1/podsecuritypolicy) is enabled

independently of the admission controller, for existing clusters it is recommended that policies

are added and authorized before enabling the admission controller.

file:///docs/admin/admission-controllers/#podsecuritypolicy
file:///docs/admin/admission-controllers/#how-do-i-turn-on-an-admission-control-plug-in

Authorizing Policies

When a PodSecurityPolicy resource is created, it does nothing. In order to use it, the requesting

user or target pod’s service account must be authorized to use the policy, by allowing the useuse

verb on the policy.

Most Kubernetes pods are not created directly by users. Instead, they are typically created

indirectly as part of a Deployment, ReplicaSet, or other templated controller via the controller

manager. Granting the controller access to the policy would grant access for all pods created

by that the controller, so the preferred method for authorizing policies is to grant access to the

pod’s service account (see example).

Via RBAC

RBAC is a standard Kubernetes authorization mode, and can easily be used to authorize use of

policies.

First, a RoleRole or ClusterRoleClusterRole needs to grant access to useuse the desired policies. The rules to

grant access look like this:

Then the (Cluster)Role(Cluster)Role is bound to the authorized user(s):

kindkind:: ClusterRoleClusterRole

apiVersionapiVersion:: rbac.authorization.k8s.io/v1rbac.authorization.k8s.io/v1

metadatametadata::

 namename:: <role name><role name>

rulesrules::

-- apiGroupsapiGroups:: [[''policy'policy']]

 resourcesresources:: [[''podsecuritypolicies'podsecuritypolicies']]

 verbsverbs:: [[''use'use']]

 resourceNamesresourceNames::

 -- <list of policies to authorize><list of policies to authorize>

file:///docs/tasks/configure-pod-container/configure-service-account/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/admin/authorization/rbac/

If a RoleBindingRoleBinding (not a ClusterRoleBindingClusterRoleBinding) is used, it will only grant usage for pods being

run in the same namespace as the binding. This can be paired with system groups to grant

access to all pods run in the namespace:

For more examples of RBAC bindings, see Role Binding Examples. For a complete example of

authorizing a PodSecurityPolicy, see below.

Troubleshooting

The Controller Manager must be run against the secured API port, and must not have

superuser permissions. Otherwise requests would bypass authentication and

authorization modules, all PodSecurityPolicy objects would be allowed, and users would

be able to create privileged containers. For more details on configuring Controller Manager

authorization, see Controller Roles.

kindkind:: ClusterRoleBindingClusterRoleBinding

apiVersionapiVersion:: rbac.authorization.k8s.io/v1rbac.authorization.k8s.io/v1

metadatametadata::

 namename:: <binding name><binding name>

roleRefroleRef::

 kindkind:: ClusterRoleClusterRole

 namename:: <role name><role name>

 apiGroupapiGroup:: rbac.authorization.k8s.iorbac.authorization.k8s.io

subjectssubjects::

Authorize specific service accounts:# Authorize specific service accounts:
-- kindkind:: ServiceAccountServiceAccount

 namename:: <authorized service account name><authorized service account name>

 namespacenamespace:: <authorized pod namespace><authorized pod namespace>

Authorize specific users (not recommended):# Authorize specific users (not recommended):
-- kindkind:: UserUser

 apiGroupapiGroup:: rbac.authorization.k8s.iorbac.authorization.k8s.io

 namename:: <authorized user name><authorized user name>

Authorize all service accounts in a namespace:# Authorize all service accounts in a namespace:
-- kindkind:: GroupGroup

 apiGroupapiGroup:: rbac.authorization.k8s.iorbac.authorization.k8s.io

 namename:: system:serviceaccountssystem:serviceaccounts

Or equivalently, all authenticated users in a namespace:# Or equivalently, all authenticated users in a namespace:
-- kindkind:: GroupGroup

 apiGroupapiGroup:: rbac.authorization.k8s.iorbac.authorization.k8s.io

 namename:: system:authenticatedsystem:authenticated

file:///docs/admin/authorization/rbac#role-binding-examples
file:///docs/admin/kube-controller-manager/
file:///docs/admin/accessing-the-api/
file:///docs/admin/authorization/rbac/#controller-roles

Policy Order

In addition to restricting pod creation and update, pod security policies can also be used to

provide default values for many of the fields that it controls. When multiple policies are

available, the pod security policy controller selects policies in the following order:

1. If any policies successfully validate the pod without altering it, they are used.

2. Otherwise, the first valid policy in alphabetical order is used.

Example

This example assumes you have a running cluster with the PodSecurityPolicy admission

controller enabled and you have cluster admin privileges.

Set up

Set up a namespace and a service account to act as for this example. We’ll use this service

account to mock a non-admin user.

To make it clear which user we’re acting as and save some typing, create 2 aliases:

Create a policy and a pod

Define the example PodSecurityPolicy object in a file. This is a policy that simply prevents the

creation of privileged pods.

example-psp.yamlexample-psp.yaml

$ $ kubectl create namespace psp-examplekubectl create namespace psp-example

$ $ kubectl create serviceaccount kubectl create serviceaccount -n-n psp-example fake-user psp-example fake-user

$ $ kubectl create rolebinding kubectl create rolebinding -n-n psp-example fake-editor psp-example fake-editor --clusterrole--clusterrole==edit edit --serviceaccount--serviceaccount

$ $ alias alias kubectl-adminkubectl-admin=='kubectl -n psp-example''kubectl -n psp-example'

$ $ alias alias kubectl-userkubectl-user=='kubectl --as=system:serviceaccount:psp-example:fake-user -n psp-example''kubectl --as=system:serviceaccount:psp-example:fake-user -n psp-example'

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/policy/example-psp.yaml

example-psp.yamlexample-psp.yaml

And create it with kubectl:

Now, as the unprivileged user, try to create a simple pod:

What happened? Although the PodSecurityPolicy was created, neither the pod’s service

account nor fake-userfake-user have permission to use the new policy:

apiVersionapiVersion:: policy/v1beta1policy/v1beta1

kindkind:: PodSecurityPolicyPodSecurityPolicy

metadatametadata::

 namename:: exampleexample

specspec::

 privilegedprivileged:: falsefalse # Don't allow privileged pods!# Don't allow privileged pods!
 # The rest fills in some required fields.# The rest fills in some required fields.
 seLinuxseLinux::

 rulerule:: RunAsAnyRunAsAny

 supplementalGroupssupplementalGroups::

 rulerule:: RunAsAnyRunAsAny

 runAsUserrunAsUser::

 rulerule:: RunAsAnyRunAsAny

 fsGroupfsGroup::

 rulerule:: RunAsAnyRunAsAny

 volumesvolumes::

 -- ''*'*'

$ $ kubectl-admin create kubectl-admin create -f-f example-psp.yaml example-psp.yaml

$ $ kubectl-user create kubectl-user create -f--f- <<<<EOFEOF

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 name: pause name: pause

spec:spec:

 containers: containers:

 - name: pause - name: pause

 image: gcr.io/google-containers/pause image: gcr.io/google-containers/pause

EOFEOF

Error from server Error from server ((ForbiddenForbidden)): error when creating : error when creating "STDIN""STDIN": pods : pods "pause""pause" is forbidden: unable to validate against any pod security policy: is forbidden: unable to validate against any pod security policy:

$ $ kubectl-user auth can-i use podsecuritypolicy/examplekubectl-user auth can-i use podsecuritypolicy/example

nono

Create the rolebinding to grant fake-userfake-user the useuse verb on the example policy:

Note: This is not the recommended way! See the next section for the preferred approach.

Now retry creating the pod:

It works as expected! But any attempts to create a privileged pod should still be denied:

$ $ kubectl-admin create role psp:unprivileged kubectl-admin create role psp:unprivileged \\

 --verb--verb==use use \\

 --resource--resource==podsecuritypolicy podsecuritypolicy \\

 --resource-name--resource-name==exampleexample

role role "psp:unprivileged""psp:unprivileged" created created

$ $ kubectl-admin create rolebinding fake-user:psp:unprivileged kubectl-admin create rolebinding fake-user:psp:unprivileged \\

 --role--role==psp:unprivileged psp:unprivileged \\

 --serviceaccount--serviceaccount==psp-example:fake-userpsp-example:fake-user

rolebinding rolebinding "fake-user:psp:unprivileged""fake-user:psp:unprivileged" created created

$ $ kubectl-user auth can-i use podsecuritypolicy/examplekubectl-user auth can-i use podsecuritypolicy/example

yesyes

$ $ kubectl-user create kubectl-user create -f--f- <<<<EOFEOF

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 name: pause name: pause

spec:spec:

 containers: containers:

 - name: pause - name: pause

 image: gcr.io/google-containers/pause image: gcr.io/google-containers/pause

EOFEOF

pod pod "pause""pause" created created

$ $ kubectl-user create kubectl-user create -f--f- <<<<EOFEOF

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 name: privileged name: privileged

spec:spec:

 containers: containers:

 - name: pause - name: pause

 image: gcr.io/google-containers/pause image: gcr.io/google-containers/pause

 securityContext: securityContext:

 privileged: true privileged: true

EOFEOF

Error from server Error from server ((ForbiddenForbidden)): error when creating : error when creating "STDIN""STDIN": pods : pods "privileged""privileged"

Delete the pod before moving on:

Run another pod

Let’s try that again, slightly differently:

What happened? We already bound the psp:unprivilegedpsp:unprivileged role for our fake-userfake-user , why are

we getting the error

Error creating: pods "pause-7774d79b5-" is forbidden: no providers availableError creating: pods "pause-7774d79b5-" is forbidden: no providers available

to validate pod requestto validate pod request

? The answer lies in the source - replicaset-controllerreplicaset-controller . Fake-user successfully created the

deployment (which successfully created a replicaset), but when the replicaset went to create

the pod it was not authorized to use the example podsecuritypolicy.

In order to fix this, bind the psp:unprivilegedpsp:unprivileged role to the pod’s service account instead. In

this case (since we didn’t specify it) the service account is defaultdefault :

Now if you give it a minute to retry, the replicaset-controller should eventually succeed in

creating the pod:

$ $ kubectl-user delete pod pausekubectl-user delete pod pause

$ $ kubectl-user run pause kubectl-user run pause --image--image==gcr.io/google-containers/pausegcr.io/google-containers/pause

deployment deployment "pause""pause" created created

$ $ kubectl-user get podskubectl-user get pods

No resources found.No resources found.

$ $ kubectl-user get events | head kubectl-user get events | head -n-n 2 2

LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON SOURCE MESSAGELASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON SOURCE MESSAGE

1m 2m 15 pause-7774d79b5 ReplicaSet Warning FailedCreate replicaset-controller Error creating: pods 1m 2m 15 pause-7774d79b5 ReplicaSet Warning FailedCreate replicaset-controller Error creating: pods

$ $ kubectl-admin create rolebinding default:psp:unprivileged kubectl-admin create rolebinding default:psp:unprivileged \\

 --role--role==psp:unprivileged psp:unprivileged \\

 --serviceaccount--serviceaccount==psp-example:defaultpsp-example:default

rolebinding rolebinding "default:psp:unprivileged""default:psp:unprivileged" created created

Clean up

Delete the namespace to clean up most of the example resources:

Note that PodSecurityPolicyPodSecurityPolicy resources are not namespaced, and must be cleaned up

separately:

Example Policies

This is the least restricted policy you can create, equivalent to not using the pod security policy

admission controller:

privileged-psp.yamlprivileged-psp.yaml

$ $ kubectl-user get pods kubectl-user get pods --watch--watch

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

pause-7774d79b5-qrgcb 0/1 Pending 0 1spause-7774d79b5-qrgcb 0/1 Pending 0 1s

pause-7774d79b5-qrgcb 0/1 Pending 0 1spause-7774d79b5-qrgcb 0/1 Pending 0 1s

pause-7774d79b5-qrgcb 0/1 ContainerCreating 0 1spause-7774d79b5-qrgcb 0/1 ContainerCreating 0 1s

pause-7774d79b5-qrgcb 1/1 Running 0 2spause-7774d79b5-qrgcb 1/1 Running 0 2s

^C^C

$ $ kubectl-admin delete ns psp-examplekubectl-admin delete ns psp-example

namespace namespace "psp-example""psp-example" deleted deleted

$ $ kubectl-admin delete psp examplekubectl-admin delete psp example

podsecuritypolicy podsecuritypolicy "example""example" deleted deleted

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/policy/privileged-psp.yaml

privileged-psp.yamlprivileged-psp.yaml

This is an example of a restrictive policy that requires users to run as an unprivileged user,

blocks possible escalations to root, and requires use of several security mechanisms.

restricted-psp.yamlrestricted-psp.yaml

apiVersionapiVersion:: policy/v1beta1policy/v1beta1

kindkind:: PodSecurityPolicyPodSecurityPolicy

metadatametadata::

 namename:: privilegedprivileged

 annotationsannotations::

 seccomp.security.alpha.kubernetes.io/allowedProfileNamesseccomp.security.alpha.kubernetes.io/allowedProfileNames:: ''*'*'

specspec::

 privilegedprivileged:: truetrue

 allowPrivilegeEscalationallowPrivilegeEscalation:: truetrue

 allowedCapabilitiesallowedCapabilities::

 -- ''*'*'

 volumesvolumes::

 -- ''*'*'

 hostNetworkhostNetwork:: truetrue

 hostPortshostPorts::

 -- minmin:: 00

 maxmax:: 6553565535

 hostIPChostIPC:: truetrue

 hostPIDhostPID:: truetrue

 runAsUserrunAsUser::

 rulerule:: ''RunAsAny'RunAsAny'

 seLinuxseLinux::

 rulerule:: ''RunAsAny'RunAsAny'

 supplementalGroupssupplementalGroups::

 rulerule:: ''RunAsAny'RunAsAny'

 fsGroupfsGroup::

 rulerule:: ''RunAsAny'RunAsAny'

https://raw.githubusercontent.com/kubernetes/website/master/docs/concepts/policy/restricted-psp.yaml

restricted-psp.yamlrestricted-psp.yaml

Policy Reference

apiVersionapiVersion:: policy/v1beta1policy/v1beta1

kindkind:: PodSecurityPolicyPodSecurityPolicy

metadatametadata::

 namename:: restrictedrestricted

 annotationsannotations::

 seccomp.security.alpha.kubernetes.io/allowedProfileNamesseccomp.security.alpha.kubernetes.io/allowedProfileNames:: ''docker/default'docker/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNamesapparmor.security.beta.kubernetes.io/allowedProfileNames:: ''runtime/default'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileNameseccomp.security.alpha.kubernetes.io/defaultProfileName:: ''docker/default'docker/default'

 apparmor.security.beta.kubernetes.io/defaultProfileNameapparmor.security.beta.kubernetes.io/defaultProfileName:: ''runtime/default'runtime/default'

specspec::

 privilegedprivileged:: falsefalse

 # Required to prevent escalations to root.# Required to prevent escalations to root.
 allowPrivilegeEscalationallowPrivilegeEscalation:: falsefalse

 # This is redundant with non-root + disallow privilege escalation,# This is redundant with non-root + disallow privilege escalation,
 # but we can provide it for defense in depth.# but we can provide it for defense in depth.
 requiredDropCapabilitiesrequiredDropCapabilities::

 -- ALLALL

 # Allow core volume types.# Allow core volume types.
 volumesvolumes::

 -- ''configMap'configMap'

 -- ''emptyDir'emptyDir'

 -- ''projected'projected'

 -- ''secret'secret'

 -- ''downwardAPI'downwardAPI'

 # Assume that persistentVolumes set up by the cluster admin are safe to use.# Assume that persistentVolumes set up by the cluster admin are safe to use.
 -- ''persistentVolumeClaim'persistentVolumeClaim'

 hostNetworkhostNetwork:: falsefalse

 hostIPChostIPC:: falsefalse

 hostPIDhostPID:: falsefalse

 runAsUserrunAsUser::

 # Require the container to run without root privileges.# Require the container to run without root privileges.
 rulerule:: ''MustRunAsNonRoot'MustRunAsNonRoot'

 seLinuxseLinux::

 # This policy assumes the nodes are using AppArmor rather than SELinux.# This policy assumes the nodes are using AppArmor rather than SELinux.
 rulerule:: ''RunAsAny'RunAsAny'

 supplementalGroupssupplementalGroups::

 rulerule:: ''MustRunAs'MustRunAs'

 rangesranges::

 # Forbid adding the root group.# Forbid adding the root group.
 -- minmin:: 11

 maxmax:: 6553565535

 fsGroupfsGroup::

 rulerule:: ''MustRunAs'MustRunAs'

 rangesranges::

 # Forbid adding the root group.# Forbid adding the root group.
 -- minmin:: 11

 maxmax:: 6553565535

 readOnlyRootFilesystemreadOnlyRootFilesystem:: falsefalse

Privileged

Privileged - determines if any container in a pod can enable privileged mode. By default a

container is not allowed to access any devices on the host, but a “privileged” container is given

access to all devices on the host. This allows the container nearly all the same access as

processes running on the host. This is useful for containers that want to use linux capabilities

like manipulating the network stack and accessing devices.

Host namespaces

HostPID - Controls whether the pod containers can share the host process ID namespace.

Note that when paired with ptrace this can be used to escalate privileges outside of the

container (ptrace is forbidden by default).

HostIPC - Controls whether the pod containers can share the host IPC namespace.

HostNetwork - Controls whether the pod may use the node network namespace. Doing so

gives the pod access to the loopback device, services listening on localhost, and could be used

to snoop on network activity of other pods on the same node.

HostPorts - Provides a whitelist of ranges of allowable ports in the host network namespace.

Defined as a list of HostPortRangeHostPortRange , with minmin (inclusive) and maxmax (inclusive). Defaults to no

allowed host ports.

AllowedHostPaths - See Volumes and file systems.

Volumes and file systems

Volumes - Provides a whitelist of allowed volume types. The allowable values correspond to

the volume sources that are defined when creating a volume. For the complete list of volume

types, see Types of Volumes. Additionally, ** may be used to allow all volume types.

The recommended minimum set of allowed volumes for new PSPs are:

configMap

downwardAPI

emptyDir

persistentVolumeClaim

file:///docs/concepts/storage/volumes/#types-of-volumes

secret

projected

FSGroup - Controls the supplemental group applied to some volumes.

MustRunAs - Requires at least one rangerange to be specified. Uses the minimum value of the

first range as the default. Validates against all ranges.

RunAsAny - No default provided. Allows any fsGroupfsGroup ID to be specified.

AllowedHostPaths - This specifies a whitelist of host paths that are allowed to be used by

hostPath volumes. An empty list means there is no restriction on host paths used. This is

defined as a list of objects with a single pathPrefixpathPrefix field, which allows hostPath volumes to

mount a path that begins with an allowed prefix. For example:

Note: There are many ways a container with unrestricted access to the host filesystem can

escalate privileges, including reading data from other containers, and abusing the credentials of

system services, such as Kubelet.

ReadOnlyRootFilesystem - Requires that containers must run with a read-only root filesystem

(i.e. no writeable layer).

FlexVolume drivers

This specifies a whiltelist of flex volume drivers that are allowed to be used by flexVolume. An

empty list or nil means there is no restriction on the drivers. Please make sure volumesvolumes field

contains the flexVolumeflexVolume volume type, no FlexVolume driver is allowed otherwise.

For example:

allowedHostPathsallowedHostPaths::

 # This allows "/foo", "/foo/", "/foo/bar" etc., but# This allows "/foo", "/foo/", "/foo/bar" etc., but
 # disallows "/fool", "/etc/foo" etc.# disallows "/fool", "/etc/foo" etc.
 # "/foo/../" is never valid.# "/foo/../" is never valid.
 -- pathPrefixpathPrefix:: ""/foo"/foo"

Users and groups

RunAsUser - Controls the what user ID containers run as.

MustRunAs - Requires at least one rangerange to be specified. Uses the minimum value of the

first range as the default. Validates against all ranges.

MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUserrunAsUser or

have the USERUSER directive defined (using a numeric UID) in the image. No default provided.

Setting allowPrivilegeEscalation=falseallowPrivilegeEscalation=false is strongly recommended with this strategy.

RunAsAny - No default provided. Allows any runAsUserrunAsUser to be specified.

SupplementalGroups - Controls which group IDs containers add.

MustRunAs - Requires at least one rangerange to be specified. Uses the minimum value of the

first range as the default. Validates against all ranges.

RunAsAny - No default provided. Allows any supplementalGroupssupplementalGroups to be specified.

Privilege Escalation

These options control the allowPrivilegeEscalationallowPrivilegeEscalation container option. This bool directly

controls whether the no_new_privsno_new_privs flag gets set on the container process. This flag will

prevent setuidsetuid binaries from changing the effective user ID, and prevent files from enabling

extra capabilities (e.g. it will prevent the use of the pingping tool). This behavior is required to

effectively enforce MustRunAsNonRootMustRunAsNonRoot .

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: PodSecurityPolicyPodSecurityPolicy

metadatametadata::

 namename:: allow-flex-volumesallow-flex-volumes

specspec::

 # ... other spec fields# ... other spec fields
 volumesvolumes::

 -- flexVolumeflexVolume

 allowedFlexVolumesallowedFlexVolumes::

 -- driverdriver:: example/lvmexample/lvm

 -- driverdriver:: example/cifsexample/cifs

https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt

It defaults to nilnil . The default behavior of nilnil allows privilege escalation so as to not break

setuid binaries. Setting it to falsefalse ensures that no child process of a container can gain more

privileges than its parent.

AllowPrivilegeEscalation - Gates whether or not a user is allowed to set the security context of

a container to allowPrivilegeEscalation=trueallowPrivilegeEscalation=true . This defaults to allowed. When set to false,

the container’s allowPrivilegeEscalationallowPrivilegeEscalation is defaulted to false.

DefaultAllowPrivilegeEscalation - Sets the default for the allowPrivilegeEscalationallowPrivilegeEscalation

option. The default behavior without this is to allow privilege escalation so as to not break

setuid binaries. If that behavior is not desired, this field can be used to default to disallow, while

still permitting pods to request allowPrivilegeEscalationallowPrivilegeEscalation explicitly.

Capabilities

Linux capabilities provide a finer grained breakdown of the privileges traditionally associated

with the superuser. Some of these capabilities can be used to escalate privileges or for

container breakout, and may be restricted by the PodSecurityPolicy. For more details on Linux

capabilities, see capabilities(7).

The following fields take a list of capabilities, specified as the capability name in ALL_CAPS

without the CAP_CAP_ prefix.

AllowedCapabilities - Provides a whitelist of capabilities that may be added to a container. The

default set of capabilities are implicitly allowed. The empty set means that no additional

capabilities may be added beyond the default set. ** can be used to allow all capabilities.

RequiredDropCapabilities - The capabilities which must be dropped from containers. These

capabilities are removed from the default set, and must not be added. Capabilities listed in

RequiredDropCapabilitiesRequiredDropCapabilities must not be included in AllowedCapabilitiesAllowedCapabilities or

DefaultAddCapabilitiesDefaultAddCapabilities .

DefaultAddCapabilities - The capabilities which are added to containers by default, in addition

to the runtime defaults. See the Docker documentation for the default list of capabilities when

using the Docker runtime.

SELinux

MustRunAs - Requires seLinuxOptionsseLinuxOptions to be configured. Uses seLinuxOptionsseLinuxOptions as the

http://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

default. Validates against seLinuxOptionsseLinuxOptions .

RunAsAny - No default provided. Allows any seLinuxOptionsseLinuxOptions to be specified.

AppArmor

Controlled via annotations on the PodSecurityPolicy. Refer to the AppArmor documentation.

Seccomp

The use of seccomp profiles in pods can be controlled via annotations on the

PodSecurityPolicy. Seccomp is an alpha feature in Kubernetes.

seccomp.security.alpha.kubernetes.io/defaultProfileName - Annotation that specifies the

default seccomp profile to apply to containers. Possible values are:

unconfinedunconfined - Seccomp is not applied to the container processes (this is the default in

Kubernetes), if no alternative is provided.

docker/defaultdocker/default - The Docker default seccomp profile is used.

localhost/<path>localhost/<path> - Specify a profile as a file on the node located at

<seccomp_root>/<path><seccomp_root>/<path> , where <seccomp_root><seccomp_root> is defined via the

--seccomp-profile-root--seccomp-profile-root flag on the Kubelet.

seccomp.security.alpha.kubernetes.io/allowedProfileNames - Annotation that specifies which

values are allowed for the pod seccomp annotations. Specified as a comma-delimited list of

allowed values. Possible values are those listed above, plus ** to allow all profiles. Absence of

this annotation means that the default cannot be changed.

Sysctl

Controlled via annotations on the PodSecurityPolicy. Refer to the Sysctl documentation.

file:///docs/tutorials/clusters/apparmor/#podsecuritypolicy-annotations
file:///docs/concepts/cluster-administration/sysctl-cluster/#podsecuritypolicy-annotations

Tasks

This section of the Kubernetes documentation contains pages that show how to do individual

tasks. A task page shows how to do a single thing, typically by giving a short sequence of

steps.

Web UI (Dashboard)

Deploy and access the Dashboard web user interface to help you manage and monitor

containerized applications in a Kubernetes cluster.

Using the kubectl Command-line

Install and setup the kubectlkubectl command-line tool used to directly manage Kubernetes

clusters.

Configuring Pods and Containers

Perform common configuration tasks for Pods and Containers.

Running Applications

Perform common application management tasks, such as rolling updates, injecting

information into pods, and horizontal Pod autoscaling.

Running Jobs

Run Jobs using parallel processing.

Accessing Applications in a Cluster

Configure load balancing, port forwarding, or setup firewall or DNS configurations to access

applications in a cluster.

Monitoring, Logging, and Debugging

Setup monitoring and logging to troubleshoot a cluster or debug a containerized application.

Accessing the Kubernetes API

Learn various methods to directly access the Kubernetes API.

Using TLS

Configure your application to trust and use the cluster root Certificate Authority (CA).

Administering a Cluster

Learn common tasks for administering a cluster.

Administering Federation

Configure components in a cluster federation.

Managing Stateful Applications

Perform common tasks for managing Stateful applications, including scaling, deleting, and

debugging StatefulSets.

Cluster Daemons

Perform common tasks for managing a DaemonSet, such as performing a rolling update.

Managing GPUs

Configure and schedule NVIDIA GPUs for use as a resource by nodes in a cluster.

Managing HugePages

Configure and schedule huge pages as a schedulable resource in a cluster.

What’s next

If you would like to write a task page, see Creating a Documentation Pull Request .

file:///docs/home/contribute/create-pull-request/

Install and Set Up kubectl

Install kubectl

Here are a few methods to install kubectl. Pick the one that suits your environment best.

Use the Kubernetes command-line tool, kubectl, to deploy and manage applications on

Kubernetes. Using kubectl, you can inspect cluster resources; create, delete, and update

components; and look at your new cluster and bring up example apps.

Before you begin

Use a version of kubectl that is the same version as your server or later. Using an older kubectl

with a newer server might produce validation errors.

Install kubectl binary via curl

Install kubectl

Before you begin

Install kubectl binary via curl

Download as part of the Google Cloud SDK

Install with snap on Ubuntu

Install with Homebrew on macOS

Install with Powershell from PSGallery

Install with Chocolatey on Windows

Configure kubectl

Check the kubectl configuration

Enabling shell autocompletion

On Linux, using bash

On macOS, using bash

Using Zsh

What’s next

macOS Linux Windows

file:///docs/user-guide/kubectl/

Download as part of the Google Cloud SDK

kubectl can be installed as part of the Google Cloud SDK.

1. Install the Google Cloud SDK.

2. Run the following command to install kubectlkubectl :

1. Download the latest release with the command:

To download a specific version, replace the

$(curl -s https://storage.googleapis.com/kubernetes-$(curl -s https://storage.googleapis.com/kubernetes-

release/release/stable.txt)release/release/stable.txt)

portion of the command with the specific version.

For example, to download version v1.10.0 on MacOS, type:

2. Make the kubectl binary executable.

3. Move the binary in to your PATH.

curl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/darwin/amd64/kubectlcurl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/darwin/amd64/kubectl

curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/darwin/amd64/kubectlcurl -LO https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/darwin/amd64/kubectl

 chmod +x ./kubectl chmod +x ./kubectl

 sudo mv ./kubectl /usr/local/bin/kubectl sudo mv ./kubectl /usr/local/bin/kubectl

gcloud components install kubectlgcloud components install kubectl

https://cloud.google.com/sdk/

3. Run kubectl versionkubectl version to verify that the version you’ve installed is sufficiently up-to-date.

Install with snap on Ubuntu

kubectl is available as a snap application.

1. If you are on Ubuntu or one of other Linux distributions that support snap package

manager, you can install with:

2. Run kubectl versionkubectl version to verify that the version you’ve installed is sufficiently up-to-date.

Install with Homebrew on macOS

1. If you are on macOS and using Homebrew package manager, you can install with:

2. Run kubectl versionkubectl version to verify that the version you’ve installed is sufficiently up-to-date.

Install with Powershell from PSGallery

1. If you are on Windows and using Powershell Gallery package manager, you can install and

update with:

If no Downloadlocation is specified, kubectl will be installed in users temp Directory

1. The installer creates $HOME/.kube and instructs it to create a config file

2. Updating re-run Install-Script to update the installer re-run install-kubectl.ps1 to install

latest binaries

sudo snap install kubectl --classicsudo snap install kubectl --classic

brew install kubectlbrew install kubectl

Install-Script -Name install-kubectl -Scope CurrentUser -Force Install-Script -Name install-kubectl -Scope CurrentUser -Force

install-kubectl.ps1 [-DownloadLocation <path>]install-kubectl.ps1 [-DownloadLocation <path>]

https://snapcraft.io/
https://snapcraft.io/docs/core/install
https://brew.sh/
https://www.powershellgallery.com/

Install with Chocolatey on Windows

1. If you are on Windows and using Chocolatey package manager, you can install with:

2. Run kubectl versionkubectl version to verify that the version you’ve installed is sufficiently up-to-date.

3. Configure kubectl to use a remote Kubernetes cluster:

Edit the config file with a text editor of your choice, such as Notepad for example.

Configure kubectl

In order for kubectl to find and access a Kubernetes cluster, it needs a kubeconfig file, which is

created automatically when you create a cluster using kube-up.sh or successfully deploy a

Minikube cluster. See the getting started guides for more about creating clusters. If you need

access to a cluster you didn’t create, see the Sharing Cluster Access document. By default,

kubectl configuration is located at ~/.kube/config~/.kube/config .

Check the kubectl configuration

Check that kubectl is properly configured by getting the cluster state:

If you see a URL response, kubectl is correctly configured to access your cluster.

If you see a message similar to the following, kubectl is not correctly configured or not able to

choco install kubernetes-clichoco install kubernetes-cli

cd C:\users\yourusername (Or wherever your %HOME% directory is)cd C:\users\yourusername (Or wherever your %HOME% directory is)

mkdir .kubemkdir .kube

cd .kubecd .kube

New-Item config -type fileNew-Item config -type file

kubectl cluster-infokubectl cluster-info

https://chocolatey.org
file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters/
file:///docs/setup/
file:///docs/tasks/access-application-cluster/configure-access-multiple-clusters/

connect to a Kubernetes cluster.

For example, if you are intending to run a Kubernetes cluster on your laptop (locally), you will

need a tool like minikube to be installed first and then re-run the commands stated above.

If kubectl cluster-info returns the url response but you can’t access your cluster, to check

whether it is configured properly, use:

Enabling shell autocompletion

kubectl includes autocompletion support, which can save a lot of typing!

The completion script itself is generated by kubectl, so you typically just need to invoke it from

your profile.

Common examples are provided here. For more details, consult

kubectl completion -kubectl completion -

hh .

On Linux, using bash

To add kubectl autocompletion to your current shell, run

source <(kubectl completion bash)source <(kubectl completion bash) .

To add kubectl autocompletion to your profile, so it is automatically loaded in future shells run:

On macOS, using bash

On macOS, you will need to install bash-completion support via Homebrew first:

The connection to the server <server-name:port> was refused - did you specify the right host or port?The connection to the server <server-name:port> was refused - did you specify the right host or port?

kubectl cluster-info dumpkubectl cluster-info dump

echoecho "source <(kubectl completion bash)""source <(kubectl completion bash)" >>>> ~/.bashrc ~/.bashrc

https://brew.sh/

Follow the “caveats” section of brew’s output to add the appropriate bash completion path to

your local .bashrc.

If you’ve installed kubectl using the Homebrew instructions then kubectl completion should

start working immediately.

If you have installed kubectl manually, you need to add kubectl autocompletion to the bash-

completion:

The Homebrew project is independent from Kubernetes, so the bash-completion packages are

not guaranteed to work.

Using Zsh

If you are using zsh edit the ~/.zshrc file and add the following code to enable kubectl

autocompletion:

Or when using Oh-My-Zsh, edit the ~/.zshrc file and update the plugins=plugins= line to include the

kubectl plugin.

What’s next

Learn how to launch and expose your application.

If running Bash 3.2 included with macOS## If running Bash 3.2 included with macOS
brew install bash-completionbrew install bash-completion

or, if running Bash 4.1+## or, if running Bash 4.1+
brew install bash-completion@2brew install bash-completion@2

kubectl completion bash kubectl completion bash >> $($(brew brew --prefix--prefix))/etc/bash_completion.d/kubectl/etc/bash_completion.d/kubectl

ifif [[$commands$commands[[kubectl] kubectl]]];; thenthen

 sourcesource < <((kubectl completion zshkubectl completion zsh))

fifi

sourcesource < <((kubectl completion zshkubectl completion zsh))

http://ohmyz.sh/
file:///docs/tasks/access-application-cluster/service-access-application-cluster/

Install Minikube

This page shows how to install Minikube.

Before you begin

VT-x or AMD-v virtualization must be enabled in your computer’s BIOS.

Install a Hypervisor

If you do not already have a hypervisor installed, install one now.

For OS X, install VirtualBox or VMware Fusion, or HyperKit.

For Linux, install VirtualBox or KVM.

Note: Minikube also supports a --vm-driver=none--vm-driver=none option that runs the

Kubernetes components on the host and not in a VM. Docker is required to use this

driver but a hypervisor is not required.

For Windows, install VirtualBox or Hyper-V.

Install kubectl

Install kubectl.

Before you begin

Install a Hypervisor

Install kubectl

Install Minikube

What’s next

https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/fusion
https://github.com/moby/hyperkit
https://www.virtualbox.org/wiki/Downloads
http://www.linux-kvm.org/
https://www.virtualbox.org/wiki/Downloads
https://msdn.microsoft.com/en-us/virtualization/hyperv_on_windows/quick_start/walkthrough_install
file:///docs/tasks/tools/install-kubectl/

Install Minikube

Install Minikube according to the instructions for the latest release.

What’s next

Running Kubernetes Locally via Minikube

https://github.com/kubernetes/minikube/releases
file:///docs/getting-started-guides/minikube/

Installing kubeadm

This page shows how to install the kubeadm toolbox. For information how to create a
cluster with kubeadm once you have performed this installation process, see the
Using kubeadm to Create a Cluster page.

Before you begin
Verify the MAC address and product_uuid are unique for every node
Check network adapters
Check required ports

Master node(s)
Worker node(s)

Installing Docker
Installing kubeadm, kubelet and kubectl
Configure cgroup driver used by kubelet on Master Node
Troubleshooting
What’s next

Before you begin

One or more machines running one of:
Ubuntu 16.04+
Debian 9
CentOS 7
RHEL 7
Fedora 25/26 (best-effort)
HypriotOS v1.0.1+
Container Linux (tested with 1576.4.0)

2 GB or more of RAM per machine (any less will leave little room for your apps)
2 CPUs or more
Full network connectivity between all machines in the cluster (public or private network is fine)
Unique hostname, MAC address, and product_uuid for every node. See here for more details.
Certain ports are open on your machines. See here for more details.
Swap disabled. You MUST disable swap in order for the kubelet to work properly.

Verify the MAC address and product_uuid are unique for every
node

You can get the MAC address of the network interfaces using the command ip link or ifconfig -a

The product_uuid can be checked by using the command sudo cat /sys/class/dmi/id/product_uuid

It is very likely that hardware devices will have unique addresses, although some virtual machines may
have identical values. Kubernetes uses these values to uniquely identify the nodes in the cluster. If these
values are not unique to each node, the installation process may fail.

Check network adapters

If you have more than one network adapter, and your Kubernetes components are not reachable on the
default route, we recommend you add IP route(s) so Kubernetes cluster addresses go via the appropriate
adapter.

Check required ports

Master node(s)

Protocol Direction Port Range Purpose

TCP Inbound 6443* Kubernetes API server

file:///docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/independent/install-kubeadm/#verify-the-mac-address-and-product_uuid-are-unique-for-every-node
file:///docs/setup/independent/install-kubeadm/#check-required-ports
https://github.com/kubernetes/kubeadm/issues/31

TCP Inbound 2379-2380 etcd server client API
TCP Inbound 10250 Kubelet API

TCP Inbound 10251 kube-scheduler

TCP Inbound 10252 kube-controller-manager

TCP Inbound 10255 Read-only Kubelet API

Protocol Direction Port Range Purpose

Worker node(s)

Protocol Direction Port Range Purpose

TCP Inbound 10250 Kubelet API

TCP Inbound 10255
Read-only Kubelet
API

TCP Inbound 30000-32767 NodePort Services**

** Default port range for NodePort Services.

Any port numbers marked with * are overridable, so you will need to ensure any custom ports you provide
are also open.

Although etcd ports are included in master nodes, you can also host your own etcd cluster externally or
on custom ports.

The pod network plugin you use (see below) may also require certain ports to be open. Since this differs
with each pod network plugin, please see the documentation for the plugins about what port(s) those
need.

Installing Docker

On each of your machines, install Docker. Version v1.12 is recommended, but v1.11, v1.13 and 17.03 are
known to work as well. Versions 17.06+ might work, but have not yet been tested and verified by the
Kubernetes node team.

Please proceed with executing the following commands based on your OS as root. You may become the
root user by executing sudo -i after SSH-ing to each host.

If you already have the required versions of the Docker installed, you can move on to next section. If not,
you can use the following commands to install Docker on your system:

Install Docker from Ubuntu’s repositories:

apt-get update
apt-get install -y docker.io

or install Docker CE 17.03 from Docker’s repositories for Ubuntu or Debian:

apt-get update
apt-get install -y \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository \
 "deb https://download.docker.com/linux/$(. /etc/os-release; echo "$ID") \
 $(lsb_release -cs) \
 stable"

Ubuntu, Debian or HypriotOS CentOS, RHEL or Fedora Container Linux

file:///docs/concepts/services-networking/service/

Refer to the official Docker installation guides for more information.

Installing kubeadm, kubelet and kubectl

You will install these packages on all of your machines:

kubeadm: the command to bootstrap the cluster.

kubelet: the component that runs on all of the machines in your cluster and does things like starting
pods and containers.

kubectl: the command line util to talk to your cluster.

kubeadm will not install or manage kubelet or kubectl for you, so you will need to ensure they match the
version of the Kubernetes control panel you want kubeadm to install for you. If you do not, there is a risk
of a version skew occurring that can lead to unexpected, buggy behaviour. However, one minor version
skew between the kubelet and the control plane is supported, but the kubelet version may never exceed
the API server version. For example, kubelets running 1.7.0 should be fully compatible with a 1.8.0 API
server, but not vice versa.

For more information on version skews, please read our version skew policy.

The kubelet is now restarting every few seconds, as it waits in a crashloop for kubeadm to tell it what to
do.

Configure cgroup driver used by kubelet on Master Node

Make sure that the cgroup driver used by kubelet is the same as the one used by Docker. Verify that your
Docker cgroup driver matches the kubelet config:

docker info | grep -i cgroup
cat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

If the Docker cgroup driver and the kubelet config don’t match, change the kubelet config to match the
Docker cgroup driver. The flag you need to change is --cgroup-driver. If it’s already set, you can update like
so:

sed -i "s/cgroup-driver=systemd/cgroup-driver=cgroupfs/g" /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Otherwise, you will need to open the systemd file and add the flag to an existing environment line.

Then restart kubelet:

systemctl daemon-reload
systemctl restart kubelet

apt-get update && apt-get install -y docker-ce=$(apt-cache madison docker-ce | grep 17.03 | head -1 | awk '{print $3}')

apt-get update && apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubelet kubeadm kubectl

Ubuntu, Debian or HypriotOS CentOS, RHEL or Fedora Container Linux

https://docs.docker.com/engine/installation/
file:///docs/setup/independent/create-cluster-kubeadm/#version-skew-policy

Troubleshooting

If you are running into difficulties with kubeadm, please consult our troubleshooting docs.

What’s next

Using kubeadm to Create a Cluster

file:///docs/setup/independent/troubleshooting-kubeadm/
file:///docs/setup/independent/create-cluster-kubeadm/

Assign Memory Resources to Containers
and Pods

This page shows how to assign a memory request and a memory limit to a Container. A

Container is guaranteed to have as much memory as it requests, but is not allowed to use

more memory than its limit.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Each node in your cluster must have at least 300 MiB of memory.

A few of the steps on this page require that the Heapster service is running in your cluster. But

if you don’t have Heapster running, you can do most of the steps, and it won’t be a problem if

you skip the Heapster steps.

Before you begin

Create a namespace

Specify a memory request and a memory limit

Exceed a Container’s memory limit

Specify a memory request that is too big for your Nodes

Memory units

If you don’t specify a memory limit

Motivation for memory requests and limits

Clean up

What’s next

For app developers

For cluster administrators

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes/heapster

If you are running minikube, run the following command to enable heapster:

To see whether the Heapster service is running, enter this command:

If the Heapster service is running, it shows in the output:

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Specify a memory request and a memory limit

To specify a memory request for a Container, include the resources:requestsresources:requests field in the

Container’s resource manifest. To specify a memory limit, include resources:limitsresources:limits .

In this exercise, you create a Pod that has one Container. The Container has a memory request

of 100 MiB and a memory limit of 200 MiB. Here’s the configuration file for the Pod:

memory-request-limit.yamlmemory-request-limit.yaml

minikube addons minikube addons enable enable heapsterheapster

kubectl get services kubectl get services --namespace--namespace==kube-systemkube-system

NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORTNAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

kube-system heapster 10.11.240.9 <none> 80/TCP 6dkube-system heapster 10.11.240.9 <none> 80/TCP 6d

kubectl create namespace mem-examplekubectl create namespace mem-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/memory-request-limit.yaml

memory-request-limit.yamlmemory-request-limit.yaml

In the configuration file, the argsargs section provides arguments for the Container when it starts.

The

"--vm-bytes","--vm-bytes",

"150M""150M" arguments tell the Container to attempt to allocate 150 MiB of

memory.

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the one Container in the Pod has a memory request of 100 MiB and a

memory limit of 200 MiB.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: memory-demomemory-demo

 namespacenamespace:: mem-examplemem-example

specspec::

 containerscontainers::

 -- namename:: memory-demo-ctrmemory-demo-ctr

 imageimage:: polinux/stresspolinux/stress

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 requestsrequests::

 memorymemory:: ""100Mi"100Mi"

 commandcommand:: [[""stress"stress"]]

 argsargs:: [[""--vm"--vm",, ""1"1",, ""--vm-bytes"--vm-bytes",, ""150M"150M",, ""--vm-hang"--vm-hang",, ""1"1"]]

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml

kubectl get pod memory-demo kubectl get pod memory-demo --namespace--namespace==mem-examplemem-example

kubectl get pod memory-demo kubectl get pod memory-demo --output--output==yaml yaml --namespace--namespace==mem-examplemem-example

Start a proxy so that you can call the Heapster service:

In another command window, get the memory usage from the Heapster service:

The output shows that the Pod is using about 162,900,000 bytes of memory, which is about

150 MiB. This is greater than the Pod’s 100 MiB request, but within the Pod’s 200 MiB limit.

Delete your Pod:

Exceed a Container’s memory limit

A Container can exceed its memory request if the Node has memory available. But a Container

is not allowed to use more than its memory limit. If a Container allocates more memory than

its limit, the Container becomes a candidate for termination. If the Container continues to

consume memory beyond its limit, the Container is terminated. If a terminated Container is

restartable, the kubelet will restart it, as with any other type of runtime failure.

......

resourcesresources::

 limitslimits::

 memorymemory:: 200Mi200Mi

 requestsrequests::

 memorymemory:: 100Mi100Mi

......

kubectl proxykubectl proxy

curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usagecurl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage

{{

 "timestamp""timestamp":: "2017-06-20T18:54:00Z""2017-06-20T18:54:00Z",,

 "value""value":: 162856960162856960

}}

kubectl delete pod memory-demo kubectl delete pod memory-demo --namespace--namespace==mem-examplemem-example

In this exercise, you create a Pod that attempts to allocate more memory than its limit. Here is

the configuration file for a Pod that has one Container. The Container has a memory request of

50 MiB and a memory limit of 100 MiB.

memory-request-limit-2.yamlmemory-request-limit-2.yaml

In the configuration file, in the argsargs section, you can see that the Container will attempt to

allocate 250 MiB of memory, which is well above the 100 MiB limit.

Create the Pod:

View detailed information about the Pod:

At this point, the Container might be running, or it might have been killed. If the Container has

not yet been killed, repeat the preceding command until you see that the Container has been

killed:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: memory-demo-2memory-demo-2

 namespacenamespace:: mem-examplemem-example

specspec::

 containerscontainers::

 -- namename:: memory-demo-2-ctrmemory-demo-2-ctr

 imageimage:: polinux/stresspolinux/stress

 resourcesresources::

 requestsrequests::

 memorymemory:: ""50Mi"50Mi"

 limitslimits::

 memorymemory:: ""100Mi"100Mi"

 commandcommand:: [[""stress"stress"]]

 argsargs:: [[""--vm"--vm",, ""1"1",, ""--vm-bytes"--vm-bytes",, ""250M"250M",, ""--vm-hang"--vm-hang",, ""1"1"]]

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml

kubectl get pod memory-demo-2 kubectl get pod memory-demo-2 --namespace--namespace==mem-examplemem-example

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

memory-demo-2 0/1 OOMKilled 1 24smemory-demo-2 0/1 OOMKilled 1 24s

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/memory-request-limit-2.yaml

Get a more detailed view of the Container’s status:

The output shows that the Container has been killed because it is out of memory (OOM).

The Container in this exercise is restartable, so the kubelet will restart it. Enter this command

several times to see that the Container gets repeatedly killed and restarted:

The output shows that the Container gets killed, restarted, killed again, restarted again, and so

on:

View detailed information about the Pod’s history:

The output shows that the Container starts and fails repeatedly:

kubectl get pod memory-demo-2 kubectl get pod memory-demo-2 --output--output==yaml yaml --namespace--namespace==mem-examplemem-example

lastState:lastState:

 terminated: terminated:

 containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10f containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10f

 exitCode: 137 exitCode: 137

 finishedAt: 2017-06-20T20:52:19Z finishedAt: 2017-06-20T20:52:19Z

 reason: OOMKilled reason: OOMKilled

 startedAt: null startedAt: null

kubectl get pod memory-demo-2 kubectl get pod memory-demo-2 --namespace--namespace==mem-examplemem-example

stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-examplestevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-example

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

memory-demo-2 0/1 OOMKilled 1 37smemory-demo-2 0/1 OOMKilled 1 37s

stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-examplestevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-example

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

memory-demo-2 1/1 Running 2 40smemory-demo-2 1/1 Running 2 40s

kubectl describe pod memory-demo-2 --namespace=mem-examplekubectl describe pod memory-demo-2 --namespace=mem-example

... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511

... Warning BackOff Back-off restarting failed container... Warning BackOff Back-off restarting failed container

View detailed information about your cluster’s Nodes:

The output includes a record of the Container being killed because of an out-of-memory

condition:

Delete your Pod:

Specify a memory request that is too big for your
Nodes

Memory requests and limits are associated with Containers, but it is useful to think of a Pod as

having a memory request and limit. The memory request for the Pod is the sum of the memory

requests for all the Containers in the Pod. Likewise, the memory limit for the Pod is the sum of

the limits of all the Containers in the Pod.

Pod scheduling is based on requests. A Pod is scheduled to run on a Node only if the Node

has enough available memory to satisfy the Pod’s memory request.

In this exercise, you create a Pod that has a memory request so big that it exceeds the

capacity of any Node in your cluster. Here is the configuration file for a Pod that has one

Container. The Container requests 1000 GiB of memory, which is likely to exceed the capacity

of any Node in your cluster.

memory-request-limit-3.yamlmemory-request-limit-3.yaml

kubectl describe nodeskubectl describe nodes

Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice childWarning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child

kubectl delete pod memory-demo-2 kubectl delete pod memory-demo-2 --namespace--namespace==mem-examplemem-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/memory-request-limit-3.yaml

memory-request-limit-3.yamlmemory-request-limit-3.yaml

Create the Pod:

View the Pod’s status:

The output shows that the Pod’s status is PENDING. That is, the Pod has not been scheduled

to run on any Node, and it will remain in the PENDING state indefinitely:

View detailed information about the Pod, including events:

The output shows that the Container cannot be scheduled because of insufficient memory on

the Nodes:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: memory-demo-3memory-demo-3

 namespacenamespace:: mem-examplemem-example

specspec::

 containerscontainers::

 -- namename:: memory-demo-3-ctrmemory-demo-3-ctr

 imageimage:: polinux/stresspolinux/stress

 resourcesresources::

 limitslimits::

 memorymemory:: ""1000Gi"1000Gi"

 requestsrequests::

 memorymemory:: ""1000Gi"1000Gi"

 commandcommand:: [[""stress"stress"]]

 argsargs:: [[""--vm"--vm",, ""1"1",, ""--vm-bytes"--vm-bytes",, ""150M"150M",, ""--vm-hang"--vm-hang",, ""1"1"]]

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml

kubectl get pod memory-demo-3 kubectl get pod memory-demo-3 --namespace--namespace==mem-examplemem-example

kubectl get pod memory-demo-3 --namespace=mem-examplekubectl get pod memory-demo-3 --namespace=mem-example

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

memory-demo-3 0/1 Pending 0 25smemory-demo-3 0/1 Pending 0 25s

kubectl describe pod memory-demo-3 kubectl describe pod memory-demo-3 --namespace--namespace==mem-examplemem-example

Memory units

The memory resource is measured in bytes. You can express memory as a plain integer or a

fixed-point integer with one of these suffixes: E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki. For example,

the following represent approximately the same value:

Delete your Pod:

If you don’t specify a memory limit

If you don’t specify a memory limit for a Container, then one of these situations applies:

The Container has no upper bound on the amount of memory it uses. The Container could

use all of the memory available on the Node where it is running.

The Container is running in a namespace that has a default memory limit, and the

Container is automatically assigned the default limit. Cluster administrators can use a

LimitRange to specify a default value for the memory limit.

Motivation for memory requests and limits

By configuring memory requests and limits for the Containers that run in your cluster, you can

make efficient use of the memory resources available on your cluster’s Nodes. By keeping a

Pod’s memory request low, you give the Pod a good chance of being scheduled. By having a

Events:Events:

 ... Reason Message ... Reason Message

 ------------ --------------

 ... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory ... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory

128974848, 129e6, 129M , 123Mi128974848, 129e6, 129M , 123Mi

kubectl delete pod memory-demo-3 kubectl delete pod memory-demo-3 --namespace--namespace==mem-examplemem-example

file:///docs/reference/generated/kubernetes-api/v1.10/#limitrange-v1-core

memory limit that is greater than the memory request, you accomplish two things:

The Pod can have bursts of activity where it makes use of memory that happens to be

available.

The amount of memory a Pod can use during a burst is limited to some reasonable

amount.

Clean up

Delete your namespace. This deletes all the Pods that you created for this task:

What’s next

For app developers

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

kubectl delete namespace mem-examplekubectl delete namespace mem-example

file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/
file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/

Assign CPU Resources to Containers and
Pods

This page shows how to assign a CPU request and a CPU limit to a Container. A Container is

guaranteed to have as much CPU as it requests, but is not allowed to use more CPU than its

limit.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Each node in your cluster must have at least 1 cpu.

A few of the steps on this page require that the Heapster service is running in your cluster. But

if you don’t have Heapster running, you can do most of the steps, and it won’t be a problem if

you skip the Heapster steps.

Before you begin

Create a namespace

Specify a CPU request and a CPU limit

CPU units

Specify a CPU request that is too big for your Nodes

If you don’t specify a CPU limit

Motivation for CPU requests and limits

Clean up

What’s next

For app developers

For cluster administrators

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes/heapster

If you are running minikube, run the following command to enable heapster:

To see whether the Heapster service is running, enter this command:

If the heapster service is running, it shows in the output:

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Specify a CPU request and a CPU limit

To specify a CPU request for a Container, include the resources:requestsresources:requests field in the

Container’s resource manifest. To specify a CPU limit, include resources:limitsresources:limits .

In this exercise, you create a Pod that has one Container. The Container has a CPU request of

0.5 cpu and a CPU limit of 1 cpu. Here’s the configuration file for the Pod:

cpu-request-limit.yamlcpu-request-limit.yaml

minikube addons minikube addons enable enable heapsterheapster

kubectl get services kubectl get services --namespace--namespace==kube-systemkube-system

NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORTNAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

kube-system heapster 10.11.240.9 <none> 80/TCP 6dkube-system heapster 10.11.240.9 <none> 80/TCP 6d

kubectl create namespace cpu-examplekubectl create namespace cpu-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/cpu-request-limit.yaml

cpu-request-limit.yamlcpu-request-limit.yaml

In the configuration file, the argsargs section provides arguments for the Container when it starts.

The

-cpus-cpus

"2""2" argument tells the Container to attempt to use 2 cpus.

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the one Container in the Pod has a CPU request of 500 millicpu and a

CPU limit of 1 cpu.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: cpu-democpu-demo

 namespacenamespace:: cpu-examplecpu-example

specspec::

 containerscontainers::

 -- namename:: cpu-demo-ctrcpu-demo-ctr

 imageimage:: vish/stressvish/stress

 resourcesresources::

 limitslimits::

 cpucpu:: ""1"1"

 requestsrequests::

 cpucpu:: ""0.5"0.5"

 argsargs::

 -- -cpus-cpus

 -- ""2"2"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/cpu-request-limit.yaml https://k8s.io/docs/tasks/configure-pod-container/cpu-request-limit.yaml

kubectl get pod cpu-demo kubectl get pod cpu-demo --namespace--namespace==cpu-examplecpu-example

kubectl get pod cpu-demo kubectl get pod cpu-demo --output--output==yaml yaml --namespace--namespace==cpu-examplecpu-example

Start a proxy so that you can call the heapster service:

In another command window, get the CPU usage rate from the heapster service:

The output shows that the Pod is using 974 millicpu, which is just a bit less than the limit of 1

cpu specified in the Pod’s configuration file.

Recall that by setting

-cpu-cpu

"2""2" , you configured the Container to attempt to use 2 cpus. But

the Container is only being allowed to use about 1 cpu. The Container’s CPU use is being

throttled, because the Container is attempting to use more CPU resources than its limit.

Note: There’s another possible explanation for the CPU throttling. The Node might not

have enough CPU resources available. Recall that the prerequisites for this exercise

require that each of your Nodes has at least 1 cpu. If your Container is running on a

Node that has only 1 cpu, the Container cannot use more than 1 cpu regardless of the

CPU limit specified for the Container.

CPU units

resources:resources:

 limits: limits:

 cpu: cpu: "1""1"

 requests: requests:

 cpu: 500m cpu: 500m

kubectl proxykubectl proxy

curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/cpu-example/pods/cpu-demo/metrics/cpu/usage_ratecurl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/cpu-example/pods/cpu-demo/metrics/cpu/usage_rate

{{

 "timestamp""timestamp":: "2017-06-22T18:48:00Z""2017-06-22T18:48:00Z",,

 "value""value":: 974974

}}

The CPU resource is measured in cpu units. One cpu, in Kubernetes, is equivalent to:

1 AWS vCPU

1 GCP Core

1 Azure vCore

1 Hyperthread on a bare-metal Intel processor with Hyperthreading

Fractional values are allowed. A Container that requests 0.5 cpu is guaranteed half as much

CPU as a Container that requests 1 cpu. You can use the suffix m to mean milli. For example

100m cpu, 100 millicpu, and 0.1 cpu are all the same. Precision finer than 1m is not allowed.

CPU is always requested as an absolute quantity, never as a relative quantity; 0.1 is the same

amount of CPU on a single-core, dual-core, or 48-core machine.

Delete your Pod:

Specify a CPU request that is too big for your Nodes

CPU requests and limits are associated with Containers, but it is useful to think of a Pod as

having a CPU request and limit. The CPU request for a Pod is the sum of the CPU requests for

all the Containers in the Pod. Likewise, the CPU limit for a Pod is the sum of the CPU limits for

all the Containers in the Pod.

Pod scheduling is based on requests. A Pod is scheduled to run on a Node only if the Node

has enough CPU resources available to satisfy the Pod’s CPU request.

In this exercise, you create a Pod that has a CPU request so big that it exceeds the capacity of

any Node in your cluster. Here is the configuration file for a Pod that has one Container. The

Container requests 100 cpu, which is likely to exceed the capacity of any Node in your cluster.

cpu-request-limit-2.yamlcpu-request-limit-2.yaml

kubectl delete pod cpu-demo kubectl delete pod cpu-demo --namespace--namespace==cpu-examplecpu-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/cpu-request-limit-2.yaml

cpu-request-limit-2.yamlcpu-request-limit-2.yaml

Create the Pod:

View the Pod’s status:

The output shows that the Pod’s status is Pending. That is, the Pod has not been scheduled to

run on any Node, and it will remain in the Pending state indefinitely:

View detailed information about the Pod, including events:

The output shows that the Container cannot be scheduled because of insufficient CPU

resources on the Nodes:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: cpu-demo-2cpu-demo-2

 namespacenamespace:: cpu-examplecpu-example

specspec::

 containerscontainers::

 -- namename:: cpu-demo-ctr-2cpu-demo-ctr-2

 imageimage:: vish/stressvish/stress

 resourcesresources::

 limitslimits::

 cpucpu:: ""100"100"

 requestsrequests::

 cpucpu:: ""100"100"

 argsargs::

 -- -cpus-cpus

 -- ""2"2"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/cpu-request-limit-2.yaml https://k8s.io/docs/tasks/configure-pod-container/cpu-request-limit-2.yaml

kubectl get pod cpu-demo-2 kubectl get pod cpu-demo-2 --namespace--namespace==cpu-examplecpu-example

kubectl get pod cpu-demo-2 --namespace=cpu-examplekubectl get pod cpu-demo-2 --namespace=cpu-example

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

cpu-demo-2 0/1 Pending 0 7mcpu-demo-2 0/1 Pending 0 7m

kubectl describe pod cpu-demo-2 kubectl describe pod cpu-demo-2 --namespace--namespace==cpu-examplecpu-example

Delete your Pod:

If you don’t specify a CPU limit

If you don’t specify a CPU limit for a Container, then one of these situations applies:

The Container has no upper bound on the CPU resources it can use. The Container could

use all of the CPU resources available on the Node where it is running.

The Container is running in a namespace that has a default CPU limit, and the Container is

automatically assigned the default limit. Cluster administrators can use a LimitRange to

specify a default value for the CPU limit.

Motivation for CPU requests and limits

By configuring the CPU requests and limits of the Containers that run in your cluster, you can

make efficient use of the CPU resources available on your cluster’s Nodes. By keeping a Pod’s

CPU request low, you give the Pod a good chance of being scheduled. By having a CPU limit

that is greater than the CPU request, you accomplish two things:

The Pod can have bursts of activity where it makes use of CPU resources that happen to

be available.

The amount of CPU resources a Pod can use during a burst is limited to some reasonable

amount.

Clean up

Events:Events:

 Reason Message Reason Message

 ------------ --------------

 FailedScheduling No nodes are available that match all of the following predicates:: Insufficient cpu FailedScheduling No nodes are available that match all of the following predicates:: Insufficient cpu

kubectl delete pod cpu-demo-2 kubectl delete pod cpu-demo-2 --namespace--namespace==cpu-examplecpu-example

file:///docs/reference/generated/kubernetes-api/v1.10/#limitrange-v1-core/

Delete your namespace:

What’s next

For app developers

Assign Memory Resources to Containers and Pods

Configure Quality of Service for Pods

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

kubectl delete namespace cpu-examplekubectl delete namespace cpu-example

file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/
file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/

Configure Quality of Service for Pods

This page shows how to configure Pods so that they will be assigned particular Quality of

Service (QoS) classes. Kubernetes uses QoS classes to make decisions about scheduling and

evicting Pods.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

QoS classes

When Kubernetes creates a Pod it assigns one of these QoS classes to the Pod:

Guaranteed

Before you begin

QoS classes

Create a namespace

Create a Pod that gets assigned a QoS class of Guaranteed

Create a Pod that gets assigned a QoS class of Burstable

Create a Pod that gets assigned a QoS class of BestEffort

Create a Pod that has two Containers

Clean up

What’s next

For app developers

For cluster administrators

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Burstable

BestEffort

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Create a Pod that gets assigned a QoS class of
Guaranteed

For a Pod to be given a QoS class of Guaranteed:

Every Container in the Pod must have a memory limit and a memory request, and they

must be the same.

Every Container in the Pod must have a cpu limit and a cpu request, and they must be the

same.

Here is the configuration file for a Pod that has one Container. The Container has a memory

limit and a memory request, both equal to 200 MiB. The Container has a cpu limit and a cpu

request, both equal to 700 millicpu:

qos-pod.yamlqos-pod.yaml

kubectl create namespace qos-examplekubectl create namespace qos-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/qos-pod.yaml

qos-pod.yamlqos-pod.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of Guaranteed. The output also

verifies that the Pod’s Container has a memory request that matches its memory limit, and it

has a cpu request that matches its cpu limit.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: qos-demoqos-demo

 namespacenamespace:: qos-exampleqos-example

specspec::

 containerscontainers::

 -- namename:: qos-demo-ctrqos-demo-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""700m"700m"

 requestsrequests::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""700m"700m"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/qos-pod.yaml https://k8s.io/docs/tasks/configure-pod-container/qos-pod.yaml

kubectl get pod qos-demo kubectl get pod qos-demo --namespace--namespace==qos-example qos-example --output--output==yamlyaml

specspec::

 containerscontainers::

 resourcesresources::

 limitslimits::

 cpucpu:: 700m700m

 memorymemory:: 200Mi200Mi

 requestsrequests::

 cpucpu:: 700m700m

 memorymemory:: 200Mi200Mi

......

 qosClassqosClass:: GuaranteedGuaranteed

Note: If a Container specifies its own memory limit, but does not specify a memory

request, Kubernetes automatically assigns a memory request that matches the limit.

Similarly, if a Container specifies its own cpu limit, but does not specify a cpu request,

Kubernetes automatically assigns a cpu request that matches the limit.

Delete your Pod:

Create a Pod that gets assigned a QoS class of
Burstable

A Pod is given a QoS class of Burstable if:

The Pod does not meet the criteria for QoS class Guaranteed.

At least one Container in the Pod has a memory or cpu request.

Here is the configuration file for a Pod that has one Container. The Container has a memory

limit of 200 MiB and a memory request of 100 MiB.

qos-pod-2.yamlqos-pod-2.yaml

Create the Pod:

kubectl delete pod qos-demo kubectl delete pod qos-demo --namespace--namespace==qos-exampleqos-example

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: qos-demo-2qos-demo-2

 namespacenamespace:: qos-exampleqos-example

specspec::

 containerscontainers::

 -- namename:: qos-demo-2-ctrqos-demo-2-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 requestsrequests::

 memorymemory:: ""100Mi"100Mi"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/qos-pod-2.yaml

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of Burstable.

Delete your Pod:

Create a Pod that gets assigned a QoS class of
BestEffort

For a Pod to be given a QoS class of BestEffort, the Containers in the Pod must not have any

memory or cpu limits or requests.

Here is the configuration file for a Pod that has one Container. The Container has no memory

or cpu limits or requests:

qos-pod-3.yamlqos-pod-3.yaml

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/qos-pod-2.yaml https://k8s.io/docs/tasks/configure-pod-container/qos-pod-2.yaml

kubectl get pod qos-demo-2 kubectl get pod qos-demo-2 --namespace--namespace==qos-example qos-example --output--output==yamlyaml

specspec::

 containerscontainers::

 -- imageimage:: nginxnginx

 imagePullPolicyimagePullPolicy:: AlwaysAlways

 namename:: qos-demo-2-ctrqos-demo-2-ctr

 resourcesresources::

 limitslimits::

 memorymemory:: 200Mi200Mi

 requestsrequests::

 memorymemory:: 100Mi100Mi

......

 qosClassqosClass:: BurstableBurstable

kubectl delete pod qos-demo-2 kubectl delete pod qos-demo-2 --namespace--namespace==qos-exampleqos-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/qos-pod-3.yaml

qos-pod-3.yamlqos-pod-3.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of BestEffort.

Delete your Pod:

Create a Pod that has two Containers

Here is the configuration file for a Pod that has two Containers. One container specifies a

memory request of 200 MiB. The other Container does not specify any requests or limits.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: qos-demo-3qos-demo-3

 namespacenamespace:: qos-exampleqos-example

specspec::

 containerscontainers::

 -- namename:: qos-demo-3-ctrqos-demo-3-ctr

 imageimage:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/qos-pod-3.yaml https://k8s.io/docs/tasks/configure-pod-container/qos-pod-3.yaml

kubectl get pod qos-demo-3 kubectl get pod qos-demo-3 --namespace--namespace==qos-example qos-example --output--output==yamlyaml

specspec::

 containerscontainers::

 resourcesresources:: {}{}

 qosClassqosClass:: BestEffortBestEffort

kubectl delete pod qos-demo-3 kubectl delete pod qos-demo-3 --namespace--namespace==qos-exampleqos-example

qos-pod-4.yamlqos-pod-4.yaml

Notice that this Pod meets the criteria for QoS class Burstable. That is, it does not meet the

criteria for QoS class Guaranteed, and one of its Containers has a memory request.

Create the Pod:

View detailed information about the Pod:

The output shows that Kubernetes gave the Pod a QoS class of Burstable:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: qos-demo-4qos-demo-4

 namespacenamespace:: qos-exampleqos-example

specspec::

 containerscontainers::

 -- namename:: qos-demo-4-ctr-1qos-demo-4-ctr-1

 imageimage:: nginxnginx

 resourcesresources::

 requestsrequests::

 memorymemory:: ""200Mi"200Mi"

 -- namename:: qos-demo-4-ctr-2qos-demo-4-ctr-2

 imageimage:: redisredis

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/qos-pod-4.yaml https://k8s.io/docs/tasks/configure-pod-container/qos-pod-4.yaml

kubectl get pod qos-demo-4 kubectl get pod qos-demo-4 --namespace--namespace==qos-example qos-example --output--output==yamlyaml

specspec::

 containerscontainers::

 namename:: qos-demo-4-ctr-1qos-demo-4-ctr-1

 resourcesresources::

 requestsrequests::

 memorymemory:: 200Mi200Mi

 namename:: qos-demo-4-ctr-2qos-demo-4-ctr-2

 resourcesresources:: {}{}

 qosClassqosClass:: BurstableBurstable

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/qos-pod-4.yaml

Delete your Pod:

Clean up

Delete your namespace:

What’s next

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

 qosClassqosClass:: BurstableBurstable

kubectl delete pod qos-demo-4 kubectl delete pod qos-demo-4 --namespace--namespace==qos-exampleqos-example

kubectl delete namespace qos-examplekubectl delete namespace qos-example

file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/

Assign Extended Resources to a
Container

This page shows how to assign extended resources to a Container.

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 stable

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Before you do this exercise, do the exercise in Advertise Extended Resources for a Node. That

will configure one of your Nodes to advertise a dongle resource.

Assign an extended resource to a Pod

To request an extended resource, include the resources:requestsresources:requests field in your Container

manifest. Extended resources are fully qualified with any domain outside of

.kubernetes.io/.kubernetes.io/ . Valid extended resource names have the form example.com/fooexample.com/foo where

Before you begin

Assign an extended resource to a Pod

Attempt to create a second Pod

Clean up

What’s next

For application developers

For cluster administrators

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/tasks/administer-cluster/extended-resource-node/

example.comexample.com is replaced with your organization’s domain and foofoo is a descriptive resource

name.

Here is the configuration file for a Pod that has one Container:

extended-resource-pod.yamlextended-resource-pod.yaml

In the configuration file, you can see that the Container requests 3 dongles.

Create a Pod:

Verify that the Pod is running:

Describe the Pod:

The output shows dongle requests:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: extended-resource-demoextended-resource-demo

specspec::

 containerscontainers::

 -- namename:: extended-resource-demo-ctrextended-resource-demo-ctr

 imageimage:: nginxnginx

 resourcesresources::

 requestsrequests::

 example.com/dongleexample.com/dongle:: 33

 limitslimits::

 example.com/dongleexample.com/dongle:: 33

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/extended-resource-pod.yaml https://k8s.io/docs/tasks/configure-pod-container/extended-resource-pod.yaml

kubectl get pod extended-resource-demokubectl get pod extended-resource-demo

kubectl describe pod extended-resource-demokubectl describe pod extended-resource-demo

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/extended-resource-pod.yaml

Attempt to create a second Pod

Here is the configuration file for a Pod that has one Container. The Container requests two

dongles.

extended-resource-pod-2.yamlextended-resource-pod-2.yaml

Kubernetes will not be able to satisfy the request for two dongles, because the first Pod used

three of the four available dongles.

Attempt to create a Pod:

Describe the Pod

The output shows that the Pod cannot be scheduled, because there is no Node that has 2

LimitsLimits::

 example.com/dongleexample.com/dongle:: 33

RequestsRequests::

 example.com/dongleexample.com/dongle:: 33

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: extended-resource-demo-2extended-resource-demo-2

specspec::

 containerscontainers::

 -- namename:: extended-resource-demo-2-ctrextended-resource-demo-2-ctr

 imageimage:: nginxnginx

 resourcesresources::

 requestsrequests::

 example.com/dongleexample.com/dongle:: 22

 limitslimits::

 example.com/dongleexample.com/dongle:: 22

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/extended-resource-pod-2.yaml https://k8s.io/docs/tasks/configure-pod-container/extended-resource-pod-2.yaml

kubectl describe pod extended-resource-demo-2kubectl describe pod extended-resource-demo-2

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/extended-resource-pod-2.yaml

dongles available:

View the Pod status:

The output shows that the Pod was created, but not scheduled to run on a Node. It has a

status of Pending:

Clean up

Delete the Pod that you created for this exercise:

What’s next

For application developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

For cluster administrators

Conditions:Conditions:

 Type Status Type Status

 PodScheduled False PodScheduled False

......

Events:Events:

 ... Warning FailedScheduling pod (extended-resource-demo-2) failed to fit in any node ... Warning FailedScheduling pod (extended-resource-demo-2) failed to fit in any node

fit failure summary on nodes : Insufficient example.com/dongle (1)fit failure summary on nodes : Insufficient example.com/dongle (1)

kubectl get pod extended-resource-demo-2kubectl get pod extended-resource-demo-2

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

extended-resource-demo-2 0/1 Pending 0 6mextended-resource-demo-2 0/1 Pending 0 6m

kubectl delete pod extended-resource-demo-2kubectl delete pod extended-resource-demo-2

file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/

Advertise Extended Resources for a Node

file:///docs/tasks/administer-cluster/extended-resource-node/

Configure a Pod to Use a Volume for
Storage

This page shows how to configure a Pod to use a Volume for storage.

A Container’s file system lives only as long as the Container does, so when a Container

terminates and restarts, changes to the filesystem are lost. For more consistent storage that is

independent of the Container, you can use a Volume. This is especially important for stateful

applications, such as key-value stores and databases. For example, Redis is a key-value cache

and store.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Configure a volume for a Pod

In this exercise, you create a Pod that runs one Container. This Pod has a Volume of type

emptyDir that lasts for the life of the Pod, even if the Container terminates and restarts. Here is

the configuration file for the Pod:

Before you begin

Configure a volume for a Pod

What’s next

file:///docs/concepts/storage/volumes/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/volumes/#emptydir

pod-redis.yamlpod-redis.yaml

1. Create the Pod:

2. Verify that the Pod’s Container is running, and then watch for changes to the Pod:

The output looks like this:

3. In another terminal, get a shell to the running Container:

4. In your shell, go to /data/redis/data/redis , and create a file:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: redisredis

specspec::

 containerscontainers::

 -- namename:: redisredis

 imageimage:: redisredis

 volumeMountsvolumeMounts::

 -- namename:: redis-storageredis-storage

 mountPathmountPath:: /data/redis/data/redis

 volumesvolumes::

 -- namename:: redis-storageredis-storage

 emptyDiremptyDir:: {}{}

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/pod-redis.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/pod-redis.yaml

kubectl get pod redis --watchkubectl get pod redis --watch

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

redis 1/1 Running 0 13sredis 1/1 Running 0 13s

kubectl exec -it redis -- /bin/bashkubectl exec -it redis -- /bin/bash

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/pod-redis.yaml

5. In your shell, list the running processes:

The output is similar to this:

6. In your shell, kill the redis process:

where <pid><pid> is the redis process ID (PID).

7. In your original terminal, watch for changes to the redis Pod. Eventually, you will see

something like this:

At this point, the Container has terminated and restarted. This is because the redis Pod has a

restartPolicy of AlwaysAlways .

1. Get a shell into the restarted Container:

root@redis:/data# cd /data/redis/root@redis:/data# cd /data/redis/

root@redis:/data/redis# echo Hello > test-fileroot@redis:/data/redis# echo Hello > test-file

root@redis:/data/redis# ps auxroot@redis:/data/redis# ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDUSER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

redis 1 0.1 0.1 33308 3828 ? Ssl 00:46 0:00 redis-server *:6379redis 1 0.1 0.1 33308 3828 ? Ssl 00:46 0:00 redis-server *:6379

root 12 0.0 0.0 20228 3020 ? Ss 00:47 0:00 /bin/bashroot 12 0.0 0.0 20228 3020 ? Ss 00:47 0:00 /bin/bash

root 15 0.0 0.0 17500 2072 ? R+ 00:48 0:00 ps auxroot 15 0.0 0.0 17500 2072 ? R+ 00:48 0:00 ps aux

root@redis:/data/redis# kill <pid>root@redis:/data/redis# kill <pid>

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

redis 1/1 Running 0 13sredis 1/1 Running 0 13s

redis 0/1 Completed 0 6mredis 0/1 Completed 0 6m

redis 1/1 Running 1 6mredis 1/1 Running 1 6m

file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core

2. In your shell, goto /data/redis/data/redis , and verify that test-filetest-file is still there.

What’s next

See Volume.

See Pod.

In addition to the local disk storage provided by emptyDiremptyDir , Kubernetes supports many

different network-attached storage solutions, including PD on GCE and EBS on EC2, which

are preferred for critical data, and will handle details such as mounting and unmounting

the devices on the nodes. See Volumes for more details.

kubectl exec -it redis -- /bin/bashkubectl exec -it redis -- /bin/bash

file:///docs/reference/generated/kubernetes-api/v1.10/#volume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#pod-v1-core
file:///docs/concepts/storage/volumes/

Configure a Pod to Use a
PersistentVolume for Storage

This page shows how to configure a Pod to use a PersistentVolumeClaim for storage. Here is

a summary of the process:

1. A cluster administrator creates a PersistentVolume that is backed by physical storage. The

administrator does not associate the volume with any Pod.

2. A cluster user creates a PersistentVolumeClaim, which gets automatically bound to a

suitable PersistentVolume.

3. The user creates a Pod that uses the PersistentVolumeClaim as storage.

Before you begin

You need to have a Kubernetes cluster that has only one Node, and the kubectl command-

line tool must be configured to communicate with your cluster. If you do not already have

a single-node cluster, you can create one by using Minikube.

Familiarize yourself with the material in Persistent Volumes.

Create an index.html file on your Node

Open a shell to the Node in your cluster. How you open a shell depends on how you set up your

cluster. For example, if you are using Minikube, you can open a shell to your Node by entering

Before you begin

Create an index.html file on your Node

Create a PersistentVolume

Create a PersistentVolumeClaim

Create a Pod

Access control

What’s next

Reference

file:///docs/getting-started-guides/minikube
file:///docs/concepts/storage/persistent-volumes/

minikubeminikube

sshssh .

In your shell, create a /mnt/data/mnt/data directory:

In the /mnt/data/mnt/data directory, create an index.htmlindex.html file:

Create a PersistentVolume

In this exercise, you create a hostPath PersistentVolume. Kubernetes supports hostPath for

development and testing on a single-node cluster. A hostPath PersistentVolume uses a file or

directory on the Node to emulate network-attached storage.

In a production cluster, you would not use hostPath. Instead a cluster administrator would

provision a network resource like a Google Compute Engine persistent disk, an NFS share, or an

Amazon Elastic Block Store volume. Cluster administrators can also use StorageClasses to set

up dynamic provisioning.

Here is the configuration file for the hostPath PersistentVolume:

task-pv-volume.yamltask-pv-volume.yaml

mkdir /mnt/datamkdir /mnt/data

echo 'Hello from Kubernetes storage' > /mnt/data/index.htmlecho 'Hello from Kubernetes storage' > /mnt/data/index.html

kindkind:: PersistentVolumePersistentVolume

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: task-pv-volumetask-pv-volume

 labelslabels::

 typetype:: locallocal

specspec::

 storageClassNamestorageClassName:: manualmanual

 capacitycapacity::

 storagestorage:: 10Gi10Gi

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 hostPathhostPath::

 pathpath:: ""/mnt/data"/mnt/data"

file:///docs/reference/generated/kubernetes-api/v1.10/#storageclass-v1-storage
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/task-pv-volume.yaml

The configuration file specifies that the volume is at /mnt/data/mnt/data on the cluster’s Node. The

configuration also specifies a size of 10 gibibytes and an access mode of ReadWriteOnceReadWriteOnce ,

which means the volume can be mounted as read-write by a single Node. It defines the

StorageClass name manualmanual for the PersistentVolume, which will be used to bind

PersistentVolumeClaim requests to this PersistentVolume.

Create the PersistentVolume:

View information about the PersistentVolume:

The output shows that the PersistentVolume has a STATUSSTATUS of AvailableAvailable . This means it has

not yet been bound to a PersistentVolumeClaim.

Create a PersistentVolumeClaim

The next step is to create a PersistentVolumeClaim. Pods use PersistentVolumeClaims to

request physical storage. In this exercise, you create a PersistentVolumeClaim that requests a

volume of at least three gibibytes that can provide read-write access for at least one Node.

Here is the configuration file for the PersistentVolumeClaim:

task-pv-claim.yamltask-pv-claim.yaml

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-volume.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-volume.yaml

kubectl get pv task-pv-volumekubectl get pv task-pv-volume

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGENAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE

task-pv-volume 10Gi RWO Retain Available manual 4stask-pv-volume 10Gi RWO Retain Available manual 4s

file:///docs/concepts/storage/persistent-volumes/#class
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/task-pv-claim.yaml

task-pv-claim.yamltask-pv-claim.yaml

Create the PersistentVolumeClaim:

After you create the PersistentVolumeClaim, the Kubernetes control plane looks for a

PersistentVolume that satisfies the claim’s requirements. If the control plane finds a suitable

PersistentVolume with the same StorageClass, it binds the claim to the volume.

Look again at the PersistentVolume:

Now the output shows a STATUSSTATUS of BoundBound .

Look at the PersistentVolumeClaim:

The output shows that the PersistentVolumeClaim is bound to your PersistentVolume,

task-pv-volumetask-pv-volume .

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: task-pv-claimtask-pv-claim

specspec::

 storageClassNamestorageClassName:: manualmanual

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 3Gi3Gi

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-claim.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-claim.yaml

kubectl get pv task-pv-volumekubectl get pv task-pv-volume

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGENAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE

task-pv-volume 10Gi RWO Retain Bound default/task-pv-claim manual 2mtask-pv-volume 10Gi RWO Retain Bound default/task-pv-claim manual 2m

kubectl get pvc task-pv-claimkubectl get pvc task-pv-claim

Create a Pod

The next step is to create a Pod that uses your PersistentVolumeClaim as a volume.

Here is the configuration file for the Pod:

task-pv-pod.yamltask-pv-pod.yaml

Notice that the Pod’s configuration file specifies a PersistentVolumeClaim, but it does not

specify a PersistentVolume. From the Pod’s point of view, the claim is a volume.

Create the Pod:

Verify that the Container in the Pod is running;

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGENAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE

task-pv-claim Bound task-pv-volume 10Gi RWO manual 30stask-pv-claim Bound task-pv-volume 10Gi RWO manual 30s

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: task-pv-podtask-pv-pod

specspec::

 volumesvolumes::

 -- namename:: task-pv-storagetask-pv-storage

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: task-pv-claimtask-pv-claim

 containerscontainers::

 -- namename:: task-pv-containertask-pv-container

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

 namename:: ""http-server"http-server"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: ""/usr/share/nginx/html"/usr/share/nginx/html"

 namename:: task-pv-storagetask-pv-storage

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-pod.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/task-pv-pod.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/task-pv-pod.yaml

Get a shell to the Container running in your Pod:

In your shell, verify that nginx is serving the index.htmlindex.html file from the hostPath volume:

The output shows the text that you wrote to the index.htmlindex.html file on the hostPath volume:

Access control

Storage configured with a group ID (GID) allows writing only by Pods using the same GID.

Mismatched or missing GIDs cause permission denied errors. To reduce the need for

coordination with users, an administrator can annotate a PersistentVolume with a GID. Then

the GID is automatically added to any Pod that uses the PersistentVolume.

Use the pv.beta.kubernetes.io/gidpv.beta.kubernetes.io/gid annotation as follows:

When a Pod consumes a PersistentVolume that has a GID annotation, the annotated GID is

applied to all Containers in the Pod in the same way that GIDs specified in the Pod’s security

context are. Every GID, whether it originates from a PersistentVolume annotation or the Pod’s

specification, is applied to the first process run in each Container.

kubectl get pod task-pv-podkubectl get pod task-pv-pod

kubectl exec -it task-pv-pod -- /bin/bashkubectl exec -it task-pv-pod -- /bin/bash

root@task-pv-pod:/# apt-get updateroot@task-pv-pod:/# apt-get update

root@task-pv-pod:/# apt-get install curlroot@task-pv-pod:/# apt-get install curl

root@task-pv-pod:/# curl localhostroot@task-pv-pod:/# curl localhost

Hello from Kubernetes storageHello from Kubernetes storage

kindkind:: PersistentVolumePersistentVolume

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: pv1pv1

 annotationsannotations::

 pv.beta.kubernetes.io/gidpv.beta.kubernetes.io/gid:: ""1234"1234"

Note: When a Pod consumes a PersistentVolume, the GIDs associated with the

PersistentVolume are not present on the Pod resource itself.

What’s next

Learn more about PersistentVolumes.

Read the Persistent Storage design document.

Reference

PersistentVolume

PersistentVolumeSpec

PersistentVolumeClaim

PersistentVolumeClaimSpec

file:///docs/concepts/storage/persistent-volumes/
https://git.k8s.io/community/contributors/design-proposals/storage/persistent-storage.md
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolumespec-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolumeclaim-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolumeclaimspec-v1-core

Configure a Pod to Use a Projected
Volume for Storage

This page shows how to use a projectedprojected volume to mount several existing volume sources

into the same directory. Currently, secretsecret , configMapconfigMap , and downwardAPIdownwardAPI volumes can be

projected.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Configure a projected volume for a pod

In this exercise, you create username and password Secrets from local files. You then create a

Pod that runs one Container, using a projectedprojected Volume to mount the Secrets into the same

shared directory.

Here is the configuration file for the Pod:

projected-volume.yamlprojected-volume.yaml

Before you begin

Configure a projected volume for a pod

What’s next

file:///docs/concepts/storage/volumes/#projected
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/volumes/#projected
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/projected-volume.yaml

projected-volume.yamlprojected-volume.yaml

1. Create the Secrets:

2. Create the Pod:

3. Verify that the Pod’s Container is running, and then watch for changes to the Pod:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: test-projected-volumetest-projected-volume

specspec::

 containerscontainers::

 -- namename:: test-projected-volumetest-projected-volume

 imageimage:: busyboxbusybox

 argsargs::

 -- sleepsleep

 -- ""86400"86400"

 volumeMountsvolumeMounts::

 -- namename:: all-in-oneall-in-one

 mountPathmountPath:: ""/projected-volume"/projected-volume"

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: all-in-oneall-in-one

 projectedprojected::

 sourcessources::

 -- secretsecret::

 namename:: useruser

 -- secretsecret::

 namename:: passpass

Create files containing the username and password:# Create files containing the username and password:

echo -n "admin" > ./username.txtecho -n "admin" > ./username.txt

echo -n "1f2d1e2e67df" > ./password.txtecho -n "1f2d1e2e67df" > ./password.txt

Package these files into secrets:# Package these files into secrets:

kubectl create secret generic user --from-file=./username.txtkubectl create secret generic user --from-file=./username.txt

kubectl create secret generic pass --from-file=./password.txtkubectl create secret generic pass --from-file=./password.txt

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/projected-volume.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/projected-volume.yaml

kubectl get --watch pod test-projected-volumekubectl get --watch pod test-projected-volume

The output looks like this:

4. In another terminal, get a shell to the running Container:

5. In your shell, verify that the projected-volumeprojected-volume directory contains your projected sources:

What’s next

Learn more about projectedprojected volumes.

Read the all-in-one volume design document.

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

test-projected-volume 1/1 Running 0 14stest-projected-volume 1/1 Running 0 14s

kubectl exec -it test-projected-volume -- /bin/shkubectl exec -it test-projected-volume -- /bin/sh

/ # ls /projected-volume// # ls /projected-volume/

file:///docs/concepts/storage/volumes/#projected
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/all-in-one-volume.md

Configure a Security Context for a Pod or
Container

A security context defines privilege and access control settings for a Pod or Container. Security

context settings include:

Discretionary Access Control: Permission to access an object, like a file, is based on user

ID (UID) and group ID (GID).

Security Enhanced Linux (SELinux): Objects are assigned security labels.

Running as privileged or unprivileged.

Linux Capabilities: Give a process some privileges, but not all the privileges of the root

user.

AppArmor: Use program profiles to restrict the capabilities of individual programs.

Seccomp: Limit a process’s access to open file descriptors.

AllowPrivilegeEscalation: Controls whether a process can gain more privileges than its

parent process. This bool directly controls whether the no_new_privsno_new_privs flag gets set on the

container process. AllowPrivilegeEscalation is true always when the container is: 1) run as

Privileged OR 2) has CAP_SYS_ADMINCAP_SYS_ADMIN .

For more information about security mechanisms in Linux, see Overview of Linux Kernel

Security Features

Before you begin

Before you begin

Set the security context for a Pod

Set the security context for a Container

Set capabilities for a Container

Assign SELinux labels to a Container

Discussion

What’s next

https://wiki.archlinux.org/index.php/users_and_groups
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://linux-audit.com/linux-capabilities-hardening-linux-binaries-by-removing-setuid/
file:///docs/tutorials/clusters/apparmor/
https://en.wikipedia.org/wiki/Seccomp
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
https://www.linux.com/learn/overview-linux-kernel-security-features

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Set the security context for a Pod

To specify security settings for a Pod, include the securityContextsecurityContext field in the Pod

specification. The securityContextsecurityContext field is a PodSecurityContext object. The security

settings that you specify for a Pod apply to all Containers in the Pod. Here is a configuration

file for a Pod that has a securityContextsecurityContext and an emptyDiremptyDir volume:

security-context.yamlsecurity-context.yaml

In the configuration file, the runAsUserrunAsUser field specifies that for any Containers in the Pod, the

first process runs with user ID 1000. The fsGroupfsGroup field specifies that group ID 2000 is

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: security-context-demosecurity-context-demo

specspec::

 securityContextsecurityContext::

 runAsUserrunAsUser:: 10001000

 fsGroupfsGroup:: 20002000

 volumesvolumes::

 -- namename:: sec-ctx-volsec-ctx-vol

 emptyDiremptyDir:: {}{}

 containerscontainers::

 -- namename:: sec-ctx-demosec-ctx-demo

 imageimage:: gcr.io/google-samples/node-hello:1.0gcr.io/google-samples/node-hello:1.0

 volumeMountsvolumeMounts::

 -- namename:: sec-ctx-volsec-ctx-vol

 mountPathmountPath:: /data/demo/data/demo

 securityContextsecurityContext::

 allowPrivilegeEscalationallowPrivilegeEscalation:: falsefalse

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/reference/generated/kubernetes-api/v1.10/#podsecuritycontext-v1-core
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/security-context.yaml

associated with all Containers in the Pod. Group ID 2000 is also associated with the volume

mounted at /data/demo/data/demo and with any files created in that volume.

Create the Pod:

Verify that the Pod’s Container is running:

Get a shell to the running Container:

In your shell, list the running processes:

The output shows that the processes are running as user 1000, which is the value of

runAsUserrunAsUser :

In your shell, navigate to /data/data , and list the one directory:

The output shows that the /data/demo/data/demo directory has group ID 2000, which is the value of

fsGroupfsGroup .

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/security-context.yaml https://k8s.io/docs/tasks/configure-pod-container/security-context.yaml

kubectl get pod security-context-demokubectl get pod security-context-demo

kubectl kubectl execexec -it-it security-context-demo security-context-demo ---- sh sh

ps auxps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDUSER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

1000 1 0.0 0.0 4336 724 ? Ss 18:16 0:00 /bin/sh 1000 1 0.0 0.0 4336 724 ? Ss 18:16 0:00 /bin/sh -c-c node server.js node server.js

1000 5 0.2 0.6 772124 22768 ? Sl 18:16 0:00 node server.js1000 5 0.2 0.6 772124 22768 ? Sl 18:16 0:00 node server.js

......

cdcd /data /data

lsls -l-l

In your shell, navigate to /data/demo/data/demo , and create a file:

List the file in the /data/demo/data/demo directory:

The output shows that testfiletestfile has group ID 2000, which is the value of fsGroupfsGroup .

Exit your shell:

Set the security context for a Container

To specify security settings for a Container, include the securityContextsecurityContext field in the

Container manifest. The securityContextsecurityContext field is a SecurityContext object. Security settings

that you specify for a Container apply only to the individual Container, and they override

settings made at the Pod level when there is overlap. Container settings do not affect the

Pod’s Volumes.

Here is the configuration file for a Pod that has one Container. Both the Pod and the Container

have a securityContextsecurityContext field:

security-context-2.yamlsecurity-context-2.yaml

drwxrwsrwx 2 root 2000 4096 Jun 6 20:08 demodrwxrwsrwx 2 root 2000 4096 Jun 6 20:08 demo

cd cd demodemo

echo echo hello hello >> testfile testfile

lsls -l-l

-rw-r--r---rw-r--r-- 1 1000 2000 6 Jun 6 20:08 testfile 1 1000 2000 6 Jun 6 20:08 testfile

exitexit

file:///docs/reference/generated/kubernetes-api/v1.10/#securitycontext-v1-core
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/security-context-2.yaml

security-context-2.yamlsecurity-context-2.yaml

Create the Pod:

Verify that the Pod’s Container is running:

Get a shell into the running Container:

In your shell, list the running processes:

The output shows that the processes are running as user 2000. This is the value of

runAsUserrunAsUser specified for the Container. It overrides the value 1000 that is specified for the

Pod.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: security-context-demo-2security-context-demo-2

specspec::

 securityContextsecurityContext::

 runAsUserrunAsUser:: 10001000

 containerscontainers::

 -- namename:: sec-ctx-demo-2sec-ctx-demo-2

 imageimage:: gcr.io/google-samples/node-hello:1.0gcr.io/google-samples/node-hello:1.0

 securityContextsecurityContext::

 runAsUserrunAsUser:: 20002000

 allowPrivilegeEscalationallowPrivilegeEscalation:: falsefalse

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/security-context-2.yaml https://k8s.io/docs/tasks/configure-pod-container/security-context-2.yaml

kubectl get pod security-context-demo-2kubectl get pod security-context-demo-2

kubectl kubectl execexec -it-it security-context-demo-2 security-context-demo-2 ---- sh sh

ps auxps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDUSER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

2000 1 0.0 0.0 4336 764 ? Ss 20:36 0:00 /bin/sh -c node server.js2000 1 0.0 0.0 4336 764 ? Ss 20:36 0:00 /bin/sh -c node server.js

2000 8 0.1 0.5 772124 22604 ? Sl 20:36 0:00 node server.js2000 8 0.1 0.5 772124 22604 ? Sl 20:36 0:00 node server.js

......

Exit your shell:

Set capabilities for a Container

With Linux capabilities, you can grant certain privileges to a process without granting all the

privileges of the root user. To add or remove Linux capabilities for a Container, include the

capabilitiescapabilities field in the securityContextsecurityContext section of the Container manifest.

First, see what happens when you don’t include a capabilitiescapabilities field. Here is configuration

file that does not add or remove any Container capabilities:

security-context-3.yamlsecurity-context-3.yaml

Create the Pod:

Verify that the Pod’s Container is running:

Get a shell into the running Container:

exitexit

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: security-context-demo-3security-context-demo-3

specspec::

 containerscontainers::

 -- namename:: sec-ctx-3sec-ctx-3

 imageimage:: gcr.io/google-samples/node-hello:1.0gcr.io/google-samples/node-hello:1.0

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/security-context-3.yaml https://k8s.io/docs/tasks/configure-pod-container/security-context-3.yaml

kubectl get pod security-context-demo-3kubectl get pod security-context-demo-3

kubectl kubectl execexec -it-it security-context-demo-3 security-context-demo-3 ---- sh sh

http://man7.org/linux/man-pages/man7/capabilities.7.html
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/security-context-3.yaml

In your shell, list the running processes:

The output shows the process IDs (PIDs) for the Container:

In your shell, view the status for process 1:

The output shows the capabilities bitmap for the process:

Make a note of the capabilities bitmap, and then exit your shell:

Next, run a Container that is the same as the preceding container, except that it has additional

capabilities set.

Here is the configuration file for a Pod that runs one Container. The configuration adds the

CAP_NET_ADMINCAP_NET_ADMIN and CAP_SYS_TIMECAP_SYS_TIME capabilities:

security-context-4.yamlsecurity-context-4.yaml

ps auxps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDUSER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 4336 796 ? Ss 18:17 0:00 /bin/sh root 1 0.0 0.0 4336 796 ? Ss 18:17 0:00 /bin/sh -c-c node server.js node server.js

root 5 0.1 0.5 772124 22700 ? Sl 18:17 0:00 node server.jsroot 5 0.1 0.5 772124 22700 ? Sl 18:17 0:00 node server.js

cdcd /proc/1 /proc/1

cat cat statusstatus

......

CapPrm: 00000000a80425fbCapPrm: 00000000a80425fb

CapEff: 00000000a80425fbCapEff: 00000000a80425fb

......

exitexit

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/security-context-4.yaml

security-context-4.yamlsecurity-context-4.yaml

Create the Pod:

Get a shell into the running Container:

In your shell, view the capabilities for process 1:

The output shows capabilities bitmap for the process:

Compare the capabilities of the two Containers:

In the capability bitmap of the first container, bits 12 and 25 are clear. In the second container,

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: security-context-demo-4security-context-demo-4

specspec::

 containerscontainers::

 -- namename:: sec-ctx-4sec-ctx-4

 imageimage:: gcr.io/google-samples/node-hello:1.0gcr.io/google-samples/node-hello:1.0

 securityContextsecurityContext::

 capabilitiescapabilities::

 addadd:: [[""NET_ADMIN"NET_ADMIN",, ""SYS_TIME"SYS_TIME"]]

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/security-context-4.yaml https://k8s.io/docs/tasks/configure-pod-container/security-context-4.yaml

kubectl kubectl execexec -it-it security-context-demo-4 security-context-demo-4 ---- sh sh

cdcd /proc/1 /proc/1

cat cat statusstatus

......

CapPrm: 00000000aa0435fbCapPrm: 00000000aa0435fb

CapEff: 00000000aa0435fbCapEff: 00000000aa0435fb

......

00000000a80425fb00000000a80425fb

00000000aa0435fb00000000aa0435fb

bits 12 and 25 are set. Bit 12 is CAP_NET_ADMINCAP_NET_ADMIN , and bit 25 is CAP_SYS_TIMECAP_SYS_TIME . See capability.h

for definitions of the capability constants.

Note: Linux capability constants have the form CAP_XXXCAP_XXX . But when you list capabilities

in your Container manifest, you must omit the CAP_CAP_ portion of the constant. For

example, to add CAP_SYS_TIMECAP_SYS_TIME , include SYS_TIMESYS_TIME in your list of capabilities.

Assign SELinux labels to a Container

To assign SELinux labels to a Container, include the seLinuxOptionsseLinuxOptions field in the

securityContextsecurityContext section of your Pod or Container manifest. The seLinuxOptionsseLinuxOptions field is

an SELinuxOptions object. Here’s an example that applies an SELinux level:

Note: To assign SELinux labels, the SELinux security module must be loaded on the

host operating system.

Discussion

The security context for a Pod applies to the Pod’s Containers and also to the Pod’s Volumes

when applicable. Specifically fsGroupfsGroup and seLinuxOptionsseLinuxOptions are applied to Volumes as

follows:

fsGroupfsGroup : Volumes that support ownership management are modified to be owned and

writable by the GID specified in fsGroupfsGroup . See the Ownership Management design

document for more details.

seLinuxOptionsseLinuxOptions : Volumes that support SELinux labeling are relabeled to be accessible

......

securityContextsecurityContext::

 seLinuxOptionsseLinuxOptions::

 levellevel:: ""s0:c123,c456"s0:c123,c456"

https://github.com/torvalds/linux/blob/master/include/uapi/linux/capability.h
file:///docs/reference/generated/kubernetes-api/v1.10/#selinuxoptions-v1-core
https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md

by the label specified under seLinuxOptionsseLinuxOptions . Usually you only need to set the levellevel

section. This sets the Multi-Category Security (MCS) label given to all Containers in the

Pod as well as the Volumes.

Warning: After you specify an MCS label for a Pod, all Pods with the same label can

access the Volume. If you need inter-Pod protection, you must assign a unique MCS

label to each Pod.

What’s next

PodSecurityContext

SecurityContext

Tuning Docker with the newest security enhancements

Security Contexts design document

Ownership Management design document

Pod Security Policies

AllowPrivilegeEscalation design document

https://selinuxproject.org/page/NB_MLS
file:///docs/reference/generated/kubernetes-api/v1.10/#podsecuritycontext-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#securitycontext-v1-core
https://opensource.com/business/15/3/docker-security-tuning
https://git.k8s.io/community/contributors/design-proposals/auth/security_context.md
https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md
file:///docs/concepts/policy/pod-security-policy/
https://git.k8s.io/community/contributors/design-proposals/auth/no-new-privs.md

Configure Service Accounts for Pods

A service account provides an identity for processes that run in a Pod.

This is a user introduction to Service Accounts. See also the Cluster Admin Guide to Service

Accounts.

Note: This document describes how service accounts behave in a cluster set up as

recommended by the Kubernetes project. Your cluster administrator may have

customized the behavior in your cluster, in which case this documentation may not

apply.

When you (a human) access the cluster (for example, using kubectlkubectl), you are authenticated

by the apiserver as a particular User Account (currently this is usually adminadmin , unless your

cluster administrator has customized your cluster). Processes in containers inside pods can

also contact the apiserver. When they do, they are authenticated as a particular Service

Account (for example, defaultdefault).

Use the Default Service Account to access the API
server.

When you create a pod, if you do not specify a service account, it is automatically assigned the

defaultdefault service account in the same namespace. If you get the raw json or yaml for a pod

you have created (for example,

kubectl get pods/podname -okubectl get pods/podname -o

yamlyaml), you can see the

spec.serviceAccountNamespec.serviceAccountName field has been automatically set.

You can access the API from inside a pod using automatically mounted service account

credentials, as described in Accessing the Cluster. The API permissions a service account has

depend on the authorization plugin and policy in use.

In version 1.6+, you can opt out of automounting API credentials for a service account by

setting automountServiceAccountToken: falseautomountServiceAccountToken: false on the service account:

file:///docs/admin/service-accounts-admin/
file:///docs/user-guide/working-with-resources/#resources-are-automatically-modified
file:///docs/user-guide/accessing-the-cluster/#accessing-the-api-from-a-pod
file:///docs/admin/authorization/#a-quick-note-on-service-accounts

In version 1.6+, you can also opt out of automounting API credentials for a particular pod:

The pod spec takes precedence over the service account if both specify a

automountServiceAccountTokenautomountServiceAccountToken value.

Use Multiple Service Accounts.

Every namespace has a default service account resource called defaultdefault . You can list this and

any other serviceAccount resources in the namespace with this command:

You can create additional ServiceAccount objects like this:

apiVersionapiVersion:: v1v1

kindkind:: ServiceAccountServiceAccount

metadatametadata::

 namename:: build-robotbuild-robot

automountServiceAccountTokenautomountServiceAccountToken:: falsefalse

......

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: my-podmy-pod

specspec::

 serviceAccountNameserviceAccountName:: build-robotbuild-robot

 automountServiceAccountTokenautomountServiceAccountToken:: falsefalse

$ $ kubectl get serviceAccountskubectl get serviceAccounts

NAME SECRETS AGENAME SECRETS AGE

default 1 1ddefault 1 1d

$ $ catcat >> /tmp/serviceaccount.yaml /tmp/serviceaccount.yaml <<<<EOFEOF

apiVersion: v1apiVersion: v1

kind: ServiceAccountkind: ServiceAccount

metadata:metadata:

 name: build-robot name: build-robot

EOFEOF

$ $ kubectl create kubectl create -f-f /tmp/serviceaccount.yaml /tmp/serviceaccount.yaml

serviceaccount serviceaccount "build-robot""build-robot" created created

If you get a complete dump of the service account object, like this:

then you will see that a token has automatically been created and is referenced by the service

account.

You may use authorization plugins to set permissions on service accounts .

To use a non-default service account, simply set the spec.serviceAccountNamespec.serviceAccountName field of a

pod to the name of the service account you wish to use.

The service account has to exist at the time the pod is created, or it will be rejected.

You cannot update the service account of an already created pod.

You can clean up the service account from this example like this:

Manually create a service account API token.

Suppose we have an existing service account named “build-robot” as mentioned above, and we

create a new secret manually.

$ $ kubectl get serviceaccounts/build-robot kubectl get serviceaccounts/build-robot -o-o yaml yaml

apiVersion: v1apiVersion: v1

kind: ServiceAccountkind: ServiceAccount

metadata:metadata:

 creationTimestamp: 2015-06-16T00:12:59Z creationTimestamp: 2015-06-16T00:12:59Z

 name: build-robot name: build-robot

 namespace: default namespace: default

 resourceVersion: resourceVersion: "272500""272500"

 selfLink: /api/v1/namespaces/default/serviceaccounts/build-robot selfLink: /api/v1/namespaces/default/serviceaccounts/build-robot

 uid: 721ab723-13bc-11e5-aec2-42010af0021e uid: 721ab723-13bc-11e5-aec2-42010af0021e

secrets:secrets:

- name: build-robot-token-bvbk5- name: build-robot-token-bvbk5

$ $ kubectl delete serviceaccount/build-robotkubectl delete serviceaccount/build-robot

file:///docs/admin/authorization/#a-quick-note-on-service-accounts

Now you can confirm that the newly built secret is populated with an API token for the “build-

robot” service account.

Any tokens for non-existent service accounts will be cleaned up by the token controller.

Note: The content of tokentoken is elided here.

Add ImagePullSecrets to a service account

First, create an imagePullSecret, as described here. Next, verify it has been created. For

example:

$ $ catcat >> /tmp/build-robot-secret.yaml /tmp/build-robot-secret.yaml <<<<EOFEOF

apiVersion: v1apiVersion: v1

kind: Secretkind: Secret

metadata:metadata:

 name: build-robot-secret name: build-robot-secret

 annotations: annotations:

 kubernetes.io/service-account.name: build-robot kubernetes.io/service-account.name: build-robot

type: kubernetes.io/service-account-tokentype: kubernetes.io/service-account-token

EOFEOF

$ $ kubectl create kubectl create -f-f /tmp/build-robot-secret.yaml /tmp/build-robot-secret.yaml

secret secret "build-robot-secret""build-robot-secret" created created

$ $ kubectl describe secrets/build-robot-secretkubectl describe secrets/build-robot-secret

Name: build-robot-secretName: build-robot-secret

Namespace: defaultNamespace: default

Labels: <none>Labels: <none>

Annotations: kubernetes.io/service-account.nameAnnotations: kubernetes.io/service-account.name==build-robotbuild-robot

 kubernetes.io/service-account.uid kubernetes.io/service-account.uid==da68f9c6-9d26-11e7-b84e-002dc52800dada68f9c6-9d26-11e7-b84e-002dc52800da

Type: kubernetes.io/service-account-tokenType: kubernetes.io/service-account-token

DataData

========

ca.crt: 1338 bytesca.crt: 1338 bytes

namespace: 7 bytesnamespace: 7 bytes

token: ...token: ...

file:///docs/concepts/containers/_site/images/#specifying-imagepullsecrets-on-a-pod

Next, modify the default service account for the namespace to use this secret as an

imagePullSecret.

Interactive version requiring manual edit:

Now, any new pods created in the current namespace will have this added to their spec:

$ $ kubectl get secrets myregistrykeykubectl get secrets myregistrykey

NAME TYPE DATA AGENAME TYPE DATA AGE

myregistrykey kubernetes.io/.dockerconfigjson 1 1dmyregistrykey kubernetes.io/.dockerconfigjson 1 1d

kubectl patch serviceaccount default kubectl patch serviceaccount default -p-p '{\"imagePullSecrets\": [{\"name\": \"acrkey\"}]}''{\"imagePullSecrets\": [{\"name\": \"acrkey\"}]}'

$ $ kubectl get serviceaccounts default kubectl get serviceaccounts default -o-o yaml yaml >> ./sa.yaml ./sa.yaml

$ $ cat cat sa.yamlsa.yaml

apiVersion: v1apiVersion: v1

kind: ServiceAccountkind: ServiceAccount

metadata:metadata:

 creationTimestamp: 2015-08-07T22:02:39Z creationTimestamp: 2015-08-07T22:02:39Z

 name: default name: default

 namespace: default namespace: default

 resourceVersion: resourceVersion: "243024""243024"

 selfLink: /api/v1/namespaces/default/serviceaccounts/default selfLink: /api/v1/namespaces/default/serviceaccounts/default

 uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6 uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6

secrets:secrets:

- name: default-token-uudge- name: default-token-uudge

$ $ vi sa.yamlvi sa.yaml

[[editor session not shown]editor session not shown]

[[delete line with key delete line with key "resourceVersion""resourceVersion"]]

[[add lines with add lines with "imagePullSecret:""imagePullSecret:"]]

$ $ cat cat sa.yamlsa.yaml

apiVersion: v1apiVersion: v1

kind: ServiceAccountkind: ServiceAccount

metadata:metadata:

 creationTimestamp: 2015-08-07T22:02:39Z creationTimestamp: 2015-08-07T22:02:39Z

 name: default name: default

 namespace: default namespace: default

 selfLink: /api/v1/namespaces/default/serviceaccounts/default selfLink: /api/v1/namespaces/default/serviceaccounts/default

 uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6 uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6

secrets:secrets:

- name: default-token-uudge- name: default-token-uudge

imagePullSecrets:imagePullSecrets:

- name: myregistrykey- name: myregistrykey

$ $ kubectl replace serviceaccount default kubectl replace serviceaccount default -f-f ./sa.yaml ./sa.yaml

serviceaccounts/defaultserviceaccounts/default

specspec::

 imagePullSecretsimagePullSecrets::

 -- namename:: myregistrykeymyregistrykey

Pull an Image from a Private Registry

This page shows how to create a Pod that uses a Secret to pull an image from a private

Docker registry or repository.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

To do this exercise, you need a Docker ID and password.

Log in to Docker

On your laptop, you must authenticate with a registry in order to pull a private image:

When prompted, enter your Docker username and password.

The login process creates or updates a config.jsonconfig.json file that holds an authorization token.

Before you begin

Log in to Docker

Create a Secret in the cluster that holds your authorization token

Inspecting the Secret regcredregcred

Create a Pod that uses your Secret

What’s next

docker logindocker login

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://docs.docker.com/docker-id/

View the config.jsonconfig.json file:

The output contains a section similar to this:

Note: If you use a Docker credentials store, you won’t see that authauth entry but a

credsStorecredsStore entry with the name of the store as value.

Create a Secret in the cluster that holds your
authorization token

A Kubernetes cluster uses the Secret of docker-registrydocker-registry type to authenticate with a

container registry to pull a private image.

Create this Secret, naming it regcredregcred :

where:

<your-registry-server><your-registry-server> is your Private Docker Registry FQDN.

<your-name><your-name> is your Docker username.

<your-pword><your-pword> is your Docker password.

<your-email><your-email> is your Docker email.

cat ~/.docker/config.jsoncat ~/.docker/config.json

{{

 "auths": { "auths": {

 "https://index.docker.io/v1/": { "https://index.docker.io/v1/": {

 "auth": "c3R...zE2" "auth": "c3R...zE2"

 } }

 } }

}}

kubectl create secret docker-registry regcred --docker-server=<your-registry-server> --docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-email>kubectl create secret docker-registry regcred --docker-server=<your-registry-server> --docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-email>

You have successfully set your Docker credentials in the cluster as a Secret called regcredregcred .

Inspecting the Secret regcred

To understand the contents of the regcredregcred Secret you just created, start by viewing the

Secret in YAML format:

The output is similar to this:

The value of the .dockerconfigjson.dockerconfigjson field is a base64 representation of your Docker

credentials.

To understand what is in the .dockerconfigjson.dockerconfigjson field, convert the secret data to a readable

format:

The output is similar to this:

Notice that the Secret data contains the authorization token similar to your local

~/.docker/config.json~/.docker/config.json file.

kubectl get secret regcred --output=yamlkubectl get secret regcred --output=yaml

apiVersion: v1apiVersion: v1

data:data:

 .dockerconfigjson: eyJodHRwczovL2luZGV4L ... J0QUl6RTIifX0= .dockerconfigjson: eyJodHRwczovL2luZGV4L ... J0QUl6RTIifX0=

kind: Secretkind: Secret

metadata:metadata:

 name: regcred name: regcred

type: kubernetes.io/dockerconfigjsontype: kubernetes.io/dockerconfigjson

kubectl get secret regcred --output="jsonpath={.data.\.dockerconfigjson}" | base64 -dkubectl get secret regcred --output="jsonpath={.data.\.dockerconfigjson}" | base64 -d

{"auths":{"yourprivateregistry.com":{"username":"janedoe","password":"xxxxxxxxxxx","email":"jdoe@example.com","auth":"c3R...zE2"}}}{"auths":{"yourprivateregistry.com":{"username":"janedoe","password":"xxxxxxxxxxx","email":"jdoe@example.com","auth":"c3R...zE2"}}}

You have successfully set your Docker credentials as a Secret called regcredregcred in the cluster.

Create a Pod that uses your Secret

Here is a configuration file for a Pod that needs access to your Docker credentials in regcredregcred :

private-reg-pod.yamlprivate-reg-pod.yaml

Download the above file:

In file my-private-reg-pod.yamlmy-private-reg-pod.yaml , replace <your-private-image><your-private-image> with the path to an image

in a private registry such as:

To pull the image from the private registry, Kubernetes needs credentials. The

imagePullSecretsimagePullSecrets field in the configuration file specifies that Kubernetes should get the

credentials from a Secret named regcredregcred .

Create a Pod that uses your Secret, and verify that the Pod is running:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: private-regprivate-reg

specspec::

 containerscontainers::

 -- namename:: private-reg-containerprivate-reg-container

 imageimage:: <your-private-image><your-private-image>

 imagePullSecretsimagePullSecrets::

 -- namename:: regcredregcred

wget -O my-private-reg-pod.yaml https://k8s.io/docs/tasks/configure-pod-container/private-reg-pod.yamlwget -O my-private-reg-pod.yaml https://k8s.io/docs/tasks/configure-pod-container/private-reg-pod.yaml

janedoe/jdoe-private:v1janedoe/jdoe-private:v1

kubectl create -f my-private-reg-pod.yamlkubectl create -f my-private-reg-pod.yaml

kubectl get pod private-regkubectl get pod private-reg

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/private-reg-pod.yaml

What’s next

Learn more about Secrets.

Learn more about using a private registry.

See kubectl create secret docker-registry.

See Secret.

See the imagePullSecretsimagePullSecrets field of PodSpec.

file:///docs/concepts/configuration/secret/
file:///docs/concepts/containers/_site/images/#using-a-private-registry
file:///docs/user-guide/kubectl/v1.10/#-em-secret-docker-registry-em-
file:///docs/reference/generated/kubernetes-api/v1.10/#secret-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core

Configure Liveness and Readiness
Probes

This page shows how to configure liveness and readiness probes for Containers.

The kubelet uses liveness probes to know when to restart a Container. For example, liveness

probes could catch a deadlock, where an application is running, but unable to make progress.

Restarting a Container in such a state can help to make the application more available despite

bugs.

The kubelet uses readiness probes to know when a Container is ready to start accepting

traffic. A Pod is considered ready when all of its Containers are ready. One use of this signal is

to control which Pods are used as backends for Services. When a Pod is not ready, it is

removed from Service load balancers.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Before you begin

Define a liveness command

Define a liveness HTTP request

Define a TCP liveness probe

Use a named port

Define readiness probes

Configure Probes

What’s next

Reference

file:///docs/admin/kubelet/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Define a liveness command

Many applications running for long periods of time eventually transition to broken states, and

cannot recover except by being restarted. Kubernetes provides liveness probes to detect and

remedy such situations.

In this exercise, you create a Pod that runs a Container based on the k8s.gcr.io/busyboxk8s.gcr.io/busybox

image. Here is the configuration file for the Pod:

exec-liveness.yamlexec-liveness.yaml

In the configuration file, you can see that the Pod has a single Container. The periodSecondsperiodSeconds

field specifies that the kubelet should perform a liveness probe every 5 seconds. The

initialDelaySecondsinitialDelaySeconds field tells the kubelet that it should wait 5 second before performing

the first probe. To perform a probe, the kubelet executes the command cat /tmp/healthycat /tmp/healthy in

the Container. If the command succeeds, it returns 0, and the kubelet considers the Container

to be alive and healthy. If the command returns a non-zero value, the kubelet kills the Container

and restarts it.

When the Container starts, it executes this command:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 labelslabels::

 testtest:: livenessliveness

 namename:: liveness-execliveness-exec

specspec::

 containerscontainers::

 -- namename:: livenessliveness

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 argsargs::

 -- /bin/sh/bin/sh

 -- -c-c

 -- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600

 livenessProbelivenessProbe::

 execexec::

 commandcommand::

 -- catcat

 -- /tmp/healthy/tmp/healthy

 initialDelaySecondsinitialDelaySeconds:: 55

 periodSecondsperiodSeconds:: 55

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/exec-liveness.yaml

For the first 30 seconds of the Container’s life, there is a /tmp/healthy/tmp/healthy file. So during the first

30 seconds, the command cat /tmp/healthycat /tmp/healthy returns a success code. After 30 seconds,

cat /tmp/healthycat /tmp/healthy returns a failure code.

Create the Pod:

Within 30 seconds, view the Pod events:

The output indicates that no liveness probes have failed yet:

After 35 seconds, view the Pod events again:

At the bottom of the output, there are messages indicating that the liveness probes have failed,

and the containers have been killed and recreated.

/bin/sh /bin/sh -c-c "touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600""touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/exec-liveness.yaml https://k8s.io/docs/tasks/configure-pod-container/exec-liveness.yaml

kubectl describe pod liveness-execkubectl describe pod liveness-exec

FirstSeen LastSeen Count From SubobjectPath Type Reason MessageFirstSeen LastSeen Count From SubobjectPath Type Reason Message

------------------ ---------------- ---------- -------- -------------------------- ----------------

24s 24s 1 24s 24s 1 {{default-scheduler default-scheduler }} Normal Scheduled Successfully assigned liveness-exec to worker0 Normal Scheduled Successfully assigned liveness-exec to worker0

23s 23s 1 23s 23s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Pulling pulling image Normal Pulling pulling image

23s 23s 1 23s 23s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Pulled Successfully pulled image Normal Pulled Successfully pulled image

23s 23s 1 23s 23s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Created Created container with docker id 86849c15382e Normal Created Created container with docker id 86849c15382e

23s 23s 1 23s 23s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Started Started container with docker id 86849c15382e Normal Started Started container with docker id 86849c15382e

kubectl describe pod liveness-execkubectl describe pod liveness-exec

Wait another 30 seconds, and verify that the Container has been restarted:

The output shows that RESTARTSRESTARTS has been incremented:

Define a liveness HTTP request

Another kind of liveness probe uses an HTTP GET request. Here is the configuration file for a

Pod that runs a container based on the k8s.gcr.io/livenessk8s.gcr.io/liveness image.

http-liveness.yamlhttp-liveness.yaml

FirstSeen LastSeen Count From SubobjectPath Type Reason MessageFirstSeen LastSeen Count From SubobjectPath Type Reason Message

------------------ ---------------- ---------- -------- -------------------------- ----------------

37s 37s 1 37s 37s 1 {{default-scheduler default-scheduler }} Normal Scheduled Successfully assigned liveness-exec to worker0 Normal Scheduled Successfully assigned liveness-exec to worker0

36s 36s 1 36s 36s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Pulling pulling image Normal Pulling pulling image

36s 36s 1 36s 36s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Pulled Successfully pulled image Normal Pulled Successfully pulled image

36s 36s 1 36s 36s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Created Created container with docker id 86849c15382e Normal Created Created container with docker id 86849c15382e

36s 36s 1 36s 36s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Normal Started Started container with docker id 86849c15382e Normal Started Started container with docker id 86849c15382e

2s 2s 1 2s 2s 1 {{kubelet worker0kubelet worker0}} spec.containers spec.containers{{livenessliveness}} Warning Unhealthy Liveness probe failed: Warning Unhealthy Liveness probe failed:

kubectl get pod liveness-execkubectl get pod liveness-exec

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

liveness-exec 1/1 Running 1 1mliveness-exec 1/1 Running 1 1m

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/http-liveness.yaml

http-liveness.yamlhttp-liveness.yaml

In the configuration file, you can see that the Pod has a single Container. The periodSecondsperiodSeconds

field specifies that the kubelet should perform a liveness probe every 3 seconds. The

initialDelaySecondsinitialDelaySeconds field tells the kubelet that it should wait 3 seconds before performing

the first probe. To perform a probe, the kubelet sends an HTTP GET request to the server that

is running in the Container and listening on port 8080. If the handler for the server’s /healthz/healthz

path returns a success code, the kubelet considers the Container to be alive and healthy. If the

handler returns a failure code, the kubelet kills the Container and restarts it.

Any code greater than or equal to 200 and less than 400 indicates success. Any other code

indicates failure.

You can see the source code for the server in server.go.

For the first 10 seconds that the Container is alive, the /healthz/healthz handler returns a status of

200. After that, the handler returns a status of 500.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 labelslabels::

 testtest:: livenessliveness

 namename:: liveness-httpliveness-http

specspec::

 containerscontainers::

 -- namename:: livenessliveness

 imageimage:: k8s.gcr.io/livenessk8s.gcr.io/liveness

 argsargs::

 -- /server/server

 livenessProbelivenessProbe::

 httpGethttpGet::

 pathpath:: /healthz/healthz

 portport:: 80808080

 httpHeadershttpHeaders::

 -- namename:: X-Custom-HeaderX-Custom-Header

 valuevalue:: AwesomeAwesome

 initialDelaySecondsinitialDelaySeconds:: 33

 periodSecondsperiodSeconds:: 33

https://github.com/kubernetes/kubernetes/blob/master/test/_site/images/liveness/server.go

The kubelet starts performing health checks 3 seconds after the Container starts. So the first

couple of health checks will succeed. But after 10 seconds, the health checks will fail, and the

kubelet will kill and restart the Container.

To try the HTTP liveness check, create a Pod:

After 10 seconds, view Pod events to verify that liveness probes have failed and the Container

has been restarted:

Define a TCP liveness probe

A third type of liveness probe uses a TCP Socket. With this configuration, the kubelet will

attempt to open a socket to your container on the specified port. If it can establish a

connection, the container is considered healthy, if it can’t it is considered a failure.

tcp-liveness-readiness.yamltcp-liveness-readiness.yaml

httphttp..HandleFuncHandleFunc(("/healthz""/healthz",, funcfunc((ww httphttp..ResponseWriterResponseWriter,, rr **httphttp..RequestRequest)) {{

 durationduration :=:= timetime..NowNow()()..SubSub((startedstarted))

 ifif durationduration..SecondsSeconds()() >> 1010 {{

 ww..WriteHeaderWriteHeader((500500))

 ww..WriteWrite([]([]bytebyte((fmtfmt..SprintfSprintf(("error: %v""error: %v",, durationduration..SecondsSeconds())))())))

 }} elseelse {{

 ww..WriteHeaderWriteHeader((200200))

 ww..WriteWrite([]([]bytebyte(("ok""ok"))))

 }}

})})

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/configure-pod-container/http-liveness.yaml https://k8s.io/docs/tasks/configure-pod-container/http-liveness.yaml

kubectl describe pod liveness-httpkubectl describe pod liveness-http

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/tcp-liveness-readiness.yaml

tcp-liveness-readiness.yamltcp-liveness-readiness.yaml

As you can see, configuration for a TCP check is quite similar to an HTTP check. This example

uses both readiness and liveness probes. The kubelet will send the first readiness probe 5

seconds after the container starts. This will attempt to connect to the goproxygoproxy container on

port 8080. If the probe succeeds, the pod will be marked as ready. The kubelet will continue to

run this check every 10 seconds.

In addition to the readiness probe, this configuration includes a liveness probe. The kubelet will

run the first liveness probe 15 seconds after the container starts. Just like the readiness probe,

this will attempt to connect to the goproxygoproxy container on port 8080. If the liveness probe fails,

the container will be restarted.

Use a named port

You can use a named ContainerPort for HTTP or TCP liveness checks:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: goproxygoproxy

 labelslabels::

 appapp:: goproxygoproxy

specspec::

 containerscontainers::

 -- namename:: goproxygoproxy

 imageimage:: k8s.gcr.io/goproxy:0.1k8s.gcr.io/goproxy:0.1

 portsports::

 -- containerPortcontainerPort:: 80808080

 readinessProbereadinessProbe::

 tcpSockettcpSocket::

 portport:: 80808080

 initialDelaySecondsinitialDelaySeconds:: 55

 periodSecondsperiodSeconds:: 1010

 livenessProbelivenessProbe::

 tcpSockettcpSocket::

 portport:: 80808080

 initialDelaySecondsinitialDelaySeconds:: 1515

 periodSecondsperiodSeconds:: 2020

file:///docs/reference/generated/kubernetes-api/v1.10/#containerport-v1-core

Define readiness probes

Sometimes, applications are temporarily unable to serve traffic. For example, an application

might need to load large data or configuration files during startup. In such cases, you don’t

want to kill the application, but you don’t want to send it requests either. Kubernetes provides

readiness probes to detect and mitigate these situations. A pod with containers reporting that

they are not ready does not receive traffic through Kubernetes Services.

Readiness probes are configured similarly to liveness probes. The only difference is that you

use the readinessProbereadinessProbe field instead of the livenessProbelivenessProbe field.

Configuration for HTTP and TCP readiness probes also remains identical to liveness probes.

Readiness and liveness probes can be used in parallel for the same container. Using both can

ensure that traffic does not reach a container that is not ready for it, and that containers are

restarted when they fail.

Configure Probes

Probes have a number of fields that you can use to more precisely control the behavior of

liveness and readiness checks:

portsports::

-- namename:: liveness-portliveness-port

 containerPortcontainerPort:: 80808080

 hostPorthostPort:: 80808080

livenessProbelivenessProbe::

 httpGethttpGet::

 pathpath:: /healthz/healthz

 portport:: liveness-portliveness-port

readinessProbereadinessProbe::

 execexec::

 commandcommand::

 -- catcat

 -- /tmp/healthy/tmp/healthy

 initialDelaySecondsinitialDelaySeconds:: 55

 periodSecondsperiodSeconds:: 55

file:///docs/reference/generated/kubernetes-api/v1.10/#probe-v1-core

initialDelaySecondsinitialDelaySeconds : Number of seconds after the container has started before

liveness or readiness probes are initiated.

periodSecondsperiodSeconds : How often (in seconds) to perform the probe. Default to 10 seconds.

Minimum value is 1.

timeoutSecondstimeoutSeconds : Number of seconds after which the probe times out. Defaults to 1

second. Minimum value is 1.

successThresholdsuccessThreshold : Minimum consecutive successes for the probe to be considered

successful after having failed. Defaults to 1. Must be 1 for liveness. Minimum value is 1.

failureThresholdfailureThreshold : When a Pod starts and the probe fails, Kubernetes will try

failureThresholdfailureThreshold times before giving up. Giving up in case of liveness probe means

restarting the Pod. In case of readiness probe the Pod will be marked Unready. Defaults to

3. Minimum value is 1.

HTTP probes have additional fields that can be set on httpGethttpGet :

hosthost : Host name to connect to, defaults to the pod IP. You probably want to set “Host” in

httpHeaders instead.

schemescheme : Scheme to use for connecting to the host (HTTP or HTTPS). Defaults to HTTP.

pathpath : Path to access on the HTTP server.

httpHeadershttpHeaders : Custom headers to set in the request. HTTP allows repeated headers.

portport : Name or number of the port to access on the container. Number must be in the

range 1 to 65535.

For an HTTP probe, the kubelet sends an HTTP request to the specified path and port to

perform the check. The kubelet sends the probe to the pod’s IP address, unless the address is

overridden by the optional hosthost field in httpGethttpGet . If schemescheme field is set to HTTPSHTTPS , the kubelet

sends an HTTPS request skipping the certificate verification. In most scenarios, you do not

want to set the hosthost field. Here’s one scenario where you would set it. Suppose the Container

listens on 127.0.0.1 and the Pod’s hostNetworkhostNetwork field is true. Then hosthost , under httpGethttpGet ,

should be set to 127.0.0.1. If your pod relies on virtual hosts, which is probably the more

common case, you should not use hosthost , but rather set the HostHost header in httpHeadershttpHeaders .

file:///docs/reference/generated/kubernetes-api/v1.10/#httpgetaction-v1-core

What’s next

Learn more about Container Probes.

Reference

Pod

Container

Probe

file:///docs/concepts/workloads/pods/pod-lifecycle/#container-probes
file:///docs/reference/generated/kubernetes-api/v1.10/#pod-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#probe-v1-core

Assign Pods to Nodes

This page shows how to assign a Kubernetes Pod to a particular node in a Kubernetes cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Add a label to a node

1. List the nodes in your cluster:

The output is similar to this:

Before you begin

Add a label to a node

Create a pod that gets scheduled to your chosen node

What’s next

kubectl get nodeskubectl get nodes

 NAME STATUS AGE VERSION NAME STATUS AGE VERSION

 worker0 Ready 1d v1.6.0+fff5156 worker0 Ready 1d v1.6.0+fff5156

 worker1 Ready 1d v1.6.0+fff5156 worker1 Ready 1d v1.6.0+fff5156

 worker2 Ready 1d v1.6.0+fff5156 worker2 Ready 1d v1.6.0+fff5156

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

2. Chose one of your nodes, and add a label to it:

where <your-node-name><your-node-name> is the name of your chosen node.

3. Verify that your chosen node has a disktype=ssddisktype=ssd label:

The output is similar to this:

In the preceding output, you can see that the worker0worker0 node has a disktype=ssddisktype=ssd label.

Create a pod that gets scheduled to your chosen
node

This pod configuration file describes a pod that has a node selector,

disktype:disktype:

ssdssd . This

means that the pod will get scheduled on a node that has a disktype=ssddisktype=ssd label.

pod.yamlpod.yaml

kubectl label nodes <your-node-name> disktype=ssdkubectl label nodes <your-node-name> disktype=ssd

kubectl get nodes --show-labelskubectl get nodes --show-labels

 NAME STATUS AGE VERSION LABELS NAME STATUS AGE VERSION LABELS

 worker0 Ready 1d v1.6.0+fff5156 ...,disktype=ssd,kubernetes.io/hostname=worker0 worker0 Ready 1d v1.6.0+fff5156 ...,disktype=ssd,kubernetes.io/hostname=worker0

 worker1 Ready 1d v1.6.0+fff5156 ...,kubernetes.io/hostname=worker1 worker1 Ready 1d v1.6.0+fff5156 ...,kubernetes.io/hostname=worker1

 worker2 Ready 1d v1.6.0+fff5156 ...,kubernetes.io/hostname=worker2 worker2 Ready 1d v1.6.0+fff5156 ...,kubernetes.io/hostname=worker2

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/pod.yaml

pod.yamlpod.yaml

1. Use the configuration file to create a pod that will get scheduled on your chosen node:

2. Verify that the pod is running on your chosen node:

The output is similar to this:

What’s next

Learn more about labels and selectors.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 envenv:: testtest

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 imagePullPolicyimagePullPolicy:: IfNotPresentIfNotPresent

 nodeSelectornodeSelector::

 disktypedisktype:: ssdssd

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/pod.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/pod.yaml

kubectl get pods --output=widekubectl get pods --output=wide

 NAME READY STATUS RESTARTS AGE IP NODE NAME READY STATUS RESTARTS AGE IP NODE

 nginx 1/1 Running 0 13s 10.200.0.4 worker0 nginx 1/1 Running 0 13s 10.200.0.4 worker0

file:///docs/concepts/overview/working-with-objects/labels/

Configure Pod Initialization

This page shows how to use an Init Container to initialize a Pod before an application

Container runs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Create a Pod that has an Init Container

In this exercise you create a Pod that has one application Container and one Init Container.

The init container runs to completion before the application container starts.

Here is the configuration file for the Pod:

init-containers.yamlinit-containers.yaml

Before you begin

Create a Pod that has an Init Container

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/init-containers.yaml

init-containers.yamlinit-containers.yaml

In the configuration file, you can see that the Pod has a Volume that the init container and the

application container share.

The init container mounts the shared Volume at /work-dir/work-dir , and the application container

mounts the shared Volume at /usr/share/nginx/html/usr/share/nginx/html . The init container runs the following

command and then terminates:

Notice that the init container writes the index.htmlindex.html file in the root directory of the nginx

server.

Create the Pod:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: init-demoinit-demo

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

 volumeMountsvolumeMounts::

 -- namename:: workdirworkdir

 mountPathmountPath:: /usr/share/nginx/html/usr/share/nginx/html

 # These containers are run during pod initialization# These containers are run during pod initialization

 initContainersinitContainers::

 -- namename:: installinstall

 imageimage:: busyboxbusybox

 commandcommand::

 -- wgetwget

 -- ""-O"-O"

 -- ""/work-dir/index.html"/work-dir/index.html"

 -- http://kubernetes.iohttp://kubernetes.io

 volumeMountsvolumeMounts::

 -- namename:: workdirworkdir

 mountPathmountPath:: ""/work-dir"/work-dir"

 dnsPolicydnsPolicy:: DefaultDefault

 volumesvolumes::

 -- namename:: workdirworkdir

 emptyDiremptyDir:: {}{}

wget -O /work-dir/index.html http://kubernetes.iowget -O /work-dir/index.html http://kubernetes.io

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/init-containers.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/init-containers.yaml

Verify that the nginx container is running:

The output shows that the nginx container is running:

Get a shell into the nginx container running in the init-demo Pod:

In your shell, send a GET request to the nginx server:

The output shows that nginx is serving the web page that was written by the init container:

What’s next

Learn more about communicating between Containers running in the same Pod.

kubectl get pod init-demokubectl get pod init-demo

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

init-demo 1/1 Running 0 1minit-demo 1/1 Running 0 1m

kubectl exec -it init-demo -- /bin/bashkubectl exec -it init-demo -- /bin/bash

root@nginx:~# apt-get updateroot@nginx:~# apt-get update

root@nginx:~# apt-get install curlroot@nginx:~# apt-get install curl

root@nginx:~# curl localhostroot@nginx:~# curl localhost

<!Doctype html><!Doctype html>

<html<html id=id="home""home">>

<head><head>

......

"url": "http://kubernetes.io/"}"url": "http://kubernetes.io/"}</script></script>

</head></head>

<body><body>

 <p><p>Kubernetes is open source giving you the freedom to take advantage ...Kubernetes is open source giving you the freedom to take advantage ...</p></p>

file:///docs/tasks/access-application-cluster/communicate-containers-same-pod-shared-volume/

Learn more about Init Containers.

Learn more about Volumes.

Learn more about Debugging Init Containers

file:///docs/concepts/workloads/pods/init-containers/
file:///docs/concepts/storage/volumes/
file:///docs/tasks/debug-application-cluster/debug-init-containers/

Attach Handlers to Container Lifecycle
Events

This page shows how to attach handlers to Container lifecycle events. Kubernetes supports

the postStart and preStop events. Kubernetes sends the postStart event immediately after a

Container is started, and it sends the preStop event immediately before the Container is

terminated.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Define postStart and preStop handlers

In this exercise, you create a Pod that has one Container. The Container has handlers for the

postStart and preStop events.

Here is the configuration file for the Pod:

Before you begin

Define postStart and preStop handlers

Discussion

What’s next

Reference

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

lifecycle-events.yamllifecycle-events.yaml

In the configuration file, you can see that the postStart command writes a messagemessage file to the

Container’s /usr/share/usr/share directory. The preStop command shuts down nginx gracefully. This

is helpful if the Container is being terminated because of a failure.

Create the Pod:

Verify that the Container in the Pod is running:

Get a shell into the Container running in your Pod:

In your shell, verify that the postStartpostStart handler created the messagemessage file:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: lifecycle-demolifecycle-demo

specspec::

 containerscontainers::

 -- namename:: lifecycle-demo-containerlifecycle-demo-container

 imageimage:: nginxnginx

 lifecyclelifecycle::

 postStartpostStart::

 execexec::

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""echoecho HelloHello fromfrom thethe postStartpostStart handlerhandler >>

 preStoppreStop::

 execexec::

 commandcommand:: [[""/usr/sbin/nginx"/usr/sbin/nginx",,""-s"-s",,""quit"quit"]]

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/lifecycle-events.yamlkubectl create -f https://k8s.io/docs/tasks/configure-pod-container/lifecycle-events.yaml

kubectl get pod lifecycle-demokubectl get pod lifecycle-demo

kubectl exec -it lifecycle-demo -- /bin/bashkubectl exec -it lifecycle-demo -- /bin/bash

root@lifecycle-demo:/# cat /usr/share/messageroot@lifecycle-demo:/# cat /usr/share/message

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/lifecycle-events.yaml

The output shows the text written by the postStart handler:

Discussion

Kubernetes sends the postStart event immediately after the Container is created. There is no

guarantee, however, that the postStart handler is called before the Container’s entrypoint is

called. The postStart handler runs asynchronously relative to the Container’s code, but

Kubernetes’ management of the container blocks until the postStart handler completes. The

Container’s status is not set to RUNNING until the postStart handler completes.

Kubernetes sends the preStop event immediately before the Container is terminated.

Kubernetes’ management of the Container blocks until the preStop handler completes, unless

the Pod’s grace period expires. For more details, see Termination of Pods.

Note: Kubernetes only sends the preStop event when a Pod is terminated. This means

that the preStop hook is not invoked when the Pod is completed. This limitation is

tracked in issue #55087.

What’s next

Learn more about Container lifecycle hooks.

Learn more about the lifecycle of a Pod.

Reference

Lifecycle

Container

See terminationGracePeriodSecondsterminationGracePeriodSeconds in PodSpec

Hello from the postStart handlerHello from the postStart handler

file:///docs/user-guide/pods/#termination-of-pods
https://github.com/kubernetes/kubernetes/issues/55807
file:///docs/concepts/containers/container-lifecycle-hooks/
file:///docs/concepts/workloads/pods/pod-lifecycle/
file:///docs/reference/generated/kubernetes-api/v1.10/#lifecycle-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core

Configure a Pod to Use a ConfigMap

ConfigMaps allow you to decouple configuration artifacts from image content to keep

containerized applications portable. This page provides a series of usage examples

demonstrating how to create ConfigMaps and configure Pods using data stored in

ConfigMaps.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Before you begin

Create a ConfigMap

Create ConfigMaps from directories

Create ConfigMaps from files

Define the key to use when creating a ConfigMap from a file

Create ConfigMaps from literal values

Define Pod environment variables using ConfigMap data

Define a Pod environment variable with data from a single ConfigMap

Define Pod environment variables with data from multiple ConfigMaps

Configure all key-value pairs in a ConfigMap as Pod environment variables

Use ConfigMap-defined environment variables in Pod commands

Add ConfigMap data to a Volume

Populate a Volume with data stored in a ConfigMap

Add ConfigMap data to a specific path in the Volume

Project keys to specific paths and file permissions

Mounted ConfigMaps are updated automatically

Understanding ConfigMaps and Pods

Restrictions

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

To check the version, enter kubectl versionkubectl version .

Create a ConfigMap

Use the

kubectl createkubectl create

configmapconfigmap command to create configmaps from directories, files,

or literal values:

where <map-name> is the name you want to assign to the ConfigMap and <data-source> is

the directory, file, or literal value to draw the data from.

The data source corresponds to a key-value pair in the ConfigMap, where

key = the file name or the key you provided on the command line, and

value = the file contents or the literal value you provided on the command line.

You can use

kubectlkubectl

describedescribe or

kubectlkubectl

getget to retrieve information about a ConfigMap.

Create ConfigMaps from directories

You can use

kubectl createkubectl create

configmapconfigmap to create a ConfigMap from multiple files in the

same directory.

For example:

combines the contents of the

docs/tasks/configure-pod-container/configmap/kubectl/docs/tasks/configure-pod-container/configmap/kubectl/ directory

kubectl create configmap <map-name> <data-source>kubectl create configmap <map-name> <data-source>

kubectl create configmap game-config kubectl create configmap game-config --from-file--from-file==https://k8s.io/docs/tasks/configure-pod-container/configmap/kubectlhttps://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl

file:///docs/reference/generated/kubectl/kubectl-commands/#describe
file:///docs/reference/generated/kubectl/kubectl-commands/#get

into the following ConfigMap:

The game.propertiesgame.properties and ui.propertiesui.properties files in the

docs/tasks/configure-pod-container/configmap/kubectl/docs/tasks/configure-pod-container/configmap/kubectl/ directory are represented in

the datadata section of the ConfigMap.

ls ls docs/tasks/configure-pod-container/configmap/kubectl/docs/tasks/configure-pod-container/configmap/kubectl/

game.propertiesgame.properties

ui.propertiesui.properties

kubectl describe configmaps game-configkubectl describe configmaps game-config

Name: game-configName: game-config

Namespace: defaultNamespace: default

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

DataData

========

game.properties: 158 bytesgame.properties: 158 bytes

ui.properties: 83 bytesui.properties: 83 bytes

kubectl get configmaps game-config kubectl get configmaps game-config -o-o yaml yaml

Create ConfigMaps from files

You can use

kubectl createkubectl create

configmapconfigmap to create a ConfigMap from an individual file, or

from multiple files.

For example,

would produce the following ConfigMap:

apiVersionapiVersion:: v1v1

datadata::

 game.propertiesgame.properties:: ||

 enemies=aliensenemies=aliens

 lives=3lives=3

 enemies.cheat=trueenemies.cheat=true

 enemies.cheat.level=noGoodRottenenemies.cheat.level=noGoodRotten

 secret.code.passphrase=UUDDLRLRBABASsecret.code.passphrase=UUDDLRLRBABAS

 secret.code.allowed=truesecret.code.allowed=true

 secret.code.lives=30secret.code.lives=30

 ui.propertiesui.properties:: ||

 color.good=purplecolor.good=purple

 color.bad=yellowcolor.bad=yellow

 allow.textmode=trueallow.textmode=true

 how.nice.to.look=fairlyNicehow.nice.to.look=fairlyNice

kindkind:: ConfigMapConfigMap

metadatametadata::

 creationTimestampcreationTimestamp:: 2016-02-18T18:52:05Z2016-02-18T18:52:05Z

 namename:: game-configgame-config

 namespacenamespace:: defaultdefault

 resourceVersionresourceVersion:: ""516"516"

 selfLinkselfLink:: /api/v1/namespaces/default/configmaps/game-config/api/v1/namespaces/default/configmaps/game-config

 uiduid:: b4952dc3-d670-11e5-8cd0-68f728db1985b4952dc3-d670-11e5-8cd0-68f728db1985

kubectl create configmap game-config-2 kubectl create configmap game-config-2 --from-file--from-file==https://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl/game.propertieshttps://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl/game.properties

kubectl describe configmaps game-config-2kubectl describe configmaps game-config-2

Name: game-config-2Name: game-config-2

Namespace: defaultNamespace: default

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

DataData

========

game.properties: 158 bytesgame.properties: 158 bytes

You can pass in the --from-file--from-file argument multiple times to create a ConfigMap from

multiple data sources.

Use the option --from-env-file--from-env-file to create a ConfigMap from an env-file, for example:

would produce the following ConfigMap:

kubectl create configmap game-config-2 kubectl create configmap game-config-2 --from-file--from-file==https://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl/game.properties https://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl/game.properties

kubectl describe configmaps game-config-2kubectl describe configmaps game-config-2

Name: game-config-2Name: game-config-2

Namespace: defaultNamespace: default

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

DataData

========

game.properties: 158 bytesgame.properties: 158 bytes

ui.properties: 83 bytesui.properties: 83 bytes

Env-files contain a list of environment variables.# Env-files contain a list of environment variables.
These syntax rules apply:# These syntax rules apply:
Each line in an env file has to be in VAR=VAL format.# Each line in an env file has to be in VAR=VAL format.
Lines beginning with # (i.e. comments) are ignored.# Lines beginning with # (i.e. comments) are ignored.
Blank lines are ignored.# Blank lines are ignored.
There is no special handling of quotation marks (i.e. they will be part of the ConfigMap value)).# There is no special handling of quotation marks (i.e. they will be part of the ConfigMap value)).

cat cat docs/tasks/configure-pod-container/game-env-file.propertiesdocs/tasks/configure-pod-container/game-env-file.properties

enemiesenemies==aliensaliens

liveslives==33

allowedallowed=="true""true"

This comment and the empty line above it are ignored# This comment and the empty line above it are ignored

kubectl create configmap game-config-env-file kubectl create configmap game-config-env-file \\

 --from-env-file--from-env-file==docs/tasks/configure-pod-container/game-env-file.propertiesdocs/tasks/configure-pod-container/game-env-file.properties

When passing --from-env-file--from-env-file multiple times to create a ConfigMap from multiple data

sources, only the last env-file is used:

would produce the following ConfigMap:

Define the key to use when creating a ConfigMap from a file

You can define a key other than the file name to use in the datadata section of your ConfigMap

when using the --from-file--from-file argument:

kubectl get configmap game-config-env-file kubectl get configmap game-config-env-file -o-o yaml yaml

apiVersion: v1apiVersion: v1

data:data:

 allowed: allowed: '"true"''"true"'

 enemies: aliens enemies: aliens

 lives: lives: "3""3"

kind: ConfigMapkind: ConfigMap

metadata:metadata:

 creationTimestamp: 2017-12-27T18:36:28Z creationTimestamp: 2017-12-27T18:36:28Z

 name: game-config-env-file name: game-config-env-file

 namespace: default namespace: default

 resourceVersion: resourceVersion: "809965""809965"

 selfLink: /api/v1/namespaces/default/configmaps/game-config-env-file selfLink: /api/v1/namespaces/default/configmaps/game-config-env-file

 uid: d9d1ca5b-eb34-11e7-887b-42010a8002b8 uid: d9d1ca5b-eb34-11e7-887b-42010a8002b8

kubectl create configmap config-multi-env-files kubectl create configmap config-multi-env-files \\

 --from-env-file--from-env-file==docs/tasks/configure-pod-container/game-env-file.properties docs/tasks/configure-pod-container/game-env-file.properties

 --from-env-file--from-env-file==docs/tasks/configure-pod-container/ui-env-file.propertiesdocs/tasks/configure-pod-container/ui-env-file.properties

kubectl get configmap config-multi-env-files -o yamlkubectl get configmap config-multi-env-files -o yaml

apiVersion: v1apiVersion: v1

data:data:

 color: purple color: purple

 how: fairlyNice how: fairlyNice

 textmode: "true" textmode: "true"

kind: ConfigMapkind: ConfigMap

metadata:metadata:

 creationTimestamp: 2017-12-27T18:38:34Z creationTimestamp: 2017-12-27T18:38:34Z

 name: config-multi-env-files name: config-multi-env-files

 namespace: default namespace: default

 resourceVersion: "810136" resourceVersion: "810136"

 selfLink: /api/v1/namespaces/default/configmaps/config-multi-env-files selfLink: /api/v1/namespaces/default/configmaps/config-multi-env-files

 uid: 252c4572-eb35-11e7-887b-42010a8002b8 uid: 252c4572-eb35-11e7-887b-42010a8002b8

where <my-key-name><my-key-name> is the key you want to use in the ConfigMap and <path-to-file><path-to-file> is

the location of the data source file you want the key to represent.

For example:

Create ConfigMaps from literal values

You can use

kubectl createkubectl create

configmapconfigmap with the --from-literal--from-literal argument to define a

literal value from the command line:

You can pass in multiple key-value pairs. Each pair provided on the command line is

kubectl create configmap game-config-3 kubectl create configmap game-config-3 --from-file--from-file==<my-key-name><my-key-name>==<path-to-file><path-to-file>

kubectl create configmap game-config-3 kubectl create configmap game-config-3 --from-file--from-file==game-special-keygame-special-key==https://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl/game.propertieshttps://k8s.io/docs/tasks/configure-pod-container/configmap/kubectl/game.properties

kubectl get configmaps game-config-3 kubectl get configmaps game-config-3 -o-o yaml yaml

apiVersionapiVersion:: v1v1

datadata::

 game-special-keygame-special-key:: ||

 enemies=aliensenemies=aliens

 lives=3lives=3

 enemies.cheat=trueenemies.cheat=true

 enemies.cheat.level=noGoodRottenenemies.cheat.level=noGoodRotten

 secret.code.passphrase=UUDDLRLRBABASsecret.code.passphrase=UUDDLRLRBABAS

 secret.code.allowed=truesecret.code.allowed=true

 secret.code.lives=30secret.code.lives=30

kindkind:: ConfigMapConfigMap

metadatametadata::

 creationTimestampcreationTimestamp:: 2016-02-18T18:54:22Z2016-02-18T18:54:22Z

 namename:: game-config-3game-config-3

 namespacenamespace:: defaultdefault

 resourceVersionresourceVersion:: ""530"530"

 selfLinkselfLink:: /api/v1/namespaces/default/configmaps/game-config-3/api/v1/namespaces/default/configmaps/game-config-3

 uiduid:: 05f8da22-d671-11e5-8cd0-68f728db198505f8da22-d671-11e5-8cd0-68f728db1985

kubectl create configmap special-config kubectl create configmap special-config --from-literal--from-literal==special.howspecial.how==very very --from-literal--from-literal

represented as a separate entry in the datadata section of the ConfigMap.

Define Pod environment variables using ConfigMap
data

Define a Pod environment variable with data from a single
ConfigMap

1. Define an environment variable as a key-value pair in a ConfigMap:

2. Assign the special.howspecial.how value defined in the ConfigMap to the SPECIAL_LEVEL_KEYSPECIAL_LEVEL_KEY

environment variable in the Pod specification.

kubectl get configmaps special-config kubectl get configmaps special-config -o-o yaml yaml

apiVersionapiVersion:: v1v1

datadata::

 special.howspecial.how:: veryvery

 special.typespecial.type:: charmcharm

kindkind:: ConfigMapConfigMap

metadatametadata::

 creationTimestampcreationTimestamp:: 2016-02-18T19:14:38Z2016-02-18T19:14:38Z

 namename:: special-configspecial-config

 namespacenamespace:: defaultdefault

 resourceVersionresourceVersion:: ""651"651"

 selfLinkselfLink:: /api/v1/namespaces/default/configmaps/special-config/api/v1/namespaces/default/configmaps/special-config

 uiduid:: dadce046-d673-11e5-8cd0-68f728db1985dadce046-d673-11e5-8cd0-68f728db1985

kubectl create configmap special-config kubectl create configmap special-config --from-literal--from-literal==special.howspecial.how==very very

kubectl edit pod dapi-test-podkubectl edit pod dapi-test-pod

3. Save the changes to the Pod specification. Now, the Pod’s output includes

SPECIAL_LEVEL_KEY=verySPECIAL_LEVEL_KEY=very .

Define Pod environment variables with data from multiple
ConfigMaps

1. As with the previous example, create the ConfigMaps first.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-test-poddapi-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""env"env"]]

 envenv::

 # Define the environment variable# Define the environment variable

 -- namename:: SPECIAL_LEVEL_KEYSPECIAL_LEVEL_KEY

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 # The ConfigMap containing the value you want to assign to SPECIAL_LEVEL_KEY# The ConfigMap containing the value you want to assign to SPECIAL_LEVEL_KEY

 namename:: special-configspecial-config

 # Specify the key associated with the value# Specify the key associated with the value

 keykey:: special.howspecial.how

 restartPolicyrestartPolicy:: NeverNever

2. Define the environment variables in the Pod specification.

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: special-configspecial-config

 namespacenamespace:: defaultdefault

datadata::

 special.howspecial.how:: veryvery

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: env-configenv-config

 namespacenamespace:: defaultdefault

datadata::

 log_levellog_level:: INFOINFO

3. Save the changes to the Pod specification. Now, the Pod’s output includes

SPECIAL_LEVEL_KEY=verySPECIAL_LEVEL_KEY=very and LOG_LEVEL=infoLOG_LEVEL=info .

Configure all key-value pairs in a ConfigMap as Pod
environment variables

Note: This functionality is available to users running Kubernetes v1.6 and later.

1. Create a ConfigMap containing multiple key-value pairs.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-test-poddapi-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""env"env"]]

 envenv::

 -- namename:: SPECIAL_LEVEL_KEYSPECIAL_LEVEL_KEY

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 namename:: special-configspecial-config

 keykey:: special.howspecial.how

 -- namename:: LOG_LEVELLOG_LEVEL

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 namename:: env-configenv-config

 keykey:: log_levellog_level

 restartPolicyrestartPolicy:: NeverNever

2. Use envFromenvFrom to define all of the ConfigMap’s data as Pod environment variables. The key

from the ConfigMap becomes the environment variable name in the Pod.

3. Save the changes to the Pod specification. Now, the Pod’s output includes

SPECIAL_LEVEL=verySPECIAL_LEVEL=very and SPECIAL_TYPE=charmSPECIAL_TYPE=charm .

Use ConfigMap-defined environment variables in
Pod commands

You can use ConfigMap-defined environment variables in the commandcommand section of the Pod

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: special-configspecial-config

 namespacenamespace:: defaultdefault

datadata::

 SPECIAL_LEVELSPECIAL_LEVEL:: veryvery

 SPECIAL_TYPESPECIAL_TYPE:: charmcharm

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-test-poddapi-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""env"env"]]

 envFromenvFrom::

 -- configMapRefconfigMapRef::

 namename:: special-configspecial-config

 restartPolicyrestartPolicy:: NeverNever

specification using the (VAR_NAME)(VAR_NAME) Kubernetes substitution syntax.

For example:

The following Pod specification

produces the following output in the test-containertest-container container:

Add ConfigMap data to a Volume

As explained in Create ConfigMaps from files, when you create a ConfigMap using

--from-file--from-file , the filename becomes a key stored in the datadata section of the ConfigMap. The

file contents become the key’s value.

The examples in this section refer to a ConfigMap named special-config, shown below.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-test-poddapi-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""echoecho $(SPECIAL_LEVEL_KEY)$(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"$(SPECIAL_TYPE_KEY)"

 envenv::

 -- namename:: SPECIAL_LEVEL_KEYSPECIAL_LEVEL_KEY

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 namename:: special-configspecial-config

 keykey:: SPECIAL_LEVELSPECIAL_LEVEL

 -- namename:: SPECIAL_TYPE_KEYSPECIAL_TYPE_KEY

 valueFromvalueFrom::

 configMapKeyRefconfigMapKeyRef::

 namename:: special-configspecial-config

 keykey:: SPECIAL_TYPESPECIAL_TYPE

 restartPolicyrestartPolicy:: NeverNever

very charmvery charm

Populate a Volume with data stored in a ConfigMap

Add the ConfigMap name under the volumesvolumes section of the Pod specification. This adds the

ConfigMap data to the directory specified as volumeMounts.mountPathvolumeMounts.mountPath (in this case,

/etc/config/etc/config). The commandcommand section references the special.levelspecial.level item stored in the

ConfigMap.

When the pod runs, the command ("ls /etc/config/""ls /etc/config/") produces the output below:

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: special-configspecial-config

 namespacenamespace:: defaultdefault

datadata::

 special.levelspecial.level:: veryvery

 special.typespecial.type:: charmcharm

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-test-poddapi-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""/bin/sh"/bin/sh",, ""-c"-c",, ""lsls /etc/config/"/etc/config/"]]

 volumeMountsvolumeMounts::

 -- namename:: config-volumeconfig-volume

 mountPathmountPath:: /etc/config/etc/config

 volumesvolumes::

 -- namename:: config-volumeconfig-volume

 configMapconfigMap::

 # Provide the name of the ConfigMap containing the files you want# Provide the name of the ConfigMap containing the files you want
 # to add to the container# to add to the container
 namename:: special-configspecial-config

 restartPolicyrestartPolicy:: NeverNever

special.levelspecial.level

special.typespecial.type

Caution: If there are some files in the /etc/config//etc/config/ directory, they will be deleted.

Add ConfigMap data to a specific path in the Volume

Use the pathpath field to specify the desired file path for specific ConfigMap items. In this case,

the special.levelspecial.level item will be mounted in the config-volumeconfig-volume volume at

/etc/config/keys/etc/config/keys .

When the pod runs, the command ("cat /etc/config/keys""cat /etc/config/keys") produces the output below:

Project keys to specific paths and file permissions

You can project keys to specific paths and specific permissions on a per-file basis. The Secrets

user guide explains the syntax.

Mounted ConfigMaps are updated automatically

When a ConfigMap already being consumed in a volume is updated, projected keys are

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-test-poddapi-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""/bin/sh"/bin/sh",,""-c"-c",,""catcat /etc/config/keys"/etc/config/keys"]]

 volumeMountsvolumeMounts::

 -- namename:: config-volumeconfig-volume

 mountPathmountPath:: /etc/config/etc/config

 volumesvolumes::

 -- namename:: config-volumeconfig-volume

 configMapconfigMap::

 namename:: special-configspecial-config

 itemsitems::

 -- keykey:: special.levelspecial.level

 pathpath:: keyskeys

 restartPolicyrestartPolicy:: NeverNever

veryvery

file:///docs/concepts/configuration/secret/#using-secrets-as-files-from-a-pod

eventually updated as well. Kubelet is checking whether the mounted ConfigMap is fresh on

every periodic sync. However, it is using its local ttl-based cache for getting the current value

of the ConfigMap. As a result, the total delay from the moment when the ConfigMap is updated

to the moment when new keys are projected to the pod can be as long as kubelet sync period

+ ttl of ConfigMaps cache in kubelet.

Note: A container using a ConfigMap as a subPath volume will not receive ConfigMap

updates.

Understanding ConfigMaps and Pods

The ConfigMap API resource stores configuration data as key-value pairs. The data can be

consumed in pods or provide the configurations for system components such as controllers.

ConfigMap is similar to Secrets, but provides a means of working with strings that don’t

contain sensitive information. Users and system components alike can store configuration

data in ConfigMap.

Note: ConfigMaps should reference properties files, not replace them. Think of the

ConfigMap as representing something similar to the Linux /etc/etc directory and its

contents. For example, if you create a Kubernetes Volume from a ConfigMap, each data

item in the ConfigMap is represented by an individual file in the volume.

The ConfigMap’s datadata field contains the configuration data. As shown in the example below,

this can be simple – like individual properties defined using --from-literal--from-literal – or complex –

like configuration files or JSON blobs defined using --from-file--from-file .

file:///docs/concepts/storage/volumes/#using-subpath
file:///docs/concepts/configuration/secret/
file:///docs/concepts/storage/volumes/

Restrictions

1. You must create a ConfigMap before referencing it in a Pod specification (unless you mark

the ConfigMap as “optional”). If you reference a ConfigMap that doesn’t exist, the Pod

won’t start. Likewise, references to keys that don’t exist in the ConfigMap will prevent the

pod from starting.

2. If you use envFromenvFrom to define environment variables from ConfigMaps, keys that are

considered invalid will be skipped. The pod will be allowed to start, but the invalid names

will be recorded in the event log (InvalidVariableNamesInvalidVariableNames). The log message lists each

skipped key. For example:

3. ConfigMaps reside in a specific namespace. A ConfigMap can only be referenced by pods

residing in the same namespace.

4. Kubelet doesn’t support the use of ConfigMaps for pods not found on the API server. This

includes pods created via the Kubelet’s –manifest-url flag, –config flag, or the Kubelet

REST API.

kindkind:: ConfigMapConfigMap

apiVersionapiVersion:: v1v1

metadatametadata::

 creationTimestampcreationTimestamp:: 2016-02-18T19:14:38Z2016-02-18T19:14:38Z

 namename:: example-configexample-config

 namespacenamespace:: defaultdefault

datadata::

 # example of a simple property defined using --from-literal# example of a simple property defined using --from-literal
 example.property.1example.property.1:: hellohello

 example.property.2example.property.2:: worldworld

 # example of a complex property defined using --from-file# example of a complex property defined using --from-file
 example.property.fileexample.property.file:: |-|-

 property.1=value-1property.1=value-1

 property.2=value-2property.2=value-2

 property.3=value-3property.3=value-3

kubectl get eventskubectl get events

LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON SOURCE MESSAGELASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON SOURCE MESSAGE

0s 0s 1 dapi-test-pod Pod Warning InvalidEnvironmentVariableNames 0s 0s 1 dapi-test-pod Pod Warning InvalidEnvironmentVariableNames

file:///docs/concepts/overview/working-with-objects/namespaces/

Note: These are not commonly-used ways to create pods.

What’s next

Follow a real world example of Configuring Redis using a ConfigMap.

file:///docs/tutorials/configuration/configure-redis-using-configmap/

Share Process Namespace between
Containers in a Pod

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

This page shows how to configure process namespace sharing for a pod. When process

namespace sharing is enabled, processes in a container are visible to all other containers in

that pod.

You can use this feature to configure cooperating containers, such as a log handler sidecar

container, or to troubleshoot container images that don’t include debugging utilities like a shell.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Your Kubernetes server must be version v1.10. To check the version, enter kubectl versionkubectl version .

A special alpha feature gate PodShareProcessNamespacePodShareProcessNamespace must be set to true across the

system: --feature-gates=PodShareProcessNamespace=true--feature-gates=PodShareProcessNamespace=true .

Configure a Pod

Process Namespace Sharing is enabled using the ShareProcessNamespaceShareProcessNamespace field of

v1.PodSpecv1.PodSpec . For example:

Before you begin

Configure a Pod

Understanding Process Namespace Sharing

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

share-process-namespace.yamlshare-process-namespace.yaml

1. Create the pod nginxnginx on your cluster:

2. Attach to the shellshell container and run psps :

You can signal processes in other containers. For example, send SIGHUPSIGHUP to nginx to restart

the worker process. This requires the SYS_PTRACESYS_PTRACE capability.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

specspec::

 shareProcessNamespaceshareProcessNamespace:: truetrue

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 -- namename:: shellshell

 imageimage:: busyboxbusybox

 securityContextsecurityContext::

 capabilitiescapabilities::

 addadd::

 -- SYS_PTRACESYS_PTRACE

 stdinstdin:: truetrue

 ttytty:: truetrue

 $ kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/share-process-namespace.yaml $ kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/share-process-namespace.yaml

 $ kubectl attach -it nginx -c shell $ kubectl attach -it nginx -c shell

 If you don't see a command prompt, try pressing enter. If you don't see a command prompt, try pressing enter.

 / # ps ax / # ps ax

 PID USER TIME COMMAND PID USER TIME COMMAND

 1 root 0:00 /pause 1 root 0:00 /pause

 8 root 0:00 nginx: master process nginx -g daemon off; 8 root 0:00 nginx: master process nginx -g daemon off;

 14 101 0:00 nginx: worker process 14 101 0:00 nginx: worker process

 15 root 0:00 sh 15 root 0:00 sh

 21 root 0:00 ps ax 21 root 0:00 ps ax

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/configure-pod-container/share-process-namespace.yaml

It’s even possible to access another container image using the /proc/$pid/root/proc/$pid/root link.

Understanding Process Namespace Sharing

Pods share many resources so it makes sense they would also share a process namespace.

Some container images may expect to be isolated from other containers, though, so it’s

important to understand these differences:

1. The container process no longer has PID 1. Some container images refuse to start

without PID 1 (for example, containers using systemdsystemd) or run commands like

kill -HUPkill -HUP

11 to signal the container process. In pods with a shared process namespace,

kill -HUPkill -HUP

11 will signal the pod sandbox. (/pause/pause in the above example.)

2. Processes are visible to other containers in the pod. This includes all information visible

in /proc/proc , such as passwords that were passed as arguments or environment variables.

These are protected only by regular Unix permissions.

 / # kill -HUP 8 / # kill -HUP 8

 / # ps ax / # ps ax

 PID USER TIME COMMAND PID USER TIME COMMAND

 1 root 0:00 /pause 1 root 0:00 /pause

 8 root 0:00 nginx: master process nginx -g daemon off; 8 root 0:00 nginx: master process nginx -g daemon off;

 15 root 0:00 sh 15 root 0:00 sh

 22 101 0:00 nginx: worker process 22 101 0:00 nginx: worker process

 23 root 0:00 ps ax 23 root 0:00 ps ax

 / # head /proc/8/root/etc/nginx/nginx.conf / # head /proc/8/root/etc/nginx/nginx.conf

 user nginx; user nginx;

 worker_processes 1; worker_processes 1;

 error_log /var/log/nginx/error.log warn; error_log /var/log/nginx/error.log warn;

 pid /var/run/nginx.pid; pid /var/run/nginx.pid;

 events { events {

 worker_connections 1024; worker_connections 1024;

3. Container filesystems are visible to other containers in the pod through the

/proc/$pid/root/proc/$pid/root link. This makes debugging easier, but it also means that filesystem

secrets are protected only by filesystem permissions.

Translate a Docker Compose File to
Kubernetes Resources

Kubernetes + Compose = Kompose

What’s Kompose? It’s a conversion tool for all things compose (namely Docker Compose) to

container orchestrators (Kubernetes or OpenShift).

More information can be found on the Kompose website at http://kompose.io.

In three simple steps, we’ll take you from Docker Compose to Kubernetes.

1. Take a sample docker-compose.yaml file

Kubernetes + Compose = Kompose

Installation

GitHub release

Go

CentOS

Fedora

macOS

User Guide

kompose convertkompose convert

Kubernetes

OpenShift

kompose upkompose up

Kubernetes

OpenShift

kompose downkompose down

Build and Push Docker Images

Alternative Conversions

Labels

Restart

Warning about Deployment Config’s

Docker Compose Versions

http://kompose.io

2. Run kompose upkompose up in the same directory

Alternatively, you can run kompose convertkompose convert and deploy with kubectlkubectl

2.1. Run kompose convertkompose convert in the same directory

versionversion:: ""2"2"

servicesservices::

 redis-masterredis-master::

 imageimage:: k8s.gcr.io/redis:e2ek8s.gcr.io/redis:e2e

 portsports::

 -- ""6379"6379"

 redis-slaveredis-slave::

 imageimage:: gcr.io/google_samples/gb-redisslave:v1gcr.io/google_samples/gb-redisslave:v1

 portsports::

 -- ""6379"6379"

 environmentenvironment::

 -- GET_HOSTS_FROM=dnsGET_HOSTS_FROM=dns

 frontendfrontend::

 imageimage:: gcr.io/google-samples/gb-frontend:v4gcr.io/google-samples/gb-frontend:v4

 portsports::

 -- ""80:80"80:80"

 environmentenvironment::

 -- GET_HOSTS_FROM=dnsGET_HOSTS_FROM=dns

 labelslabels::

 kompose.service.typekompose.service.type:: LoadBalancerLoadBalancer

$ $ kompose upkompose up

We are going to create Kubernetes Deployments, Services and PersistentVolumeClaims We are going to create Kubernetes Deployments, Services and PersistentVolumeClaims

If you need different kind of resources, use the If you need different kind of resources, use the 'kompose convert''kompose convert' and and 'kubectl create -f''kubectl create -f'

INFO Successfully created Service: redis INFO Successfully created Service: redis

INFO Successfully created Service: web INFO Successfully created Service: web

INFO Successfully created Deployment: redis INFO Successfully created Deployment: redis

INFO Successfully created Deployment: web INFO Successfully created Deployment: web

Your application has been deployed to Kubernetes. You can run Your application has been deployed to Kubernetes. You can run 'kubectl get deployment,svc,pods,pvc''kubectl get deployment,svc,pods,pvc'

2.2. And start it on Kubernetes!

3. View the newly deployed service

Now that your service has been deployed, let’s access it.

If you’re already using minikubeminikube for your development process:

Otherwise, let’s look up what IP your service is using!

$ $ kompose convert kompose convert

INFO Kubernetes file INFO Kubernetes file "frontend-service.yaml""frontend-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-master-service.yaml""redis-master-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-slave-service.yaml""redis-slave-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "frontend-deployment.yaml""frontend-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-master-deployment.yaml""redis-master-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-slave-deployment.yaml""redis-slave-deployment.yaml" created created

$ $ kubectl create kubectl create -f-f frontend-service.yaml,redis-master-service.yaml,redis-slave-service.yaml,frontend-deployment.yaml,redis-master-deployment.yaml,redis-slave-deployment.yaml frontend-service.yaml,redis-master-service.yaml,redis-slave-service.yaml,frontend-deployment.yaml,redis-master-deployment.yaml,redis-slave-deployment.yaml

service service "frontend""frontend" created created

service service "redis-master""redis-master" created created

service service "redis-slave""redis-slave" created created

deployment deployment "frontend""frontend" created created

deployment deployment "redis-master""redis-master" created created

deployment deployment "redis-slave""redis-slave" created created

$ $ minikube service frontendminikube service frontend

$ $ kubectl describe svc frontendkubectl describe svc frontend

Name: frontendName: frontend

Namespace: defaultNamespace: default

Labels: Labels: serviceservice==frontendfrontend

Selector: Selector: serviceservice==frontendfrontend

Type: LoadBalancerType: LoadBalancer

IP: 10.0.0.183IP: 10.0.0.183

LoadBalancer Ingress: 123.45.67.89LoadBalancer Ingress: 123.45.67.89

Port: 80 80/TCPPort: 80 80/TCP

NodePort: 80 31144/TCPNodePort: 80 31144/TCP

Endpoints: 172.17.0.4:80Endpoints: 172.17.0.4:80

Session Affinity: NoneSession Affinity: None

No events.No events.

If you’re using a cloud provider, your IP will be listed next to LoadBalancer IngressLoadBalancer Ingress .

Installation

We have multiple ways to install Kompose. Our preferred method is downloading the binary

from the latest GitHub release.

GitHub release

Kompose is released via GitHub on a three-week cycle, you can see all current releases on the

GitHub release page.

Alternatively, you can download the tarball.

Go

Installing using

gogo

getget pulls from the master branch with the latest development changes.

CentOS

Kompose is in EPEL CentOS repository. If you don’t have EPEL repository already installed and

$ $ curl http://123.45.67.89curl http://123.45.67.89

Linux # Linux
curl curl -L-L https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-linux-amd64 https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-linux-amd64

macOS# macOS
curl curl -L-L https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-darwin-amd64 https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-darwin-amd64

Windows# Windows
curl curl -L-L https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-windows-amd64.exe https://github.com/kubernetes/kompose/releases/download/v1.1.0/kompose-windows-amd64.exe

chmod +x komposechmod +x kompose

sudo sudo mv ./kompose /usr/local/bin/komposemv ./kompose /usr/local/bin/kompose

go get go get -u-u github.com/kubernetes/kompose github.com/kubernetes/kompose

https://github.com/kubernetes/kompose/releases
https://github.com/kubernetes/kompose/releases
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

enabled you can do it by running

sudo yum install epel-sudo yum install epel-

releaserelease

If you have EPEL enabled in your system, you can install Kompose like any other package.

Fedora

Kompose is in Fedora 24, 25 and 26 repositories. You can install it just like any other package.

macOS

On macOS you can install latest release via Homebrew:

User Guide

CLI

kompose convertkompose convert

kompose upkompose up

kompose downkompose down

Documentation

Build and Push Docker Images

Alternative Conversions

Labels

Restart

Docker Compose Versions

sudo sudo yum yum -y-y install kompose install kompose

sudo sudo dnf dnf -y-y install kompose install kompose

brew install komposebrew install kompose

https://fedoraproject.org/wiki/EPEL
https://brew.sh

Kompose has support for two providers: OpenShift and Kubernetes. You can choose a targeted

provider using global option --provider--provider . If no provider is specified, Kubernetes is set by

default.

kompose convert

Kompose supports conversion of V1, V2, and V3 Docker Compose files into Kubernetes and

OpenShift objects.

Kubernetes

You can also provide multiple docker-compose files at the same time:

$ $ kompose kompose --file--file docker-voting.yml convert docker-voting.yml convert

WARN Unsupported key networks - ignoringWARN Unsupported key networks - ignoring

WARN Unsupported key build - ignoringWARN Unsupported key build - ignoring

INFO Kubernetes file INFO Kubernetes file "worker-svc.yaml""worker-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "db-svc.yaml""db-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-svc.yaml""redis-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "result-svc.yaml""result-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "vote-svc.yaml""vote-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-deployment.yaml""redis-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "result-deployment.yaml""result-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "vote-deployment.yaml""vote-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "worker-deployment.yaml""worker-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "db-deployment.yaml""db-deployment.yaml" created created

$ $ lsls

db-deployment.yaml docker-compose.yml docker-gitlab.yml redis-deployment.yaml result-deployment.yaml vote-deployment.yaml worker-deployment.yamldb-deployment.yaml docker-compose.yml docker-gitlab.yml redis-deployment.yaml result-deployment.yaml vote-deployment.yaml worker-deployment.yaml

db-svc.yaml docker-voting.yml redis-svc.yaml result-svc.yaml vote-svc.yaml worker-svc.yamldb-svc.yaml docker-voting.yml redis-svc.yaml result-svc.yaml vote-svc.yaml worker-svc.yaml

When multiple docker-compose files are provided the configuration is merged. Any

configuration that is common will be over ridden by subsequent file.

OpenShift

It also supports creating buildconfig for build directive in a service. By default, it uses the

remote repo for the current git branch as the source repo, and the current branch as the source

branch for the build. You can specify a different source repo and branch using --build-repo--build-repo

$ $ kompose kompose -f-f docker-compose.yml docker-compose.yml -f-f docker-guestbook.yml convert docker-guestbook.yml convert

INFO Kubernetes file INFO Kubernetes file "frontend-service.yaml""frontend-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "mlbparks-service.yaml""mlbparks-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "mongodb-service.yaml""mongodb-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-master-service.yaml""redis-master-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-slave-service.yaml""redis-slave-service.yaml" created created

INFO Kubernetes file INFO Kubernetes file "frontend-deployment.yaml""frontend-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "mlbparks-deployment.yaml""mlbparks-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "mongodb-deployment.yaml""mongodb-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "mongodb-claim0-persistentvolumeclaim.yaml""mongodb-claim0-persistentvolumeclaim.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-master-deployment.yaml""redis-master-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-slave-deployment.yaml""redis-slave-deployment.yaml" created created

$ $ lsls

mlbparks-deployment.yaml mongodb-service.yaml redis-slave-service.jsonmlbparks-service.yaml mlbparks-deployment.yaml mongodb-service.yaml redis-slave-service.jsonmlbparks-service.yaml

frontend-deployment.yaml mongodb-claim0-persistentvolumeclaim.yaml redis-master-service.yamlfrontend-deployment.yaml mongodb-claim0-persistentvolumeclaim.yaml redis-master-service.yaml

frontend-service.yaml mongodb-deployment.yaml redis-slave-deployment.yamlfrontend-service.yaml mongodb-deployment.yaml redis-slave-deployment.yaml

redis-master-deployment.yamlredis-master-deployment.yaml

$ $ kompose kompose --provider--provider openshift openshift --file--file docker-voting.yml convert docker-voting.yml convert

WARN WARN [[worker] Service cannot be created because of missing port.worker] Service cannot be created because of missing port.

INFO OpenShift file INFO OpenShift file "vote-service.yaml""vote-service.yaml" created created

INFO OpenShift file INFO OpenShift file "db-service.yaml""db-service.yaml" created created

INFO OpenShift file INFO OpenShift file "redis-service.yaml""redis-service.yaml" created created

INFO OpenShift file INFO OpenShift file "result-service.yaml""result-service.yaml" created created

INFO OpenShift file INFO OpenShift file "vote-deploymentconfig.yaml""vote-deploymentconfig.yaml" created created

INFO OpenShift file INFO OpenShift file "vote-imagestream.yaml""vote-imagestream.yaml" created created

INFO OpenShift file INFO OpenShift file "worker-deploymentconfig.yaml""worker-deploymentconfig.yaml" created created

INFO OpenShift file INFO OpenShift file "worker-imagestream.yaml""worker-imagestream.yaml" created created

INFO OpenShift file INFO OpenShift file "db-deploymentconfig.yaml""db-deploymentconfig.yaml" created created

INFO OpenShift file INFO OpenShift file "db-imagestream.yaml""db-imagestream.yaml" created created

INFO OpenShift file INFO OpenShift file "redis-deploymentconfig.yaml""redis-deploymentconfig.yaml" created created

INFO OpenShift file INFO OpenShift file "redis-imagestream.yaml""redis-imagestream.yaml" created created

INFO OpenShift file INFO OpenShift file "result-deploymentconfig.yaml""result-deploymentconfig.yaml" created created

INFO OpenShift file INFO OpenShift file "result-imagestream.yaml""result-imagestream.yaml" created created

and --build-branch--build-branch options respectively.

Note: If you are manually pushing the Openshift artifacts using

oc create -oc create -

ff , you need to

ensure that you push the imagestream artifact before the buildconfig artifact, to workaround

this Openshift issue: https://github.com/openshift/origin/issues/4518 .

kompose up

Kompose supports a straightforward way to deploy your “composed” application to

Kubernetes or OpenShift via kompose upkompose up .

Kubernetes

$ $ kompose kompose --provider--provider openshift openshift --file--file buildconfig/docker-compose.yml convert buildconfig/docker-compose.yml convert

WARN WARN [[foo] Service cannot be created because of missing port. foo] Service cannot be created because of missing port.

INFO OpenShift Buildconfig using git@github.com:rtnpro/kompose.git::master as source. INFO OpenShift Buildconfig using git@github.com:rtnpro/kompose.git::master as source.

INFO OpenShift file INFO OpenShift file "foo-deploymentconfig.yaml""foo-deploymentconfig.yaml" created created

INFO OpenShift file INFO OpenShift file "foo-imagestream.yaml""foo-imagestream.yaml" created created

INFO OpenShift file INFO OpenShift file "foo-buildconfig.yaml""foo-buildconfig.yaml" created created

Note:

You must have a running Kubernetes cluster with a pre-configured kubectl context.

Only deployments and services are generated and deployed to Kubernetes. If you need

different kind of resources, use the ‘kompose convert’ and ‘kubectl create -f’ commands

instead.

OpenShift

$ $ kompose kompose --file--file ./examples/docker-guestbook.yml up ./examples/docker-guestbook.yml up

We are going to create Kubernetes deployments and services We are going to create Kubernetes deployments and services for for your Dockerized application.your Dockerized application.

If you need different kind of resources, use the If you need different kind of resources, use the 'kompose convert''kompose convert' and and 'kubectl create -f''kubectl create -f'

INFO Successfully created service: redis-master INFO Successfully created service: redis-master

INFO Successfully created service: redis-slave INFO Successfully created service: redis-slave

INFO Successfully created service: frontend INFO Successfully created service: frontend

INFO Successfully created deployment: redis-masterINFO Successfully created deployment: redis-master

INFO Successfully created deployment: redis-slaveINFO Successfully created deployment: redis-slave

INFO Successfully created deployment: frontend INFO Successfully created deployment: frontend

Your application has been deployed to Kubernetes. You can run Your application has been deployed to Kubernetes. You can run 'kubectl get deployment,svc,pods''kubectl get deployment,svc,pods'

$ $ kubectl get deployment,svc,podskubectl get deployment,svc,pods

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

deploy/frontend 1 1 1 1 4mdeploy/frontend 1 1 1 1 4m

deploy/redis-master 1 1 1 1 4mdeploy/redis-master 1 1 1 1 4m

deploy/redis-slave 1 1 1 1 4mdeploy/redis-slave 1 1 1 1 4m

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

svc/frontend 10.0.174.12 <none> 80/TCP 4msvc/frontend 10.0.174.12 <none> 80/TCP 4m

svc/kubernetes 10.0.0.1 <none> 443/TCP 13dsvc/kubernetes 10.0.0.1 <none> 443/TCP 13d

svc/redis-master 10.0.202.43 <none> 6379/TCP 4msvc/redis-master 10.0.202.43 <none> 6379/TCP 4m

svc/redis-slave 10.0.1.85 <none> 6379/TCP 4msvc/redis-slave 10.0.1.85 <none> 6379/TCP 4m

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

po/frontend-2768218532-cs5t5 1/1 Running 0 4mpo/frontend-2768218532-cs5t5 1/1 Running 0 4m

po/redis-master-1432129712-63jn8 1/1 Running 0 4mpo/redis-master-1432129712-63jn8 1/1 Running 0 4m

po/redis-slave-2504961300-nve7b 1/1 Running 0 4mpo/redis-slave-2504961300-nve7b 1/1 Running 0 4m

Note:

You must have a running OpenShift cluster with a pre-configured ococ context (oc loginoc login)

kompose down

Once you have deployed “composed” application to Kubernetes, $ kompose down$ kompose down will help

you to take the application out by deleting its deployments and services. If you need to remove

other resources, use the ‘kubectl’ command.

$ $ kompose kompose --file--file ./examples/docker-guestbook.yml ./examples/docker-guestbook.yml --provider--provider openshift up openshift up

We are going to create OpenShift DeploymentConfigs and Services We are going to create OpenShift DeploymentConfigs and Services for for your Dockerized application.your Dockerized application.

If you need different kind of resources, use the If you need different kind of resources, use the 'kompose convert''kompose convert' and and 'oc create -f''oc create -f'

INFO Successfully created service: redis-slave INFO Successfully created service: redis-slave

INFO Successfully created service: frontend INFO Successfully created service: frontend

INFO Successfully created service: redis-master INFO Successfully created service: redis-master

INFO Successfully created deployment: redis-slaveINFO Successfully created deployment: redis-slave

INFO Successfully created ImageStream: redis-slaveINFO Successfully created ImageStream: redis-slave

INFO Successfully created deployment: frontend INFO Successfully created deployment: frontend

INFO Successfully created ImageStream: frontend INFO Successfully created ImageStream: frontend

INFO Successfully created deployment: redis-masterINFO Successfully created deployment: redis-master

INFO Successfully created ImageStream: redis-masterINFO Successfully created ImageStream: redis-master

Your application has been deployed to OpenShift. You can run Your application has been deployed to OpenShift. You can run 'oc get dc,svc,is''oc get dc,svc,is'

$ $ oc get dc,svc,isoc get dc,svc,is

NAME REVISION DESIRED CURRENT TRIGGERED BYNAME REVISION DESIRED CURRENT TRIGGERED BY

dc/frontend 0 1 0 config,imagedc/frontend 0 1 0 config,image

dc/redis-master 0 1 0 config,imagedc/redis-master 0 1 0 config,image

dc/redis-slave 0 1 0 config,imagedc/redis-slave 0 1 0 config,image

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS

svc/frontend 172.30.46.64 <none> 80/TCP 8ssvc/frontend 172.30.46.64 <none> 80/TCP 8s

svc/redis-master 172.30.144.56 <none> 6379/TCP 8ssvc/redis-master 172.30.144.56 <none> 6379/TCP 8s

svc/redis-slave 172.30.75.245 <none> 6379/TCP 8ssvc/redis-slave 172.30.75.245 <none> 6379/TCP 8s

NAME DOCKER REPO TAGS UPDATEDNAME DOCKER REPO TAGS UPDATED

is/frontend 172.30.12.200:5000/fff/frontend is/frontend 172.30.12.200:5000/fff/frontend

is/redis-master 172.30.12.200:5000/fff/redis-master is/redis-master 172.30.12.200:5000/fff/redis-master

is/redis-slave 172.30.12.200:5000/fff/redis-slave v1 is/redis-slave 172.30.12.200:5000/fff/redis-slave v1

Note:

You must have a running Kubernetes cluster with a pre-configured kubectl context.

Build and Push Docker Images

Kompose supports both building and pushing Docker images. When using the buildbuild key

within your Docker Compose file, your image will:

Automatically be built with Docker using the imageimage key specified within your file

Be pushed to the correct Docker repository using local credentials (located at

.docker/config.docker/config)

Using an example Docker Compose file:

Using kompose upkompose up with a buildbuild key:

$ $ kompose kompose --file--file docker-guestbook.yml down docker-guestbook.yml down

INFO Successfully deleted service: redis-master INFO Successfully deleted service: redis-master

INFO Successfully deleted deployment: redis-masterINFO Successfully deleted deployment: redis-master

INFO Successfully deleted service: redis-slave INFO Successfully deleted service: redis-slave

INFO Successfully deleted deployment: redis-slaveINFO Successfully deleted deployment: redis-slave

INFO Successfully deleted service: frontend INFO Successfully deleted service: frontend

INFO Successfully deleted deployment: frontendINFO Successfully deleted deployment: frontend

versionversion:: ""2"2"

servicesservices::

 foofoo::

 buildbuild:: ""./build"./build"

 imageimage:: docker.io/foo/bardocker.io/foo/bar

https://raw.githubusercontent.com/kubernetes/kompose/master/examples/buildconfig/docker-compose.yml

In order to disable the functionality, or choose to use BuildConfig generation (with OpenShift)

--build (local|build-config|none)--build (local|build-config|none) can be passed.

Alternative Conversions

The default komposekompose transformation will generate Kubernetes Deployments and Services, in

yaml format. You have alternative option to generate json with -j-j . Also, you can alternatively

generate Replication Controllers objects, Daemon Sets, or Helm charts.

The *-deployment.json*-deployment.json files contain the Deployment objects.

$ $ kompose upkompose up

INFO Build key detected. Attempting to build and push image INFO Build key detected. Attempting to build and push image 'docker.io/foo/bar''docker.io/foo/bar'

INFO Building image INFO Building image 'docker.io/foo/bar''docker.io/foo/bar' from directory from directory 'build''build'

INFO Image INFO Image 'docker.io/foo/bar''docker.io/foo/bar' from directory from directory 'build''build' built successfully built successfully

INFO Pushing image INFO Pushing image 'foo/bar:latest''foo/bar:latest' to registry to registry 'docker.io''docker.io'

INFO Attempting authentication credentials INFO Attempting authentication credentials 'https://index.docker.io/v1/ 'https://index.docker.io/v1/

INFO Successfully pushed image 'INFO Successfully pushed image 'foo/bar:latestfoo/bar:latest' to registry '' to registry 'docker.iodocker.io' '

INFO We are going to create Kubernetes Deployments, Services and PersistentVolumeClaims for your Dockerized application. If you need different kind of resources, use the 'INFO We are going to create Kubernetes Deployments, Services and PersistentVolumeClaims for your Dockerized application. If you need different kind of resources, use the '

INFO Deploying application in "default" namespace INFO Deploying application in "default" namespace

INFO Successfully created Service: foo INFO Successfully created Service: foo

INFO Successfully created Deployment: foo INFO Successfully created Deployment: foo

Your application has been deployed to Kubernetes. You can run 'Your application has been deployed to Kubernetes. You can run 'kubectl get deployment,svc,pods,pvckubectl get deployment,svc,pods,pvc

Disable building/pushing Docker images# Disable building/pushing Docker images
$ $ kompose up kompose up --build--build none none

Generate Build Config artifacts for OpenShift# Generate Build Config artifacts for OpenShift
$ $ kompose up kompose up --provider--provider openshift openshift --build--build build-config build-config

$ $ kompose convert kompose convert -j-j

INFO Kubernetes file INFO Kubernetes file "redis-svc.json""redis-svc.json" created created

INFO Kubernetes file INFO Kubernetes file "web-svc.json""web-svc.json" created created

INFO Kubernetes file INFO Kubernetes file "redis-deployment.json""redis-deployment.json" created created

INFO Kubernetes file INFO Kubernetes file "web-deployment.json""web-deployment.json" created created

http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/concepts/services-networking/service/
http://kubernetes.io/docs/user-guide/replication-controller/
http://kubernetes.io/docs/admin/daemons/
https://github.com/helm/helm

The *-replicationcontroller.yaml*-replicationcontroller.yaml files contain the Replication Controller objects. If you

want to specify replicas (default is 1), use --replicas--replicas flag:

$ kompose convert --replication-controller --replicas$ kompose convert --replication-controller --replicas

33

The *-daemonset.yaml*-daemonset.yaml files contain the Daemon Set objects

If you want to generate a Chart to be used with Helm simply do:

The chart structure is aimed at providing a skeleton for building your Helm charts.

Labels

$ $ kompose convert kompose convert --replication-controller--replication-controller

INFO Kubernetes file INFO Kubernetes file "redis-svc.yaml""redis-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "web-svc.yaml""web-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-replicationcontroller.yaml""redis-replicationcontroller.yaml" created created

INFO Kubernetes file INFO Kubernetes file "web-replicationcontroller.yaml""web-replicationcontroller.yaml" created created

$ $ kompose convert kompose convert --daemon-set--daemon-set

INFO Kubernetes file INFO Kubernetes file "redis-svc.yaml""redis-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "web-svc.yaml""web-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-daemonset.yaml""redis-daemonset.yaml" created created

INFO Kubernetes file INFO Kubernetes file "web-daemonset.yaml""web-daemonset.yaml" created created

$ $ kompose convert kompose convert -c-c

INFO Kubernetes file INFO Kubernetes file "web-svc.yaml""web-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-svc.yaml""redis-svc.yaml" created created

INFO Kubernetes file INFO Kubernetes file "web-deployment.yaml""web-deployment.yaml" created created

INFO Kubernetes file INFO Kubernetes file "redis-deployment.yaml""redis-deployment.yaml" created created

chart created chart created inin "./docker-compose/""./docker-compose/"

$ $ tree docker-compose/tree docker-compose/

docker-composedocker-compose

├── Chart.yaml Chart.yaml

├── README.md README.md

└── templates templates

 ├── redis-deployment.yaml redis-deployment.yaml

 ├── redis-svc.yaml redis-svc.yaml

 ├── web-deployment.yaml web-deployment.yaml

 └── web-svc.yaml web-svc.yaml

https://github.com/kubernetes/helm

komposekompose supports Kompose-specific labels within the docker-compose.ymldocker-compose.yml file in order to

explicitly define a service’s behavior upon conversion.

kompose.service.type defines the type of service to be created.

For example:

kompose.service.expose defines if the service needs to be made accessible from outside

the cluster or not. If the value is set to “true”, the provider sets the endpoint automatically,

and for any other value, the value is set as the hostname. If multiple ports are defined in a

service, the first one is chosen to be the exposed.

For the Kubernetes provider, an ingress resource is created and it is assumed that an

ingress controller has already been configured.

For the OpenShift provider, a route is created.

For example:

versionversion:: ""2"2"

servicesservices::

 nginxnginx::

 imageimage:: nginxnginx

 dockerfiledockerfile:: foobarfoobar

 buildbuild:: ./foobar./foobar

 cap_addcap_add::

 -- ALLALL

 container_namecontainer_name:: foobarfoobar

 labelslabels::

 kompose.service.typekompose.service.type:: nodeportnodeport

versionversion:: ""2"2"

servicesservices::

 webweb::

 imageimage:: tuna/docker-counter23tuna/docker-counter23

 portsports::

 -- ""5000:5000"5000:5000"

 linkslinks::

 -- redisredis

 labelslabels::

 kompose.service.exposekompose.service.expose:: ""counter.example.com"counter.example.com"

 redisredis::

 imageimage:: redis:3.0redis:3.0

 portsports::

 -- ""6379"6379"

The currently supported options are:

Key Value

kompose.service.type nodeport / clusterip / loadbalancer

kompose.service.expose true / hostname

Note: kompose.service.typekompose.service.type label should be defined with portsports only, otherwise komposekompose

will fail.

Restart

If you want to create normal pods without controllers you can use restartrestart construct of

docker-compose to define that. Follow table below to see what happens on the restartrestart

value.

docker-composedocker-compose restartrestart object created Pod restartPolicyrestartPolicy

"""" controller object AlwaysAlways

alwaysalways controller object AlwaysAlways

on-failureon-failure Pod OnFailureOnFailure

nono Pod NeverNever

Note: controller object could be deploymentdeployment or replicationcontrollerreplicationcontroller , etc.

For e.g. pivalpival service will become pod down here. This container calculated value of pipi .

Warning about Deployment Config’s

versionversion:: ''2'2'

servicesservices::

 pivalpival::

 imageimage:: perlperl

 commandcommand:: [[""perl"perl",, ""-Mbignum=bpi"-Mbignum=bpi",, ""-wle"-wle",, ""printprint bpi(2000)"bpi(2000)"]]

 restartrestart:: ""on-failure"on-failure"

If the Docker Compose file has a volume specified for a service, the Deployment (Kubernetes)

or DeploymentConfig (OpenShift) strategy is changed to “Recreate” instead of “RollingUpdate”

(default). This is done to avoid multiple instances of a service from accessing a volume at the

same time.

If the Docker Compose file has service name with __ in it (eg. web_serviceweb_service), then it will be

replaced by -- and the service name will be renamed accordingly (eg. web-serviceweb-service).

Kompose does this because “Kubernetes” doesn’t allow __ in object name.

Please note that changing service name might break some docker-composedocker-compose files.

Docker Compose Versions

Kompose supports Docker Compose versions: 1, 2 and 3. We have limited support on versions

2.1 and 3.2 due to their experimental nature.

A full list on compatibility between all three versions is listed in our conversion document

including a list of all incompatible Docker Compose keys.

https://github.com/kubernetes/kompose/blob/master/docs/conversion.md

Define a Command and Arguments for a
Container

This page shows how to define commands and arguments when you run a container in a .

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Define a command and arguments when you create
a Pod

When you create a Pod, you can define a command and arguments for the containers that run

in the Pod. To define a command, include the commandcommand field in the configuration file. To define

arguments for the command, include the argsargs field in the configuration file. The command

and arguments that you define cannot be changed after the Pod is created.

The command and arguments that you define in the configuration file override the default

command and arguments provided by the container image. If you define args, but do not

Pod

Before you begin

Define a command and arguments when you create a Pod

Use environment variables to define arguments

Run a command in a shell

Notes

What’s next

file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

define a command, the default command is used with your new arguments.

In this exercise, you create a Pod that runs one container. The configuration file for the Pod

defines a command and two arguments:

commands.yamlcommands.yaml

1. Create a Pod based on the YAML configuration file:

2. List the running Pods:

The output shows that the container that ran in the command-demo Pod has completed.

3. To see the output of the command that ran in the container, view the logs from the Pod:

The output shows the values of the HOSTNAME and KUBERNETES_PORT environment

variables:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: command-democommand-demo

 labelslabels::

 purposepurpose:: demonstrate-commanddemonstrate-command

specspec::

 containerscontainers::

 -- namename:: command-demo-containercommand-demo-container

 imageimage:: debiandebian

 commandcommand:: [[""printenv"printenv"]]

 argsargs:: [[""HOSTNAME"HOSTNAME",, ""KUBERNETES_PORT"KUBERNETES_PORT"]]

 restartPolicyrestartPolicy:: OnFailureOnFailure

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/commands.yamlkubectl create -f https://k8s.io/docs/tasks/inject-data-application/commands.yaml

kubectl get podskubectl get pods

kubectl logs command-demokubectl logs command-demo

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/commands.yaml

Use environment variables to define arguments

In the preceding example, you defined the arguments directly by providing strings. As an

alternative to providing strings directly, you can define arguments by using environment

variables:

This means you can define an argument for a Pod using any of the techniques available for

defining environment variables, including ConfigMaps and Secrets.

Note: The environment variable appears in parentheses, "$(VAR)""$(VAR)" . This is required for

the variable to be expanded in the commandcommand or argsargs field.

Run a command in a shell

In some cases, you need your command to run in a shell. For example, your command might

consist of several commands piped together, or it might be a shell script. To run your

command in a shell, wrap it like this:

Notes

 command-demo command-demo

 tcp://10.3.240.1:443 tcp://10.3.240.1:443

env:env:

- name: MESSAGE- name: MESSAGE

 value: "hello world" value: "hello world"

command: ["/bin/echo"]command: ["/bin/echo"]

args: ["$(MESSAGE)"]args: ["$(MESSAGE)"]

command: ["/bin/sh"]command: ["/bin/sh"]

args: ["-c", "while true; do echo hello; sleep 10;done"]args: ["-c", "while true; do echo hello; sleep 10;done"]

file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/concepts/configuration/secret/

This table summarizes the field names used by Docker and Kubernetes.

Description Docker field name Kubernetes field name

The command run by the container Entrypoint command

The arguments passed to the command Cmd args

When you override the default Entrypoint and Cmd, these rules apply:

If you do not supply commandcommand or argsargs for a Container, the defaults defined in the Docker

image are used.

If you supply a commandcommand but no argsargs for a Container, only the supplied commandcommand is used.

The default EntryPoint and the default Cmd defined in the Docker image are ignored.

If you supply only argsargs for a Container, the default Entrypoint defined in the Docker image

is run with the argsargs that you supplied.

If you supply a commandcommand and argsargs , the default Entrypoint and the default Cmd defined in

the Docker image are ignored. Your commandcommand is run with your argsargs .

Here are some examples:

Image Entrypoint Image Cmd Container command Container args Command run

[/ep-1][/ep-1] [foo bar][foo bar] <not set> <not set>
[ep-1 foo[ep-1 foo

bar]bar]

[/ep-1][/ep-1] [foo bar][foo bar] [/ep-2][/ep-2] <not set> [ep-2][ep-2]

[/ep-1][/ep-1] [foo bar][foo bar] <not set> [zoo boo][zoo boo]
[ep-1 zoo[ep-1 zoo

boo]boo]

[/ep-1][/ep-1] [foo bar][foo bar] [/ep-2][/ep-2] [zoo boo][zoo boo]
[ep-2 zoo[ep-2 zoo

boo]boo]

What’s next

Learn more about containers and commands.

Learn more about configuring pods and containers.

file:///docs/user-guide/containers/
file:///docs/tasks/

Learn more about running commands in a container.

See Container.

file:///docs/tasks/debug-application-cluster/get-shell-running-container/
file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core

Define Environment Variables for a
Container

This page shows how to define environment variables when you run a container in a

Kubernetes Pod.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Define an environment variable for a container

When you create a Pod, you can set environment variables for the containers that run in the

Pod. To set environment variables, include the envenv or envFromenvFrom field in the configuration file.

In this exercise, you create a Pod that runs one container. The configuration file for the Pod

defines an environment variable with name DEMO_GREETINGDEMO_GREETING and value

"Hello from the"Hello from the

environment"environment" . Here is the configuration file for the Pod:

envars.yamlenvars.yaml

Before you begin

Define an environment variable for a container

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/envars.yaml

envars.yamlenvars.yaml

1. Create a Pod based on the YAML configuration file:

2. List the running Pods:

The output is similar to this:

3. Get a shell to the container running in your Pod:

4. In your shell, run the printenvprintenv command to list the environment variables.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: envar-demoenvar-demo

 labelslabels::

 purposepurpose:: demonstrate-envarsdemonstrate-envars

specspec::

 containerscontainers::

 -- namename:: envar-demo-containerenvar-demo-container

 imageimage:: gcr.io/google-samples/node-hello:1.0gcr.io/google-samples/node-hello:1.0

 envenv::

 -- namename:: DEMO_GREETINGDEMO_GREETING

 valuevalue:: ""HelloHello fromfrom thethe environment"environment"

 -- namename:: DEMO_FAREWELLDEMO_FAREWELL

 valuevalue:: ""SuchSuch aa sweetsweet sorrow"sorrow"

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/envars.yamlkubectl create -f https://k8s.io/docs/tasks/inject-data-application/envars.yaml

kubectl get pods -l purpose=demonstrate-envarskubectl get pods -l purpose=demonstrate-envars

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 envar-demo 1/1 Running 0 9s envar-demo 1/1 Running 0 9s

kubectl exec -it envar-demo -- /bin/bashkubectl exec -it envar-demo -- /bin/bash

root@envar-demo:/# printenvroot@envar-demo:/# printenv

The output is similar to this:

5. To exit the shell, enter exitexit .

Note: The environment variables set using the envenv or envFromenvFrom field will override any

environment variables specified in the container image.

What’s next

Learn more about environment variables.

Learn about using secrets as environment variables.

See EnvVarSource.

 NODE_VERSION=4.4.2 NODE_VERSION=4.4.2

 EXAMPLE_SERVICE_PORT_8080_TCP_ADDR=10.3.245.237 EXAMPLE_SERVICE_PORT_8080_TCP_ADDR=10.3.245.237

 HOSTNAME=envar-demo HOSTNAME=envar-demo

 DEMO_GREETING=Hello from the environment DEMO_GREETING=Hello from the environment

 DEMO_FAREWELL=Such a sweet sorrow DEMO_FAREWELL=Such a sweet sorrow

file:///docs/tasks/configure-pod-container/environment-variable-expose-pod-information/
file:///docs/user-guide/secrets/#using-secrets-as-environment-variables
file:///docs/reference/generated/kubernetes-api/v1.10/#envvarsource-v1-core

Expose Pod Information to Containers
Through Environment Variables

This page shows how a Pod can use environment variables to expose information about itself

to Containers running in the Pod. Environment variables can expose Pod fields and Container

fields.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

The Downward API

There are two ways to expose Pod and Container fields to a running Container:

Environment variables

DownwardAPIVolumeFiles

Together, these two ways of exposing Pod and Container fields are called the Downward API.

Before you begin

The Downward API

Use Pod fields as values for environment variables

Use Container fields as values for environment variables

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/reference/generated/kubernetes-api/v1.10/#downwardapivolumefile-v1-core

Use Pod fields as values for environment variables

In this exercise, you create a Pod that has one Container. Here is the configuration file for the

Pod:

dapi-envars-pod.yamldapi-envars-pod.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-envars-fieldrefdapi-envars-fieldref

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""sh"sh",, ""-c"-c"]]

 argsargs::

 -- while while truetrue; do; do

 echo -en '\n';echo -en '\n';

 printenv MY_NODE_NAME MY_POD_NAME MY_POD_NAMESPACE;printenv MY_NODE_NAME MY_POD_NAME MY_POD_NAMESPACE;

 printenv MY_POD_IP MY_POD_SERVICE_ACCOUNT;printenv MY_POD_IP MY_POD_SERVICE_ACCOUNT;

 sleep 10;sleep 10;

 done;done;

 envenv::

 -- namename:: MY_NODE_NAMEMY_NODE_NAME

 valueFromvalueFrom::

 fieldReffieldRef::

 fieldPathfieldPath:: spec.nodeNamespec.nodeName

 -- namename:: MY_POD_NAMEMY_POD_NAME

 valueFromvalueFrom::

 fieldReffieldRef::

 fieldPathfieldPath:: metadata.namemetadata.name

 -- namename:: MY_POD_NAMESPACEMY_POD_NAMESPACE

 valueFromvalueFrom::

 fieldReffieldRef::

 fieldPathfieldPath:: metadata.namespacemetadata.namespace

 -- namename:: MY_POD_IPMY_POD_IP

 valueFromvalueFrom::

 fieldReffieldRef::

 fieldPathfieldPath:: status.podIPstatus.podIP

 -- namename:: MY_POD_SERVICE_ACCOUNTMY_POD_SERVICE_ACCOUNT

 valueFromvalueFrom::

 fieldReffieldRef::

 fieldPathfieldPath:: spec.serviceAccountNamespec.serviceAccountName

 restartPolicyrestartPolicy:: NeverNever

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/dapi-envars-pod.yaml

In the configuration file, you can see five environment variables. The envenv field is an array of

EnvVars. The first element in the array specifies that the MY_NODE_NAMEMY_NODE_NAME environment variable

gets its value from the Pod’s spec.nodeNamespec.nodeName field. Similarly, the other environment variables

get their names from Pod fields.

Note: The fields in this example are Pod fields. They are not fields of the Container in the

Pod.

Create the Pod:

Verify that the Container in the Pod is running:

View the Container’s logs:

The output shows the values of selected environment variables:

To see why these values are in the log, look at the commandcommand and argsargs fields in the

configuration file. When the Container starts, it writes the values of five environment variables

to stdout. It repeats this every ten seconds.

Next, get a shell into the Container that is running in your Pod:

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/inject-data-application/dapi-envars-pod.yaml https://k8s.io/docs/tasks/inject-data-application/dapi-envars-pod.yaml

kubectl get podskubectl get pods

kubectl logs dapi-envars-fieldrefkubectl logs dapi-envars-fieldref

minikubeminikube

dapi-envars-fieldrefdapi-envars-fieldref

defaultdefault

172.17.0.4172.17.0.4

defaultdefault

kubectl exec -it dapi-envars-fieldref -- shkubectl exec -it dapi-envars-fieldref -- sh

file:///docs/reference/generated/kubernetes-api/v1.10/#envvar-v1-core

In your shell, view the environment variables:

The output shows that certain environment variables have been assigned the values of Pod

fields:

Use Container fields as values for environment
variables

In the preceding exercise, you used Pod fields as the values for environment variables. In this

next exercise, you use Container fields as the values for environment variables. Here is the

configuration file for a Pod that has one container:

dapi-envars-container.yamldapi-envars-container.yaml

/# printenv/# printenv

MY_POD_SERVICE_ACCOUNT=defaultMY_POD_SERVICE_ACCOUNT=default

......

MY_POD_NAMESPACE=defaultMY_POD_NAMESPACE=default

MY_POD_IP=172.17.0.4MY_POD_IP=172.17.0.4

......

MY_NODE_NAME=minikubeMY_NODE_NAME=minikube

......

MY_POD_NAME=dapi-envars-fieldrefMY_POD_NAME=dapi-envars-fieldref

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/dapi-envars-container.yaml

dapi-envars-container.yamldapi-envars-container.yaml

In the configuration file, you can see four environment variables. The envenv field is an array of

EnvVars. The first element in the array specifies that the MY_CPU_REQUESTMY_CPU_REQUEST environment

variable gets its value from the requests.cpurequests.cpu field of a Container named test-containertest-container .

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: dapi-envars-resourcefieldrefdapi-envars-resourcefieldref

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: k8s.gcr.io/busybox:1.24k8s.gcr.io/busybox:1.24

 commandcommand:: [[""sh"sh",, ""-c"-c"]]

 argsargs::

 -- while while truetrue; do; do

 echo -en '\n';echo -en '\n';

 printenv MY_CPU_REQUEST MY_CPU_LIMIT;printenv MY_CPU_REQUEST MY_CPU_LIMIT;

 printenv MY_MEM_REQUEST MY_MEM_LIMIT;printenv MY_MEM_REQUEST MY_MEM_LIMIT;

 sleep 10;sleep 10;

 done;done;

 resourcesresources::

 requestsrequests::

 memorymemory:: ""32Mi"32Mi"

 cpucpu:: ""125m"125m"

 limitslimits::

 memorymemory:: ""64Mi"64Mi"

 cpucpu:: ""250m"250m"

 envenv::

 -- namename:: MY_CPU_REQUESTMY_CPU_REQUEST

 valueFromvalueFrom::

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: test-containertest-container

 resourceresource:: requests.cpurequests.cpu

 -- namename:: MY_CPU_LIMITMY_CPU_LIMIT

 valueFromvalueFrom::

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: test-containertest-container

 resourceresource:: limits.cpulimits.cpu

 -- namename:: MY_MEM_REQUESTMY_MEM_REQUEST

 valueFromvalueFrom::

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: test-containertest-container

 resourceresource:: requests.memoryrequests.memory

 -- namename:: MY_MEM_LIMITMY_MEM_LIMIT

 valueFromvalueFrom::

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: test-containertest-container

 resourceresource:: limits.memorylimits.memory

 restartPolicyrestartPolicy:: NeverNever

file:///docs/reference/generated/kubernetes-api/v1.10/#envvar-v1-core

Similarly, the other environment variables get their values from Container fields.

Create the Pod:

Verify that the Container in the Pod is running:

View the Container’s logs:

The output shows the values of selected environment variables:

What’s next

Defining Environment Variables for a Container

PodSpec

Container

EnvVar

EnvVarSource

ObjectFieldSelector

ResourceFieldSelector

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/inject-data-application/dapi-envars-container.yaml https://k8s.io/docs/tasks/inject-data-application/dapi-envars-container.yaml

kubectl get podskubectl get pods

kubectl logs dapi-envars-resourcefieldrefkubectl logs dapi-envars-resourcefieldref

11

11

3355443233554432

6710886467108864

file:///docs/tasks/inject-data-application/define-environment-variable-container/
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#envvar-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#envvarsource-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#objectfieldselector-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#resourcefieldselector-v1-core

Expose Pod Information to Containers
Through Files

This page shows how a Pod can use a DownwardAPIVolumeFile to expose information about

itself to Containers running in the Pod. A DownwardAPIVolumeFile can expose Pod fields and

Container fields.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

The Downward API

There are two ways to expose Pod and Container fields to a running Container:

Environment variables

DownwardAPIVolumeFiles

Before you begin

The Downward API

Store Pod fields

Store Container fields

Capabilities of the Downward API

Project keys to specific paths and file permissions

Motivation for the Downward API

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/tasks/configure-pod-container/environment-variable-expose-pod-information/

Together, these two ways of exposing Pod and Container fields are called the Downward API.

Store Pod fields

In this exercise, you create a Pod that has one Container. Here is the configuration file for the

Pod:

dapi-volume.yamldapi-volume.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: kubernetes-downwardapi-volume-examplekubernetes-downwardapi-volume-example

 labelslabels::

 zonezone:: us-est-coastus-est-coast

 clustercluster:: test-cluster1test-cluster1

 rackrack:: rack-22rack-22

 annotationsannotations::

 buildbuild:: twotwo

 builderbuilder:: john-doejohn-doe

specspec::

 containerscontainers::

 -- namename:: client-containerclient-container

 imageimage:: k8s.gcr.io/busyboxk8s.gcr.io/busybox

 commandcommand:: [[""sh"sh",, ""-c"-c"]]

 argsargs::

 -- while while truetrue; do; do

 if [[-e /etc/podinfo/labels]]; thenif [[-e /etc/podinfo/labels]]; then

 echo -en '\n\n'; cat /etc/podinfo/labels; fi;echo -en '\n\n'; cat /etc/podinfo/labels; fi;

 if [[-e /etc/podinfo/annotations]]; thenif [[-e /etc/podinfo/annotations]]; then

 echo -en '\n\n'; cat /etc/podinfo/annotations; fi;echo -en '\n\n'; cat /etc/podinfo/annotations; fi;

 sleep 5;sleep 5;

 done;done;

 volumeMountsvolumeMounts::

 -- namename:: podinfopodinfo

 mountPathmountPath:: /etc/podinfo/etc/podinfo

 readOnlyreadOnly:: falsefalse

 volumesvolumes::

 -- namename:: podinfopodinfo

 downwardAPIdownwardAPI::

 itemsitems::

 -- pathpath:: ""labels"labels"

 fieldReffieldRef::

 fieldPathfieldPath:: metadata.labelsmetadata.labels

 -- pathpath:: ""annotations"annotations"

 fieldReffieldRef::

 fieldPathfieldPath:: metadata.annotationsmetadata.annotations

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/dapi-volume.yaml

In the configuration file, you can see that the Pod has a downwardAPIdownwardAPI Volume, and the

Container mounts the Volume at /etc/podinfo/etc/podinfo .

Look at the itemsitems array under downwardAPIdownwardAPI . Each element of the array is a

DownwardAPIVolumeFile. The first element specifies that the value of the Pod’s

metadata.labelsmetadata.labels field should be stored in a file named labelslabels . The second element

specifies that the value of the Pod’s annotationsannotations field should be stored in a file named

annotationsannotations .

Note: The fields in this example are Pod fields. They are not fields of the Container in the

Pod.

Create the Pod:

Verify that Container in the Pod is running:

View the Container’s logs:

The output shows the contents of the labelslabels file and the annotationsannotations file:

Get a shell into the Container that is running in your Pod:

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/inject-data-application/dapi-volume.yaml https://k8s.io/docs/tasks/inject-data-application/dapi-volume.yaml

kubectl get podskubectl get pods

kubectl logs kubernetes-downwardapi-volume-examplekubectl logs kubernetes-downwardapi-volume-example

clustercluster=="test-cluster1""test-cluster1"

rackrack=="rack-22""rack-22"

zonezone=="us-est-coast""us-est-coast"

buildbuild=="two""two"

builderbuilder=="john-doe""john-doe"

kubectl exec -it kubernetes-downwardapi-volume-example -- shkubectl exec -it kubernetes-downwardapi-volume-example -- sh

file:///docs/reference/generated/kubernetes-api/v1.10/#downwardapivolumefile-v1-core

In your shell, view the labelslabels file:

The output shows that all of the Pod’s labels have been written to the labelslabels file:

Similarly, view the annotationsannotations file:

View the files in the /etc/podinfo/etc/podinfo directory:

In the output, you can see that the labelslabels and annotationsannotations files are in a temporary

subdirectory: in this example, ..2982_06_02_21_47_53.299460680..2982_06_02_21_47_53.299460680 . In the /etc/podinfo/etc/podinfo

directory, ..data..data is a symbolic link to the temporary subdirectory. Also in the /etc/podinfo/etc/podinfo

directory, labelslabels and annotationsannotations are symbolic links.

Using symbolic links enables dynamic atomic refresh of the metadata; updates are written to a

new temporary directory, and the ..data..data symlink is updated atomically using rename(2).

kubectl exec -it kubernetes-downwardapi-volume-example -- shkubectl exec -it kubernetes-downwardapi-volume-example -- sh

/# /# catcat /etc/podinfo/labels /etc/podinfo/labels

clustercluster=="test-cluster1""test-cluster1"

rackrack=="rack-22""rack-22"

zonezone=="us-est-coast""us-est-coast"

/# /# catcat /etc/podinfo/annotations /etc/podinfo/annotations

/# /# lsls -laR-laR /etc/podinfo /etc/podinfo

drwxr-xr-x ... Feb 6 21:47 ..2982_06_02_21_47_53.299460680drwxr-xr-x ... Feb 6 21:47 ..2982_06_02_21_47_53.299460680

lrwxrwxrwx ... Feb 6 21:47 ..data -> ..2982_06_02_21_47_53.299460680lrwxrwxrwx ... Feb 6 21:47 ..data -> ..2982_06_02_21_47_53.299460680

lrwxrwxrwx ... Feb 6 21:47 annotations -> ..data/annotationslrwxrwxrwx ... Feb 6 21:47 annotations -> ..data/annotations

lrwxrwxrwx ... Feb 6 21:47 labels -> ..data/labelslrwxrwxrwx ... Feb 6 21:47 labels -> ..data/labels

/etc/..2982_06_02_21_47_53.299460680:/etc/..2982_06_02_21_47_53.299460680:

total 8total 8

-rw-r--r-- ... Feb 6 21:47 annotations-rw-r--r-- ... Feb 6 21:47 annotations

-rw-r--r-- ... Feb 6 21:47 labels-rw-r--r-- ... Feb 6 21:47 labels

http://man7.org/linux/man-pages/man2/rename.2.html

Note: A container using Downward API as a subPath volume mount will not receive

Downward API updates.

Exit the shell:

Store Container fields

The preceding exercise, you stored Pod fields in a DownwardAPIVolumeFile. In this next

exercise, you store Container fields. Here is the configuration file for a Pod that has one

Container:

dapi-volume-resources.yamldapi-volume-resources.yaml

/# /# exitexit

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: kubernetes-downwardapi-volume-example-2kubernetes-downwardapi-volume-example-2

specspec::

 containerscontainers::

 -- namename:: client-containerclient-container

 imageimage:: k8s.gcr.io/busybox:1.24k8s.gcr.io/busybox:1.24

 commandcommand:: [[""sh"sh",, ""-c"-c"]]

 argsargs::

 -- while while truetrue; do; do

 echo -en '\n';echo -en '\n';

 if [[-e /etc/podinfo/cpu_limit]]; thenif [[-e /etc/podinfo/cpu_limit]]; then

 echo -en '\n'; cat /etc/podinfo/cpu_limit; fi;echo -en '\n'; cat /etc/podinfo/cpu_limit; fi;

 if [[-e /etc/podinfo/cpu_request]]; thenif [[-e /etc/podinfo/cpu_request]]; then

 echo -en '\n'; cat /etc/podinfo/cpu_request; fi;echo -en '\n'; cat /etc/podinfo/cpu_request; fi;

 if [[-e /etc/podinfo/mem_limit]]; thenif [[-e /etc/podinfo/mem_limit]]; then

 echo -en '\n'; cat /etc/podinfo/mem_limit; fi;echo -en '\n'; cat /etc/podinfo/mem_limit; fi;

 if [[-e /etc/podinfo/mem_request]]; thenif [[-e /etc/podinfo/mem_request]]; then

 echo -en '\n'; cat /etc/podinfo/mem_request; fi;echo -en '\n'; cat /etc/podinfo/mem_request; fi;

 sleep 5;sleep 5;

 done;done;

 resourcesresources::

 requestsrequests::

 memorymemory:: ""32Mi"32Mi"

 cpucpu:: ""125m"125m"

 limitslimits::

 memorymemory:: ""64Mi"64Mi"

 cpucpu:: ""250m"250m"

file:///docs/concepts/storage/volumes/#using-subpath
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/dapi-volume-resources.yaml

dapi-volume-resources.yamldapi-volume-resources.yaml

In the configuration file, you can see that the Pod has a downwardAPIdownwardAPI Volume, and the

Container mounts the Volume at /etc/podinfo/etc/podinfo .

Look at the itemsitems array under downwardAPIdownwardAPI . Each element of the array is a

DownwardAPIVolumeFile.

The first element specifies that in the Container named client-containerclient-container , the value of the

limits.cpulimits.cpu field should be stored in a file named cpu_limitcpu_limit .

Create the Pod:

Get a shell into the Container that is running in your Pod:

In your shell, view the cpu_limitcpu_limit file:

 cpucpu:: ""250m"250m"

 volumeMountsvolumeMounts::

 -- namename:: podinfopodinfo

 mountPathmountPath:: /etc/podinfo/etc/podinfo

 readOnlyreadOnly:: falsefalse

 volumesvolumes::

 -- namename:: podinfopodinfo

 downwardAPIdownwardAPI::

 itemsitems::

 -- pathpath:: ""cpu_limit"cpu_limit"

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: client-containerclient-container

 resourceresource:: limits.cpulimits.cpu

 -- pathpath:: ""cpu_request"cpu_request"

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: client-containerclient-container

 resourceresource:: requests.cpurequests.cpu

 -- pathpath:: ""mem_limit"mem_limit"

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: client-containerclient-container

 resourceresource:: limits.memorylimits.memory

 -- pathpath:: ""mem_request"mem_request"

 resourceFieldRefresourceFieldRef::

 containerNamecontainerName:: client-containerclient-container

 resourceresource:: requests.memoryrequests.memory

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/inject-data-application/dapi-volume-resources.yaml https://k8s.io/docs/tasks/inject-data-application/dapi-volume-resources.yaml

kubectl exec -it kubernetes-downwardapi-volume-example-2 -- shkubectl exec -it kubernetes-downwardapi-volume-example-2 -- sh

You can use similar commands to view the cpu_requestcpu_request , mem_limitmem_limit and mem_requestmem_request

files.

Capabilities of the Downward API

The following information is available to Containers through environment variables and

DownwardAPIVolumeFiles:

The Node’s name

The Node’s IP

The Pod’s name

The Pod’s namespace

The Pod’s IP address

The Pod’s service account name

The Pod’s UID

A Container’s CPU limit

A Container’s CPU request

A Container’s memory limit

A Container’s memory request

In addition, the following information is available through DownwardAPIVolumeFiles.

The Pod’s labels

The Pod’s annotations

Note: If CPU and memory limits are not specified for a Container, the Downward API

defaults to the node allocatable value for CPU and memory.

/# /# catcat /etc/podinfo/cpu_limit /etc/podinfo/cpu_limit

Project keys to specific paths and file permissions

You can project keys to specific paths and specific permissions on a per-file basis. For more

information, see Secrets.

Motivation for the Downward API

It is sometimes useful for a Container to have information about itself, without being overly

coupled to Kubernetes. The Downward API allows containers to consume information about

themselves or the cluster without using the Kubernetes client or API server.

An example is an existing application that assumes a particular well-known environment

variable holds a unique identifier. One possibility is to wrap the application, but that is tedious

and error prone, and it violates the goal of low coupling. A better option would be to use the

Pod’s name as an identifier, and inject the Pod’s name into the well-known environment

variable.

What’s next

PodSpec

Volume

DownwardAPIVolumeSource

DownwardAPIVolumeFile

ResourceFieldSelector

file:///docs/concepts/configuration/secret/
file:///docs/reference/generated/kubernetes-api/v1.10/#podspec-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#volume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#downwardapivolumesource-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#downwardapivolumefile-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#resourcefieldselector-v1-core

Distribute Credentials Securely Using
Secrets

This page shows how to securely inject sensitive data, such as passwords and encryption

keys, into Pods.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Convert your secret data to a base-64 representation

Suppose you want to have two pieces of secret data: a username my-appmy-app and a password

39528$vdg7Jb39528$vdg7Jb . First, use Base64 encoding to convert your username and password to a

base-64 representation. Here’s a Linux example:

Before you begin

Convert your secret data to a base-64 representation

Create a Secret

Create a Pod that has access to the secret data through a Volume

Create a Pod that has access to the secret data through environment variables

What’s next

Reference

echo -n 'my-app' | base64echo -n 'my-app' | base64

echo -n '39528$vdg7Jb' | base64echo -n '39528$vdg7Jb' | base64

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://www.base64encode.org/

The output shows that the base-64 representation of your username is bXktYXBwbXktYXBw , and the

base-64 representation of your password is Mzk1MjgkdmRnN0piMzk1MjgkdmRnN0pi .

Create a Secret

Here is a configuration file you can use to create a Secret that holds your username and

password:

secret.yamlsecret.yaml

1. Create the Secret

Note: If you want to skip the Base64 encoding step, you can create a Secret by using

the

kubectl createkubectl create

secretsecret command:

2. View information about the Secret:

apiVersionapiVersion:: v1v1

kindkind:: SecretSecret

metadatametadata::

 namename:: test-secrettest-secret

datadata::

 usernameusername:: bXktYXBwbXktYXBw

 passwordpassword:: Mzk1MjgkdmRnN0piMzk1MjgkdmRnN0pi

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/secret.yamlkubectl create -f https://k8s.io/docs/tasks/inject-data-application/secret.yaml

kubectl create secret generic test-secret --from-literal=username='my-app' --from-literal=password='39528$vdg7Jb'kubectl create secret generic test-secret --from-literal=username='my-app' --from-literal=password='39528$vdg7Jb'

kubectl get secret test-secretkubectl get secret test-secret

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/secret.yaml

Output:

3. View more detailed information about the Secret:

Output:

Create a Pod that has access to the secret data
through a Volume

Here is a configuration file you can use to create a Pod:

secret-pod.yamlsecret-pod.yaml

 NAME TYPE DATA AGE NAME TYPE DATA AGE

 test-secret Opaque 2 1m test-secret Opaque 2 1m

kubectl describe secret test-secretkubectl describe secret test-secret

 Name: test-secret Name: test-secret

 Namespace: default Namespace: default

 Labels: <none> Labels: <none>

 Annotations: <none> Annotations: <none>

 Type: Opaque Type: Opaque

 Data Data

 ==== ====

 password: 13 bytes password: 13 bytes

 username: 7 bytes username: 7 bytes

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/secret-pod.yaml

secret-pod.yamlsecret-pod.yaml

1. Create the Pod:

2. Verify that your Pod is running:

Output:

3. Get a shell into the Container that is running in your Pod:

4. The secret data is exposed to the Container through a Volume mounted under

/etc/secret-volume/etc/secret-volume . In your shell, go to the directory where the secret data is exposed:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: secret-test-podsecret-test-pod

specspec::

 containerscontainers::

 -- namename:: test-containertest-container

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 # name must match the volume name below# name must match the volume name below

 -- namename:: secret-volumesecret-volume

 mountPathmountPath:: /etc/secret-volume/etc/secret-volume

 # The secret data is exposed to Containers in the Pod through a Volume.# The secret data is exposed to Containers in the Pod through a Volume.

 volumesvolumes::

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: test-secrettest-secret

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/secret-pod.yamlkubectl create -f https://k8s.io/docs/tasks/inject-data-application/secret-pod.yaml

kubectl get pod secret-test-podkubectl get pod secret-test-pod

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 secret-test-pod 1/1 Running 0 42m secret-test-pod 1/1 Running 0 42m

kubectl exec -it secret-test-pod -- /bin/bashkubectl exec -it secret-test-pod -- /bin/bash

5. In your shell, list the files in the /etc/secret-volume/etc/secret-volume directory:

The output shows two files, one for each piece of secret data:

6. In your shell, display the contents of the usernameusername and passwordpassword files:

The output is your username and password:

Create a Pod that has access to the secret data
through environment variables

Here is a configuration file you can use to create a Pod:

secret-envars-pod.yamlsecret-envars-pod.yaml

root@secret-test-pod:/# cd /etc/secret-volumeroot@secret-test-pod:/# cd /etc/secret-volume

root@secret-test-pod:/etc/secret-volume# lsroot@secret-test-pod:/etc/secret-volume# ls

 password username password username

root@secret-test-pod:/etc/secret-volume# cat username; echo; cat password; echoroot@secret-test-pod:/etc/secret-volume# cat username; echo; cat password; echo

 my-app my-app

 39528$vdg7Jb 39528$vdg7Jb

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/secret-envars-pod.yaml

secret-envars-pod.yamlsecret-envars-pod.yaml

1. Create the Pod:

2. Verify that your Pod is running:

Output:

3. Get a shell into the Container that is running in your Pod:

4. In your shell, display the environment variables:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: secret-envars-test-podsecret-envars-test-pod

specspec::

 containerscontainers::

 -- namename:: envars-test-containerenvars-test-container

 imageimage:: nginxnginx

 envenv::

 -- namename:: SECRET_USERNAMESECRET_USERNAME

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: test-secrettest-secret

 keykey:: usernameusername

 -- namename:: SECRET_PASSWORDSECRET_PASSWORD

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: test-secrettest-secret

 keykey:: passwordpassword

kubectl create -f https://k8s.io/docs/tasks/inject-data-application/secret-envars-pod.yamlkubectl create -f https://k8s.io/docs/tasks/inject-data-application/secret-envars-pod.yaml

kubectl get pod secret-envars-test-podkubectl get pod secret-envars-test-pod

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 secret-envars-test-pod 1/1 Running 0 4m secret-envars-test-pod 1/1 Running 0 4m

kubectl exec -it secret-envars-test-pod -- /bin/bashkubectl exec -it secret-envars-test-pod -- /bin/bash

The output includes your username and password:

What’s next

Learn more about Secrets.

Learn about Volumes.

Reference

Secret

Volume

Pod

 root@secret-envars-test-pod:/# printenv root@secret-envars-test-pod:/# printenv

 SECRET_USERNAME=my-app SECRET_USERNAME=my-app

 SECRET_PASSWORD=39528$vdg7Jb SECRET_PASSWORD=39528$vdg7Jb

file:///docs/concepts/configuration/secret/
file:///docs/concepts/storage/volumes/
file:///docs/reference/generated/kubernetes-api/v1.10/#secret-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#volume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#pod-v1-core

Inject Information into Pods Using a
PodPreset

You can use a podpresetpodpreset object to inject information like secrets, volume mounts, and

environment variables etc into pods at creation time. This task shows some examples on

using the PodPresetPodPreset resource. You can get an overview of PodPresets at Understanding Pod

Presets.

Create a Pod Preset

Simple Pod Spec Example

This is a simple example to show how a Pod spec is modified by the Pod Preset.

podpreset-preset.yamlpodpreset-preset.yaml

Create a Pod Preset

Simple Pod Spec Example

Pod Spec with ConfigMapConfigMap Example

ReplicaSet with Pod Spec Example

Multiple PodPreset Example

Conflict Example

Deleting a Pod Preset

file:///docs/concepts/workloads/pods/podpreset/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-preset.yaml

podpreset-preset.yamlpodpreset-preset.yaml

Create the PodPreset:

Examine the created PodPreset:

The new PodPreset will act upon any pod that has label

role:role:

frontendfrontend .

podpreset-pod.yamlpodpreset-pod.yaml

apiVersionapiVersion:: settings.k8s.io/v1alpha1settings.k8s.io/v1alpha1

kindkind:: PodPresetPodPreset

metadatametadata::

 namename:: allow-databaseallow-database

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/inject-data-application/podpreset-preset.yaml https://k8s.io/docs/tasks/inject-data-application/podpreset-preset.yaml

$ $ kubectl get podpresetkubectl get podpreset

NAME AGENAME AGE

allow-database 1mallow-database 1m

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-pod.yaml

podpreset-pod.yamlpodpreset-pod.yaml

Create a pod:

List the running Pods:

Pod spec after admission controller:

podpreset-merged.yamlpodpreset-merged.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/inject-data-application/podpreset-pod.yaml https://k8s.io/docs/tasks/inject-data-application/podpreset-pod.yaml

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

website 1/1 Running 0 4mwebsite 1/1 Running 0 4m

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-merged.yaml

podpreset-merged.yamlpodpreset-merged.yaml

To see above output, run the following command:

Pod Spec with ConfigMap Example

This is an example to show how a Pod spec is modified by the Pod Preset that defines a

ConfigMapConfigMap for Environment Variables.

User submitted pod spec:

podpreset-pod.yamlpodpreset-pod.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

 annotationsannotations::

 podpreset.admission.kubernetes.io/podpreset-allow-databasepodpreset.admission.kubernetes.io/podpreset-allow-database:: ""resourceresource version"version"

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 portsports::

 -- containerPortcontainerPort:: 8080

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

$ $ kubectl get pod website kubectl get pod website -o-o yaml yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-pod.yaml

podpreset-pod.yamlpodpreset-pod.yaml

User submitted ConfigMapConfigMap :

podpreset-configmap.yamlpodpreset-configmap.yaml

Example Pod Preset:

podpreset-allow-db.yamlpodpreset-allow-db.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: etcd-env-configetcd-env-config

datadata::

 number_of_membersnumber_of_members:: ""1"1"

 initial_cluster_stateinitial_cluster_state:: newnew

 initial_cluster_tokeninitial_cluster_token:: DUMMY_ETCD_INITIAL_CLUSTER_TOKENDUMMY_ETCD_INITIAL_CLUSTER_TOKEN

 discovery_tokendiscovery_token:: DUMMY_ETCD_DISCOVERY_TOKENDUMMY_ETCD_DISCOVERY_TOKEN

 discovery_urldiscovery_url:: http://etcd_discovery:2379http://etcd_discovery:2379

 etcdctl_peersetcdctl_peers:: http://etcd:2379http://etcd:2379

 duplicate_keyduplicate_key:: FROM_CONFIG_MAPFROM_CONFIG_MAP

 REPLACE_MEREPLACE_ME:: ""aa value"value"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-configmap.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-allow-db.yaml

podpreset-allow-db.yamlpodpreset-allow-db.yaml

Pod spec after admission controller:

podpreset-allow-db-merged.yamlpodpreset-allow-db-merged.yaml

apiVersionapiVersion:: settings.k8s.io/v1alpha1settings.k8s.io/v1alpha1

kindkind:: PodPresetPodPreset

metadatametadata::

 namename:: allow-databaseallow-database

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 -- namename:: duplicate_keyduplicate_key

 valuevalue:: FROM_ENVFROM_ENV

 -- namename:: expansionexpansion

 valuevalue:: $(REPLACE_ME)$(REPLACE_ME)

 envFromenvFrom::

 -- configMapRefconfigMapRef::

 namename:: etcd-env-configetcd-env-config

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 -- mountPathmountPath:: /etc/app/config.json/etc/app/config.json

 readOnlyreadOnly:: truetrue

 namename:: secret-volumesecret-volume

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: config-detailsconfig-details

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-allow-db-merged.yaml

podpreset-allow-db-merged.yamlpodpreset-allow-db-merged.yaml

ReplicaSet with Pod Spec Example

The following example shows that only the pod spec is modified by the Pod Preset.

User submitted ReplicaSet:

podpreset-replicaset.yamlpodpreset-replicaset.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

 annotationsannotations::

 podpreset.admission.kubernetes.io/podpreset-allow-databasepodpreset.admission.kubernetes.io/podpreset-allow-database:: ""resourceresource version"version"

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 -- mountPathmountPath:: /etc/app/config.json/etc/app/config.json

 readOnlyreadOnly:: truetrue

 namename:: secret-volumesecret-volume

 portsports::

 -- containerPortcontainerPort:: 8080

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 -- namename:: duplicate_keyduplicate_key

 valuevalue:: FROM_ENVFROM_ENV

 -- namename:: expansionexpansion

 valuevalue:: $(REPLACE_ME)$(REPLACE_ME)

 envFromenvFrom::

 -- configMapRefconfigMapRef::

 namename:: etcd-env-configetcd-env-config

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

 -- namename:: secret-volumesecret-volume

 secretsecret::

 secretNamesecretName:: config-detailsconfig-details

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-replicaset.yaml

podpreset-replicaset.yamlpodpreset-replicaset.yaml

Example Pod Preset:

podpreset-preset.yamlpodpreset-preset.yaml

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: ReplicaSetReplicaSet

metadatametadata::

 namename:: frontendfrontend

specspec::

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 matchExpressionsmatchExpressions::

 -- {{keykey:: rolerole,, operatoroperator:: InIn,, valuesvalues:: [[frontendfrontend]}]}

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: guestbookguestbook

 rolerole:: frontendfrontend

 specspec::

 containerscontainers::

 -- namename:: php-redisphp-redis

 imageimage:: gcr.io/google_samples/gb-frontend:v3gcr.io/google_samples/gb-frontend:v3

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 envenv::

 -- namename:: GET_HOSTS_FROMGET_HOSTS_FROM

 valuevalue:: dnsdns

 portsports::

 -- containerPortcontainerPort:: 8080

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-preset.yaml

podpreset-preset.yamlpodpreset-preset.yaml

Pod spec after admission controller:

Note that the ReplicaSet spec was not changed, users have to check individual pods to

validate that the PodPreset has been applied.

podpreset-replicaset-merged.yamlpodpreset-replicaset-merged.yaml

apiVersionapiVersion:: settings.k8s.io/v1alpha1settings.k8s.io/v1alpha1

kindkind:: PodPresetPodPreset

metadatametadata::

 namename:: allow-databaseallow-database

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-replicaset-merged.yaml

podpreset-replicaset-merged.yamlpodpreset-replicaset-merged.yaml

Multiple PodPreset Example

This is an example to show how a Pod spec is modified by multiple Pod Injection Policies.

User submitted pod spec:

podpreset-pod.yamlpodpreset-pod.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: frontendfrontend

 labelslabels::

 appapp:: guestbookguestbook

 rolerole:: frontendfrontend

 annotationsannotations::

 podpreset.admission.kubernetes.io/podpreset-allow-databasepodpreset.admission.kubernetes.io/podpreset-allow-database:: ""resourceresource version"version"

specspec::

 containerscontainers::

 -- namename:: php-redisphp-redis

 imageimage:: gcr.io/google_samples/gb-frontend:v3gcr.io/google_samples/gb-frontend:v3

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 envenv::

 -- namename:: GET_HOSTS_FROMGET_HOSTS_FROM

 valuevalue:: dnsdns

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 portsports::

 -- containerPortcontainerPort:: 8080

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-pod.yaml

podpreset-pod.yamlpodpreset-pod.yaml

Example Pod Preset:

podpreset-preset.yamlpodpreset-preset.yaml

Another Pod Preset:

podpreset-proxy.yamlpodpreset-proxy.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

apiVersionapiVersion:: settings.k8s.io/v1alpha1settings.k8s.io/v1alpha1

kindkind:: PodPresetPodPreset

metadatametadata::

 namename:: allow-databaseallow-database

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-preset.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-proxy.yaml

podpreset-proxy.yamlpodpreset-proxy.yaml

Pod spec after admission controller:

podpreset-multi-merged.yamlpodpreset-multi-merged.yaml

apiVersionapiVersion:: settings.k8s.io/v1alpha1settings.k8s.io/v1alpha1

kindkind:: PodPresetPodPreset

metadatametadata::

 namename:: proxyproxy

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /etc/proxy/configs/etc/proxy/configs

 namename:: proxy-volumeproxy-volume

 volumesvolumes::

 -- namename:: proxy-volumeproxy-volume

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-multi-merged.yaml

podpreset-multi-merged.yamlpodpreset-multi-merged.yaml

Conflict Example

This is an example to show how a Pod spec is not modified by the Pod Preset when there is a

conflict.

User submitted pod spec:

podpreset-conflict-pod.yamlpodpreset-conflict-pod.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

 annotationsannotations::

 podpreset.admission.kubernetes.io/podpreset-allow-databasepodpreset.admission.kubernetes.io/podpreset-allow-database:: ""resourceresource version"version"

 podpreset.admission.kubernetes.io/podpreset-proxypodpreset.admission.kubernetes.io/podpreset-proxy:: ""resourceresource version"version"

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 -- mountPathmountPath:: /etc/proxy/configs/etc/proxy/configs

 namename:: proxy-volumeproxy-volume

 portsports::

 -- containerPortcontainerPort:: 8080

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

 -- namename:: proxy-volumeproxy-volume

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-conflict-pod.yaml

podpreset-conflict-pod.yamlpodpreset-conflict-pod.yaml

Example Pod Preset:

podpreset-conflict-preset.yamlpodpreset-conflict-preset.yaml

Pod spec after admission controller will not change because of the conflict:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 portsports::

 -- containerPortcontainerPort:: 8080

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

apiVersionapiVersion:: settings.k8s.io/v1alpha1settings.k8s.io/v1alpha1

kindkind:: PodPresetPodPreset

metadatametadata::

 namename:: allow-databaseallow-database

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 rolerole:: frontendfrontend

 envenv::

 -- namename:: DB_PORTDB_PORT

 valuevalue:: ""6379"6379"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: other-volumeother-volume

 volumesvolumes::

 -- namename:: other-volumeother-volume

 emptyDiremptyDir:: {}{}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-conflict-preset.yaml

podpreset-conflict-pod.yamlpodpreset-conflict-pod.yaml

If we run

kubectlkubectl

describe...describe... we can see the event:

Deleting a Pod Preset

Once you don’t need a pod preset anymore, you can delete it with kubectlkubectl :

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: websitewebsite

 labelslabels::

 appapp:: websitewebsite

 rolerole:: frontendfrontend

specspec::

 containerscontainers::

 -- namename:: websitewebsite

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /cache/cache

 namename:: cache-volumecache-volume

 portsports::

 -- containerPortcontainerPort:: 8080

 volumesvolumes::

 -- namename:: cache-volumecache-volume

 emptyDiremptyDir:: {}{}

$ $ kubectl describe ...kubectl describe ...

........

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Reason Message FirstSeen LastSeen Count From SubobjectPath Reason Message

 Tue, 07 Feb 2017 16:56:12 Tue, 07 Feb 2017 16:56:12 -0700-0700 Tue, 07 Feb 2017 16:56:12 Tue, 07 Feb 2017 16:56:12 -0700-0700 1 1 {{podpreset.admission.kubernetes.io/podpreset-allow-database podpreset.admission.kubernetes.io/podpreset-allow-database

$ $ kubectl delete podpreset allow-databasekubectl delete podpreset allow-database

podpreset podpreset "allow-database""allow-database" deleted deleted

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/inject-data-application/podpreset-conflict-pod.yaml

Run a Stateless Application Using a
Deployment

This page shows how to run an application using a Kubernetes Deployment object.

Objectives

Create an nginx deployment.

Use kubectl to list information about the deployment.

Update the deployment.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Your Kubernetes server must be version v1.9 or later. To check the version, enter

kubectl versionkubectl version .

Objectives

Before you begin

Creating and exploring an nginx deployment

Updating the deployment

Scaling the application by increasing the replica count

Deleting a deployment

ReplicationControllers – the Old Way

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Creating and exploring an nginx deployment

You can run an application by creating a Kubernetes Deployment object, and you can describe

a Deployment in a YAML file. For example, this YAML file describes a Deployment that runs the

nginx:1.7.9 Docker image:

deployment.yamldeployment.yaml

1. Create a Deployment based on the YAML file:

2. Display information about the Deployment:

The output is similar to this:

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2
kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 replicasreplicas:: 22 # tells deployment to run 2 pods matching the template# tells deployment to run 2 pods matching the template
 templatetemplate:: # create pods using pod definition in this template# create pods using pod definition in this template
 metadatametadata::

 # unlike pod-nginx.yaml, the name is not included in the meta data as a unique name is# unlike pod-nginx.yaml, the name is not included in the meta data as a unique name is
 # generated from the deployment name# generated from the deployment name
 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment.yamlkubectl apply -f https://k8s.io/docs/tasks/run-application/deployment.yaml

kubectl describe deployment nginx-deploymentkubectl describe deployment nginx-deployment

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment.yaml

3. List the pods created by the deployment:

The output is similar to this:

 user@computer:~/website$ kubectl describe deployment nginx-deployment user@computer:~/website$ kubectl describe deployment nginx-deployment

 Name: nginx-deployment Name: nginx-deployment

 Namespace: default Namespace: default

 CreationTimestamp: Tue, 30 Aug 2016 18:11:37 -0700 CreationTimestamp: Tue, 30 Aug 2016 18:11:37 -0700

 Labels: app=nginx Labels: app=nginx

 Annotations: deployment.kubernetes.io/revision=1 Annotations: deployment.kubernetes.io/revision=1

 Selector: app=nginx Selector: app=nginx

 Replicas: 2 desired | 2 updated | 2 total | 2 available | 0 unavailable Replicas: 2 desired | 2 updated | 2 total | 2 available | 0 unavailable

 StrategyType: RollingUpdate StrategyType: RollingUpdate

 MinReadySeconds: 0 MinReadySeconds: 0

 RollingUpdateStrategy: 1 max unavailable, 1 max surge RollingUpdateStrategy: 1 max unavailable, 1 max surge

 Pod Template: Pod Template:

 Labels: app=nginx Labels: app=nginx

 Containers: Containers:

 nginx: nginx:

 Image: nginx:1.7.9 Image: nginx:1.7.9

 Port: 80/TCP Port: 80/TCP

 Environment: <none> Environment: <none>

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

 Conditions: Conditions:

 Type Status Reason Type Status Reason

 ---- ------ ------ ---- ------ ------

 Available True MinimumReplicasAvailable Available True MinimumReplicasAvailable

 Progressing True NewReplicaSetAvailable Progressing True NewReplicaSetAvailable

 OldReplicaSets: <none> OldReplicaSets: <none>

 NewReplicaSet: nginx-deployment-1771418926 (2/2 replicas created) NewReplicaSet: nginx-deployment-1771418926 (2/2 replicas created)

 No events. No events.

kubectl get pods -l app=nginxkubectl get pods -l app=nginx

4. Display information about a pod:

where <pod-name><pod-name> is the name of one of your pods.

Updating the deployment

You can update the deployment by applying a new YAML file. This YAML file specifies that the

deployment should be updated to use nginx 1.8.

deployment-update.yamldeployment-update.yaml

1. Apply the new YAML file:

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 nginx-deployment-1771418926-7o5ns 1/1 Running 0 16h nginx-deployment-1771418926-7o5ns 1/1 Running 0 16h

 nginx-deployment-1771418926-r18az 1/1 Running 0 16h nginx-deployment-1771418926-r18az 1/1 Running 0 16h

kubectl describe pod <pod-name>kubectl describe pod <pod-name>

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2
kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 replicasreplicas:: 22

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.8nginx:1.8 # Update the version of nginx from 1.7.9 to 1.8# Update the version of nginx from 1.7.9 to 1.8
 portsports::

 -- containerPortcontainerPort:: 8080

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment-update.yaml

2. Watch the deployment create pods with new names and delete the old pods:

Scaling the application by increasing the replica
count

You can increase the number of pods in your Deployment by applying a new YAML file. This

YAML file sets replicasreplicas to 4, which specifies that the Deployment should have four pods:

deployment-scale.yamldeployment-scale.yaml

1. Apply the new YAML file:

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment-update.yamlkubectl apply -f https://k8s.io/docs/tasks/run-application/deployment-update.yaml

kubectl get pods -l app=nginxkubectl get pods -l app=nginx

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2
kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 replicasreplicas:: 44 # Update the replicas from 2 to 4# Update the replicas from 2 to 4
 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.8nginx:1.8

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment-scale.yamlkubectl apply -f https://k8s.io/docs/tasks/run-application/deployment-scale.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment-scale.yaml

2. Verify that the Deployment has four pods:

The output is similar to this:

Deleting a deployment

Delete the deployment by name:

ReplicationControllers – the Old Way

The preferred way to create a replicated application is to use a Deployment, which in turn uses

a ReplicaSet. Before the Deployment and ReplicaSet were added to Kubernetes, replicated

applications were configured by using a ReplicationController.

What’s next

Learn more about Deployment objects.

kubectl get pods -l app=nginxkubectl get pods -l app=nginx

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 nginx-deployment-148880595-4zdqq 1/1 Running 0 25s nginx-deployment-148880595-4zdqq 1/1 Running 0 25s

 nginx-deployment-148880595-6zgi1 1/1 Running 0 25s nginx-deployment-148880595-6zgi1 1/1 Running 0 25s

 nginx-deployment-148880595-fxcez 1/1 Running 0 2m nginx-deployment-148880595-fxcez 1/1 Running 0 2m

 nginx-deployment-148880595-rwovn 1/1 Running 0 2m nginx-deployment-148880595-rwovn 1/1 Running 0 2m

kubectl delete deployment nginx-deploymentkubectl delete deployment nginx-deployment

file:///docs/concepts/workloads/controllers/replicationcontroller/
file:///docs/concepts/workloads/controllers/deployment/

Run a Single-Instance Stateful
Application

This page shows you how to run a single-instance stateful application in Kubernetes using a

PersistentVolume and a Deployment. The application is MySQL.

Objectives

Create a PersistentVolume referencing a disk in your environment.

Create a MySQL Deployment.

Expose MySQL to other pods in the cluster at a known DNS name.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

You need to either have a dynamic PersistentVolume provisioner with a default

StorageClass, or statically provision PersistentVolumes yourself to satisfy the

Objectives

Before you begin

Deploy MySQL

Accessing the MySQL instance

Updating

Deleting a deployment

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/storage-classes/
file:///docs/user-guide/persistent-volumes/#provisioning

PersistentVolumeClaims used here.

Deploy MySQL

You can run a stateful application by creating a Kubernetes Deployment and connecting it to

an existing PersistentVolume using a PersistentVolumeClaim. For example, this YAML file

describes a Deployment that runs MySQL and references the PersistentVolumeClaim. The file

defines a volume mount for /var/lib/mysql, and then creates a PersistentVolumeClaim that

looks for a 20G volume. This claim is satisfied by any existing volume that meets the

requirements, or by a dynamic provisioner.

Note: The password is defined in the config yaml, and this is insecure. See Kubernetes Secrets

for a secure solution.

mysql-deployment.yamlmysql-deployment.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: mysqlmysql

specspec::

 portsports::

 -- portport:: 33063306

 selectorselector::

 appapp:: mysqlmysql

 clusterIPclusterIP:: NoneNone

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

metadatametadata::

 namename:: mysql-pv-claimmysql-pv-claim

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 20Gi20Gi

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: mysqlmysql

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: mysqlmysql

file:///docs/user-guide/persistent-volumes/#persistentvolumeclaims
file:///docs/concepts/configuration/secret/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-deployment.yaml

mysql-deployment.yamlmysql-deployment.yaml

1. Deploy the contents of the YAML file:

2. Display information about the Deployment:

 appapp:: mysqlmysql

 strategystrategy::

 typetype:: RecreateRecreate

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: mysqlmysql

 specspec::

 containerscontainers::

 -- imageimage:: mysql:5.6mysql:5.6

 namename:: mysqlmysql

 envenv::

 # Use secret in real usage# Use secret in real usage

 -- namename:: MYSQL_ROOT_PASSWORDMYSQL_ROOT_PASSWORD

 valuevalue:: passwordpassword

 portsports::

 -- containerPortcontainerPort:: 33063306

 namename:: mysqlmysql

 volumeMountsvolumeMounts::

 -- namename:: mysql-persistent-storagemysql-persistent-storage

 mountPathmountPath:: /var/lib/mysql/var/lib/mysql

 volumesvolumes::

 -- namename:: mysql-persistent-storagemysql-persistent-storage

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: mysql-pv-claimmysql-pv-claim

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-deployment.yamlkubectl create -f https://k8s.io/docs/tasks/run-application/mysql-deployment.yaml

kubectl describe deployment mysqlkubectl describe deployment mysql

 Name: mysql Name: mysql

 Namespace: default Namespace: default

 CreationTimestamp: Tue, 01 Nov 2016 11:18:45 -0700 CreationTimestamp: Tue, 01 Nov 2016 11:18:45 -0700

 Labels: app=mysql Labels: app=mysql

 Annotations: deployment.kubernetes.io/revision=1 Annotations: deployment.kubernetes.io/revision=1

 Selector: app=mysql Selector: app=mysql

 Replicas: 1 desired | 1 updated | 1 total | 0 available | 1 unavailable Replicas: 1 desired | 1 updated | 1 total | 0 available | 1 unavailable

 StrategyType: Recreate StrategyType: Recreate

 MinReadySeconds: 0 MinReadySeconds: 0

3. List the pods created by the Deployment:

4. Inspect the PersistentVolumeClaim:

 Pod Template: Pod Template:

 Labels: app=mysql Labels: app=mysql

 Containers: Containers:

 mysql: mysql:

 Image: mysql:5.6 Image: mysql:5.6

 Port: 3306/TCP Port: 3306/TCP

 Environment: Environment:

 MYSQL_ROOT_PASSWORD: password MYSQL_ROOT_PASSWORD: password

 Mounts: Mounts:

 /var/lib/mysql from mysql-persistent-storage (rw) /var/lib/mysql from mysql-persistent-storage (rw)

 Volumes: Volumes:

 mysql-persistent-storage: mysql-persistent-storage:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace) Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

 ClaimName: mysql-pv-claim ClaimName: mysql-pv-claim

 ReadOnly: false ReadOnly: false

 Conditions: Conditions:

 Type Status Reason Type Status Reason

 ---- ------ ------ ---- ------ ------

 Available False MinimumReplicasUnavailable Available False MinimumReplicasUnavailable

 Progressing True ReplicaSetUpdated Progressing True ReplicaSetUpdated

 OldReplicaSets: <none> OldReplicaSets: <none>

 NewReplicaSet: mysql-63082529 (1/1 replicas created) NewReplicaSet: mysql-63082529 (1/1 replicas created)

 Events: Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 --------- -------- ----- ---- ------------- -------- ------ ------- --------- -------- ----- ---- ------------- -------- ------ -------

 33s 33s 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set mysql-63082529 to 1 33s 33s 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set mysql-63082529 to 1

kubectl get pods -l app=mysqlkubectl get pods -l app=mysql

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 mysql-63082529-2z3ki 1/1 Running 0 3m mysql-63082529-2z3ki 1/1 Running 0 3m

Accessing the MySQL instance

The preceding YAML file creates a service that allows other Pods in the cluster to access the

database. The Service option clusterIP: NoneclusterIP: None lets the Service DNS name resolve directly to

the Pod’s IP address. This is optimal when you have only one Pod behind a Service and you

don’t intend to increase the number of Pods.

Run a MySQL client to connect to the server:

This command creates a new Pod in the cluster running a MySQL client and connects it to the

server through the Service. If it connects, you know your stateful MySQL database is up and

running.

kubectl describe pvc mysql-pv-claimkubectl describe pvc mysql-pv-claim

 Name: mysql-pv-claim Name: mysql-pv-claim

 Namespace: default Namespace: default

 StorageClass: StorageClass:

 Status: Bound Status: Bound

 Volume: mysql-pv Volume: mysql-pv

 Labels: <none> Labels: <none>

 Annotations: pv.kubernetes.io/bind-completed=yes Annotations: pv.kubernetes.io/bind-completed=yes

 pv.kubernetes.io/bound-by-controller=yes pv.kubernetes.io/bound-by-controller=yes

 Capacity: 20Gi Capacity: 20Gi

 Access Modes: RWO Access Modes: RWO

 Events: <none> Events: <none>

kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql -ppasswordkubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql -ppassword

Waiting for pod default/mysql-client-274442439-zyp6i to be running, status is Pending, pod ready: falseWaiting for pod default/mysql-client-274442439-zyp6i to be running, status is Pending, pod ready: false

If you don't see a command prompt, try pressing enter.If you don't see a command prompt, try pressing enter.

mysql>mysql>

Updating

The image or any other part of the Deployment can be updated as usual with the

kubectl applykubectl apply command. Here are some precautions that are specific to stateful apps:

Don’t scale the app. This setup is for single-instance apps only. The underlying

PersistentVolume can only be mounted to one Pod. For clustered stateful apps, see the

StatefulSet documentation.

Use strategy:strategy:

type:type:

RecreateRecreate in the Deployment configuration YAML file. This

instructs Kubernetes to not use rolling updates. Rolling updates will not work, as you

cannot have more than one Pod running at a time. The RecreateRecreate strategy will stop the

first pod before creating a new one with the updated configuration.

Deleting a deployment

Delete the deployed objects by name:

If you manually provisioned a PersistentVolume, you also need to manually delete it, as well as

release the underlying resource. If you used a dynamic provisioner, it automatically deletes the

PersistentVolume when it sees that you deleted the PersistentVolumeClaim. Some dynamic

provisioners (such as those for EBS and PD) also release the underlying resource upon deleting

the PersistentVolume.

What’s next

Learn more about Deployment objects.

Learn more about Deploying applications

kubectl run documentation

kubectl delete deployment,svc mysqlkubectl delete deployment,svc mysql

kubectl delete pvc mysql-pv-claimkubectl delete pvc mysql-pv-claim

file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/user-guide/deploying-applications/
file:///docs/user-guide/kubectl/v1.10/#run

Volumes and Persistent Volumes

file:///docs/concepts/storage/volumes/
file:///docs/concepts/storage/persistent-volumes/

Run a Replicated Stateful Application

This page shows how to run a replicated stateful application using a StatefulSet controller. The

example is a MySQL single-master topology with multiple slaves running asynchronous

replication.

Note that this is not a production configuration. In particular, MySQL settings remain on

insecure defaults to keep the focus on general patterns for running stateful applications in

Kubernetes.

Objectives

Deploy a replicated MySQL topology with a StatefulSet controller.

Send MySQL client traffic.

Observe resistance to downtime.

Scale the StatefulSet up and down.

Objectives

Before you begin

Deploy MySQL

ConfigMap

Services

StatefulSet

Understanding stateful Pod initialization

Generating configuration

Cloning existing data

Starting replication

Sending client traffic

Simulating Pod and Node downtime

Break the Readiness Probe

Delete Pods

Drain a Node

Scaling the number of slaves

Cleaning up

What’s next

file:///docs/concepts/workloads/controllers/statefulset/

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

You need to either have a dynamic PersistentVolume provisioner with a default

StorageClass, or statically provision PersistentVolumes yourself to satisfy the

PersistentVolumeClaims used here.

This tutorial assumes you are familiar with PersistentVolumes and StatefulSets, as well as

other core concepts like Pods, Services, and ConfigMaps.

Some familiarity with MySQL helps, but this tutorial aims to present general patterns that

should be useful for other systems.

Deploy MySQL

The example MySQL deployment consists of a ConfigMap, two Services, and a StatefulSet.

ConfigMap

Create the ConfigMap from the following YAML configuration file:

mysql-configmap.yamlmysql-configmap.yaml

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/run-application/mysql-configmap.yaml https://k8s.io/docs/tasks/run-application/mysql-configmap.yaml

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/storage-classes/
file:///docs/user-guide/persistent-volumes/#provisioning
file:///docs/user-guide/persistent-volumes/#persistentvolumeclaims
file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-configmap.yaml

mysql-configmap.yamlmysql-configmap.yaml

This ConfigMap provides my.cnfmy.cnf overrides that let you independently control configuration

on the MySQL master and slaves. In this case, you want the master to be able to serve

replication logs to slaves and you want slaves to reject any writes that don’t come via

replication.

There’s nothing special about the ConfigMap itself that causes different portions to apply to

different Pods. Each Pod decides which portion to look at as it’s initializing, based on

information provided by the StatefulSet controller.

Services

Create the Services from the following YAML configuration file:

mysql-services.yamlmysql-services.yaml

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: mysqlmysql

 labelslabels::

 appapp:: mysqlmysql

datadata::

 master.cnfmaster.cnf:: ||

 # Apply this config only on the master.# Apply this config only on the master.

 [mysqld][mysqld]

 log-binlog-bin

 slave.cnfslave.cnf:: ||

 # Apply this config only on slaves.# Apply this config only on slaves.

 [mysqld][mysqld]

 super-read-onlysuper-read-only

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/run-application/mysql-services.yaml https://k8s.io/docs/tasks/run-application/mysql-services.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-services.yaml

mysql-services.yamlmysql-services.yaml

The Headless Service provides a home for the DNS entries that the StatefulSet controller

creates for each Pod that’s part of the set. Because the Headless Service is named mysqlmysql , the

Pods are accessible by resolving <pod-name>.mysql<pod-name>.mysql from within any other Pod in the same

Kubernetes cluster and namespace.

The Client Service, called mysql-readmysql-read , is a normal Service with its own cluster IP that

distributes connections across all MySQL Pods that report being Ready. The set of potential

endpoints includes the MySQL master and all slaves.

Note that only read queries can use the load-balanced Client Service. Because there is only

one MySQL master, clients should connect directly to the MySQL master Pod (through its DNS

entry within the Headless Service) to execute writes.

StatefulSet

Finally, create the StatefulSet from the following YAML configuration file:

Headless service for stable DNS entries of StatefulSet members.# Headless service for stable DNS entries of StatefulSet members.
apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: mysqlmysql

 labelslabels::

 appapp:: mysqlmysql

specspec::

 portsports::

 -- namename:: mysqlmysql

 portport:: 33063306

 clusterIPclusterIP:: NoneNone

 selectorselector::

 appapp:: mysqlmysql

Client service for connecting to any MySQL instance for reads.# Client service for connecting to any MySQL instance for reads.
For writes, you must instead connect to the master: mysql-0.mysql.# For writes, you must instead connect to the master: mysql-0.mysql.
apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: mysql-readmysql-read

 labelslabels::

 appapp:: mysqlmysql

specspec::

 portsports::

 -- namename:: mysqlmysql

 portport:: 33063306

 selectorselector::

 appapp:: mysqlmysql

mysql-statefulset.yamlmysql-statefulset.yaml

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/run-application/mysql-statefulset.yaml https://k8s.io/docs/tasks/run-application/mysql-statefulset.yaml

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: StatefulSetStatefulSet

metadatametadata::

 namename:: mysqlmysql

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: mysqlmysql

 serviceNameserviceName:: mysqlmysql

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: mysqlmysql

 specspec::

 initContainersinitContainers::

 -- namename:: init-mysqlinit-mysql

 imageimage:: mysql:5.7mysql:5.7

 commandcommand::

 -- bashbash

 -- ""-c"-c"

 -- ||

 set -exset -ex

 # Generate mysql server-id from pod ordinal index.# Generate mysql server-id from pod ordinal index.

 [[`hostname` =~ -([0-9]+)$]] || exit 1[[`hostname` =~ -([0-9]+)$]] || exit 1

 ordinal=${BASH_REMATCH[1]}ordinal=${BASH_REMATCH[1]}

 echo [mysqld] > /mnt/conf.d/server-id.cnfecho [mysqld] > /mnt/conf.d/server-id.cnf

 # Add an offset to avoid reserved server-id=0 value.# Add an offset to avoid reserved server-id=0 value.

 echo server-id=$((100 + $ordinal)) >> /mnt/conf.d/server-id.cnfecho server-id=$((100 + $ordinal)) >> /mnt/conf.d/server-id.cnf

 # Copy appropriate conf.d files from config-map to emptyDir.# Copy appropriate conf.d files from config-map to emptyDir.

 if [[$ordinal -eq 0]]; thenif [[$ordinal -eq 0]]; then

 cp /mnt/config-map/master.cnf /mnt/conf.d/cp /mnt/config-map/master.cnf /mnt/conf.d/

 elseelse

 cp /mnt/config-map/slave.cnf /mnt/conf.d/cp /mnt/config-map/slave.cnf /mnt/conf.d/

 fifi

 volumeMountsvolumeMounts::

 -- namename:: confconf

 mountPathmountPath:: /mnt/conf.d/mnt/conf.d

 -- namename:: config-mapconfig-map

 mountPathmountPath:: /mnt/config-map/mnt/config-map

 -- namename:: clone-mysqlclone-mysql

 imageimage:: gcr.io/google-samples/xtrabackup:1.0gcr.io/google-samples/xtrabackup:1.0

 commandcommand::

 -- bashbash

 -- ""-c"-c"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-statefulset.yaml

mysql-statefulset.yamlmysql-statefulset.yaml

 -- ""-c"-c"

 -- ||

 set -exset -ex

 # Skip the clone if data already exists.# Skip the clone if data already exists.

 [[-d /var/lib/mysql/mysql]] && exit 0[[-d /var/lib/mysql/mysql]] && exit 0

 # Skip the clone on master (ordinal index 0).# Skip the clone on master (ordinal index 0).

 [[`hostname` =~ -([0-9]+)$]] || exit 1[[`hostname` =~ -([0-9]+)$]] || exit 1

 ordinal=${BASH_REMATCH[1]}ordinal=${BASH_REMATCH[1]}

 [[$ordinal -eq 0]] && exit 0[[$ordinal -eq 0]] && exit 0

 # Clone data from previous peer.# Clone data from previous peer.

 ncat --recv-only mysql-$(($ordinal-1)).mysql 3307 | xbstream -x -C /var/lib/mysqlncat --recv-only mysql-$(($ordinal-1)).mysql 3307 | xbstream -x -C /var/lib/mysql

 # Prepare the backup.# Prepare the backup.

 xtrabackup --prepare --target-dir=/var/lib/mysqlxtrabackup --prepare --target-dir=/var/lib/mysql

 volumeMountsvolumeMounts::

 -- namename:: datadata

 mountPathmountPath:: /var/lib/mysql/var/lib/mysql

 subPathsubPath:: mysqlmysql

 -- namename:: confconf

 mountPathmountPath:: /etc/mysql/conf.d/etc/mysql/conf.d

 containerscontainers::

 -- namename:: mysqlmysql

 imageimage:: mysql:5.7mysql:5.7

 envenv::

 -- namename:: MYSQL_ALLOW_EMPTY_PASSWORDMYSQL_ALLOW_EMPTY_PASSWORD

 valuevalue:: ""1"1"

 portsports::

 -- namename:: mysqlmysql

 containerPortcontainerPort:: 33063306

 volumeMountsvolumeMounts::

 -- namename:: datadata

 mountPathmountPath:: /var/lib/mysql/var/lib/mysql

 subPathsubPath:: mysqlmysql

 -- namename:: confconf

 mountPathmountPath:: /etc/mysql/conf.d/etc/mysql/conf.d

 resourcesresources::

 requestsrequests::

 cpucpu:: 500m500m

 memorymemory:: 1Gi1Gi

 livenessProbelivenessProbe::

 execexec::

 commandcommand:: [[""mysqladmin"mysqladmin",, ""ping"ping"]]

 initialDelaySecondsinitialDelaySeconds:: 3030

 periodSecondsperiodSeconds:: 1010

 timeoutSecondstimeoutSeconds:: 55

 readinessProbereadinessProbe::

 execexec::

 # Check we can execute queries over TCP (skip-networking is off).# Check we can execute queries over TCP (skip-networking is off).
 commandcommand:: [[""mysql"mysql",, ""-h"-h",, ""127.0.0.1"127.0.0.1",, ""-e"-e",, ""SELECTSELECT 1"1"]]

 initialDelaySecondsinitialDelaySeconds:: 55

 periodSecondsperiodSeconds:: 22

 timeoutSecondstimeoutSeconds:: 11

 -- namename:: xtrabackupxtrabackup

 imageimage:: gcr.io/google-samples/xtrabackup:1.0gcr.io/google-samples/xtrabackup:1.0

 portsports::

mysql-statefulset.yamlmysql-statefulset.yaml

 portsports::

 -- namename:: xtrabackupxtrabackup

 containerPortcontainerPort:: 33073307

 commandcommand::

 -- bashbash

 -- ""-c"-c"

 -- ||

 set -exset -ex

 cd /var/lib/mysqlcd /var/lib/mysql

 # Determine binlog position of cloned data, if any.# Determine binlog position of cloned data, if any.

 if [[-f xtrabackup_slave_info]]; thenif [[-f xtrabackup_slave_info]]; then

 # XtraBackup already generated a partial "CHANGE MASTER TO" query# XtraBackup already generated a partial "CHANGE MASTER TO" query

 # because we're cloning from an existing slave.# because we're cloning from an existing slave.

 mv xtrabackup_slave_info change_master_to.sql.inmv xtrabackup_slave_info change_master_to.sql.in

 # Ignore xtrabackup_binlog_info in this case (it's useless).# Ignore xtrabackup_binlog_info in this case (it's useless).

 rm -f xtrabackup_binlog_inform -f xtrabackup_binlog_info

 elif [[-f xtrabackup_binlog_info]]; thenelif [[-f xtrabackup_binlog_info]]; then

 # We're cloning directly from master. Parse binlog position.# We're cloning directly from master. Parse binlog position.

 [[`cat xtrabackup_binlog_info` =~ ^(.*?)[[:space:]]+(.*?)$]] || exit 1[[`cat xtrabackup_binlog_info` =~ ^(.*?)[[:space:]]+(.*?)$]] || exit 1

 rm xtrabackup_binlog_inform xtrabackup_binlog_info

 echo "CHANGE MASTER TO MASTER_LOG_FILE='${BASH_REMATCH[1]}',\echo "CHANGE MASTER TO MASTER_LOG_FILE='${BASH_REMATCH[1]}',\

 MASTER_LOG_POS=${BASH_REMATCH[2]}" > change_master_to.sql.inMASTER_LOG_POS=${BASH_REMATCH[2]}" > change_master_to.sql.in

 fifi

 # Check if we need to complete a clone by starting replication.# Check if we need to complete a clone by starting replication.

 if [[-f change_master_to.sql.in]]; thenif [[-f change_master_to.sql.in]]; then

 echo "Waiting for mysqld to be ready (accepting connections)"echo "Waiting for mysqld to be ready (accepting connections)"

 until mysql -h 127.0.0.1 -e "SELECT 1"; do sleep 1; doneuntil mysql -h 127.0.0.1 -e "SELECT 1"; do sleep 1; done

 echo "Initializing replication from clone position"echo "Initializing replication from clone position"

 # In case of container restart, attempt this at-most-once.# In case of container restart, attempt this at-most-once.

 mv change_master_to.sql.in change_master_to.sql.origmv change_master_to.sql.in change_master_to.sql.orig

 mysql -h 127.0.0.1 <<EOFmysql -h 127.0.0.1 <<EOF

 $(<change_master_to.sql.orig),$(<change_master_to.sql.orig),

 MASTER_HOST='mysql-0.mysql',MASTER_HOST='mysql-0.mysql',

 MASTER_USER='root',MASTER_USER='root',

 MASTER_PASSWORD='',MASTER_PASSWORD='',

 MASTER_CONNECT_RETRY=10;MASTER_CONNECT_RETRY=10;

 START SLAVE;START SLAVE;

 EOFEOF

 fifi

 # Start a server to send backups when requested by peers.# Start a server to send backups when requested by peers.

 exec ncat --listen --keep-open --send-only --max-conns=1 3307 -c \exec ncat --listen --keep-open --send-only --max-conns=1 3307 -c \

 "xtrabackup --backup --slave-info --stream=xbstream --host=127.0.0.1 --user=root""xtrabackup --backup --slave-info --stream=xbstream --host=127.0.0.1 --user=root"

 volumeMountsvolumeMounts::

 -- namename:: datadata

 mountPathmountPath:: /var/lib/mysql/var/lib/mysql

 subPathsubPath:: mysqlmysql

 -- namename:: confconf

 mountPathmountPath:: /etc/mysql/conf.d/etc/mysql/conf.d

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

mysql-statefulset.yamlmysql-statefulset.yaml

You can watch the startup progress by running:

After a while, you should see all 3 Pods become Running:

Press Ctrl+C to cancel the watch. If you don’t see any progress, make sure you have a dynamic

PersistentVolume provisioner enabled as mentioned in the prerequisites.

This manifest uses a variety of techniques for managing stateful Pods as part of a StatefulSet.

The next section highlights some of these techniques to explain what happens as the

StatefulSet creates Pods.

Understanding stateful Pod initialization

The StatefulSet controller starts Pods one at a time, in order by their ordinal index. It waits until

each Pod reports being Ready before starting the next one.

In addition, the controller assigns each Pod a unique, stable name of the form

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 volumesvolumes::

 -- namename:: confconf

 emptyDiremptyDir:: {}{}

 -- namename:: config-mapconfig-map

 configMapconfigMap::

 namename:: mysqlmysql

 volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: datadata

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 resourcesresources::

 requestsrequests::

 storagestorage:: 10Gi10Gi

kubectl get pods kubectl get pods -l-l appapp==mysql mysql --watch--watch

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

mysql-0 2/2 Running 0 2mmysql-0 2/2 Running 0 2m

mysql-1 2/2 Running 0 1mmysql-1 2/2 Running 0 1m

mysql-2 2/2 Running 0 1mmysql-2 2/2 Running 0 1m

<statefulset-name>-<ordinal-index><statefulset-name>-<ordinal-index> . In this case, that results in Pods named mysql-0mysql-0 ,

mysql-1mysql-1 , and mysql-2mysql-2 .

The Pod template in the above StatefulSet manifest takes advantage of these properties to

perform orderly startup of MySQL replication.

Generating configuration

Before starting any of the containers in the Pod spec, the Pod first runs any Init Containers in

the order defined.

The first Init Container, named init-mysqlinit-mysql , generates special MySQL config files based on

the ordinal index.

The script determines its own ordinal index by extracting it from the end of the Pod name,

which is returned by the hostnamehostname command. Then it saves the ordinal (with a numeric offset

to avoid reserved values) into a file called server-id.cnfserver-id.cnf in the MySQL conf.dconf.d directory.

This translates the unique, stable identity provided by the StatefulSet controller into the domain

of MySQL server IDs, which require the same properties.

The script in the init-mysqlinit-mysql container also applies either master.cnfmaster.cnf or slave.cnfslave.cnf from

the ConfigMap by copying the contents into conf.dconf.d . Because the example topology consists

of a single MySQL master and any number of slaves, the script simply assigns ordinal 00 to be

the master, and everyone else to be slaves. Combined with the StatefulSet controller’s

deployment order guarantee, this ensures the MySQL master is Ready before creating slaves,

so they can begin replicating.

Cloning existing data

In general, when a new Pod joins the set as a slave, it must assume the MySQL master might

already have data on it. It also must assume that the replication logs might not go all the way

back to the beginning of time. These conservative assumptions are the key to allow a running

StatefulSet to scale up and down over time, rather than being fixed at its initial size.

The second Init Container, named clone-mysqlclone-mysql , performs a clone operation on a slave Pod

the first time it starts up on an empty PersistentVolume. That means it copies all existing data

from another running Pod, so its local state is consistent enough to begin replicating from the

master.

MySQL itself does not provide a mechanism to do this, so the example uses a popular open-

file:///docs/concepts/workloads/pods/init-containers/
file:///docs/concepts/workloads/controllers/statefulset/#deployment-and-scaling-guarantees/

source tool called Percona XtraBackup. During the clone, the source MySQL server might

suffer reduced performance. To minimize impact on the MySQL master, the script instructs

each Pod to clone from the Pod whose ordinal index is one lower. This works because the

StatefulSet controller always ensures Pod NN is Ready before starting Pod N+1N+1 .

Starting replication

After the Init Containers complete successfully, the regular containers run. The MySQL Pods

consist of a mysqlmysql container that runs the actual mysqldmysqld server, and an xtrabackupxtrabackup

container that acts as a sidecar.

The xtrabackupxtrabackup sidecar looks at the cloned data files and determines if it’s necessary to

initialize MySQL replication on the slave. If so, it waits for mysqldmysqld to be ready and then

executes the

CHANGE MASTERCHANGE MASTER

TOTO and START SLAVESTART SLAVE commands with replication parameters

extracted from the XtraBackup clone files.

Once a slave begins replication, it remembers its MySQL master and reconnects automatically

if the server restarts or the connection dies. Also, because slaves look for the master at its

stable DNS name (mysql-0.mysqlmysql-0.mysql), they automatically find the master even if it gets a new

Pod IP due to being rescheduled.

Lastly, after starting replication, the xtrabackupxtrabackup container listens for connections from other

Pods requesting a data clone. This server remains up indefinitely in case the StatefulSet scales

up, or in case the next Pod loses its PersistentVolumeClaim and needs to redo the clone.

Sending client traffic

You can send test queries to the MySQL master (hostname mysql-0.mysqlmysql-0.mysql) by running a

temporary container with the mysql:5.7mysql:5.7 image and running the mysqlmysql client binary.

kubectl run mysql-client kubectl run mysql-client --image--image==mysql:5.7 mysql:5.7 -i-i --rm--rm --restart--restart==Never Never ----\\

 mysql mysql -h-h mysql-0.mysql mysql-0.mysql <<<<EOFEOF

CREATE DATABASE test;CREATE DATABASE test;

CREATE TABLE test.messages (message VARCHAR(250));CREATE TABLE test.messages (message VARCHAR(250));

INSERT INTO test.messages VALUES ('hello');INSERT INTO test.messages VALUES ('hello');

EOFEOF

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

Use the hostname mysql-readmysql-read to send test queries to any server that reports being Ready:

You should get output like this:

To demonstrate that the mysql-readmysql-read Service distributes connections across servers, you can

run

SELECTSELECT

@@server_id@@server_id in a loop:

You should see the reported @@server_id@@server_id change randomly, because a different endpoint

might be selected upon each connection attempt:

kubectl run mysql-client kubectl run mysql-client --image--image==mysql:5.7 mysql:5.7 -i-i -t-t --rm--rm --restart--restart==Never Never ----\\

 mysql mysql -h-h mysql-read mysql-read -e-e "SELECT * FROM test.messages""SELECT * FROM test.messages"

Waiting for pod default/mysql-client to be running, status is Pending, pod ready: falseWaiting for pod default/mysql-client to be running, status is Pending, pod ready: false

+---------++---------+

| message || message |

+---------++---------+

| hello || hello |

+---------++---------+

pod "mysql-client" deletedpod "mysql-client" deleted

kubectl run mysql-client-loop kubectl run mysql-client-loop --image--image==mysql:5.7 mysql:5.7 -i-i -t-t --rm--rm --restart--restart==Never Never ----

 bash bash -ic-ic "while sleep 1; do mysql -h mysql-read -e 'SELECT @@server_id,NOW()'; done""while sleep 1; do mysql -h mysql-read -e 'SELECT @@server_id,NOW()'; done"

+-------------+---------------------++-------------+---------------------+

| @@server_id | NOW() || @@server_id | NOW() |

+-------------+---------------------++-------------+---------------------+

| 100 | 2006-01-02 15:04:05 || 100 | 2006-01-02 15:04:05 |

+-------------+---------------------++-------------+---------------------+

+-------------+---------------------++-------------+---------------------+

| @@server_id | NOW() || @@server_id | NOW() |

+-------------+---------------------++-------------+---------------------+

| 102 | 2006-01-02 15:04:06 || 102 | 2006-01-02 15:04:06 |

+-------------+---------------------++-------------+---------------------+

+-------------+---------------------++-------------+---------------------+

| @@server_id | NOW() || @@server_id | NOW() |

+-------------+---------------------++-------------+---------------------+

| 101 | 2006-01-02 15:04:07 || 101 | 2006-01-02 15:04:07 |

+-------------+---------------------++-------------+---------------------+

You can press Ctrl+C when you want to stop the loop, but it’s useful to keep it running in

another window so you can see the effects of the following steps.

Simulating Pod and Node downtime

To demonstrate the increased availability of reading from the pool of slaves instead of a single

server, keep the

SELECTSELECT

@@server_id@@server_id loop from above running while you force a Pod out of

the Ready state.

Break the Readiness Probe

The readiness probe for the mysqlmysql container runs the command

mysql -h 127.0.0.1 -e 'SELECTmysql -h 127.0.0.1 -e 'SELECT

1'1' to make sure the server is up and able to execute

queries.

One way to force this readiness probe to fail is to break that command:

This reaches into the actual container’s filesystem for Pod mysql-2mysql-2 and renames the mysqlmysql

command so the readiness probe can’t find it. After a few seconds, the Pod should report one

of its containers as not Ready, which you can check by running:

Look for 1/21/2 in the READYREADY column:

At this point, you should see your

SELECTSELECT

@@server_id@@server_id loop continue to run, although it never

reports 102102 anymore. Recall that the init-mysqlinit-mysql script defined server-idserver-id as

kubectl kubectl exec exec mysql-2 mysql-2 -c-c mysql mysql ---- mv /usr/bin/mysql /usr/bin/mysql.off mv /usr/bin/mysql /usr/bin/mysql.off

kubectl get pod mysql-2kubectl get pod mysql-2

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

mysql-2 1/2 Running 0 3mmysql-2 1/2 Running 0 3m

file:///docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes

100 +100 +

$ordinal$ordinal , so server ID 102102 corresponds to Pod mysql-2mysql-2 .

Now repair the Pod and it should reappear in the loop output after a few seconds:

Delete Pods

The StatefulSet also recreates Pods if they’re deleted, similar to what a ReplicaSet does for

stateless Pods.

The StatefulSet controller notices that no mysql-2mysql-2 Pod exists anymore, and creates a new

one with the same name and linked to the same PersistentVolumeClaim. You should see

server ID 102102 disappear from the loop output for a while and then return on its own.

Drain a Node

If your Kubernetes cluster has multiple Nodes, you can simulate Node downtime (such as

when Nodes are upgraded) by issuing a drain.

First determine which Node one of the MySQL Pods is on:

The Node name should show up in the last column:

Then drain the Node by running the following command, which cordons it so no new Pods may

schedule there, and then evicts any existing Pods. Replace <node-name><node-name> with the name of the

Node you found in the last step.

This might impact other applications on the Node, so it’s best to only do this in a test cluster.

kubectl kubectl exec exec mysql-2 mysql-2 -c-c mysql mysql ---- mv /usr/bin/mysql.off /usr/bin/mysql mv /usr/bin/mysql.off /usr/bin/mysql

kubectl delete pod mysql-2kubectl delete pod mysql-2

kubectl get pod mysql-2 kubectl get pod mysql-2 -o-o wide wide

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

mysql-2 2/2 Running 0 15m 10.244.5.27 kubernetes-minion-group-9l2tmysql-2 2/2 Running 0 15m 10.244.5.27 kubernetes-minion-group-9l2t

file:///docs/user-guide/kubectl/v1.10/#drain

Now you can watch as the Pod reschedules on a different Node:

It should look something like this:

And again, you should see server ID 102102 disappear from the

SELECTSELECT

@@server_id@@server_id loop

output for a while and then return.

Now uncordon the Node to return it to a normal state:

Scaling the number of slaves

With MySQL replication, you can scale your read query capacity by adding slaves. With

StatefulSet, you can do this with a single command:

Watch the new Pods come up by running:

kubectl drain <node-name> kubectl drain <node-name> --force--force --delete-local-data--delete-local-data --ignore-daemonsets--ignore-daemonsets

kubectl get pod mysql-2 kubectl get pod mysql-2 -o-o wide wide --watch--watch

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

mysql-2 2/2 Terminating 0 15m 10.244.1.56 kubernetes-minion-group-9l2tmysql-2 2/2 Terminating 0 15m 10.244.1.56 kubernetes-minion-group-9l2t

[...][...]

mysql-2 0/2 Pending 0 0s <none> kubernetes-minion-group-fjlmmysql-2 0/2 Pending 0 0s <none> kubernetes-minion-group-fjlm

mysql-2 0/2 Init:0/2 0 0s <none> kubernetes-minion-group-fjlmmysql-2 0/2 Init:0/2 0 0s <none> kubernetes-minion-group-fjlm

mysql-2 0/2 Init:1/2 0 20s 10.244.5.32 kubernetes-minion-group-fjlmmysql-2 0/2 Init:1/2 0 20s 10.244.5.32 kubernetes-minion-group-fjlm

mysql-2 0/2 PodInitializing 0 21s 10.244.5.32 kubernetes-minion-group-fjlmmysql-2 0/2 PodInitializing 0 21s 10.244.5.32 kubernetes-minion-group-fjlm

mysql-2 1/2 Running 0 22s 10.244.5.32 kubernetes-minion-group-fjlmmysql-2 1/2 Running 0 22s 10.244.5.32 kubernetes-minion-group-fjlm

mysql-2 2/2 Running 0 30s 10.244.5.32 kubernetes-minion-group-fjlmmysql-2 2/2 Running 0 30s 10.244.5.32 kubernetes-minion-group-fjlm

kubectl uncordon <node-name>kubectl uncordon <node-name>

kubectl scale statefulset mysql kubectl scale statefulset mysql --replicas--replicas==55

kubectl get pods kubectl get pods -l-l appapp==mysql mysql --watch--watch

Once they’re up, you should see server IDs 103103 and 104104 start appearing in the

SELECTSELECT

@@server_id@@server_id loop output.

You can also verify that these new servers have the data you added before they existed:

Scaling back down is also seamless:

Note, however, that while scaling up creates new PersistentVolumeClaims automatically,

scaling down does not automatically delete these PVCs. This gives you the choice to keep

those initialized PVCs around to make scaling back up quicker, or to extract data before

deleting them.

You can see this by running:

Which shows that all 5 PVCs still exist, despite having scaled the StatefulSet down to 3:

kubectl run mysql-client kubectl run mysql-client --image--image==mysql:5.7 mysql:5.7 -i-i -t-t --rm--rm --restart--restart==Never Never ----\\

 mysql mysql -h-h mysql-3.mysql mysql-3.mysql -e-e "SELECT * FROM test.messages""SELECT * FROM test.messages"

Waiting for pod default/mysql-client to be running, status is Pending, pod ready: falseWaiting for pod default/mysql-client to be running, status is Pending, pod ready: false

+---------++---------+

| message || message |

+---------++---------+

| hello || hello |

+---------++---------+

pod "mysql-client" deletedpod "mysql-client" deleted

kubectl scale statefulset mysql kubectl scale statefulset mysql --replicas--replicas==33

kubectl get pvc kubectl get pvc -l-l appapp==mysqlmysql

NAME STATUS VOLUME CAPACITY ACCESSMODES AGENAME STATUS VOLUME CAPACITY ACCESSMODES AGE

data-mysql-0 Bound pvc-8acbf5dc-b103-11e6-93fa-42010a800002 10Gi RWO 20mdata-mysql-0 Bound pvc-8acbf5dc-b103-11e6-93fa-42010a800002 10Gi RWO 20m

data-mysql-1 Bound pvc-8ad39820-b103-11e6-93fa-42010a800002 10Gi RWO 20mdata-mysql-1 Bound pvc-8ad39820-b103-11e6-93fa-42010a800002 10Gi RWO 20m

data-mysql-2 Bound pvc-8ad69a6d-b103-11e6-93fa-42010a800002 10Gi RWO 20mdata-mysql-2 Bound pvc-8ad69a6d-b103-11e6-93fa-42010a800002 10Gi RWO 20m

data-mysql-3 Bound pvc-50043c45-b1c5-11e6-93fa-42010a800002 10Gi RWO 2mdata-mysql-3 Bound pvc-50043c45-b1c5-11e6-93fa-42010a800002 10Gi RWO 2m

data-mysql-4 Bound pvc-500a9957-b1c5-11e6-93fa-42010a800002 10Gi RWO 2mdata-mysql-4 Bound pvc-500a9957-b1c5-11e6-93fa-42010a800002 10Gi RWO 2m

If you don’t intend to reuse the extra PVCs, you can delete them:

Cleaning up

1. Cancel the

SELECTSELECT

@@server_id@@server_id loop by pressing Ctrl+C in its terminal, or running the

following from another terminal:

2. Delete the StatefulSet. This also begins terminating the Pods.

3. Verify that the Pods disappear. They might take some time to finish terminating.

You’ll know the Pods have terminated when the above returns:

4. Delete the ConfigMap, Services, and PersistentVolumeClaims.

5. If you manually provisioned PersistentVolumes, you also need to manually delete them, as

well as release the underlying resources. If you used a dynamic provisioner, it

automatically deletes the PersistentVolumes when it sees that you deleted the

PersistentVolumeClaims. Some dynamic provisioners (such as those for EBS and PD) also

kubectl delete pvc data-mysql-3kubectl delete pvc data-mysql-3

kubectl delete pvc data-mysql-4kubectl delete pvc data-mysql-4

kubectl delete pod mysql-client-loop kubectl delete pod mysql-client-loop --now--now

kubectl delete statefulset mysqlkubectl delete statefulset mysql

kubectl get pods kubectl get pods -l-l appapp==mysqlmysql

No resources found.No resources found.

kubectl delete configmap,service,pvc kubectl delete configmap,service,pvc -l-l appapp==mysqlmysql

release the underlying resources upon deleting the PersistentVolumes.

What’s next

Look in the Helm Charts repository for other stateful application examples.

https://github.com/kubernetes/charts

Update API Objects in Place Using
kubectl patch

This task shows how to use kubectl patchkubectl patch to update an API object in place. The exercises in

this task demonstrate a strategic merge patch and a JSON merge patch.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Use a strategic merge patch to update a Deployment

Here’s the configuration file for a Deployment that has two replicas. Each replica is a Pod that

has one container:

deployment-patch-demo.yamldeployment-patch-demo.yaml

Before you begin

Use a strategic merge patch to update a Deployment

Notes on the strategic merge patch

Use a JSON merge patch to update a Deployment

Alternate forms of the kubectl patch command

Summary

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment-patch-demo.yaml

deployment-patch-demo.yamldeployment-patch-demo.yaml

Create the Deployment:

View the Pods associated with your Deployment:

The output shows that the Deployment has two Pods. The 1/11/1 indicates that each Pod has

one container:

Make a note of the names of the running Pods. Later, you will see that these Pods get

terminated and replaced by new ones.

At this point, each Pod has one Container that runs the nginx image. Now suppose you want

each Pod to have two containers: one that runs nginx and one that runs redis.

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2
kindkind:: DeploymentDeployment

metadatametadata::

 namename:: patch-demopatch-demo

specspec::

 replicasreplicas:: 22

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: patch-demo-ctrpatch-demo-ctr

 imageimage:: nginxnginx

 tolerationstolerations::

 -- effecteffect:: NoScheduleNoSchedule

 keykey:: dedicateddedicated

 valuevalue:: test-teamtest-team

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/run-application/deployment-patch-demo.yaml https://k8s.io/docs/tasks/run-application/deployment-patch-demo.yaml

kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

patch-demo-28633765-670qr 1/1 Running 0 23spatch-demo-28633765-670qr 1/1 Running 0 23s

patch-demo-28633765-j5qs3 1/1 Running 0 23spatch-demo-28633765-j5qs3 1/1 Running 0 23s

Create a file named patch-file-containers.yamlpatch-file-containers.yaml that has this content:

Patch your Deployment:

View the patched Deployment:

The output shows that the PodSpec in the Deployment has two Containers:

View the Pods associated with your patched Deployment:

The output shows that the running Pods have different names from the Pods that were

running previously. The Deployment terminated the old Pods and created two new Pods that

comply with the updated Deployment spec. The 2/22/2 indicates that each Pod has two

Containers:

specspec::

 templatetemplate::

 specspec::

 containerscontainers::

 -- namename:: patch-demo-ctr-2patch-demo-ctr-2

 imageimage:: redisredis

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --patch--patch ""$($(cat cat patch-file-containers.yamlpatch-file-containers.yaml

kubectl get deployment patch-demo kubectl get deployment patch-demo --output--output yaml yaml

containers:containers:

- image: redis- image: redis

 imagePullPolicy: Always imagePullPolicy: Always

 name: patch-demo-ctr-2 name: patch-demo-ctr-2

- image: nginx- image: nginx

 imagePullPolicy: Always imagePullPolicy: Always

 name: patch-demo-ctr name: patch-demo-ctr

kubectl get podskubectl get pods

Take a closer look at one of the patch-demo Pods:

The output shows that the Pod has two Containers: one running nginx and one running redis:

Notes on the strategic merge patch

The patch you did in the preceding exercise is called a strategic merge patch. Notice that the

patch did not replace the containerscontainers list. Instead it added a new Container to the list. In other

words, the list in the patch was merged with the existing list. This is not always what happens

when you use a strategic merge patch on a list. In some cases, the list is replaced, not merged.

With a strategic merge patch, a list is either replaced or merged depending on its patch

strategy. The patch strategy is specified by the value of the patchStrategypatchStrategy key in a field tag

in the Kubernetes source code. For example, the ContainersContainers field of PodSpecPodSpec struct has a

patchStrategypatchStrategy of mergemerge :

You can also see the patch strategy in the OpenApi spec:

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

patch-demo-1081991389-2wrn5 2/2 Running 0 1mpatch-demo-1081991389-2wrn5 2/2 Running 0 1m

patch-demo-1081991389-jmg7b 2/2 Running 0 1mpatch-demo-1081991389-jmg7b 2/2 Running 0 1m

kubectl get pod <your-pod-name> kubectl get pod <your-pod-name> --output--output yaml yaml

containers:containers:

- image: redis- image: redis

- image: nginx- image: nginx

typetype PodSpecPodSpec structstruct {{

 ContainersContainers [][]ContainerContainer `json:"containers" patchStrategy:"merge" patchMergeKey:"name" ...``json:"containers" patchStrategy:"merge" patchMergeKey:"name" ...`

https://raw.githubusercontent.com/kubernetes/kubernetes/master/api/openapi-spec/swagger.json

And you can see the patch strategy in the Kubernetes API documentation.

Create a file named patch-file-tolerations.yamlpatch-file-tolerations.yaml that has this content:

Patch your Deployment:

View the patched Deployment:

The output shows that the PodSpec in the Deployment has only one Toleration:

Notice that the tolerationstolerations list in the PodSpec was replaced, not merged. This is because

the Tolerations field of PodSpec does not have a patchStrategypatchStrategy key in its field tag. So the

strategic merge patch uses the default patch strategy, which is replacereplace .

"io.k8s.api.core.v1.PodSpec""io.k8s.api.core.v1.PodSpec":: {{

 "containers""containers":: {{

 "description""description":: "List of containers belonging to the pod. ..."List of containers belonging to the pod. ...

 }, },

 " "x-kubernetes-patch-merge-keyx-kubernetes-patch-merge-key": "": "namename",",

 " "x-kubernetes-patch-strategyx-kubernetes-patch-strategy": "": "mergemerge""

 }, },

specspec::

 templatetemplate::

 specspec::

 tolerationstolerations::

 -- effecteffect:: NoScheduleNoSchedule

 keykey:: disktypedisktype

 valuevalue:: ssdssd

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --patch--patch ""$($(cat cat patch-file-tolerations.yamlpatch-file-tolerations.yaml

kubectl get deployment patch-demo kubectl get deployment patch-demo --output--output yaml yaml

tolerations:tolerations:

 - effect: NoSchedule - effect: NoSchedule

 key: disktype key: disktype

 value: ssd value: ssd

file:///docs/reference/generated/kubernetes-api/v1.9/#podspec-v1-core

Use a JSON merge patch to update a Deployment

A strategic merge patch is different from a JSON merge patch. With a JSON merge patch, if

you want to update a list, you have to specify the entire new list. And the new list completely

replaces the existing list.

The kubectl patchkubectl patch command has a typetype parameter that you can set to one of these

values:

Parameter value Merge type

json JSON Patch, RFC 6902

merge JSON Merge Patch, RFC 7386

strategic Strategic merge patch

For a comparison of JSON patch and JSON merge patch, see JSON Patch and JSON Merge

Patch.

The default value for the typetype parameter is strategicstrategic . So in the preceding exercise, you did

a strategic merge patch.

Next, do a JSON merge patch on your same Deployment. Create a file named

patch-file-2.yamlpatch-file-2.yaml that has this content:

In your patch command, set typetype to mergemerge :

typetype PodSpecPodSpec structstruct {{

 TolerationsTolerations [][]TolerationToleration `json:"tolerations,omitempty" protobuf:"bytes,22,opt,name=tolerations"``json:"tolerations,omitempty" protobuf:"bytes,22,opt,name=tolerations"`

specspec::

 templatetemplate::

 specspec::

 containerscontainers::

 -- namename:: patch-demo-ctr-3patch-demo-ctr-3

 imageimage:: gcr.io/google-samples/node-hello:1.0gcr.io/google-samples/node-hello:1.0

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7386
http://erosb.github.io/post/json-patch-vs-merge-patch/

View the patched Deployment:

The containerscontainers list that you specified in the patch has only one Container. The output shows

that your list of one Container replaced the existing containerscontainers list.

List the running Pods:

In the output, you can see that the existing Pods were terminated, and new Pods were created.

The 1/11/1 indicates that each new Pod is running only one Container.

Alternate forms of the kubectl patch command

The kubectl patchkubectl patch command takes YAML or JSON. It can take the patch as a file or directly

on the command line.

Create a file named patch-file.jsonpatch-file.json that has this content:

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --type--type merge merge --patch--patch ""$($(cat cat patch-file-2.yamlpatch-file-2.yaml

kubectl get deployment patch-demo kubectl get deployment patch-demo --output--output yaml yaml

spec:spec:

 containers: containers:

 - image: gcr.io/google-samples/node-hello:1.0 - image: gcr.io/google-samples/node-hello:1.0

 name: patch-demo-ctr-3 name: patch-demo-ctr-3

kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

patch-demo-1307768864-69308 1/1 Running 0 1mpatch-demo-1307768864-69308 1/1 Running 0 1m

patch-demo-1307768864-c86dc 1/1 Running 0 1mpatch-demo-1307768864-c86dc 1/1 Running 0 1m

The following commands are equivalent:

Summary

In this exercise, you used kubectl patchkubectl patch to change the live configuration of a Deployment

object. You did not change the configuration file that you originally used to create the

Deployment object. Other commands for updating API objects include kubectl annotate,

kubectl edit, kubectl replace, kubectl scale, and kubectl apply.

What’s next

Kubernetes Object Management

Managing Kubernetes Objects Using Imperative Commands

Imperative Management of Kubernetes Objects Using Configuration Files

Declarative Management of Kubernetes Objects Using Configuration Files

{{

 "spec""spec":: {{

 "template""template":: {{

 "spec""spec":: {{

 "containers""containers":: [[

 {{

 "name""name":: "patch-demo-ctr-2""patch-demo-ctr-2",,

 "image""image":: "redis""redis"

 }}

]]

 }}

 }}

 }}

}}

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --patch--patch ""$($(cat cat patch-file.yamlpatch-file.yaml))""

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --patch--patch $'spec:$'spec:\n\n template: template:\n\n spec: spec:\n\n containers: containers:

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --patch--patch ""$($(cat cat patch-file.jsonpatch-file.json))""

kubectl patch deployment patch-demo kubectl patch deployment patch-demo --patch--patch '{"spec": {"template": {"spec": {"containers": [{"name": "patch-demo-ctr-2","image": "redis"}]}}}}''{"spec": {"template": {"spec": {"containers": [{"name": "patch-demo-ctr-2","image": "redis"}]}}}}'

file:///docs/user-guide/kubectl/v1.10/#annotate
file:///docs/user-guide/kubectl/v1.10/#edit
file:///docs/user-guide/kubectl/v1.10/#replace
file:///docs/user-guide/kubectl/v1.10/#scale
file:///docs/user-guide/kubectl/v1.10/#apply
file:///docs/concepts/overview/object-management-kubectl/overview/
file:///docs/concepts/overview/object-management-kubectl/imperative-command/
file:///docs/concepts/overview/object-management-kubectl/imperative-config/
file:///docs/concepts/overview/object-management-kubectl/declarative-config/

Scale a StatefulSet

This page shows how to scale a StatefulSet.

Before you begin

StatefulSets are only available in Kubernetes version 1.5 or later.

Not all stateful applications scale nicely. You need to understand your StatefulSets well

before continuing. If you’re unsure, remember that it might not be safe to scale your

StatefulSets.

You should perform scaling only when you’re sure that your stateful application cluster is

completely healthy.

Use kubectl to scale StatefulSets

Make sure you have kubectlkubectl upgraded to Kubernetes version 1.5 or later before continuing. If

you’re unsure, run kubectl versionkubectl version and check Client VersionClient Version for which kubectl you’re

using.

kubectl scale

First, find the StatefulSet you want to scale. Remember, you need to first understand if you can

scale it or not.

Before you begin

Use kubectlkubectl to scale StatefulSets

kubectl scalekubectl scale

Alternative: kubectl applykubectl apply / kubectl editkubectl edit / kubectl patchkubectl patch

Troubleshooting

Scaling down doesn’t work right

What’s next

Change the number of replicas of your StatefulSet:

Alternative: kubectl apply / kubectl edit / kubectl patch

Alternatively, you can do in-place updates on your StatefulSets.

If your StatefulSet was initially created with kubectl applykubectl apply or

kubectl create --save-kubectl create --save-

configconfig , update .spec.replicas.spec.replicas of the StatefulSet manifests, and

then do a kubectl applykubectl apply :

Otherwise, edit that field with kubectl editkubectl edit :

Or use kubectl patchkubectl patch :

Troubleshooting

Scaling down doesn’t work right

You cannot scale down a StatefulSet when any of the stateful Pods it manages is unhealthy.

Scaling down only takes place after those stateful Pods become running and ready.

With a StatefulSet of size > 1, if there is an unhealthy Pod, there is no way for Kubernetes to

know (yet) if it is due to a permanent fault or a transient one (upgrade/maintenance/node

kubectl get statefulsets <stateful-set-name>kubectl get statefulsets <stateful-set-name>

kubectl scale statefulsets <stateful-set-name> kubectl scale statefulsets <stateful-set-name> --replicas--replicas==<new-replicas><new-replicas>

kubectl apply kubectl apply -f-f <stateful-set-file-updated> <stateful-set-file-updated>

kubectl edit statefulsets <stateful-set-name>kubectl edit statefulsets <stateful-set-name>

kubectl patch statefulsets <stateful-set-name> kubectl patch statefulsets <stateful-set-name> -p-p '{"spec":{"replicas":<new-replicas>}}''{"spec":{"replicas":<new-replicas>}}'

file:///docs/concepts/cluster-administration/manage-deployment/#in-place-updates-of-resources

reboot). If the Pod is unhealthy due to a permanent fault, scaling without correcting the fault

may lead to a state where the StatefulSet membership drops below a certain minimum

number of “replicas” that are needed to function correctly. This may cause your StatefulSet to

become unavailable.

If the Pod is unhealthy due to a transient fault and the Pod might become available again, the

transient error may interfere with your scale-up/scale-down operation. Some distributed

databases have issues when nodes join and leave at the same time. It is better to reason

about scaling operations at the application level in these cases, and perform scaling only when

you’re sure that your stateful application cluster is completely healthy.

What’s next

Learn more about deleting a StatefulSet.

file:///docs/tasks/manage-stateful-set/deleting-a-statefulset/

Delete a StatefulSet

This task shows you how to delete a StatefulSet.

Before you begin

This task assumes you have an application running on your cluster represented by a

StatefulSet.

Deleting a StatefulSet

You can delete a StatefulSet in the same way you delete other resources in Kubernetes: use the

kubectlkubectl

deletedelete command, and specify the StatefulSet either by file or by name.

You may need to delete the associated headless service separately after the StatefulSet itself

is deleted.

Deleting a StatefulSet through kubectl will scale it down to 0, thereby deleting all pods that are

Before you begin

Deleting a StatefulSet

Persistent Volumes

Complete deletion of a StatefulSet

Force deletion of StatefulSet pods

What’s next

kubectl delete kubectl delete -f-f <file.yaml> <file.yaml>

kubectl delete statefulsets <statefulset-name>kubectl delete statefulsets <statefulset-name>

kubectl delete service <service-name>kubectl delete service <service-name>

a part of it. If you want to delete just the StatefulSet and not the pods, use --cascade=false--cascade=false .

By passing --cascade=false--cascade=false to

kubectlkubectl

deletedelete , the Pods managed by the StatefulSet are

left behind even after the StatefulSet object itself is deleted. If the pods have a label

app=myappapp=myapp , you can then delete them as follows:

Persistent Volumes

Deleting the Pods in a StatefulSet will not delete the associated volumes. This is to ensure that

you have the chance to copy data off the volume before deleting it. Deleting the PVC after the

pods have left the terminating state might trigger deletion of the backing Persistent Volumes

depending on the storage class and reclaim policy. You should never assume ability to access

a volume after claim deletion.

Note: Use caution when deleting a PVC, as it may lead to data loss.

Complete deletion of a StatefulSet

To simply delete everything in a StatefulSet, including the associated pods, you can run a

series of commands similar to the following:

In the example above, the Pods have the label app=myappapp=myapp ; substitute your own label as

appropriate.

Force deletion of StatefulSet pods

kubectl delete kubectl delete -f-f <file.yaml> <file.yaml> --cascade--cascade==falsefalse

kubectl delete pods kubectl delete pods -l-l appapp==myappmyapp

gracegrace==$($(kubectl get pods <stateful-set-pod> kubectl get pods <stateful-set-pod> --template--template '{{.spec.terminationGracePeriodSeconds}}''{{.spec.terminationGracePeriodSeconds}}'

kubectl delete statefulset kubectl delete statefulset -l-l appapp==myappmyapp

sleep sleep $grace$grace

kubectl delete pvc kubectl delete pvc -l-l appapp==myappmyapp

file:///docs/concepts/workloads/pods/pod/#termination-of-pods

If you find that some pods in your StatefulSet are stuck in the ‘Terminating’ or ‘Unknown’ states

for an extended period of time, you may need to manually intervene to forcefully delete the

pods from the apiserver. This is a potentially dangerous task. Refer to Deleting StatefulSet

Pods for details.

What’s next

Learn more about force deleting StatefulSet Pods.

file:///docs/tasks/manage-stateful-set/delete-pods/
file:///docs/tasks/run-application/force-delete-stateful-set-pod/

Force Delete StatefulSet Pods

This page shows how to delete Pods which are part of a stateful set, and explains the

considerations to keep in mind when doing so.

Before you begin

This is a fairly advanced task and has the potential to violate some of the properties

inherent to StatefulSet.

Before proceeding, make yourself familiar with the considerations enumerated below.

StatefulSet considerations

In normal operation of a StatefulSet, there is never a need to force delete a StatefulSet Pod.

The StatefulSet controller is responsible for creating, scaling and deleting members of the

StatefulSet. It tries to ensure that the specified number of Pods from ordinal 0 through N-1 are

alive and ready. StatefulSet ensures that, at any time, there is at most one Pod with a given

identity running in a cluster. This is referred to as at most one semantics provided by a

StatefulSet.

Manual force deletion should be undertaken with caution, as it has the potential to violate the

at most one semantics inherent to StatefulSet. StatefulSets may be used to run distributed and

clustered applications which have a need for a stable network identity and stable storage.

These applications often have configuration which relies on an ensemble of a fixed number of

members with fixed identities. Having multiple members with the same identity can be

disastrous and may lead to data loss (e.g. split brain scenario in quorum-based systems).

Before you begin

StatefulSet considerations

Delete Pods

Force Deletion

What’s next

Delete Pods

You can perform a graceful pod deletion with the following command:

For the above to lead to graceful termination, the Pod must not specify a

pod.Spec.TerminationGracePeriodSecondspod.Spec.TerminationGracePeriodSeconds of 0. The practice of setting a

pod.Spec.TerminationGracePeriodSecondspod.Spec.TerminationGracePeriodSeconds of 0 seconds is unsafe and strongly

discouraged for StatefulSet Pods. Graceful deletion is safe and will ensure that the Pod shuts

down gracefully before the kubelet deletes the name from the apiserver.

Kubernetes (versions 1.5 or newer) will not delete Pods just because a Node is unreachable.

The Pods running on an unreachable Node enter the ‘Terminating’ or ‘Unknown’ state after a

timeout. Pods may also enter these states when the user attempts graceful deletion of a Pod

on an unreachable Node. The only ways in which a Pod in such a state can be removed from

the apiserver are as follows:

The Node object is deleted (either by you, or by the Node Controller).

The kubelet on the unresponsive Node starts responding, kills the Pod and removes the

entry from the apiserver.

Force deletion of the Pod by the user.

The recommended best practice is to use the first or second approach. If a Node is confirmed

to be dead (e.g. permanently disconnected from the network, powered down, etc), then delete

the Node object. If the Node is suffering from a network partition, then try to resolve this or wait

for it to resolve. When the partition heals, the kubelet will complete the deletion of the Pod and

free up its name in the apiserver.

Normally, the system completes the deletion once the Pod is no longer running on a Node, or

the Node is deleted by an administrator. You may override this by force deleting the Pod.

Force Deletion

Force deletions do not wait for confirmation from the kubelet that the Pod has been

terminated. Irrespective of whether a force deletion is successful in killing a Pod, it will

kubectl delete pods <pod>kubectl delete pods <pod>

file:///docs/user-guide/pods/#termination-of-pods
file:///docs/admin/node/#node-condition
file:///docs/admin/node

immediately free up the name from the apiserver. This would let the StatefulSet controller

create a replacement Pod with that same identity; this can lead to the duplication of a still-

running Pod, and if said Pod can still communicate with the other members of the StatefulSet,

will violate the at most one semantics that StatefulSet is designed to guarantee.

When you force delete a StatefulSet pod, you are asserting that the Pod in question will never

again make contact with other Pods in the StatefulSet and its name can be safely freed up for

a replacement to be created.

If you want to delete a Pod forcibly using kubectl version >= 1.5, do the following:

If you’re using any version of kubectl <= 1.4, you should omit the --force--force option and use:

Always perform force deletion of StatefulSet Pods carefully and with complete knowledge of

the risks involved.

What’s next

Learn more about debugging a StatefulSet.

kubectl delete pods <pod> kubectl delete pods <pod> --grace-period--grace-period==0 0 --force--force

kubectl delete pods <pod> kubectl delete pods <pod> --grace-period--grace-period==00

file:///docs/tasks/manage-stateful-set/debugging-a-statefulset/

Perform Rolling Update Using a
Replication Controller

Overview

Note: The preferred way to create a replicated application is to use a Deployment, which

in turn uses a ReplicaSet. For more information, see Running a Stateless Application

Using a Deployment.

To update a service without an outage, kubectlkubectl supports what is called rolling update, which

updates one pod at a time, rather than taking down the entire service at the same time. See the

rolling update design document for more information.

Note that

kubectl rolling-kubectl rolling-

updateupdate only supports Replication Controllers. However, if you

deploy applications with Replication Controllers, consider switching them to Deployments. A

Deployment is a higher-level controller that automates rolling updates of applications

declaratively, and therefore is recommended. If you still want to keep your Replication

Controllers and use

kubectl rolling-kubectl rolling-

updateupdate , keep reading:

A rolling update applies changes to the configuration of pods being managed by a replication

controller. The changes can be passed as a new replication controller configuration file; or, if

only updating the image, a new container image can be specified directly.

Overview

Passing a configuration file

Examples

Updating the container image

Examples

Required and optional fields

Walkthrough

Troubleshooting

file:///docs/reference/generated/kubernetes-api/v1.10/#deployment-v1beta1-apps
file:///docs/reference/generated/kubernetes-api/v1.10/#replicaset-v1beta1-extensions
file:///docs/tasks/run-application/run-stateless-application-deployment/
file:///docs/user-guide/kubectl/v1.10/#rolling-update
https://git.k8s.io/community/contributors/design-proposals/cli/simple-rolling-update.md
file:///docs/concepts/workloads/controllers/deployment/

A rolling update works by:

1. Creating a new replication controller with the updated configuration.

2. Increasing/decreasing the replica count on the new and old controllers until the correct

number of replicas is reached.

3. Deleting the original replication controller.

Rolling updates are initiated with the

kubectl rolling-kubectl rolling-

updateupdate command:

Passing a configuration file

To initiate a rolling update using a configuration file, pass the new file to

kubectl rolling-kubectl rolling-

updateupdate :

The configuration file must:

Specify a different metadata.namemetadata.name value.

Overwrite at least one common label in its spec.selectorspec.selector field.

Use the same metadata.namespacemetadata.namespace .

Replication controller configuration files are described in Creating Replication Controllers.

Examples

$ kubectl rolling-update NAME \$ kubectl rolling-update NAME \

 ([NEW_NAME] --image=IMAGE | -f FILE) ([NEW_NAME] --image=IMAGE | -f FILE)

$ kubectl rolling-update NAME -f FILE$ kubectl rolling-update NAME -f FILE

file:///docs/tutorials/stateless-application/run-stateless-ap-replication-controller/

Updating the container image

To update only the container image, pass a new image name and tag with the --image--image flag

and (optionally) a new controller name:

The --image--image flag is only supported for single-container pods. Specifying --image--image with multi-

container pods returns an error.

If no NEW_NAMENEW_NAME is specified, a new replication controller is created with a temporary name.

Once the rollout is complete, the old controller is deleted, and the new controller is updated to

use the original name.

The update will fail if IMAGE:TAGIMAGE:TAG is identical to the current value. For this reason, we

recommend the use of versioned tags as opposed to values such as :latest:latest . Doing a rolling

update from image:latestimage:latest to a new image:latestimage:latest will fail, even if the image at that tag has

changed. Moreover, the use of :latest:latest is not recommended, see Best Practices for

Configuration for more information.

Examples

Required and optional fields

// Update pods of frontend-v1 using new replication controller data in frontend-v2.json.// Update pods of frontend-v1 using new replication controller data in frontend-v2.json.

$ kubectl rolling-update frontend-v1 -f frontend-v2.json$ kubectl rolling-update frontend-v1 -f frontend-v2.json

// Update pods of frontend-v1 using JSON data passed into stdin.// Update pods of frontend-v1 using JSON data passed into stdin.

$ cat frontend-v2.json | kubectl rolling-update frontend-v1 -f -$ cat frontend-v2.json | kubectl rolling-update frontend-v1 -f -

$ kubectl rolling-update NAME [NEW_NAME] --image=IMAGE:TAG$ kubectl rolling-update NAME [NEW_NAME] --image=IMAGE:TAG

// Update the pods of frontend-v1 to frontend-v2// Update the pods of frontend-v1 to frontend-v2

$ kubectl rolling-update frontend-v1 frontend-v2 --image=image:v2$ kubectl rolling-update frontend-v1 frontend-v2 --image=image:v2

// Update the pods of frontend, keeping the replication controller name// Update the pods of frontend, keeping the replication controller name

$ kubectl rolling-update frontend --image=image:v2$ kubectl rolling-update frontend --image=image:v2

file:///docs/concepts/configuration/overview/#container-images

Required fields are:

NAMENAME : The name of the replication controller to update.

as well as either:

-f FILE-f FILE : A replication controller configuration file, in either JSON or YAML format. The

configuration file must specify a new top-level idid value and include at least one of the

existing spec.selectorspec.selector key:value pairs. See the Run Stateless AP Replication Controller

page for details.

or:

--image IMAGE:TAG--image IMAGE:TAG : The name and tag of the image to update to. Must be different than

the current image:tag currently specified.

Optional fields are:

NEW_NAMENEW_NAME : Only used in conjunction with --image--image (not with -f FILE-f FILE). The name to

assign to the new replication controller.

--poll-interval--poll-interval

DURATIONDURATION : The time between polling the controller status after update.

Valid units are nsns (nanoseconds), usus or µsµs (microseconds), msms (milliseconds), ss

(seconds), mm (minutes), or hh (hours). Units can be combined (e.g. 1m30s1m30s). The default is

3s3s .

--timeout--timeout

DURATIONDURATION : The maximum time to wait for the controller to update a pod

before exiting. Default is 5m0s5m0s . Valid units are as described for --poll-interval--poll-interval above.

--update-period--update-period

DURATIONDURATION : The time to wait between updating pods. Default is 1m0s1m0s .

Valid units are as described for --poll-interval--poll-interval above.

Additional information about the

kubectl rolling-kubectl rolling-

updateupdate command is available from the

file:///docs/tutorials/stateless-application/run-stateless-ap-replication-controller/#replication-controller-configuration-file

kubectlkubectl reference.

Walkthrough

Let’s say you were running version 1.7.9 of nginx:

To update to version 1.9.1, you can use

kubectl rolling-update --kubectl rolling-update --

imageimage to specify the

new image:

In another window, you can see that kubectlkubectl added a deploymentdeployment label to the pods, whose

value is a hash of the configuration, to distinguish the new pods from the old:

apiVersionapiVersion:: v1v1

kindkind:: ReplicationControllerReplicationController

metadatametadata::

 namename:: my-nginxmy-nginx

specspec::

 replicasreplicas:: 55

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl rolling-update my-nginx kubectl rolling-update my-nginx --image--image==nginx:1.9.1nginx:1.9.1

Created my-nginx-ccba8fbd8cc8160970f63f9a2696fc46Created my-nginx-ccba8fbd8cc8160970f63f9a2696fc46

$ $ kubectl get pods kubectl get pods -l-l appapp==nginx nginx -L-L deployment deployment

NAME READY STATUS RESTARTS AGE DEPLOYMENTNAME READY STATUS RESTARTS AGE DEPLOYMENT

my-nginx-ccba8fbd8cc8160970f63f9a2696fc46-k156z 1/1 Running 0 1m ccba8fbd8cc8160970f63f9a2696fc46my-nginx-ccba8fbd8cc8160970f63f9a2696fc46-k156z 1/1 Running 0 1m ccba8fbd8cc8160970f63f9a2696fc46

my-nginx-ccba8fbd8cc8160970f63f9a2696fc46-v95yh 1/1 Running 0 35s ccba8fbd8cc8160970f63f9a2696fc46my-nginx-ccba8fbd8cc8160970f63f9a2696fc46-v95yh 1/1 Running 0 35s ccba8fbd8cc8160970f63f9a2696fc46

my-nginx-divi2 1/1 Running 0 2h 2d1d7a8f682934a254002b56404b813emy-nginx-divi2 1/1 Running 0 2h 2d1d7a8f682934a254002b56404b813e

my-nginx-o0ef1 1/1 Running 0 2h 2d1d7a8f682934a254002b56404b813emy-nginx-o0ef1 1/1 Running 0 2h 2d1d7a8f682934a254002b56404b813e

my-nginx-q6all 1/1 Running 0 8m 2d1d7a8f682934a254002b56404b813emy-nginx-q6all 1/1 Running 0 8m 2d1d7a8f682934a254002b56404b813e

file:///docs/user-guide/kubectl/v1.10/#rolling-update
https://git.k8s.io/community/contributors/design-proposals/cli/simple-rolling-update.md

kubectl rolling-kubectl rolling-

updateupdate reports progress as it progresses:

If you encounter a problem, you can stop the rolling update midway and revert to the previous

version using --rollback--rollback :

This is one example where the immutability of containers is a huge asset.

If you need to update more than just the image (e.g., command arguments, environment

variables), you can create a new replication controller, with a new name and distinguishing

label value, such as:

Scaling up my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 from 0 to 3, scaling down my-nginx from 3 to 0 (keep 3 pods available, don't exceed 4 pods)Scaling up my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 from 0 to 3, scaling down my-nginx from 3 to 0 (keep 3 pods available, don't exceed 4 pods)

Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 1Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 1

Scaling my-nginx down to 2Scaling my-nginx down to 2

Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 2Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 2

Scaling my-nginx down to 1Scaling my-nginx down to 1

Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 3Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 up to 3

Scaling my-nginx down to 0Scaling my-nginx down to 0

Update succeeded. Deleting old controller: my-nginxUpdate succeeded. Deleting old controller: my-nginx

Renaming my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 to my-nginxRenaming my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 to my-nginx

replicationcontroller "my-nginx" rolling updatedreplicationcontroller "my-nginx" rolling updated

$ $ kubectl rolling-update my-nginx kubectl rolling-update my-nginx --rollback--rollback

Setting Setting "my-nginx""my-nginx" replicas to 1 replicas to 1

Continuing update with existing controller my-nginx.Continuing update with existing controller my-nginx.

Scaling up nginx from 1 to 1, scaling down my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 from 1 to 0 Scaling up nginx from 1 to 1, scaling down my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 from 1 to 0

Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 down to 0Scaling my-nginx-ccba8fbd8cc8160970f63f9a2696fc46 down to 0

Update succeeded. Deleting my-nginx-ccba8fbd8cc8160970f63f9a2696fc46Update succeeded. Deleting my-nginx-ccba8fbd8cc8160970f63f9a2696fc46

replicationcontroller "my-nginx" rolling updatedreplicationcontroller "my-nginx" rolling updated

and roll it out:

Troubleshooting

If the timeouttimeout duration is reached during a rolling update, the operation will fail with some

pods belonging to the new replication controller, and some to the original controller.

apiVersionapiVersion:: v1v1

kindkind:: ReplicationControllerReplicationController

metadatametadata::

 namename:: my-nginx-v4my-nginx-v4

specspec::

 replicasreplicas:: 55

 selectorselector::

 appapp:: nginxnginx

 deploymentdeployment:: v4v4

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 deploymentdeployment:: v4v4

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.9.2nginx:1.9.2

 argsargs:: [[""nginx"nginx",, ""-T"-T"]]

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl rolling-update my-nginx kubectl rolling-update my-nginx -f-f ./nginx-rc.yaml ./nginx-rc.yaml

Created my-nginx-v4Created my-nginx-v4

Scaling up my-nginx-v4 from 0 to 5, scaling down my-nginx from 4 to 0 Scaling up my-nginx-v4 from 0 to 5, scaling down my-nginx from 4 to 0 ((keep 4 pods available, donkeep 4 pods available, don

Scaling my-nginx-v4 up to 1Scaling my-nginx-v4 up to 1

Scaling my-nginx down to 3Scaling my-nginx down to 3

Scaling my-nginx-v4 up to 2Scaling my-nginx-v4 up to 2

Scaling my-nginx down to 2Scaling my-nginx down to 2

Scaling my-nginx-v4 up to 3Scaling my-nginx-v4 up to 3

Scaling my-nginx down to 1Scaling my-nginx down to 1

Scaling my-nginx-v4 up to 4Scaling my-nginx-v4 up to 4

Scaling my-nginx down to 0Scaling my-nginx down to 0

Scaling my-nginx-v4 up to 5Scaling my-nginx-v4 up to 5

Update succeeded. Deleting old controller: my-nginxUpdate succeeded. Deleting old controller: my-nginx

replicationcontroller "my-nginx-v4" rolling updatedreplicationcontroller "my-nginx-v4" rolling updated

To continue the update from where it failed, retry using the same command.

To roll back to the original state before the attempted update, append the --rollback=true--rollback=true

flag to the original command. This will revert all changes.

Horizontal Pod Autoscaler

This document describes the current state of the Horizontal Pod Autoscaler in Kubernetes.

What is the Horizontal Pod Autoscaler?

The Horizontal Pod Autoscaler automatically scales the number of pods in a replication

controller, deployment or replica set based on observed CPU utilization (or, with custom

metrics support, on some other application-provided metrics). Note that Horizontal Pod

Autoscaling does not apply to objects that can’t be scaled, for example, DaemonSets.

The Horizontal Pod Autoscaler is implemented as a Kubernetes API resource and a controller.

The resource determines the behavior of the controller. The controller periodically adjusts the

number of replicas in a replication controller or deployment to match the observed average

CPU utilization to the target specified by user.

How does the Horizontal Pod Autoscaler work?

The Horizontal Pod Autoscaler is implemented as a control loop, with a period controlled by

the controller manager’s --horizontal-pod-autoscaler-sync-period--horizontal-pod-autoscaler-sync-period flag (with a default

value of 30 seconds).

During each period, the controller manager queries the resource utilization against the metrics

What is the Horizontal Pod Autoscaler?

How does the Horizontal Pod Autoscaler work?

API Object

Support for Horizontal Pod Autoscaler in kubectl

Autoscaling during rolling update

Support for cooldown/delay

Support for multiple metrics

Support for custom metrics

Requirements

Further reading

https://git.k8s.io/community/contributors/design-proposals/instrumentation/custom-metrics-api.md

specified in each HorizontalPodAutoscaler definition. The controller manager obtains the

metrics from either the resource metrics API (for per-pod resource metrics), or the custom

metrics API (for all other metrics).

For per-pod resource metrics (like CPU), the controller fetches the metrics from the

resource metrics API for each pod targeted by the HorizontalPodAutoscaler. Then, if a

target utilization value is set, the controller calculates the utilization value as a percentage

of the equivalent resource request on the containers in each pod. If a target raw value is

set, the raw metric values are used directly. The controller then takes the mean of the

utilization or the raw value (depending on the type of target specified) across all targeted

pods, and produces a ratio used to scale the number of desired replicas.

Please note that if some of the pod’s containers do not have the relevant resource request

set, CPU utilization for the pod will not be defined and the autoscaler will not take any

action for that metric. See the autoscaling algorithm design document for further details

about how the autoscaling algorithm works.

For per-pod custom metrics, the controller functions similarly to per-pod resource metrics,

except that it works with raw values, not utilization values.

For object metrics, a single metric is fetched (which describes the object in question), and

compared to the target value, to produce a ratio as above.

The HorizontalPodAutoscaler controller can fetch metrics in two different ways: direct

Heapster access, and REST client access.

When using direct Heapster access, the HorizontalPodAutoscaler queries Heapster directly

through the API server’s service proxy subresource. Heapster needs to be deployed on the

cluster and running in the kube-system namespace.

See Support for custom metrics for more details on REST client access.

The autoscaler accesses corresponding replication controller, deployment or replica set by

scale sub-resource. Scale is an interface that allows you to dynamically set the number of

replicas and examine each of their current states. More details on scale sub-resource can be

found here.

API Object

https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#autoscaling-algorithm
https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#scale-subresource

The Horizontal Pod Autoscaler is an API resource in the Kubernetes autoscalingautoscaling API group.

The current stable version, which only includes support for CPU autoscaling, can be found in

the autoscaling/v1autoscaling/v1 API version.

The beta version, which includes support for scaling on memory and custom metrics, can be

found in autoscaling/v2beta1autoscaling/v2beta1 . The new fields introduced in autoscaling/v2beta1autoscaling/v2beta1 are

preserved as annotations when working with autoscaling/v1autoscaling/v1 .

More details about the API object can be found at HorizontalPodAutoscaler Object.

Support for Horizontal Pod Autoscaler in kubectl

Horizontal Pod Autoscaler, like every API resource, is supported in a standard way by kubectlkubectl

. We can create a new autoscaler using

kubectlkubectl

createcreate command. We can list autoscalers

by

kubectl getkubectl get

hpahpa and get detailed description by

kubectl describekubectl describe

hpahpa . Finally, we can

delete an autoscaler using

kubectl deletekubectl delete

hpahpa .

In addition, there is a special kubectl autoscalekubectl autoscale command for easy creation of a Horizontal

Pod Autoscaler. For instance, executing

kubectl autoscale rc foo --min=2 --max=5 --cpu-kubectl autoscale rc foo --min=2 --max=5 --cpu-

percent=80percent=80 will create an autoscaler

for replication controller foo, with target CPU utilization set to 80%80% and the number of replicas

between 2 and 5. The detailed documentation of kubectl autoscalekubectl autoscale can be found here.

Autoscaling during rolling update

Currently in Kubernetes, it is possible to perform a rolling update by managing replication

controllers directly, or by using the deployment object, which manages the underlying replica

sets for you. Horizontal Pod Autoscaler only supports the latter approach: the Horizontal Pod

Autoscaler is bound to the deployment object, it sets the size for the deployment object, and

the deployment is responsible for setting sizes of underlying replica sets.

Horizontal Pod Autoscaler does not work with rolling update using direct manipulation of

https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#horizontalpodautoscaler-object
file:///docs/user-guide/kubectl/v1.10/#autoscale
file:///docs/tasks/run-application/rolling-update-replication-controller/

replication controllers, i.e. you cannot bind a Horizontal Pod Autoscaler to a replication

controller and do rolling update (e.g. using

kubectl rolling-kubectl rolling-

updateupdate). The reason this

doesn’t work is that when rolling update creates a new replication controller, the Horizontal

Pod Autoscaler will not be bound to the new replication controller.

Support for cooldown/delay

When managing the scale of a group of replicas using the Horizontal Pod Autoscaler, it is

possible that the number of replicas keeps fluctuating frequently due to the dynamic nature of

the metrics evaluated. This is sometimes referred to as thrashing.

Starting from v1.6, a cluster operator can mitigate this problem by tuning the global HPA

settings exposed as flags for the kube-controller-managerkube-controller-manager component:

--horizontal-pod-autoscaler-downscale-delay--horizontal-pod-autoscaler-downscale-delay : The value for this option is a

duration that specifies how long the autoscaler has to wait before another downscale

operation can be performed after the current one has completed. The default value is 5

minutes (5m0s5m0s).

--horizontal-pod-autoscaler-upscale-delay--horizontal-pod-autoscaler-upscale-delay : The value for this option is a duration

that specifies how long the autoscaler has to wait before another upscale operation can be

performed after the current one has completed. The default value is 3 minutes (3m0s3m0s).

Note: When tuning these parameter values, a cluster operator should be aware of the

possible consequences. If the delay (cooldown) value is set too long, there could be

complaints that the Horizontal Pod Autoscaler is not responsive to workload changes.

However, if the delay value is set too short, the scale of the replicas set may keep

thrashing as usual.

Support for multiple metrics

Kubernetes 1.6 adds support for scaling based on multiple metrics. You can use the

autoscaling/v2beta1autoscaling/v2beta1 API version to specify multiple metrics for the Horizontal Pod

Autoscaler to scale on. Then, the Horizontal Pod Autoscaler controller will evaluate each

metric, and propose a new scale based on that metric. The largest of the proposed scales will

be used as the new scale.

Support for custom metrics

Note: Kubernetes 1.2 added alpha support for scaling based on application-specific metrics

using special annotations. Support for these annotations was removed in Kubernetes 1.6 in

favor of the new autoscaling API. While the old method for collecting custom metrics is still

available, these metrics will not be available for use by the Horizontal Pod Autoscaler, and the

former annotations for specifying which custom metrics to scale on are no longer honored by

the Horizontal Pod Autoscaler controller.

Kubernetes 1.6 adds support for making use of custom metrics in the Horizontal Pod

Autoscaler. You can add custom metrics for the Horizontal Pod Autoscaler to use in the

autoscaling/v2beta1autoscaling/v2beta1 API. Kubernetes then queries the new custom metrics API to fetch the

values of the appropriate custom metrics.

Requirements

To use custom metrics with your Horizontal Pod Autoscaler, you must set the necessary

configurations when deploying your cluster:

Enable the API aggregation layer if you have not already done so.

Register your resource metrics API, your custom metrics API and, optionally, external

metrics API with the API aggregation layer. All of these API servers must be running on

your cluster.

Resource Metrics API : You can use Heapster’s implementation of the resource metrics

API, by running Heapster with its --api-server--api-server flag set to true.

Custom Metrics API: This must be provided by a separate component. To get started

with boilerplate code, see the kubernetes-incubator/custom-metrics-apiserver and the

k8s.io/metrics repositories.

External Metrics API : Starting from Kubernetes 1.10 you can use this API if you need to

autoscale on metrics not related to any Kubernetes object. Similarly to Custom

Metrics API this must be provided by a separate component.

file:///docs/tasks/access-kubernetes-api/configure-aggregation-layer/
https://github.com/kubernetes-incubator/custom-metrics-apiserver
https://github.com/kubernetes/metrics

Set the appropriate flags for kube-controller-manager:

--horizontal-pod-autoscaler-use-rest-clients--horizontal-pod-autoscaler-use-rest-clients should be true.

--kubeconfig <path-to---kubeconfig <path-to-

kubeconfig>kubeconfig> OR

--master <ip-address-of-apiserver>--master <ip-address-of-apiserver>

Note that either the --master--master or --kubeconfig--kubeconfig flag can be used; --master--master will

override --kubeconfig--kubeconfig if both are specified. These flags specify the location of the

API aggregation layer, allowing the controller manager to communicate to the API

server.

In Kubernetes 1.7, the standard aggregation layer that Kubernetes provides runs in-

process with the kube-apiserver, so the target IP address can be found with

kubectl get pods --selector k8s-app=kube-apiserver --namespace kube-kubectl get pods --selector k8s-app=kube-apiserver --namespace kube-

system -o jsonpath='{.items[0].status.podIP}'system -o jsonpath='{.items[0].status.podIP}'

.

Further reading

Design documentation: Horizontal Pod Autoscaling.

kubectl autoscale command: kubectl autoscale.

Usage example of Horizontal Pod Autoscaler.

https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md
file:///docs/user-guide/kubectl/v1.10/#autoscale
file:///docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

Horizontal Pod Autoscaler Walkthrough

Horizontal Pod Autoscaler automatically scales the number of pods in a replication controller,

deployment or replica set based on observed CPU utilization (or, with beta support, on some

other, application-provided metrics).

This document walks you through an example of enabling Horizontal Pod Autoscaler for the

php-apache server. For more information on how Horizontal Pod Autoscaler behaves, see the

Horizontal Pod Autoscaler user guide.

Prerequisites

This example requires a running Kubernetes cluster and kubectl, version 1.2 or later. Heapster

monitoring needs to be deployed in the cluster as Horizontal Pod Autoscaler uses it to collect

metrics (if you followed getting started on GCE guide, heapster monitoring will be turned-on by

default).

To specify multiple resource metrics for a Horizontal Pod Autoscaler, you must have a

Kubernetes cluster and kubectl at version 1.6 or later. Furthermore, in order to make use of

custom metrics, your cluster must be able to communicate with the API server providing the

custom metrics API. Finally, to use metrics not related to any Kubernetes object you must

have a Kubernetes cluster at version 1.10 or later, and you must be able to communicate with

the API server that provides the external metrics API. See the Horizontal Pod Autoscaler user

guide for more details.

Prerequisites

Step One: Run & expose php-apache server

Step Two: Create Horizontal Pod Autoscaler

Step Three: Increase load

Step Four: Stop load

Autoscaling on multiple metrics and custom metrics

Autoscaling on metrics not related to Kubernetes objects

Appendix: Horizontal Pod Autoscaler Status Conditions

Appendix: Other possible scenarios

Creating the autoscaler declaratively

file:///docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/heapster
file:///docs/getting-started-guides/gce.md
file:///docs/tasks/run-application/horizontal-pod-autoscale/#support-for-custom-metrics

Step One: Run & expose php-apache server

To demonstrate Horizontal Pod Autoscaler we will use a custom docker image based on the

php-apache image. The Dockerfile has the following content:

It defines an index.php page which performs some CPU intensive computations:

First, we will start a deployment running the image and expose it as a service:

Step Two: Create Horizontal Pod Autoscaler

Now that the server is running, we will create the autoscaler using kubectl autoscale. The

following command will create a Horizontal Pod Autoscaler that maintains between 1 and 10

replicas of the Pods controlled by the php-apache deployment we created in the first step of

these instructions. Roughly speaking, HPA will increase and decrease the number of replicas

(via the deployment) to maintain an average CPU utilization across all Pods of 50% (since each

pod requests 200 milli-cores by kubectl run, this means average CPU usage of 100 milli-cores).

See here for more details on the algorithm.

FROM php:5-apacheFROM php:5-apache

ADD index.php /var/www/html/index.phpADD index.php /var/www/html/index.php

RUN chmod a+rx index.phpRUN chmod a+rx index.php

<?php<?php

 $x = 0.0001; $x = 0.0001;

 for ($i = 0; $i <= 1000000; $i++) { for ($i = 0; $i <= 1000000; $i++) {

 $x += sqrt($x); $x += sqrt($x);

 } }

 echo "OK!"; echo "OK!";

?>?>

$ $ kubectl run php-apache kubectl run php-apache --image--image==k8s.gcr.io/hpa-example k8s.gcr.io/hpa-example --requests--requests==cpucpu==200m 200m --expose--expose

service service "php-apache""php-apache" created created

deployment deployment "php-apache""php-apache" created created

$ $ kubectl autoscale deployment php-apache kubectl autoscale deployment php-apache --cpu-percent--cpu-percent==50 50 --min--min==1 1 --max--max==1010

deployment deployment "php-apache""php-apache" autoscaled autoscaled

https://github.com/kubernetes/kubernetes/blob/master/docs/user-guide/kubectl/kubectl_autoscale.md
https://github.com/kubernetes/kubernetes/blob/master/docs/user-guide/kubectl/kubectl_run.md
https://git.k8s.io/community/contributors/design-proposals/autoscaling/horizontal-pod-autoscaler.md#autoscaling-algorithm

We may check the current status of autoscaler by running:

Please note that the current CPU consumption is 0% as we are not sending any requests to

the server (the CURRENTCURRENT column shows the average across all the pods controlled by the

corresponding deployment).

Step Three: Increase load

Now, we will see how the autoscaler reacts to increased load. We will start a container, and

send an infinite loop of queries to the php-apache service (please run it in a different terminal):

Within a minute or so, we should see the higher CPU load by executing:

Here, CPU consumption has increased to 305% of the request. As a result, the deployment was

resized to 7 replicas:

$ $ kubectl get hpakubectl get hpa

NAME REFERENCE TARGET MINPODS MAXPODS REPLICAS AGENAME REFERENCE TARGET MINPODS MAXPODS REPLICAS AGE

php-apache Deployment/php-apache/scale 0% / 50% 1 10 1 18sphp-apache Deployment/php-apache/scale 0% / 50% 1 10 1 18s

$ $ kubectl run kubectl run -i-i --tty--tty load-generator load-generator --image--image==busybox /bin/shbusybox /bin/sh

Hit enter Hit enter for for command command promptprompt

$ $ while while truetrue;; do do wget wget -q-q -O--O- http://php-apache.default.svc.cluster.local http://php-apache.default.svc.cluster.local;; donedone

$ $ kubectl get hpakubectl get hpa

NAME REFERENCE TARGET CURRENT MINPODS MAXPODS REPLICAS AGENAME REFERENCE TARGET CURRENT MINPODS MAXPODS REPLICAS AGE

php-apache Deployment/php-apache/scale 305% / 50% 305% 1 10 1 3mphp-apache Deployment/php-apache/scale 305% / 50% 305% 1 10 1 3m

$ $ kubectl get deployment php-apachekubectl get deployment php-apache

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 7 7 7 7 19mphp-apache 7 7 7 7 19m

Note Sometimes it may take a few minutes to stabilize the number of replicas. Since the

amount of load is not controlled in any way it may happen that the final number of replicas will

differ from this example.

Step Four: Stop load

We will finish our example by stopping the user load.

In the terminal where we created the container with busyboxbusybox image, terminate the load

generation by typing

<Ctrl> +<Ctrl> +

CC .

Then we will verify the result state (after a minute or so):

Here CPU utilization dropped to 0, and so HPA autoscaled the number of replicas back down to

1.

Note autoscaling the replicas may take a few minutes.

Autoscaling on multiple metrics and custom metrics

You can introduce additional metrics to use when autoscaling the php-apachephp-apache Deployment by

making use of the autoscaling/v2beta1autoscaling/v2beta1 API version.

First, get the YAML of your HorizontalPodAutoscaler in the autoscaling/v2beta1autoscaling/v2beta1 form:

Open the /tmp/hpa-v2.yaml/tmp/hpa-v2.yaml file in an editor, and you should see YAML which looks like this:

$ $ kubectl get hpakubectl get hpa

NAME REFERENCE TARGET MINPODS MAXPODS REPLICAS AGENAME REFERENCE TARGET MINPODS MAXPODS REPLICAS AGE

php-apache Deployment/php-apache/scale 0% / 50% 1 10 1 11mphp-apache Deployment/php-apache/scale 0% / 50% 1 10 1 11m

$ $ kubectl get deployment php-apachekubectl get deployment php-apache

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 1 1 1 1 27mphp-apache 1 1 1 1 27m

$ $ kubectl get hpa.v2beta1.autoscaling kubectl get hpa.v2beta1.autoscaling -o-o yaml yaml >> /tmp/hpa-v2.yaml /tmp/hpa-v2.yaml

Notice that the targetCPUUtilizationPercentagetargetCPUUtilizationPercentage field has been replaced with an array

called metricsmetrics . The CPU utilization metric is a resource metric, since it is represented as a

percentage of a resource specified on pod containers. Notice that you can specify other

resource metrics besides CPU. By default, the only other supported resource metric is memory.

These resources do not change names from cluster to cluster, and should always be available,

as long as Heapster is deployed.

You can also specify resource metrics in terms of direct values, instead of as percentages of

the requested value. To do so, use the targetAverageValuetargetAverageValue field instead of the

targetAverageUtilizationtargetAverageUtilization field.

There are two other types of metrics, both of which are considered custom metrics: pod

metrics and object metrics. These metrics may have names which are cluster specific, and

require a more advanced cluster monitoring setup.

The first of these alternative metric types is pod metrics. These metrics describe pods, and are

apiVersionapiVersion:: autoscaling/v2beta1autoscaling/v2beta1

kindkind:: HorizontalPodAutoscalerHorizontalPodAutoscaler

metadatametadata::

 namename:: php-apachephp-apache

 namespacenamespace:: defaultdefault

specspec::

 scaleTargetRefscaleTargetRef::

 apiVersionapiVersion:: apps/v1beta1apps/v1beta1

 kindkind:: DeploymentDeployment

 namename:: php-apachephp-apache

 minReplicasminReplicas:: 11

 maxReplicasmaxReplicas:: 1010

 metricsmetrics::

 -- typetype:: ResourceResource

 resourceresource::

 namename:: cpucpu

 targetAverageUtilizationtargetAverageUtilization:: 5050

statusstatus::

 observedGenerationobservedGeneration:: 11

 lastScaleTimelastScaleTime:: <some-time><some-time>

 currentReplicascurrentReplicas:: 11

 desiredReplicasdesiredReplicas:: 11

 currentMetricscurrentMetrics::

 -- typetype:: ResourceResource

 resourceresource::

 namename:: cpucpu

 currentAverageUtilizationcurrentAverageUtilization:: 00

 currentAverageValuecurrentAverageValue:: 00

averaged together across pods and compared with a target value to determine the replica

count. They work much like resource metrics, except that they only have the

targetAverageValuetargetAverageValue field.

Pod metrics are specified using a metric block like this:

The second alternative metric type is object metrics. These metrics describe a different object

in the same namespace, instead of describing pods. Note that the metrics are not fetched

from the object – they simply describe it. Object metrics do not involve averaging, and look like

this:

If you provide multiple such metric blocks, the HorizontalPodAutoscaler will consider each

metric in turn. The HorizontalPodAutoscaler will calculate proposed replica counts for each

metric, and then choose the one with the highest replica count.

For example, if you had your monitoring system collecting metrics about network traffic, you

could update the definition above using kubectl editkubectl edit to look like this:

typetype:: PodsPods

podspods::

 metricNamemetricName:: packets-per-secondpackets-per-second

 targetAverageValuetargetAverageValue:: 1k1k

typetype:: ObjectObject

objectobject::

 metricNamemetricName:: requests-per-secondrequests-per-second

 targettarget::

 apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

 kindkind:: IngressIngress

 namename:: main-routemain-route

 targetValuetargetValue:: 2k2k

Then, your HorizontalPodAutoscaler would attempt to ensure that each pod was consuming

roughly 50% of its requested CPU, serving 1000 packets per second, and that all pods behind

the main-route Ingress were serving a total of 10000 requests per second.

Autoscaling on metrics not related to Kubernetes objects

Applications running on Kubernetes may need to autoscale based on metrics that don’t have

apiVersionapiVersion:: autoscaling/v2beta1autoscaling/v2beta1

kindkind:: HorizontalPodAutoscalerHorizontalPodAutoscaler

metadatametadata::

 namename:: php-apachephp-apache

 namespacenamespace:: defaultdefault

specspec::

 scaleTargetRefscaleTargetRef::

 apiVersionapiVersion:: apps/v1beta1apps/v1beta1

 kindkind:: DeploymentDeployment

 namename:: php-apachephp-apache

 minReplicasminReplicas:: 11

 maxReplicasmaxReplicas:: 1010

 metricsmetrics::

 -- typetype:: ResourceResource

 resourceresource::

 namename:: cpucpu

 targetAverageUtilizationtargetAverageUtilization:: 5050

 -- typetype:: PodsPods

 podspods::

 metricNamemetricName:: packets-per-secondpackets-per-second

 targetAverageValuetargetAverageValue:: 1k1k

 -- typetype:: ObjectObject

 objectobject::

 metricNamemetricName:: requests-per-secondrequests-per-second

 targettarget::

 apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

 kindkind:: IngressIngress

 namename:: main-routemain-route

 targetValuetargetValue:: 10k10k

statusstatus::

 observedGenerationobservedGeneration:: 11

 lastScaleTimelastScaleTime:: <some-time><some-time>

 currentReplicascurrentReplicas:: 11

 desiredReplicasdesiredReplicas:: 11

 currentMetricscurrentMetrics::

 -- typetype:: ResourceResource

 resourceresource::

 namename:: cpucpu

 currentAverageUtilizationcurrentAverageUtilization:: 00

 currentAverageValuecurrentAverageValue:: 00

an obvious relationship to any object in the Kubernetes cluster, such as metrics describing a

hosted service with no direct correlation to Kubernetes namespaces. In Kubernetes 1.10 and

later, you can address this use case with external metrics.

Using external metrics requires a certain level of knowledge of your monitoring system, and it

requires a cluster monitoring setup similar to one required for using custom metrics. With

external metrics, you can autoscale based on any metric available in your monitoring system

by providing a metricNamemetricName field in your HorizontalPodAutoscaler manifest. Additionally you

can use a metricSelectormetricSelector field to limit which metrics’ time series you want to use for

autoscaling. If multiple time series are matched by metricSelectormetricSelector , the sum of their values

is used by the HorizontalPodAutoscaler.

For example if your application processes tasks from a hosted queue service, you could add

the following section to your HorizontalPodAutoscaler manifest to specify that you need one

worker per 30 outstanding tasks.

If your metric describes work or resources that can be divided between autoscaled pods the

targetAverageValuetargetAverageValue field describes how much of that work each pod can handle. Instead of

using the targetAverageValuetargetAverageValue field, you could use the targetValuetargetValue to define a desired

value of your external metric.

Appendix: Horizontal Pod Autoscaler Status
Conditions

When using the autoscaling/v2beta1autoscaling/v2beta1 form of the HorizontalPodAutoscaler, you will be able

to see status conditions set by Kubernetes on the HorizontalPodAutoscaler. These status

conditions indicate whether or not the HorizontalPodAutoscaler is able to scale, and whether

or not it is currently restricted in any way.

The conditions appear in the status.conditionsstatus.conditions field. To see the conditions affecting a

-- typetype:: ExternalExternal

 externalexternal::

 metricNamemetricName:: queue_messages_readyqueue_messages_ready

 metricSelectormetricSelector::

 matchLabelsmatchLabels::

 queuequeue:: worker_tasksworker_tasks

 targetAverageValuetargetAverageValue:: 3030

HorizontalPodAutoscaler, we can use

kubectl describekubectl describe

hpahpa :

For this HorizontalPodAutoscaler, we can see several conditions in a healthy state. The first,

AbleToScaleAbleToScale , indicates whether or not the HPA is able to fetch and update scales, as well as

whether or not any backoff-related conditions would prevent scaling. The second,

ScalingActiveScalingActive , indicates whether or not the HPA is enabled (i.e. the replica count of the

target is not zero) and is able to calculate desired scales. When it is FalseFalse , it generally

indicates problems with fetching metrics. Finally, the last condition, ScalingLimitedScalingLimited ,

indicates that the desired scale was capped by the maximum or minimum of the

HorizontalPodAutoscaler. This is an indication that you may wish to raise or lower the

minimum or maximum replica count constraints on your HorizontalPodAutoscaler.

Appendix: Other possible scenarios

Creating the autoscaler declaratively

Instead of using kubectl autoscalekubectl autoscale command to create a HorizontalPodAutoscaler

imperatively we can use the following file to create it declaratively:

$ $ kubectl describe hpa cm-testkubectl describe hpa cm-test

Name: cm-testName: cm-test

Namespace: promNamespace: prom

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000

Reference: ReplicationController/cm-testReference: ReplicationController/cm-test

Metrics: Metrics: ((current / target current / target))

 "http_requests""http_requests" on pods: 66m / 500m on pods: 66m / 500m

Min replicas: 1Min replicas: 1

Max replicas: 4Max replicas: 4

ReplicationController pods: 1 current / 1 desiredReplicationController pods: 1 current / 1 desired

Conditions:Conditions:

 Type Status Reason Message Type Status Reason Message

 -------- ------------ ------------ --------------

 AbleToScale True ReadyForNewScale the last scale AbleToScale True ReadyForNewScale the last scale time time was sufficiently old as to warrant a new scalewas sufficiently old as to warrant a new scale

 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_requests ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_requests

 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range

Events:Events:

hpa-php-apache.yamlhpa-php-apache.yaml

We will create the autoscaler by executing the following command:

apiVersionapiVersion:: autoscaling/v1autoscaling/v1

kindkind:: HorizontalPodAutoscalerHorizontalPodAutoscaler

metadatametadata::

 namename:: php-apachephp-apache

 namespacenamespace:: defaultdefault

specspec::

 scaleTargetRefscaleTargetRef::

 apiVersionapiVersion:: apps/v1beta1apps/v1beta1

 kindkind:: DeploymentDeployment

 namename:: php-apachephp-apache

 minReplicasminReplicas:: 11

 maxReplicasmaxReplicas:: 1010

 targetCPUUtilizationPercentagetargetCPUUtilizationPercentage:: 5050

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/run-application/hpa-php-apache.yaml https://k8s.io/docs/tasks/run-application/hpa-php-apache.yaml

horizontalpodautoscaler horizontalpodautoscaler "php-apache""php-apache" created created

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/hpa-php-apache.yaml

Specifying a Disruption Budget for your
Application

This page shows how to limit the number of concurrent disruptions that your application

experiences, allowing for higher availability while permitting the cluster administrator to

manage the clusters nodes.

Before you begin

You are the owner of an application running on a Kubernetes cluster that requires high

availability.

You should know how to deploy Replicated Stateless Applications and/or Replicated

Stateful Applications.

You should have read about Pod Disruptions.

You should confirm with your cluster owner or service provider that they respect Pod

Disruption Budgets.

Protecting an Application with a
PodDisruptionBudget

1. Identify what application you want to protect with a PodDisruptionBudget (PDB).

2. Think about how your application reacts to disruptions.

Before you begin

Protecting an Application with a PodDisruptionBudget

Identify an Application to Protect

Think about how your application reacts to disruptions

Specifying a PodDisruptionBudget

Create the PDB object

Check the status of the PDB

Arbitrary Controllers and Selectors

file:///docs/tasks/run-application/run-stateless-application-deployment/
file:///docs/tasks/run-application/run-replicated-stateful-application/
file:///docs/concepts/workloads/pods/disruptions/

3. Create a PDB definition as a YAML file.

4. Create the PDB object from the YAML file.

Identify an Application to Protect

The most common use case when you want to protect an application specified by one of the

built-in Kubernetes controllers:

Deployment

ReplicationController

ReplicaSet

StatefulSet

In this case, make a note of the controller’s .spec.selector.spec.selector ; the same selector goes into the

PDBs .spec.selector.spec.selector .

You can also use PDBs with pods which are not controlled by one of the above controllers, or

arbitrary groups of pods, but there are some restrictions, described in Arbitrary Controllers and

Selectors.

Think about how your application reacts to
disruptions

Decide how many instances can be down at the same time for a short period due to a

voluntary disruption.

Stateless frontends:

Concern: don’t reduce serving capacity by more than 10%.

Solution: use PDB with minAvailable 90% for example.

Single-instance Stateful Application:

Concern: do not terminate this application without talking to me.

Possible Solution 1: Do not use a PDB and tolerate occasional downtime.

Possible Solution 2: Set PDB with maxUnavailable=0. Have an understanding

(outside of Kubernetes) that the cluster operator needs to consult you before

termination. When the cluster operator contacts you, prepare for downtime, and

then delete the PDB to indicate readiness for disruption. Recreate afterwards.

Multiple-instance Stateful application such as Consul, ZooKeeper, or etcd:

Concern: Do not reduce number of instances below quorum, otherwise writes fail.

Possible Solution 1: set maxUnavailable to 1 (works with varying scale of

application).

Possible Solution 2: set minAvailable to quorum-size (e.g. 3 when scale is 5).

(Allows more disruptions at once).

Restartable Batch Job:

Concern: Job needs to complete in case of voluntary disruption.

Possible solution: Do not create a PDB. The Job controller will create a

replacement pod.

Specifying a PodDisruptionBudget

A PodDisruptionBudgetPodDisruptionBudget has three fields:

A label selector .spec.selector.spec.selector to specify the set of pods to which it applies. This field

is required.

.spec.minAvailable.spec.minAvailable which is a description of the number of pods from that set that

must still be available after the eviction, even in the absence of the evicted pod.

minAvailableminAvailable can be either an absolute number or a percentage.

.spec.maxUnavailable.spec.maxUnavailable (available in Kubernetes 1.7 and higher) which is a description of

the number of pods from that set that can be unavailable after the eviction. It can be either

an absolute number or a percentage.

Note: For versions 1.8 and earlier: When creating a PodDisruptionBudgetPodDisruptionBudget object using

the kubectlkubectl command line tool, the minAvailableminAvailable field has a default value of 1 if

neither minAvailableminAvailable nor maxUnavailablemaxUnavailable is specified.

You can specify only one of maxUnavailablemaxUnavailable and minAvailableminAvailable in a single

PodDisruptionBudgetPodDisruptionBudget . maxUnavailablemaxUnavailable can only be used to control the eviction of pods

that have an associated controller managing them. In the examples below, “desired replicas” is

the scalescale of the controller managing the pods being selected by the PodDisruptionBudgetPodDisruptionBudget .

Example 1: With a minAvailableminAvailable of 5, evictions are be allowed as long as they leave behind 5

or more healthy pods among those selected by the PodDisruptionBudget’s selectorselector .

Example 2: With a minAvailableminAvailable of 30%, evictions are allowed as long as at least 30% of the

number of desired replicas are healthy.

Example 3: With a maxUnavailablemaxUnavailable of 5, evictions are allowed as long as there are at most 5

unhealthy replicas among the total number of desired replicas.

Example 4: With a maxUnavailablemaxUnavailable of 30%, evictions are allowed as long as no more than

30% of the desired replicas are unhealthy.

In typical usage, a single budget would be used for a collection of pods managed by a

controller—for example, the pods in a single ReplicaSet or StatefulSet.

Note: A disruption budget does not truly guarantee that the specified number/percentage of

pods will always be up. For example, a node that hosts a pod from the collection may fail when

the collection is at the minimum size specified in the budget, thus bringing the number of

available pods from the collection below the specified size. The budget can only protect

against voluntary evictions, not all causes of unavailability.

A maxUnavailablemaxUnavailable of 0% (or 0) or a minAvailableminAvailable of 100% (or equal to the number of

replicas) may block node drains entirely. This is permitted as per the semantics of

PodDisruptionBudgetPodDisruptionBudget .

You can find examples of pod disruption budgets defined below. They match pods with the

label app: zookeeperapp: zookeeper .

Example PDB Using minAvailable:

Example PDB Using maxUnavailable (Kubernetes 1.7 or higher):

For example, if the above zk-pdbzk-pdb object selects the pods of a StatefulSet of size 3, both

specifications have the exact same meaning. The use of maxUnavailablemaxUnavailable is recommended

as it automatically responds to changes in the number of replicas of the corresponding

controller.

Create the PDB object

You can create the PDB object with a command like

kubectl create -fkubectl create -f

mypdb.yamlmypdb.yaml .

You cannot update PDB objects. They must be deleted and re-created.

Check the status of the PDB

Use kubectl to check that your PDB is created.

Assuming you don’t actually have pods matching app: zookeeperapp: zookeeper in your namespace, then

you’ll see something like this:

apiVersionapiVersion:: policy/v1beta1policy/v1beta1

kindkind:: PodDisruptionBudgetPodDisruptionBudget

metadatametadata::

 namename:: zk-pdbzk-pdb

specspec::

 minAvailableminAvailable:: 22

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: zookeeperzookeeper

apiVersionapiVersion:: policy/v1beta1policy/v1beta1

kindkind:: PodDisruptionBudgetPodDisruptionBudget

metadatametadata::

 namename:: zk-pdbzk-pdb

specspec::

 maxUnavailablemaxUnavailable:: 11

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: zookeeperzookeeper

If there are matching pods (say, 3), then you would see something like this:

The non-zero value for ALLOWED-DISRUPTIONSALLOWED-DISRUPTIONS means that the disruption controller has seen

the pods, counted the matching pods, and update the status of the PDB.

You can get more information about the status of a PDB with this command:

Arbitrary Controllers and Selectors

You can skip this section if you only use PDBs with the built-in application controllers

(Deployment, ReplicationController, ReplicaSet, and StatefulSet), with the PDB selector

matching the controller’s selector.

You can use a PDB with pods controlled by another type of controller, by an “operator”, or bare

pods, but with these restrictions:

only .spec.minAvailable.spec.minAvailable can be used, not .spec.maxUnavailable.spec.maxUnavailable .

$ $ kubectl get poddisruptionbudgetskubectl get poddisruptionbudgets

NAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGENAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGE

zk-pdb 2 0 7szk-pdb 2 0 7s

$ $ kubectl get poddisruptionbudgetskubectl get poddisruptionbudgets

NAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGENAME MIN-AVAILABLE ALLOWED-DISRUPTIONS AGE

zk-pdb 2 1 7szk-pdb 2 1 7s

$ $ kubectl get poddisruptionbudgets zk-pdb kubectl get poddisruptionbudgets zk-pdb -o-o yaml yaml

apiVersion: policy/v1beta1apiVersion: policy/v1beta1

kind: PodDisruptionBudgetkind: PodDisruptionBudget

metadata:metadata:

 creationTimestamp: 2017-08-28T02:38:26Z creationTimestamp: 2017-08-28T02:38:26Z

 generation: 1 generation: 1

 name: zk-pdb name: zk-pdb

......

status:status:

 currentHealthy: 3 currentHealthy: 3

 desiredHealthy: 3 desiredHealthy: 3

 disruptedPods: null disruptedPods: null

 disruptionsAllowed: 1 disruptionsAllowed: 1

 expectedPods: 3 expectedPods: 3

 observedGeneration: 1 observedGeneration: 1

only an integer value can be used with .spec.minAvailable.spec.minAvailable , not a percentage.

You can use a selector which selects a subset or superset of the pods belonging to a built-in

controller. However, when there are multiple PDBs in a namespace, you must be careful not to

create PDBs whose selectors overlap.

Parallel Processing using Expansions

Example: Multiple Job Objects from
Template Expansion

In this example, we will run multiple Kubernetes Jobs created from a common template. You

may want to be familiar with the basic, non-parallel, use of Jobs first.

Basic Template Expansion

First, download the following template of a job to a file called job.yamljob.yaml

job.yamljob.yaml

Example: Multiple Job Objects from Template Expansion

Basic Template Expansion

Multiple Template Parameters

Alternatives

apiVersionapiVersion:: batch/v1batch/v1

kindkind:: JobJob

metadatametadata::

 namename:: process-item-$ITEMprocess-item-$ITEM

 labelslabels::

 jobgroupjobgroup:: jobexamplejobexample

specspec::

 templatetemplate::

 metadatametadata::

 namename:: jobexamplejobexample

 labelslabels::

 jobgroupjobgroup:: jobexamplejobexample

 specspec::

 containerscontainers::

 -- namename:: cc

 imageimage:: busyboxbusybox

 commandcommand:: [[""sh"sh",, ""-c"-c",, ""echoecho ProcessingProcessing itemitem $ITEM$ITEM &&&& sleepsleep 5"5"]]

 restartPolicyrestartPolicy:: NeverNever

file:///docs/concepts/jobs/run-to-completion-finite-workloads/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/job/job.yaml

Unlike a pod template, our job template is not a Kubernetes API type. It is just a yaml

representation of a Job object that has some placeholders that need to be filled in before it can

be used. The $ITEM$ITEM syntax is not meaningful to Kubernetes.

In this example, the only processing the container does is to echoecho a string and sleep for a bit.

In a real use case, the processing would be some substantial computation, such as rendering a

frame of a movie, or processing a range of rows in a database. The $ITEM$ITEM parameter would

specify for example, the frame number or the row range.

This Job and its Pod template have a label: jobgroup=jobexamplejobgroup=jobexample . There is nothing special

to the system about this label. This label makes it convenient to operate on all the jobs in this

group at once. We also put the same label on the pod template so that we can check on all

Pods of these Jobs with a single command. After the job is created, the system will add more

labels that distinguish one Job’s pods from another Job’s pods. Note that the label key

jobgroupjobgroup is not special to Kubernetes. You can pick your own label scheme.

Next, expand the template into multiple files, one for each item to be processed.

Check if it worked:

Here, we used sedsed to replace the string $ITEM$ITEM with the loop variable. You could use any type

of template language (jinja2, erb) or write a program to generate the Job objects.

Next, create all the jobs with one kubectl command:

Expand files into a temporary directory# Expand files into a temporary directory
$ $ mkdir ./jobsmkdir ./jobs

$ $ for for i i in in apple banana cherryapple banana cherry

dodo

 cat cat job.yaml | sed job.yaml | sed "s/"s/\$\$ITEM/ITEM/ii/"/" >> ./jobs/job- ./jobs/job-ii.yaml.yaml

donedone

$ $ ls jobsls jobs//

job-apple.yamljob-apple.yaml

job-banana.yamljob-banana.yaml

job-cherry.yamljob-cherry.yaml

$ $ kubectl create kubectl create -f-f ./jobs ./jobs

job job "process-item-apple""process-item-apple" created created

job job "process-item-banana""process-item-banana" created created

job job "process-item-cherry""process-item-cherry" created created

Now, check on the jobs:

Here we use the -l-l option to select all jobs that are part of this group of jobs. (There might be

other unrelated jobs in the system that we do not care to see.)

We can check on the pods as well using the same label selector:

There is not a single command to check on the output of all jobs at once, but looping over all

the pods is pretty easy:

Multiple Template Parameters

In the first example, each instance of the template had one parameter, and that parameter was

also used as a label. However label keys are limited in what characters they can contain .

This slightly more complex example uses the jinja2 template language to generate our objects.

We will use a one-line python script to convert the template to a file.

First, copy and paste the following template of a Job object, into a file called

job.yaml.jinja2job.yaml.jinja2 :

$ $ kubectl get kubectl get jobsjobs -l-l jobgroupjobgroup==jobexamplejobexample

NAME DESIRED SUCCESSFUL AGENAME DESIRED SUCCESSFUL AGE

process-item-apple 1 1 31sprocess-item-apple 1 1 31s

process-item-banana 1 1 31sprocess-item-banana 1 1 31s

process-item-cherry 1 1 31sprocess-item-cherry 1 1 31s

$ $ kubectl get pods kubectl get pods -l-l jobgroupjobgroup==jobexamplejobexample

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

process-item-apple-kixwv 0/1 Completed 0 4mprocess-item-apple-kixwv 0/1 Completed 0 4m

process-item-banana-wrsf7 0/1 Completed 0 4mprocess-item-banana-wrsf7 0/1 Completed 0 4m

process-item-cherry-dnfu9 0/1 Completed 0 4mprocess-item-cherry-dnfu9 0/1 Completed 0 4m

$ $ for for p p inin $($(kubectl get pods kubectl get pods -l-l jobgroupjobgroup==jobexample jobexample -o-o name name))

dodo

 kubectl logs kubectl logs pp

donedone

Processing item appleProcessing item apple

Processing item bananaProcessing item banana

Processing item cherryProcessing item cherry

file:///docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

The above template defines parameters for each job object using a list of python dicts (lines 1-

4). Then a for loop emits one job yaml object for each set of parameters (remaining lines). We

take advantage of the fact that multiple yaml documents can be concatenated with the ------

separator (second to last line). .) We can pipe the output directly to kubectl to create the

objects.

You will need the jinja2 package if you do not already have it:

pip install --userpip install --user

jinja2jinja2 .

Now, use this one-line python program to expand the template:

The output can be saved to a file, like this:

{%{%-- setset paramsparams == [{[{ "name""name":: "apple""apple",, "url""url":: "http://www.orangepippin.com/apples""http://www.orangepippin.com/apples"

 {{ "name""name":: "banana""banana",, "url""url":: "https://en.wikipedia.org/wiki/Banana""https://en.wikipedia.org/wiki/Banana"

 {{ "name""name":: "raspberry""raspberry",, "url""url":: "https://www.raspberrypi.org/""https://www.raspberrypi.org/"

%}%}

{%{%-- forfor pp inin paramsparams %}%}

{%{%-- setset namename == p[p["name""name"]] %}%}

{%{%-- setset urlurl == p[p["url""url"]] %}%}

apiVersion: batch/v1apiVersion: batch/v1

kind: Jobkind: Job

metadata:metadata:

 name: jobexample- name: jobexample-{{{{ namename }}}}

 labels: labels:

 jobgroup: jobexample jobgroup: jobexample

spec:spec:

 template: template:

 metadata: metadata:

 name: jobexample name: jobexample

 labels: labels:

 jobgroup: jobexample jobgroup: jobexample

 spec: spec:

 containers: containers:

 - name: c - name: c

 image: busybox image: busybox

 command: ["sh", "-c", "echo Processing URL command: ["sh", "-c", "echo Processing URL {{{{ urlurl }}}} && sleep 5"] && sleep 5"]

 restartPolicy: Never restartPolicy: Never

{%{%-- endforendfor %}%}

alias alias render_templaterender_template=='python -c "from jinja2 import Template; import sys; print(Template(sys.stdin.read()).render());"''python -c "from jinja2 import Template; import sys; print(Template(sys.stdin.read()).render());"'

Or sent directly to kubectl, like this:

Alternatives

If you have a large number of job objects, you may find that:

Even using labels, managing so many Job objects is cumbersome.

You exceed resource quota when creating all the Jobs at once, and do not want to wait to

create them incrementally.

Very large numbers of jobs created at once overload the Kubernetes apiserver, controller,

or scheduler.

In this case, you can consider one of the other job patterns.

cat cat job.yaml.jinja2 | render_template job.yaml.jinja2 | render_template >> jobs.yaml jobs.yaml

cat cat job.yaml.jinja2 | render_template | kubectl create job.yaml.jinja2 | render_template | kubectl create -f-f - -

file:///docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns

Coarse Parallel Processing Using a Work
Queue

Example: Job with Work Queue with Pod
Per Work Item

In this example, we will run a Kubernetes Job with multiple parallel worker processes. You may

want to be familiar with the basic, non-parallel, use of Job first.

In this example, as each pod is created, it picks up one unit of work from a task queue,

completes it, deletes it from the queue, and exits.

Here is an overview of the steps in this example:

1. Start a message queue service. In this example, we use RabbitMQ, but you could use

another one. In practice you would set up a message queue service once and reuse it for

many jobs.

2. Create a queue, and fill it with messages. Each message represents one task to be done.

In this example, a message is just an integer that we will do a lengthy computation on.

3. Start a Job that works on tasks from the queue . The Job starts several pods. Each pod

takes one task from the message queue, processes it, and repeats until the end of the

queue is reached.

Starting a message queue service

Example: Job with Work Queue with Pod Per Work Item

Starting a message queue service

Testing the message queue service

Filling the Queue with tasks

Create an Image

Defining a Job

Running the Job

Alternatives

Caveats

file:///docs/concepts/jobs/run-to-completion-finite-workloads/

This example uses RabbitMQ, but it should be easy to adapt to another AMQP-type message

service.

In practice you could set up a message queue service once in a cluster and reuse it for many

jobs, as well as for long-running services.

Start RabbitMQ as follows:

We will only use the rabbitmq part from the celery-rabbitmq example.

Testing the message queue service

Now, we can experiment with accessing the message queue. We will create a temporary

interactive pod, install some tools on it, and experiment with queues.

First create a temporary interactive Pod.

Note that your pod name and command prompt will be different.

Next install the amqp-toolsamqp-tools so we can work with message queues.

Later, we will make a docker image that includes these packages.

Next, we will check that we can discover the rabbitmq service:

$ $ kubectl create kubectl create -f-f examples/celery-rabbitmq/rabbitmq-service.yaml examples/celery-rabbitmq/rabbitmq-service.yaml

service service "rabbitmq-service""rabbitmq-service" created created

$ $ kubectl create kubectl create -f-f examples/celery-rabbitmq/rabbitmq-controller.yaml examples/celery-rabbitmq/rabbitmq-controller.yaml

replicationcontroller replicationcontroller "rabbitmq-controller""rabbitmq-controller" created created

Create a temporary interactive container# Create a temporary interactive container
$ $ kubectl run kubectl run -i-i --tty--tty temp temp --image--image ubuntu:14.04 ubuntu:14.04

Waiting Waiting for for pod default/temp-loe07 to be running, status is Pending, pod ready: pod default/temp-loe07 to be running, status is Pending, pod ready:

... ... [[previous line repeats several previous line repeats several timestimes .. hit .. hit return return when it stops when it stops]]

Install some tools# Install some tools
root@temp-loe07:/# apt-get updateroot@temp-loe07:/# apt-get update

.... [[lots of output lots of output]]

root@temp-loe07:/# apt-get install root@temp-loe07:/# apt-get install -y-y curl ca-certificates amqp-tools python dnsutils curl ca-certificates amqp-tools python dnsutils

.... [[lots of output lots of output]]

https://github.com/kubernetes/kubernetes/tree/release-1.3/examples/celery-rabbitmq

If Kube-DNS is not setup correctly, the previous step may not work for you. You can also find

the service IP in an env var:

Next we will verify we can create a queue, and publish and consume messages.

Note the rabbitmq-service has a DNS name, provided by Kubernetes:# Note the rabbitmq-service has a DNS name, provided by Kubernetes:

root@temp-loe07:/# nslookup rabbitmq-serviceroot@temp-loe07:/# nslookup rabbitmq-service

Server: 10.0.0.10Server: 10.0.0.10

Address: 10.0.0.10#53Address: 10.0.0.10#53

Name: rabbitmq-service.default.svc.cluster.localName: rabbitmq-service.default.svc.cluster.local

Address: 10.0.147.152Address: 10.0.147.152

Your address will vary.# Your address will vary.

env | grep RABBIT | grep HOST# env | grep RABBIT | grep HOST

RABBITMQ_SERVICE_SERVICE_HOST=10.0.147.152RABBITMQ_SERVICE_SERVICE_HOST=10.0.147.152

Your address will vary.# Your address will vary.

In the next line, rabbitmq-service is the hostname where the rabbitmq-service# In the next line, rabbitmq-service is the hostname where the rabbitmq-service
can be reached. 5672 is the standard port for rabbitmq.# can be reached. 5672 is the standard port for rabbitmq.

root@temp-loe07:/# root@temp-loe07:/# export export BROKER_URLBROKER_URL==amqp://guest:guest@rabbitmq-service:5672amqp://guest:guest@rabbitmq-service:5672

If you could not resolve "rabbitmq-service" in the previous step,# If you could not resolve "rabbitmq-service" in the previous step,
then use this command instead:# then use this command instead:
root@temp-loe07:/# BROKER_URL=amqp://guest:guest@$RABBITMQ_SERVICE_SERVICE_HOST:5672# root@temp-loe07:/# BROKER_URL=amqp://guest:guest@$RABBITMQ_SERVICE_SERVICE_HOST:5672

Now create a queue:# Now create a queue:

root@temp-loe07:/# /usr/bin/amqp-declare-queue root@temp-loe07:/# /usr/bin/amqp-declare-queue --url--url==$BROKER_URL$BROKER_URL -q-q foo foo -d-d

foofoo

Publish one message to it:# Publish one message to it:

root@temp-loe07:/# /usr/bin/amqp-publish root@temp-loe07:/# /usr/bin/amqp-publish --url--url==$BROKER_URL$BROKER_URL -r-r foo foo -p-p -b-b Hello Hello

And get it back.# And get it back.

root@temp-loe07:/# /usr/bin/amqp-consume root@temp-loe07:/# /usr/bin/amqp-consume --url--url==$BROKER_URL$BROKER_URL -q-q foo foo -c-c 1 1 catcat &&&&

HelloHello

root@temp-loe07:/#root@temp-loe07:/#

In the last command, the amqp-consumeamqp-consume tool takes one message (

-c-c

11) from the queue, and

passes that message to the standard input of an arbitrary command. In this case, the program

catcat is just printing out what it gets on the standard input, and the echo is just to add a

carriage return so the example is readable.

Filling the Queue with tasks

Now lets fill the queue with some “tasks”. In our example, our tasks are just strings to be

printed.

In a practice, the content of the messages might be:

names of files to that need to be processed

extra flags to the program

ranges of keys in a database table

configuration parameters to a simulation

frame numbers of a scene to be rendered

In practice, if there is large data that is needed in a read-only mode by all pods of the Job, you

will typically put that in a shared file system like NFS and mount that readonly on all the pods,

or the program in the pod will natively read data from a cluster file system like HDFS.

For our example, we will create the queue and fill it using the amqp command line tools. In

practice, you might write a program to fill the queue using an amqp client library.

So, we filled the queue with 8 messages.

Create an Image

$ $ /usr/bin/amqp-declare-queue /usr/bin/amqp-declare-queue --url--url==$BROKER_URL$BROKER_URL -q-q job1 job1 -d-d

job1job1

$ $ for for f f in in apple banana cherry date fig grape lemon melonapple banana cherry date fig grape lemon melon

dodo

 /usr/bin/amqp-publish /usr/bin/amqp-publish --url--url==$BROKER_URL$BROKER_URL -r-r job1 job1 -p-p -b-b ff

donedone

Now we are ready to create an image that we will run as a job.

We will use the amqp-consumeamqp-consume utility to read the message from the queue and run our actual

program. Here is a very simple example program:

worker.pyworker.py

Now, build an image. If you are working in the source tree, then change directory to

examples/job/work-queue-1examples/job/work-queue-1 . Otherwise, make a temporary directory, change to it, download

the Dockerfile, and worker.py. In either case, build the image with this command:

For the Docker Hub, tag your app image with your username and push to the Hub with the

below commands. Replace <username><username> with your Hub username.

If you are using Google Container Registry, tag your app image with your project ID, and push

to GCR. Replace <project><project> with your project ID.

Defining a Job

Here is a job definition. You’ll need to make a copy of the Job and edit the image to match the

#!/usr/bin/env python#!/usr/bin/env python

Just prints standard out and sleeps for 10 seconds.# Just prints standard out and sleeps for 10 seconds.
importimport syssys

importimport timetime

printprint(("Processing ""Processing " ++ syssys..stdinstdin..lineslines())())

timetime..sleepsleep((1010))

$ $ docker build docker build -t-t job-wq-1 job-wq-1 ..

docker tag job-wq-1 <username>/job-wq-1docker tag job-wq-1 <username>/job-wq-1

docker push <username>/job-wq-1docker push <username>/job-wq-1

docker tag job-wq-1 gcr.io/<project>/job-wq-1docker tag job-wq-1 gcr.io/<project>/job-wq-1

gcloud docker gcloud docker ---- push gcr.io/<project>/job-wq-1 push gcr.io/<project>/job-wq-1

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/job/coarse-parallel-processing-work-queue/worker.py
file:///_site/docs/tasks/job/coarse-parallel-processing-work-queue/Dockerfile?raw=true
file:///_site/docs/tasks/job/coarse-parallel-processing-work-queue/worker.py?raw=true
https://hub.docker.com/
https://cloud.google.com/tools/container-registry/

name you used, and call it ./job.yaml./job.yaml .

job.yamljob.yaml

In this example, each pod works on one item from the queue and then exits. So, the completion

count of the Job corresponds to the number of work items done. So we set,

.spec.completions:.spec.completions:

88 for the example, since we put 8 items in the queue.

Running the Job

So, now run the Job:

Now wait a bit, then check on the job.

apiVersionapiVersion:: batch/v1batch/v1

kindkind:: JobJob

metadatametadata::

 namename:: job-wq-1job-wq-1

specspec::

 completionscompletions:: 88

 parallelismparallelism:: 22

 templatetemplate::

 metadatametadata::

 namename:: job-wq-1job-wq-1

 specspec::

 containerscontainers::

 -- namename:: cc

 imageimage:: gcr.io/<project>/job-wq-1gcr.io/<project>/job-wq-1

 envenv::

 -- namename:: BROKER_URLBROKER_URL

 valuevalue:: amqp://guest:guest@rabbitmq-service:5672amqp://guest:guest@rabbitmq-service:5672

 -- namename:: QUEUEQUEUE

 valuevalue:: job1job1

 restartPolicyrestartPolicy:: OnFailureOnFailure

kubectl create kubectl create -f-f ./job.yaml ./job.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/job/coarse-parallel-processing-work-queue/job.yaml

All our pods succeeded. Yay.

Alternatives

This approach has the advantage that you do not need to modify your “worker” program to be

aware that there is a work queue.

It does require that you run a message queue service. If running a queue service is

inconvenient, you may want to consider one of the other job patterns.

This approach creates a pod for every work item. If your work items only take a few seconds,

$ $ kubectl describe kubectl describe jobsjobs/job-wq-1/job-wq-1

Name: job-wq-1Name: job-wq-1

Namespace: defaultNamespace: default

Selector: controller-uidSelector: controller-uid==41d75705-92df-11e7-b85e-fa163ee3c11f41d75705-92df-11e7-b85e-fa163ee3c11f

Labels: controller-uidLabels: controller-uid==41d75705-92df-11e7-b85e-fa163ee3c11f41d75705-92df-11e7-b85e-fa163ee3c11f

 job-name job-name==job-wq-1job-wq-1

Annotations: <none>Annotations: <none>

Parallelism: 2Parallelism: 2

Completions: 8Completions: 8

Start Time: Wed, 06 Sep 2017 16:42:02 +0800Start Time: Wed, 06 Sep 2017 16:42:02 +0800

Pods Statuses: 0 Running / 8 Succeeded / 0 FailedPods Statuses: 0 Running / 8 Succeeded / 0 Failed

Pod Template:Pod Template:

 Labels: controller-uid Labels: controller-uid==41d75705-92df-11e7-b85e-fa163ee3c11f41d75705-92df-11e7-b85e-fa163ee3c11f

 job-name job-name==job-wq-1job-wq-1

 Containers: Containers:

 c: c:

 Image: gcr.io/causal-jigsaw-637/job-wq-1 Image: gcr.io/causal-jigsaw-637/job-wq-1

 Port: Port:

 Environment: Environment:

 BROKER_URL: amqp://guest:guest@rabbitmq-service:5672 BROKER_URL: amqp://guest:guest@rabbitmq-service:5672

 QUEUE: job1 QUEUE: job1

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ───────── ──────── ───── ──── ───────────── ────── ────── ───────

 27s 27s 1 27s 27s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-hcobb Normal SuccessfulCreate Created pod: job-wq-1-hcobb

 27s 27s 1 27s 27s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-weytj Normal SuccessfulCreate Created pod: job-wq-1-weytj

 27s 27s 1 27s 27s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-qaam5 Normal SuccessfulCreate Created pod: job-wq-1-qaam5

 27s 27s 1 27s 27s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-b67sr Normal SuccessfulCreate Created pod: job-wq-1-b67sr

 26s 26s 1 26s 26s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-xe5hj Normal SuccessfulCreate Created pod: job-wq-1-xe5hj

 15s 15s 1 15s 15s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-w2zqe Normal SuccessfulCreate Created pod: job-wq-1-w2zqe

 14s 14s 1 14s 14s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-d6ppa Normal SuccessfulCreate Created pod: job-wq-1-d6ppa

 14s 14s 1 14s 14s 1 {{job job }} Normal SuccessfulCreate Created pod: job-wq-1-p17e0 Normal SuccessfulCreate Created pod: job-wq-1-p17e0

file:///docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns

though, creating a Pod for every work item may add a lot of overhead. Consider another

example, that executes multiple work items per Pod.

In this example, we used use the amqp-consumeamqp-consume utility to read the message from the queue

and run our actual program. This has the advantage that you do not need to modify your

program to be aware of the queue. A different example, shows how to communicate with the

work queue using a client library.

Caveats

If the number of completions is set to less than the number of items in the queue, then not all

items will be processed.

If the number of completions is set to more than the number of items in the queue, then the

Job will not appear to be completed, even though all items in the queue have been processed.

It will start additional pods which will block waiting for a message.

There is an unlikely race with this pattern. If the container is killed in between the time that the

message is acknowledged by the amqp-consume command and the time that the container

exits with success, or if the node crashes before the kubelet is able to post the success of the

pod back to the api-server, then the Job will not appear to be complete, even though all items

in the queue have been processed.

file:///docs/tasks/job/fine-parallel-processing-work-queue/
file:///docs/tasks/job/fine-parallel-processing-work-queue/

Fine Parallel Processing Using a Work
Queue

Example: Job with Work Queue with
Multiple Work Items Per Pod

In this example, we will run a Kubernetes Job with multiple parallel worker processes. You may

want to be familiar with the basic, non-parallel, use of Job first.

In this example, as each pod is created, it picks up one unit of work from a task queue,

processes it, and repeats until the end of the queue is reached.

Here is an overview of the steps in this example:

1. Start a storage service to hold the work queue. In this example, we use Redis to store our

work items. In the previous example, we used RabbitMQ. In this example, we use Redis

and a custom work-queue client library because AMQP does not provide a good way for

clients to detect when a finite-length work queue is empty. In practice you would set up a

store such as Redis once and reuse it for the work queues of many jobs, and other things.

2. Create a queue, and fill it with messages. Each message represents one task to be done.

In this example, a message is just an integer that we will do a lengthy computation on.

3. Start a Job that works on tasks from the queue . The Job starts several pods. Each pod

takes one task from the message queue, processes it, and repeats until the end of the

queue is reached.

Example: Job with Work Queue with Multiple Work Items Per Pod

Starting Redis

Filling the Queue with tasks

Create an Image

Push the image

Defining a Job

Running the Job

Alternatives

file:///docs/concepts/jobs/run-to-completion-finite-workloads/

Starting Redis

For this example, for simplicity, we will start a single instance of Redis. See the Redis Example

for an example of deploying Redis scalably and redundantly.

Start a temporary Pod running Redis and a service so we can find it.

If you’re not working from the source tree, you could also download redis-pod.yamlredis-pod.yaml and

redis-service.yamlredis-service.yaml directly.

Filling the Queue with tasks

Now let’s fill the queue with some “tasks”. In our example, our tasks are just strings to be

printed.

Start a temporary interactive pod for running the Redis CLI.

Now hit enter, start the redis CLI, and create a list with some work items in it.

$ $ kubectl create kubectl create -f-f docs/tasks/job/fine-parallel-processing-work-queue/redis-pod.yaml docs/tasks/job/fine-parallel-processing-work-queue/redis-pod.yaml

pod pod "redis-master""redis-master" created created

$ $ kubectl create kubectl create -f-f docs/tasks/job/fine-parallel-processing-work-queue/redis-service.yaml docs/tasks/job/fine-parallel-processing-work-queue/redis-service.yaml

service service "redis""redis" created created

$ $ kubectl run kubectl run -i-i --tty--tty temp temp --image--image redis redis --command--command "/bin/sh""/bin/sh"

Waiting Waiting for for pod default/redis2-c7h78 to be running, status is Pending, pod ready: pod default/redis2-c7h78 to be running, status is Pending, pod ready:

Hit enter Hit enter for for command command promptprompt

https://github.com/kubernetes/examples/tree/master/guestbook
file:///_site/docs/tasks/job/fine-parallel-processing-work-queue/redis-pod.yaml?raw=true
file:///_site/docs/tasks/job/fine-parallel-processing-work-queue/redis-service.yaml?raw=true

So, the list with key job2job2 will be our work queue.

Note: if you do not have Kube DNS setup correctly, you may need to change the first step of the

above block to

redis-cli -hredis-cli -h

$REDIS_SERVICE_HOST$REDIS_SERVICE_HOST .

Create an Image

Now we are ready to create an image that we will run.

We will use a python worker program with a redis client to read the messages from the

message queue.

A simple Redis work queue client library is provided, called rediswq.py (Download).

The “worker” program in each Pod of the Job uses the work queue client library to get work.

redis-cli -h redis# redis-cli -h redis

redis:6379> rpush job2 "apple"redis:6379> rpush job2 "apple"

(integer) 1(integer) 1

redis:6379> rpush job2 "banana"redis:6379> rpush job2 "banana"

(integer) 2(integer) 2

redis:6379> rpush job2 "cherry"redis:6379> rpush job2 "cherry"

(integer) 3(integer) 3

redis:6379> rpush job2 "date"redis:6379> rpush job2 "date"

(integer) 4(integer) 4

redis:6379> rpush job2 "fig"redis:6379> rpush job2 "fig"

(integer) 5(integer) 5

redis:6379> rpush job2 "grape"redis:6379> rpush job2 "grape"

(integer) 6(integer) 6

redis:6379> rpush job2 "lemon"redis:6379> rpush job2 "lemon"

(integer) 7(integer) 7

redis:6379> rpush job2 "melon"redis:6379> rpush job2 "melon"

(integer) 8(integer) 8

redis:6379> rpush job2 "orange"redis:6379> rpush job2 "orange"

(integer) 9(integer) 9

redis:6379> lrange job2 0 -1redis:6379> lrange job2 0 -1

1) "apple"1) "apple"

2) "banana"2) "banana"

3) "cherry"3) "cherry"

4) "date"4) "date"

5) "fig"5) "fig"

6) "grape"6) "grape"

7) "lemon"7) "lemon"

8) "melon"8) "melon"

9) "orange"9) "orange"

file:///_site/docs/tasks/job/fine-parallel-processing-work-queue/rediswq.py?raw=true

Here it is:

worker.pyworker.py

If you are working from the source tree, change directory to the

docs/tasks/job/fine-parallel-processing-work-queue/docs/tasks/job/fine-parallel-processing-work-queue/ directory. Otherwise, download

worker.pyworker.py , rediswq.pyrediswq.py , and DockerfileDockerfile using above links. Then build the image:

Push the image

For the Docker Hub, tag your app image with your username and push to the Hub with the

below commands. Replace <username><username> with your Hub username.

#!/usr/bin/env python#!/usr/bin/env python

importimport timetime

importimport rediswqrediswq

hosthost=="redis""redis"

Uncomment next two lines if you do not have Kube-DNS working.# Uncomment next two lines if you do not have Kube-DNS working.
import os# import os
host = os.getenv("REDIS_SERVICE_HOST")# host = os.getenv("REDIS_SERVICE_HOST")

qq == rediswqrediswq..RedisWQRedisWQ((namename=="job2""job2",, hosthost=="redis""redis"))

printprint(("Worker with sessionID: ""Worker with sessionID: " ++ qq..sessionIDsessionID())())

printprint(("Initial queue state: empty=""Initial queue state: empty=" ++ strstr((qq..emptyempty()))()))

whilewhile notnot qq..emptyempty():():

 itemitem == qq..leaselease((lease_secslease_secs==1010,, blockblock==TrueTrue,, timeouttimeout==22))

 ifif itemitem isis notnot NoneNone::

 itemstritemstr == itemitem..decodedecode(("utf=8""utf=8"))

 printprint(("Working on ""Working on " ++ itemstritemstr))

 timetime..sleepsleep((1010)) # Put your actual work here instead of sleep.# Put your actual work here instead of sleep.
 qq..completecomplete((itemitem))

 elseelse::

 printprint(("Waiting for work""Waiting for work"))

printprint(("Queue empty, exiting""Queue empty, exiting"))

docker build docker build -t-t job-wq-2 job-wq-2 ..

docker tag job-wq-2 <username>/job-wq-2docker tag job-wq-2 <username>/job-wq-2

docker push <username>/job-wq-2docker push <username>/job-wq-2

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/job/fine-parallel-processing-work-queue/worker.py
file:///_site/docs/tasks/job/fine-parallel-processing-work-queue/worker.py?raw=true
file:///_site/docs/tasks/job/fine-parallel-processing-work-queue/rediswq.py?raw=true
file:///_site/docs/tasks/job/fine-parallel-processing-work-queue/Dockerfile?raw=true
https://hub.docker.com/

You need to push to a public repository or configure your cluster to be able to access your

private repository.

If you are using Google Container Registry, tag your app image with your project ID, and push

to GCR. Replace <project><project> with your project ID.

Defining a Job

Here is the job definition:

job.yamljob.yaml

Be sure to edit the job template to change gcr.io/myprojectgcr.io/myproject to your own path.

In this example, each pod works on several items from the queue and then exits when there

are no more items. Since the workers themselves detect when the workqueue is empty, and

the Job controller does not know about the workqueue, it relies on the workers to signal when

they are done working. The workers signal that the queue is empty by exiting with success. So,

as soon as any worker exits with success, the controller knows the work is done, and the Pods

will exit soon. So, we set the completion count of the Job to 1. The job controller will wait for

the other pods to complete too.

docker tag job-wq-2 gcr.io/<project>/job-wq-2docker tag job-wq-2 gcr.io/<project>/job-wq-2

gcloud docker gcloud docker ---- push gcr.io/<project>/job-wq-2 push gcr.io/<project>/job-wq-2

apiVersionapiVersion:: batch/v1batch/v1

kindkind:: JobJob

metadatametadata::

 namename:: job-wq-2job-wq-2

specspec::

 parallelismparallelism:: 22

 templatetemplate::

 metadatametadata::

 namename:: job-wq-2job-wq-2

 specspec::

 containerscontainers::

 -- namename:: cc

 imageimage:: gcr.io/myproject/job-wq-2gcr.io/myproject/job-wq-2

 restartPolicyrestartPolicy:: OnFailureOnFailure

file:///docs/concepts/containers/_site/images/
https://cloud.google.com/tools/container-registry/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/job/fine-parallel-processing-work-queue/job.yaml

Running the Job

So, now run the Job:

Now wait a bit, then check on the job.

As you can see, one of our pods worked on several work units.

kubectl create kubectl create -f-f ./job.yaml ./job.yaml

$ $ kubectl describe kubectl describe jobsjobs/job-wq-2/job-wq-2

Name: job-wq-2Name: job-wq-2

Namespace: defaultNamespace: default

Selector: controller-uidSelector: controller-uid==b1c7e4e3-92e1-11e7-b85e-fa163ee3c11fb1c7e4e3-92e1-11e7-b85e-fa163ee3c11f

Labels: controller-uidLabels: controller-uid==b1c7e4e3-92e1-11e7-b85e-fa163ee3c11fb1c7e4e3-92e1-11e7-b85e-fa163ee3c11f

 job-name job-name==job-wq-2job-wq-2

Annotations: <none>Annotations: <none>

Parallelism: 2Parallelism: 2

Completions: <Completions: <unsetunset>>

Start Time: Mon, 11 Jan 2016 17:07:59 Start Time: Mon, 11 Jan 2016 17:07:59 -0800-0800

Pods Statuses: 1 Running / 0 Succeeded / 0 FailedPods Statuses: 1 Running / 0 Succeeded / 0 Failed

Pod Template:Pod Template:

 Labels: controller-uid Labels: controller-uid==b1c7e4e3-92e1-11e7-b85e-fa163ee3c11fb1c7e4e3-92e1-11e7-b85e-fa163ee3c11f

 job-name job-name==job-wq-2job-wq-2

 Containers: Containers:

 c: c:

 Image: gcr.io/exampleproject/job-wq-2 Image: gcr.io/exampleproject/job-wq-2

 Port: Port:

 Environment: <none> Environment: <none>

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ----------------

 33s 33s 1 33s 33s 1 {{job-controller job-controller }} Normal SuccessfulCreate Created pod: job-wq-2-lglf8 Normal SuccessfulCreate Created pod: job-wq-2-lglf8

$ $ kubectl logs pods/job-wq-2-7r7b2kubectl logs pods/job-wq-2-7r7b2

Worker with sessionID: bbd72d0a-9e5c-4dd6-abf6-416cc267991fWorker with sessionID: bbd72d0a-9e5c-4dd6-abf6-416cc267991f

Initial queue state: Initial queue state: emptyempty==FalseFalse

Working on bananaWorking on banana

Working on dateWorking on date

Working on lemonWorking on lemon

Alternatives

If running a queue service or modifying your containers to use a work queue is inconvenient,

you may want to consider one of the other job patterns.

If you have a continuous stream of background processing work to run, then consider running

your background workers with a replicationControllerreplicationController instead, and consider running a

background processing library such as https://github.com/resque/resque.

file:///docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns
https://github.com/resque/resque

Web UI (Dashboard)

Dashboard is a web-based Kubernetes user interface. You can use Dashboard to deploy

containerized applications to a Kubernetes cluster, troubleshoot your containerized

application, and manage the cluster itself along with its attendant resources. You can use

Dashboard to get an overview of applications running on your cluster, as well as for creating or

modifying individual Kubernetes resources (such as Deployments, Jobs, DaemonSets, etc).

For example, you can scale a Deployment, initiate a rolling update, restart a pod or deploy new

applications using a deploy wizard.

Dashboard also provides information on the state of Kubernetes resources in your cluster, and

on any errors that may have occurred.

Deploying the Dashboard UI

Accessing the Dashboard UI

Command line proxy

Master server

Welcome view

Deploying containerized applications

Deploying the Dashboard UI

The Dashboard UI is not deployed by default. To deploy it, run the following command:

Accessing the Dashboard UI

There are multiple ways you can access the Dashboard UI; either by using the kubectl

command-line interface, or by accessing the Kubernetes master apiserver using your web

browser.

Command line proxy

You can access Dashboard using the kubectl command-line tool by running the following

command:

Kubectl will handle authentication with apiserver and make Dashboard available at

http://localhost:8001/ui.

The UI can only be accessed from the machine where the command is executed. See

Specifying application details

Uploading a YAML or JSON file

Using Dashboard

Navigation

Admin

Workloads

Services and discovery

Storage

Config

Logs viewer

More information

kubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yamlkubectl create -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml

kubectl proxykubectl proxy

kubectl proxy --kubectl proxy --

helphelp for more options.

Master server

You may access the UI directly via the Kubernetes master apiserver. Open a browser and

navigate to https://<kubernetes-master>/uihttps://<kubernetes-master>/ui , where <kubernetes-master><kubernetes-master> is IP address

or domain name of the Kubernetes master.

Please note, this works only if the apiserver is set up to allow authentication with username

and password. This is not currently the case with some setup tools (e.g., kubeadmkubeadm). Refer to

the authentication admin documentation for information on how to configure authentication

manually.

If the username and password are configured but unknown to you, then use

kubectl configkubectl config

viewview to find it.

Welcome view

When you access Dashboard on an empty cluster, you’ll see the welcome page. This page

contains a link to this document as well as a button to deploy your first application. In addition,

you can view which system applications are running by default in the kube-systemkube-system

namespace of your cluster, for example the Dashboard itself.

file:///docs/admin/authentication/
file:///docs/tasks/administer-cluster/namespaces/

Deploying containerized applications

Dashboard lets you create and deploy a containerized application as a Deployment and

optional Service with a simple wizard. You can either manually specify application details, or

upload a YAML or JSON file containing application configuration.

To access the deploy wizard from the Welcome page, click the respective button. To access

the wizard at a later point in time, click the CREATE button in the upper right corner of any

page.

Specifying application details

The deploy wizard expects that you provide the following information:

App name (mandatory): Name for your application. A label with the name will be added to

the Deployment and Service, if any, that will be deployed.

The application name must be unique within the selected Kubernetes namespace. It must

start with a lowercase character, and end with a lowercase character or a number, and

contain only lowercase letters, numbers and dashes (-). It is limited to 24 characters.

Leading and trailing spaces are ignored.

Container image (mandatory): The URL of a public Docker container image on any registry,

or a private image (commonly hosted on the Google Container Registry or Docker Hub).

The container image specification must end with a colon.

Number of pods (mandatory): The target number of Pods you want your application to be

deployed in. The value must be a positive integer.

A Deployment will be created to maintain the desired number of Pods across your cluster.

Service (optional): For some parts of your application (e.g. frontends) you may want to

expose a Service onto an external, maybe public IP address outside of your cluster

(external Service). For external Services, you may need to open up one or more ports to do

so. Find more details here.

Other Services that are only visible from inside the cluster are called internal Services.

file:///docs/concepts/overview/working-with-objects/labels/
file:///docs/tasks/administer-cluster/namespaces/
file:///docs/concepts/containers/_site/images/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/services-networking/service/
file:///docs/tasks/access-application-cluster/configure-cloud-provider-firewall/

Irrespective of the Service type, if you choose to create a Service and your container

listens on a port (incoming), you need to specify two ports. The Service will be created

mapping the port (incoming) to the target port seen by the container. This Service will

route to your deployed Pods. Supported protocols are TCP and UDP. The internal DNS

name for this Service will be the value you specified as application name above.

If needed, you can expand the Advanced options section where you can specify more settings:

Description: The text you enter here will be added as an annotation to the Deployment and

displayed in the application’s details.

Labels: Default labels to be used for your application are application name and version.

You can specify additional labels to be applied to the Deployment, Service (if any), and

Pods, such as release, environment, tier, partition, and release track.

Example:

Namespace: Kubernetes supports multiple virtual clusters backed by the same physical

cluster. These virtual clusters are called namespaces. They let you partition resources into

logically named groups.

Dashboard offers all available namespaces in a dropdown list, and allows you to create a

new namespace. The namespace name may contain a maximum of 63 alphanumeric

characters and dashes (-) but can not contain capital letters. Namespace names should

not consist of only numbers. If the name is set as a number, such as 10, the pod will be

put in the default namespace.

In case the creation of the namespace is successful, it is selected by default. If the

creation fails, the first namespace is selected.

Image Pull Secret: In case the specified Docker container image is private, it may require

pull secret credentials.

Dashboard offers all available secrets in a dropdown list, and allows you to create a new

secret. The secret name must follow the DNS domain name syntax, e.g.

releaserelease==11..00

tiertier==frontendfrontend

environmentenvironment==podpod

tracktrack==stablestable

file:///docs/concepts/overview/working-with-objects/annotations/
file:///docs/concepts/overview/working-with-objects/labels/
file:///docs/tasks/administer-cluster/namespaces/
file:///docs/concepts/configuration/secret/

new.image-pull.secretnew.image-pull.secret . The content of a secret must be base64-encoded and specified

in a .dockercfg.dockercfg file. The secret name may consist of a maximum of 253 characters.

In case the creation of the image pull secret is successful, it is selected by default. If the

creation fails, no secret is applied.

CPU requirement (cores) and Memory requirement (MiB): You can specify the minimum

resource limits for the container. By default, Pods run with unbounded CPU and memory

limits.

Run command and Run command arguments: By default, your containers run the

specified Docker image’s default entrypoint command. You can use the command options

and arguments to override the default.

Run as privileged: This setting determines whether processes in privileged containers are

equivalent to processes running as root on the host. Privileged containers can make use

of capabilities like manipulating the network stack and accessing devices.

Environment variables: Kubernetes exposes Services through environment variables. You

can compose environment variable or pass arguments to your commands using the

values of environment variables. They can be used in applications to find a Service. Values

can reference other variables using the (VAR_NAME)(VAR_NAME) syntax.

Uploading a YAML or JSON file

Kubernetes supports declarative configuration. In this style, all configuration is stored in YAML

or JSON configuration files using the Kubernetes API resource schemas.

As an alternative to specifying application details in the deploy wizard, you can define your

application in YAML or JSON files, and upload the files using Dashboard:

file:///docs/concepts/containers/_site/images/#specifying-imagepullsecrets-on-a-pod
file:///docs/tasks/configure-pod-container/limit-range/
file:///docs/user-guide/containers/#containers-and-commands
file:///docs/user-guide/pods/#privileged-mode-for-pod-containers
file:///docs/tasks/inject-data-application/environment-variable-expose-pod-information/
file:///docs/concepts/overview/kubernetes-api/

Using Dashboard

Following sections describe views of the Kubernetes Dashboard UI; what they provide and how

can they be used.

Navigation

When there are Kubernetes objects defined in the cluster, Dashboard shows them in the initial

view. By default only objects from the default namespace are shown and this can be changed

using the namespace selector located in the navigation menu.

Dashboard shows most Kubernetes object kinds and groups them in a few menu categories.

Admin

View for cluster and namespace administrators. It lists Nodes, Namespaces and Persistent

Volumes and has detail views for them. Node list view contains CPU and memory usage

metrics aggregated across all Nodes. The details view shows the metrics for a Node, its

specification, status, allocated resources, events and pods running on the node.

Workloads

Entry point view that shows all applications running in the selected namespace. The view lists

applications by workload kind (e.g., Deployments, Replica Sets, Stateful Sets, etc.) and each

workload kind can be viewed separately. The lists summarize actionable information about the

workloads, such as the number of ready pods for a Replica Set or current memory usage for a

Pod.

Detail views for workloads show status and specification information and surface

relationships between objects. For example, Pods that Replica Set is controlling or New

Replica Sets and Horizontal Pod Autoscalers for Deployments.

Services and discovery

Services and discovery view shows Kubernetes resources that allow for exposing services to

external world and discovering them within a cluster. For that reason, Service and Ingress

views show Pods targeted by them, internal endpoints for cluster connections and external

endpoints for external users.

Storage

Storage view shows Persistent Volume Claim resources which are used by applications for

storing data.

Config

Config view shows all Kubernetes resources that are used for live configuration of applications

running in clusters. This is now Config Maps and Secrets. The view allows for editing and

managing config objects and displays secrets hidden by default.

Logs viewer

Pod lists and detail pages link to logs viewer that is built into Dashboard. The viewer allows for

drilling down logs from containers belonging to a single Pod.

More information

For more information, see the Kubernetes Dashboard project page.

https://github.com/kubernetes/dashboard

Accessing Clusters

Accessing the cluster API

Accessing for the first time with kubectl

When accessing the Kubernetes API for the first time, we suggest using the Kubernetes CLI,

kubectlkubectl .

To access a cluster, you need to know the location of the cluster and have credentials to

access it. Typically, this is automatically set-up when you work through a Getting started guide,

or someone else setup the cluster and provided you with credentials and a location.

Check the location and credentials that kubectl knows about with this command:

Accessing the cluster API

Accessing for the first time with kubectl

Directly accessing the REST API

Using kubectl proxy

Without kubectl proxy (before v1.3.x)

Without kubectl proxy (post v1.3.x)

Programmatic access to the API

Go client

Python client

Other languages

Accessing the API from a Pod

Accessing services running on the cluster

Ways to connect

Discovering builtin services

Manually constructing apiserver proxy URLs

Examples

Using web browsers to access services running on the cluster

Requesting redirects

So Many Proxies

$ $ kubectl config viewkubectl config view

file:///docs/setup/

Many of the examples provide an introduction to using kubectl and complete documentation is

found in the kubectl manual.

Directly accessing the REST API

Kubectl handles locating and authenticating to the apiserver. If you want to directly access the

REST API with an http client like curl or wget, or a browser, there are several ways to locate and

authenticate:

Run kubectl in proxy mode.

Recommended approach.

Uses stored apiserver location.

Verifies identity of apiserver using self-signed cert. No MITM possible.

Authenticates to apiserver.

In future, may do intelligent client-side load-balancing and failover.

Provide the location and credentials directly to the http client.

Alternate approach.

Works with some types of client code that are confused by using a proxy.

Need to import a root cert into your browser to protect against MITM.

Using kubectl proxy

The following command runs kubectl in a mode where it acts as a reverse proxy. It handles

locating the apiserver and authenticating. Run it like this:

See kubectl proxy for more details.

Then you can explore the API with curl, wget, or a browser, replacing localhost with [::1] for

IPv6, like so:

$ $ kubectl proxy kubectl proxy --port--port==8080 &8080 &

file:///docs/user-guide/kubectl-cheatsheet
file:///docs/user-guide/kubectl-overview
file:///docs/user-guide/kubectl/v1.10/#proxy

Without kubectl proxy (before v1.3.x)

It is possible to avoid using kubectl proxy by passing an authentication token directly to the

apiserver, like this:

Without kubectl proxy (post v1.3.x)

In Kubernetes version 1.3 or later,

kubectl configkubectl config

viewview no longer displays the token. Use

kubectl describekubectl describe

secret...secret... to get the token for the default service account, like this:

$ $ curl http://localhost:8080/api/curl http://localhost:8080/api/

{{

 "versions""versions": : [[

 "v1""v1"

]]

}}

$ APISERVER$ APISERVER==$($(kubectl config view | kubectl config view | grep grep server | cut server | cut -f-f 2- 2- -d-d ":"":" | tr | tr -d-d " "" "

$ TOKEN$ TOKEN==$($(kubectl config view | kubectl config view | grep grep token | cut token | cut -f-f 2 2 -d-d ":"":" | tr | tr -d-d " "" "))

$ $ curl curl $APISERVER$APISERVER/api /api --header--header "Authorization: Bearer "Authorization: Bearer $TOKEN$TOKEN"" --insecure--insecure

{{

 "versions""versions": : [[

 "v1""v1"

]]

}}

$ APISERVER$ APISERVER==$($(kubectl config view | kubectl config view | grep grep server | cut server | cut -f-f 2- 2- -d-d ":"":" | tr | tr -d-d " "" "

$ TOKEN$ TOKEN==$($(kubectl describe secret kubectl describe secret $($(kubectl get secrets | kubectl get secrets | grep grep default | cut default | cut

$ $ curl curl $APISERVER$APISERVER/api /api --header--header "Authorization: Bearer "Authorization: Bearer $TOKEN$TOKEN"" --insecure--insecure

{{

 "kind""kind": : "APIVersions""APIVersions",,

 "versions""versions": : [[

 "v1""v1"

]],,

 "serverAddressByClientCIDRs""serverAddressByClientCIDRs": : [[

 {{

 "clientCIDR""clientCIDR": : "0.0.0.0/0""0.0.0.0/0",,

 "serverAddress""serverAddress": : "10.0.1.149:443""10.0.1.149:443"

 }}

]]

}}

The above examples use the --insecure--insecure flag. This leaves it subject to MITM attacks. When

kubectl accesses the cluster it uses a stored root certificate and client certificates to access

the server. (These are installed in the ~/.kube~/.kube directory). Since cluster certificates are

typically self-signed, it may take special configuration to get your http client to use root

certificate.

On some clusters, the apiserver does not require authentication; it may serve on localhost, or

be protected by a firewall. There is not a standard for this. Configuring Access to the API

describes how a cluster admin can configure this. Such approaches may conflict with future

high-availability support.

Programmatic access to the API

Kubernetes officially supports Go and Python client libraries.

Go client

To get the library, run the following command:

go get k8s.io/client-go/<versiongo get k8s.io/client-go/<version

number>/kubernetesnumber>/kubernetes . See

https://github.com/kubernetes/client-go to see which versions are supported.

Write an application atop of the client-go clients. Note that client-go defines its own API

objects, so if needed, please import API definitions from client-go rather than from the

main repository, e.g., import "k8s.io/client-go/1.4/pkg/api/v1"import "k8s.io/client-go/1.4/pkg/api/v1" is correct.

The Go client can use the same kubeconfig file as the kubectl CLI does to locate and

authenticate to the apiserver. See this example.

If the application is deployed as a Pod in the cluster, please refer to the next section.

Python client

To use Python client, run the following command: pip install kubernetespip install kubernetes . See Python

Client Library page for more installation options.

The Python client can use the same kubeconfig file as the kubectl CLI does to locate and

authenticate to the apiserver. See this example.

file:///docs/admin/accessing-the-api
https://github.com/kubernetes/client-go
file:///docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://git.k8s.io/client-go/examples/out-of-cluster-client-configuration/main.go
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
file:///docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://github.com/kubernetes-client/python/tree/master/examples/example1.py

Other languages

There are client libraries for accessing the API from other languages. See documentation for

other libraries for how they authenticate.

Accessing the API from a Pod

When accessing the API from a pod, locating and authenticating to the apiserver are

somewhat different.

The recommended way to locate the apiserver within the pod is with the kuberneteskubernetes DNS

name, which resolves to a Service IP which in turn will be routed to an apiserver.

The recommended way to authenticate to the apiserver is with a service account credential. By

kube-system, a pod is associated with a service account, and a credential (token) for that

service account is placed into the filesystem tree of each container in that pod, at

/var/run/secrets/kubernetes.io/serviceaccount/token/var/run/secrets/kubernetes.io/serviceaccount/token .

If available, a certificate bundle is placed into the filesystem tree of each container at

/var/run/secrets/kubernetes.io/serviceaccount/ca.crt/var/run/secrets/kubernetes.io/serviceaccount/ca.crt , and should be used to verify

the serving certificate of the apiserver.

Finally, the default namespace to be used for namespaced API operations is placed in a file at

/var/run/secrets/kubernetes.io/serviceaccount/namespace/var/run/secrets/kubernetes.io/serviceaccount/namespace in each container.

From within a pod the recommended ways to connect to API are:

run kubectl proxykubectl proxy in a sidecar container in the pod, or as a background process within

the container. This proxies the Kubernetes API to the localhost interface of the pod, so that

other processes in any container of the pod can access it.

use the Go client library, and create a client using the rest.InClusterConfig()rest.InClusterConfig() and

kubernetes.NewForConfig()kubernetes.NewForConfig() functions. They handle locating and authenticating to the

apiserver. example

In each case, the credentials of the pod are used to communicate securely with the apiserver.

Accessing services running on the cluster

file:///docs/reference/client-libraries/
file:///docs/tasks/configure-pod-container/configure-service-account/
https://git.k8s.io/client-go/examples/in-cluster-client-configuration/main.go

The previous section was about connecting the Kubernetes API server. This section is about

connecting to other services running on Kubernetes cluster. In Kubernetes, the nodes, pods

and services all have their own IPs. In many cases, the node IPs, pod IPs, and some service IPs

on a cluster will not be routable, so they will not be reachable from a machine outside the

cluster, such as your desktop machine.

Ways to connect

You have several options for connecting to nodes, pods and services from outside the cluster:

Access services through public IPs.

Use a service with type NodePortNodePort or LoadBalancerLoadBalancer to make the service reachable

outside the cluster. See the services and kubectl expose documentation.

Depending on your cluster environment, this may just expose the service to your

corporate network, or it may expose it to the internet. Think about whether the service

being exposed is secure. Does it do its own authentication?

Place pods behind services. To access one specific pod from a set of replicas, such

as for debugging, place a unique label on the pod and create a new service which

selects this label.

In most cases, it should not be necessary for application developer to directly access

nodes via their nodeIPs.

Access services, nodes, or pods using the Proxy Verb.

Does apiserver authentication and authorization prior to accessing the remote service.

Use this if the services are not secure enough to expose to the internet, or to gain

access to ports on the node IP, or for debugging.

Proxies may cause problems for some web applications.

Only works for HTTP/HTTPS.

Described here.

Access from a node or pod in the cluster.

Run a pod, and then connect to a shell in it using kubectl exec. Connect to other

nodes, pods, and services from that shell.

Some clusters may allow you to ssh to a node in the cluster. From there you may be

file:///docs/admin/node
file:///docs/user-guide/pods
file:///docs/user-guide/services
file:///docs/user-guide/services
file:///docs/user-guide/kubectl/v1.10/#expose
file:///docs/user-guide/kubectl/v1.10/#exec

able to access cluster services. This is a non-standard method, and will work on some

clusters but not others. Browsers and other tools may or may not be installed. Cluster

DNS may not work.

Discovering builtin services

Typically, there are several services which are started on a cluster by kube-system. Get a list of

these with the

kubectl cluster-kubectl cluster-

infoinfo command:

This shows the proxy-verb URL for accessing each service. For example, this cluster has

cluster-level logging enabled (using Elasticsearch), which can be reached at

https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/logging/proxy/

if suitable credentials are passed. Logging can also be reached through a kubectl proxy, for

example at:

http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/logging/proxy/

. (See above for how to pass credentials or use kubectl proxy.)

Manually constructing apiserver proxy URLs

As mentioned above, you use the

kubectl cluster-kubectl cluster-

infoinfo command to retrieve the service’s

proxy URL. To create proxy URLs that include service endpoints, suffixes, and parameters, you

simply append to the service’s proxy URL: http://http:// kubernetes_master_addresskubernetes_master_address

/api/v1/namespaces//api/v1/namespaces/ namespace_namenamespace_name /services//services/ service_name[:port_name]service_name[:port_name] /proxy/proxy

If you haven’t specified a name for your port, you don’t have to specify port_name in the URL.

$ $ kubectl cluster-infokubectl cluster-info

 Kubernetes master is running at https://104.197.5.247 Kubernetes master is running at https://104.197.5.247

 elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy

 kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kibana-logging/proxy kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kibana-logging/proxy

 kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kube-dns/proxy kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kube-dns/proxy

 grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy

 heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy

By default, the API server proxies to your service using http. To use https, prefix the service

name with https:https: : http://http:// kubernetes_master_addresskubernetes_master_address /api/v1/namespaces//api/v1/namespaces/

namespace_namenamespace_name /services//services/ https:service_name:[port_name]https:service_name:[port_name] /proxy/proxy

The supported formats for the name segment of the URL are:

<service_name><service_name> - proxies to the default or unnamed port using http

<service_name>:<port_name><service_name>:<port_name> - proxies to the specified port using http

https:<service_name>:https:<service_name>: - proxies to the default or unnamed port using https (note the

trailing colon)

https:<service_name>:<port_name>https:<service_name>:<port_name> - proxies to the specified port using https

Examples

To access the Elasticsearch service endpoint _search?q=user:kimchy_search?q=user:kimchy , you would use:

http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/_search?q=user:kimchylogging/proxy/_search?q=user:kimchy

To access the Elasticsearch cluster health information _cluster/health?pretty=true_cluster/health?pretty=true ,

you would use:

https://104.197.5.247/api/v1/namespaces/kube-https://104.197.5.247/api/v1/namespaces/kube-

system/services/elasticsearch-logging/proxy/_cluster/health?pretty=truesystem/services/elasticsearch-logging/proxy/_cluster/health?pretty=true

Using web browsers to access services running on the cluster

You may be able to put an apiserver proxy url into the address bar of a browser. However:

 {{

 "cluster_name""cluster_name" :: "kubernetes_logging""kubernetes_logging",,

 "status""status" :: "yellow""yellow",,

 "timed_out""timed_out" :: falsefalse,,

 "number_of_nodes""number_of_nodes" :: 11,,

 "number_of_data_nodes""number_of_data_nodes" :: 11,,

 "active_primary_shards""active_primary_shards" :: 55,,

 "active_shards""active_shards" :: 55,,

 "relocating_shards""relocating_shards" :: 00,,

 "initializing_shards""initializing_shards" :: 00,,

 "unassigned_shards""unassigned_shards" :: 55

 }}

Web browsers cannot usually pass tokens, so you may need to use basic (password) auth.

Apiserver can be configured to accept basic auth, but your cluster may not be configured

to accept basic auth.

Some web apps may not work, particularly those with client side javascript that construct

urls in a way that is unaware of the proxy path prefix.

Requesting redirects

The redirect capabilities have been deprecated and removed. Please use a proxy (see below)

instead.

So Many Proxies

There are several different proxies you may encounter when using Kubernetes:

1. The kubectl proxy:

1. runs on a user’s desktop or in a pod

2. proxies from a localhost address to the Kubernetes apiserver

3. client to proxy uses HTTP

4. proxy to apiserver uses HTTPS

5. locates apiserver

6. adds authentication headers

2. The apiserver proxy:

1. is a bastion built into the apiserver

2. connects a user outside of the cluster to cluster IPs which otherwise might not be

reachable

3. runs in the apiserver processes

4. client to proxy uses HTTPS (or http if apiserver so configured)

5. proxy to target may use HTTP or HTTPS as chosen by proxy using available

information

6. can be used to reach a Node, Pod, or Service

7. does load balancing when used to reach a Service

3. The kube proxy:

1. runs on each node

2. proxies UDP and TCP

3. does not understand HTTP

4. provides load balancing

5. is just used to reach services

4. A Proxy/Load-balancer in front of apiserver(s):

1. existence and implementation varies from cluster to cluster (e.g. nginx)

2. sits between all clients and one or more apiservers

3. acts as load balancer if there are several apiservers.

5. Cloud Load Balancers on external services:

1. are provided by some cloud providers (e.g. AWS ELB, Google Cloud Load Balancer)

2. are created automatically when the Kubernetes service has type LoadBalancerLoadBalancer

3. use UDP/TCP only

4. implementation varies by cloud provider.

Kubernetes users will typically not need to worry about anything other than the first two types.

The cluster admin will typically ensure that the latter types are setup correctly.

file:///docs/concepts/services-networking/service/#ips-and-vips

Configure Access to Multiple Clusters

This page shows how to configure access to multiple clusters by using configuration files.

After your clusters, users, and contexts are defined in one or more configuration files, you can

quickly switch between clusters by using the

kubectl config use-kubectl config use-

contextcontext command.

Note: A file that is used to configure access to a cluster is sometimes called a

kubeconfig file. This is a generic way of referring to configuration files. It does not mean

that there is a file named kubeconfigkubeconfig .

Before you begin

You need to have the kubectlkubectl command-line tool installed.

Define clusters, users, and contexts

Suppose you have two clusters, one for development work and one for scratch work. In the

developmentdevelopment cluster, your frontend developers work in a namespace called frontendfrontend , and

your storage developers work in a namespace called storagestorage . In your scratchscratch cluster,

developers work in the default namespace, or they create auxiliary namespaces as they see fit.

Access to the development cluster requires authentication by certificate. Access to the scratch

cluster requires authentication by username and password.

Before you begin

Define clusters, users, and contexts

Create a second configuration file

Set the KUBECONFIG environment variable

Explore the $HOME/.kube directory

Append $HOME/.kube/config to your KUBECONFIG environment variable

Clean up

What’s next

file:///docs/tasks/tools/install-kubectl/

Create a directory named config-exerciseconfig-exercise . In your config-exerciseconfig-exercise directory, create a

file named config-democonfig-demo with this content:

A configuration file describes clusters, users, and contexts. Your config-democonfig-demo file has the

framework to describe two clusters, two users, and three contexts.

Go to your config-exerciseconfig-exercise directory. Enter these commands to add cluster details to your

configuration file:

Add user details to your configuration file:

Add context details to your configuration file:

apiVersion: v1apiVersion: v1

kind: Configkind: Config

preferences: preferences: {}{}

clusters:clusters:

- cluster:- cluster:

 name: development name: development

- cluster:- cluster:

 name: scratch name: scratch

users:users:

- name: developer- name: developer

- name: experimenter- name: experimenter

contexts:contexts:

- context:- context:

 name: dev-frontend name: dev-frontend

- context:- context:

 name: dev-storage name: dev-storage

- context:- context:

 name: exp-scratch name: exp-scratch

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-cluster development config-demo set-cluster development --server--server==https://1.2.3.4 https://1.2.3.4

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-cluster scratch config-demo set-cluster scratch --server--server==https://5.6.7.8 https://5.6.7.8

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-credentials developer config-demo set-credentials developer --client-certificate--client-certificate

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-credentials experimenter config-demo set-credentials experimenter --username--username

Open your config-democonfig-demo file to see the added details. As an alternative to opening the

config-democonfig-demo file, you can use the config viewconfig view command.

The output shows the two clusters, two users, and three contexts:

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-context dev-frontend config-demo set-context dev-frontend --cluster--cluster==development development

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-context dev-storage config-demo set-context dev-storage --cluster--cluster==development development

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo set-context exp-scratch config-demo set-context exp-scratch --cluster--cluster==scratch scratch

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo viewconfig-demo view

Each context is a triple (cluster, user, namespace). For example, the dev-frontenddev-frontend context

says, Use the credentials of the developerdeveloper user to access the frontendfrontend namespace of the

developmentdevelopment cluster.

Set the current context:

apiVersion: v1apiVersion: v1

clusters:clusters:

- cluster:- cluster:

 certificate-authority: fake-ca-file certificate-authority: fake-ca-file

 server: https://1.2.3.4 server: https://1.2.3.4

 name: development name: development

- cluster:- cluster:

 insecure-skip-tls-verify: insecure-skip-tls-verify: truetrue

 server: https://5.6.7.8server: https://5.6.7.8

 name: scratch name: scratch

contexts:contexts:

- context:- context:

 cluster: development cluster: development

 namespace: frontend namespace: frontend

 user: developer user: developer

 name: dev-frontend name: dev-frontend

- context:- context:

 cluster: development cluster: development

 namespace: storage namespace: storage

 user: developer user: developer

 name: dev-storage name: dev-storage

- context:- context:

 cluster: scratch cluster: scratch

 namespace: default namespace: default

 user: experimenter user: experimenter

 name: exp-scratch name: exp-scratch

current-context: current-context: """"

kind: Configkind: Config

preferences: preferences: {}{}

users:users:

- name: developer- name: developer

 user: user:

 client-certificate: fake-cert-file client-certificate: fake-cert-file

 client-key: fake-key-file client-key: fake-key-file

- name: experimenter- name: experimenter

 user: user:

 password: some-password password: some-password

 username: exp username: exp

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo use-context dev-frontendconfig-demo use-context dev-frontend

Now whenever you enter a kubectlkubectl command, the action will apply to the cluster, and

namespace listed in the dev-frontenddev-frontend context. And the command will use the credentials of

the user listed in the dev-frontenddev-frontend context.

To see only the configuration information associated with the current context, use the

--minify--minify flag.

The output shows configuration information associated with the dev-frontenddev-frontend context:

Now suppose you want to work for a while in the scratch cluster.

Change the current context to exp-scratchexp-scratch :

Now any kubectlkubectl command you give will apply to the default namespace of the scratchscratch

cluster. And the command will use the credentials of the user listed in the exp-scratchexp-scratch

context.

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo view config-demo view --minify--minify

apiVersion: v1apiVersion: v1

clusters:clusters:

- cluster:- cluster:

 certificate-authority: fake-ca-file certificate-authority: fake-ca-file

 server: https://1.2.3.4 server: https://1.2.3.4

 name: development name: development

contexts:contexts:

- context:- context:

 cluster: development cluster: development

 namespace: frontend namespace: frontend

 user: developer user: developer

 name: dev-frontend name: dev-frontend

current-context: dev-frontendcurrent-context: dev-frontend

kind: Configkind: Config

preferences: preferences: {}{}

users:users:

- name: developer- name: developer

 user: user:

 client-certificate: fake-cert-file client-certificate: fake-cert-file

 client-key: fake-key-file client-key: fake-key-file

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo use-context exp-scratchconfig-demo use-context exp-scratch

View configuration associated with the new current context, exp-scratchexp-scratch .

Finally, suppose you want to work for a while in the storagestorage namespace of the developmentdevelopment

cluster.

Change the current context to dev-storagedev-storage :

View configuration associated with the new current context, dev-storagedev-storage .

Create a second configuration file

In your config-exerciseconfig-exercise directory, create a file named config-demo-2config-demo-2 with this content:

The preceding configuration file defines a new context named dev-ramp-updev-ramp-up .

Set the KUBECONFIG environment variable

See whether you have an environment variable named KUBECONFIGKUBECONFIG . If so, save the current

value of your KUBECONFIGKUBECONFIG environment variable, so you can restore it later. For example, on

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo view config-demo view --minify--minify

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo use-context dev-storageconfig-demo use-context dev-storage

kubectl config kubectl config --kubeconfig--kubeconfig==config-demo view config-demo view --minify--minify

apiVersion: v1apiVersion: v1

kind: Configkind: Config

preferences: preferences: {}{}

contexts:contexts:

- context:- context:

 cluster: development cluster: development

 namespace: ramp namespace: ramp

 user: developer user: developer

 name: dev-ramp-up name: dev-ramp-up

Linux:

The KUBECONFIGKUBECONFIG environment variable is a list of paths to configuration files. The list is colon-

delimited for Linux and Mac, and semicolon-delimited for Windows. If you have a KUBECONFIGKUBECONFIG

environment variable, familiarize yourself with the configuration files in the list.

Temporarily append two paths to your KUBECONFIGKUBECONFIG environment variable. For example, on

Linux:

In your config-exerciseconfig-exercise directory, enter this command:

The output shows merged information from all the files listed in your KUBECONFIGKUBECONFIG

environment variable. In particular, notice that the merged information has the dev-ramp-updev-ramp-up

context from the config-demo-2config-demo-2 file and the three contexts from the config-democonfig-demo file:

export export KUBECONFIG_SAVEDKUBECONFIG_SAVED==$KUBECONFIG$KUBECONFIG

export export KUBECONFIGKUBECONFIG==$KUBECONFIG$KUBECONFIG:config-demo:config-demo-2:config-demo:config-demo-2

kubectl config viewkubectl config view

contexts:contexts:

- context:- context:

 cluster: development cluster: development

 namespace: frontend namespace: frontend

 user: developer user: developer

 name: dev-frontend name: dev-frontend

- context:- context:

 cluster: development cluster: development

 namespace: ramp namespace: ramp

 user: developer user: developer

 name: dev-ramp-up name: dev-ramp-up

- context:- context:

 cluster: development cluster: development

 namespace: storage namespace: storage

 user: developer user: developer

 name: dev-storage name: dev-storage

- context:- context:

 cluster: scratch cluster: scratch

 namespace: default namespace: default

 user: experimenter user: experimenter

 name: exp-scratch name: exp-scratch

For more information about how kubeconfig files are merged, see Organizing Cluster Access

Using kubeconfig Files

Explore the $HOME/.kube directory

If you already have a cluster, and you can use kubectlkubectl to interact with the cluster, then you

probably have a file named configconfig in the $HOME/.kube$HOME/.kube directory.

Go to $HOME/.kube$HOME/.kube , and see what files are there. Typically, there is a file named configconfig .

There might also be other configuration files in this directory. Briefly familiarize yourself with

the contents of these files.

Append $HOME/.kube/config to your KUBECONFIG
environment variable

If you have a $HOME/.kube/config$HOME/.kube/config file, and it’s not already listed in your KUBECONFIGKUBECONFIG

environment variable, append it to your KUBECONFIGKUBECONFIG environment variable now. For example,

on Linux:

View configuration information merged from all the files that are now listed in your

KUBECONFIGKUBECONFIG environment variable. In your config-exercise directory, enter:

Clean up

Return your KUBECONFIGKUBECONFIG environment variable to its original value. For example, on Linux:

export export KUBECONFIGKUBECONFIG==$KUBECONFIG$KUBECONFIG::$HOME$HOME/.kube/config/.kube/config

kubectl config viewkubectl config view

export export KUBECONFIGKUBECONFIG==$KUBECONFIG_SAVED$KUBECONFIG_SAVED

file:///docs/concepts/configuration/organize-cluster-access-kubeconfig/

What’s next

Organizing Cluster Access Using kubeconfig Files

kubectl config

file:///docs/concepts/configuration/organize-cluster-access-kubeconfig/
file:///docs/user-guide/kubectl/v1.10/

Use Port Forwarding to Access
Applications in a Cluster

This page shows how to use kubectl port-forwardkubectl port-forward to connect to a Redis server running in

a Kubernetes cluster. This type of connection can be useful for database debugging.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Install redis-cli.

Creating Redis deployment and service

1. Create a Redis deployment:

The output of a successful command verifies that the deployment was created:

Before you begin

Creating Redis deployment and service

Forward a local port to a port on the pod

Discussion

What’s next

kubectl create -f https://k8s.io/docs/tutorials/stateless-application/guestbook/redis-master-deployment.yamlkubectl create -f https://k8s.io/docs/tutorials/stateless-application/guestbook/redis-master-deployment.yaml

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://redis.io/topics/rediscli

When the pod is ready, you can get:

2. Create a Redis service:

The output of a successful command verifies that the service was created:

Check the service created:

 deployment "redis-master" created deployment "redis-master" created

kubectl get podskubectl get pods

 NAME READY STATUS RESTARTS AGE NAME READY STATUS RESTARTS AGE

 redis-master-765d459796-258hz 1/1 Running 0 50s redis-master-765d459796-258hz 1/1 Running 0 50s

kubectl get deploymentkubectl get deployment

 NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

 redis-master 1 1 1 1 55s redis-master 1 1 1 1 55s

kubectl get rskubectl get rs

 NAME DESIRED CURRENT READY AGE NAME DESIRED CURRENT READY AGE

 redis-master-765d459796 1 1 1 1m redis-master-765d459796 1 1 1 1m

kubectl create -f https://k8s.io/docs/tutorials/stateless-application/guestbook/redis-master-service.yamlkubectl create -f https://k8s.io/docs/tutorials/stateless-application/guestbook/redis-master-service.yaml

 service "redis-master" created service "redis-master" created

kubectl get svc | grep rediskubectl get svc | grep redis

 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

 redis-master ClusterIP 10.0.0.213 <none> 6379/TCP 27s redis-master ClusterIP 10.0.0.213 <none> 6379/TCP 27s

3. Verify that the Redis server is running in the pod and listening on port 6379:

The output displays the port:

Forward a local port to a port on the pod

1. kubectl port-forwardkubectl port-forward allows using resource name, such as a service name, to select a

matching pod to port forward to since Kubernetes v1.10.

which is the same as

or

or

or

kubectl get pods redis-master-765d459796-258hz --template='{{(index (index .spec.containers 0).ports 0).containerPort}}{{"\n"}}'kubectl get pods redis-master-765d459796-258hz --template='{{(index (index .spec.containers 0).ports 0).containerPort}}{{"\n"}}'

 6379 6379

kubectl port-forward redis-master-765d459796-258hz 6379:6379 kubectl port-forward redis-master-765d459796-258hz 6379:6379

kubectl port-forward pods/redis-master-765d459796-258hz 6379:6379kubectl port-forward pods/redis-master-765d459796-258hz 6379:6379

kubectl port-forward deployment/redis-master 6379:6379 kubectl port-forward deployment/redis-master 6379:6379

kubectl port-forward rs/redis-master 6379:6379 kubectl port-forward rs/redis-master 6379:6379

kubectl port-forward svc/redis-master 6379:6379kubectl port-forward svc/redis-master 6379:6379

Any of the above commands works. The output is similar to this:

2. Start the Redis command line interface:

3. At the Redis command line prompt, enter the pingping command:

A successful ping request returns PONG.

Discussion

Connections made to local port 6379 are forwarded to port 6379 of the pod that is running the

Redis server. With this connection in place you can use your local workstation to debug the

database that is running in the pod.

Warning: Due to known limitations, port forward today only works for TCP protocol. The

support to UDP protocol is being tracked in issue 47862.

What’s next

Learn more about kubectl port-forward.

I0710 14:43:38.274550 3655 portforward.go:225] Forwarding from 127.0.0.1:6379 -> 6379I0710 14:43:38.274550 3655 portforward.go:225] Forwarding from 127.0.0.1:6379 -> 6379

I0710 14:43:38.274797 3655 portforward.go:225] Forwarding from [::1]:6379 -> 6379I0710 14:43:38.274797 3655 portforward.go:225] Forwarding from [::1]:6379 -> 6379

redis-cliredis-cli

127.0.0.1:6379>ping127.0.0.1:6379>ping

https://github.com/kubernetes/kubernetes/issues/47862
file:///docs/user-guide/kubectl/v1.10/#port-forward

Provide Load-Balanced Access to an
Application in a Cluster

This page shows how to create a Kubernetes Service object that provides load-balanced

access to an application running in a cluster.

Objectives

Run two instances of a Hello World application

Create a Service object

Use the Service object to access the running application

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Creating a Service for an application running in two
pods

Objectives

Before you begin

Creating a Service for an application running in two pods

Using a service configuration file

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

1. Run a Hello World application in your cluster:

2. List the pods that are running the Hello World application:

The output is similar to this:

3. List the replica set for the two Hello World pods:

The output is similar to this:

4. Create a Service object that exposes the replica set:

where <your-replica-set-name><your-replica-set-name> is the name of your replica set.

5. Display the IP addresses for your service:

kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080

kubectl get pods --selector="run=load-balancer-example"kubectl get pods --selector="run=load-balancer-example"

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hello-world-2189936611-8fyp0 1/1 Running 0 6mhello-world-2189936611-8fyp0 1/1 Running 0 6m

hello-world-2189936611-9isq8 1/1 Running 0 6mhello-world-2189936611-9isq8 1/1 Running 0 6m

kubectl get replicasets --selector="run=load-balancer-example"kubectl get replicasets --selector="run=load-balancer-example"

NAME DESIRED CURRENT AGENAME DESIRED CURRENT AGE

hello-world-2189936611 2 2 12mhello-world-2189936611 2 2 12m

kubectl expose rs <your-replica-set-name> --type="LoadBalancer" --name="example-service"kubectl expose rs <your-replica-set-name> --type="LoadBalancer" --name="example-service"

kubectl get services example-servicekubectl get services example-service

The output shows the internal IP address and the external IP address of your service. If the

external IP address shows as <pending><pending> , repeat the command.

Note: If you are using Minikube, you don’t get an external IP address. The external IP

address remains in the pending state.

6. Use your Service object to access the Hello World application:

where <your-external-ip-address><your-external-ip-address> is the external IP address of your service.

The output is a hello message from the application:

Note: If you are using Minikube, enter these commands:

The output displays the IP address of your Minikube node and the NodePort value for your

service. Then enter this command to access the Hello World application:

where <minikube-node-ip-address><minikube-node-ip-address> us the IP address of your Minikube node, and

<service-node-port><service-node-port> is the NodePort value for your service.

Using a service configuration file

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

example-service 10.0.0.160 <pending> 8080/TCP 40sexample-service 10.0.0.160 <pending> 8080/TCP 40s

curl <your-external-ip-address>:8080curl <your-external-ip-address>:8080

Hello Kubernetes!Hello Kubernetes!

kubectl cluster-infokubectl cluster-info

kubectl describe services example-servicekubectl describe services example-service

curl <minikube-node-ip-address>:<service-node-port>curl <minikube-node-ip-address>:<service-node-port>

As an alternative to using

kubectlkubectl

exposeexpose , you can use a service configuration file to create

a Service.

What’s next

Learn more about connecting applications with services .

file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/connect-applications-service/

Use a Service to Access an Application in
a Cluster

This page shows how to create a Kubernetes Service object that external clients can use to

access an application running in a cluster. The Service provides load balancing for an

application that has two running instances.

Objectives

Run two instances of a Hello World application.

Create a Service object that exposes a node port.

Use the Service object to access the running application.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Creating a service for an application running in two

Objectives

Before you begin

Creating a service for an application running in two pods

Using a service configuration file

Cleaning up

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

pods

1. Run a Hello World application in your cluster:

The preceding command creates a Deployment object and an associated ReplicaSet

object. The ReplicaSet has two Pods, each of which runs the Hello World application.

2. Display information about the Deployment:

3. Display information about your ReplicaSet objects:

4. Create a Service object that exposes the deployment:

5. Display information about the Service:

The output is similar to this:

kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080

kubectl get deployments hello-worldkubectl get deployments hello-world

kubectl describe deployments hello-worldkubectl describe deployments hello-world

kubectl get replicasetskubectl get replicasets

kubectl describe replicasetskubectl describe replicasets

kubectl expose deployment hello-world --type=NodePort --name=example-servicekubectl expose deployment hello-world --type=NodePort --name=example-service

kubectl describe services example-servicekubectl describe services example-service

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/pods/pod/

Make a note of the NodePort value for the service. For example, in the preceding output,

the NodePort value is 31496.

6. List the pods that are running the Hello World application:

The output is similar to this:

7. Get the public IP address of one of your nodes that is running a Hello World pod. How you

get this address depends on how you set up your cluster. For example, if you are using

Minikube, you can see the node address by running

kubectl cluster-kubectl cluster-

infoinfo . If you are

using Google Compute Engine instances, you can use the

gcloud compute instances listgcloud compute instances list command to see the public addresses of your nodes.

 Name: example-service Name: example-service

 Namespace: default Namespace: default

 Labels: run=load-balancer-example Labels: run=load-balancer-example

 Annotations: <none> Annotations: <none>

 Selector: run=load-balancer-example Selector: run=load-balancer-example

 Type: NodePort Type: NodePort

 IP: 10.32.0.16 IP: 10.32.0.16

 Port: <unset> 8080/TCP Port: <unset> 8080/TCP

 TargetPort: 8080/TCP TargetPort: 8080/TCP

 NodePort: <unset> 31496/TCP NodePort: <unset> 31496/TCP

 Endpoints: 10.200.1.4:8080,10.200.2.5:8080 Endpoints: 10.200.1.4:8080,10.200.2.5:8080

 Session Affinity: None Session Affinity: None

 Events: <none> Events: <none>

kubectl get pods --selector="run=load-balancer-example" --output=widekubectl get pods --selector="run=load-balancer-example" --output=wide

 NAME READY STATUS ... IP NODE NAME READY STATUS ... IP NODE

 hello-world-2895499144-bsbk5 1/1 Running ... 10.200.1.4 worker1 hello-world-2895499144-bsbk5 1/1 Running ... 10.200.1.4 worker1

 hello-world-2895499144-m1pwt 1/1 Running ... 10.200.2.5 worker2 hello-world-2895499144-m1pwt 1/1 Running ... 10.200.2.5 worker2

For more information about this command, see the GCE documentation.

8. On your chosen node, create a firewall rule that allows TCP traffic on your node port. For

example, if your Service has a NodePort value of 31568, create a firewall rule that allows

TCP traffic on port 31568. Different cloud providers offer different ways of configuring

firewall rules. See the GCE documentation on firewall rules, for example.

9. Use the node address and node port to access the Hello World application:

where <public-node-ip><public-node-ip> is the public IP address of your node, and <node-port><node-port> is the

NodePort value for your service.

The response to a successful request is a hello message:

Using a service configuration file

As an alternative to using

kubectlkubectl

exposeexpose , you can use a service configuration file to create

a Service.

Cleaning up

To delete the Service, enter this command:

To delete the Deployment, the ReplicaSet, and the Pods that are running the Hello World

application, enter this command:

curl http://<public-node-ip>:<node-port>curl http://<public-node-ip>:<node-port>

 Hello Kubernetes! Hello Kubernetes!

kubectl delete services example-servicekubectl delete services example-service

kubectl delete deployment hello-worldkubectl delete deployment hello-world

https://cloud.google.com/sdk/gcloud/reference/compute/instances/list
https://cloud.google.com/compute/docs/vpc/firewalls
file:///docs/concepts/services-networking/service/

What’s next

Learn more about connecting applications with services .

file:///docs/concepts/services-networking/connect-applications-service/

Connect a Front End to a Back End Using
a Service

This task shows how to create a frontend and a backend microservice. The backend

microservice is a hello greeter. The frontend and backend are connected using a Kubernetes

Service object.

Objectives

Create and run a microservice using a Deployment object.

Route traffic to the backend using a frontend.

Use a Service object to connect the frontend application to the backend application.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Objectives

Before you begin

Creating the backend using a Deployment

Creating the backend Service object

Creating the frontend

Interact with the frontend Service

Send traffic through the frontend

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

This task uses Services with external load balancers, which require a supported

environment. If your environment does not support this, you can use a Service of type

NodePort instead.

Creating the backend using a Deployment

The backend is a simple hello greeter microservice. Here is the configuration file for the

backend Deployment:

hello.yamlhello.yaml

Create the backend Deployment:

View information about the backend Deployment:

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: hellohello

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: hellohello

 tiertier:: backendbackend

 tracktrack:: stablestable

 replicasreplicas:: 77

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: hellohello

 tiertier:: backendbackend

 tracktrack:: stablestable

 specspec::

 containerscontainers::

 -- namename:: hellohello

 imageimage:: ""gcr.io/google-samples/hello-go-gke:1.0"gcr.io/google-samples/hello-go-gke:1.0"

 portsports::

 -- namename:: httphttp

 containerPortcontainerPort:: 8080

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/hello.yamlkubectl create -f https://k8s.io/docs/tasks/access-application-cluster/hello.yaml

kubectl describe deployment hellokubectl describe deployment hello

file:///docs/tasks/access-application-cluster/create-external-load-balancer/
file:///docs/concepts/services-networking/service/#type-nodeport
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/access-application-cluster/hello.yaml

The output is similar to this:

Creating the backend Service object

The key to connecting a frontend to a backend is the backend Service. A Service creates a

persistent IP address and DNS name entry so that the backend microservice can always be

reached. A Service uses selector labels to find the Pods that it routes traffic to.

First, explore the Service configuration file:

hello-service.yamlhello-service.yaml

kubectl describe deployment hellokubectl describe deployment hello

Name: helloName: hello

Namespace: defaultNamespace: default

CreationTimestamp: Mon, 24 Oct 2016 14:21:02 -0700CreationTimestamp: Mon, 24 Oct 2016 14:21:02 -0700

Labels: app=helloLabels: app=hello

 tier=backend tier=backend

 track=stable track=stable

Annotations: deployment.kubernetes.io/revision=1Annotations: deployment.kubernetes.io/revision=1

Selector: app=hello,tier=backend,track=stableSelector: app=hello,tier=backend,track=stable

Replicas: 7 desired | 7 updated | 7 total | 7 available | 0 unavailableReplicas: 7 desired | 7 updated | 7 total | 7 available | 0 unavailable

StrategyType: RollingUpdateStrategyType: RollingUpdate

MinReadySeconds: 0MinReadySeconds: 0

RollingUpdateStrategy: 1 max unavailable, 1 max surgeRollingUpdateStrategy: 1 max unavailable, 1 max surge

Pod Template:Pod Template:

 Labels: app=hello Labels: app=hello

 tier=backend tier=backend

 track=stable track=stable

 Containers: Containers:

 hello: hello:

 Image: "gcr.io/google-samples/hello-go-gke:1.0" Image: "gcr.io/google-samples/hello-go-gke:1.0"

 Port: 80/TCP Port: 80/TCP

 Environment: <none> Environment: <none>

 Mounts: <none> Mounts: <none>

 Volumes: <none> Volumes: <none>

Conditions:Conditions:

 Type Status Reason Type Status Reason

 ---- ------ ------ ---- ------ ------

 Available True MinimumReplicasAvailable Available True MinimumReplicasAvailable

 Progressing True NewReplicaSetAvailable Progressing True NewReplicaSetAvailable

OldReplicaSets: <none>OldReplicaSets: <none>

NewReplicaSet: hello-3621623197 (7/7 replicas created)NewReplicaSet: hello-3621623197 (7/7 replicas created)

Events:Events:

......

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/access-application-cluster/hello-service.yaml

hello-service.yamlhello-service.yaml

In the configuration file, you can see that the Service routes traffic to Pods that have the labels

app: helloapp: hello and tier: backendtier: backend .

Create the hellohello Service:

At this point, you have a backend Deployment running, and you have a Service that can route

traffic to it.

Creating the frontend

Now that you have your backend, you can create a frontend that connects to the backend. The

frontend connects to the backend worker Pods by using the DNS name given to the backend

Service. The DNS name is “hello”, which is the value of the namename field in the preceding Service

configuration file.

The Pods in the frontend Deployment run an nginx image that is configured to find the hello

backend Service. Here is the nginx configuration file:

frontend/frontend.conffrontend/frontend.conf

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: hellohello

specspec::

 selectorselector::

 appapp:: hellohello

 tiertier:: backendbackend

 portsports::

 -- protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: httphttp

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/hello-service.yamlkubectl create -f https://k8s.io/docs/tasks/access-application-cluster/hello-service.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/access-application-cluster/frontend/frontend.conf

frontend/frontend.conffrontend/frontend.conf

Similar to the backend, the frontend has a Deployment and a Service. The configuration for the

Service has type: LoadBalancertype: LoadBalancer , which means that the Service uses the default load

balancer of your cloud provider.

frontend.yamlfrontend.yaml

upstream hello {upstream hello {

 server hello; server hello;

}}

server {server {

 listen 80; listen 80;

 location / { location / {

 proxy_pass http://hello; proxy_pass http://hello;

 } }

}}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/access-application-cluster/frontend.yaml

frontend.yamlfrontend.yaml

Create the frontend Deployment and Service:

The output verifies that both resources were created:

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: frontendfrontend

specspec::

 selectorselector::

 appapp:: hellohello

 tiertier:: frontendfrontend

 portsports::

 -- protocolprotocol:: ""TCP"TCP"

 portport:: 8080

 targetPorttargetPort:: 8080

 typetype:: LoadBalancerLoadBalancer

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: frontendfrontend

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: hellohello

 tiertier:: frontendfrontend

 tracktrack:: stablestable

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: hellohello

 tiertier:: frontendfrontend

 tracktrack:: stablestable

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: ""gcr.io/google-samples/hello-frontend:1.0"gcr.io/google-samples/hello-frontend:1.0"

 lifecyclelifecycle::

 preStoppreStop::

 execexec::

 commandcommand:: [[""/usr/sbin/nginx"/usr/sbin/nginx",,""-s"-s",,""quit"quit"]]

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/frontend.yamlkubectl create -f https://k8s.io/docs/tasks/access-application-cluster/frontend.yaml

Note: The nginx configuration is baked into the container image. A better way to do this would

be to use a ConfigMap, so that you can change the configuration more easily.

Interact with the frontend Service

Once you’ve created a Service of type LoadBalancer, you can use this command to find the

external IP:

The external IP field may take some time to populate. If this is the case, the external IP is listed

as <pending><pending> .

Repeat the same command again until it shows an external IP address:

Send traffic through the frontend

The frontend and backends are now connected. You can hit the endpoint by using the curl

command on the external IP of your frontend Service.

The output shows the message generated by the backend:

deployment "frontend" createddeployment "frontend" created

service "frontend" createdservice "frontend" created

kubectl get service frontendkubectl get service frontend

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend 10.51.252.116 <pending> 80/TCP 10sfrontend 10.51.252.116 <pending> 80/TCP 10s

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend 10.51.252.116 XXX.XXX.XXX.XXX 80/TCP 1mfrontend 10.51.252.116 XXX.XXX.XXX.XXX 80/TCP 1m

curl http://<EXTERNAL-IP>curl http://<EXTERNAL-IP>

{"message":"Hello"}{"message":"Hello"}

file:///docs/tasks/access-application-cluster/frontend/Dockerfile
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

What’s next

Learn more about Services

Learn more about ConfigMaps

file:///docs/concepts/services-networking/service/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

Create an External Load Balancer

This page shows how to create an External Load Balancer.

When creating a service, you have the option of automatically creating a cloud network load

balancer. This provides an externally-accessible IP address that sends traffic to the correct

port on your cluster nodes provided your cluster runs in a supported environment and is

configured with the correct cloud load balancer provider package.

For information on provisioning and using an Ingress resource that can give services

externally-reachable URLs, load balance the traffic, terminate SSL etc., please check the

Ingress documentation.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Configuration file

Before you begin

Configuration file

Using kubectl

Finding your IP address

Preserving the client source IP

Feature availability

External Load Balancer Providers

Caveats and Limitations when preserving source IPs

file:///docs/concepts/services-networking/ingress/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

To create an external load balancer, add the following line to your service configuration file:

Your configuration file might look like:

Using kubectl

You can alternatively create the service with the

kubectlkubectl

exposeexpose command and its

--type=LoadBalancer--type=LoadBalancer flag:

This command creates a new service using the same selectors as the referenced resource (in

the case of the example above, a replication controller named exampleexample).

For more information, including optional flags, refer to the

kubectlkubectl

exposeexpose reference.

Finding your IP address

 "type""type":: "LoadBalancer""LoadBalancer"

 {{

 "kind""kind":: "Service""Service",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "example-service""example-service"

 },},

 "spec""spec":: {{

 "ports""ports":: [{[{

 "port""port":: 87658765,,

 "targetPort""targetPort":: 93769376

 }],}],

 "selector""selector":: {{

 "app""app":: "example""example"

 },},

 "type""type":: "LoadBalancer""LoadBalancer"

 }}

 }}

kubectl expose rc example kubectl expose rc example --port--port==8765 8765 --target-port--target-port==9376 9376 \\

 --name--name==example-service example-service --type--type==LoadBalancerLoadBalancer

file:///docs/concepts/services-networking/service/#type-loadbalancer
file:///docs/user-guide/kubectl/v1.10/#expose

You can find the IP address created for your service by getting the service information through

kubectlkubectl :

which should produce output like this:

The IP address is listed next to LoadBalancer IngressLoadBalancer Ingress .

Note: If you are running your service on Minikube, you can find the assigned IP address

and port with:

Preserving the client source IP

Due to the implementation of this feature, the source IP seen in the target container will not be

the original source IP of the client. To enable preservation of the client IP, the following fields

can be configured in the service spec (supported in GCE/Google Kubernetes Engine

environments):

service.spec.externalTrafficPolicyservice.spec.externalTrafficPolicy - denotes if this Service desires to route external

kubectl describe services example-servicekubectl describe services example-service

 Name: example-service Name: example-service

 Namespace: default Namespace: default

 Labels: <none> Labels: <none>

 Annotations: <none> Annotations: <none>

 Selector: Selector: appapp==exampleexample

 Type: LoadBalancer Type: LoadBalancer

 IP: 10.67.252.103 IP: 10.67.252.103

 LoadBalancer Ingress: 123.45.678.9 LoadBalancer Ingress: 123.45.678.9

 Port: <unnamed> 80/TCP Port: <unnamed> 80/TCP

 NodePort: <unnamed> 32445/TCP NodePort: <unnamed> 32445/TCP

 Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80 Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80

 Session Affinity: None Session Affinity: None

 Events: <none> Events: <none>

minikube service example-service minikube service example-service --url--url

traffic to node-local or cluster-wide endpoints. There are two available options: “Cluster”

(default) and “Local”. “Cluster” obscures the client source IP and may cause a second hop

to another node, but should have good overall load-spreading. “Local” preserves the client

source IP and avoids a second hop for LoadBalancer and NodePort type services, but

risks potentially imbalanced traffic spreading.

service.spec.healthCheckNodePortservice.spec.healthCheckNodePort - specifies the healthcheck nodePort (numeric

port number) for the service. If not specified, healthCheckNodePort is created by the

service API backend with the allocated nodePort. It will use the user-specified nodePort

value if specified by the client. It only has an effect when type is set to “LoadBalancer” and

externalTrafficPolicy is set to “Local”.

This feature can be activated by setting externalTrafficPolicyexternalTrafficPolicy to “Local” in the Service

Configuration file.

Feature availability

k8s version Feature support

1.7+ Supports the full API fields

1.5 - 1.6 Supports Beta Annotations

<1.5 Unsupported

 {{

 "kind""kind":: "Service""Service",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "example-service""example-service"

 },},

 "spec""spec":: {{

 "ports""ports":: [{[{

 "port""port":: 87658765,,

 "targetPort""targetPort":: 93769376

 }],}],

 "selector""selector":: {{

 "app""app":: "example""example"

 },},

 "type""type":: "LoadBalancer""LoadBalancer",,

 "externalTrafficPolicy""externalTrafficPolicy":: "Local""Local"

 }}

 }}

Below you could find the deprecated Beta annotations used to enable this feature prior to its

stable version. Newer Kubernetes versions may stop supporting these after v1.7. Please

update existing applications to use the fields directly.

service.beta.kubernetes.io/external-trafficservice.beta.kubernetes.io/external-traffic annotation <->

service.spec.externalTrafficPolicyservice.spec.externalTrafficPolicy field

service.beta.kubernetes.io/healthcheck-nodeportservice.beta.kubernetes.io/healthcheck-nodeport annotation <->

service.spec.healthCheckNodePortservice.spec.healthCheckNodePort field

service.beta.kubernetes.io/external-trafficservice.beta.kubernetes.io/external-traffic annotation has a different set of values

compared to the service.spec.externalTrafficPolicyservice.spec.externalTrafficPolicy field. The values match as follows:

“OnlyLocal” for annotation <-> “Local” for field

“Global” for annotation <-> “Cluster” for field

Note that this feature is not currently implemented for all cloudproviders/environments.

Known issues:

AWS: kubernetes/kubernetes#35758

Weave-Net: weaveworks/weave/#2924

External Load Balancer Providers

It is important to note that the datapath for this functionality is provided by a load balancer

external to the Kubernetes cluster.

When the service type is set to LoadBalancerLoadBalancer , Kubernetes provides functionality equivalent to

type=<ClusterIP>type=<ClusterIP> to pods within the cluster and extends it by programming the (external to

Kubernetes) load balancer with entries for the Kubernetes pods. The Kubernetes service

controller automates the creation of the external load balancer, health checks (if needed),

firewall rules (if needed) and retrieves the external IP allocated by the cloud provider and

populates it in the service object.

Caveats and Limitations when preserving source IPs

https://github.com/kubernetes/kubernetes/issues/35758
https://github.com/weaveworks/weave/issues/2924

GCE/AWS load balancers do not provide weights for their target pools. This was not an issue

with the old LB kube-proxy rules which would correctly balance across all endpoints.

With the new functionality, the external traffic will not be equally load balanced across pods,

but rather equally balanced at the node level (because GCE/AWS and other external LB

implementations do not have the ability for specifying the weight per node, they balance

equally across all target nodes, disregarding the number of pods on each node).

We can, however, state that for NumServicePods « NumNodes or NumServicePods »

NumNodes, a fairly close-to-equal distribution will be seen, even without weights.

Once the external load balancers provide weights, this functionality can be added to the LB

programming path. Future Work: No support for weights is provided for the 1.4 release, but may

be added at a future date

Internal pod to pod traffic should behave similar to ClusterIP services, with equal probability

across all pods.

Configure Your Cloud Provider's Firewalls

Many cloud providers (e.g. Google Compute Engine) define firewalls that help prevent

inadvertent exposure to the internet. When exposing a service to the external world, you may

need to open up one or more ports in these firewalls to serve traffic. This document describes

this process, as well as any provider specific details that may be necessary.

Restrict Access For LoadBalancer Service

When using a Service with spec.type: LoadBalancerspec.type: LoadBalancer , you can specify the IP ranges that are

allowed to access the load balancer by using spec.loadBalancerSourceRangesspec.loadBalancerSourceRanges . This field

takes a list of IP CIDR ranges, which Kubernetes will use to configure firewall exceptions. This

feature is currently supported on Google Compute Engine, Google Kubernetes Engine and

AWS. This field will be ignored if the cloud provider does not support the feature.

Assuming 10.0.0.0/8 is the internal subnet. In the following example, a load balancer will be

created that is only accessible to cluster internal IPs. This will not allow clients from outside of

your Kubernetes cluster to access the load balancer.

In the following example, a load balancer will be created that is only accessible to clients with

IP addresses from 130.211.204.1 and 130.211.204.2.

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: myappmyapp

specspec::

 portsports::

 -- portport:: 87658765

 targetPorttargetPort:: 93769376

 selectorselector::

 appapp:: exampleexample

 typetype:: LoadBalancerLoadBalancer

 loadBalancerSourceRangesloadBalancerSourceRanges::

 -- 10.0.0.0/810.0.0.0/8

Google Compute Engine

When using a Service with spec.type: LoadBalancerspec.type: LoadBalancer , the firewall will be opened

automatically. When using

spec.type:spec.type:

NodePortNodePort , however, the firewall is not opened by

default.

Google Compute Engine firewalls are documented elsewhere.

You can add a firewall with the gcloudgcloud command line tool:

Note There is one important security note when using firewalls on Google Compute Engine:

as of Kubernetes v1.0.0, GCE firewalls are defined per-vm, rather than per-ip address. This

means that when you open a firewall for a service’s ports, anything that serves on that port on

that VM’s host IP address may potentially serve traffic. Note that this is not a problem for

other Kubernetes services, as they listen on IP addresses that are different than the host

node’s external IP address.

Consider:

You create a Service with an external load balancer (IP Address 1.2.3.4) and port 80

You open the firewall for port 80 for all nodes in your cluster, so that the external Service

actually can deliver packets to your Service

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: myappmyapp

specspec::

 portsports::

 -- portport:: 87658765

 targetPorttargetPort:: 93769376

 selectorselector::

 appapp:: exampleexample

 typetype:: LoadBalancerLoadBalancer

 loadBalancerSourceRangesloadBalancerSourceRanges::

 -- 130.211.204.1/32130.211.204.1/32

 -- 130.211.204.2/32130.211.204.2/32

gcloud compute firewall-rules create my-rule gcloud compute firewall-rules create my-rule --allow--allow==tcp:<port>tcp:<port>

https://cloud.google.com/compute/docs/networking#firewalls_1

You start an nginx server, running on port 80 on the host virtual machine (IP Address

2.3.4.5). This nginx is also exposed to the internet on the VM’s external IP address.

Consequently, please be careful when opening firewalls in Google Compute Engine or Google

Kubernetes Engine. You may accidentally be exposing other services to the wilds of the

internet.

This will be fixed in an upcoming release of Kubernetes.

Other cloud providers

Coming soon.

List All Container Images Running in a
Cluster

This page shows how to use kubectl to list all of the Container images for Pods running in a

cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

In this exercise you will use kubectl to fetch all of the Pods running in a cluster, and format the

output to pull out the list of Containers for each.

List all Containers in all namespaces

Fetch all Pods in all namespaces using

kubectl get pods --all-kubectl get pods --all-

namespacesnamespaces

Before you begin

List all Containers in all namespaces

List Containers by Pod

List Containers filtering by Pod label

List Containers filtering by Pod namespace

List Containers using a go-template instead of jsonpath

What’s next

Reference

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Format the output to include only the list of Container image names using

-o jsonpath={..image}-o jsonpath={..image} . This will recursively parse out the imageimage field from the

returned json.

See the jsonpath reference for further information on how to use jsonpath.

Format the output using standard tools: trtr , sortsort , uniquniq

Use trtr to replace spaces with newlines

Use sortsort to sort the results

Use uniquniq to aggregate image counts

The above command will recursively return all fields named imageimage for all items returned.

As an alternative, it is possible to use the absolute path to the image field within the Pod. This

ensures the correct field is retrieved even when the field name is repeated, e.g. many fields are

called namename within a given item:

The jsonpath is interpreted as follows:

.items[*].items[*] : for each returned value

.spec.spec : get the spec

.containers[*].containers[*] : for each container

.image.image : get the image

Note: When fetching a single Pod by name, e.g.

kubectl get podkubectl get pod

nginxnginx , the .items[*].items[*]

portion of the path should be omitted because a single Pod is returned instead of a list of

kubectl get pods kubectl get pods --all-namespaces--all-namespaces -o-o jsonpathjsonpath=="{..image}""{..image}" | |\\

tr tr -s-s '[[:space:]]''[[:space:]]' '\n''\n' | |\\

sort |sort |\\

uniq uniq -c-c

kubectl get pods kubectl get pods --all-namespaces--all-namespaces -o-o jsonpathjsonpath=="{.items[*].spec.containers[*].image}""{.items[*].spec.containers[*].image}"

file:///docs/user-guide/jsonpath/

items.

List Containers by Pod

The formatting can be controlled further by using the rangerange operation to iterate over elements

individually.

List Containers filtering by Pod label

To target only Pods matching a specific label, use the -l flag. The following matches only Pods

with labels matching app=nginxapp=nginx .

List Containers filtering by Pod namespace

To target only pods in a specific namespace, use the namespace flag. The following matches

only Pods in the kube-systemkube-system namespace.

List Containers using a go-template instead of
jsonpath

As an alternative to jsonpath, Kubectl supports using go-templates for formatting the output:

kubectl get pods kubectl get pods --all-namespaces--all-namespaces -o-o==jsonpathjsonpath=='{range .items[*]}{"\n"}{.metadata.name}{":\t"}{range .spec.containers[*]}{.image}{", "}{end}{end}''{range .items[*]}{"\n"}{.metadata.name}{":\t"}{range .spec.containers[*]}{.image}{", "}{end}{end}'

sortsort

kubectl get pods kubectl get pods --all-namespaces--all-namespaces -o-o==jsonpathjsonpath=="{..image}""{..image}" -l-l appapp==nginxnginx

kubectl get pods kubectl get pods --namespace--namespace kube-system kube-system -o-o jsonpathjsonpath=="{..image}""{..image}"

kubectl get pods kubectl get pods --all-namespaces--all-namespaces -o-o go-template go-template --template--template=="{{range .items}}{{range .spec.containers}}{{.image}} {{end}}{{end}}""{{range .items}}{{range .spec.containers}}{{.image}} {{end}}{{end}}"

https://golang.org/pkg/text/template/

What’s next

Reference

Jsonpath reference guide

Go template reference guide

file:///docs/user-guide/jsonpath/
https://golang.org/pkg/text/template/

Communicate Between Containers in the
Same Pod Using a Shared Volume

This page shows how to use a Volume to communicate between two Containers running in

the same Pod.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Creating a Pod that runs two Containers

In this exercise, you create a Pod that runs two Containers. The two containers share a Volume

that they can use to communicate. Here is the configuration file for the Pod:

two-container-pod.yamltwo-container-pod.yaml

Before you begin

Creating a Pod that runs two Containers

Discussion

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/access-application-cluster/two-container-pod.yaml

two-container-pod.yamltwo-container-pod.yaml

In the configuration file, you can see that the Pod has a Volume named shared-datashared-data .

The first container listed in the configuration file runs an nginx server. The mount path for the

shared Volume is /usr/share/nginx/html/usr/share/nginx/html . The second container is based on the debian

image, and has a mount path of /pod-data/pod-data . The second container runs the following

command and then terminates.

Notice that the second container writes the index.htmlindex.html file in the root directory of the nginx

server.

Create the Pod and the two Containers:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: two-containerstwo-containers

specspec::

 restartPolicyrestartPolicy:: NeverNever

 volumesvolumes::

 -- namename:: shared-datashared-data

 emptyDiremptyDir:: {}{}

 containerscontainers::

 -- namename:: nginx-containernginx-container

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- namename:: shared-datashared-data

 mountPathmountPath:: /usr/share/nginx/html/usr/share/nginx/html

 -- namename:: debian-containerdebian-container

 imageimage:: debiandebian

 volumeMountsvolumeMounts::

 -- namename:: shared-datashared-data

 mountPathmountPath:: /pod-data/pod-data

 commandcommand:: [[""/bin/sh"/bin/sh"]]

 argsargs:: [[""-c"-c",, ""echoecho HelloHello fromfrom thethe debiandebian containercontainer >> /pod-data/index.html"/pod-data/index.html"

echo Hello from the debian container > /pod-data/index.htmlecho Hello from the debian container > /pod-data/index.html

kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/two-container-pod.yamlkubectl create -f https://k8s.io/docs/tasks/access-application-cluster/two-container-pod.yaml

View information about the Pod and the Containers:

Here is a portion of the output:

You can see that the debian Container has terminated, and the nginx Container is still running.

Get a shell to nginx Container:

In your shell, verify that nginx is running:

kubectl get pod two-containers --output=yamlkubectl get pod two-containers --output=yaml

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 name: two-containers name: two-containers

 namespace: default namespace: default

spec:spec:

 containerStatuses: containerStatuses:

 - containerID: docker://c1d8abd1 ... - containerID: docker://c1d8abd1 ...

 image: debian image: debian

 lastState: lastState:

 terminated: terminated:

 name: debian-container name: debian-container

 - containerID: docker://96c1ff2c5bb ... - containerID: docker://96c1ff2c5bb ...

 image: nginx image: nginx

 name: nginx-container name: nginx-container

 state: state:

 running: running:

kubectl exec -it two-containers -c nginx-container -- /bin/bashkubectl exec -it two-containers -c nginx-container -- /bin/bash

The output is similar to this:

Recall that the debian Container created the index.htmlindex.html file in the nginx root directory. Use

curlcurl to send a GET request to the nginx server:

The output shows that nginx serves a web page written by the debian container:

Discussion

The primary reason that Pods can have multiple containers is to support helper applications

that assist a primary application. Typical examples of helper applications are data pullers, data

pushers, and proxies. Helper and primary applications often need to communicate with each

other. Typically this is done through a shared filesystem, as shown in this exercise, or through

the loopback network interface, localhost. An example of this pattern is a web server along

with a helper program that polls a Git repository for new updates.

The Volume in this exercise provides a way for Containers to communicate during the life of

the Pod. If the Pod is deleted and recreated, any data stored in the shared Volume is lost.

What’s next

Learn more about patterns for composite containers.

root@two-containers:/# apt-get updateroot@two-containers:/# apt-get update

root@two-containers:/# apt-get install curl procpsroot@two-containers:/# apt-get install curl procps

root@two-containers:/# ps auxroot@two-containers:/# ps aux

USER PID ... STAT START TIME COMMANDUSER PID ... STAT START TIME COMMAND

root 1 ... Ss 21:12 0:00 nginx: master process nginx -g daemon off;root 1 ... Ss 21:12 0:00 nginx: master process nginx -g daemon off;

root@two-containers:/# curl localhostroot@two-containers:/# curl localhost

Hello from the debian containerHello from the debian container

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

Learn about composite containers for modular architecture.

See Configuring a Pod to Use a Volume for Storage .

See Volume.

See Pod.

http://www.slideshare.net/Docker/slideshare-burns
file:///docs/tasks/configure-pod-container/configure-volume-storage/
file:///docs/reference/generated/kubernetes-api/v1.10/#volume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#pod-v1-core

Core metrics pipeline

Starting from Kubernetes 1.8, resource usage metrics, such as container CPU and memory

usage, are available in Kubernetes through the Metrics API. These metrics can be either

accessed directly by user, for example by using

kubectlkubectl

toptop command, or used by a

controller in the cluster, e.g. Horizontal Pod Autoscaler, to make decisions.

The Metrics API

Through the Metrics API you can get the amount of resource currently used by a given node or

a given pod. This API doesn’t store the metric values, so it’s not possible for example to get the

amount of resources used by a given node 10 minutes ago.

The API is no different from any other API:

it is discoverable through the same endpoint as the other Kubernetes APIs under

/apis/metrics.k8s.io//apis/metrics.k8s.io/ path

it offers the same security, scalability and reliability guarantees

The API is defined in k8s.io/metrics repository. You can find more information about the API

there.

Note: The API requires metrics server to be deployed in the cluster. Otherwise it will be not

available.

Metrics Server

Metrics Server is a cluster-wide aggregator of resource usage data. Starting from Kubernetes

1.8 it’s deployed by default in clusters created by kube-up.shkube-up.sh script as a Deployment object.

If you use a different Kubernetes setup mechanism you can deploy it using the provided

deployment yamls. It’s supported in Kubernetes 1.7+ (see details below).

Metric server collects metrics from the Summary API, exposed by Kubelet on each node.

https://github.com/kubernetes/metrics/blob/master/pkg/apis/metrics/v1beta1/types.go
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server/tree/master/deploy
file:///docs/admin/kubelet/

Metrics Server registered in the main API server through Kubernetes aggregator, which was

introduced in Kubernetes 1.7.

Learn more about the metrics server in the design doc.

https://kubernetes.io/docs/concepts/api-extension/apiserver-aggregation/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md

Tools for Monitoring Compute, Storage,
and Network Resources

Understanding how an application behaves when deployed is crucial to scaling the application

and providing a reliable service. In a Kubernetes cluster, application performance can be

examined at many different levels: containers, pods, services, and whole clusters. As part of

Kubernetes we want to provide users with detailed resource usage information about their

running applications at all these levels. This will give users deep insights into how their

applications are performing and where possible application bottlenecks may be found. In

comes Heapster, a project meant to provide a base monitoring platform on Kubernetes.

Overview

Heapster is a cluster-wide aggregator of monitoring and event data. It currently supports

Kubernetes natively and works on all Kubernetes setups. Heapster runs as a pod in the cluster,

similar to how any Kubernetes application would run. The Heapster pod discovers all nodes in

the cluster and queries usage information from the nodes’ Kubelets, the on-machine

Kubernetes agent. The Kubelet itself fetches the data from cAdvisor. Heapster groups the

information by pod along with the relevant labels. This data is then pushed to a configurable

backend for storage and visualization. Currently supported backends include InfluxDB (with

Grafana for visualization), Google Cloud Monitoring and many others described in more details

here. The overall architecture of the service can be seen below:

file:///docs/user-guide/pods
file:///docs/user-guide/services
https://github.com/kubernetes/heapster
file:///docs/admin/kubelet/
https://github.com/google/cadvisor
http://influxdb.com/
http://grafana.org/
https://cloud.google.com/monitoring/
https://git.k8s.io/heapster/docs/sink-configuration.md

Let’s look at some of the other components in more detail.

cAdvisor

cAdvisor is an open source container resource usage and performance analysis agent. It is

purpose-built for containers and supports Docker containers natively. In Kubernetes, cAdvisor

is integrated into the Kubelet binary. cAdvisor auto-discovers all containers in the machine and

collects CPU, memory, filesystem, and network usage statistics. cAdvisor also provides the

overall machine usage by analyzing the ‘root’ container on the machine.

On most Kubernetes clusters, cAdvisor exposes a simple UI for on-machine containers on port

4194. Here is a snapshot of part of cAdvisor’s UI that shows the overall machine usage:

Kubelet

The Kubelet acts as a bridge between the Kubernetes master and the nodes. It manages the

pods and containers running on a machine. Kubelet translates each pod into its constituent

containers and fetches individual container usage statistics from cAdvisor. It then exposes the

aggregated pod resource usage statistics via a REST API.

Storage Backends

InfluxDB and Grafana

A Grafana setup with InfluxDB is a very popular combination for monitoring in the open source

world. InfluxDB exposes an easy to use API to write and fetch time series data. Heapster is

setup to use this storage backend by default on most Kubernetes clusters. A detailed setup

guide can be found here. InfluxDB and Grafana run in Pods. The pod exposes itself as a

Kubernetes service which is how Heapster discovers it.

The Grafana container serves Grafana’s UI which provides an easy to configure dashboard

interface. The default dashboard for Kubernetes contains an example dashboard that monitors

resource usage of the cluster and the pods inside of it. This dashboard can easily be

customized and expanded. Take a look at the storage schema for InfluxDB here.

Here is a video showing how to monitor a Kubernetes cluster using heapster, InfluxDB and

Grafana:

Here is a snapshot of the default Kubernetes Grafana dashboard that shows the CPU and

Memory usage of the entire cluster, individual pods and containers:

https://github.com/GoogleCloudPlatform/heapster/blob/master/docs/influxdb.md
https://github.com/GoogleCloudPlatform/heapster/blob/master/docs/storage-schema.md#metrics
http://www.youtube.com/watch?v=SZgqjMrxo3g

Google Cloud Monitoring

Google Cloud Monitoring is a hosted monitoring service that allows you to visualize and alert

on important metrics in your application. Heapster can be setup to automatically push all

collected metrics to Google Cloud Monitoring. These metrics are then available in the Cloud

Monitoring Console. This storage backend is the easiest to setup and maintain. The

monitoring console allows you to easily create and customize dashboards using the exported

data.

Here is a video showing how to setup and run a Google Cloud Monitoring backed Heapster:

Here is a snapshot of the Google Cloud Monitoring dashboard showing cluster-wide resource

https://app.google.stackdriver.com/
http://www.youtube.com/watch?v=xSMNR2fcoLs

usage.

Try it out!

Now that you’ve learned a bit about Heapster, feel free to try it out on your own clusters! The

Heapster repository is available on GitHub. It contains detailed instructions to setup Heapster

and its storage backends. Heapster runs by default on most Kubernetes clusters, so you may

already have it! Feedback is always welcome. Please let us know if you run into any issues via

the troubleshooting channels.

Authors: Vishnu Kannan and Victor Marmol, Google Software Engineers. This article was

originally posted in Kubernetes blog.

https://github.com/kubernetes/heapster
file:///docs/troubleshooting/
http://blog.kubernetes.io/2015/05/resource-usage-monitoring-kubernetes.html

Get a Shell to a Running Container

This page shows how to use kubectl execkubectl exec to get a shell to a running Container.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Getting a shell to a Container

In this exercise, you create a Pod that has one Container. The Container runs the nginx image.

Here is the configuration file for the Pod:

shell-demo.yamlshell-demo.yaml

Before you begin

Getting a shell to a Container

Writing the root page for nginx

Running individual commands in a Container

Opening a shell when a Pod has more than one Container

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/shell-demo.yaml

shell-demo.yamlshell-demo.yaml

Create the Pod:

Verify that the Container is running:

Get a shell to the running Container:

In your shell, list the root directory:

In your shell, experiment with other commands. Here are some examples:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: shell-demoshell-demo

specspec::

 volumesvolumes::

 -- namename:: shared-datashared-data

 emptyDiremptyDir:: {}{}

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- namename:: shared-datashared-data

 mountPathmountPath:: /usr/share/nginx/html/usr/share/nginx/html

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/debug-application-cluster/shell-demo.yaml https://k8s.io/docs/tasks/debug-application-cluster/shell-demo.yaml

kubectl get pod shell-demokubectl get pod shell-demo

kubectl kubectl execexec -it-it shell-demo shell-demo ---- /bin/bash /bin/bash

root@shell-demo:/# root@shell-demo:/# lsls / /

Writing the root page for nginx

Look again at the configuration file for your Pod. The Pod has an emptyDiremptyDir volume, and the

Container mounts the volume at /usr/share/nginx/html/usr/share/nginx/html .

In your shell, create an index.htmlindex.html file in the /usr/share/nginx/html/usr/share/nginx/html directory:

In your shell, send a GET request to the nginx server:

The output shows the text that you wrote to the index.htmlindex.html file:

When you are finished with your shell, enter exitexit .

Running individual commands in a Container

In an ordinary command window, not your shell, list the environment variables in the running

Container:

root@shell-demo:/# root@shell-demo:/# lsls / /

root@shell-demo:/# root@shell-demo:/# catcat /proc/mounts /proc/mounts

root@shell-demo:/# root@shell-demo:/# catcat /proc/1/maps /proc/1/maps

root@shell-demo:/# apt-get updateroot@shell-demo:/# apt-get update

root@shell-demo:/# apt-get install root@shell-demo:/# apt-get install -y-y tcpdump tcpdump

root@shell-demo:/# tcpdumproot@shell-demo:/# tcpdump

root@shell-demo:/# apt-get install root@shell-demo:/# apt-get install -y-y lsof lsof

root@shell-demo:/# lsofroot@shell-demo:/# lsof

root@shell-demo:/# apt-get install root@shell-demo:/# apt-get install -y-y procps procps

root@shell-demo:/# ps auxroot@shell-demo:/# ps aux

root@shell-demo:/# ps aux | root@shell-demo:/# ps aux | grep grep nginxnginx

root@shell-demo:/# root@shell-demo:/# echo echo Hello shell demo Hello shell demo >> /usr/share/nginx/html/index.html /usr/share/nginx/html/index.html

root@shell-demo:/# apt-get updateroot@shell-demo:/# apt-get update

root@shell-demo:/# apt-get install curlroot@shell-demo:/# apt-get install curl

root@shell-demo:/# curl localhostroot@shell-demo:/# curl localhost

Hello shell demoHello shell demo

Experiment running other commands. Here are some examples:

Opening a shell when a Pod has more than one
Container

If a Pod has more than one Container, use --container--container or -c-c to specify a Container in the

kubectl execkubectl exec command. For example, suppose you have a Pod named my-pod, and the Pod

has two containers named main-app and helper-app. The following command would open a

shell to the main-app Container.

What’s next

kubectl exec

kubectl kubectl exec exec shell-demo envshell-demo env

kubectl kubectl exec exec shell-demo ps auxshell-demo ps aux

kubectl kubectl exec exec shell-demo shell-demo lsls / /

kubectl kubectl exec exec shell-demo shell-demo catcat /proc/1/mounts /proc/1/mounts

kubectl kubectl execexec -it-it my-pod my-pod --container--container main-app main-app ---- /bin/bash /bin/bash

file:///docs/user-guide/kubectl/v1.10/#exec

Monitor Node Health

Node Problem Detector

Node problem detector is a DaemonSet monitoring the node health. It collects node problems

from various daemons and reports them to the apiserver as NodeCondition and Event.

It supports some known kernel issue detection now, and will detect more and more node

problems over time.

Currently Kubernetes won’t take any action on the node conditions and events generated by

node problem detector. In the future, a remedy system could be introduced to deal with node

problems.

See more information here.

Limitations

The kernel issue detection of node problem detector only supports file based kernel log

now. It doesn’t support log tools like journald.

The kernel issue detection of node problem detector has assumption on kernel log format,

and now it only works on Ubuntu and Debian. However, it is easy to extend it to support

Node Problem Detector

Limitations

Enable/Disable in GCE cluster

Use in Other Environment

Kubectl

Addon Pod

Overwrite the Configuration

Kernel Monitor

Add New NodeConditions

Detect New Problems

Change Log Path

Support Other Log Format

Caveats

file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/concepts/architecture/nodes/#condition
file:///docs/reference/generated/kubernetes-api/v1.10/#event-v1-core
https://github.com/kubernetes/node-problem-detector

other log format.

Enable/Disable in GCE cluster

Node problem detector is running as a cluster addon enabled by default in the gce cluster.

You can enable/disable it by setting the environment variable

KUBE_ENABLE_NODE_PROBLEM_DETECTORKUBE_ENABLE_NODE_PROBLEM_DETECTOR before kube-up.shkube-up.sh .

Use in Other Environment

To enable node problem detector in other environment outside of GCE, you can use either

kubectlkubectl or addon pod.

Kubectl

This is the recommended way to start node problem detector outside of GCE. It provides more

flexible management, such as overwriting the default configuration to fit it into your

environment or detect customized node problems.

Step 1: Create node-problem-detector.yamlnode-problem-detector.yaml :

file:///docs/tasks/debug-application-cluster/monitor-node-health/#support-other-log-format
file:///docs/admin/cluster-large/#addon-resources

Notice that you should make sure the system log directory is right for your OS distro.

Step 2: Start node problem detector with kubectlkubectl :

Addon Pod

This is for those who have their own cluster bootstrap solution, and don’t need to overwrite the

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: DaemonSetDaemonSet

metadatametadata::

 namename:: node-problem-detector-v0.1node-problem-detector-v0.1

 namespacenamespace:: kube-systemkube-system

 labelslabels::

 k8s-appk8s-app:: node-problem-detectornode-problem-detector

 versionversion:: v0.1v0.1

 kubernetes.io/cluster-servicekubernetes.io/cluster-service:: ""true"true"

specspec::

 templatetemplate::

 metadatametadata::

 labelslabels::

 k8s-appk8s-app:: node-problem-detectornode-problem-detector

 versionversion:: v0.1v0.1

 kubernetes.io/cluster-servicekubernetes.io/cluster-service:: ""true"true"

 specspec::

 hostNetworkhostNetwork:: truetrue

 containerscontainers::

 -- namename:: node-problem-detectornode-problem-detector

 imageimage:: k8s.gcr.io/node-problem-detector:v0.1k8s.gcr.io/node-problem-detector:v0.1

 securityContextsecurityContext::

 privilegedprivileged:: truetrue

 resourcesresources::

 limitslimits::

 cpucpu:: ""200m"200m"

 memorymemory:: ""100Mi"100Mi"

 requestsrequests::

 cpucpu:: ""20m"20m"

 memorymemory:: ""20Mi"20Mi"

 volumeMountsvolumeMounts::

 -- namename:: loglog

 mountPathmountPath:: /log/log

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: loglog

 hostPathhostPath::

 pathpath:: /var/log//var/log/

kubectl create kubectl create -f-f node-problem-detector.yaml node-problem-detector.yaml

default configuration. They could leverage the addon pod to further automate the deployment.

Just create node-problem-detector.yamlnode-problem-detector.yaml , and put it under the addon pods directory

/etc/kubernetes/addons/node-problem-detector/etc/kubernetes/addons/node-problem-detector on master node.

Overwrite the Configuration

The default configuration is embedded when building the docker image of node problem

detector.

However, you can use ConfigMap to overwrite it following the steps:

Step 1: Change the config files in config/config/ .

Step 2: Create the ConfigMap node-problem-detector-confignode-problem-detector-config with

kubectl kubectl create configmap node-problem-detector-config --from-create configmap node-problem-detector-config --from-

file=config/file=config/ .

Step 3: Change the node-problem-detector.yamlnode-problem-detector.yaml to use the ConfigMap:

https://github.com/kubernetes/node-problem-detector/tree/v0.1/config
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

Step 4: Re-create the node problem detector with the new yaml file:

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: DaemonSetDaemonSet

metadatametadata::

 namename:: node-problem-detector-v0.1node-problem-detector-v0.1

 namespacenamespace:: kube-systemkube-system

 labelslabels::

 k8s-appk8s-app:: node-problem-detectornode-problem-detector

 versionversion:: v0.1v0.1

 kubernetes.io/cluster-servicekubernetes.io/cluster-service:: ""true"true"

specspec::

 templatetemplate::

 metadatametadata::

 labelslabels::

 k8s-appk8s-app:: node-problem-detectornode-problem-detector

 versionversion:: v0.1v0.1

 kubernetes.io/cluster-servicekubernetes.io/cluster-service:: ""true"true"

 specspec::

 hostNetworkhostNetwork:: truetrue

 containerscontainers::

 -- namename:: node-problem-detectornode-problem-detector

 imageimage:: k8s.gcr.io/node-problem-detector:v0.1k8s.gcr.io/node-problem-detector:v0.1

 securityContextsecurityContext::

 privilegedprivileged:: truetrue

 resourcesresources::

 limitslimits::

 cpucpu:: ""200m"200m"

 memorymemory:: ""100Mi"100Mi"

 requestsrequests::

 cpucpu:: ""20m"20m"

 memorymemory:: ""20Mi"20Mi"

 volumeMountsvolumeMounts::

 -- namename:: loglog

 mountPathmountPath:: /log/log

 readOnlyreadOnly:: truetrue

 -- namename:: configconfig # Overwrite the config/ directory with ConfigMap volume# Overwrite the config/ directory with ConfigMap volume

 mountPathmountPath:: /config/config

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: loglog

 hostPathhostPath::

 pathpath:: /var/log//var/log/

 -- namename:: configconfig # Define ConfigMap volume# Define ConfigMap volume

 configMapconfigMap::

 namename:: node-problem-detector-confignode-problem-detector-config

Notice that this approach only applies to node problem detector started with kubectlkubectl .

For node problem detector running as cluster addon, because addon manager doesn’t support

ConfigMap, configuration overwriting is not supported now.

Kernel Monitor

Kernel Monitor is a problem daemon in node problem detector. It monitors kernel log and

detects known kernel issues following predefined rules.

The Kernel Monitor matches kernel issues according to a set of predefined rule list in

config/kernel-monitor.jsonconfig/kernel-monitor.json . The rule list is extensible, and you can always extend it by

overwriting the configuration.

Add New NodeConditions

To support new node conditions, you can extend the conditionsconditions field in

config/kernel-monitor.jsonconfig/kernel-monitor.json with new condition definition:

Detect New Problems

To detect new problems, you can extend the rulesrules field in config/kernel-monitor.jsonconfig/kernel-monitor.json

with new rule definition:

kubectl delete kubectl delete -f-f node-problem-detector.yaml node-problem-detector.yaml # If you have a node-problem-detector running# If you have a node-problem-detector running

kubectl create kubectl create -f-f node-problem-detector.yaml node-problem-detector.yaml

{{

 "type""type":: "NodeConditionType""NodeConditionType",,

 "reason""reason":: "CamelCaseDefaultNodeConditionReason""CamelCaseDefaultNodeConditionReason",,

 "message""message":: "arbitrary default node condition message""arbitrary default node condition message"

}}

{{

 "type""type":: "temporary/permanent""temporary/permanent",,

 "condition""condition":: "NodeConditionOfPermanentIssue""NodeConditionOfPermanentIssue",,

 "reason""reason":: "CamelCaseShortReason""CamelCaseShortReason",,

 "message""message":: "regexp matching the issue in the kernel log""regexp matching the issue in the kernel log"

}}

https://github.com/kubernetes/node-problem-detector/blob/v0.1/config/kernel-monitor.json

Change Log Path

Kernel log in different OS distros may locate in different path. The loglog field in

config/kernel-monitor.jsonconfig/kernel-monitor.json is the log path inside the container. You can always configure

it to match your OS distro.

Support Other Log Format

Kernel monitor uses TranslatorTranslator plugin to translate kernel log the internal data structure. It is

easy to implement a new translator for a new log format.

Caveats

It is recommended to run the node problem detector in your cluster to monitor the node health.

However, you should be aware that this will introduce extra resource overhead on each node.

Usually this is fine, because:

The kernel log is generated relatively slowly.

Resource limit is set for node problem detector.

Even under high load, the resource usage is acceptable. (see benchmark result)

}}

https://github.com/kubernetes/node-problem-detector/blob/v0.1/pkg/kernelmonitor/translator/translator.go
https://github.com/kubernetes/node-problem-detector/issues/2#issuecomment-220255629

Logging Using Stackdriver

Before reading this page, it’s highly recommended to familiarize yourself with the overview of

logging in Kubernetes.

Note: By default, Stackdriver logging collects only your container’s standard output and

standard error streams. To collect any logs your application writes to a file (for example), see

the sidecar approach in the Kubernetes logging overview.

Deploying

To ingest logs, you must deploy the Stackdriver Logging agent to each node in your cluster.

The agent is a configured fluentdfluentd instance, where the configuration is stored in a

ConfigMapConfigMap and the instances are managed using a Kubernetes DaemonSetDaemonSet . The actual

deployment of the ConfigMapConfigMap and DaemonSetDaemonSet for your cluster depends on your individual

cluster setup.

Deploying to a new cluster

Google Kubernetes Engine

Stackdriver is the default logging solution for clusters deployed on Google Kubernetes Engine.

Stackdriver Logging is deployed to a new cluster by default unless you explicitly opt-out.

Other platforms

To deploy Stackdriver Logging on a new cluster that you’re creating using kube-up.shkube-up.sh , do the

following:

1. Set the KUBE_LOGGING_DESTINATIONKUBE_LOGGING_DESTINATION environment variable to gcpgcp .

2. If not running on GCE, include the beta.kubernetes.io/fluentd-ds-ready=truebeta.kubernetes.io/fluentd-ds-ready=true in the

KUBE_NODE_LABELSKUBE_NODE_LABELS variable.

Once your cluster has started, each node should be running the Stackdriver Logging agent. The

file:///docs/concepts/cluster-administration/logging
file:///docs/concepts/cluster-administration/logging#sidecar-container-with-a-logging-agent

DaemonSetDaemonSet and ConfigMapConfigMap are configured as addons. If you’re not using kube-up.shkube-up.sh ,

consider starting a cluster without a pre-configured logging solution and then deploying

Stackdriver Logging agents to the running cluster.

Deploying to an existing cluster

1. Apply a label on each node, if not already present.

The Stackdriver Logging agent deployment uses node labels to determine to which nodes

it should be allocated. These labels were introduced to distinguish nodes with the

Kubernetes version 1.6 or higher. If the cluster was created with Stackdriver Logging

configured and node has version 1.5.X or lower, it will have fluentd as static pod. Node

cannot have more than one instance of fluentd, therefore only apply labels to the nodes

that don’t have fluentd pod allocated already. You can ensure that your node is labelled

properly by running

kubectlkubectl

describedescribe as follows:

The output should be similar to this:

Ensure that the output contains the label

beta.kubernetes.io/fluentd-ds-ready=truebeta.kubernetes.io/fluentd-ds-ready=true . If it is not present, you can add it using

the kubectl labelkubectl label command as follows:

Note: If a node fails and has to be recreated, you must re-apply the label to the recreated

node. To make this easier, you can use Kubelet’s command-line parameter for applying

node labels in your node startup script.

 kubectl describe node $NODE_NAME kubectl describe node $NODE_NAME

 Name: NODE_NAME Name: NODE_NAME

 Role: Role:

 Labels: beta.kubernetes.io/fluentd-ds-ready=true Labels: beta.kubernetes.io/fluentd-ds-ready=true

 kubectl label node $NODE_NAME beta.kubernetes.io/fluentd-ds-ready=true kubectl label node $NODE_NAME beta.kubernetes.io/fluentd-ds-ready=true

2. Deploy a ConfigMapConfigMap with the logging agent configuration by running the following

command:

The command creates the ConfigMapConfigMap in the defaultdefault namespace. You can download

the file manually and change it before creating the ConfigMapConfigMap object.

3. Deploy the logging agent DaemonSetDaemonSet by running the following command:

You can download and edit this file before using it as well.

Verifying your Logging Agent Deployment

After Stackdriver DaemonSetDaemonSet is deployed, you can discover logging agent deployment status

by running the following command:

If you have 3 nodes in the cluster, the output should looks similar to this:

To understand how logging with Stackdriver works, consider the following synthetic log

generator pod specification counter-pod.yaml:

counter-pod.yamlcounter-pod.yaml

 kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/fluentd-gcp-configmap.yaml kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/fluentd-gcp-configmap.yaml

 kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/fluentd-gcp-ds.yaml kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/fluentd-gcp-ds.yaml

kubectl get ds kubectl get ds --all-namespaces--all-namespaces

NAMESPACE NAME DESIRED CURRENT READY NODE-SELECTOR AGENAMESPACE NAME DESIRED CURRENT READY NODE-SELECTOR AGE

......

kube-system fluentd-gcp-v2.0 3 3 3 beta.kubernetes.io/fluentd-ds-ready=true 6dkube-system fluentd-gcp-v2.0 3 3 3 beta.kubernetes.io/fluentd-ds-ready=true 6d

......

file:///docs/tasks/debug-application-cluster/counter-pod.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/counter-pod.yaml

counter-pod.yamlcounter-pod.yaml

This pod specification has one container that runs a bash script that writes out the value of a

counter and the date once per second, and runs indefinitely. Let’s create this pod in the default

namespace.

You can observe the running pod:

For a short period of time you can observe the ‘Pending’ pod status, because the kubelet has to

download the container image first. When the pod status changes to RunningRunning you can use

the kubectl logskubectl logs command to view the output of this counter pod.

As described in the logging overview, this command fetches log entries from the container log

file. If the container is killed and then restarted by Kubernetes, you can still access logs from

the previous container. However, if the pod is evicted from the node, log files are lost. Let’s

demonstrate this by deleting the currently running counter container:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: countercounter

specspec::

 containerscontainers::

 -- namename:: countcount

 imageimage:: busyboxbusybox

 argsargs:: [[/bin/sh/bin/sh,, -c-c,,

 ''i=0;i=0; whilewhile true;true; dodo echoecho "$i:"$i: $(date)";$(date)"; i=$((i+1));i=$((i+1)); sleepsleep 1;1; done'done'

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.yaml https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.yaml

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

counter 1/1 Running 0 5mcounter 1/1 Running 0 5m

$ $ kubectl logs counterkubectl logs counter

0: Mon Jan 1 00:00:00 UTC 20010: Mon Jan 1 00:00:00 UTC 2001

1: Mon Jan 1 00:00:01 UTC 20011: Mon Jan 1 00:00:01 UTC 2001

2: Mon Jan 1 00:00:02 UTC 20012: Mon Jan 1 00:00:02 UTC 2001

......

and then recreating it:

After some time, you can access logs from the counter pod again:

As expected, only recent log lines are present. However, for a real-world application you will

likely want to be able to access logs from all containers, especially for the debug purposes.

This is exactly when the previously enabled Stackdriver Logging can help.

Viewing logs

Stackdriver Logging agent attaches metadata to each log entry, for you to use later in queries

to select only the messages you’re interested in: for example, the messages from a particular

pod.

The most important pieces of metadata are the resource type and log name. The resource type

of a container log is containercontainer , which is named GKE ContainersGKE Containers in the UI (even if the

Kubernetes cluster is not on Google Kubernetes Engine). The log name is the name of the

container, so that if you have a pod with two containers, named container_1container_1 and

container_2container_2 in the spec, their logs will have log names container_1container_1 and container_2container_2

respectively.

System components have resource type computecompute , which is named

GCE VMGCE VM

InstanceInstance in the

interface. Log names for system components are fixed. For a Google Kubernetes Engine node,

$ $ kubectl delete pod counterkubectl delete pod counter

pod pod "counter""counter" deleted deleted

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.yaml https://k8s.io/docs/tasks/debug-application-cluster/counter-pod.yaml

pod pod "counter""counter" created created

$ $ kubectl logs counterkubectl logs counter

0: Mon Jan 1 00:01:00 UTC 20010: Mon Jan 1 00:01:00 UTC 2001

1: Mon Jan 1 00:01:01 UTC 20011: Mon Jan 1 00:01:01 UTC 2001

2: Mon Jan 1 00:01:02 UTC 20012: Mon Jan 1 00:01:02 UTC 2001

......

every log entry from a system component has one of the following log names:

docker

kubelet

kube-proxy

You can learn more about viewing logs on the dedicated Stackdriver page.

One of the possible ways to view logs is using the gcloud logginggcloud logging command line interface

from the Google Cloud SDK. It uses Stackdriver Logging filtering syntax to query specific logs.

For example, you can run the following command:

As you can see, it outputs messages for the count container from both the first and second

runs, despite the fact that the kubelet already deleted the logs for the first container.

Exporting logs

You can export logs to Google Cloud Storage or to BigQuery to run further analysis. Stackdriver

Logging offers the concept of sinks, where you can specify the destination of log entries. More

information is available on the Stackdriver Exporting Logs page.

Configuring Stackdriver Logging Agents

Sometimes the default installation of Stackdriver Logging may not suit your needs, for

example:

You may want to add more resources because default performance doesn’t suit your

needs.

$ $ gcloud beta logging gcloud beta logging readread 'logName="projects/$YOUR_PROJECT_ID/logs/count"''logName="projects/$YOUR_PROJECT_ID/logs/count"' --format--format

......

"2: Mon Jan 1 00:01:02 UTC 2001"2: Mon Jan 1 00:01:02 UTC 2001\n\n""

"1: Mon Jan 1 00:01:01 UTC 2001"1: Mon Jan 1 00:01:01 UTC 2001\n\n""

"0: Mon Jan 1 00:01:00 UTC 2001"0: Mon Jan 1 00:01:00 UTC 2001\n\n""

......

"2: Mon Jan 1 00:00:02 UTC 2001"2: Mon Jan 1 00:00:02 UTC 2001\n\n""

"1: Mon Jan 1 00:00:01 UTC 2001"1: Mon Jan 1 00:00:01 UTC 2001\n\n""

"0: Mon Jan 1 00:00:00 UTC 2001"0: Mon Jan 1 00:00:00 UTC 2001\n\n""

https://cloud.google.com/logging/docs/view/logs_viewer
https://cloud.google.com/logging/docs/api/gcloud-logging
https://cloud.google.com/sdk/
https://cloud.google.com/logging/docs/view/advanced_filters
https://cloud.google.com/storage/
https://cloud.google.com/bigquery/
https://cloud.google.com/logging/docs/export/configure_export_v2

You may want to introduce additional parsing to extract more metadata from your log

messages, like severity or source code reference.

You may want to send logs not only to Stackdriver or send it to Stackdriver only partially.

In this case you need to be able to change the parameters of DaemonSetDaemonSet and ConfigMapConfigMap .

Prerequisites

If you’re using GKE and Stackdriver Logging is enabled in your cluster, you cannot change its

configuration, because it’s managed and supported by GKE. However, you can disable the

default integration and deploy your own. Note, that you will have to support and maintain a

newly deployed configuration yourself: update the image and configuration, adjust the

resources and so on. To disable the default logging integration, use the following command:

You can find notes on how to then install Stackdriver Logging agents into a running cluster in

the Deploying section.

Changing DaemonSet parameters

When you have the Stackdriver Logging DaemonSetDaemonSet in your cluster, you can just modify the

templatetemplate field in its spec, daemonset controller will update the pods for you. For example,

let’s assume you’ve just installed the Stackdriver Logging as described above. Now you want to

change the memory limit to give fluentd more memory to safely process more logs.

Get the spec of DaemonSetDaemonSet running in your cluster:

Then edit resource requirements in the spec file and update the DaemonSetDaemonSet object in the

apiserver using the following command:

After some time, Stackdriver Logging agent pods will be restarted with the new configuration.

gcloud beta container clusters update --logging-service=none CLUSTERgcloud beta container clusters update --logging-service=none CLUSTER

kubectl get ds fluentd-gcp-v2.0 kubectl get ds fluentd-gcp-v2.0 --namespace--namespace kube-system kube-system -o-o yaml yaml >> fluentd-gcp-ds.yaml fluentd-gcp-ds.yaml

kubectl replace kubectl replace -f-f fluentd-gcp-ds.yaml fluentd-gcp-ds.yaml

Changing fluentd parameters

Fluentd configuration is stored in the ConfigMapConfigMap object. It is effectively a set of configuration

files that are merged together. You can learn about fluentd configuration on the official site.

Imagine you want to add a new parsing logic to the configuration, so that fluentd can

understand default Python logging format. An appropriate fluentd filter looks similar to this:

Now you have to put it in the configuration and make Stackdriver Logging agents pick it up. Get

the current version of the Stackdriver Logging ConfigMapConfigMap in your cluster by running the

following command:

Then in the value for the key containers.input.confcontainers.input.conf insert a new filter right after the

sourcesource section. Note: order is important.

Updating ConfigMapConfigMap in the apiserver is more complicated than updating DaemonSetDaemonSet . It’s

better to consider ConfigMapConfigMap to be immutable. Then, in order to update the configuration, you

should create ConfigMapConfigMap with a new name and then change DaemonSetDaemonSet to point to it using

guide above.

Adding fluentd plugins

Fluentd is written in Ruby and allows to extend its capabilities using plugins. If you want to use

a plugin, which is not included in the default Stackdriver Logging container image, you have to

build a custom image. Imagine you want to add Kafka sink for messages from a particular

container for additional processing. You can re-use the default container image sources with

minor changes:

<filter reform.**><filter reform.**>

 type parser type parser

 format /^(?<severity>\w):(?<logger_name>\w):(?<log>.*)/ format /^(?<severity>\w):(?<logger_name>\w):(?<log>.*)/

 reserve_data true reserve_data true

 suppress_parse_error_log true suppress_parse_error_log true

 key_name log key_name log

</filter></filter>

kubectl get cm fluentd-gcp-config kubectl get cm fluentd-gcp-config --namespace--namespace kube-system kube-system -o-o yaml yaml >> fluentd-gcp-configmap.yaml fluentd-gcp-configmap.yaml

http://docs.fluentd.org
http://www.fluentd.org/plugins
https://git.k8s.io/contrib/fluentd/fluentd-gcp-image

Change Makefile to point to your container repository, e.g.

PREFIX=gcr.io/<your-project-id>PREFIX=gcr.io/<your-project-id> .

Add your dependency to the Gemfile, for example

gem 'fluent-plugin-gem 'fluent-plugin-

kafka'kafka' .

Then run make build pushmake build push from this directory. After updating DaemonSetDaemonSet to pick up the new

image, you can use the plugin you installed in the fluentd configuration.

Events in Stackdriver

Kubernetes events are objects that provide insight into what is happening inside a cluster, such

as what decisions were made by scheduler or why some pods were evicted from the node.

You can read more about using events for debugging your application in the Application

Introspection and Debugging section.

Since events are API objects, they are stored in the apiserver on master. To avoid filling up

master’s disk, a retention policy is enforced: events are removed one hour after the last

occurrence. To provide longer history and aggregation capabilities, a third party solution

should be installed to capture events.

This article describes a solution that exports Kubernetes events to Stackdriver Logging, where

they can be processed and analyzed.

Note: it is not guaranteed that all events happening in a cluster will be exported to Stackdriver.

One possible scenario when events will not be exported is when event exporter is not running

(e.g. during restart or upgrade). In most cases it’s fine to use events for purposes like setting

up metrics and alerts, but you should be aware of the potential inaccuracy.

Deployment

Google Kubernetes Engine

In Google Kubernetes Engine, if cloud logging is enabled, event exporter is deployed by default

to the clusters with master running version 1.7 and higher. To prevent disturbing your

workloads, event exporter does not have resources set and is in the best effort QOS class,

which means that it will be the first to be killed in the case of resource starvation. If you want

your events to be exported, make sure you have enough resources to facilitate the event

exporter pod. This may vary depending on the workload, but on average, approximately 100Mb

RAM and 100m CPU is needed.

Deployment

Google Kubernetes Engine

Deploying to the Existing Cluster

User Guide

file:///docs/tasks/debug-application-cluster/debug-application-introspection/
https://cloud.google.com/logging/docs/view/logs_based_metrics
https://cloud.google.com/logging/docs/view/logs_based_metrics#creating_an_alerting_policy

Deploying to the Existing Cluster

Deploy event exporter to your cluster using the following command:

Since event exporter accesses the Kubernetes API, it requires permissions to do so. The

following deployment is configured to work with RBAC authorization. It sets up a service

account and a cluster role binding to allow event exporter to read events. To make sure that

event exporter pod will not be evicted from the node, you can additionally set up resource

requests. As mentioned earlier, 100Mb RAM and 100m CPU should be enough.

event-exporter-deploy.yamlevent-exporter-deploy.yaml

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/debug-application-cluster/event-exporter-deploy.yaml https://k8s.io/docs/tasks/debug-application-cluster/event-exporter-deploy.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/event-exporter-deploy.yaml

event-exporter-deploy.yamlevent-exporter-deploy.yaml

User Guide

apiVersionapiVersion:: v1v1

kindkind:: ServiceAccountServiceAccount

metadatametadata::

 namename:: event-exporter-saevent-exporter-sa

 namespacenamespace:: defaultdefault

 labelslabels::

 appapp:: event-exporterevent-exporter

apiVersionapiVersion:: rbac.authorization.k8s.io/v1rbac.authorization.k8s.io/v1

kindkind:: ClusterRoleBindingClusterRoleBinding

metadatametadata::

 namename:: event-exporter-rbevent-exporter-rb

 labelslabels::

 appapp:: event-exporterevent-exporter

roleRefroleRef::

 apiGroupapiGroup:: rbac.authorization.k8s.iorbac.authorization.k8s.io

 kindkind:: ClusterRoleClusterRole

 namename:: viewview

subjectssubjects::

-- kindkind:: ServiceAccountServiceAccount

 namename:: event-exporter-saevent-exporter-sa

 namespacenamespace:: defaultdefault

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: event-exporter-v0.1.0event-exporter-v0.1.0

 namespacenamespace:: defaultdefault

 labelslabels::

 appapp:: event-exporterevent-exporter

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: event-exporterevent-exporter

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: event-exporterevent-exporter

 specspec::

 serviceAccountNameserviceAccountName:: event-exporter-saevent-exporter-sa

 containerscontainers::

 -- namename:: event-exporterevent-exporter

 imageimage:: gcr.io/google-containers/event-exporter:v0.1.0gcr.io/google-containers/event-exporter:v0.1.0

 commandcommand::

 -- ''/event-exporter'/event-exporter'

 terminationGracePeriodSecondsterminationGracePeriodSeconds:: 3030

Events are exported to the GKE ClusterGKE Cluster resource in Stackdriver Logging. You can find them

by selecting an appropriate option from a drop-down menu of available resources:

You can filter based on the event object fields using Stackdriver Logging filtering mechanism.

For example, the following query will show events from the scheduler about pods from

deployment nginx-deploymentnginx-deployment :

resource.type="gke_cluster"resource.type="gke_cluster"

jsonPayload.kind="Event"jsonPayload.kind="Event"

jsonPayload.source.component="default-scheduler"jsonPayload.source.component="default-scheduler"

jsonPayload.involvedObject.name:"nginx-deployment"jsonPayload.involvedObject.name:"nginx-deployment"

https://cloud.google.com/logging/docs/view/advanced_filters

Logging Using Elasticsearch and Kibana

On the Google Compute Engine (GCE) platform, the default logging support targets Stackdriver

Logging, which is described in detail in the Logging With Stackdriver Logging.

This article describes how to set up a cluster to ingest logs into Elasticsearch and view them

using Kibana, as an alternative to Stackdriver Logging when running on GCE. Note that

Elasticsearch and Kibana cannot be setup automatically in the Kubernetes cluster hosted on

Google Kubernetes Engine, you have to deploy it manually.

To use Elasticsearch and Kibana for cluster logging, you should set the following environment

variable as shown below when creating your cluster with kube-up.sh:

You should also ensure that KUBE_ENABLE_NODE_LOGGING=trueKUBE_ENABLE_NODE_LOGGING=true (which is the default for the

GCE platform).

Now, when you create a cluster, a message will indicate that the Fluentd log collection

daemons that run on each node will target Elasticsearch:

The per-node Fluentd pods, the Elasticsearch pods, and the Kibana pods should all be running

KUBE_LOGGING_DESTINATIONKUBE_LOGGING_DESTINATION==elasticsearchelasticsearch

$ $ cluster/kube-up.shcluster/kube-up.sh

......

Project: kubernetes-satnamProject: kubernetes-satnam

Zone: us-central1-bZone: us-central1-b

... calling kube-up... calling kube-up

Project: kubernetes-satnamProject: kubernetes-satnam

Zone: us-central1-bZone: us-central1-b

+++ Staging server tars to Google Storage: gs://kubernetes-staging-e6d0e81793/devel+++ Staging server tars to Google Storage: gs://kubernetes-staging-e6d0e81793/devel

+++ kubernetes-server-linux-amd64.tar.gz uploaded +++ kubernetes-server-linux-amd64.tar.gz uploaded ((sha1 sha1 == 6987c098277871b6d69623141276924ab687f89d 6987c098277871b6d69623141276924ab687f89d

+++ kubernetes-salt.tar.gz uploaded +++ kubernetes-salt.tar.gz uploaded ((sha1 sha1 == bdfc83ed6b60fa9e3bff9004b542cfc643464cd0 bdfc83ed6b60fa9e3bff9004b542cfc643464cd0

Looking Looking for for already existing resourcesalready existing resources

Starting master and configuring firewallsStarting master and configuring firewalls

Created Created [[https://www.googleapis.com/compute/v1/projects/kubernetes-satnam/zones/us-central1-b/disks/kubernetes-master-pd].https://www.googleapis.com/compute/v1/projects/kubernetes-satnam/zones/us-central1-b/disks/kubernetes-master-pd].

NAME ZONE SIZE_GB TYPE STATUSNAME ZONE SIZE_GB TYPE STATUS

kubernetes-master-pd us-central1-b 20 pd-ssd READYkubernetes-master-pd us-central1-b 20 pd-ssd READY

Created Created [[https://www.googleapis.com/compute/v1/projects/kubernetes-satnam/regions/us-central1/addresses/kubernetes-master-ip].https://www.googleapis.com/compute/v1/projects/kubernetes-satnam/regions/us-central1/addresses/kubernetes-master-ip].

+++ Logging using Fluentd to elasticsearch+++ Logging using Fluentd to elasticsearch

https://cloud.google.com/logging/
file:///docs/user-guide/logging/stackdriver
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

in the kube-system namespace soon after the cluster comes to life.

The fluentd-elasticsearchfluentd-elasticsearch pods gather logs from each node and send them to the

elasticsearch-loggingelasticsearch-logging pods, which are part of a service named elasticsearch-loggingelasticsearch-logging .

These Elasticsearch pods store the logs and expose them via a REST API. The

kibana-loggingkibana-logging pod provides a web UI for reading the logs stored in Elasticsearch, and is

part of a service named kibana-loggingkibana-logging .

The Elasticsearch and Kibana services are both in the kube-systemkube-system namespace and are not

directly exposed via a publicly reachable IP address. To reach them, follow the instructions for

Accessing services running in a cluster.

If you try accessing the elasticsearch-loggingelasticsearch-logging service in your browser, you’ll see a status

page that looks something like this:

You can now type Elasticsearch queries directly into the browser, if you’d like. See

Elasticsearch’s documentation for more details on how to do so.

Alternatively, you can view your cluster’s logs using Kibana (again using the instructions for

$ $ kubectl get pods kubectl get pods --namespace--namespace==kube-systemkube-system

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

elasticsearch-logging-v1-78nog 1/1 Running 0 2helasticsearch-logging-v1-78nog 1/1 Running 0 2h

elasticsearch-logging-v1-nj2nb 1/1 Running 0 2helasticsearch-logging-v1-nj2nb 1/1 Running 0 2h

fluentd-elasticsearch-kubernetes-node-5oq0 1/1 Running 0 2hfluentd-elasticsearch-kubernetes-node-5oq0 1/1 Running 0 2h

fluentd-elasticsearch-kubernetes-node-6896 1/1 Running 0 2hfluentd-elasticsearch-kubernetes-node-6896 1/1 Running 0 2h

fluentd-elasticsearch-kubernetes-node-l1ds 1/1 Running 0 2hfluentd-elasticsearch-kubernetes-node-l1ds 1/1 Running 0 2h

fluentd-elasticsearch-kubernetes-node-lz9j 1/1 Running 0 2hfluentd-elasticsearch-kubernetes-node-lz9j 1/1 Running 0 2h

kibana-logging-v1-bhpo8 1/1 Running 0 2hkibana-logging-v1-bhpo8 1/1 Running 0 2h

kube-dns-v3-7r1l9 3/3 Running 0 2hkube-dns-v3-7r1l9 3/3 Running 0 2h

monitoring-heapster-v4-yl332 1/1 Running 1 2hmonitoring-heapster-v4-yl332 1/1 Running 1 2h

monitoring-influx-grafana-v1-o79xf 2/2 Running 0 2hmonitoring-influx-grafana-v1-o79xf 2/2 Running 0 2h

file:///docs/concepts/services-networking/service/
file:///docs/concepts/cluster-administration/access-cluster/#accessing-services-running-on-the-cluster
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html

accessing a service running in the cluster). The first time you visit the Kibana URL you will be

presented with a page that asks you to configure your view of the ingested logs. Select the

option for timeseries values and select @timestamp@timestamp . On the following page select the

DiscoverDiscover tab and then you should be able to see the ingested logs. You can set the refresh

interval to 5 seconds to have the logs regularly refreshed.

Here is a typical view of ingested logs from the Kibana viewer:

Kibana opens up all sorts of powerful options for exploring your logs! For some ideas on how

to dig into it, check out Kibana’s documentation.

file:///docs/user-guide/accessing-the-cluster/#accessing-services-running-on-the-cluster
https://www.elastic.co/guide/en/kibana/current/discover.html

Determine the Reason for Pod Failure

This page shows how to write and read a Container termination message.

Termination messages provide a way for containers to write information about fatal events to

a location where it can be easily retrieved and surfaced by tools like dashboards and

monitoring software. In most cases, information that you put in a termination message should

also be written to the general Kubernetes logs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Writing and reading a termination message

In this exercise, you create a Pod that runs one container. The configuration file specifies a

command that runs when the container starts.

termination.yamltermination.yaml

Before you begin

Writing and reading a termination message

Customizing the termination message

What’s next

file:///docs/concepts/cluster-administration/logging/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/termination.yaml

termination.yamltermination.yaml

1. Create a Pod based on the YAML configuration file:

In the YAML file, in the cmdcmd and argsargs fields, you can see that the container sleeps for 10

seconds and then writes “Sleep expired” to the /dev/termination-log/dev/termination-log file. After the

container writes the “Sleep expired” message, it terminates.

2. Display information about the Pod:

Repeat the preceding command until the Pod is no longer running.

3. Display detailed information about the Pod:

The output includes the “Sleep expired” message:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: termination-demotermination-demo

specspec::

 containerscontainers::

 -- namename:: termination-demo-containertermination-demo-container

 imageimage:: debiandebian

 commandcommand:: [[""/bin/sh"/bin/sh"]]

 argsargs:: [[""-c"-c",, ""sleepsleep 1010 &&&& echoecho SleepSleep expiredexpired >> /dev/termination-log"/dev/termination-log"]]

kubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/termination.yamlkubectl create -f https://k8s.io/docs/tasks/debug-application-cluster/termination.yaml

kubectl get pod termination-demokubectl get pod termination-demo

kubectl get pod --output=yamlkubectl get pod --output=yaml

4. Use a Go template to filter the output so that it includes only the termination message:

Customizing the termination message

Kubernetes retrieves termination messages from the termination message file specified in the

terminationMessagePathterminationMessagePath field of a Container, which as a default value of

/dev/termination-log/dev/termination-log . By customizing this field, you can tell Kubernetes to use a different

file. Kubernetes use the contents from the specified file to populate the Container’s status

message on both success and failure.

In the following example, the container writes termination messages to /tmp/my-log/tmp/my-log for

Kubernetes to retrieve:

 apiVersion: v1 apiVersion: v1

 kind: Pod kind: Pod

 lastState: lastState:

 terminated: terminated:

 containerID: ... containerID: ...

 exitCode: 0 exitCode: 0

 finishedAt: ... finishedAt: ...

 message: | message: |

 Sleep expired Sleep expired

 kubectl get pod termination-demo -o go-template="{{range .status.containerStatuses}}{{.lastState.terminated.message}}{{end}}" kubectl get pod termination-demo -o go-template="{{range .status.containerStatuses}}{{.lastState.terminated.message}}{{end}}"

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: msg-path-demomsg-path-demo

specspec::

 containerscontainers::

 -- namename:: msg-path-demo-containermsg-path-demo-container

 imageimage:: debiandebian

 terminationMessagePathterminationMessagePath:: ""/tmp/my-log"/tmp/my-log"

Moreover, users can set the terminationMessagePolicyterminationMessagePolicy field of a Container for further

customization. This field defaults to “ FileFile ” which means the termination messages are

retrieved only from the termination message file. By setting the terminationMessagePolicyterminationMessagePolicy

to “ FallbackToLogsOnErrorFallbackToLogsOnError ”, you can tell Kubernetes to use the last chunk of container log

output if the termination message file is empty and the container exited with an error. The log

output is limited to 2048 bytes or 80 lines, whichever is smaller.

What’s next

See the terminationMessagePathterminationMessagePath field in Container.

Learn about retrieving logs.

Learn about Go templates.

file:///docs/reference/generated/kubernetes-api/v1.10/#container-v1-core
file:///docs/concepts/cluster-administration/logging/
https://golang.org/pkg/text/template/

Debug Init Containers

This page shows how to investigate problems related to the execution of Init Containers. The

example command lines below refer to the Pod as <pod-name><pod-name> and the Init Containers as

<init-container-1><init-container-1> and <init-container-2><init-container-2> .

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

You should be familiar with the basics of Init Containers.

You should have Configured an Init Container.

Checking the status of Init Containers

Display the status of your pod:

Before you begin

Checking the status of Init Containers

Getting details about Init Containers

Accessing logs from Init Containers

Understanding Pod status

kubectl get pod <pod-name>kubectl get pod <pod-name>

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/abstractions/init-containers/
file:///docs/tasks/configure-pod-container/configure-pod-initialization/#creating-a-pod-that-has-an-init-container/

For example, a status of Init:1/2Init:1/2 indicates that one of two Init Containers has completed

successfully:

See Understanding Pod status for more examples of status values and their meanings.

Getting details about Init Containers

View more detailed information about Init Container execution:

For example, a Pod with two Init Containers might show the following:

You can also access the Init Container statuses programmatically by reading the

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

<pod-name> 0/1 Init:1/2 0 7s<pod-name> 0/1 Init:1/2 0 7s

kubectl describe pod <pod-name>kubectl describe pod <pod-name>

Init Containers:Init Containers:

 <init-container-1>: <init-container-1>:

 Container ID: ... Container ID: ...

 State: Terminated State: Terminated

 Reason: Completed Reason: Completed

 Exit Code: 0 Exit Code: 0

 Started: ... Started: ...

 Finished: ... Finished: ...

 Ready: True Ready: True

 Restart Count: 0 Restart Count: 0

 <init-container-2>: <init-container-2>:

 Container ID: ... Container ID: ...

 State: Waiting State: Waiting

 Reason: CrashLoopBackOff Reason: CrashLoopBackOff

 Last State: Terminated Last State: Terminated

 Reason: Error Reason: Error

 Exit Code: 1 Exit Code: 1

 Started: ... Started: ...

 Finished: ... Finished: ...

 Ready: False Ready: False

 Restart Count: 3 Restart Count: 3

status.initContainerStatusesstatus.initContainerStatuses field on the Pod Spec:

This command will return the same information as above in raw JSON.

Accessing logs from Init Containers

Pass the Init Container name along with the Pod name to access its logs.

Init Containers that run a shell script print commands as they’re executed. For example, you

can do this in Bash by running

set -set -

xx at the beginning of the script.

Understanding Pod status

A Pod status beginning with Init:Init: summarizes the status of Init Container execution. The

table below describes some example status values that you might see while debugging Init

Containers.

Status Meaning

Init:N/MInit:N/M The Pod has MM Init Containers, and NN have completed so far.

Init:ErrorInit:Error An Init Container has failed to execute.

Init:CrashLoopBackOffInit:CrashLoopBackOff An Init Container has failed repeatedly.

PendingPending The Pod has not yet begun executing Init Containers.

PodInitializingPodInitializing or RunningRunning The Pod has already finished executing Init Containers.

kubectl get pod nginx kubectl get pod nginx --template--template '{{.status.initContainerStatuses}}''{{.status.initContainerStatuses}}'

kubectl logs <pod-name> kubectl logs <pod-name> -c-c <init-container-2> <init-container-2>

Debug Pods and Replication Controllers

Debugging pods

The first step in debugging a pod is taking a look at it. Check the current state of the pod and

recent events with the following command:

Look at the state of the containers in the pod. Are they all RunningRunning ? Have there been recent

restarts?

Continue debugging depending on the state of the pods.

My pod stays pending

If a pod is stuck in PendingPending it means that it can not be scheduled onto a node. Generally this

is because there are insufficient resources of one type or another that prevent scheduling.

Look at the output of the

kubectl describekubectl describe

...... command above. There should be

messages from the scheduler about why it can not schedule your pod. Reasons include:

Insufficient resources

You may have exhausted the supply of CPU or Memory in your cluster. In this case you can try

several things:

Debugging pods

My pod stays pending

Insufficient resources

Using hostPort

My pod stays waiting

My pod is crashing or otherwise unhealthy

Debugging Replication Controllers

$ kubectl describe pods ${POD_NAME}$ kubectl describe pods ${POD_NAME}

Add more nodes to the cluster.

Terminate unneeded pods to make room for pending pods.

Check that the pod is not larger than your nodes. For example, if all nodes have a capacity

of cpu:1cpu:1 , then a pod with a request of

cpu:cpu:

1.11.1 will never be scheduled.

You can check node capacities with the

kubectl get nodes -okubectl get nodes -o

<format><format> command.

Here are some example command lines that extract just the necessary information:

The resource quota feature can be configured to limit the total amount of resources that

can be consumed. If used in conjunction with namespaces, it can prevent one team from

hogging all the resources.

Using hostPort

When you bind a pod to a hostPorthostPort there are a limited number of places that the pod can be

scheduled. In most cases, hostPorthostPort is unnecessary; try using a service object to expose your

pod. If you do require hostPorthostPort then you can only schedule as many pods as there are nodes

in your container cluster.

My pod stays waiting

If a pod is stuck in the WaitingWaiting state, then it has been scheduled to a worker node, but it can’t

run on that machine. Again, the information from

kubectl describekubectl describe

...... should be

informative. The most common cause of WaitingWaiting pods is a failure to pull the image. There

are three things to check:

Make sure that you have the name of the image correct.

Have you pushed the image to the repository?

kubectl get nodes -o yaml | grep '\sname\|cpu\|memory'kubectl get nodes -o yaml | grep '\sname\|cpu\|memory'

kubectl get nodes -o json | jq '.items[] | {name: .metadata.name, cap: .status.capacity}'kubectl get nodes -o json | jq '.items[] | {name: .metadata.name, cap: .status.capacity}'

file:///docs/admin/cluster-management/#resizing-a-cluster
file:///docs/user-guide/pods/single-container/#deleting_a_pod
file:///docs/concepts/policy/resource-quotas/

Run a manual docker pull <image>docker pull <image> on your machine to see if the image can be pulled.

My pod is crashing or otherwise unhealthy

First, take a look at the logs of the current container:

If your container has previously crashed, you can access the previous container’s crash log

with:

Alternately, you can run commands inside that container with execexec :

Note that -c ${CONTAINER_NAME}-c ${CONTAINER_NAME} is optional and can be omitted for pods that only contain a

single container.

As an example, to look at the logs from a running Cassandra pod, you might run:

If none of these approaches work, you can find the host machine that the pod is running on

and SSH into that host.

Debugging Replication Controllers

Replication controllers are fairly straightforward. They can either create pods or they can’t. If

they can’t create pods, then please refer to the instructions above to debug your pods.

You can also use

kubectl describe rckubectl describe rc

${CONTROLLER_NAME}${CONTROLLER_NAME} to inspect events related to

the replication controller.

$ kubectl logs ${POD_NAME} ${CONTAINER_NAME}$ kubectl logs ${POD_NAME} ${CONTAINER_NAME}

$ kubectl logs --previous ${POD_NAME} ${CONTAINER_NAME}$ kubectl logs --previous ${POD_NAME} ${CONTAINER_NAME}

$ kubectl exec ${POD_NAME} -c ${CONTAINER_NAME} -- ${CMD} ${ARG1} ${ARG2} ... ${ARGN}$ kubectl exec ${POD_NAME} -c ${CONTAINER_NAME} -- ${CMD} ${ARG1} ${ARG2} ... ${ARGN}

$ kubectl exec cassandra -- cat /var/log/cassandra/system.log$ kubectl exec cassandra -- cat /var/log/cassandra/system.log

Debug Services

An issue that comes up rather frequently for new installations of Kubernetes is that a

ServiceService is not working properly. You’ve run your DeploymentDeployment and created a ServiceService , but

you get no response when you try to access it. This document will hopefully help you to figure

out what’s going wrong.

Conventions

Throughout this doc you will see various commands that you can run. Some commands need

to be run within a PodPod , others on a Kubernetes NodeNode , and others can run anywhere you have

kubectlkubectl and credentials for the cluster. To make it clear what is expected, this document will

use the following conventions.

If the command “COMMAND” is expected to run in a PodPod and produce “OUTPUT”:

Conventions

Running commands in a Pod

Setup

Does the Service exist?

Does the Service work by DNS?

Does any Service exist in DNS?

Does the Service work by IP?

Is the Service correct?

Does the Service have any Endpoints?

Are the Pods working?

Is the kube-proxy working?

Is kube-proxy running?

Is kube-proxy writing iptables rules?

Userspace

Iptables

Is kube-proxy proxying?

A Pod cannot reach itself via Service IP

Seek help

More information

If the command “COMMAND” is expected to run on a NodeNode and produce “OUTPUT”:

If the command is “kubectl ARGS”:

Running commands in a Pod

For many steps here you will want to see what a PodPod running in the cluster sees. The simplest

way to do this is to run an interactive busybox PodPod :

If you already have a running PodPod that you prefer to use, you can run a command in it using:

Setup

For the purposes of this walk-through, let’s run some PodsPods . Since you’re probably debugging

your own ServiceService you can substitute your own details, or you can follow along and get a

second data point.

u@podu@pod$ $ COMMANDCOMMAND

OUTPUTOUTPUT

u@nodeu@node$ $ COMMANDCOMMAND

OUTPUTOUTPUT

$ $ kubectl ARGSkubectl ARGS

OUTPUTOUTPUT

$ $ kubectl run kubectl run -it-it --rm--rm --restart--restart==Never busybox Never busybox --image--image==busybox shbusybox sh

If you donIf you don't see a command prompt, try pressing enter.'t see a command prompt, try pressing enter.

/ #/ #

$ $ kubectl kubectl execexec <POD-NAME> <POD-NAME> -c-c <CONTAINER-NAME> <CONTAINER-NAME> ---- <COMMAND> <COMMAND>

kubectlkubectl commands will print the type and name of the resource created or mutated, which

can then be used in subsequent commands. Note that this is the same as if you had started

the DeploymentDeployment with the following YAML:

Confirm your PodsPods are running:

Does the Service exist?

The astute reader will have noticed that we did not actually create a ServiceService yet - that is

$ $ kubectl run hostnames kubectl run hostnames --image--image==k8s.gcr.io/serve_hostname k8s.gcr.io/serve_hostname \\

 --labels--labels==appapp==hostnames hostnames \\

 --port--port==9376 9376 \\

 --replicas--replicas==33

deployment deployment "hostnames""hostnames" created created

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: hostnameshostnames

specspec::

 selectorselector::

 appapp:: hostnameshostnames

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: hostnameshostnames

 specspec::

 containerscontainers::

 -- namename:: hostnameshostnames

 imageimage:: k8s.gcr.io/serve_hostnamek8s.gcr.io/serve_hostname

 portsports::

 -- containerPortcontainerPort:: 93769376

 protocolprotocol:: TCPTCP

$ $ kubectl get pods kubectl get pods -l-l appapp==hostnameshostnames

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hostnames-632524106-bbpiw 1/1 Running 0 2mhostnames-632524106-bbpiw 1/1 Running 0 2m

hostnames-632524106-ly40y 1/1 Running 0 2mhostnames-632524106-ly40y 1/1 Running 0 2m

hostnames-632524106-tlaok 1/1 Running 0 2mhostnames-632524106-tlaok 1/1 Running 0 2m

intentional. This is a step that sometimes gets forgotten, and is the first thing to check.

So what would happen if I tried to access a non-existent ServiceService ? Assuming you have

another PodPod that consumes this ServiceService by name you would get something like:

So the first thing to check is whether that ServiceService actually exists:

So we have a culprit, let’s create the ServiceService . As before, this is for the walk-through - you can

use your own ServiceService ’s details here.

And read it back, just to be sure:

As before, this is the same as if you had started the ServiceService with YAML:

u@podu@pod$ $ wget wget -qO--qO- hostnames hostnames

wget: bad address wget: bad address 'hostname''hostname'

$ $ kubectl get svc hostnameskubectl get svc hostnames

Error from server Error from server ((NotFoundNotFound)): services : services "hostnames""hostnames" not found not found

$ $ kubectl expose deployment hostnames kubectl expose deployment hostnames --port--port==80 80 --target-port--target-port==93769376

service service "hostnames""hostnames" exposed exposed

$ $ kubectl get svc hostnameskubectl get svc hostnames

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

hostnames 10.0.1.175 <none> 80/TCP 5shostnames 10.0.1.175 <none> 80/TCP 5s

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: hostnameshostnames

specspec::

 selectorselector::

 appapp:: hostnameshostnames

 portsports::

 -- namename:: defaultdefault

 protocolprotocol:: TCPTCP

 portport:: 8080

 targetPorttargetPort:: 93769376

Now you can confirm that the ServiceService exists.

Does the Service work by DNS?

From a PodPod in the same NamespaceNamespace :

If this fails, perhaps your PodPod and ServiceService are in different NamespacesNamespaces , try a namespace-

qualified name:

If this works, you’ll need to adjust your app to use a cross-namespace name, or run your app

and ServiceService in the same NamespaceNamespace . If this still fails, try a fully-qualified name:

Note the suffix here: “default.svc.cluster.local”. The “default” is the NamespaceNamespace we’re operating

in. The “svc” denotes that this is a ServiceService . The “cluster.local” is your cluster domain, which

COULD be different in your own cluster.

You can also try this from a NodeNode in the cluster (note: 10.0.0.10 is my DNS ServiceService , yours

might be different):

u@podu@pod$ $ nslookup hostnamesnslookup hostnames

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: hostnamesName: hostnames

Address 1: 10.0.1.175 hostnames.default.svc.cluster.localAddress 1: 10.0.1.175 hostnames.default.svc.cluster.local

u@podu@pod$ $ nslookup hostnames.defaultnslookup hostnames.default

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: hostnames.defaultName: hostnames.default

Address 1: 10.0.1.175 hostnames.default.svc.cluster.localAddress 1: 10.0.1.175 hostnames.default.svc.cluster.local

u@podu@pod$ $ nslookup hostnames.default.svc.cluster.localnslookup hostnames.default.svc.cluster.local

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: hostnames.default.svc.cluster.localName: hostnames.default.svc.cluster.local

Address 1: 10.0.1.175 hostnames.default.svc.cluster.localAddress 1: 10.0.1.175 hostnames.default.svc.cluster.local

If you are able to do a fully-qualified name lookup but not a relative one, you need to check that

your /etc/resolv.conf/etc/resolv.conf file is correct.

The nameservernameserver line must indicate your cluster’s DNS ServiceService . This is passed into

kubeletkubelet with the --cluster-dns--cluster-dns flag.

The searchsearch line must include an appropriate suffix for you to find the ServiceService name. In this

case it is looking for ServicesServices in the local NamespaceNamespace (default.svc.cluster.localdefault.svc.cluster.local),

ServicesServices in all NamespacesNamespaces (svc.cluster.localsvc.cluster.local), and the cluster (cluster.localcluster.local).

Depending on your own install you might have additional records after that (up to 6 total). The

cluster suffix is passed into kubeletkubelet with the --cluster-domain--cluster-domain flag. We assume that is

“cluster.local” in this document, but yours might be different, in which case you should change

that in all of the commands above.

The optionsoptions line must set ndotsndots high enough that your DNS client library considers search

paths at all. Kubernetes sets this to 5 by default, which is high enough to cover all of the DNS

names it generates.

Does any Service exist in DNS?

If the above still fails - DNS lookups are not working for your ServiceService - we can take a step

back and see what else is not working. The Kubernetes master ServiceService should always work:

u@nodeu@node$ $ nslookup hostnames.default.svc.cluster.local 10.0.0.10nslookup hostnames.default.svc.cluster.local 10.0.0.10

Server: 10.0.0.10Server: 10.0.0.10

Address: 10.0.0.10#53Address: 10.0.0.10#53

Name: hostnames.default.svc.cluster.localName: hostnames.default.svc.cluster.local

Address: 10.0.1.175Address: 10.0.1.175

u@podu@pod$ $ catcat /etc/resolv.conf /etc/resolv.conf

nameserver 10.0.0.10nameserver 10.0.0.10

search default.svc.cluster.local svc.cluster.local cluster.local example.comsearch default.svc.cluster.local svc.cluster.local cluster.local example.com

options ndots:5options ndots:5

If this fails, you might need to go to the kube-proxy section of this doc, or even go back to the

top of this document and start over, but instead of debugging your own ServiceService , debug DNS.

Does the Service work by IP?

Assuming we can confirm that DNS works, the next thing to test is whether your ServiceService

works at all. From a node in your cluster, access the ServiceService ’s IP (from

kubectlkubectl

getget

above).

If your ServiceService is working, you should get correct responses. If not, there are a number of

things that could be going wrong. Read on.

Is the Service correct?

It might sound silly, but you should really double and triple check that your ServiceService is correct

and matches your PodPod ’s port. Read back your ServiceService and verify it:

u@podu@pod$ $ nslookup kubernetes.defaultnslookup kubernetes.default

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: kubernetes.defaultName: kubernetes.default

Address 1: 10.0.0.1 kubernetes.default.svc.cluster.localAddress 1: 10.0.0.1 kubernetes.default.svc.cluster.local

u@nodeu@node$ $ curl 10.0.1.175:80curl 10.0.1.175:80

hostnames-0utonhostnames-0uton

u@nodeu@node$ $ curl 10.0.1.175:80curl 10.0.1.175:80

hostnames-yp2kphostnames-yp2kp

u@nodeu@node$ $ curl 10.0.1.175:80curl 10.0.1.175:80

hostnames-bvc05hostnames-bvc05

Is the port you are trying to access in spec.ports[]spec.ports[] ? Is the targetPorttargetPort correct for your

PodsPods (many PodsPods choose to use a different port than the ServiceService)? If you meant it to be a

numeric port, is it a number (9376) or a string “9376”? If you meant it to be a named port, do

your PodsPods expose a port with the same name? Is the port’s protocolprotocol the same as the PodPod

’s?

Does the Service have any Endpoints?

$ $ kubectl get service hostnames kubectl get service hostnames -o-o json json

{{

 "kind""kind": : "Service""Service",,

 "apiVersion""apiVersion": : "v1""v1",,

 "metadata""metadata": : {{

 "name""name": : "hostnames""hostnames",,

 "namespace""namespace": : "default""default",,

 "selfLink""selfLink": : "/api/v1/namespaces/default/services/hostnames""/api/v1/namespaces/default/services/hostnames",,

 "uid""uid": : "428c8b6c-24bc-11e5-936d-42010af0a9bc""428c8b6c-24bc-11e5-936d-42010af0a9bc",,

 "resourceVersion""resourceVersion": : "347189""347189",,

 "creationTimestamp""creationTimestamp": : "2015-07-07T15:24:29Z""2015-07-07T15:24:29Z",,

 "labels""labels": : {{

 "app""app": : "hostnames""hostnames"

 }}

 }},,

 "spec""spec": : {{

 "ports""ports": : [[

 {{

 "name""name": : "default""default",,

 "protocol""protocol": : "TCP""TCP",,

 "port""port": 80,: 80,

 "targetPort""targetPort": 9376,: 9376,

 "nodePort""nodePort": 0: 0

 }}

]],,

 "selector""selector": : {{

 "app""app": : "hostnames""hostnames"

 }},,

 "clusterIP""clusterIP": : "10.0.1.175""10.0.1.175",,

 "type""type": : "ClusterIP""ClusterIP",,

 "sessionAffinity""sessionAffinity": : "None""None"

 }},,

 "status""status": : {{

 "loadBalancer""loadBalancer": : {}{}

 }}

}}

If you got this far, we assume that you have confirmed that your ServiceService exists and is

resolved by DNS. Now let’s check that the PodsPods you ran are actually being selected by the

ServiceService .

Earlier we saw that the PodsPods were running. We can re-check that:

The “AGE” column says that these PodsPods are about an hour old, which implies that they are

running fine and not crashing.

The -l app=hostnames-l app=hostnames argument is a label selector - just like our ServiceService has. Inside the

Kubernetes system is a control loop which evaluates the selector of every ServiceService and saves

the results into an EndpointsEndpoints object.

This confirms that the endpoints controller has found the correct PodsPods for your ServiceService . If

the hostnameshostnames row is blank, you should check that the spec.selectorspec.selector field of your

ServiceService actually selects for metadata.labelsmetadata.labels values on your PodsPods . A common mistake is

to have a typo or other error, such as the ServiceService selecting for run=hostnamesrun=hostnames , but the

DeploymentDeployment specifying app=hostnamesapp=hostnames .

Are the Pods working?

At this point, we know that your ServiceService exists and has selected your PodsPods . Let’s check that

the PodsPods are actually working - we can bypass the ServiceService mechanism and go straight to

the PodsPods . Note that these commands use the PodPod port (9376), rather than the ServiceService port

(80).

$ $ kubectl get pods kubectl get pods -l-l appapp==hostnameshostnames

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hostnames-0uton 1/1 Running 0 1hhostnames-0uton 1/1 Running 0 1h

hostnames-bvc05 1/1 Running 0 1hhostnames-bvc05 1/1 Running 0 1h

hostnames-yp2kp 1/1 Running 0 1hhostnames-yp2kp 1/1 Running 0 1h

$ $ kubectl get endpoints hostnameskubectl get endpoints hostnames

NAME ENDPOINTSNAME ENDPOINTS

hostnames 10.244.0.5:9376,10.244.0.6:9376,10.244.0.7:9376hostnames 10.244.0.5:9376,10.244.0.6:9376,10.244.0.7:9376

We expect each PodPod in the EndpointsEndpoints list to return its own hostname. If this is not what

happens (or whatever the correct behavior is for your own PodsPods), you should investigate

what’s happening there. You might find kubectl logskubectl logs to be useful or kubectl execkubectl exec directly

to your PodsPods and check service from there.

Another thing to check is that your PodsPods are not crashing or being restarted. Frequent restarts

could lead to intermittent connectivity issues.

If the restart count is high, read more about how to debug pods.

Is the kube-proxy working?

If you get here, your ServiceService is running, has EndpointsEndpoints , and your PodsPods are actually serving.

At this point, the whole ServiceService proxy mechanism is suspect. Let’s confirm it, piece by piece.

Is kube-proxy running?

Confirm that kube-proxykube-proxy is running on your NodesNodes . You should get something like the

below:

u@podu@pod$ $ wget wget -qO--qO- 10.244.0.5:9376 10.244.0.5:9376

hostnames-0utonhostnames-0uton

pod pod $ $ wget wget -qO--qO- 10.244.0.6:9376 10.244.0.6:9376

hostnames-bvc05hostnames-bvc05

u@podu@pod$ $ wget wget -qO--qO- 10.244.0.7:9376 10.244.0.7:9376

hostnames-yp2kphostnames-yp2kp

$ $ kubectl get pods kubectl get pods -l-l appapp==hostnameshostnames

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hostnames-632524106-bbpiw 1/1 Running 0 2mhostnames-632524106-bbpiw 1/1 Running 0 2m

hostnames-632524106-ly40y 1/1 Running 0 2mhostnames-632524106-ly40y 1/1 Running 0 2m

hostnames-632524106-tlaok 1/1 Running 0 2mhostnames-632524106-tlaok 1/1 Running 0 2m

u@nodeu@node$ $ ps auxw | ps auxw | grep grep kube-proxykube-proxy

root 4194 0.4 0.1 101864 17696 ? Sl Jul04 25:43 /usr/local/bin/kube-proxy root 4194 0.4 0.1 101864 17696 ? Sl Jul04 25:43 /usr/local/bin/kube-proxy

file:///docs/tasks/debug-application-cluster/debug-pod-replication-controller/#debugging-pods

Next, confirm that it is not failing something obvious, like contacting the master. To do this,

you’ll have to look at the logs. Accessing the logs depends on your NodeNode OS. On some OSes it

is a file, such as /var/log/kube-proxy.log, while other OSes use journalctljournalctl to access logs.

You should see something like:

If you see error messages about not being able to contact the master, you should double-

check your NodeNode configuration and installation steps.

One of the possible reasons that kube-proxykube-proxy cannot run correctly is that the required

conntrackconntrack binary cannot be found. This may happen on some Linux systems, depending on

how you are installing the cluster, for example, you are installing Kubernetes from scratch. If

this is the case, you need to manually install the conntrackconntrack package (e.g.

sudo apt installsudo apt install

conntrackconntrack on Ubuntu) and then retry.

Is kube-proxy writing iptables rules?

One of the main responsibilities of kube-proxykube-proxy is to write the iptablesiptables rules which

implement ServicesServices . Let’s check that those rules are getting written.

The kube-proxy can run in either “userspace” mode or “iptables” mode. Hopefully you are using

the newer, faster, more stable “iptables” mode. You should see one of the following cases.

Userspace

I1027 22:14:53.995134 5063 server.go:200] Running I1027 22:14:53.995134 5063 server.go:200] Running in in resource-only container resource-only container

I1027 22:14:53.998163 5063 server.go:247] Using iptables Proxier.I1027 22:14:53.998163 5063 server.go:247] Using iptables Proxier.

I1027 22:14:53.999055 5063 server.go:255] Tearing down userspace rules. Errors here are acceptable.I1027 22:14:53.999055 5063 server.go:255] Tearing down userspace rules. Errors here are acceptable.

I1027 22:14:54.038140 5063 proxier.go:352] Setting endpoints I1027 22:14:54.038140 5063 proxier.go:352] Setting endpoints forfor "kube-system/kube-dns:dns-tcp""kube-system/kube-dns:dns-tcp"

I1027 22:14:54.038164 5063 proxier.go:352] Setting endpoints I1027 22:14:54.038164 5063 proxier.go:352] Setting endpoints forfor "kube-system/kube-dns:dns""kube-system/kube-dns:dns"

I1027 22:14:54.038209 5063 proxier.go:352] Setting endpoints I1027 22:14:54.038209 5063 proxier.go:352] Setting endpoints forfor "default/kubernetes:https""default/kubernetes:https"

I1027 22:14:54.038238 5063 proxier.go:429] Not syncing iptables I1027 22:14:54.038238 5063 proxier.go:429] Not syncing iptables until until Services and Endpoints have been received from masterServices and Endpoints have been received from master

I1027 22:14:54.040048 5063 proxier.go:294] Adding new service I1027 22:14:54.040048 5063 proxier.go:294] Adding new service "default/kubernetes:https""default/kubernetes:https"

I1027 22:14:54.040154 5063 proxier.go:294] Adding new service I1027 22:14:54.040154 5063 proxier.go:294] Adding new service "kube-system/kube-dns:dns""kube-system/kube-dns:dns"

I1027 22:14:54.040223 5063 proxier.go:294] Adding new service I1027 22:14:54.040223 5063 proxier.go:294] Adding new service "kube-system/kube-dns:dns-tcp""kube-system/kube-dns:dns-tcp"

u@nodeu@node$ $ iptables-save | iptables-save | grep grep hostnameshostnames

-A-A KUBE-PORTALS-CONTAINER KUBE-PORTALS-CONTAINER -d-d 10.0.1.175/32 10.0.1.175/32 -p-p tcp tcp -m-m comment comment --comment--comment "default/hostnames:default""default/hostnames:default"

-A-A KUBE-PORTALS-HOST KUBE-PORTALS-HOST -d-d 10.0.1.175/32 10.0.1.175/32 -p-p tcp tcp -m-m comment comment --comment--comment "default/hostnames:default""default/hostnames:default"

There should be 2 rules for each port on your ServiceService (just one in this example) - a “KUBE-

PORTALS-CONTAINER” and a “KUBE-PORTALS-HOST”. If you do not see these, try restarting

kube-proxykube-proxy with the -V-V flag set to 4, and then look at the logs again.

Almost nobody should be using the “userspace” mode any more, so we won’t spend more time

on it here.

Iptables

There should be 1 rule in KUBE-SERVICESKUBE-SERVICES , 1 or 2 rules per endpoint in KUBE-SVC-(hash)KUBE-SVC-(hash)

(depending on SessionAffinitySessionAffinity), one KUBE-SEP-(hash)KUBE-SEP-(hash) chain per endpoint, and a few rules

in each KUBE-SEP-(hash)KUBE-SEP-(hash) chain. The exact rules will vary based on your exact config

(including node-ports and load-balancers).

Is kube-proxy proxying?

Assuming you do see the above rules, try again to access your ServiceService by IP:

If this fails and you are using the userspace proxy, you can try accessing the proxy directly. If

you are using the iptables proxy, skip this section.

Look back at the iptables-saveiptables-save output above, and extract the port number that

kube-proxykube-proxy is using for your ServiceService . In the above examples it is “48577”. Now connect to

u@nodeu@node$ $ iptables-save | iptables-save | grep grep hostnameshostnames

-A-A KUBE-SEP-57KPRZ3JQVENLNBR KUBE-SEP-57KPRZ3JQVENLNBR -s-s 10.244.3.6/32 10.244.3.6/32 -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:"

-A-A KUBE-SEP-57KPRZ3JQVENLNBR KUBE-SEP-57KPRZ3JQVENLNBR -p-p tcp tcp -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:"

-A-A KUBE-SEP-WNBA2IHDGP2BOBGZ KUBE-SEP-WNBA2IHDGP2BOBGZ -s-s 10.244.1.7/32 10.244.1.7/32 -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:"

-A-A KUBE-SEP-WNBA2IHDGP2BOBGZ KUBE-SEP-WNBA2IHDGP2BOBGZ -p-p tcp tcp -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:"

-A-A KUBE-SEP-X3P2623AGDH6CDF3 KUBE-SEP-X3P2623AGDH6CDF3 -s-s 10.244.2.3/32 10.244.2.3/32 -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:"

-A-A KUBE-SEP-X3P2623AGDH6CDF3 KUBE-SEP-X3P2623AGDH6CDF3 -p-p tcp tcp -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:"

-A-A KUBE-SERVICES KUBE-SERVICES -d-d 10.0.1.175/32 10.0.1.175/32 -p-p tcp tcp -m-m comment comment --comment--comment "default/hostnames: cluster IP""default/hostnames: cluster IP"

-A-A KUBE-SVC-NWV5X2332I4OT4T3 KUBE-SVC-NWV5X2332I4OT4T3 -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:" -m-m statistic statistic

-A-A KUBE-SVC-NWV5X2332I4OT4T3 KUBE-SVC-NWV5X2332I4OT4T3 -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:" -m-m statistic statistic

-A-A KUBE-SVC-NWV5X2332I4OT4T3 KUBE-SVC-NWV5X2332I4OT4T3 -m-m comment comment --comment--comment "default/hostnames:""default/hostnames:" -j-j KUBE-SEP-57KPRZ3JQVENLNBR KUBE-SEP-57KPRZ3JQVENLNBR

u@nodeu@node$ $ curl 10.0.1.175:80curl 10.0.1.175:80

hostnames-0utonhostnames-0uton

that:

If this still fails, look at the kube-proxykube-proxy logs for specific lines like:

If you don’t see those, try restarting kube-proxykube-proxy with the -V-V flag set to 4, and then look at the

logs again.

A Pod cannot reach itself via Service IP

This can happen when the network is not properly configured for “hairpin” traffic, usually when

kube-proxykube-proxy is running in iptablesiptables mode and Pods are connected with bridge network. The

KubeletKubelet exposes a hairpin-modehairpin-mode flag that allows endpoints of a Service to loadbalance

back to themselves if they try to access their own Service VIP. The hairpin-modehairpin-mode flag must

either be set to hairpin-vethhairpin-veth or promiscuous-bridgepromiscuous-bridge .

The common steps to trouble shoot this are as follows:

Confirm hairpin-modehairpin-mode is set to hairpin-vethhairpin-veth or promiscuous-bridgepromiscuous-bridge . You should

see something like the below. hairpin-modehairpin-mode is set to promiscuous-bridgepromiscuous-bridge in the

following example.

Confirm the effective hairpin-modehairpin-mode . To do this, you’ll have to look at kubelet log.

Accessing the logs depends on your Node OS. On some OSes it is a file, such as

/var/log/kubelet.log, while other OSes use journalctljournalctl to access logs. Please be noted

that the effective hairpin mode may not match --hairpin-mode--hairpin-mode flag due to compatibility.

Check if there is any log lines with key word hairpinhairpin in kubelet.log. There should be log

u@nodeu@node$ $ curl localhost:48577curl localhost:48577

hostnames-yp2kphostnames-yp2kp

Setting endpoints Setting endpoints for for default/hostnames:default to default/hostnames:default to [[10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376]10.244.0.5:9376 10.244.0.6:9376 10.244.0.7:9376]

u@nodeu@node$ $ ps auxw|grep kubeletps auxw|grep kubelet

root 3392 1.1 0.8 186804 65208 ? Sl 00:51 11:11 /usr/local/bin/kubelet root 3392 1.1 0.8 186804 65208 ? Sl 00:51 11:11 /usr/local/bin/kubelet

file:///docs/admin/kubelet/

lines indicating the effective hairpin mode, like something below.

If the effective hairpin mode is hairpin-vethhairpin-veth , ensure the KubeletKubelet has the permission to

operate in /sys/sys on node. If everything works properly, you should see something like:

If the effective hairpin mode is promiscuous-bridgepromiscuous-bridge , ensure KubeletKubelet has the

permission to manipulate linux bridge on node. If cbr0` bridge is used and configured

properly, you should see:

Seek help if none of above works out.

Seek help

If you get this far, something very strange is happening. Your ServiceService is running, has

EndpointsEndpoints , and your PodsPods are actually serving. You have DNS working, iptablesiptables rules

installed, and kube-proxykube-proxy does not seem to be misbehaving. And yet your ServiceService is not

working. You should probably let us know, so we can help investigate!

Contact us on Slack or email or GitHub.

More information

Visit troubleshooting document for more information.

I0629 00:51:43.648698 3252 kubelet.go:380] Hairpin mode I0629 00:51:43.648698 3252 kubelet.go:380] Hairpin mode set set to to "promiscuous-bridge""promiscuous-bridge"

u@nodeu@node$ $ for for intf intf inin /sys/devices/virtual/net/cbr0/brif/ /sys/devices/virtual/net/cbr0/brif/**;; do do catcat $intf$intf/hairpin_mode/hairpin_mode

11

11

11

11

u@nodeu@node$ $ ifconfig cbr0 |grep PROMISCifconfig cbr0 |grep PROMISC

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1460 Metric:1UP BROADCAST RUNNING PROMISC MULTICAST MTU:1460 Metric:1

file:///docs/troubleshooting/#slack
https://groups.google.com/forum/#!forum/kubernetes-users
https://github.com/kubernetes/kubernetes
file:///docs/troubleshooting/

Troubleshoot Clusters

This doc is about cluster troubleshooting; we assume you have already ruled out your

application as the root cause of the problem you are experiencing. See the application

troubleshooting guide for tips on application debugging. You may also visit troubleshooting

document for more information.

Listing your cluster

The first thing to debug in your cluster is if your nodes are all registered correctly.

Run

And verify that all of the nodes you expect to see are present and that they are all in the ReadyReady

state.

Looking at logs

For now, digging deeper into the cluster requires logging into the relevant machines. Here are

the locations of the relevant log files. (note that on systemd-based systems, you may need to

use journalctljournalctl instead)

Master

/var/log/kube-apiserver.log - API Server, responsible for serving the API

/var/log/kube-scheduler.log - Scheduler, responsible for making scheduling decisions

/var/log/kube-controller-manager.log - Controller that manages replication controllers

Worker Nodes

kubectl get nodeskubectl get nodes

file:///docs/tasks/debug-application-cluster/debug-application
file:///docs/troubleshooting/

/var/log/kubelet.log - Kubelet, responsible for running containers on the node

/var/log/kube-proxy.log - Kube Proxy, responsible for service load balancing

A general overview of cluster failure modes

This is an incomplete list of things that could go wrong, and how to adjust your cluster setup

to mitigate the problems.

Root causes:

VM(s) shutdown

Network partition within cluster, or between cluster and users

Crashes in Kubernetes software

Data loss or unavailability of persistent storage (e.g. GCE PD or AWS EBS volume)

Operator error, e.g. misconfigured Kubernetes software or application software

Specific scenarios:

Apiserver VM shutdown or apiserver crashing

Results

unable to stop, update, or start new pods, services, replication controller

existing pods and services should continue to work normally, unless they depend

on the Kubernetes API

Apiserver backing storage lost

Results

apiserver should fail to come up

kubelets will not be able to reach it but will continue to run the same pods and

provide the same service proxying

manual recovery or recreation of apiserver state necessary before apiserver is

restarted

Supporting services (node controller, replication controller manager, scheduler, etc) VM

shutdown or crashes

currently those are colocated with the apiserver, and their unavailability has similar

consequences as apiserver

in future, these will be replicated as well and may not be co-located

they do not have their own persistent state

Individual node (VM or physical machine) shuts down

Results

pods on that Node stop running

Network partition

Results

partition A thinks the nodes in partition B are down; partition B thinks the

apiserver is down. (Assuming the master VM ends up in partition A.)

Kubelet software fault

Results

crashing kubelet cannot start new pods on the node

kubelet might delete the pods or not

node marked unhealthy

replication controllers start new pods elsewhere

Cluster operator error

Results

loss of pods, services, etc

lost of apiserver backing store

users unable to read API

etc.

Mitigations:

Action: Use IaaS provider’s automatic VM restarting feature for IaaS VMs

Mitigates: Apiserver VM shutdown or apiserver crashing

Mitigates: Supporting services VM shutdown or crashes

Action: Use IaaS providers reliable storage (e.g. GCE PD or AWS EBS volume) for VMs with

apiserver+etcd

Mitigates: Apiserver backing storage lost

Action: Use (experimental) high-availability configuration

Mitigates: Master VM shutdown or master components (scheduler, API server,

controller-managing) crashing

Will tolerate one or more simultaneous node or component failures

Mitigates: Apiserver backing storage (i.e., etcd’s data directory) lost

Assuming you used clustered etcd.

Action: Snapshot apiserver PDs/EBS-volumes periodically

Mitigates: Apiserver backing storage lost

Mitigates: Some cases of operator error

Mitigates: Some cases of Kubernetes software fault

Action: use replication controller and services in front of pods

Mitigates: Node shutdown

Mitigates: Kubelet software fault

Action: applications (containers) designed to tolerate unexpected restarts

Mitigates: Node shutdown

Mitigates: Kubelet software fault

Action: Multiple independent clusters (and avoid making risky changes to all clusters at

once)

Mitigates: Everything listed above.

file:///docs/admin/high-availability
file:///docs/concepts/cluster-administration/federation/

Troubleshoot Applications

This guide is to help users debug applications that are deployed into Kubernetes and not

behaving correctly. This is not a guide for people who want to debug their cluster. For that you

should check out this guide.

Diagnosing the problem

The first step in troubleshooting is triage. What is the problem? Is it your Pods, your

Replication Controller or your Service?

Debugging Pods

Debugging Replication Controllers

Debugging Services

Debugging Pods

The first step in debugging a Pod is taking a look at it. Check the current state of the Pod and

recent events with the following command:

Diagnosing the problem

Debugging Pods

My pod stays pending

My pod stays waiting

My pod is crashing or otherwise unhealthy

My pod is running but not doing what I told it to do

Debugging Replication Controllers

Debugging Services

My service is missing endpoints

Network traffic is not forwarded

More information

$ $ kubectl describe pods kubectl describe pods ${${POD_NAMEPOD_NAME}}

file:///docs/admin/cluster-troubleshooting

Look at the state of the containers in the pod. Are they all RunningRunning ? Have there been recent

restarts?

Continue debugging depending on the state of the pods.

My pod stays pending

If a Pod is stuck in PendingPending it means that it can not be scheduled onto a node. Generally this

is because there are insufficient resources of one type or another that prevent scheduling.

Look at the output of the

kubectl describekubectl describe

...... command above. There should be

messages from the scheduler about why it can not schedule your pod. Reasons include:

You don’t have enough resources: You may have exhausted the supply of CPU or Memory

in your cluster, in this case you need to delete Pods, adjust resource requests, or add new

nodes to your cluster. See Compute Resources document for more information.

You are using hostPorthostPort : When you bind a Pod to a hostPorthostPort there are a limited number

of places that pod can be scheduled. In most cases, hostPorthostPort is unnecessary, try using a

Service object to expose your Pod. If you do require hostPorthostPort then you can only schedule

as many Pods as there are nodes in your Kubernetes cluster.

My pod stays waiting

If a Pod is stuck in the WaitingWaiting state, then it has been scheduled to a worker node, but it can’t

run on that machine. Again, the information from

kubectl describekubectl describe

...... should be

informative. The most common cause of WaitingWaiting pods is a failure to pull the image. There

are three things to check:

Make sure that you have the name of the image correct.

Have you pushed the image to the repository?

Run a manual docker pull <image>docker pull <image> on your machine to see if the image can be pulled.

My pod is crashing or otherwise unhealthy

First, take a look at the logs of the current container:

file:///docs/user-guide/compute-resources/#my-pods-are-pending-with-event-message-failedscheduling

If your container has previously crashed, you can access the previous container’s crash log

with:

Alternately, you can run commands inside that container with execexec :

Note that -c ${CONTAINER_NAME}-c ${CONTAINER_NAME} is optional and can be omitted for Pods that only contain a

single container.

As an example, to look at the logs from a running Cassandra pod, you might run

If none of these approaches work, you can find the host machine that the pod is running on

and SSH into that host, but this should generally not be necessary given tools in the

Kubernetes API. Therefore, if you find yourself needing to ssh into a machine, please file a

feature request on GitHub describing your use case and why these tools are insufficient.

My pod is running but not doing what I told it to do

If your pod is not behaving as you expected, it may be that there was an error in your pod

description (e.g. mypod.yamlmypod.yaml file on your local machine), and that the error was silently

ignored when you created the pod. Often a section of the pod description is nested incorrectly,

or a key name is typed incorrectly, and so the key is ignored. For example, if you misspelled

commandcommand as commndcommnd then the pod will be created but will not use the command line you

intended it to use.

The first thing to do is to delete your pod and try creating it again with the --validate--validate option.

For example, run

kubectl create --validate -fkubectl create --validate -f

mypod.yamlmypod.yaml . If you misspelled commandcommand

$ $ kubectl logs kubectl logs ${${POD_NAMEPOD_NAME}} ${${CONTAINER_NAMECONTAINER_NAME}}

$ $ kubectl logs kubectl logs --previous--previous ${${POD_NAMEPOD_NAME}} ${${CONTAINER_NAMECONTAINER_NAME}}

$ $ kubectl kubectl execexec ${${POD_NAMEPOD_NAME}} -c-c ${${CONTAINER_NAMECONTAINER_NAME}} ---- ${${CMDCMD}} ${${ARG1ARG1}} ${${ARG2ARG2}}

$ $ kubectl kubectl exec exec cassandra cassandra ---- catcat /var/log/cassandra/system.log /var/log/cassandra/system.log

as commndcommnd then will give an error like this:

The next thing to check is whether the pod on the apiserver matches the pod you meant to

create (e.g. in a yaml file on your local machine). For example, run

kubectl get pods/mypod -o yaml > mypod-on-kubectl get pods/mypod -o yaml > mypod-on-

apiserver.yamlapiserver.yaml and then manually

compare the original pod description, mypod.yamlmypod.yaml with the one you got back from apiserver,

mypod-on-apiserver.yamlmypod-on-apiserver.yaml . There will typically be some lines on the “apiserver” version that

are not on the original version. This is expected. However, if there are lines on the original that

are not on the apiserver version, then this may indicate a problem with your pod spec.

Debugging Replication Controllers

Replication controllers are fairly straightforward. They can either create Pods or they can’t. If

they can’t create pods, then please refer to the instructions above to debug your pods.

You can also use

kubectl describe rckubectl describe rc

${CONTROLLER_NAME}${CONTROLLER_NAME} to introspect events related to

the replication controller.

Debugging Services

Services provide load balancing across a set of pods. There are several common problems

that can make Services not work properly. The following instructions should help debug

Service problems.

First, verify that there are endpoints for the service. For every Service object, the apiserver

makes an endpointsendpoints resource available.

You can view this resource with:

Make sure that the endpoints match up with the number of containers that you expect to be a

I0805 10:43:25.129850 46757 schema.go:126] unknown field: commndI0805 10:43:25.129850 46757 schema.go:126] unknown field: commnd

I0805 10:43:25.129973 46757 schema.go:129] this may be a I0805 10:43:25.129973 46757 schema.go:129] this may be a false false alarm, see https://github.com/kubernetes/kubernetes/issues/6842alarm, see https://github.com/kubernetes/kubernetes/issues/6842

pods/mypodpods/mypod

$ $ kubectl get endpoints kubectl get endpoints ${${SERVICE_NAMESERVICE_NAME}}

member of your service. For example, if your Service is for an nginx container with 3 replicas,

you would expect to see three different IP addresses in the Service’s endpoints.

My service is missing endpoints

If you are missing endpoints, try listing pods using the labels that Service uses. Imagine that

you have a Service where the labels are:

You can use:

to list pods that match this selector. Verify that the list matches the Pods that you expect to

provide your Service.

If the list of pods matches expectations, but your endpoints are still empty, it’s possible that

you don’t have the right ports exposed. If your service has a containerPortcontainerPort specified, but the

Pods that are selected don’t have that port listed, then they won’t be added to the endpoints

list.

Verify that the pod’s containerPortcontainerPort matches up with the Service’s containerPortcontainerPort

Network traffic is not forwarded

If you can connect to the service, but the connection is immediately dropped, and there are

endpoints in the endpoints list, it’s likely that the proxy can’t contact your pods.

There are three things to check:

Are your pods working correctly? Look for restart count, and debug pods.

Can you connect to your pods directly? Get the IP address for the Pod, and try to connect

directly to that IP.

Is your application serving on the port that you configured? Kubernetes doesn’t do port

......

specspec::

 -- selectorselector::

 namename:: nginxnginx

 typetype:: frontendfrontend

$ $ kubectl get pods kubectl get pods --selector--selector==namename==nginx,typenginx,type==frontendfrontend

remapping, so if your application serves on 8080, the containerPortcontainerPort field needs to be

8080.

More information

If none of the above solves your problem, follow the instructions in Debugging Service

document to make sure that your ServiceService is running, has EndpointsEndpoints , and your PodsPods are

actually serving; you have DNS working, iptables rules installed, and kube-proxy does not seem

to be misbehaving.

You may also visit troubleshooting document for more information.

file:///docs/user-guide/debugging-services
file:///docs/troubleshooting/

Debug a StatefulSet

This task shows you how to debug a StatefulSet.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster.

You should have a StatefulSet running that you want to investigate.

Debugging a StatefulSet

In order to list all the pods which belong to a StatefulSet, which have a label app=myappapp=myapp set on

them, you can use the following:

If you find that any Pods listed are in UnknownUnknown or TerminatingTerminating state for an extended period

of time, refer to the Deleting StatefulSet Pods task for instructions on how to deal with them.

You can debug individual Pods in a StatefulSet using the Debugging Pods guide.

What’s next

Learn more about debugging an init-container.

Before you begin

Debugging a StatefulSet

What’s next

kubectl get pods kubectl get pods -l-l appapp==myappmyapp

file:///docs/tasks/manage-stateful-set/delete-pods/
file:///docs/tasks/debug-application-cluster/debug-pod-replication-controller/
file:///docs/tasks/debug-application-cluster/debug-init-containers/

Application Introspection and Debugging

Once your application is running, you’ll inevitably need to debug problems with it. Earlier we

described how you can use

kubectl getkubectl get

podspods to retrieve simple status information about

your pods. But there are a number of ways to get even more information about your

application.

Using kubectl describe pod to fetch details about

pods

For this example we’ll use a Deployment to create two pods, similar to the earlier example.

nginx-dep.yamlnginx-dep.yaml

Using

kubectl describekubectl describe

podpod to fetch details about pods

Example: debugging Pending Pods

Example: debugging a down/unreachable node

What’s next?

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/nginx-dep.yaml

nginx-dep.yamlnginx-dep.yaml

Create deployment by running following command:

We can retrieve a lot more information about each of these pods using

kubectl describekubectl describe

podpod . For example:

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 replicasreplicas:: 22

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""128Mi"128Mi"

 cpucpu:: ""500m"500m"

 portsports::

 -- containerPortcontainerPort:: 8080

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/debug-application-cluster/nginx-dep.yaml https://k8s.io/docs/tasks/debug-application-cluster/nginx-dep.yaml

deployment deployment "nginx-deployment""nginx-deployment" created created

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

nginx-deployment-1006230814-6winp 1/1 Running 0 11snginx-deployment-1006230814-6winp 1/1 Running 0 11s

nginx-deployment-1006230814-fmgu3 1/1 Running 0 11snginx-deployment-1006230814-fmgu3 1/1 Running 0 11s

$ $ kubectl describe pod nginx-deployment-1006230814-6winpkubectl describe pod nginx-deployment-1006230814-6winp

Name: nginx-deployment-1006230814-6winpName: nginx-deployment-1006230814-6winp

Namespace: defaultNamespace: default

Node: kubernetes-node-wul5/10.240.0.9Node: kubernetes-node-wul5/10.240.0.9

Start Time: Thu, 24 Mar 2016 01:39:49 +0000Start Time: Thu, 24 Mar 2016 01:39:49 +0000

Labels: Labels: appapp==nginx,pod-template-hashnginx,pod-template-hash==10062308141006230814

Annotations: kubernetes.io/created-byAnnotations: kubernetes.io/created-by={={"kind""kind"::"SerializedReference""SerializedReference",,"apiVersion""apiVersion"

Here you can see configuration information about the container(s) and Pod (labels, resource

requirements, etc.), as well as status information about the container(s) and Pod (state,

readiness, restart count, events, etc.).

Annotations: kubernetes.io/created-byAnnotations: kubernetes.io/created-by={={"kind""kind"::"SerializedReference""SerializedReference",,"apiVersion""apiVersion"

Status: RunningStatus: Running

IP: 10.244.0.6IP: 10.244.0.6

Controllers: ReplicaSet/nginx-deployment-1006230814Controllers: ReplicaSet/nginx-deployment-1006230814

Containers:Containers:

 nginx: nginx:

 Container ID: docker://90315cc9f513c724e9957a4788d3e625a078de84750f244a40f97ae355eb1149 Container ID: docker://90315cc9f513c724e9957a4788d3e625a078de84750f244a40f97ae355eb1149

 Image: nginx Image: nginx

 Image ID: docker://6f62f48c4e55d700cf3eb1b5e33fa051802986b77b874cc351cce539e5163707 Image ID: docker://6f62f48c4e55d700cf3eb1b5e33fa051802986b77b874cc351cce539e5163707

 Port: 80/TCP Port: 80/TCP

 QoS Tier: QoS Tier:

 cpu: Guaranteed cpu: Guaranteed

 memory: Guaranteed memory: Guaranteed

 Limits: Limits:

 cpu: 500m cpu: 500m

 memory: 128Mi memory: 128Mi

 Requests: Requests:

 memory: 128Mi memory: 128Mi

 cpu: 500m cpu: 500m

 State: Running State: Running

 Started: Thu, 24 Mar 2016 01:39:51 +0000 Started: Thu, 24 Mar 2016 01:39:51 +0000

 Ready: True Ready: True

 Restart Count: 0 Restart Count: 0

 Environment: <none> Environment: <none>

 Mounts: Mounts:

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5kdvl /var/run/secrets/kubernetes.io/serviceaccount from default-token-5kdvl

Conditions:Conditions:

 Type Status Type Status

 Initialized True Initialized True

 Ready True Ready True

 PodScheduled True PodScheduled True

Volumes:Volumes:

 default-token-4bcbi: default-token-4bcbi:

 Type: Secret Type: Secret ((a volume populated by a Secreta volume populated by a Secret))

 SecretName: default-token-4bcbi SecretName: default-token-4bcbi

 Optional: Optional: falsefalse

QoS Class: GuaranteedQoS Class: Guaranteed

Node-Selectors: <none>Node-Selectors: <none>

Tolerations: <none>Tolerations: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ---------------- ------------ --------------

 54s 54s 1 54s 54s 1 {{default-scheduler default-scheduler }} Normal Scheduled Successfully assigned nginx-deployment-1006230814-6winp to kubernetes-node-wul5 Normal Scheduled Successfully assigned nginx-deployment-1006230814-6winp to kubernetes-node-wul5

 54s 54s 1 54s 54s 1 {{kubelet kubernetes-node-wul5kubelet kubernetes-node-wul5}} spec.containers spec.containers{{nginxnginx}} Normal Pulling pulling image Normal Pulling pulling image

 53s 53s 1 53s 53s 1 {{kubelet kubernetes-node-wul5kubelet kubernetes-node-wul5}} spec.containers spec.containers{{nginxnginx}} Normal Pulled Successfully pulled image Normal Pulled Successfully pulled image

 53s 53s 1 53s 53s 1 {{kubelet kubernetes-node-wul5kubelet kubernetes-node-wul5}} spec.containers spec.containers{{nginxnginx}} Normal Created Created container with docker id 90315cc9f513 Normal Created Created container with docker id 90315cc9f513

 53s 53s 1 53s 53s 1 {{kubelet kubernetes-node-wul5kubelet kubernetes-node-wul5}} spec.containers spec.containers{{nginxnginx}} Normal Started Started container with docker id 90315cc9f513 Normal Started Started container with docker id 90315cc9f513

The container state is one of Waiting, Running, or Terminated. Depending on the state,

additional information will be provided – here you can see that for a container in Running state,

the system tells you when the container started.

Ready tells you whether the container passed its last readiness probe. (In this case, the

container does not have a readiness probe configured; the container is assumed to be ready if

no readiness probe is configured.)

Restart Count tells you how many times the container has been restarted; this information can

be useful for detecting crash loops in containers that are configured with a restart policy of

‘always.’

Currently the only Condition associated with a Pod is the binary Ready condition, which

indicates that the pod is able to service requests and should be added to the load balancing

pools of all matching services.

Lastly, you see a log of recent events related to your Pod. The system compresses multiple

identical events by indicating the first and last time it was seen and the number of times it was

seen. “From” indicates the component that is logging the event, “SubobjectPath” tells you

which object (e.g. container within the pod) is being referred to, and “Reason” and “Message”

tell you what happened.

Example: debugging Pending Pods

A common scenario that you can detect using events is when you’ve created a Pod that won’t

fit on any node. For example, the Pod might request more resources than are free on any node,

or it might specify a label selector that doesn’t match any nodes. Let’s say we created the

previous Deployment with 5 replicas (instead of 2) and requesting 600 millicores instead of

500, on a four-node cluster where each (virtual) machine has 1 CPU. In that case one of the

Pods will not be able to schedule. (Note that because of the cluster addon pods such as

fluentd, skydns, etc., that run on each node, if we requested 1000 millicores then none of the

Pods would be able to schedule.)

$ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

nginx-deployment-1006230814-6winp 1/1 Running 0 7mnginx-deployment-1006230814-6winp 1/1 Running 0 7m

nginx-deployment-1006230814-fmgu3 1/1 Running 0 7mnginx-deployment-1006230814-fmgu3 1/1 Running 0 7m

nginx-deployment-1370807587-6ekbw 1/1 Running 0 1mnginx-deployment-1370807587-6ekbw 1/1 Running 0 1m

nginx-deployment-1370807587-fg172 0/1 Pending 0 1mnginx-deployment-1370807587-fg172 0/1 Pending 0 1m

nginx-deployment-1370807587-fz9sd 0/1 Pending 0 1mnginx-deployment-1370807587-fz9sd 0/1 Pending 0 1m

To find out why the nginx-deployment-1370807587-fz9sd pod is not running, we can use

kubectl describekubectl describe

podpod on the pending Pod and look at its events:

Here you can see the event generated by the scheduler saying that the Pod failed to schedule

for reason FailedSchedulingFailedScheduling (and possibly others). The message tells us that there were

not enough resources for the Pod on any of the nodes.

To correct this situation, you can use kubectl scalekubectl scale to update your Deployment to specify

four or fewer replicas. (Or you could just leave the one Pod pending, which is harmless.)

$ $ kubectl describe pod nginx-deployment-1370807587-fz9sdkubectl describe pod nginx-deployment-1370807587-fz9sd

 Name: nginx-deployment-1370807587-fz9sd Name: nginx-deployment-1370807587-fz9sd

 Namespace: default Namespace: default

 Node: / Node: /

 Labels: Labels: appapp==nginx,pod-template-hashnginx,pod-template-hash==13708075871370807587

 Status: Pending Status: Pending

 IP: IP:

 Controllers: ReplicaSet/nginx-deployment-1370807587 Controllers: ReplicaSet/nginx-deployment-1370807587

 Containers: Containers:

 nginx: nginx:

 Image: nginx Image: nginx

 Port: 80/TCP Port: 80/TCP

 QoS Tier: QoS Tier:

 memory: Guaranteed memory: Guaranteed

 cpu: Guaranteed cpu: Guaranteed

 Limits: Limits:

 cpu: 1 cpu: 1

 memory: 128Mi memory: 128Mi

 Requests: Requests:

 cpu: 1 cpu: 1

 memory: 128Mi memory: 128Mi

 Environment Variables: Environment Variables:

 Volumes: Volumes:

 default-token-4bcbi: default-token-4bcbi:

 Type: Secret Type: Secret ((a volume populated by a Secreta volume populated by a Secret))

 SecretName: default-token-4bcbi SecretName: default-token-4bcbi

 Events: Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ---------------- ------------

 1m 48s 7 1m 48s 7 {{default-scheduler default-scheduler }} Warning FailedScheduling pod Warning FailedScheduling pod

 fit failure on node fit failure on node ((kubernetes-node-6ta5kubernetes-node-6ta5)): Node didn: Node didn't have enough resource: CPU, requested: 1000, used: 1420, capacity: 2000't have enough resource: CPU, requested: 1000, used: 1420, capacity: 2000

 fit failure on node (kubernetes-node-wul5): Node didn' fit failure on node (kubernetes-node-wul5): Node didn't have enough resource: CPU, requested: 1000, used: 1100, capacity: 2000t have enough resource: CPU, requested: 1000, used: 1100, capacity: 2000

Events such as the ones you saw at the end of

kubectl describekubectl describe

podpod are persisted in etcd

and provide high-level information on what is happening in the cluster. To list all events you can

use

but you have to remember that events are namespaced. This means that if you’re interested in

events for some namespaced object (e.g. what happened with Pods in namespace

my-namespacemy-namespace) you need to explicitly provide a namespace to the command:

To see events from all namespaces, you can use the --all-namespaces--all-namespaces argument.

In addition to

kubectl describekubectl describe

podpod , another way to get extra information about a pod

(beyond what is provided by

kubectl getkubectl get

podpod) is to pass the -o yaml-o yaml output format flag to

kubectl getkubectl get

podpod . This will give you, in YAML format, even more information than

kubectl describekubectl describe

podpod –essentially all of the information the system has about the Pod. Here

you will see things like annotations (which are key-value metadata without the label

restrictions, that is used internally by Kubernetes system components), restart policy, ports,

and volumes.

kubectl get eventskubectl get events

kubectl get events kubectl get events --namespace--namespace==my-namespacemy-namespace

$ kubectl get pod nginx-deployment-1006230814-6winp -o yaml$ kubectl get pod nginx-deployment-1006230814-6winp -o yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 annotationsannotations::

 kubernetes.io/created-bykubernetes.io/created-by:: ||

 {"kind":"SerializedReference","apiVersion":"v1","reference":{"kind":"ReplicaSet","namespace":"default","name":"nginx-deployment-1006230814","uid":"4c84c175-f161-11e5-9a78-42010af00005","apiVersion":"extensions","resourceVersion":"133434"}}{"kind":"SerializedReference","apiVersion":"v1","reference":{"kind":"ReplicaSet","namespace":"default","name":"nginx-deployment-1006230814","uid":"4c84c175-f161-11e5-9a78-42010af00005","apiVersion":"extensions","resourceVersion":"133434"}}

 creationTimestampcreationTimestamp:: 2016-03-24T01:39:50Z2016-03-24T01:39:50Z

 generateNamegenerateName:: nginx-deployment-1006230814-nginx-deployment-1006230814-

 labelslabels::

 appapp:: nginxnginx

 pod-template-hashpod-template-hash:: ""1006230814"1006230814"

 namename:: nginx-deployment-1006230814-6winpnginx-deployment-1006230814-6winp

 namename:: nginx-deployment-1006230814-6winpnginx-deployment-1006230814-6winp

 namespacenamespace:: defaultdefault

 resourceVersionresourceVersion:: ""133447"133447"

 selfLinkselfLink:: /api/v1/namespaces/default/pods/nginx-deployment-1006230814-6winp/api/v1/namespaces/default/pods/nginx-deployment-1006230814-6winp

 uiduid:: 4c879808-f161-11e5-9a78-42010af000054c879808-f161-11e5-9a78-42010af00005

specspec::

 containerscontainers::

 -- imageimage:: nginxnginx

 imagePullPolicyimagePullPolicy:: AlwaysAlways

 namename:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

 protocolprotocol:: TCPTCP

 resourcesresources::

 limitslimits::

 cpucpu:: 500m500m

 memorymemory:: 128Mi128Mi

 requestsrequests::

 cpucpu:: 500m500m

 memorymemory:: 128Mi128Mi

 terminationMessagePathterminationMessagePath:: /dev/termination-log/dev/termination-log

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /var/run/secrets/kubernetes.io/serviceaccount/var/run/secrets/kubernetes.io/serviceaccount

 namename:: default-token-4bcbidefault-token-4bcbi

 readOnlyreadOnly:: truetrue

 dnsPolicydnsPolicy:: ClusterFirstClusterFirst

 nodeNamenodeName:: kubernetes-node-wul5kubernetes-node-wul5

 restartPolicyrestartPolicy:: AlwaysAlways

 securityContextsecurityContext:: {}{}

 serviceAccountserviceAccount:: defaultdefault

 serviceAccountNameserviceAccountName:: defaultdefault

 terminationGracePeriodSecondsterminationGracePeriodSeconds:: 3030

 volumesvolumes::

 -- namename:: default-token-4bcbidefault-token-4bcbi

 secretsecret::

 secretNamesecretName:: default-token-4bcbidefault-token-4bcbi

statusstatus::

 conditionsconditions::

 -- lastProbeTimelastProbeTime:: nullnull

 lastTransitionTimelastTransitionTime:: 2016-03-24T01:39:51Z2016-03-24T01:39:51Z

 statusstatus:: ""True"True"

 typetype:: ReadyReady

 containerStatusescontainerStatuses::

 -- containerIDcontainerID:: docker://90315cc9f513c724e9957a4788d3e625a078de84750f244a40f97ae355eb1149docker://90315cc9f513c724e9957a4788d3e625a078de84750f244a40f97ae355eb1149

 imageimage:: nginxnginx

 imageIDimageID:: docker://6f62f48c4e55d700cf3eb1b5e33fa051802986b77b874cc351cce539e5163707docker://6f62f48c4e55d700cf3eb1b5e33fa051802986b77b874cc351cce539e5163707

 lastStatelastState:: {}{}

 namename:: nginxnginx

 readyready:: truetrue

 restartCountrestartCount:: 00

 statestate::

 runningrunning::

 startedAtstartedAt:: 2016-03-24T01:39:51Z2016-03-24T01:39:51Z

 hostIPhostIP:: 10.240.0.910.240.0.9

 phasephase:: RunningRunning

Example: debugging a down/unreachable node

Sometimes when debugging it can be useful to look at the status of a node – for example,

because you’ve noticed strange behavior of a Pod that’s running on the node, or to find out why

a Pod won’t schedule onto the node. As with Pods, you can use

kubectl describekubectl describe

nodenode and

kubectl get node -okubectl get node -o

yamlyaml to retrieve detailed information about nodes. For example, here’s

what you’ll see if a node is down (disconnected from the network, or kubelet dies and won’t

restart, etc.). Notice the events that show the node is NotReady, and also notice that the pods

are no longer running (they are evicted after five minutes of NotReady status).

 phasephase:: RunningRunning

 podIPpodIP:: 10.244.0.610.244.0.6

 startTimestartTime:: 2016-03-24T01:39:49Z2016-03-24T01:39:49Z

$ $ kubectl get nodeskubectl get nodes

NAME STATUS AGE VERSIONNAME STATUS AGE VERSION

kubernetes-node-861h NotReady 1h v1.6.0+fff5156kubernetes-node-861h NotReady 1h v1.6.0+fff5156

kubernetes-node-bols Ready 1h v1.6.0+fff5156kubernetes-node-bols Ready 1h v1.6.0+fff5156

kubernetes-node-st6x Ready 1h v1.6.0+fff5156kubernetes-node-st6x Ready 1h v1.6.0+fff5156

kubernetes-node-unaj Ready 1h v1.6.0+fff5156kubernetes-node-unaj Ready 1h v1.6.0+fff5156

$ $ kubectl describe node kubernetes-node-861hkubectl describe node kubernetes-node-861h

Name: kubernetes-node-861hName: kubernetes-node-861h

RoleRole

Labels: beta.kubernetes.io/archLabels: beta.kubernetes.io/arch==amd64amd64

 beta.kubernetes.io/os beta.kubernetes.io/os==linuxlinux

 kubernetes.io/hostname kubernetes.io/hostname==kubernetes-node-861hkubernetes-node-861h

Annotations: node.alpha.kubernetes.io/ttlAnnotations: node.alpha.kubernetes.io/ttl==00

 volumes.kubernetes.io/controller-managed-attach-detach volumes.kubernetes.io/controller-managed-attach-detach==truetrue

Taints: <none>Taints: <none>

CreationTimestamp: Mon, 04 Sep 2017 17:13:23 +0800CreationTimestamp: Mon, 04 Sep 2017 17:13:23 +0800

Phase:Phase:

Conditions:Conditions:

 Type Status LastHeartbeatTime LastTransitionTime Reason Message Type Status LastHeartbeatTime LastTransitionTime Reason Message

 -------- ------------ ---------------------------------- ------------------------------------ ------------

 OutOfDisk Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status. OutOfDisk Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status.

 MemoryPressure Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status. MemoryPressure Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status.

 DiskPressure Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status. DiskPressure Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status.

 Ready Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status. Ready Unknown Fri, 08 Sep 2017 16:04:28 +0800 Fri, 08 Sep 2017 16:20:58 +0800 NodeStatusUnknown Kubelet stopped posting node status.

Addresses: 10.240.115.55,104.197.0.26Addresses: 10.240.115.55,104.197.0.26

Capacity:Capacity:

 cpu: 2 cpu: 2

 hugePages: 0 hugePages: 0

 hugePages: 0 hugePages: 0

 memory: 4046788Ki memory: 4046788Ki

 pods: 110 pods: 110

Allocatable:Allocatable:

 cpu: 1500m cpu: 1500m

 hugePages: 0 hugePages: 0

 memory: 1479263Ki memory: 1479263Ki

 pods: 110 pods: 110

System Info:System Info:

 Machine ID: 8e025a21a4254e11b028584d9d8b12c4 Machine ID: 8e025a21a4254e11b028584d9d8b12c4

 System UUID: 349075D1-D169-4F25-9F2A-E886850C47E3 System UUID: 349075D1-D169-4F25-9F2A-E886850C47E3

 Boot ID: 5cd18b37-c5bd-4658-94e0-e436d3f110e0 Boot ID: 5cd18b37-c5bd-4658-94e0-e436d3f110e0

 Kernel Version: 4.4.0-31-generic Kernel Version: 4.4.0-31-generic

 OS Image: Debian GNU/Linux 8 OS Image: Debian GNU/Linux 8 ((jessiejessie))

 Operating System: linux Operating System: linux

 Architecture: amd64 Architecture: amd64

 Container Runtime Version: docker://1.12.5 Container Runtime Version: docker://1.12.5

 Kubelet Version: v1.6.9+a3d1dfa6f4335 Kubelet Version: v1.6.9+a3d1dfa6f4335

 Kube-Proxy Version: v1.6.9+a3d1dfa6f4335 Kube-Proxy Version: v1.6.9+a3d1dfa6f4335

ExternalID: 15233045891481496305ExternalID: 15233045891481496305

Non-terminated Pods: Non-terminated Pods: ((9 9 in in totaltotal))

 Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits

 ------------------ --------

............

Allocated resources:Allocated resources:

 ((Total limits may be over 100 percent, i.e., overcommitted.Total limits may be over 100 percent, i.e., overcommitted.))

 CPU Requests CPU Limits Memory Requests Memory Limits CPU Requests CPU Limits Memory Requests Memory Limits

 ------------------------ -------------------- ------------------------------ --------------------------

 900m 900m ((60%60%)) 2200m 2200m ((146%146%)) 1009286400 1009286400 ((66%66%)) 5681286400 5681286400 ((375%375%))

Events: <none>Events: <none>

$ $ kubectl get node kubernetes-node-861h kubectl get node kubernetes-node-861h -o-o yaml yaml

apiVersion: v1apiVersion: v1

kind: Nodekind: Node

metadata:metadata:

 creationTimestamp: 2015-07-10T21:32:29Z creationTimestamp: 2015-07-10T21:32:29Z

 labels: labels:

 kubernetes.io/hostname: kubernetes-node-861h kubernetes.io/hostname: kubernetes-node-861h

 name: kubernetes-node-861h name: kubernetes-node-861h

 resourceVersion: resourceVersion: "757""757"

 selfLink: /api/v1/nodes/kubernetes-node-861h selfLink: /api/v1/nodes/kubernetes-node-861h

 uid: 2a69374e-274b-11e5-a234-42010af0d969 uid: 2a69374e-274b-11e5-a234-42010af0d969

spec:spec:

 externalID: externalID: "15233045891481496305""15233045891481496305"

 podCIDR: 10.244.0.0/24 podCIDR: 10.244.0.0/24

 providerID: gce://striped-torus-760/us-central1-b/kubernetes-node-861h providerID: gce://striped-torus-760/us-central1-b/kubernetes-node-861h

status:status:

 addresses: addresses:

 - address: 10.240.115.55 - address: 10.240.115.55

 typetype: InternalIP: InternalIP

 - address: 104.197.0.26 - address: 104.197.0.26

 typetype: ExternalIP: ExternalIP

 capacity: capacity:

 cpu: cpu: "1""1"

 memory: 3800808Ki memory: 3800808Ki

What’s next?

Learn about additional debugging tools, including:

Logging

Monitoring

Getting into containers via execexec

Connecting to containers via proxies

Connecting to containers via port forwarding

 memory: 3800808Ki memory: 3800808Ki

 pods: pods: "100""100"

 conditions: conditions:

 - lastHeartbeatTime: 2015-07-10T21:34:32Z - lastHeartbeatTime: 2015-07-10T21:34:32Z

 lastTransitionTime: 2015-07-10T21:35:15Z lastTransitionTime: 2015-07-10T21:35:15Z

 reason: Kubelet stopped posting node status. reason: Kubelet stopped posting node status.

 status: Unknown status: Unknown

 typetype: Ready: Ready

 nodeInfo: nodeInfo:

 bootID: 4e316776-b40d-4f78-a4ea-ab0d73390897 bootID: 4e316776-b40d-4f78-a4ea-ab0d73390897

 containerRuntimeVersion: docker://Unknown containerRuntimeVersion: docker://Unknown

 kernelVersion: 3.16.0-0.bpo.4-amd64 kernelVersion: 3.16.0-0.bpo.4-amd64

 kubeProxyVersion: v0.21.1-185-gffc5a86098dc01 kubeProxyVersion: v0.21.1-185-gffc5a86098dc01

 kubeletVersion: v0.21.1-185-gffc5a86098dc01 kubeletVersion: v0.21.1-185-gffc5a86098dc01

 machineID: machineID: """"

 osImage: Debian GNU/Linux 7 osImage: Debian GNU/Linux 7 ((wheezywheezy))

 systemUUID: ABE5F6B4-D44B-108B-C46A-24CCE16C8B6E systemUUID: ABE5F6B4-D44B-108B-C46A-24CCE16C8B6E

file:///docs/concepts/cluster-administration/logging/
file:///docs/tasks/debug-application-cluster/resource-usage-monitoring/
file:///docs/tasks/debug-application-cluster/get-shell-running-container/
file:///docs/tasks/access-kubernetes-api/http-proxy-access-api/
file:///docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Auditing

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Kubernetes auditing provides a security-relevant chronological set of records documenting the

sequence of activities that have affected system by individual users, administrators or other

components of the system. It allows cluster administrator to answer the following questions:

what happened?

when did it happen?

who initiated it?

on what did it happen?

where was it observed?

from where was it initiated?

to where was it going?

Kube-apiserver performs auditing. Each request on each stage of its execution generates an

event, which is then pre-processed according to a certain policy and written to a backend. You

can find more details about the pipeline in the design proposal.

Note, that audit logging feature increases apiserver memory consumption, since some context

required for auditing is stored for each request. Additionally, memory consumption depends

Audit Policy

Audit backends

Log backend

Webhook backend

Batching

Parameter tuning

Multi-cluster setup

Log Collector Examples

Use fluentd to collect and distribute audit events from log file

Use logstash to collect and distribute audit events from webhook backend

Legacy Audit

Configuration

file:///docs/admin/kube-apiserver
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/auditing.md

on the audit logging configuration.

Audit Policy

Audit policy defines rules about what events should be recorded and what data they should

include. When an event is processed, it’s compared against the list of rules in order. The first

matching rule sets the audit level of the event. The audit policy object structure is defined in

the audit.k8s.ioaudit.k8s.io API group.

You can pass a file with the policy to kube-apiserver using the --audit-policy-file--audit-policy-file flag. If

the flag is omitted, no events are logged. Note: kindkind and apiVersionapiVersion fields along with

rulesrules must be provided in the audit policy file. A policy with no (0) rules, or a policy that

doesn’t provide valid apiVersionapiVersion and kindkind values is treated as illegal.

Some example audit policy files:

audit-policy.yamlaudit-policy.yaml

apiVersionapiVersion:: audit.k8s.io/v1beta1audit.k8s.io/v1beta1 # This is required.# This is required.
kindkind:: PolicyPolicy

Don't generate audit events for all requests in RequestReceived stage.# Don't generate audit events for all requests in RequestReceived stage.
omitStagesomitStages::

 -- ""RequestReceived"RequestReceived"

rulesrules::

 # Log pod changes at RequestResponse level# Log pod changes at RequestResponse level
 -- levellevel:: RequestResponseRequestResponse

 resourcesresources::

 -- groupgroup:: """"

 # Resource "pods" doesn't match requests to any subresource of pods,# Resource "pods" doesn't match requests to any subresource of pods,
 # which is consistent with the RBAC policy.# which is consistent with the RBAC policy.
 resourcesresources:: [[""pods"pods"]]

 # Log "pods/log", "pods/status" at Metadata level# Log "pods/log", "pods/status" at Metadata level
 -- levellevel:: MetadataMetadata

 resourcesresources::

 -- groupgroup:: """"

 resourcesresources:: [[""pods/log"pods/log",, ""pods/status"pods/status"]]

 # Don't log requests to a configmap called "controller-leader"# Don't log requests to a configmap called "controller-leader"
 -- levellevel:: NoneNone

 resourcesresources::

 -- groupgroup:: """"

 resourcesresources:: [[""configmaps"configmaps"]]

 resourceNamesresourceNames:: [[""controller-leader"controller-leader"]]

 # Don't log watch requests by the "system:kube-proxy" on endpoints or services# Don't log watch requests by the "system:kube-proxy" on endpoints or services

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/auditing.md#levels
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apiserver/pkg/apis/audit/v1beta1/types.go
file:///docs/admin/kube-apiserver
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/debug-application-cluster/audit-policy.yaml

audit-policy.yamlaudit-policy.yaml

You can use a minimal audit policy file to log all requests at the MetadataMetadata level:

 # Don't log watch requests by the "system:kube-proxy" on endpoints or services# Don't log watch requests by the "system:kube-proxy" on endpoints or services
 -- levellevel:: NoneNone

 usersusers:: [[""system:kube-proxy"system:kube-proxy"]]

 verbsverbs:: [[""watch"watch"]]

 resourcesresources::

 -- groupgroup:: """" # core API group# core API group
 resourcesresources:: [[""endpoints"endpoints",, ""services"services"]]

 # Don't log authenticated requests to certain non-resource URL paths.# Don't log authenticated requests to certain non-resource URL paths.
 -- levellevel:: NoneNone

 userGroupsuserGroups:: [[""system:authenticated"system:authenticated"]]

 nonResourceURLsnonResourceURLs::

 -- ""/api*"/api*" # Wildcard matching.# Wildcard matching.
 -- ""/version"/version"

 # Log the request body of configmap changes in kube-system.# Log the request body of configmap changes in kube-system.
 -- levellevel:: RequestRequest

 resourcesresources::

 -- groupgroup:: """" # core API group# core API group
 resourcesresources:: [[""configmaps"configmaps"]]

 # This rule only applies to resources in the "kube-system" namespace.# This rule only applies to resources in the "kube-system" namespace.
 # The empty string "" can be used to select non-namespaced resources.# The empty string "" can be used to select non-namespaced resources.
 namespacesnamespaces:: [[""kube-system"kube-system"]]

 # Log configmap and secret changes in all other namespaces at the Metadata level.# Log configmap and secret changes in all other namespaces at the Metadata level.
 -- levellevel:: MetadataMetadata

 resourcesresources::

 -- groupgroup:: """" # core API group# core API group
 resourcesresources:: [[""secrets"secrets",, ""configmaps"configmaps"]]

 # Log all other resources in core and extensions at the Request level.# Log all other resources in core and extensions at the Request level.
 -- levellevel:: RequestRequest

 resourcesresources::

 -- groupgroup:: """" # core API group# core API group
 -- groupgroup:: ""extensions"extensions" # Version of group should NOT be included.# Version of group should NOT be included.

 # A catch-all rule to log all other requests at the Metadata level.# A catch-all rule to log all other requests at the Metadata level.
 -- levellevel:: MetadataMetadata

 # Long-running requests like watches that fall under this rule will not# Long-running requests like watches that fall under this rule will not
 # generate an audit event in RequestReceived.# generate an audit event in RequestReceived.
 omitStagesomitStages::

 -- ""RequestReceived"RequestReceived"

Log all requests at the Metadata level.# Log all requests at the Metadata level.
apiVersionapiVersion:: audit.k8s.io/v1beta1audit.k8s.io/v1beta1

kindkind:: PolicyPolicy

rulesrules::

-- levellevel:: MetadataMetadata

The audit profile used by GCE should be used as reference by admins constructing their own

audit profiles.

Audit backends

Audit backends implement exporting audit events to an external storage. Kube-apiserver out of

the box provides two backends:

Log backend, which writes events to a disk

Webhook backend, which sends events to an external API

In both cases, audit events structure is defined by the API in the audit.k8s.ioaudit.k8s.io API group.

The current version of the API is v1beta1v1beta1 .

Note: In case of patches, request body is a JSON array with patch operations, not a JSON

object with an appropriate Kubernetes API object. For example, the following request body is a

valid patch request to /apis/batch/v1/namespaces/some-namespace/jobs/some-job-name/apis/batch/v1/namespaces/some-namespace/jobs/some-job-name

.

Log backend

Log backend writes audit events to a file in JSON format. You can configure log audit backend

using the following kube-apiserver flags:

--audit-log-path--audit-log-path specifies the log file path that log backend uses to write audit events.

Not specifying this flag disables log backend. -- means standard out

[[

 {{

 "op""op":: "replace""replace",,

 "path""path":: "/spec/parallelism""/spec/parallelism",,

 "value""value":: 00

 },},

 {{

 "op""op":: "remove""remove",,

 "path""path":: "/spec/template/spec/containers/0/terminationMessagePolicy""/spec/template/spec/containers/0/terminationMessagePolicy"

 }}

]]

https://github.com/kubernetes/kubernetes/blob/master/cluster/gce/gci/configure-helper.sh#L735
file:///docs/admin/kube-apiserver
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apiserver/pkg/apis/audit/v1beta1/types.go
file:///docs/admin/kube-apiserver

--audit-log-maxage--audit-log-maxage defined the maximum number of days to retain old audit log files

--audit-log-maxbackup--audit-log-maxbackup defines the maximum number of audit log files to retain

--audit-log-maxsize--audit-log-maxsize defines the maximum size in megabytes of the audit log file

before it gets rotated

Webhook backend

Webhook backend sends audit events to a remote API, which is assumed to be the same API

as kube-apiserver exposes. You can configure webhook audit backend using the following

kube-apiserver flags:

--audit-webhook-config-file--audit-webhook-config-file specifies the path to a file with a webhook configuration.

Webhook configuration is effectively a kubeconfig.

--audit-webhook-initial-backoff--audit-webhook-initial-backoff specifies the amount of time to wait after the first

failed request before retrying. Subsequent requests are retried with exponential backoff.

The webhook config file uses the kubeconfig format to specify the remote address of the

service and credentials used to connect to it.

Batching

Both log and webhook backends support batching. Using webhook as an example, here’s the

list of available flags. To get the same flag for log backend, replace webhookwebhook with loglog in the

flag name. By default, batching is enabled in webhookwebhook and disabled in loglog . Similarly, by

default throttling is enabled in webhookwebhook and disabled in loglog .

--audit-webhook-mode--audit-webhook-mode defines the buffering strategy. One of the following:

batchbatch - buffer events and asynchronously process them in batches. This is the

default.

blockingblocking - block API server responses on processing each individual event.

The following flags are used only in the batchbatch mode.

--audit-webhook-batch-buffer-size--audit-webhook-batch-buffer-size defines the number of events to buffer before

file:///docs/admin/kube-apiserver
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

batching. If the rate of incoming events overflows the buffer, events are dropped.

--audit-webhook-batch-max-size--audit-webhook-batch-max-size defines the maximum number of events in one

batch.

--audit-webhook-batch-max-wait--audit-webhook-batch-max-wait defines the maximum amount of time to wait before

unconditionally batching events in the queue.

--audit-webhook-batch-throttle-qps--audit-webhook-batch-throttle-qps defines the maximum average number of

batches generated per second.

--audit-webhook-batch-throttle-burst--audit-webhook-batch-throttle-burst defines the maximum number of batches

generated at the same moment if the allowed QPS was underutilized previously.

Parameter tuning

Parameters should be set to accommodate the load on the apiserver.

For example, if kube-apiserver receives 100 requests each second, and each request is audited

only on ResponseStartedResponseStarted and ResponseCompleteResponseComplete stages, you should account for ~200

audit events being generated each second. Assuming that there are up to 100 events in a

batch, you should set throttling level at at least 2 QPS. Assuming that the backend can take up

to 5 seconds to write events, you should set the buffer size to hold up to 5 seconds of events,

i.e. 10 batches, i.e. 1000 events.

In most cases however, the default parameters should be sufficient and you don’t have to

worry about setting them manually. You can look at the following Prometheus metrics

exposed by kube-apiserver and in the logs to monitor the state of the auditing subsystem.

apiserver_audit_event_totalapiserver_audit_event_total metric contains the total number of audit events

exported.

apiserver_audit_error_totalapiserver_audit_error_total metric contains the total number of events dropped due

to an error during exporting.

Multi-cluster setup

If you’re extending the Kubernetes API with the aggregation layer, you can also set up audit

logging for the aggregated apiserver. To do this, pass the configuration options in the same

format as described above to the aggregated apiserver and set up the log ingesting pipeline to

file:///docs/concepts/api-extension/apiserver-aggregation

pick up audit logs. Different apiservers can have different audit configurations and different

audit policies.

Log Collector Examples

Use fluentd to collect and distribute audit events from log file

Fluentd is an open source data collector for unified logging layer. In this example, we will use

fluentd to split audit events by different namespaces.

1. install fluentd, fluent-plugin-forest and fluent-plugin-rewrite-tag-filter in the kube-apiserver

node

2. create a config file for fluentd

$ $ catcat <<<<EOFEOF > /etc/fluentd/config > /etc/fluentd/config

fluentd conf runs in the same host with kube-apiserver# fluentd conf runs in the same host with kube-apiserver

<source><source>

 @type tail @type tail

 # audit log path of kube-apiserver # audit log path of kube-apiserver

 path /var/log/audit path /var/log/audit

 pos_file /var/log/audit.pos pos_file /var/log/audit.pos

 format json format json

 time_key time time_key time

 time_format %Y-%m-%dT%H:%M:%S.%N%z time_format %Y-%m-%dT%H:%M:%S.%N%z

 tag audit tag audit

</source></source>

<filter audit><filter audit>

 #https://github.com/fluent/fluent-plugin-rewrite-tag-filter/issues/13 #https://github.com/fluent/fluent-plugin-rewrite-tag-filter/issues/13

 type record_transformer type record_transformer

 enable_ruby enable_ruby

 <record> <record>

 namespace namespace ${${recordrecord[["objectRef""objectRef"].nil? ?].nil? ? "none""none"::(record[(record["objectRef""objectRef"][]["namespace""namespace"

 </record> </record>

</filter></filter>

http://www.fluentd.org/
http://docs.fluentd.org/v0.12/articles/quickstart#step1-installing-fluentd

3. start fluentd

4. start kube-apiserver with the following options:

5. check audits for different namespaces in /var/log/audit-*.log

<match audit><match audit>

 # route audit according to namespace element in context # route audit according to namespace element in context

 @type rewrite_tag_filter @type rewrite_tag_filter

 rewriterule1 namespace ^(.+) rewriterule1 namespace ^(.+) ${${tagtag}}..$1$1

</match></match>

<filter audit.**><filter audit.**>

 @type record_transformer @type record_transformer

 remove_keys namespace remove_keys namespace

</filter></filter>

<match audit.**><match audit.**>

 @type forest @type forest

 subtype file subtype file

 remove_prefix audit remove_prefix audit

 <template> <template>

 time_slice_format %Y%m%d%H time_slice_format %Y%m%d%H

 compress gz compress gz

 path /var/log/audit- path /var/log/audit-${${tagtag}}.*.log.*.log

 format json format json

 include_time_key true include_time_key true

 </template> </template>

</match></match>

$ $ fluentd fluentd -c-c /etc/fluentd/config /etc/fluentd/config -vv-vv

--audit-policy-file--audit-policy-file==/etc/kubernetes/audit-policy.yaml /etc/kubernetes/audit-policy.yaml --audit-log-path--audit-log-path==/var/log/kube-audit /var/log/kube-audit

Use logstash to collect and distribute audit events from
webhook backend

Logstash is an open source, server-side data processing tool. In this example, we will use

logstash to collect audit events from webhook backend, and save events of different users into

different files.

1. install logstash

2. create config file for logstash

$ $ catcat <<<<EOFEOF > /etc/logstash/config > /etc/logstash/config

input{input{

 http{ http{

 #TODO, figure out a way to use kubeconfig file to authenticate to logstash #TODO, figure out a way to use kubeconfig file to authenticate to logstash

 #https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html#plugins-inputs-http-ssl #https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html#plugins-inputs-http-ssl

 port=>8888 port=>8888

 } }

}}

filter{filter{

 split{ split{

 # Webhook audit backend sends several events together with EventList # Webhook audit backend sends several events together with EventList

 # split each event here. # split each event here.

 field=>[items] field=>[items]

 # We only need event subelement, remove others. # We only need event subelement, remove others.

 remove_field=>[headers, metadata, apiVersion, "@timestamp", kind, "@version", host] remove_field=>[headers, metadata, apiVersion, "@timestamp", kind, "@version", host]

 } }

 mutate{ mutate{

 rename => {items=>event} rename => {items=>event}

 } }

}}

output{output{

 file{ file{

 # Audit events from different users will be saved into different files. # Audit events from different users will be saved into different files.

 path=>"/var/log/kube-audit-%{[event][user][username]}/audit" path=>"/var/log/kube-audit-%{[event][user][username]}/audit"

 } }

}}

https://www.elastic.co/products/logstash
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html

3. start logstash

4. create a kubeconfig file for kube-apiserver webhook audit backend

5. start kube-apiserver with the following options:

6. check audits in logstash node’s directories /var/log/kube-audit-*/audit

Note that in addition to file output plugin, logstash has a variety of outputs that let users route

data where they want. For example, users can emit audit events to elasticsearch plugin which

supports full-text search and analytics.

$ $ bin/logstash bin/logstash -f-f /etc/logstash/config /etc/logstash/config --path--path.settings /etc/logstash/.settings /etc/logstash/

$ $ catcat <<<<EOFEOF > /etc/kubernetes/audit-webhook-kubeconfig > /etc/kubernetes/audit-webhook-kubeconfig

apiVersion: v1apiVersion: v1

clusters:clusters:

- cluster:- cluster:

 server: http://<ip_of_logstash>:8888 server: http://<ip_of_logstash>:8888

 name: logstash name: logstash

contexts:contexts:

- context:- context:

 cluster: logstash cluster: logstash

 user: "" user: ""

 name: default-context name: default-context

current-context: default-contextcurrent-context: default-context

kind: Configkind: Config

preferences: {}preferences: {}

users: []users: []

EOFEOF

--audit-policy-file--audit-policy-file==/etc/kubernetes/audit-policy.yaml /etc/kubernetes/audit-policy.yaml --audit-webhook-config-file--audit-webhook-config-file

file:///docs/tasks/access-application-cluster/authenticate-across-clusters-kubeconfig/

Legacy Audit

Note: Legacy Audit is deprecated and is disabled by default since Kubernetes 1.8. Legacy Audit

will be removed in 1.12. To fallback to this legacy audit, disable the advanced auditing feature

using the AdvancedAuditingAdvancedAuditing feature gate in kube-apiserver:

In legacy format, each audit log entry contains two lines:

1. The request line containing a unique ID to match the response and request metadata,

such as the source IP, requesting user, impersonation information, resource being

requested, etc.

2. The response line containing a unique ID matching the request line and the response

code.

Example output for adminadmin user listing pods in the defaultdefault namespace:

Configuration

Kube-apiserver provides the following options which are responsible for configuring where and

how audit logs are handled:

audit-log-pathaudit-log-path - enables the audit log pointing to a file where the requests are being

logged to, ‘-‘ means standard out.

audit-log-maxageaudit-log-maxage - specifies maximum number of days to retain old audit log files

based on the timestamp encoded in their filename.

audit-log-maxbackupaudit-log-maxbackup - specifies maximum number of old audit log files to retain.

audit-log-maxsizeaudit-log-maxsize - specifies maximum size in megabytes of the audit log file before it

gets rotated. Defaults to 100MB.

--feature-gates=AdvancedAuditing=false--feature-gates=AdvancedAuditing=false

2017-03-21T03:57:09.106841886-04:00 AUDIT: id="c939d2a7-1c37-4ef1-b2f7-4ba9b1e43b53" ip="127.0.0.1" method="GET" user="admin" groups="\"system:masters\",\"system:authenticated\"" as="<self>" asgroups="<lookup>" namespace="default" uri="/api/v1/namespaces/default/pods"2017-03-21T03:57:09.106841886-04:00 AUDIT: id="c939d2a7-1c37-4ef1-b2f7-4ba9b1e43b53" ip="127.0.0.1" method="GET" user="admin" groups="\"system:masters\",\"system:authenticated\"" as="<self>" asgroups="<lookup>" namespace="default" uri="/api/v1/namespaces/default/pods"

2017-03-21T03:57:09.108403639-04:00 AUDIT: id="c939d2a7-1c37-4ef1-b2f7-4ba9b1e43b53" response="200"2017-03-21T03:57:09.108403639-04:00 AUDIT: id="c939d2a7-1c37-4ef1-b2f7-4ba9b1e43b53" response="200"

file:///docs/admin/kube-apiserver
file:///docs/admin/kube-apiserver

If an audit log file already exists, Kubernetes appends new audit logs to that file. Otherwise,

Kubernetes creates an audit log file at the location you specified in audit-log-pathaudit-log-path . If the

audit log file exceeds the size you specify in audit-log-maxsizeaudit-log-maxsize , Kubernetes will rename the

current log file by appending the current timestamp on the file name (before the file extension)

and create a new audit log file. Kubernetes may delete old log files when creating a new log file;

you can configure how many files are retained and how old they can be by specifying the

audit-log-maxbackupaudit-log-maxbackup and audit-log-maxageaudit-log-maxage options.

Developing and debugging services
locally

Kubernetes applications usually consist of multiple, separate services, each running in its own

container. Developing and debugging these services on a remote Kubernetes cluster can be

cumbersome, requiring you to get a shell on a running container and running your tools inside

the remote shell.

telepresencetelepresence is a tool to ease the process of developing and debugging services locally,

while proxying the service to a remote Kubernetes cluster. Using telepresencetelepresence allows you to

use custom tools, such as a debugger and IDE, for a local service and provides the service full

access to ConfigMap, secrets, and the services running on the remote cluster.

This document describes using telepresencetelepresence to develop and debug services running on a

remote cluster locally.

Before you begin

Kubernetes cluster is installed

kubectlkubectl is configured to communicate with the cluster

Telepresence is installed

Getting a shell on a remote cluster

Open a terminal and run telepresencetelepresence with no arguments to get a telepresencetelepresence shell. This

shell runs locally, giving you full access to your local filesystem.

The telepresencetelepresence shell can be used in a variety of ways. For example, write a shell script on

Before you begin

Getting a shell on a remote cluster

Developing or debugging an existing service

What’s next

https://kubernetes.io/docs/tasks/debug-application-cluster/get-shell-running-container/
https://www.telepresence.io/reference/install

your laptop, and run it directly from the shell in real time. You can do this on a remote shell as

well, but you might not be able to use your preferred code editor, and the script is deleted when

the container is terminated.

Enter exitexit to quit and close the shell.

Developing or debugging an existing service

When developing an application on Kubernetes, you typically program or debug a single

service. The service might require access to other services for testing and debugging. One

option is to use the continuous deployment pipeline, but even the fastest deployment pipeline

introduces a delay in the program or debug cycle.

Use the --swap-deployment--swap-deployment option to swap an existing deployment with the Telepresence

proxy. Swapping allows you to run a service locally and connect to the remote Kubernetes

cluster. The services in the remote cluster can now access the locally running instance.

To run telepresence with --swap-deployment--swap-deployment , enter:

telepresence --swap-deploymenttelepresence --swap-deployment

$DEPLOYMENT_NAME$DEPLOYMENT_NAME

where $DEPLOYMENT_NAME is the name of your existing deployment.

Running this command spawns a shell. In the shell, start your service. You can then make edits

to the source code locally, save, and see the changes take effect immediately. You can also

run your service in a debugger, or any other local development tool.

What’s next

If you’re interested in a hands-on tutorial, check out this tutorial that walks through locally

developing the Guestbook application on Google Kubernetes Engine.

Telepresence has numerous proxying options, depending on your situation.

For further reading, visit the Telepresence website.

https://cloud.google.com/community/tutorials/developing-services-with-k8s
https://www.telepresence.io/reference/methods
https://www.telepresence.io

Use an HTTP Proxy to Access the
Kubernetes API

This page shows how to use an HTTP proxy to access the Kubernetes API.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

If you do not already have an application running in your cluster, start a Hello world

application by entering this command:

Using kubectl to start a proxy server

This command starts a proxy to the Kubernetes API server:

Before you begin

Using kubectl to start a proxy server

Exploring the Kubernetes API

What’s next

kubectl run node-hello --image=gcr.io/google-samples/node-hello:1.0 --port=8080kubectl run node-hello --image=gcr.io/google-samples/node-hello:1.0 --port=8080

kubectl proxy --port=8080kubectl proxy --port=8080

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Exploring the Kubernetes API

When the proxy server is running, you can explore the API using curlcurl , wgetwget , or a browser.

Get the API versions:

Get a list of pods:

curl http://localhost:8080/api/curl http://localhost:8080/api/

{{

 "kind": "APIVersions", "kind": "APIVersions",

 "versions": ["versions": [

 "v1" "v1"

],],

 "serverAddressByClientCIDRs": ["serverAddressByClientCIDRs": [

 { {

 "clientCIDR": "0.0.0.0/0", "clientCIDR": "0.0.0.0/0",

 "serverAddress": "10.0.2.15:8443" "serverAddress": "10.0.2.15:8443"

 } }

]]

}}

What’s next

Learn more about kubectl proxy.

curl http://localhost:8080/api/v1/namespaces/default/podscurl http://localhost:8080/api/v1/namespaces/default/pods

{{

 "kind": "PodList", "kind": "PodList",

 "apiVersion": "v1", "apiVersion": "v1",

 "metadata": { "metadata": {

 "selfLink": "/api/v1/namespaces/default/pods", "selfLink": "/api/v1/namespaces/default/pods",

 "resourceVersion": "33074" "resourceVersion": "33074"

 }, },

 "items": ["items": [

 { {

 "metadata": { "metadata": {

 "name": "kubernetes-bootcamp-2321272333-ix8pt", "name": "kubernetes-bootcamp-2321272333-ix8pt",

 "generateName": "kubernetes-bootcamp-2321272333-", "generateName": "kubernetes-bootcamp-2321272333-",

 "namespace": "default", "namespace": "default",

 "selfLink": "/api/v1/namespaces/default/pods/kubernetes-bootcamp-2321272333-ix8pt", "selfLink": "/api/v1/namespaces/default/pods/kubernetes-bootcamp-2321272333-ix8pt",

 "uid": "ba21457c-6b1d-11e6-85f7-1ef9f1dab92b", "uid": "ba21457c-6b1d-11e6-85f7-1ef9f1dab92b",

 "resourceVersion": "33003", "resourceVersion": "33003",

 "creationTimestamp": "2016-08-25T23:43:30Z", "creationTimestamp": "2016-08-25T23:43:30Z",

 "labels": { "labels": {

 "pod-template-hash": "2321272333", "pod-template-hash": "2321272333",

 "run": "kubernetes-bootcamp" "run": "kubernetes-bootcamp"

 }, },

}}

file:///docs/reference/generated/kubectl/kubectl-commands#proxy

Extend the Kubernetes API with
CustomResourceDefinitions

This page shows how to install a custom resource into the Kubernetes API by creating a

CustomResourceDefinition.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Make sure your Kubernetes cluster has a master version of 1.7.0 or higher.

Read about custom resources.

Create a CustomResourceDefinition

Before you begin

Create a CustomResourceDefinition

Create custom objects

Delete a CustomResourceDefinition

Advanced topics

Finalizers

Validation

Subresources

Status subresource

Scale subresource

Categories

What’s next

file:///docs/concepts/api-extension/custom-resources/
file:///docs/reference/generated/kubernetes-api/v1.10/#customresourcedefinition-v1beta1-apiextensions
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/api-extension/custom-resources/

When you create a new CustomResourceDefinition (CRD), the Kubernetes API Server reacts by

creating a new RESTful resource path, either namespaced or cluster-scoped, as specified in

the CRD’s scopescope field. As with existing built-in objects, deleting a namespace deletes all

custom objects in that namespace. CustomResourceDefinitions themselves are non-

namespaced and are available to all namespaces.

For example, if you save the following CustomResourceDefinition to

resourcedefinition.yamlresourcedefinition.yaml :

And create it:

Then a new namespaced RESTful API endpoint is created at:

This endpoint URL can then be used to create and manage custom objects. The kindkind of these

objects will be CronTabCronTab from the spec of the CustomResourceDefinition object you created

apiVersionapiVersion:: apiextensions.k8s.io/v1beta1apiextensions.k8s.io/v1beta1

kindkind:: CustomResourceDefinitionCustomResourceDefinition

metadatametadata::

 # name must match the spec fields below, and be in the form: <plural>.<group># name must match the spec fields below, and be in the form: <plural>.<group>
 namename:: crontabs.stable.example.comcrontabs.stable.example.com

specspec::

 # group name to use for REST API: /apis/<group>/<version># group name to use for REST API: /apis/<group>/<version>
 groupgroup:: stable.example.comstable.example.com

 # version name to use for REST API: /apis/<group>/<version># version name to use for REST API: /apis/<group>/<version>
 versionversion:: v1v1

 # either Namespaced or Cluster# either Namespaced or Cluster
 scopescope:: NamespacedNamespaced

 namesnames::

 # plural name to be used in the URL: /apis/<group>/<version>/<plural># plural name to be used in the URL: /apis/<group>/<version>/<plural>
 pluralplural:: crontabscrontabs

 # singular name to be used as an alias on the CLI and for display# singular name to be used as an alias on the CLI and for display
 singularsingular:: crontabcrontab

 # kind is normally the CamelCased singular type. Your resource manifests use this.# kind is normally the CamelCased singular type. Your resource manifests use this.
 kindkind:: CronTabCronTab

 # shortNames allow shorter string to match your resource on the CLI# shortNames allow shorter string to match your resource on the CLI
 shortNamesshortNames::

 -- ctct

kubectl create kubectl create -f-f resourcedefinition.yaml resourcedefinition.yaml

/apis/stable.example.com/v1/namespaces/*/crontabs/.../apis/stable.example.com/v1/namespaces/*/crontabs/...

above.

Please note that it might take a few seconds for the endpoint to be created. You can watch the

EstablishedEstablished condition of your CustomResourceDefinition to be true or watch the discovery

information of the API server for your resource to show up.

Create custom objects

After the CustomResourceDefinition object has been created, you can create custom objects.

Custom objects can contain custom fields. These fields can contain arbitrary JSON. In the

following example, the cronSpeccronSpec and imageimage custom fields are set in a custom object of kind

CronTabCronTab . The kind CronTabCronTab comes from the spec of the CustomResourceDefinition object

you created above.

If you save the following YAML to my-crontab.yamlmy-crontab.yaml :

and create it:

You can then manage your CronTab objects using kubectl. For example:

Should print a list like this:

Note that resource names are not case-sensitive when using kubectl, and you can use either

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 namename:: my-new-cron-objectmy-new-cron-object

specspec::

 cronSpeccronSpec:: ""** ** ** ** */5"*/5"

 imageimage:: my-awesome-cron-imagemy-awesome-cron-image

kubectl create kubectl create -f-f my-crontab.yaml my-crontab.yaml

kubectl get crontabkubectl get crontab

NAME KINDNAME KIND

my-new-cron-object CronTab.v1.stable.example.commy-new-cron-object CronTab.v1.stable.example.com

the singular or plural forms defined in the CRD, as well as any short names.

You can also view the raw YAML data:

You should see that it contains the custom cronSpeccronSpec and imageimage fields from the yaml you

used to create it:

Delete a CustomResourceDefinition

When you delete a CustomResourceDefinition, the server will uninstall the RESTful API

endpoint and delete all custom objects stored in it.

kubectl get ct kubectl get ct -o-o yaml yaml

apiVersion: v1apiVersion: v1

items:items:

- apiVersion: stable.example.com/v1- apiVersion: stable.example.com/v1

 kind: CronTab kind: CronTab

 metadata: metadata:

 clusterName: "" clusterName: ""

 creationTimestamp: 2017-05-31T12:56:35Z creationTimestamp: 2017-05-31T12:56:35Z

 deletionGracePeriodSeconds: null deletionGracePeriodSeconds: null

 deletionTimestamp: null deletionTimestamp: null

 name: my-new-cron-object name: my-new-cron-object

 namespace: default namespace: default

 resourceVersion: "285" resourceVersion: "285"

 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object

 uid: 9423255b-4600-11e7-af6a-28d2447dc82b uid: 9423255b-4600-11e7-af6a-28d2447dc82b

 spec: spec:

 cronSpec: '* * * * */5' cronSpec: '* * * * */5'

 image: my-awesome-cron-image image: my-awesome-cron-image

kind: Listkind: List

metadata:metadata:

 resourceVersion: "" resourceVersion: ""

 selfLink: "" selfLink: ""

kubectl delete kubectl delete -f-f resourcedefinition.yaml resourcedefinition.yaml

kubectl get crontabskubectl get crontabs

Error from server (NotFound): Unable to list "crontabs": the server could not find the requested resource (get crontabs.stable.example.com)Error from server (NotFound): Unable to list "crontabs": the server could not find the requested resource (get crontabs.stable.example.com)

If you later recreate the same CustomResourceDefinition, it will start out empty.

Advanced topics

Finalizers

Finalizers allow controllers to implement asynchronous pre-delete hooks. Custom objects

support finalizers just like built-in objects.

You can add a finalizer to a custom object like this:

Finalizers are arbitrary string values, that when present ensure that a hard delete of a resource

is not possible while they exist.

The first delete request on an object with finalizers merely sets a value for the

metadata.deletionTimestampmetadata.deletionTimestamp field instead of deleting it. Once this value is set, entries in the

finalizerfinalizer list can only be removed.

This triggers controllers watching the object to execute any finalizers they handle. This will be

represented via polling update requests for that object, until all finalizers have been removed

and the resource is deleted.

The time period of polling update can be controlled by

metadata.deletionGracePeriodSecondsmetadata.deletionGracePeriodSeconds .

It is the responsibility of each controller to removes its finalizer from the list.

Kubernetes will only finally delete the object if the list of finalizers is empty, meaning all

finalizers are done.

Validation

Validation of custom objects is possible via OpenAPI v3 schema. Additionally, the following

restrictions are applied to the schema:

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 finalizersfinalizers::

 -- finalizer.stable.example.comfinalizer.stable.example.com

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#schemaObject

The fields defaultdefault , nullablenullable , discriminatordiscriminator , readOnlyreadOnly , writeOnlywriteOnly , xmlxml ,

deprecateddeprecated and refref cannot be set.

The field uniqueItemsuniqueItems cannot be set to true.

The field additionalPropertiesadditionalProperties cannot be set to false.

This feature is beta in v1.9. You can disable this feature using the

CustomResourceValidationCustomResourceValidation feature gate on the kube-apiserver:

The schema is defined in the CustomResourceDefinition. In the following example, the

CustomResourceDefinition applies the following validations on the custom object:

spec.cronSpecspec.cronSpec must be a string and must be of the form described by the regular

expression.

spec.replicasspec.replicas must be an integer and must have a minimum value of 1 and a maximum

value of 10.

Save the CustomResourceDefinition to resourcedefinition.yamlresourcedefinition.yaml :

--feature-gates=CustomResourceValidation=false--feature-gates=CustomResourceValidation=false

file:///docs/admin/kube-apiserver

And create it:

A request to create a custom object of kind CronTabCronTab will be rejected if there are invalid values

in its fields. In the following example, the custom object contains fields with invalid values:

spec.cronSpecspec.cronSpec does not match the regular expression.

spec.replicasspec.replicas is greater than 10.

If you save the following YAML to my-crontab.yamlmy-crontab.yaml :

apiVersionapiVersion:: apiextensions.k8s.io/v1beta1apiextensions.k8s.io/v1beta1

kindkind:: CustomResourceDefinitionCustomResourceDefinition

metadatametadata::

 namename:: crontabs.stable.example.comcrontabs.stable.example.com

specspec::

 groupgroup:: stable.example.comstable.example.com

 versionversion:: v1v1

 scopescope:: NamespacedNamespaced

 namesnames::

 pluralplural:: crontabscrontabs

 singularsingular:: crontabcrontab

 kindkind:: CronTabCronTab

 shortNamesshortNames::

 -- ctct

 validationvalidation::

 # openAPIV3Schema is the schema for validating custom objects.# openAPIV3Schema is the schema for validating custom objects.
 openAPIV3SchemaopenAPIV3Schema::

 propertiesproperties::

 specspec::

 propertiesproperties::

 cronSpeccronSpec::

 typetype:: stringstring

 patternpattern:: ''^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$'^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$'

 replicasreplicas::

 typetype:: integerinteger

 minimumminimum:: 11

 maximummaximum:: 1010

kubectl create kubectl create -f-f resourcedefinition.yaml resourcedefinition.yaml

and create it:

you will get an error:

If the fields contain valid values, the object creation request is accepted.

Save the following YAML to my-crontab.yamlmy-crontab.yaml :

And create it:

Subresources

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 namename:: my-new-cron-objectmy-new-cron-object

specspec::

 cronSpeccronSpec:: ""** ** ** *"*"

 imageimage:: my-awesome-cron-imagemy-awesome-cron-image

 replicasreplicas:: 1515

kubectl create kubectl create -f-f my-crontab.yaml my-crontab.yaml

The CronTab "my-new-cron-object" is invalid: []: Invalid value: map[string]interface {}{"apiVersion":"stable.example.com/v1", "kind":"CronTab", "metadata":map[string]interface {}{"name":"my-new-cron-object", "namespace":"default", "deletionTimestamp":interface {}(nil), "deletionGracePeriodSeconds":(*int64)(nil), "creationTimestamp":"2017-09-05T05:20:07Z", "uid":"e14d79e7-91f9-11e7-a598-f0761cb232d1", "selfLink":"", "clusterName":""}, "spec":map[string]interface {}{"cronSpec":"* * * *", "image":"my-awesome-cron-image", "replicas":15}}:The CronTab "my-new-cron-object" is invalid: []: Invalid value: map[string]interface {}{"apiVersion":"stable.example.com/v1", "kind":"CronTab", "metadata":map[string]interface {}{"name":"my-new-cron-object", "namespace":"default", "deletionTimestamp":interface {}(nil), "deletionGracePeriodSeconds":(*int64)(nil), "creationTimestamp":"2017-09-05T05:20:07Z", "uid":"e14d79e7-91f9-11e7-a598-f0761cb232d1", "selfLink":"", "clusterName":""}, "spec":map[string]interface {}{"cronSpec":"* * * *", "image":"my-awesome-cron-image", "replicas":15}}:

validation failure list:validation failure list:

spec.cronSpec in body should match '^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$spec.cronSpec in body should match '^(\d+|*)(/\d+)?(\s+(\d+|*)(/\d+)?){4}$''

spec.replicas in body should be less than or equal to 10spec.replicas in body should be less than or equal to 10

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 namename:: my-new-cron-objectmy-new-cron-object

specspec::

 cronSpeccronSpec:: ""** ** ** ** */5"*/5"

 imageimage:: my-awesome-cron-imagemy-awesome-cron-image

 replicasreplicas:: 55

kubectl create kubectl create -f-f my-crontab.yaml my-crontab.yaml

crontab crontab "my-new-cron-object""my-new-cron-object" created created

Custom resources support /status/status and /scale/scale subresources. This feature is alpha in v1.10

and may change in backward incompatible ways.

Enable this feature using the CustomResourceSubresourcesCustomResourceSubresources feature gate on the kube-

apiserver:

When the CustomResourceSubresourcesCustomResourceSubresources feature gate is enabled, only the propertiesproperties

construct is allowed in the root schema for custom resource validation.

The status and scale subresources can be optionally enabled by defining them in the

CustomResourceDefinition.

Status subresource

When the status subresource is enabled, the /status/status subresource for the custom resource is

exposed.

The status and the spec stanzas are represented by the .status.status and .spec.spec JSONPaths

respectively inside of a custom resource.

PUTPUT requests to the /status/status subresource take a custom resource object and ignore

changes to anything except the status stanza.

PUTPUT requests to the /status/status subresource only validate the status stanza of the custom

resource.

PUTPUT / POSTPOST / PATCHPATCH requests to the custom resource ignore changes to the status stanza.

Any changes to the spec stanza increments the value at .metadata.generation.metadata.generation .

Scale subresource

When the scale subresource is enabled, the /scale/scale subresource for the custom resource is

exposed. The autoscaling/v1.Scaleautoscaling/v1.Scale object is sent as the payload for /scale/scale .

To enable the scale subresource, the following values are defined in the

CustomResourceDefinition.

--feature-gates=CustomResourceSubresources=true--feature-gates=CustomResourceSubresources=true

file:///docs/admin/kube-apiserver

SpecReplicasPathSpecReplicasPath defines the JSONPath inside of a custom resource that corresponds

to Scale.Spec.ReplicasScale.Spec.Replicas .

It is a required value.

Only JSONPaths under .spec.spec and with the dot notation are allowed.

If there is no value under the SpecReplicasPathSpecReplicasPath in the custom resource, the /scale/scale

subresource will return an error on GET.

StatusReplicasPathStatusReplicasPath defines the JSONPath inside of a custom resource that

corresponds to Scale.Status.ReplicasScale.Status.Replicas .

It is a required value.

Only JSONPaths under .status.status and with the dotation are allowed.

If there is no value under the StatusReplicasPathStatusReplicasPath in the custom resource, the

status replica value in the /scale/scale subresource will default to 0.

LabelSelectorPathLabelSelectorPath defines the JSONPath inside of a custom resource that corresponds

to Scale.Status.SelectorScale.Status.Selector .

It is an optional value.

It must be set to work with HPA.

Only JSONPaths under .status.status and with the dotation are allowed.

If there is no value under the LabelSelectorPathLabelSelectorPath in the custom resource, the status

selector value in the /scale/scale subresource will default to the empty string.

In the following example, both status and scale subresources are enabled.

Save the CustomResourceDefinition to resourcedefinition.yamlresourcedefinition.yaml :

And create it:

After the CustomResourceDefinition object has been created, you can create custom objects.

If you save the following YAML to my-crontab.yamlmy-crontab.yaml :

and create it:

apiVersionapiVersion:: apiextensions.k8s.io/v1beta1apiextensions.k8s.io/v1beta1

kindkind:: CustomResourceDefinitionCustomResourceDefinition

metadatametadata::

 namename:: crontabs.stable.example.comcrontabs.stable.example.com

specspec::

 groupgroup:: stable.example.comstable.example.com

 versionversion:: v1v1

 scopescope:: NamespacedNamespaced

 namesnames::

 pluralplural:: crontabscrontabs

 singularsingular:: crontabcrontab

 kindkind:: CronTabCronTab

 shortNamesshortNames::

 -- ctct

 # subresources describes the subresources for custom resources.# subresources describes the subresources for custom resources.
 subresourcessubresources::

 # status enables the status subresource.# status enables the status subresource.
 statusstatus:: {}{}

 # scale enables the scale subresource.# scale enables the scale subresource.
 scalescale::

 # specReplicasPath defines the JSONPath inside of a custom resource that corresponds to Scale.Spec.Replicas.# specReplicasPath defines the JSONPath inside of a custom resource that corresponds to Scale.Spec.Replicas.
 specReplicasPathspecReplicasPath:: .spec.replicas.spec.replicas

 # statusReplicasPath defines the JSONPath inside of a custom resource that corresponds to Scale.Status.Replicas.# statusReplicasPath defines the JSONPath inside of a custom resource that corresponds to Scale.Status.Replicas.
 statusReplicasPathstatusReplicasPath:: .status.replicas.status.replicas

 # labelSelectorPath defines the JSONPath inside of a custom resource that corresponds to Scale.Status.Selector.# labelSelectorPath defines the JSONPath inside of a custom resource that corresponds to Scale.Status.Selector.
 labelSelectorPathlabelSelectorPath:: .status.labelSelector.status.labelSelector

kubectl create kubectl create -f-f resourcedefinition.yaml resourcedefinition.yaml

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 namename:: my-new-cron-objectmy-new-cron-object

specspec::

 cronSpeccronSpec:: ""** ** ** ** */5"*/5"

 imageimage:: my-awesome-cron-imagemy-awesome-cron-image

 replicasreplicas:: 33

Then new namespaced RESTful API endpoints are created at:

and

A custom resource can be scaled using the kubectl scalekubectl scale command. For example, the

following command sets .spec.replicas.spec.replicas of the custom resource created above to 5:

Categories

Categories is a list of grouped resources the custom resource belongs to (eg. allall). You can

use

kubectl get <category-kubectl get <category-

name>name> to list the resources belonging to the category. This

feature is beta and available for custom resources from v1.10.

The following example adds allall in the list of categories in the CustomResourceDefinition and

illustrates how to output the custom resource using

kubectl getkubectl get

allall .

Save the following CustomResourceDefinition to resourcedefinition.yamlresourcedefinition.yaml :

kubectl create kubectl create -f-f my-crontab.yaml my-crontab.yaml

/apis/stable.example.com/v1/namespaces/*/crontabs/status/apis/stable.example.com/v1/namespaces/*/crontabs/status

/apis/stable.example.com/v1/namespaces/*/crontabs/scale/apis/stable.example.com/v1/namespaces/*/crontabs/scale

kubectl scale kubectl scale --replicas--replicas==5 crontabs/my-new-cron-object5 crontabs/my-new-cron-object

crontabs crontabs "my-new-cron-object""my-new-cron-object" scaled scaled

kubectl get crontabs my-new-cron-object kubectl get crontabs my-new-cron-object -o-o jsonpathjsonpath=='{.spec.replicas}''{.spec.replicas}'

55

And create it:

After the CustomResourceDefinition object has been created, you can create custom objects.

Save the following YAML to my-crontab.yamlmy-crontab.yaml :

and create it:

You can specify the category using

kubectlkubectl

getget :

apiVersionapiVersion:: apiextensions.k8s.io/v1beta1apiextensions.k8s.io/v1beta1

kindkind:: CustomResourceDefinitionCustomResourceDefinition

metadatametadata::

 namename:: crontabs.stable.example.comcrontabs.stable.example.com

specspec::

 groupgroup:: stable.example.comstable.example.com

 versionversion:: v1v1

 scopescope:: NamespacedNamespaced

 namesnames::

 pluralplural:: crontabscrontabs

 singularsingular:: crontabcrontab

 kindkind:: CronTabCronTab

 shortNamesshortNames::

 -- ctct

 # categories is a list of grouped resources the custom resource belongs to.# categories is a list of grouped resources the custom resource belongs to.
 categoriescategories::

 -- allall

kubectl create kubectl create -f-f resourcedefinition.yaml resourcedefinition.yaml

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 namename:: my-new-cron-objectmy-new-cron-object

specspec::

 cronSpeccronSpec:: ""** ** ** ** */5"*/5"

 imageimage:: my-awesome-cron-imagemy-awesome-cron-image

kubectl create kubectl create -f-f my-crontab.yaml my-crontab.yaml

and it will include the custom resources of kind CronTabCronTab :

What’s next

Learn how to Migrate a ThirdPartyResource to CustomResourceDefinition.

See CustomResourceDefinition.

kubectl get allkubectl get all

NAME AGENAME AGE

crontabs/my-new-cron-object 3scrontabs/my-new-cron-object 3s

file:///docs/tasks/access-kubernetes-api/migrate-third-party-resource/
file:///docs/reference/generated/kubernetes-api/v1.10/#customresourcedefinition-v1beta1-apiextensions

Extend the Kubernetes API with
ThirdPartyResources

DEPRECATION NOTICE: As of

KubernetesKubernetes

1.71.7 , this has been deprecated

What is ThirdPartyResource?

ThirdPartyResource is deprecated as of Kubernetes 1.7 and has been removed in version 1.8

in accordance with the deprecation policy for beta features.

To avoid losing data stored in ThirdPartyResources, you must migrate to

CustomResourceDefinition before upgrading to Kubernetes 1.8 or higher.

Kubernetes comes with many built-in API objects. However, there are often times when you

might need to extend Kubernetes with your own API objects in order to do custom automation.

ThirdPartyResourceThirdPartyResource objects are a way to extend the Kubernetes API with a new API object

type. The new API object type will be given an API endpoint URL and support CRUD operations,

and watch API. You can then create custom objects using this API endpoint. You can think of

ThirdPartyResourcesThirdPartyResources as being much like the schema for a database table. Once you have

created the table, you can then start storing rows in the table. Once created,

ThirdPartyResourcesThirdPartyResources can act as the data model behind custom controllers or automation

programs.

Structure of a ThirdPartyResource

Each ThirdPartyResourceThirdPartyResource has the following:

What is ThirdPartyResource?

Structure of a ThirdPartyResource

Creating a ThirdPartyResource

Creating Custom Objects

What’s next

file:///docs/reference/deprecation-policy
file:///docs/tasks/access-kubernetes-api/migrate-third-party-resource/

metadatametadata - Standard Kubernetes object metadata.

kindkind - The kind of the resources described by this third party resource.

descriptiondescription - A free text description of the resource.

versionsversions - A list of the versions of the resource.

The kindkind for a ThirdPartyResourceThirdPartyResource takes the form

<kind name>.<kind name>.

<domain><domain> . You are

expected to provide a unique kind and domain name in order to avoid conflicts with other

ThirdPartyResourceThirdPartyResource objects. Kind names will be converted to CamelCase when creating

instances of the ThirdPartyResourceThirdPartyResource . Hyphens in the kindkind are assumed to be word

breaks. For instance the kind camel-casecamel-case would be converted to CamelCaseCamelCase but camelcasecamelcase

would be converted to CamelcaseCamelcase .

Other fields on the ThirdPartyResourceThirdPartyResource are treated as custom data fields. These fields can

hold arbitrary JSON data and have any structure.

You can view the full documentation about ThirdPartyResourcesThirdPartyResources using the explainexplain

command in kubectl.

Creating a ThirdPartyResource

When you create a new ThirdPartyResourceThirdPartyResource , the Kubernetes API Server reacts by creating a

new, namespaced RESTful resource path. For now, non-namespaced objects are not

supported. As with existing built-in objects, deleting a namespace deletes all custom objects in

that namespace. ThirdPartyResourcesThirdPartyResources themselves are non-namespaced and are available

to all namespaces.

For example, if you save the following ThirdPartyResourceThirdPartyResource to resource.yamlresource.yaml :

$ kubectl explain thirdpartyresource$ kubectl explain thirdpartyresource

And create it:

Then a new RESTful API endpoint is created at:

/apis/stable.example.com/v1/namespaces/<namespace>/crontabs/.../apis/stable.example.com/v1/namespaces/<namespace>/crontabs/...

This endpoint URL can then be used to create and manage custom objects. The kindkind of these

objects will be CronTabCronTab following the camel case rules applied to the metadata.namemetadata.name of this

ThirdPartyResourceThirdPartyResource (cron-tab.stable.example.comcron-tab.stable.example.com)

Creating Custom Objects

After the ThirdPartyResourceThirdPartyResource object has been created you can create custom objects.

Custom objects can contain custom fields. These fields can contain arbitrary JSON. In the

following example, a cronSpeccronSpec and imageimage custom fields are set to the custom object of kind

CronTabCronTab . The kind CronTabCronTab is derived from the metadata.namemetadata.name of the

ThirdPartyResourceThirdPartyResource object we created above.

If you save the following YAML to my-crontab.yamlmy-crontab.yaml :

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: ThirdPartyResourceThirdPartyResource

metadatametadata::

 namename:: cron-tab.stable.example.comcron-tab.stable.example.com

descriptiondescription:: ""AA specificationspecification ofof aa PodPod toto runrun onon aa croncron stylestyle schedule"schedule"

versionsversions::

-- namename:: v1v1

$ $ kubectl create kubectl create -f-f resource.yaml resource.yaml

thirdpartyresource thirdpartyresource "cron-tab.stable.example.com""cron-tab.stable.example.com" created created

apiVersionapiVersion:: ""stable.example.com/v1"stable.example.com/v1"

kindkind:: CronTabCronTab

metadatametadata::

 namename:: my-new-cron-objectmy-new-cron-object

cronSpeccronSpec:: ""** ** ** ** /5"/5"

imageimage:: my-awesome-cron-imagemy-awesome-cron-image

and create it:

You can then manage our CronTabCronTab objects using kubectl. Note that resource names are not

case-sensitive when using kubectl:

You can also view the raw JSON data. Here you can see that it contains the custom cronSpeccronSpec

and imageimage fields from the yaml you used to create it:

What’s next

$ $ kubectl create kubectl create -f-f my-crontab.yaml my-crontab.yaml

crontab crontab "my-new-cron-object""my-new-cron-object" created created

$ $ kubectl get crontabkubectl get crontab

NAME KINDNAME KIND

my-new-cron-object CronTab.v1.stable.example.commy-new-cron-object CronTab.v1.stable.example.com

$ kubectl get crontab -o json$ kubectl get crontab -o json

{{

 ""apiVersion"apiVersion":: ""v1"v1",,

 ""items"items":: [[

 {{

 ""apiVersion"apiVersion":: ""stable.example.com/v1"stable.example.com/v1",,

 ""cronSpec"cronSpec":: ""** ** ** ** /5"/5",,

 ""image"image":: ""my-awesome-cron-image"my-awesome-cron-image",,

 ""kind"kind":: ""CronTab"CronTab",,

 ""metadata"metadata":: {{

 ""creationTimestamp"creationTimestamp":: ""2016-09-29T04:59:00Z"2016-09-29T04:59:00Z",,

 ""name"name":: ""my-new-cron-object"my-new-cron-object",,

 ""namespace"namespace":: ""default"default",,

 ""resourceVersion"resourceVersion":: ""12601503"12601503",,

 ""selfLink"selfLink":: ""/apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object"/apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object"

 ""uid"uid":: ""6f65e7a3-8601-11e6-a23e-42010af0000c"6f65e7a3-8601-11e6-a23e-42010af0000c"

 }}

 }}

],],

 ""kind"kind":: ""List"List",,

 ""metadata"metadata":: {},{},

 ""resourceVersion"resourceVersion":: """",,

 ""selfLink"selfLink":: """"

}}

Migrate a ThirdPartyResource to a CustomResourceDefinition

Extend the Kubernetes API with CustomResourceDefinitions

ThirdPartyResource

file:///docs/tasks/access-kubernetes-api/migrate-third-party-resource/
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
https://v1-7.docs.kubernetes.io/docs/reference/v1.7/#thirdpartyresource-v1beta1-extensions

Migrate a ThirdPartyResource to
CustomResourceDefinition

This page shows how to migrate data stored in a ThirdPartyResource (TPR) to a

CustomResourceDefinition (CRD).

Kubernetes does not automatically migrate existing TPRs. This is due to API changes

introduced as part of graduating to beta under a new name and API group. Instead, both TPR

and CRD are available and operate independently in Kubernetes 1.7. Users must migrate each

TPR one by one to preserve their data before upgrading to Kubernetes 1.8.

The simplest way to migrate is to stop all clients that use a given TPR, then delete the TPR and

start from scratch with a CRD. This page describes an optional process that eases the

transition by migrating existing TPR data for you on a best-effort basis.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Make sure your Kubernetes cluster has a master version of exactly 1.7.x (any patch

release), as this is the only version that supports both TPR and CRD.

If you use a TPR-based custom controller, check with the author of the controller first.

Some or all of these steps may be unnecessary if the custom controller handles the

Before you begin

Migrate TPR data

What’s next

file:///docs/reference/generated/kubernetes-api/v1.10/#customresourcedefinition-v1beta1-apiextensions
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/thirdpartyresources.md
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

migration for you.

Be familiar with the concept of custom resources, which were known as third-party

resources until Kubernetes 1.7.

Be familiar with CustomResourceDefinitions, which are a simple way to implement custom

resources.

Before performing a migration on real data, conduct a dry run by going through these

steps in a test cluster.

Migrate TPR data

1. Rewrite the TPR definition

Clients that access the REST API for your custom resource should not need any changes.

However, you will need to rewrite your TPR definition as a CRD.

Make sure you specify values for the CRD fields that match what the server used to fill in

for you with TPR.

For example, if your ThirdPartyResource looks like this:

A matching CustomResourceDefinition could look like this:

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: ThirdPartyResourceThirdPartyResource

metadatametadata::

 namename:: cron-tab.stable.example.comcron-tab.stable.example.com

descriptiondescription:: ""AA specificationspecification ofof aa PodPod toto runrun onon aa croncron stylestyle schedule"schedule"

versionsversions::

-- namename:: v1v1

file:///docs/concepts/api-extension/custom-resources/
file:///docs/concepts/api-extension/custom-resources/#customresourcedefinitions

2. Install the CustomResourceDefinition

While the source TPR is still active, install the matching CRD with

kubectlkubectl

createcreate .

Existing TPR data remains accessible because TPRs take precedence over CRDs when

both try to serve the same resource.

After you create the CRD, make sure the Established condition goes to True. You can

check it with a command like this:

The output should look like this:

3. Stop all clients that use the TPR

The API server attempts to prevent TPR data for the resource from changing while it

copies objects to the CRD, but it can’t guarantee consistency in all cases, such as with

multiple masters. Stopping clients, such as TPR-based custom controllers, helps to avoid

apiVersionapiVersion:: apiextensions.k8s.io/v1beta1apiextensions.k8s.io/v1beta1

kindkind:: CustomResourceDefinitionCustomResourceDefinition

metadatametadata::

 namename:: crontabs.stable.example.comcrontabs.stable.example.com

specspec::

 scopescope:: NamespacedNamespaced

 groupgroup:: stable.example.comstable.example.com

 versionversion:: v1v1

 namesnames::

 kindkind:: CronTabCronTab

 pluralplural:: crontabscrontabs

 singularsingular:: crontabcrontab

kubectl get crd kubectl get crd -o-o 'custom-columns=NAME:{.metadata.name},ESTABLISHED:{.status.conditions[?(@.type=="Established")].status}''custom-columns=NAME:{.metadata.name},ESTABLISHED:{.status.conditions[?(@.type=="Established")].status}'

NAME ESTABLISHEDNAME ESTABLISHED

crontabs.stable.example.com Truecrontabs.stable.example.com True

file:///docs/admin/high-availability/

inconsistencies in the copied data.

In addition, clients that watch TPR data do not receive any more events once the

migration begins. You must restart them after the migration completes so they start

watching CRD data instead.

4. Back up TPR data

In case the data migration fails, save a copy of existing data for the resource:

You should also save a copy of the TPR definition if you don’t have one already:

5. Delete the TPR definition

Normally, when you delete a TPR definition, the API server tries to clean up any objects

stored in that resource. Because a matching CRD exists, the server copies objects to the

CRD instead of deleting them.

6. Verify the new CRD data

It can take up to 10 seconds for the TPR controller to notice when you delete the TPR

definition and to initiate the migration. The TPR data remains accessible during this time.

Once the migration completes, the resource begins serving through the CRD. Check that

all your objects were correctly copied:

If the copy failed, you can quickly revert to the set of objects that existed just before the

migration by recreating the TPR definition:

kubectl get crontabs kubectl get crontabs --all-namespaces--all-namespaces -o-o yaml yaml >> crontabs.yaml crontabs.yaml

kubectl get thirdpartyresource cron-tab.stable.example.com kubectl get thirdpartyresource cron-tab.stable.example.com -o-o yaml yaml --export--export

kubectl delete thirdpartyresource cron-tab.stable.example.comkubectl delete thirdpartyresource cron-tab.stable.example.com

kubectl get crontabs kubectl get crontabs --all-namespaces--all-namespaces -o-o yaml yaml

7. Restart clients

After verifying the CRD data, restart any clients you stopped before the migration, such as

custom controllers and other watchers. These clients now access CRD data when they

make requests on the same API endpoints that the TPR previously served.

What’s next

Learn more about custom resources.

Learn more about using CustomResourceDefinitions.

See CustomResourceDefinition.

kubectl create kubectl create -f-f tpr.yaml tpr.yaml

file:///docs/concepts/api-extension/custom-resources/
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
file:///docs/reference/generated/kubernetes-api/v1.10/#customresourcedefinition-v1beta1-apiextensions

Configure the aggregation layer

Configuring the aggregation layer allows the Kubernetes apiserver to be extended with

additional APIs, which are not part of the core Kubernetes APIs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Note: There are a few setup requirements for getting the aggregation layer working in your

environment to support mutual TLS auth between the proxy and extension apiservers.

Kubernetes and the kube-apiserver have multiple CAs, so make sure that the proxy is signed by

the aggregation layer CA and not by something else, like the master CA.

Enable apiserver flags

Enable the aggregation layer via the following kube-apiserver flags. They may have already

been taken care of by your provider.

Before you begin

Enable apiserver flags

What’s next

file:///docs/concepts/api-extension/apiserver-aggregation/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

If you are not running kube-proxy on a host running the API server, then you must make sure

that the system is enabled with the following apiserver flag:

What’s next

Setup an extension api-server to work with the aggregation layer.

For a high level overview, see Extending the Kubernetes API with the aggregation layer.

Learn how to Extend the Kubernetes API Using Custom Resource Definitions.

--requestheader-client-ca-file=<path to aggregator CA cert>--requestheader-client-ca-file=<path to aggregator CA cert>

--requestheader-allowed-names=aggregator--requestheader-allowed-names=aggregator

--requestheader-extra-headers-prefix=X-Remote-Extra---requestheader-extra-headers-prefix=X-Remote-Extra-

--requestheader-group-headers=X-Remote-Group--requestheader-group-headers=X-Remote-Group

--requestheader-username-headers=X-Remote-User--requestheader-username-headers=X-Remote-User

--proxy-client-cert-file=<path to aggregator proxy cert>--proxy-client-cert-file=<path to aggregator proxy cert>

--proxy-client-key-file=<path to aggregator proxy key>--proxy-client-key-file=<path to aggregator proxy key>

--enable-aggregator-routing=true--enable-aggregator-routing=true

file:///docs/tasks/access-kubernetes-api/setup-extension-api-server/
file:///docs/concepts/api-extension/apiserver-aggregation/
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

Setup an extension API server

Setting up an extension API server to work the aggregation layer allows the Kubernetes

apiserver to be extended with additional APIs, which are not part of the core Kubernetes APIs.

Before you begin

You need to have a Kubernetes cluster running.

You must configure the aggregation layer and enable the apiserver flags.

Setup an extension api-server to work with the
aggregation layer

The following steps describe how to set up an extension-apiserver at a high level. These steps

apply regardless if you’re using YAML configs or using APIs. An attempt is made to specifically

identify any differences between the two. For a concrete example of how they can be

implemented using YAML configs, you can look at the sample-apiserver in the Kubernetes

repo.

Alternatively, you can use an existing 3rd party solution, such as apiserver-builder, which

should generate a skeleton and automate all of the following steps for you.

1. Make sure the APIService API is enabled (check --runtime-config--runtime-config). It should be on by

default, unless it’s been deliberately turned off in your cluster.

2. You may need to make an RBAC rule allowing you to add APIService objects, or get your

cluster administrator to make one. (Since API extensions affect the entire cluster, it is not

recommended to do testing/development/debug of an API extension in a live cluster.)

3. Create the Kubernetes namespace you want to run your extension api-service in.

Before you begin

Setup an extension api-server to work with the aggregation layer

What’s next

file:///docs/tasks/access-kubernetes-api/configure-aggregation-layer/
https://github.com/kubernetes/sample-apiserver/blob/master/README.md
https://github.com/Kubernetes-incubator/apiserver-builder/blob/master/README.md

4. Create/get a CA cert to be used to sign the server cert the extension api-server uses for

HTTPS.

5. Create a server cert/key for the api-server to use for HTTPS. This cert should be signed by

the above CA. It should also have a CN of the Kube DNS name. This is derived from the

Kubernetes service and be of the form ..svc

6. Create a Kubernetes secret with the server cert/key in your namespace.

7. Create a Kubernetes deployment for the extension api-server and make sure you are

loading the secret as a volume. It should contain a reference to a working image of your

extension api-server. The deployment should also be in your namespace.

8. Make sure that your extension-apiserver loads those certs from that volume and that they

are used in the HTTPS handshake.

9. Create a Kubernetes service account in your namespace.

10. Create a Kubernetes cluster role for the operations you want to allow on your resources.

11. Create a Kubernetes cluster role binding from the service account in your namespace to

the cluster role you just created.

12. Create a Kubernetes cluster role binding from the service account in your namespace to

the system:auth-delegatorsystem:auth-delegator cluster role to delegate auth decisions to the Kubernetes

core API server.

13. Create a Kubernetes role binding from the service account in your namespace to the

extension-apiserver-authentication-readerextension-apiserver-authentication-reader role. This allows your extension api-

server to access the extension-apiserver-authenticationextension-apiserver-authentication configmap.

14. Create a Kubernetes apiservice. The CA cert above should be base64 encoded, stripped of

new lines and used as the spec.caBundle in the apiservice. This should not be

namespaced. If using the kube-aggregator API, only pass in the PEM encoded CA bundle

because the base 64 encoding is done for you.

15. Use kubectl to get your resource. It should return “No resources found.” Which means that

everything worked but you currently have no objects of that resource type created yet.

What’s next

https://github.com/kubernetes/kube-aggregator/

If you haven’t already, configure the aggregation layer and enable the apiserver flags.

For a high level overview, see Extending the Kubernetes API with the aggregation layer.

Learn how to Extend the Kubernetes API Using Custom Resource Definitions.

file:///docs/tasks/access-kubernetes-api/configure-aggregation-layer/
file:///docs/concepts/api-extension/apiserver-aggregation
file:///docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/

Install Service Catalog using Helm

Service Catalog is an extension API that enables applications running in Kubernetes clusters to

easily use external managed software offerings, such as a datastore service offered by a cloud

provider.

It provides a way to list, provision, and bind with external from

 without needing detailed knowledge about how those services are created or

managed.

Use Helm to install Service Catalog on your Kubernetes cluster. Up to date information on this

process can be found at the kubernetes-incubator/service-catalog repo.

Before you begin

Understand the key concepts of Service Catalog.

Service Catalog requires a Kubernetes cluster running version 1.7 or higher.

You must have a Kubernetes cluster with cluster DNS enabled.

If you are using a cloud-based Kubernetes cluster or , you may already have

cluster DNS enabled.

If you are using hack/local-up-cluster.shhack/local-up-cluster.sh , ensure that the

KUBE_ENABLE_CLUSTER_DNSKUBE_ENABLE_CLUSTER_DNS environment variable is set, then run the install script.

Install and setup kubectl v1.7 or higher. Make sure it is configured to connect to the

Kubernetes cluster.

Install Helm v2.7.0 or newer.

Follow the Helm install instructions.

Managed Services

Service Brokers

Before you begin

Add the service-catalog Helm repository

Enable RBAC

Install Service Catalog in your Kubernetes cluster

What’s next

Minikube

file:///docs/reference/glossary/?all=true#term-managed-service
file:///docs/reference/glossary/?all=true#term-service-broker
https://helm.sh/
https://github.com/kubernetes-incubator/service-catalog/blob/master/docs/install.md
file:///docs/concepts/service-catalog/
file:///docs/getting-started-guides/minikube/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
http://helm.sh/
https://github.com/kubernetes/helm/blob/master/docs/install.md

If you already have an appropriate version of Helm installed, execute helm inithelm init to

install Tiller, the server-side component of Helm.

Add the service-catalog Helm repository

Once Helm is installed, add the service-catalog Helm repository to your local machine by

executing the following command:

Check to make sure that it installed successfully by executing the following command:

If the installation was successful, the command should output the following:

Enable RBAC

Your Kubernetes cluster must have RBAC enabled, which requires your Tiller Pod(s) to have

cluster-admincluster-admin access.

If you are using Minikube, run the minikube startminikube start command with the following flag:

If you are using hack/local-up-cluster.shhack/local-up-cluster.sh , set the AUTHORIZATION_MODEAUTHORIZATION_MODE environment

variable with the following values:

By default, helm inithelm init installs the Tiller Pod into the kube-systemkube-system namespace, with Tiller

helm repo add svc-cat https://svc-catalog-charts.storage.googleapis.comhelm repo add svc-cat https://svc-catalog-charts.storage.googleapis.com

helm search service-cataloghelm search service-catalog

NAME VERSION DESCRIPTIONNAME VERSION DESCRIPTION

svc-cat/catalog 0.0.1 service-catalog API server and controller-manag...svc-cat/catalog 0.0.1 service-catalog API server and controller-manag...

minikube start minikube start --extra-config--extra-config==apiserver.Authorization.Modeapiserver.Authorization.Mode==RBACRBAC

AUTHORIZATION_MODE=Node,RBAC hack/local-up-cluster.sh -OAUTHORIZATION_MODE=Node,RBAC hack/local-up-cluster.sh -O

configured to use the defaultdefault service account.

NOTE: If you used the --tiller-namespace--tiller-namespace or --service-account--service-account flags when

running helm inithelm init , the --serviceaccount--serviceaccount flag in the following command needs to

be adjusted to reference the appropriate namespace and ServiceAccount name.

Configure Tiller to have cluster-admincluster-admin access:

Install Service Catalog in your Kubernetes cluster

Install Service Catalog from the root of the Helm repository using the following command:

What’s next

View sample service brokers.

Explore the kubernetes-incubator/service-catalog project.

kubectl create clusterrolebinding tiller-cluster-admin kubectl create clusterrolebinding tiller-cluster-admin \\

 --clusterrole--clusterrole==cluster-admin cluster-admin \\

 --serviceaccount--serviceaccount==kube-system:defaultkube-system:default

helm install svc-cat/catalog helm install svc-cat/catalog \\

 --name--name catalog catalog --namespace--namespace catalog catalog

https://github.com/openservicebrokerapi/servicebroker/blob/master/gettingStarted.md#sample-service-brokers
https://github.com/kubernetes-incubator/service-catalog

Install Service Catalog using SC

Service Catalog is an extension API that enables applications running in Kubernetes clusters to

easily use external managed software offerings, such as a datastore service offered by a cloud

provider.

It provides a way to list, provision, and bind with external from

 without needing detailed knowledge about how those services are created or

managed.

Use the Service Catalog Installer tool to easily install or uninstall Service Catalog on your

Kubernetes cluster. This CLI tool is installed as scsc in your local environment.

Before you begin

Understand the key concepts of Service Catalog.

Install Go 1.6+ and set the GOPATHGOPATH .

Install the cfssl tool needed for generating SSL artifacts.

Service Catalog requires Kubernetes version 1.7+.

Install and setup kubectl so that it is configured to connect to a Kubernetes v1.7+ cluster.

The kubectl user must be bound to the cluster-admin role for it to install Service Catalog.

To ensure that this is true, run the following command:

Managed Services

Service Brokers

Before you begin

Install scsc in your local environment

Install Service Catalog in your Kubernetes cluster

Uninstall Service Catalog

What’s next

 kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=<user-name> kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=<user-name>

file:///docs/reference/glossary/?all=true#term-managed-service
file:///docs/reference/glossary/?all=true#term-service-broker
https://github.com/GoogleCloudPlatform/k8s-service-catalog#installation
file:///docs/concepts/service-catalog/
https://golang.org/dl/
https://github.com/cloudflare/cfssl
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Install sc in your local environment

Install the scsc CLI tool using the

gogo

getget command:

After running the above command, scsc should be installed in your GOPATH/binGOPATH/bin directory.

Install Service Catalog in your Kubernetes cluster

First, verify that all dependencies have been installed. Run:

If the check is successful, it should return:

Next, run the install command and specify the storageclassstorageclass that you want to use for the

backup:

Uninstall Service Catalog

If you would like to uninstall Service Catalog from your Kubernetes cluster using the scsc tool,

run:

What’s next

go get github.com/GoogleCloudPlatform/k8s-service-catalog/installer/cmd/scgo get github.com/GoogleCloudPlatform/k8s-service-catalog/installer/cmd/sc

sc checksc check

Dependency check passed. You are good to go.Dependency check passed. You are good to go.

sc install sc install --etcd-backup-storageclass--etcd-backup-storageclass "standard""standard"

sc uninstallsc uninstall

View sample service brokers.

Explore the kubernetes-incubator/service-catalog project.

https://github.com/openservicebrokerapi/servicebroker/blob/master/gettingStarted.md#sample-service-brokers
https://github.com/kubernetes-incubator/service-catalog

Manage TLS Certificates in a Cluster

Overview

Every Kubernetes cluster has a cluster root Certificate Authority (CA). The CA is generally used

by cluster components to validate the API server’s certificate, by the API server to validate

kubelet client certificates, etc. To support this, the CA certificate bundle is distributed to every

node in the cluster and is distributed as a secret attached to default service accounts.

Optionally, your workloads can use this CA to establish trust. Your application can request a

certificate signing using the certificates.k8s.iocertificates.k8s.io API using a protocol that is similar to the

ACME draft.

Trusting TLS in a Cluster

Trusting the cluster root CA from an application running as a pod usually requires some extra

application configuration. You will need to add the CA certificate bundle to the list of CA

certificates that the TLS client or server trusts. For example, you would do this with a golang

TLS config by parsing the certificate chain and adding the parsed certificates to the

CertificatesCertificates field in the tls.Configtls.Config struct.

The CA certificate bundle is automatically mounted into pods using the default service account

at the path /var/run/secrets/kubernetes.io/serviceaccount/ca.crt/var/run/secrets/kubernetes.io/serviceaccount/ca.crt . If you are not

Overview

Trusting TLS in a Cluster

Requesting a Certificate

Step 0. Download and install CFSSL

Step 1. Create a Certificate Signing Request

Step 2. Create a Certificate Signing Request object to send to the Kubernetes API

Step 3. Get the Certificate Signing Request Approved

Step 4. Download the Certificate and Use It

Approving Certificate Signing Requests

A Word of Warning on the Approval Permission

A Note to Cluster Administrators

https://github.com/ietf-wg-acme/acme/
https://godoc.org/crypto/tls#Config

using the default service account, ask a cluster administrator to build a configmap containing

the certificate bundle that you have access to use.

Requesting a Certificate

The following section demonstrates how to create a TLS certificate for a Kubernetes service

accessed through DNS.

Note: This tutorial uses CFSSL: Cloudflare’s PKI and TLS toolkit click here to know more.

Step 0. Download and install CFSSL

The cfssl tools used in this example can be downloaded at https://pkg.cfssl.org/.

Step 1. Create a Certificate Signing Request

Generate a private key and certificate signing request (or CSR) by running the following

command:

Where 172.168.0.24172.168.0.24 is the service’s cluster IP, my-svc.my-namespace.svc.cluster.localmy-svc.my-namespace.svc.cluster.local

is the service’s DNS name, 10.0.34.210.0.34.2 is the pod’s IP and

my-pod.my-namespace.pod.cluster.localmy-pod.my-namespace.pod.cluster.local is the pod’s DNS name. You should see the

following output:

$$ catcat <<<<EOFEOF | cfssl genkey - | cfssljson -bare server | cfssl genkey - | cfssljson -bare server

{{

 "hosts": ["hosts": [

 "my-svc.my-namespace.svc.cluster.local", "my-svc.my-namespace.svc.cluster.local",

 "my-pod.my-namespace.pod.cluster.local", "my-pod.my-namespace.pod.cluster.local",

 "172.168.0.24", "172.168.0.24",

 "10.0.34.2" "10.0.34.2"

],],

 "CN": "my-pod.my-namespace.pod.cluster.local", "CN": "my-pod.my-namespace.pod.cluster.local",

 "key": { "key": {

 "algo": "ecdsa", "algo": "ecdsa",

 "size": 256 "size": 256

 } }

}}

EOFEOF

https://blog.cloudflare.com/introducing-cfssl/
https://pkg.cfssl.org/

This command generates two files; it generates server.csrserver.csr containing the PEM encoded

pkcs#10 certification request, and server-key.pemserver-key.pem containing the PEM encoded key to the

certificate that is still to be created.

Step 2. Create a Certificate Signing Request object to send to
the Kubernetes API

Generate a CSR yaml blob and send it to the apiserver by running the following command:

Notice that the server.csrserver.csr file created in step 1 is base64 encoded and stashed in the

.spec.request.spec.request field. We are also requesting a certificate with the “digital signature”, “key

encipherment”, and “server auth” key usages. We support all key usages and extended key

usages listed here so you can request client certificates and other certificates using this same

API.

The CSR should now be visible from the API in a Pending state. You can see it by running:

2017/03/21 06:48:17 [INFO] generate received request2017/03/21 06:48:17 [INFO] generate received request

2017/03/21 06:48:17 [INFO] received CSR2017/03/21 06:48:17 [INFO] received CSR

2017/03/21 06:48:17 [INFO] generating key: ecdsa-2562017/03/21 06:48:17 [INFO] generating key: ecdsa-256

2017/03/21 06:48:17 [INFO] encoded CSR2017/03/21 06:48:17 [INFO] encoded CSR

$$ catcat <<<<EOFEOF | kubectl create -f - | kubectl create -f -

apiVersion: certificates.k8s.io/v1beta1apiVersion: certificates.k8s.io/v1beta1

kind: CertificateSigningRequestkind: CertificateSigningRequest

metadata:metadata:

 name: my-svc.my-namespace name: my-svc.my-namespace

spec:spec:

 groups: groups:

 - system:authenticated - system:authenticated

 request: $ request: $((cat cat server.csr | base64 | tr server.csr | base64 | tr -d-d '\n''\n'))

 usages: usages:

 - digital signature - digital signature

 - key encipherment - key encipherment

 - server auth - server auth

EOFEOF

https://tools.ietf.org/html/rfc2986
https://godoc.org/k8s.io/api/certificates/v1beta1#KeyUsage

Step 3. Get the Certificate Signing Request Approved

Approving the certificate signing request is either done by an automated approval process or

on a one off basis by a cluster administrator. More information on what this involves is covered

below.

Step 4. Download the Certificate and Use It

Once the CSR is signed and approved you should see the following:

You can download the issued certificate and save it to a server.crtserver.crt file by running the

following:

Now you can use server.crtserver.crt and server-key.pemserver-key.pem as the keypair to start your HTTPS

server.

Approving Certificate Signing Requests

$$ kubectl describe csr my-svc.my-namespace kubectl describe csr my-svc.my-namespace

Name: my-svc.my-namespaceName: my-svc.my-namespace

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

CreationTimestamp: Tue, 21 Mar 2017 07:03:51 -0700CreationTimestamp: Tue, 21 Mar 2017 07:03:51 -0700

Requesting User: yourname@example.comRequesting User: yourname@example.com

Status: PendingStatus: Pending

Subject:Subject:

 Common Name: my-svc.my-namespace.svc.cluster.local Common Name: my-svc.my-namespace.svc.cluster.local

 Serial Number: Serial Number:

Subject Alternative Names:Subject Alternative Names:

 DNS Names: my-svc.my-namespace.svc.cluster.local DNS Names: my-svc.my-namespace.svc.cluster.local

 IP Addresses: 172.168.0.24 IP Addresses: 172.168.0.24

 10.0.34.2 10.0.34.2

Events: <none>Events: <none>

$$ kubectl get csr kubectl get csr

NAME AGE REQUESTOR CONDITIONNAME AGE REQUESTOR CONDITION

my-svc.my-namespace 10m yourname@example.com Approved,Issuedmy-svc.my-namespace 10m yourname@example.com Approved,Issued

$$ kubectl get csr my-svc.my-namespace kubectl get csr my-svc.my-namespace -o-o jsonpathjsonpath=='{.status.certificate}''{.status.certificate}' \\

 | base64 | base64 -d-d >> server.crt server.crt

A Kubernetes administrator (with appropriate permissions) can manually approve (or deny)

Certificate Signing Requests by using the

kubectl certificatekubectl certificate

approveapprove and

kubectl certificatekubectl certificate

denydeny commands. However if you intend to make heavy usage of this

API, you might consider writing an automated certificates controller.

Whether a machine or a human using kubectl as above, the role of the approver is to verify that

the CSR satisfies two requirements:

1. The subject of the CSR controls the private key used to sign the CSR. This addresses the

threat of a third party masquerading as an authorized subject. In the above example, this

step would be to verify that the pod controls the private key used to generate the CSR.

2. The subject of the CSR is authorized to act in the requested context. This addresses the

threat of an undesired subject joining the cluster. In the above example, this step would be

to verify that the pod is allowed to participate in the requested service.

If and only if these two requirements are met, the approver should approve the CSR and

otherwise should deny the CSR.

A Word of Warning on the Approval Permission

The ability to approve CSRs decides who trusts who within the cluster. This includes who the

Kubernetes API trusts. The ability to approve CSRs should not be granted broadly or lightly.

The requirements of the challenge noted in the previous section and the repercussions of

issuing a specific certificate should be fully understood before granting this permission. See

here for information on how certificates interact with authentication.

A Note to Cluster Administrators

This tutorial assumes that a signer is setup to serve the certificates API. The Kubernetes

controller manager provides a default implementation of a signer. To enable it, pass the

--cluster-signing-cert-file--cluster-signing-cert-file and --cluster-signing-key-file--cluster-signing-key-file parameters to the

controller manager with paths to your Certificate Authority’s keypair.

file:///docs/admin/authentication#x509-client-certs

Certificate Rotation

This page shows how to enable and configure certificate rotation for the kubelet.

Before you begin

Kubernetes version 1.8.0 or later is required

Kubelet certificate rotation is beta in 1.8.0 which means it may change without notice.

Overview

The kubelet uses certificates for authenticating to the Kubernetes API. By default, these

certificates are issued with one year expiration so that they do not need to be renewed too

frequently.

Kubernetes 1.8 contains kubelet certificate rotation, a beta feature that will automatically

generate a new key and request a new certificate from the Kubernetes API as the current

certificate approaches expiration. Once the new certificate is available, it will be used for

authenticating connections to the Kubernetes API.

Enabling client certificate rotation

The kubeletkubelet process accepts an argument --rotate-certificates--rotate-certificates that controls if the

kubelet will automatically request a new certificate as the expiration of the certificate currently

in use approaches. Since certificate rotation is a beta feature, the feature flag must also be

enabled with --feature-gates=RotateKubeletClientCertificate=true--feature-gates=RotateKubeletClientCertificate=true .

The kube-controller-managerkube-controller-manager process accepts an argument

Before you begin

Overview

Enabling client certificate rotation

Understanding the certificate rotation configuration

file:///docs/tasks/administer-cluster/certificate-rotation/

--experimental-cluster-signing-duration--experimental-cluster-signing-duration that controls how long certificates will be

issued for.

Understanding the certificate rotation configuration

When a kubelet starts up, if it is configured to bootstrap (using the --bootstrap-kubeconfig--bootstrap-kubeconfig

flag), it will use its initial certificate to connect to the Kubernetes API and issue a certificate

signing request. You can view the status of certificate signing requests using:

Initially a certificate signing request from the kubelet on a node will have a status of PendingPending .

If the certificate signing requests meets specific criteria, it will be auto approved by the

controller manager, then it will have a status of ApprovedApproved . Next, the controller manager will

sign a certificate, issued for the duration specified by the

--experimental-cluster-signing-duration--experimental-cluster-signing-duration parameter, and the signed certificate will be

attached to the certificate signing requests.

The kubelet will retrieve the signed certificate from the Kubernetes API and write that to disk, in

the location specified by --cert-dir--cert-dir . Then the kubelet will use the new certificate to connect

to the Kubernetes API.

As the expiration of the signed certificate approaches, the kubelet will automatically issue a

new certificate signing request, using the Kubernetes API. Again, the controller manager will

automatically approve the certificate request and attach a signed certificate to the certificate

signing request. The kubelet will retrieve the new signed certificate from the Kubernetes API

and write that to disk. Then it will update the connections it has to the Kubernetes API to

reconnect using the new certificate.

kubectl get csrkubectl get csr

Cluster Management Guide for Version
1.6

This document outlines the potentially disruptive changes that exist in the 1.6 release cycle.

Operators, administrators, and developers should take note of the changes below in order to

maintain continuity across their upgrade process.

Cluster defaults set to etcd 3

In the 1.6 release cycle, the default backend storage layer has been upgraded to fully leverage

etcd 3 capabilities by default. For new clusters, there is nothing an operator will need to do, it

should “just work”. However, if you are upgrading from a 1.5 cluster, care should be taken to

ensure continuity.

It is possible to maintain v2 compatibility mode while running etcd 3 for an interim period of

time. To do this, you will simply need to update an argument passed to your apiserver during

startup:

However, for long-term maintenance of the cluster, we recommend that the operator plan an

outage window in order to perform a v2->v3 data upgrade.

Cluster defaults set to etcd 3

$ kube-apiserver --storage-backend='etcd2' $(EXISTING_ARGS)$ kube-apiserver --storage-backend='etcd2' $(EXISTING_ARGS)

https://coreos.com/blog/etcd3-a-new-etcd.html
https://coreos.com/etcd/docs/latest/upgrades/upgrade_3_0.html

Upgrading kubeadm clusters from 1.6 to
1.7

This guide is for upgrading kubeadm clusters from version 1.6.x to 1.7.x. Upgrades are not

supported for clusters lower than 1.6, which is when kubeadm became Beta.

WARNING: These instructions will overwrite all of the resources managed by kubeadm (static

pod manifest files, service accounts and RBAC rules in the kube-systemkube-system namespace, etc.), so

any customizations you may have made to these resources after cluster setup will need to be

reapplied after the upgrade. The upgrade will not disturb other static pod manifest files or

objects outside the kube-systemkube-system namespace.

Before you begin

You need to have a Kubernetes cluster running version 1.6.x.

On the master

1. Upgrade system packages.

Upgrade your OS packages for kubectl, kubeadm, kubelet, and kubernetes-cni.

a. On Debian, this can be accomplished with:

b. On CentOS/Fedora, you would instead run:

Before you begin

On the master

On each node

sudo apt-get updatesudo apt-get update

sudo apt-get upgradesudo apt-get upgrade

2. Restart kubelet.

3. Delete the kube-proxykube-proxy DaemonSet.

Although most components are automatically upgraded by the next step, kube-proxykube-proxy

currently needs to be manually deleted so it can be recreated at the correct version:

4. Perform kubeadm upgrade.

WARNING: All parameters you passed to the first kubeadm initkubeadm init when you bootstrapped

your cluster MUST be specified here in the upgrade- kubeadm initkubeadm init -command. This is a

limitation we plan to address in v1.8.

For instance, if you want to upgrade to 1.7.01.7.0 , you would run:

5. Upgrade CNI provider.

Your CNI provider might have its own upgrade instructions to follow now. Check the

addons page to find your CNI provider and see if there are additional upgrade steps

necessary.

On each node

sudo yum updatesudo yum update

systemctl restart kubeletsystemctl restart kubelet

sudo KUBECONFIG=/etc/kubernetes/admin.conf kubectl delete daemonset kube-proxy -n kube-systemsudo KUBECONFIG=/etc/kubernetes/admin.conf kubectl delete daemonset kube-proxy -n kube-system

sudo kubeadm init --skip-preflight-checks --kubernetes-version <DESIRED_VERSION>sudo kubeadm init --skip-preflight-checks --kubernetes-version <DESIRED_VERSION>

sudo kubeadm init --skip-preflight-checks --kubernetes-version v1.7.0sudo kubeadm init --skip-preflight-checks --kubernetes-version v1.7.0

file:///docs/concepts/cluster-administration/addons/

1. Upgrade system packages.

Upgrade your OS packages for kubectl, kubeadm, kubelet, and kubernetes-cni.

a. On Debian, this can be accomplished with:

b. On CentOS/Fedora, you would instead run:

2. Restart kubelet.

sudo apt-get updatesudo apt-get update

sudo apt-get upgradesudo apt-get upgrade

sudo yum updatesudo yum update

systemctl restart kubeletsystemctl restart kubelet

Upgrading kubeadm clusters from 1.7 to
1.8

This guide is for upgrading kubeadmkubeadm clusters from version 1.7.x to 1.8.x, as well as 1.7.x to

1.7.y and 1.8.x to 1.8.y where

y >y >

xx . See also upgrading kubeadm clusters from 1.6 to 1.7 if

you’re on a 1.6 cluster currently.

Before you begin

Before proceeding:

You need to have a functional kubeadmkubeadm Kubernetes cluster running version 1.7.0 or higher

in order to use the process described here.

Make sure you read the release notes carefully.

As kubeadm upgradekubeadm upgrade does not upgrade etcd make sure to back it up. You can, for

example, use

etcdctletcdctl

backupbackup to take care of this.

Note that kubeadm upgradekubeadm upgrade will not touch any of your workloads, only Kubernetes-

internal components. As a best-practice you should back up what’s important to you. For

example, any app-level state, such as a database an app might depend on (like MySQL or

MongoDB) must be backed up beforehand.

Also, note that only one minor version upgrade is supported. That is, you can only upgrade

from, say 1.7 to 1.8, not from 1.7 to 1.9.

Before you begin

Upgrading your control plane

Upgrading your master and node packages

Recovering from a bad state

file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-7/
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md#v180-beta1

Upgrading your control plane

You have to carry out the following steps by executing these commands on your master node:

1. Install the most recent version of kubeadmkubeadm using curlcurl like so:

Caution: Upgrading the kubeadmkubeadm package on your system prior to upgrading the control

plane causes a failed upgrade. Even though kubeadmkubeadm is shipped in the Kubernetes

repositories, it’s important to install kubeadmkubeadm manually. The kubeadm team is working

on fixing this limitation.

Verify that this download of kubeadm works, and has the expected version:

1. If this the first time you use kubeadm upgradekubeadm upgrade , in order to preserve the configuration for

future upgrades, do:

Note that for below you will need to recall what CLI args you passed to kubeadm initkubeadm init the

first time.

If you used flags, do:

Where flagsflags can be empty.

If you used a config file, do:

export export VERSIONVERSION==$($(curl curl -sSL-sSL https://dl.k8s.io/release/stable.txt https://dl.k8s.io/release/stable.txt)) # or manually specify a released Kubernetes version# or manually specify a released Kubernetes version
export export ARCHARCH==amd64 amd64 # or: arm, arm64, ppc64le, s390x# or: arm, arm64, ppc64le, s390x
curl curl -sSL-sSL https://dl.k8s.io/release/ https://dl.k8s.io/release/${${VERSIONVERSION}}/bin/linux//bin/linux/${${ARCHARCH}}/kubeadm /kubeadm >> /usr/bin/kubeadm /usr/bin/kubeadm

chmod a+rx /usr/bin/kubeadmchmod a+rx /usr/bin/kubeadm

kubeadm versionkubeadm version

kubeadm config upload from-flags kubeadm config upload from-flags [[flags]flags]

kubeadm config upload from-file kubeadm config upload from-file --config--config [[config]config]

Where the configconfig is mandatory.

1. On the master node, run the following:

You should see output similar to this:

kubeadm upgrade plankubeadm upgrade plan

[[preflight] Running pre-flight checkspreflight] Running pre-flight checks

[[upgrade] Making sure the cluster is healthy:upgrade] Making sure the cluster is healthy:

[[upgrade/health] Checking API Server health: Healthyupgrade/health] Checking API Server health: Healthy

[[upgrade/health] Checking Node health: All Nodes are healthyupgrade/health] Checking Node health: All Nodes are healthy

[[upgrade/health] Checking Static Pod manifests exists on disk: All manifests exist on diskupgrade/health] Checking Static Pod manifests exists on disk: All manifests exist on disk

[[upgrade/config] Making sure the configuration is correct:upgrade/config] Making sure the configuration is correct:

[[upgrade/config] Reading configuration from the cluster...upgrade/config] Reading configuration from the cluster...

[[upgrade/config] FYI: You can look at this config file with upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml''kubectl -n kube-system get cm kubeadm-config -o yaml'

[[upgrade] Fetching available versions to upgrade to:upgrade] Fetching available versions to upgrade to:

[[upgrade/versions] Cluster version: v1.7.1upgrade/versions] Cluster version: v1.7.1

[[upgrade/versions] kubeadm version: v1.8.0upgrade/versions] kubeadm version: v1.8.0

[[upgrade/versions] Latest stable version: v1.8.0upgrade/versions] Latest stable version: v1.8.0

[[upgrade/versions] Latest version upgrade/versions] Latest version in in the v1.7 series: v1.7.6the v1.7 series: v1.7.6

Components that must be upgraded manually after youComponents that must be upgraded manually after you've upgraded the control plane with ''ve upgraded the control plane with '

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

Kubelet 1 x v1.7.1 v1.7.6Kubelet 1 x v1.7.1 v1.7.6

Upgrade to the latest version in the v1.7 series:Upgrade to the latest version in the v1.7 series:

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

API Server v1.7.1 v1.7.6API Server v1.7.1 v1.7.6

Controller Manager v1.7.1 v1.7.6Controller Manager v1.7.1 v1.7.6

Scheduler v1.7.1 v1.7.6Scheduler v1.7.1 v1.7.6

Kube Proxy v1.7.1 v1.7.6Kube Proxy v1.7.1 v1.7.6

Kube DNS 1.14.4 1.14.4Kube DNS 1.14.4 1.14.4

You can now apply the upgrade by executing the following command:You can now apply the upgrade by executing the following command:

 kubeadm upgrade apply v1.7.6 kubeadm upgrade apply v1.7.6

__

Components that must be upgraded manually after you'Components that must be upgraded manually after you've upgraded the control plane with ve upgraded the control plane with

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

Kubelet 1 x v1.7.1 v1.8.0Kubelet 1 x v1.7.1 v1.8.0

Upgrade to the latest stable version:Upgrade to the latest stable version:

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

API Server v1.7.1 v1.8.0API Server v1.7.1 v1.8.0

The kubeadm upgrade plankubeadm upgrade plan checks that your cluster is in an upgradeable state and fetches

the versions available to upgrade to in an user-friendly way.

1. Pick a version to upgrade to and run, for example, kubeadm upgrade applykubeadm upgrade apply as follows:

You should see output similar to this:

API Server v1.7.1 v1.8.0API Server v1.7.1 v1.8.0

Controller Manager v1.7.1 v1.8.0Controller Manager v1.7.1 v1.8.0

Scheduler v1.7.1 v1.8.0Scheduler v1.7.1 v1.8.0

Kube Proxy v1.7.1 v1.8.0Kube Proxy v1.7.1 v1.8.0

Kube DNS 1.14.4 1.14.4Kube DNS 1.14.4 1.14.4

You can now apply the upgrade by executing the following You can now apply the upgrade by executing the following commandcommand::

 kubeadm upgrade apply v1.8.0 kubeadm upgrade apply v1.8.0

Note: Before you Note: Before you do do can perform this upgrade, you have to update kubeadm to v1.8.0can perform this upgrade, you have to update kubeadm to v1.8.0

__

kubeadm upgrade apply v1.8.0kubeadm upgrade apply v1.8.0

[[preflight] Running pre-flight checkspreflight] Running pre-flight checks

[[upgrade] Making sure the cluster is healthy:upgrade] Making sure the cluster is healthy:

[[upgrade/health] Checking API Server health: Healthyupgrade/health] Checking API Server health: Healthy

[[upgrade/health] Checking Node health: All Nodes are healthyupgrade/health] Checking Node health: All Nodes are healthy

[[upgrade/health] Checking Static Pod manifests exists on disk: All manifests exist on diskupgrade/health] Checking Static Pod manifests exists on disk: All manifests exist on disk

[[upgrade/config] Making sure the configuration is correct:upgrade/config] Making sure the configuration is correct:

[[upgrade/config] Reading configuration from the cluster...upgrade/config] Reading configuration from the cluster...

[[upgrade/config] FYI: You can look at this config file with upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml''kubectl -n kube-system get cm kubeadm-config -o yaml'

[[upgrade/version] You have chosen to upgrade to version upgrade/version] You have chosen to upgrade to version "v1.8.0""v1.8.0"

[[upgrade/versions] Cluster version: v1.7.1upgrade/versions] Cluster version: v1.7.1

[[upgrade/versions] kubeadm version: v1.8.0upgrade/versions] kubeadm version: v1.8.0

[[upgrade/prepull] Will prepull images upgrade/prepull] Will prepull images for for components components [[kube-apiserver kube-controller-manager kube-scheduler]kube-apiserver kube-controller-manager kube-scheduler]

[[upgrade/prepull] Prepulling image upgrade/prepull] Prepulling image for for component kube-scheduler.component kube-scheduler.

[[upgrade/prepull] Prepulling image upgrade/prepull] Prepulling image for for component kube-apiserver.component kube-apiserver.

[[upgrade/prepull] Prepulling image upgrade/prepull] Prepulling image for for component kube-controller-manager.component kube-controller-manager.

[[apiclient] Found 0 Pods apiclient] Found 0 Pods for for label selector k8s-applabel selector k8s-app==upgrade-prepull-kube-schedulerupgrade-prepull-kube-scheduler

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector k8s-applabel selector k8s-app==upgrade-prepull-kube-schedulerupgrade-prepull-kube-scheduler

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector k8s-applabel selector k8s-app==upgrade-prepull-kube-apiserverupgrade-prepull-kube-apiserver

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector k8s-applabel selector k8s-app==upgrade-prepull-kube-controller-managerupgrade-prepull-kube-controller-manager

[[upgrade/prepull] Prepulled image upgrade/prepull] Prepulled image for for component kube-apiserver.component kube-apiserver.

[[upgrade/prepull] Prepulled image upgrade/prepull] Prepulled image for for component kube-controller-manager.component kube-controller-manager.

[[upgrade/prepull] Prepulled image upgrade/prepull] Prepulled image for for component kube-scheduler.component kube-scheduler.

[[upgrade/prepull] Successfully prepulled the images upgrade/prepull] Successfully prepulled the images for for all the control plane componentsall the control plane components

[[upgrade/apply] Upgrading your Static Pod-hosted control plane to version upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.8.0""v1.8.0"

[[upgrade/staticpods] Writing upgraded Static Pod manifests to upgrade/staticpods] Writing upgraded Static Pod manifests to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests432902769""/etc/kubernetes/tmp/kubeadm-upgraded-manifests432902769"

[[controlplane] Wrote Static Pod manifest controlplane] Wrote Static Pod manifest for for component kube-apiserver to component kube-apiserver to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests432902769/kube-apiserver.yaml""/etc/kubernetes/tmp/kubeadm-upgraded-manifests432902769/kube-apiserver.yaml"

[[controlplane] Wrote Static Pod manifest controlplane] Wrote Static Pod manifest for for component kube-controller-manager to component kube-controller-manager to

[[controlplane] Wrote Static Pod manifest controlplane] Wrote Static Pod manifest for for component kube-scheduler to component kube-scheduler to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests432902769/kube-scheduler.yaml""/etc/kubernetes/tmp/kubeadm-upgraded-manifests432902769/kube-scheduler.yaml"

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-apiserver.yaml""/etc/kubernetes/manifests/kube-apiserver.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==kube-apiserverkube-apiserver

[[upgrade/staticpods] Component upgrade/staticpods] Component "kube-apiserver""kube-apiserver" upgraded successfully! upgraded successfully!

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-controller-manager.yaml""/etc/kubernetes/manifests/kube-controller-manager.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==kube-controller-managerkube-controller-manager

[[upgrade/staticpods] Component upgrade/staticpods] Component "kube-controller-manager""kube-controller-manager" upgraded successfully! upgraded successfully!

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-scheduler.yaml""/etc/kubernetes/manifests/kube-scheduler.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==kube-schedulerkube-scheduler

[[upgrade/staticpods] Component upgrade/staticpods] Component "kube-scheduler""kube-scheduler" upgraded successfully! upgraded successfully!

[[uploadconfig] Storing the configuration used uploadconfig] Storing the configuration used in in ConfigMap ConfigMap "kubeadm-config""kubeadm-config" in in

[[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs

[[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Tokenbootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token

[[addons] Applied essential addon: kube-dnsaddons] Applied essential addon: kube-dns

[[addons] Applied essential addon: kube-proxyaddons] Applied essential addon: kube-proxy

[[upgrade/successful] SUCCESS! Your cluster was upgraded to upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.8.0""v1.8.0".. Enjoy! Enjoy!

[[upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading your kubelets upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading your kubelets

kubeadm upgrade applykubeadm upgrade apply does the following:

It checks that your cluster is in an upgradeable state, that is:

The API Server is reachable,

All nodes are in the ReadyReady state, and

The control plane is healthy

It enforces the version skew policies.

It makes sure the control plane images are available or available to pull to the machine.

It upgrades the control plane components or rollbacks if any of them fails to come up.

It applies the new kube-dnskube-dns and kube-proxykube-proxy manifests and enforces that all necessary

RBAC rules are created.

1. Manually upgrade your Software Defined Network (SDN).

Your Container Network Interface (CNI) provider might have its own upgrade instructions

to follow now. Check the addons page to find your CNI provider and see if there are

additional upgrade steps necessary.

2. Add RBAC permissions for automated certificate rotation. In the future, kubeadm will

perform this step automatically:

Upgrading your master and node packages

For each host (referred to as $HOST$HOST below) in your cluster, upgrade kubeletkubelet by executing the

following commands:

1. Prepare the host for maintenance, marking it unschedulable and evicting the workload:

When running this command against the master host, this error is expected and can be safely

kubectl create clusterrolebinding kubeadm:node-autoapprove-certificate-rotation kubectl create clusterrolebinding kubeadm:node-autoapprove-certificate-rotation

kubectl drain kubectl drain $HOST$HOST --ignore-daemonsets--ignore-daemonsets

file:///docs/concepts/cluster-administration/addons/

ignored (since there are static pods running on the master):

1. Upgrade the Kubernetes package versions on the $HOST$HOST node by using a Linux

distribution-specific package manager:

If the host is running a Debian-based distro such as Ubuntu, run:

If the host is running CentOS or the like, run:

Now the new version of the kubeletkubelet should be running on the host. Verify this using the

following command on $HOST$HOST :

1. Bring the host back online by marking it schedulable:

1. After upgrading kubeletkubelet on each host in your cluster, verify that all nodes are available

again by executing the following (from anywhere, for example, from outside the cluster):

If the STATUSSTATUS column of the above command shows ReadyReady for all of your hosts, you are

done.

node node "master""master" already cordoned already cordoned

error: pods not managed by ReplicationController, ReplicaSet, Job, DaemonSet or StatefulSet error: pods not managed by ReplicationController, ReplicaSet, Job, DaemonSet or StatefulSet

apt-get updateapt-get update

apt-get upgradeapt-get upgrade

yum updateyum update

systemctl status kubeletsystemctl status kubelet

kubectl uncordon kubectl uncordon $HOST$HOST

kubectl get nodeskubectl get nodes

Recovering from a bad state

If kubeadm upgradekubeadm upgrade somehow fails and fails to roll back, due to an unexpected shutdown

during execution for instance, you may run kubeadm upgradekubeadm upgrade again as it is idempotent and

should eventually make sure the actual state is the desired state you are declaring.

You can use kubeadm upgradekubeadm upgrade to change a running cluster with

x.x.x -->x.x.x -->

x.x.xx.x.x with

--force--force , which can be used to recover from a bad state.

Upgrading/downgrading kubeadm
clusters between v1.8 to v1.9

This guide is for upgrading kubeadmkubeadm clusters from version 1.8.x to 1.9.x, as well as 1.8.x to

1.8.y and 1.9.x to 1.9.y where

y >y >

xx . See also upgrading kubeadm clusters from 1.7 to 1.8 if

you’re on a 1.7 cluster currently.

Before you begin

Before proceeding:

You need to have a functional kubeadmkubeadm Kubernetes cluster running version 1.8.0 or higher

in order to use the process described here. Swap also needs to be disabled.

Make sure you read the release notes carefully.

kubeadm upgradekubeadm upgrade now allows you to upgrade etcd. kubeadm upgradekubeadm upgrade will also upgrade

of etcd to 3.1.10 as part of upgrading from v1.8 to v1.9 by default. This is due to the fact

that etcd 3.1.10 is the officially validated etcd version for Kubernetes v1.9. The upgrade is

handled automatically by kubeadm for you.

Note that kubeadm upgradekubeadm upgrade will not touch any of your workloads, only Kubernetes-

internal components. As a best-practice you should back up what’s important to you. For

example, any app-level state, such as a database an app might depend on (like MySQL or

MongoDB) must be backed up beforehand.

Caution: All the containers will get restarted after the upgrade, due to container spec

hash value gets changed.

Before you begin

Upgrading your control plane

Upgrading your master and node packages

Recovering from a failure state

file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-8/
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.9.md

Also, note that only one minor version upgrade is supported. For example, you can only

upgrade from 1.8 to 1.9, not from 1.7 to 1.9.

Upgrading your control plane

Execute these commands on your master node:

1. Install the most recent version of kubeadmkubeadm using curlcurl like so:

Caution: Upgrading the kubeadmkubeadm package on your system prior to upgrading the control

plane causes a failed upgrade. Even though kubeadmkubeadm ships in the Kubernetes

repositories, it’s important to install kubeadmkubeadm manually. The kubeadm team is working

on fixing this limitation.

Verify that this download of kubeadm works and has the expected version:

1. On the master node, run the following:

You should see output similar to this:

export export VERSIONVERSION==$($(curl curl -sSL-sSL https://dl.k8s.io/release/stable.txt https://dl.k8s.io/release/stable.txt)) # or manually specify a released Kubernetes version# or manually specify a released Kubernetes version
export export ARCHARCH==amd64 amd64 # or: arm, arm64, ppc64le, s390x# or: arm, arm64, ppc64le, s390x
curl curl -sSL-sSL https://dl.k8s.io/release/ https://dl.k8s.io/release/${${VERSIONVERSION}}/bin/linux//bin/linux/${${ARCHARCH}}/kubeadm /kubeadm >> /usr/bin/kubeadm /usr/bin/kubeadm

chmod a+rx /usr/bin/kubeadmchmod a+rx /usr/bin/kubeadm

kubeadm versionkubeadm version

kubeadm upgrade plankubeadm upgrade plan

[[preflight] Running pre-flight checkspreflight] Running pre-flight checks

[[upgrade] Making sure the cluster is healthy:upgrade] Making sure the cluster is healthy:

[[upgrade/health] Checking API Server health: Healthyupgrade/health] Checking API Server health: Healthy

[[upgrade/health] Checking Node health: All Nodes are healthyupgrade/health] Checking Node health: All Nodes are healthy

[[upgrade/health] Checking Static Pod manifests exists on disk: All manifests exist on diskupgrade/health] Checking Static Pod manifests exists on disk: All manifests exist on disk

[[upgrade/config] Making sure the configuration is correct:upgrade/config] Making sure the configuration is correct:

The kubeadm upgrade plankubeadm upgrade plan checks that your cluster is upgradeable and fetches the versions

available to upgrade to in an user-friendly way.

[[upgrade/config] Making sure the configuration is correct:upgrade/config] Making sure the configuration is correct:

[[upgrade/config] Reading configuration from the cluster...upgrade/config] Reading configuration from the cluster...

[[upgrade/config] FYI: You can look at this config file with upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml''kubectl -n kube-system get cm kubeadm-config -o yaml'

[[upgrade] Fetching available versions to upgrade to:upgrade] Fetching available versions to upgrade to:

[[upgrade/versions] Cluster version: v1.8.1upgrade/versions] Cluster version: v1.8.1

[[upgrade/versions] kubeadm version: v1.9.0upgrade/versions] kubeadm version: v1.9.0

[[upgrade/versions] Latest stable version: v1.9.0upgrade/versions] Latest stable version: v1.9.0

[[upgrade/versions] Latest version upgrade/versions] Latest version in in the v1.8 series: v1.8.6the v1.8 series: v1.8.6

Components that must be upgraded manually after youComponents that must be upgraded manually after you've upgraded the control plane with ''ve upgraded the control plane with '

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

Kubelet 1 x v1.8.1 v1.8.6Kubelet 1 x v1.8.1 v1.8.6

Upgrade to the latest version in the v1.8 series:Upgrade to the latest version in the v1.8 series:

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

API Server v1.8.1 v1.8.6API Server v1.8.1 v1.8.6

Controller Manager v1.8.1 v1.8.6Controller Manager v1.8.1 v1.8.6

Scheduler v1.8.1 v1.8.6Scheduler v1.8.1 v1.8.6

Kube Proxy v1.8.1 v1.8.6Kube Proxy v1.8.1 v1.8.6

Kube DNS 1.14.4 1.14.5Kube DNS 1.14.4 1.14.5

You can now apply the upgrade by executing the following command:You can now apply the upgrade by executing the following command:

 kubeadm upgrade apply v1.8.6 kubeadm upgrade apply v1.8.6

__

Components that must be upgraded manually after you'Components that must be upgraded manually after you've upgraded the control plane with ve upgraded the control plane with

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

Kubelet 1 x v1.8.1 v1.9.0Kubelet 1 x v1.8.1 v1.9.0

Upgrade to the latest stable version:Upgrade to the latest stable version:

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

API Server v1.8.1 v1.9.0API Server v1.8.1 v1.9.0

Controller Manager v1.8.1 v1.9.0Controller Manager v1.8.1 v1.9.0

Scheduler v1.8.1 v1.9.0Scheduler v1.8.1 v1.9.0

Kube Proxy v1.8.1 v1.9.0Kube Proxy v1.8.1 v1.9.0

Kube DNS 1.14.5 1.14.7Kube DNS 1.14.5 1.14.7

You can now apply the upgrade by executing the following You can now apply the upgrade by executing the following commandcommand::

 kubeadm upgrade apply v1.9.0 kubeadm upgrade apply v1.9.0

Note: Before you Note: Before you do do can perform this upgrade, you have to update kubeadm to v1.9.0can perform this upgrade, you have to update kubeadm to v1.9.0

__

To check CoreDNS version, include the --feature-gates=CoreDNS=true--feature-gates=CoreDNS=true flag to verify the

CoreDNS version which will be installed in place of kube-dns.

1. Pick a version to upgrade to and run. For example:

You should see output similar to this:

kubeadm upgrade apply v1.9.0kubeadm upgrade apply v1.9.0

To upgrade the cluster with CoreDNS as the default internal DNS, invoke

kubeadm upgrade applykubeadm upgrade apply with the --feature-gates=CoreDNS=true--feature-gates=CoreDNS=true flag.

kubeadm upgrade applykubeadm upgrade apply does the following:

Checks that your cluster is in an upgradeable state:

[[preflight] Running pre-flight checks.preflight] Running pre-flight checks.

[[upgrade] Making sure the cluster is healthy:upgrade] Making sure the cluster is healthy:

[[upgrade/config] Making sure the configuration is correct:upgrade/config] Making sure the configuration is correct:

[[upgrade/config] Reading configuration from the cluster...upgrade/config] Reading configuration from the cluster...

[[upgrade/config] FYI: You can look at this config file with upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -oyaml''kubectl -n kube-system get cm kubeadm-config -oyaml'

[[upgrade/version] You have chosen to upgrade to version upgrade/version] You have chosen to upgrade to version "v1.9.0""v1.9.0"

[[upgrade/versions] Cluster version: v1.8.1upgrade/versions] Cluster version: v1.8.1

[[upgrade/versions] kubeadm version: v1.9.0upgrade/versions] kubeadm version: v1.9.0

[[upgrade/confirm] Are you sure you want to proceed with the upgrade? upgrade/confirm] Are you sure you want to proceed with the upgrade? [[y/N]: yy/N]: y

[[upgrade/prepull] Will prepull images upgrade/prepull] Will prepull images for for components components [[kube-apiserver kube-controller-manager kube-scheduler]kube-apiserver kube-controller-manager kube-scheduler]

[[upgrade/apply] Upgrading your Static Pod-hosted control plane to version upgrade/apply] Upgrading your Static Pod-hosted control plane to version "v1.9.0""v1.9.0"

[[etcd] Wrote Static Pod manifest etcd] Wrote Static Pod manifest for for a a local local etcd instance to etcd instance to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804/etcd.yaml""/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804/etcd.yaml"

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/etcd.yaml""/etc/kubernetes/manifests/etcd.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==etcdetcd

[[upgrade/staticpods] Component upgrade/staticpods] Component "etcd""etcd" upgraded successfully! upgraded successfully!

[[upgrade/staticpods] Writing upgraded Static Pod manifests to upgrade/staticpods] Writing upgraded Static Pod manifests to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804""/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804"

[[controlplane] Wrote Static Pod manifest controlplane] Wrote Static Pod manifest for for component kube-apiserver to component kube-apiserver to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804/kube-apiserver.yaml""/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804/kube-apiserver.yaml"

[[controlplane] Wrote Static Pod manifest controlplane] Wrote Static Pod manifest for for component kube-controller-manager to component kube-controller-manager to

[[controlplane] Wrote Static Pod manifest controlplane] Wrote Static Pod manifest for for component kube-scheduler to component kube-scheduler to "/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804/kube-scheduler.yaml""/etc/kubernetes/tmp/kubeadm-upgraded-manifests802453804/kube-scheduler.yaml"

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-apiserver.yaml""/etc/kubernetes/manifests/kube-apiserver.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==kube-apiserverkube-apiserver

[[upgrade/staticpods] Component upgrade/staticpods] Component "kube-apiserver""kube-apiserver" upgraded successfully! upgraded successfully!

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-controller-manager.yaml""/etc/kubernetes/manifests/kube-controller-manager.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==kube-controller-managerkube-controller-manager

[[upgrade/staticpods] Component upgrade/staticpods] Component "kube-controller-manager""kube-controller-manager" upgraded successfully! upgraded successfully!

[[upgrade/staticpods] Moved upgraded manifest to upgrade/staticpods] Moved upgraded manifest to "/etc/kubernetes/manifests/kube-scheduler.yaml""/etc/kubernetes/manifests/kube-scheduler.yaml"

[[upgrade/staticpods] Waiting upgrade/staticpods] Waiting for for the kubelet to restart the componentthe kubelet to restart the component

[[apiclient] Found 1 Pods apiclient] Found 1 Pods for for label selector label selector componentcomponent==kube-schedulerkube-scheduler

[[upgrade/staticpods] Component upgrade/staticpods] Component "kube-scheduler""kube-scheduler" upgraded successfully! upgraded successfully!

[[uploadconfig] Storing the configuration used uploadconfig] Storing the configuration used in in ConfigMap ConfigMap "kubeadm-config""kubeadm-config" in in

[[bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs

[[bootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Tokenbootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token

[[bootstraptoken] Configured RBAC rules to allow certificate rotation bootstraptoken] Configured RBAC rules to allow certificate rotation for for all node client certificates all node client certificates

[[addons] Applied essential addon: kube-dnsaddons] Applied essential addon: kube-dns

[[addons] Applied essential addon: kube-proxyaddons] Applied essential addon: kube-proxy

[[upgrade/successful] SUCCESS! Your cluster was upgraded to upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.9.0""v1.9.0".. Enjoy! Enjoy!

[[upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading your kubelets upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading your kubelets

The API server is reachable,

All nodes are in the ReadyReady state

The control plane is healthy

Enforces the version skew policies.

Makes sure the control plane images are available or available to pull to the machine.

Upgrades the control plane components or rollbacks if any of them fails to come up.

Applies the new kube-dnskube-dns and kube-proxykube-proxy manifests and enforces that all necessary

RBAC rules are created.

Creates new certificate and key files of apiserver and backs up old files if they’re about to

expire in 180 days.

1. Manually upgrade your Software Defined Network (SDN).

Your Container Network Interface (CNI) provider may have its own upgrade instructions to

follow. Check the addons page to find your CNI provider and see if there are additional

upgrade steps necessary.

Upgrading your master and node packages

For each host (referred to as $HOST$HOST below) in your cluster, upgrade kubeletkubelet by executing the

following commands:

1. Prepare the host for maintenance, marking it unschedulable and evicting the workload:

When running this command against the master host, this error is expected and can be safely

ignored (since there are static pods running on the master):

kubectl drain kubectl drain $HOST$HOST --ignore-daemonsets--ignore-daemonsets

node node "master""master" already cordoned already cordoned

error: pods not managed by ReplicationController, ReplicaSet, Job, DaemonSet or StatefulSet error: pods not managed by ReplicationController, ReplicaSet, Job, DaemonSet or StatefulSet

file:///docs/concepts/cluster-administration/addons/

1. Upgrade the Kubernetes package versions on the $HOST$HOST node by using a Linux

distribution-specific package manager:

If the host is running a Debian-based distro such as Ubuntu, run:

If the host is running CentOS or the like, run:

Now the new version of the kubeletkubelet should be running on the host. Verify this using the

following command on $HOST$HOST :

1. Bring the host back online by marking it schedulable:

1. After upgrading kubeletkubelet on each host in your cluster, verify that all nodes are available

again by executing the following (from anywhere, for example, from outside the cluster):

If the STATUSSTATUS column of the above command shows ReadyReady for all of your hosts, you are

done.

Recovering from a failure state

If kubeadm upgradekubeadm upgrade somehow fails and fails to roll back, for example due to an unexpected

shutdown during execution, you can run kubeadm upgradekubeadm upgrade again as it is idempotent and

should eventually make sure the actual state is the desired state you are declaring.

apt-get updateapt-get update

apt-get upgradeapt-get upgrade

yum updateyum update

systemctl status kubeletsystemctl status kubelet

kubectl uncordon kubectl uncordon $HOST$HOST

kubectl get nodeskubectl get nodes

You can use kubeadm upgradekubeadm upgrade to change a running cluster with

x.x.x -->x.x.x -->

x.x.xx.x.x with

--force--force , which can be used to recover from a bad state.

Upgrading kubeadm HA clusters from
1.9.x to 1.9.y

This guide is for upgrading kubeadmkubeadm HA clusters from version 1.9.x to 1.9.y where

y >y >

xx . The

term “ kubeadmkubeadm HA clusters” refers to clusters of more than one master node created with

kubeadmkubeadm . To set up an HA cluster for Kubernetes version 1.9.x kubeadmkubeadm requires additional

manual steps. See Creating HA clusters with kubeadm for instructions on how to do this. The

upgrade procedure described here targets clusters created following those very instructions.

See Upgrading/downgrading kubeadm clusters between v1.8 to v1.9 for more instructions on

how to create an HA cluster with kubeadmkubeadm .

Before you begin

Before proceeding:

You need to have a functional kubeadmkubeadm HA cluster running version 1.9.0 or higher in order

to use the process described here.

Make sure you read the release notes carefully.

Note that kubeadm upgradekubeadm upgrade will not touch any of your workloads, only Kubernetes-

internal components. As a best-practice you should back up anything important to you. For

example, any application-level state, such as a database and application might depend on

(like MySQL or MongoDB) should be backed up beforehand.

Read Upgrading/downgrading kubeadm clusters between v1.8 to v1.9 to learn about the

relevant prerequisites.

Before you begin

Preparation

Upgrading your control plane

Upgrade base software packages

If something goes wrong

file:///docs/setup/independent/high-availability/
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-9/
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.9.md
file:///docs/tasks/administer-cluster/kubeadm-upgrade-1-9/

Preparation

Some preparation is needed prior to starting the upgrade. First download the version of

kubeadmkubeadm that matches the version of Kubernetes that you are upgrading to:

Copy this file to /tmp/tmp on your primary master if necessary. Run this command for checking

prerequisites and determining the versions you will receive:

If the prerequisites are met you’ll get a summary of the software versions kubeadm will

upgrade to, like this:

Caution: Currently the only supported configuration for kubeadm HA clusters requires

the use of an externally managed etcd cluster. Upgrading etcd is not supported as a part

of the upgrade. If necessary you will have to upgrade the etcd cluster according to etcd’s

upgrade instructions, which is beyond the scope of these instructions.

Upgrading your control plane

Use the latest stable release or manually specify a# Use the latest stable release or manually specify a
released Kubernetes version# released Kubernetes version
export export VERSIONVERSION==$($(curl curl -sSL-sSL https://dl.k8s.io/release/stable.txt https://dl.k8s.io/release/stable.txt))

export export ARCHARCH==amd64 amd64 # or: arm, arm64, ppc64le, s390x# or: arm, arm64, ppc64le, s390x
curl curl -sSL-sSL https://dl.k8s.io/release/ https://dl.k8s.io/release/${${VERSIONVERSION}}/bin/linux//bin/linux/${${ARCHARCH}}/kubeadm /kubeadm >> /tmp/kubeadm /tmp/kubeadm

chmod a+rx /tmp/kubeadmchmod a+rx /tmp/kubeadm

/tmp/kubeadm upgrade plan/tmp/kubeadm upgrade plan

Upgrade to the latest stable version:Upgrade to the latest stable version:

COMPONENT CURRENT AVAILABLECOMPONENT CURRENT AVAILABLE

API Server v1.9.0 v1.9.2API Server v1.9.0 v1.9.2

Controller Manager v1.9.0 v1.9.2Controller Manager v1.9.0 v1.9.2

Scheduler v1.9.0 v1.9.2Scheduler v1.9.0 v1.9.2

Kube Proxy v1.9.0 v1.9.2Kube Proxy v1.9.0 v1.9.2

Kube DNS 1.14.5 1.14.7Kube DNS 1.14.5 1.14.7

Etcd 3.2.7 3.1.11Etcd 3.2.7 3.1.11

file:///docs/tasks/administer-cluster/configure-upgrade-etcd/

The following procedure must be applied on a single master node and repeated for each

subsequent master node sequentially.

Before initiating the upgrade with kubeadmkubeadm configmap/kubeadm-configconfigmap/kubeadm-config needs to be

modified for the current master host. Replace any hard reference to a master host name with

the current master hosts’ name:

Now the upgrade process can start. Use the target version determined in the preparation step

and run the following command (press “y” when prompted):

If the operation was successful you’ll get a message like this:

To upgrade the cluster with CoreDNS as the default internal DNS, invoke

kubeadm upgrade applykubeadm upgrade apply with the --feature-gates=CoreDNS=true--feature-gates=CoreDNS=true flag.

Next, manually upgrade your CNI provider

Your Container Network Interface (CNI) provider may have its own upgrade instructions to

follow. Check the addons page to find your CNI provider and see if there are additional upgrade

steps necessary.

Note: The kubeadm upgrade applykubeadm upgrade apply step has been known to fail when run initially on

the secondary masters (timed out waiting for the restarted static pods to come up). It

should succeed if retried after a minute or two.

Upgrade base software packages

At this point all the static pod manifests in your cluster, for example API Server, Controller

kubectl get configmap kubectl get configmap -n-n kube-system kubeadm-config kube-system kubeadm-config -o-o yaml yaml >>/tmp/kubeadm-config-cm.yaml/tmp/kubeadm-config-cm.yaml

sed sed -i-i 's/^\([\t]*nodeName:\).*/\1 <CURRENT-MASTER-NAME>/''s/^\([\t]*nodeName:\).*/\1 <CURRENT-MASTER-NAME>/' /tmp/kubeadm-config-cm.yaml /tmp/kubeadm-config-cm.yaml

kubectl apply kubectl apply -f-f /tmp/kubeadm-config-cm.yaml /tmp/kubeadm-config-cm.yaml --force--force

/tmp/kubeadm upgrade apply v<YOUR-CHOSEN-VERSION-HERE>/tmp/kubeadm upgrade apply v<YOUR-CHOSEN-VERSION-HERE>

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.9.2". Enjoy![upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.9.2". Enjoy!

file:///docs/concepts/cluster-administration/addons/

Manager, Scheduler, Kube Proxy have been upgraded, however the base software, for example

kubeletkubelet , kubectlkubectl , kubeadmkubeadm installed on your nodes’ OS are still of the old version. For

upgrading the base software packages we will upgrade them and restart services on all nodes

one by one:

In this example an rpm-based system is assumed and yumyum is used for installing the upgraded

software. On deb-based systems it will be

apt-getapt-get

updateupdate and then

apt-get install <PACKAGE>=<NEW-K8S-VERSION>apt-get install <PACKAGE>=<NEW-K8S-VERSION> for all packages.

Now the new version of the kubeletkubelet should be running on the host. Verify this using the

following command on the respective host:

Verify that the upgraded node is available again by executing the following from wherever you

run kubectlkubectl commands:

If the STATUSSTATUS column of the above command shows ReadyReady for the upgraded host, you can

continue (you may have to repeat this for a couple of time before the node gets ReadyReady).

If something goes wrong

If the upgrade fails the situation afterwards depends on the phase in which things went wrong:

1. If /tmp/kubeadm upgrade apply/tmp/kubeadm upgrade apply failed to upgrade the cluster it will try to perform a

rollback. Hence if that happened on the first master, chances are pretty good that the

cluster is still intact.

use your distro's package manager, e.g. 'yum' on RH-based systems# use your distro's package manager, e.g. 'yum' on RH-based systems
for the versions stick to kubeadm's output (see above)# for the versions stick to kubeadm's output (see above)
yum install yum install -y-y kubelet-<NEW-K8S-VERSION> kubectl-<NEW-K8S-VERSION> kubeadm-<NEW-K8S-VERSION> kubernetes-cni-<NEW-CNI-VERSION> kubelet-<NEW-K8S-VERSION> kubectl-<NEW-K8S-VERSION> kubeadm-<NEW-K8S-VERSION> kubernetes-cni-<NEW-CNI-VERSION>

systemctl restart kubeletsystemctl restart kubelet

systemctl status kubeletsystemctl status kubelet

kubectl get nodeskubectl get nodes

You can run /tmp/kubeadm upgrade apply/tmp/kubeadm upgrade apply again as it is idempotent and should

eventually make sure the actual state is the desired state you are declaring. You can use

/tmp/kubeadm upgrade apply/tmp/kubeadm upgrade apply to change a running cluster with

x.x.x -->x.x.x -->

x.x.xx.x.x with

--force--force , which can be used to recover from a bad state.

2. If /tmp/kubeadm upgrade apply/tmp/kubeadm upgrade apply on one of the secondary masters failed you still have a

working, upgraded cluster, but with the secondary masters in a somewhat undefined

condition. You will have to find out what went wrong and join the secondaries manually. As

mentioned above, sometimes upgrading one of the secondary masters fails waiting for

the restarted static pods first, but succeeds when the operation is simply repeated after a

little pause of one or two minutes.

Configure Default Memory Requests and
Limits for a Namespace

This page shows how to configure default memory requests and limits for a namespace. If a

Container is created in a namespace that has a default memory limit, and the Container does

not specify its own memory limit, then the Container is assigned the default memory limit.

Kubernetes assigns a default memory request under certain conditions that are explained later

in this topic.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Each node in your cluster must have at least 2 GiB of memory.

Create a namespace

Before you begin

Create a namespace

Create a LimitRange and a Pod

What if you specify a Container’s limit, but not its request?

What if you specify a Container’s request, but not its limit?

Motivation for default memory limits and requests

What’s next

For cluster administrators

For app developers

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Create a LimitRange and a Pod

Here’s the configuration file for a LimitRange object. The configuration specifies a default

memory request and a default memory limit.

memory-defaults.yamlmemory-defaults.yaml

Create the LimitRange in the default-mem-example namespace:

Now if a Container is created in the default-mem-example namespace, and the Container does

not specify its own values for memory request and memory limit, the Container is given a

default memory request of 256 MiB and a default memory limit of 512 MiB.

Here’s the configuration file for a Pod that has one Container. The Container does not specify a

memory request and limit.

memory-defaults-pod.yamlmemory-defaults-pod.yaml

kubectl create namespace default-mem-examplekubectl create namespace default-mem-example

apiVersionapiVersion:: v1v1

kindkind:: LimitRangeLimitRange

metadatametadata::

 namename:: mem-limit-rangemem-limit-range

specspec::

 limitslimits::

 -- defaultdefault::

 memorymemory:: 512Mi512Mi

 defaultRequestdefaultRequest::

 memorymemory:: 256Mi256Mi

 typetype:: ContainerContainer

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-defaults.yaml https://k8s.io/docs/tasks/administer-cluster/memory-defaults.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-defaults.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-defaults-pod.yaml

memory-defaults-pod.yamlmemory-defaults-pod.yaml

Create the Pod.

View detailed information about the Pod:

The output shows that the Pod’s Container has a memory request of 256 MiB and a memory

limit of 512 MiB. These are the default values specified by the LimitRange.

Delete your Pod:

What if you specify a Container’s limit, but not its
request?

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: default-mem-demodefault-mem-demo

specspec::

 containerscontainers::

 -- namename:: default-mem-demo-ctrdefault-mem-demo-ctr

 imageimage:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod.yaml https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod.yaml

kubectl get pod default-mem-demo kubectl get pod default-mem-demo --output--output==yaml yaml --namespace--namespace==default-mem-exampledefault-mem-example

containers:containers:

- image: nginx- image: nginx

 imagePullPolicy: Always imagePullPolicy: Always

 name: default-mem-demo-ctr name: default-mem-demo-ctr

 resources: resources:

 limits: limits:

 memory: 512Mi memory: 512Mi

 requests: requests:

 memory: 256Mi memory: 256Mi

kubectl delete pod default-mem-demo kubectl delete pod default-mem-demo --namespace--namespace==default-mem-exampledefault-mem-example

Here’s the configuration file for a Pod that has one Container. The Container specifies a

memory limit, but not a request:

memory-defaults-pod-2.yamlmemory-defaults-pod-2.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that the Container’s memory request is set to match its memory limit.

Notice that the Container was not assigned the default memory request value of 256Mi.

What if you specify a Container’s request, but not its
limit?

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: default-mem-demo-2default-mem-demo-2

specspec::

 containerscontainers::

 -- namename:: defalt-mem-demo-2-ctrdefalt-mem-demo-2-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""1Gi"1Gi"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod-2.yaml https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod-2.yaml

kubectl get pod default-mem-demo-2 kubectl get pod default-mem-demo-2 --output--output==yaml yaml --namespace--namespace==default-mem-exampledefault-mem-example

resources:resources:

 limits: limits:

 memory: 1Gi memory: 1Gi

 requests: requests:

 memory: 1Gi memory: 1Gi

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-defaults-pod-2.yaml

Here’s the configuration file for a Pod that has one Container. The Container specifies a

memory request, but not a limit:

memory-defaults-pod-3.yamlmemory-defaults-pod-3.yaml

Create the Pod:

View the Pod’s specification:

The output shows that the Container’s memory request is set to the value specified in the

Container’s configuration file. The Container’s memory limit is set to 512Mi, which is the

default memory limit for the namespace.

Motivation for default memory limits and requests

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: default-mem-demo-3default-mem-demo-3

specspec::

 containerscontainers::

 -- namename:: default-mem-demo-3-ctrdefault-mem-demo-3-ctr

 imageimage:: nginxnginx

 resourcesresources::

 requestsrequests::

 memorymemory:: ""128Mi"128Mi"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod-3.yaml https://k8s.io/docs/tasks/administer-cluster/memory-defaults-pod-3.yaml

kubectl get pod default-mem-demo-3 kubectl get pod default-mem-demo-3 --output--output==yaml yaml --namespace--namespace==default-mem-exampledefault-mem-example

resources:resources:

 limits: limits:

 memory: 512Mi memory: 512Mi

 requests: requests:

 memory: 128Mi memory: 128Mi

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-defaults-pod-3.yaml

If your namespace has a resource quota, it is helpful to have a default value in place for

memory limit. Here are two of the restrictions that a resource quota imposes on a namespace:

Every Container that runs in the namespace must have its own memory limit.

The total amount of memory used by all Containers in the namespace must not exceed a

specified limit.

If a Container does not specify its own memory limit, it is given the default limit, and then it can

be allowed to run in a namespace that is restricted by a quota.

What’s next

For cluster administrators

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/

Configure Default CPU Requests and
Limits for a Namespace

This page shows how to configure default CPU requests and limits for a namespace. A

Kubernetes cluster can be divided into namespaces. If a Container is created in a namespace

that has a default CPU limit, and the Container does not specify its own CPU limit, then the

Container is assigned the default CPU limit. Kubernetes assigns a default CPU request under

certain conditions that are explained later in this topic.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

Before you begin

Create a namespace

Create a LimitRange and a Pod

What if you specify a Container’s limit, but not its request?

What if you specify a Container’s request, but not its limit?

Motivation for default CPU limits and requests

What’s next

For cluster administrators

For app developers

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

of your cluster.

Create a LimitRange and a Pod

Here’s the configuration file for a LimitRange object. The configuration specifies a default CPU

request and a default CPU limit.

cpu-defaults.yamlcpu-defaults.yaml

Create the LimitRange in the default-cpu-example namespace:

Now if a Container is created in the default-cpu-example namespace, and the Container does

not specify its own values for CPU request and CPU limit, the Container is given a default CPU

request of 0.5 and a default CPU limit of 1.

Here’s the configuration file for a Pod that has one Container. The Container does not specify a

CPU request and limit.

cpu-defaults-pod.yamlcpu-defaults-pod.yaml

kubectl create namespace default-cpu-examplekubectl create namespace default-cpu-example

apiVersionapiVersion:: v1v1

kindkind:: LimitRangeLimitRange

metadatametadata::

 namename:: cpu-limit-rangecpu-limit-range

specspec::

 limitslimits::

 -- defaultdefault::

 cpucpu:: 11

 defaultRequestdefaultRequest::

 cpucpu:: 0.50.5

 typetype:: ContainerContainer

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-defaults.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-defaults.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-defaults-pod.yaml

cpu-defaults-pod.yamlcpu-defaults-pod.yaml

Create the Pod.

View the Pod’s specification:

The output shows that the Pod’s Container has a CPU request of 500 millicpus and a CPU limit

of 1 cpu. These are the default values specified by the LimitRange.

What if you specify a Container’s limit, but not its
request?

Here’s the configuration file for a Pod that has one Container. The Container specifies a CPU

limit, but not a request:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: default-cpu-demodefault-cpu-demo

specspec::

 containerscontainers::

 -- namename:: default-cpu-demo-ctrdefault-cpu-demo-ctr

 imageimage:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod.yaml

kubectl get pod default-cpu-demo kubectl get pod default-cpu-demo --output--output==yaml yaml --namespace--namespace==default-cpu-exampledefault-cpu-example

containers:containers:

- image: nginx- image: nginx

 imagePullPolicy: Always imagePullPolicy: Always

 name: default-cpu-demo-ctr name: default-cpu-demo-ctr

 resources: resources:

 limits: limits:

 cpu: "1" cpu: "1"

 requests: requests:

 cpu: 500m cpu: 500m

cpu-defaults-pod-2.yamlcpu-defaults-pod-2.yaml

Create the Pod:

View the Pod specification:

The output shows that the Container’s CPU request is set to match its CPU limit. Notice that

the Container was not assigned the default CPU request value of 0.5 cpu.

What if you specify a Container’s request, but not its
limit?

Here’s the configuration file for a Pod that has one Container. The Container specifies a CPU

request, but not a limit:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: default-cpu-demo-2default-cpu-demo-2

specspec::

 containerscontainers::

 -- namename:: default-cpu-demo-2-ctrdefault-cpu-demo-2-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 cpucpu:: ""1"1"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod-2.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod-2.yaml

kubectl get pod default-cpu-demo-2 --output=yaml --namespace=default-cpu-examplekubectl get pod default-cpu-demo-2 --output=yaml --namespace=default-cpu-example

resources:resources:

 limits: limits:

 cpu: "1" cpu: "1"

 requests: requests:

 cpu: "1" cpu: "1"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-defaults-pod-2.yaml

cpu-defaults-pod-3.yamlcpu-defaults-pod-3.yaml

Create the Pod:

View the Pod specification:

The output shows that the Container’s CPU request is set to the value specified in the

Container’s configuration file. The Container’s CPU limit is set to 1 cpu, which is the default

CPU limit for the namespace.

Motivation for default CPU limits and requests

If your namespace has a resource quota, it is helpful to have a default value in place for CPU

limit. Here are two of the restrictions that a resource quota imposes on a namespace:

Every Container that runs in the namespace must have its own CPU limit.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: default-cpu-demo-3default-cpu-demo-3

specspec::

 containerscontainers::

 -- namename:: default-cpu-demo-3-ctrdefault-cpu-demo-3-ctr

 imageimage:: nginxnginx

 resourcesresources::

 requestsrequests::

 cpucpu:: ""0.75"0.75"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod-3.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-defaults-pod-3.yaml

kubectl get pod default-cpu-demo-3 --output=yaml --namespace=default-cpu-examplekubectl get pod default-cpu-demo-3 --output=yaml --namespace=default-cpu-example

resources:resources:

 limits: limits:

 cpu: "1" cpu: "1"

 requests: requests:

 cpu: 750m cpu: 750m

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-defaults-pod-3.yaml

The total amount of CPU used by all Containers in the namespace must not exceed a

specified limit.

If a Container does not specify its own CPU limit, it is given the default limit, and then it can be

allowed to run in a namespace that is restricted by a quota.

What’s next

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/

Configure Minimum and Maximum
Memory Constraints for a Namespace

This page shows how to set minimum and maximum values for memory used by Containers

running in a namespace. You specify minimum and maximum memory values in a LimitRange

object. If a Pod does not meet the constraints imposed by the LimitRange, it cannot be created

in the namespace.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Each node in your cluster must have at least 1 GiB of memory.

Create a namespace

Before you begin

Create a namespace

Create a LimitRange and a Pod

Attempt to create a Pod that exceeds the maximum memory constraint

Attempt to create a Pod that does not meet the minimum memory request

Create a Pod that does not specify any memory request or limit

Enforcement of minimum and maximum memory constraints

Motivation for minimum and maximum memory constraints

Clean up

What’s next

For cluster administrators

For app developers

file:///docs/reference/generated/kubernetes-api/v1.10/#limitrange-v1-core
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Create a LimitRange and a Pod

Here’s the configuration file for a LimitRange:

memory-constraints.yamlmemory-constraints.yaml

Create the LimitRange:

View detailed information about the LimitRange:

The output shows the minimum and maximum memory constraints as expected. But notice

that even though you didn’t specify default values in the configuration file for the LimitRange,

they were created automatically.

kubectl create namespace constraints-mem-examplekubectl create namespace constraints-mem-example

apiVersionapiVersion:: v1v1

kindkind:: LimitRangeLimitRange

metadatametadata::

 namename:: mem-min-max-demo-lrmem-min-max-demo-lr

specspec::

 limitslimits::

 -- maxmax::

 memorymemory:: 1Gi1Gi

 minmin::

 memorymemory:: 500Mi500Mi

 typetype:: ContainerContainer

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-constraints.yaml https://k8s.io/docs/tasks/administer-cluster/memory-constraints.yaml

kubectl get limitrange mem-min-max-demo-lr kubectl get limitrange mem-min-max-demo-lr --namespace--namespace==constraints-mem-example constraints-mem-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-constraints.yaml

Now whenever a Container is created in the constraints-mem-example namespace,

Kubernetes performs these steps:

If the Container does not specify its own memory request and limit, assign the default

memory request and limit to the Container.

Verify that the Container has a memory request that is greater than or equal to 500 MiB.

Verify that the Container has a memory limit that is less than or equal to 1 GiB.

Here’s the configuration file for a Pod that has one Container. The Container manifest

specifies a memory request of 600 MiB and a memory limit of 800 MiB. These satisfy the

minimum and maximum memory constraints imposed by the LimitRange.

memory-constraints-pod.yamlmemory-constraints-pod.yaml

Create the Pod:

 limits: limits:

 - default: - default:

 memory: 1Gi memory: 1Gi

 defaultRequest: defaultRequest:

 memory: 1Gi memory: 1Gi

 max: max:

 memory: 1Gi memory: 1Gi

 min: min:

 memory: 500Mi memory: 500Mi

 type: Container type: Container

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-mem-democonstraints-mem-demo

specspec::

 containerscontainers::

 -- namename:: constraints-mem-demo-ctrconstraints-mem-demo-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""800Mi"800Mi"

 requestsrequests::

 memorymemory:: ""600Mi"600Mi"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-constraints-pod.yaml

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the Container has a memory request of 600 MiB and a memory limit of

800 MiB. These satisfy the constraints imposed by the LimitRange.

Delete your Pod:

Attempt to create a Pod that exceeds the maximum
memory constraint

Here’s the configuration file for a Pod that has one Container. The Container specifies a

memory request of 800 MiB and a memory limit of 1.5 GiB.

memory-constraints-pod-2.yamlmemory-constraints-pod-2.yaml

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod.yaml https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod.yaml

kubectl get pod constraints-mem-demo kubectl get pod constraints-mem-demo --namespace--namespace==constraints-mem-exampleconstraints-mem-example

kubectl get pod constraints-mem-demo kubectl get pod constraints-mem-demo --output--output==yaml yaml --namespace--namespace==constraints-mem-exampleconstraints-mem-example

resourcesresources::

 limitslimits::

 memorymemory:: 800Mi800Mi

 requestsrequests::

 memorymemory:: 600Mi600Mi

kubectl delete pod constraints-mem-demo kubectl delete pod constraints-mem-demo --namespace--namespace==constraints-mem-exampleconstraints-mem-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-constraints-pod-2.yaml

memory-constraints-pod-2.yamlmemory-constraints-pod-2.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container specifies a

memory limit that is too large:

Attempt to create a Pod that does not meet the
minimum memory request

Here’s the configuration file for a Pod that has one Container. The Container specifies a

memory request of 200 MiB and a memory limit of 800 MiB.

memory-constraints-pod-3.yamlmemory-constraints-pod-3.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-mem-demo-2constraints-mem-demo-2

specspec::

 containerscontainers::

 -- namename:: constraints-mem-demo-2-ctrconstraints-mem-demo-2-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""1.5Gi"1.5Gi"

 requestsrequests::

 memorymemory:: ""800Mi"800Mi"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod-2.yaml https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod-2.yaml

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/memory-constraints-pod-2.yaml":Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/memory-constraints-pod-2.yaml":

pods "constraints-mem-demo-2" is forbidden: maximum memory usage per Container is 1Gi, but limit is 1536Mi.pods "constraints-mem-demo-2" is forbidden: maximum memory usage per Container is 1Gi, but limit is 1536Mi.

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-constraints-pod-3.yaml

memory-constraints-pod-3.yamlmemory-constraints-pod-3.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container specifies a

memory request that is too small:

Create a Pod that does not specify any memory
request or limit

Here’s the configuration file for a Pod that has one Container. The Container does not specify a

memory request, and it does not specify a memory limit.

memory-constraints-pod-4.yamlmemory-constraints-pod-4.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-mem-demo-3constraints-mem-demo-3

specspec::

 containerscontainers::

 -- namename:: constraints-mem-demo-3-ctrconstraints-mem-demo-3-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""800Mi"800Mi"

 requestsrequests::

 memorymemory:: ""100Mi"100Mi"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod-3.yaml https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod-3.yaml

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/memory-constraints-pod-3.yaml":Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/memory-constraints-pod-3.yaml":

pods "constraints-mem-demo-3" is forbidden: minimum memory usage per Container is 500Mi, but request is 100Mi.pods "constraints-mem-demo-3" is forbidden: minimum memory usage per Container is 500Mi, but request is 100Mi.

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/memory-constraints-pod-4.yaml

memory-constraints-pod-4.yamlmemory-constraints-pod-4.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that the Pod’s Container has a memory request of 1 GiB and a memory limit

of 1 GiB. How did the Container get those values?

Because your Container did not specify its own memory request and limit, it was given the

default memory request and limit from the LimitRange.

At this point, your Container might be running or it might not be running. Recall that a

prerequisite for this task is that your Nodes have at least 1 GiB of memory. If each of your

Nodes has only 1 GiB of memory, then there is not enough allocatable memory on any Node to

accommodate a memory request of 1 GiB. If you happen to be using Nodes with 2 GiB of

memory, then you probably have enough space to accommodate the 1 GiB request.

Delete your Pod:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-mem-demo-4constraints-mem-demo-4

specspec::

 containerscontainers::

 -- namename:: constraints-mem-demo-4-ctrconstraints-mem-demo-4-ctr

 imageimage:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod-4.yaml https://k8s.io/docs/tasks/administer-cluster/memory-constraints-pod-4.yaml

kubectl get pod constraints-mem-demo-4 --namespace=constraints-mem-example --output=yamlkubectl get pod constraints-mem-demo-4 --namespace=constraints-mem-example --output=yaml

resources:resources:

 limits: limits:

 memory: 1Gi memory: 1Gi

 requests: requests:

 memory: 1Gi memory: 1Gi

kubectl delete pod constraints-mem-demo-4 --namespace=constraints-mem-examplekubectl delete pod constraints-mem-demo-4 --namespace=constraints-mem-example

file:///docs/tasks/administer-cluster/memory-default-namespace/

Enforcement of minimum and maximum memory
constraints

The maximum and minimum memory constraints imposed on a namespace by a LimitRange

are enforced only when a Pod is created or updated. If you change the LimitRange, it does not

affect Pods that were created previously.

Motivation for minimum and maximum memory
constraints

As a cluster administrator, you might want to impose restrictions on the amount of memory

that Pods can use. For example:

Each Node in a cluster has 2 GB of memory. You do not want to accept any Pod that

requests more than 2 GB of memory, because no Node in the cluster can support the

request.

A cluster is shared by your production and development departments. You want to allow

production workloads to consume up to 8 GB of memory, but you want development

workloads to be limited to 512 MB. You create separate namespaces for production and

development, and you apply memory constraints to each namespace.

Clean up

Delete your namespace:

What’s next

For cluster administrators

kubectl delete namespace constraints-mem-examplekubectl delete namespace constraints-mem-example

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/

Configure Minimum and Maximum CPU
Constraints for a Namespace

This page shows how to set minimum and maximum values for the CPU resources used by

Containers and Pods in a namespace. You specify minimum and maximum CPU values in a

LimitRange object. If a Pod does not meet the constraints imposed by the LimitRange, it

cannot be created in the namespace.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Each node in your cluster must have at least 1 CPU.

Before you begin

Create a namespace

Create a LimitRange and a Pod

Delete the Pod

Attempt to create a Pod that exceeds the maximum CPU constraint

Attempt to create a Pod that does not meet the minimum CPU request

Create a Pod that does not specify any CPU request or limit

Enforcement of minimum and maximum CPU constraints

Motivation for minimum and maximum CPU constraints

Clean up

What’s next

For cluster administrators

For app developers

file:///docs/reference/generated/kubernetes-api/v1.10/#limitrange-v1-core
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Create a LimitRange and a Pod

Here’s the configuration file for a LimitRange:

cpu-constraints.yamlcpu-constraints.yaml

Create the LimitRange:

View detailed information about the LimitRange:

The output shows the minimum and maximum CPU constraints as expected. But notice that

even though you didn’t specify default values in the configuration file for the LimitRange, they

kubectl create namespace constraints-cpu-examplekubectl create namespace constraints-cpu-example

apiVersionapiVersion:: v1v1

kindkind:: LimitRangeLimitRange

metadatametadata::

 namename:: cpu-min-max-demo-lrcpu-min-max-demo-lr

specspec::

 limitslimits::

 -- maxmax::

 cpucpu:: ""800m"800m"

 minmin::

 cpucpu:: ""200m"200m"

 typetype:: ContainerContainer

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-constraints.yaml

kubectl get limitrange cpu-min-max-demo-lr kubectl get limitrange cpu-min-max-demo-lr --output--output==yaml yaml --namespace--namespace==constraints-cpu-exampleconstraints-cpu-example

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-constraints.yaml

were created automatically.

Now whenever a Container is created in the constraints-cpu-example namespace, Kubernetes

performs these steps:

If the Container does not specify its own CPU request and limit, assign the default CPU

request and limit to the Container.

Verify that the Container specifies a CPU request that is greater than or equal to 200

millicpu.

Verify that the Container specifies a CPU limit that is less than or equal to 800 millicpu.

Note: When creating a LimitRangeLimitRange object, you can specify limits on huge-pages or

GPUs as well. However, when both defaultdefault and defaultRequestdefaultRequest are specified on

these resources, the two values must be the same.

Here’s the configuration file for a Pod that has one Container. The Container manifest

specifies a CPU request of 500 millicpu and a CPU limit of 800 millicpu. These satisfy the

minimum and maximum CPU constraints imposed by the LimitRange.

cpu-constraints-pod.yamlcpu-constraints-pod.yaml

limitslimits::

-- defaultdefault::

 cpucpu:: 800m800m

 defaultRequestdefaultRequest::

 cpucpu:: 800m800m

 maxmax::

 cpucpu:: 800m800m

 minmin::

 cpucpu:: 200m200m

 typetype:: ContainerContainer

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-constraints-pod.yaml

cpu-constraints-pod.yamlcpu-constraints-pod.yaml

Create the Pod:

Verify that the Pod’s Container is running:

View detailed information about the Pod:

The output shows that the Container has a CPU request of 500 millicpu and CPU limit of 800

millicpu. These satisfy the constraints imposed by the LimitRange.

Delete the Pod

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-cpu-democonstraints-cpu-demo

specspec::

 containerscontainers::

 -- namename:: constraints-cpu-demo-ctrconstraints-cpu-demo-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 cpucpu:: ""800m"800m"

 requestsrequests::

 cpucpu:: ""500m"500m"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod.yaml

kubectl get pod constraints-cpu-demo kubectl get pod constraints-cpu-demo --namespace--namespace==constraints-cpu-exampleconstraints-cpu-example

kubectl get pod constraints-cpu-demo kubectl get pod constraints-cpu-demo --output--output==yaml yaml --namespace--namespace==constraints-cpu-exampleconstraints-cpu-example

resourcesresources::

 limitslimits::

 cpucpu:: 800m800m

 requestsrequests::

 cpucpu:: 500m500m

Attempt to create a Pod that exceeds the maximum
CPU constraint

Here’s the configuration file for a Pod that has one Container. The Container specifies a CPU

request of 500 millicpu and a cpu limit of 1.5 cpu.

cpu-constraints-pod-2.yamlcpu-constraints-pod-2.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container specifies a CPU

limit that is too large:

Attempt to create a Pod that does not meet the
minimum CPU request

kubectl delete pod constraints-cpu-demo kubectl delete pod constraints-cpu-demo --namespace--namespace==constraints-cpu-exampleconstraints-cpu-example

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-cpu-demo-2constraints-cpu-demo-2

specspec::

 containerscontainers::

 -- namename:: constraints-cpu-demo-2-ctrconstraints-cpu-demo-2-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 cpucpu:: ""1.5"1.5"

 requestsrequests::

 cpucpu:: ""500m"500m"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod-2.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod-2.yaml

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/cpu-constraints-pod-2.yaml":Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/cpu-constraints-pod-2.yaml":

pods "constraints-cpu-demo-2" is forbidden: maximum cpu usage per Container is 800m, but limit is 1500m.pods "constraints-cpu-demo-2" is forbidden: maximum cpu usage per Container is 800m, but limit is 1500m.

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-constraints-pod-2.yaml

Here’s the configuration file for a Pod that has one Container. The Container specifies a CPU

request of 100 millicpu and a CPU limit of 800 millicpu.

cpu-constraints-pod-3.yamlcpu-constraints-pod-3.yaml

Attempt to create the Pod:

The output shows that the Pod does not get created, because the Container specifies a CPU

request that is too small:

Create a Pod that does not specify any CPU request
or limit

Here’s the configuration file for a Pod that has one Container. The Container does not specify a

CPU request, and it does not specify a CPU limit.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-cpu-demo-4constraints-cpu-demo-4

specspec::

 containerscontainers::

 -- namename:: constraints-cpu-demo-4-ctrconstraints-cpu-demo-4-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 cpucpu:: ""800m"800m"

 requestsrequests::

 cpucpu:: ""100m"100m"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod-3.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod-3.yaml

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/cpu-constraints-pod-3.yaml":Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/cpu-constraints-pod-3.yaml":

pods "constraints-cpu-demo-4" is forbidden: minimum cpu usage per Container is 200m, but request is 100m.pods "constraints-cpu-demo-4" is forbidden: minimum cpu usage per Container is 200m, but request is 100m.

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-constraints-pod-3.yaml

cpu-constraints-pod-4.yamlcpu-constraints-pod-4.yaml

Create the Pod:

View detailed information about the Pod:

The output shows that the Pod’s Container has a CPU request of 800 millicpu and a CPU limit

of 800 millicpu. How did the Container get those values?

Because your Container did not specify its own CPU request and limit, it was given the default

CPU request and limit from the LimitRange.

At this point, your Container might be running or it might not be running. Recall that a

prerequisite for this task is that your Nodes have at least 1 CPU. If each of your Nodes has

only 1 CPU, then there might not be enough allocatable CPU on any Node to accommodate a

request of 800 millicpu. If you happen to be using Nodes with 2 CPU, then you probably have

enough CPU to accommodate the 800 millicpu request.

Delete your Pod:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: constraints-cpu-demo-4constraints-cpu-demo-4

specspec::

 containerscontainers::

 -- namename:: constraints-cpu-demo-4-ctrconstraints-cpu-demo-4-ctr

 imageimage:: vish/stressvish/stress

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod-4.yaml https://k8s.io/docs/tasks/administer-cluster/cpu-constraints-pod-4.yaml

kubectl get pod constraints-cpu-demo-4 --namespace=constraints-cpu-example --output=yamlkubectl get pod constraints-cpu-demo-4 --namespace=constraints-cpu-example --output=yaml

resourcesresources::

 limitslimits::

 cpucpu:: 800m800m

 requestsrequests::

 cpucpu:: 800m800m

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cpu-constraints-pod-4.yaml
file:///docs/tasks/administer-cluster/cpu-default-namespace/

Enforcement of minimum and maximum CPU
constraints

The maximum and minimum CPU constraints imposed on a namespace by a LimitRange are

enforced only when a Pod is created or updated. If you change the LimitRange, it does not

affect Pods that were created previously.

Motivation for minimum and maximum CPU
constraints

As a cluster administrator, you might want to impose restrictions on the CPU resources that

Pods can use. For example:

Each Node in a cluster has 2 CPU. You do not want to accept any Pod that requests more

than 2 CPU, because no Node in the cluster can support the request.

A cluster is shared by your production and development departments. You want to allow

production workloads to consume up to 3 CPU, but you want development workloads to

be limited to 1 CPU. You create separate namespaces for production and development,

and you apply CPU constraints to each namespace.

Clean up

Delete your namespace:

What’s next

kubectl delete pod constraints-cpu-demo-4 --namespace=constraints-cpu-examplekubectl delete pod constraints-cpu-demo-4 --namespace=constraints-cpu-example

kubectl delete namespace constraints-cpu-examplekubectl delete namespace constraints-cpu-example

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

Configure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/

Configure Memory and CPU Quotas for a
Namespace

This page shows how to set quotas for the total amount memory and CPU that can be used by

all Containers running in a namespace. You specify quotas in a ResourceQuota object.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Each node in your cluster must have at least 1 GiB of memory.

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Before you begin

Create a namespace

Create a ResourceQuota

Create a Pod

Attempt to create a second Pod

Discussion

Clean up

What’s next

For cluster administrators

For app developers

file:///docs/reference/generated/kubernetes-api/v1.10/#resourcequota-v1-core
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Create a ResourceQuota

Here is the configuration file for a ResourceQuota object:

quota-mem-cpu.yamlquota-mem-cpu.yaml

Create the ResourceQuota:

View detailed information about the ResourceQuota:

The ResourceQuota places these requirements on the quota-mem-cpu-example namespace:

Every Container must have a memory request, memory limit, cpu request, and cpu limit.

The memory request total for all Containers must not exceed 1 GiB.

The memory limit total for all Containers must not exceed 2 GiB.

The CPU request total for all Containers must not exceed 1 cpu.

kubectl create namespace quota-mem-cpu-examplekubectl create namespace quota-mem-cpu-example

apiVersionapiVersion:: v1v1

kindkind:: ResourceQuotaResourceQuota

metadatametadata::

 namename:: mem-cpu-demomem-cpu-demo

specspec::

 hardhard::

 requests.cpurequests.cpu:: ""1"1"

 requests.memoryrequests.memory:: 1Gi1Gi

 limits.cpulimits.cpu:: ""2"2"

 limits.memorylimits.memory:: 2Gi2Gi

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu.yaml https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu.yaml

kubectl get resourcequota mem-cpu-demo kubectl get resourcequota mem-cpu-demo --namespace--namespace==quota-mem-cpu-example quota-mem-cpu-example --output--output

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-mem-cpu.yaml

The CPU limit total for all Containers must not exceed 2 cpu.

Create a Pod

Here is the configuration file for a Pod:

quota-mem-cpu-pod.yamlquota-mem-cpu-pod.yaml

Create the Pod:

Verify that the Pod’s Container is running:

Once again, view detailed information about the ResourceQuota:

The output shows the quota along with how much of the quota has been used. You can see

that the memory and CPU requests and limits for your Pod do not exceed the quota.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: quota-mem-cpu-demoquota-mem-cpu-demo

specspec::

 containerscontainers::

 -- namename:: quota-mem-cpu-demo-ctrquota-mem-cpu-demo-ctr

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""800Mi"800Mi"

 cpucpu:: ""800m"800m"

 requestsrequests::

 memorymemory:: ""600Mi"600Mi"

 cpucpu:: ""400m"400m"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu-pod.yaml https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu-pod.yaml

kubectl get pod quota-mem-cpu-demo --namespace=quota-mem-cpu-examplekubectl get pod quota-mem-cpu-demo --namespace=quota-mem-cpu-example

kubectl get resourcequota mem-cpu-demo --namespace=quota-mem-cpu-example --output=yamlkubectl get resourcequota mem-cpu-demo --namespace=quota-mem-cpu-example --output=yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-mem-cpu-pod.yaml

Attempt to create a second Pod

Here is the configuration file for a second Pod:

quota-mem-cpu-pod-2.yamlquota-mem-cpu-pod-2.yaml

In the configuration file, you can see that the Pod has a memory request of 700 MiB. Notice

that the sum of the used memory request and this new memory request exceeds the memory

request quota. 600 MiB + 700 MiB > 1 GiB.

Attempt to create the Pod:

status:status:

 hard: hard:

 limits.cpu: "2" limits.cpu: "2"

 limits.memory: 2Gi limits.memory: 2Gi

 requests.cpu: "1" requests.cpu: "1"

 requests.memory: 1Gi requests.memory: 1Gi

 used: used:

 limits.cpu: 800m limits.cpu: 800m

 limits.memory: 800Mi limits.memory: 800Mi

 requests.cpu: 400m requests.cpu: 400m

 requests.memory: 600Mi requests.memory: 600Mi

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: quota-mem-cpu-demo-2quota-mem-cpu-demo-2

specspec::

 containerscontainers::

 -- namename:: quota-mem-cpu-demo-2-ctrquota-mem-cpu-demo-2-ctr

 imageimage:: redisredis

 resourcesresources::

 limitslimits::

 memorymemory:: ""1Gi"1Gi"

 cpucpu:: ""800m"800m"

 requestsrequests::

 memorymemory:: ""700Mi"700Mi"

 cpucpu:: ""400m"400m"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu-pod-2.yaml https://k8s.io/docs/tasks/administer-cluster/quota-mem-cpu-pod-2.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-mem-cpu-pod-2.yaml

The second Pod does not get created. The output shows that creating the second Pod would

cause the memory request total to exceed the memory request quota.

Discussion

As you have seen in this exercise, you can use a ResourceQuota to restrict the memory request

total for all Containers running in a namespace. You can also restrict the totals for memory

limit, cpu request, and cpu limit.

If you want to restrict individual Containers, instead of totals for all Containers, use a

LimitRange.

Clean up

Delete your namespace:

What’s next

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure a Pod Quota for a Namespace

Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/quota-mem-cpu-pod-2.yaml":Error from server (Forbidden): error when creating "docs/tasks/administer-cluster/quota-mem-cpu-pod-2.yaml":

pods "quota-mem-cpu-demo-2" is forbidden: exceeded quota: mem-cpu-demo,pods "quota-mem-cpu-demo-2" is forbidden: exceeded quota: mem-cpu-demo,

requested: requests.memory=700Mi,used: requests.memory=600Mi, limited: requests.memory=1Girequested: requests.memory=700Mi,used: requests.memory=600Mi, limited: requests.memory=1Gi

kubectl delete namespace quota-mem-cpu-examplekubectl delete namespace quota-mem-cpu-example

file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/

Configure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

file:///docs/tasks/administer-cluster/quota-api-object/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/

Configure a Pod Quota for a Namespace

This page shows how to set a quota for the total number of Pods that can run in a namespace.

You specify quotas in a ResourceQuota object.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Create a ResourceQuota

Before you begin

Create a namespace

Create a ResourceQuota

Clean up

What’s next

For cluster administrators

For app developers

kubectl create namespace quota-pod-examplekubectl create namespace quota-pod-example

file:///docs/reference/generated/kubernetes-api/v1.10/#resourcequota-v1-core
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Here is the configuration file for a ResourceQuota object:

quota-pod.yamlquota-pod.yaml

Create the ResourceQuota:

View detailed information about the ResourceQuota:

The output shows that the namespace has a quota of two Pods, and that currently there are

no Pods; that is, none of the quota is used.

Here is the configuration file for a Deployment:

quota-pod-deployment.yamlquota-pod-deployment.yaml

apiVersionapiVersion:: v1v1

kindkind:: ResourceQuotaResourceQuota

metadatametadata::

 namename:: pod-demopod-demo

specspec::

 hardhard::

 podspods:: ""2"2"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-pod.yaml https://k8s.io/docs/tasks/administer-cluster/quota-pod.yaml

kubectl get resourcequota pod-demo kubectl get resourcequota pod-demo --namespace--namespace==quota-pod-example quota-pod-example --output--output==yamlyaml

specspec::

 hardhard::

 podspods:: ""2"2"

statusstatus::

 hardhard::

 podspods:: ""2"2"

 usedused::

 podspods:: ""0"0"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-pod.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-pod-deployment.yaml

quota-pod-deployment.yamlquota-pod-deployment.yaml

In the configuration file,

replicas:replicas:

33 tells Kubernetes to attempt to create three Pods, all

running the same application.

Create the Deployment:

View detailed information about the Deployment:

The output shows that even though the Deployment specifies three replicas, only two Pods

were created because of the quota.

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: pod-quota-demopod-quota-demo

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 purposepurpose:: quota-demoquota-demo

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 purposepurpose:: quota-demoquota-demo

 specspec::

 containerscontainers::

 -- namename:: pod-quota-demopod-quota-demo

 imageimage:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-pod-deployment.yaml https://k8s.io/docs/tasks/administer-cluster/quota-pod-deployment.yaml

kubectl get deployment pod-quota-demo kubectl get deployment pod-quota-demo --namespace--namespace==quota-pod-example quota-pod-example --output--output==

Clean up

Delete your namespace:

What’s next

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure Quotas for API Objects

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

specspec::

 replicasreplicas:: 33

......

statusstatus::

 availableReplicasavailableReplicas:: 22

......

lastUpdateTimelastUpdateTime:: 2017-07-07T20:57:05Z2017-07-07T20:57:05Z

 messagemessage:: ''unableunable toto createcreate pods:pods: podspods "pod-quota-demo-1650323038-""pod-quota-demo-1650323038-" isis forbidden:forbidden:

 exceededexceeded quota:quota: pod-demo,pod-demo, requested:requested: pods=1,pods=1, used:used: pods=2,pods=2, limited:limited: pods=2'pods=2'

kubectl delete namespace quota-pod-examplekubectl delete namespace quota-pod-example

file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-api-object/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/

Configure Quality of Service for Pods

file:///docs/tasks/configure-pod-container/quality-service-pod/

Configure Quotas for API Objects

This page shows how to configure quotas for API objects, including PersistentVolumeClaims

and Services. A quota restricts the number of objects, of a particular type, that can be created

in a namespace. You specify quotas in a ResourceQuota object.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Create a namespace

Create a namespace so that the resources you create in this exercise are isolated from the rest

of your cluster.

Before you begin

Create a namespace

Create a ResourceQuota

Create a PersistentVolumeClaim

Attempt to create a second PersistentVolumeClaim

Notes

Clean up

What’s next

For cluster administrators

For app developers

kubectl create namespace quota-object-examplekubectl create namespace quota-object-example

file:///docs/reference/generated/kubernetes-api/v1.10/#resourcequota-v1-core
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Create a ResourceQuota

Here is the configuration file for a ResourceQuota object:

quota-objects.yamlquota-objects.yaml

Create the ResourceQuota:

View detailed information about the ResourceQuota:

The output shows that in the quota-object-example namespace, there can be at most one

PersistentVolumeClaim, at most two Services of type LoadBalancer, and no Services of type

NodePort.

apiVersionapiVersion:: v1v1

kindkind:: ResourceQuotaResourceQuota

metadatametadata::

 namename:: object-quota-demoobject-quota-demo

specspec::

 hardhard::

 persistentvolumeclaimspersistentvolumeclaims:: ""1"1"

 services.loadbalancersservices.loadbalancers:: ""2"2"

 services.nodeportsservices.nodeports:: ""0"0"

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-objects.yaml https://k8s.io/docs/tasks/administer-cluster/quota-objects.yaml

kubectl get resourcequota object-quota-demo kubectl get resourcequota object-quota-demo --namespace--namespace==quota-object-example quota-object-example

statusstatus::

 hardhard::

 persistentvolumeclaimspersistentvolumeclaims:: ""1"1"

 services.loadbalancersservices.loadbalancers:: ""2"2"

 services.nodeportsservices.nodeports:: ""0"0"

 usedused::

 persistentvolumeclaimspersistentvolumeclaims:: ""0"0"

 services.loadbalancersservices.loadbalancers:: ""0"0"

 services.nodeportsservices.nodeports:: ""0"0"

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-objects.yaml

Create a PersistentVolumeClaim

Here is the configuration file for a PersistentVolumeClaim object:

quota-objects-pvc.yamlquota-objects-pvc.yaml

Create the PersistentVolumeClaim:

Verify that the PersistentVolumeClaim was created:

The output shows that the PersistentVolumeClaim exists and has status Pending:

Attempt to create a second PersistentVolumeClaim

Here is the configuration file for a second PersistentVolumeClaim:

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: pvc-quota-demopvc-quota-demo

specspec::

 storageClassNamestorageClassName:: manualmanual

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 3Gi3Gi

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-objects-pvc.yaml https://k8s.io/docs/tasks/administer-cluster/quota-objects-pvc.yaml

kubectl get persistentvolumeclaims kubectl get persistentvolumeclaims --namespace--namespace==quota-object-examplequota-object-example

NAME STATUSNAME STATUS

pvc-quota-demo Pendingpvc-quota-demo Pending

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-objects-pvc.yaml

quota-objects-pvc-2.yamlquota-objects-pvc-2.yaml

Attempt to create the second PersistentVolumeClaim:

The output shows that the second PersistentVolumeClaim was not created, because it would

have exceeded the quota for the namespace.

Notes

These are the strings used to identify API resources that can be constrained by quotas:

String API Object

"pods" Pod

"services Service

"replicationcontrollers" ReplicationController

"resourcequotas" ResourceQuota

"secrets" Secret

"configmaps" ConfigMap

"persistentvolumeclaims" PersistentVolumeClaim

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: pvc-quota-demo-2pvc-quota-demo-2

specspec::

 storageClassNamestorageClassName:: manualmanual

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 4Gi4Gi

kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/quota-objects-pvc-2.yaml https://k8s.io/docs/tasks/administer-cluster/quota-objects-pvc-2.yaml

persistentvolumeclaims "pvc-quota-demo-2" is forbidden:persistentvolumeclaims "pvc-quota-demo-2" is forbidden:

exceeded quota: object-quota-demo, requested: persistentvolumeclaims=1,exceeded quota: object-quota-demo, requested: persistentvolumeclaims=1,

used: persistentvolumeclaims=1, limited: persistentvolumeclaims=1used: persistentvolumeclaims=1, limited: persistentvolumeclaims=1

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/quota-objects-pvc-2.yaml

"services.nodeports" Service of type NodePort

"services.loadbalancers" Service of type LoadBalancer

Clean up

Delete your namespace:

What’s next

For cluster administrators

Configure Default Memory Requests and Limits for a Namespace

Configure Default CPU Requests and Limits for a Namespace

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

Configure Memory and CPU Quotas for a Namespace

Configure a Pod Quota for a Namespace

For app developers

Assign Memory Resources to Containers and Pods

Assign CPU Resources to Containers and Pods

Configure Quality of Service for Pods

kubectl delete namespace quota-object-examplekubectl delete namespace quota-object-example

file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/tasks/administer-cluster/cpu-default-namespace/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/
file:///docs/tasks/administer-cluster/quota-memory-cpu-namespace/
file:///docs/tasks/administer-cluster/quota-pod-namespace/
file:///docs/tasks/configure-pod-container/assign-memory-resource/
file:///docs/tasks/configure-pod-container/assign-cpu-resource/
file:///docs/tasks/configure-pod-container/quality-service-pod/

Advertise Extended Resources for a Node

This page shows how to specify extended resources for a Node. Extended resources allow

cluster administrators to advertise node-level resources that would otherwise be unknown to

Kubernetes.

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 stable

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Get the names of your Nodes

Choose one of your Nodes to use for this exercise.

Before you begin

Get the names of your Nodes

Advertise a new extended resource on one of your Nodes

Discussion

Storage example

Clean up

What’s next

For application developers

For cluster administrators

kubectl get nodeskubectl get nodes

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Advertise a new extended resource on one of your
Nodes

To advertise a new extended resource on a Node, send an HTTP PATCH request to the

Kubernetes API server. For example, suppose one of your Nodes has four dongles attached.

Here’s an example of a PATCH request that advertises four dongle resources for your Node.

Note that Kubernetes does not need to know what a dongle is or what a dongle is for. The

preceding PATCH request just tells Kubernetes that your Node has four things that you call

dongles.

Start a proxy, so that you can easily send requests to the Kubernetes API server:

In another command window, send the HTTP PATCH request. Replace <your-node-name><your-node-name>

with the name of your Node:

Note: In the preceding request, ~1~1 is the encoding for the character / in the patch path. The

operation path value in JSON-Patch is interpreted as a JSON-Pointer. For more details, see

PATCH /api/v1/nodes/<your-node-name>/status HTTP/1.1PATCH /api/v1/nodes/<your-node-name>/status HTTP/1.1

Accept: application/jsonAccept: application/json

Content-Type: application/json-patch+jsonContent-Type: application/json-patch+json

Host: k8s-master:8080Host: k8s-master:8080

[[

 {{

 "op""op": : "add""add",,

 "path""path": : "/status/capacity/example.com~1dongle""/status/capacity/example.com~1dongle",,

 "value""value": : "4""4"

 }}

]]

kubectl proxykubectl proxy

curl curl --header--header "Content-Type: application/json-patch+json""Content-Type: application/json-patch+json" \\

--request--request PATCH PATCH \\

--data--data '[{"op": "add", "path": "/status/capacity/example.com~1dongle", "value": "4"}]''[{"op": "add", "path": "/status/capacity/example.com~1dongle", "value": "4"}]'

http://localhost:8001/api/v1/nodes/<your-node-name>/statushttp://localhost:8001/api/v1/nodes/<your-node-name>/status

IETF RFC 6901, section 3.

The output shows that the Node has a capacity of 4 dongles:

Describe your Node:

Once again, the output shows the dongle resource:

Now, application developers can create Pods that request a certain number of dongles. See

Assign Extended Resources to a Container.

Discussion

Extended resources are similar to memory and CPU resources. For example, just as a Node

has a certain amount of memory and CPU to be shared by all components running on the

Node, it can have a certain number of dongles to be shared by all components running on the

Node. And just as application developers can create Pods that request a certain amount of

memory and CPU, they can create Pods that request a certain number of dongles.

Extended resources are opaque to Kubernetes; Kubernetes does not know anything about

what they are. Kubernetes knows only that a Node has a certain number of them. Extended

resources must be advertised in integer amounts. For example, a Node can advertise four

dongles, but not 4.5 dongles.

Storage example

"capacity": {"capacity": {

 "alpha.kubernetes.io/nvidia-gpu": "0", "alpha.kubernetes.io/nvidia-gpu": "0",

 "cpu": "2", "cpu": "2",

 "memory": "2049008Ki", "memory": "2049008Ki",

 "example.com/dongle": "4", "example.com/dongle": "4",

kubectl describe node <your-node-name>kubectl describe node <your-node-name>

CapacityCapacity::

 alpha.kubernetes.io/nvidia-gpualpha.kubernetes.io/nvidia-gpu:: 00

 cpucpu:: 22

 memorymemory:: 2049008Ki2049008Ki

 example.com/dongleexample.com/dongle:: 44

https://tools.ietf.org/html/rfc6901
file:///docs/tasks/configure-pod-container/extended-resource/

Suppose a Node has 800 GiB of a special kind of disk storage. You could create a name for the

special storage, say example.com/special-storage. Then you could advertise it in chunks of a

certain size, say 100 GiB. In that case, your Node would advertise that it has eight resources of

type example.com/special-storage.

If you want to allow arbitrary requests for special storage, you could advertise special storage

in chunks of size 1 byte. In that case, you would advertise 800Gi resources of type

example.com/special-storage.

Then a Container could request any number of bytes of special storage, up to 800Gi.

Clean up

Here is a PATCH request that removes the dongle advertisement from a Node.

Start a proxy, so that you can easily send requests to the Kubernetes API server:

CapacityCapacity::

 example.com/special-storageexample.com/special-storage:: 88

CapacityCapacity::

 example.com/special-storageexample.com/special-storage:: 800Gi800Gi

PATCH /api/v1/nodes/<your-node-name>/status HTTP/1.1PATCH /api/v1/nodes/<your-node-name>/status HTTP/1.1

Accept: application/jsonAccept: application/json

Content-Type: application/json-patch+jsonContent-Type: application/json-patch+json

Host: k8s-master:8080Host: k8s-master:8080

[[

 {{

 "op""op": : "remove""remove",,

 "path""path": : "/status/capacity/example.com~1dongle""/status/capacity/example.com~1dongle",,

 }}

]]

kubectl proxykubectl proxy

In another command window, send the HTTP PATCH request. Replace <your-node-name><your-node-name>

with the name of your Node:

Verify that the dongle advertisement has been removed:

What’s next

For application developers

Assign Extended Resources to a Container

For cluster administrators

Configure Minimum and Maximum Memory Constraints for a Namespace

Configure Minimum and Maximum CPU Constraints for a Namespace

curl curl --header--header "Content-Type: application/json-patch+json""Content-Type: application/json-patch+json" \\

--request--request PATCH PATCH \\

--data--data '[{"op": "remove", "path": "/status/capacity/example.com~1dongle"}]''[{"op": "remove", "path": "/status/capacity/example.com~1dongle"}]' \\

http://localhost:8001/api/v1/nodes/<your-node-name>/statushttp://localhost:8001/api/v1/nodes/<your-node-name>/status

kubectl describe node <your-node-name> | grep donglekubectl describe node <your-node-name> | grep dongle

file:///docs/tasks/configure-pod-container/extended-resource/
file:///docs/tasks/administer-cluster/memory-constraint-namespace/
file:///docs/tasks/administer-cluster/cpu-constraint-namespace/

Control CPU Management Policies on the
Node

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Kubernetes keeps many aspects of how pods execute on nodes abstracted from the user.

This is by design. However, some workloads require stronger guarantees in terms of latency

and/or performance in order to operate acceptably. The kubelet provides methods to enable

more complex workload placement policies while keeping the abstraction free from explicit

placement directives.

CPU Management Policies

By default, the kubelet uses CFS quota to enforce pod CPU limits. When the node runs many

CPU-bound pods, the workload can move to different CPU cores depending on whether the

pod is throttled and which CPU cores are available at scheduling time. Many workloads are

not sensitive to this migration and thus work fine without any intervention.

However, in workloads where CPU cache affinity and scheduling latency significantly affect

workload performance, the kubelet allows alternative CPU management policies to determine

some placement preferences on the node.

Configuration

The CPU Manager is an alpha feature in Kubernetes v1.8. It was enabled by default as a beta

feature since v1.10.

The CPU Manager policy is set with the --cpu-manager-policy--cpu-manager-policy kubelet option. There are two

supported policies:

CPU Management Policies

Configuration

None policy

Static policy

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

nonenone : the default, which represents the existing scheduling behavior.

staticstatic : allows pods with certain resource characteristics to be granted increased CPU

affinity and exclusivity on the node.

The CPU manager periodically writes resource updates through the CRI in order to reconcile in-

memory CPU assignments with cgroupfs. The reconcile frequency is set through a new

Kubelet configuration value --cpu-manager-reconcile-period--cpu-manager-reconcile-period . If not specified, it defaults to

the same duration as --node-status-update-frequency--node-status-update-frequency .

None policy

The nonenone policy explicitly enables the existing default CPU affinity scheme, providing no

affinity beyond what the OS scheduler does automatically. Limits on CPU usage for

Guaranteed pods are enforced using CFS quota.

Static policy

The staticstatic policy allows containers in GuaranteedGuaranteed pods with integer CPU requestsrequests

access to exclusive CPUs on the node. This exclusivity is enforced using the cpuset cgroup

controller.

Note: System services such as the container runtime and the kubelet itself can continue

to run on these exclusive CPUs. The exclusivity only extends to other pods.

Note: The alpha version of this policy does not guarantee static exclusive allocations

across Kubelet restarts.

This policy manages a shared pool of CPUs that initially contains all CPUs in the node. The

amount of exclusively allocatable CPUs is equal to the total number of CPUs in the node minus

any CPU reservations by the kubelet --kube-reserved--kube-reserved or --system-reserved--system-reserved options.

CPUs reserved by these options are taken, in integer quantity, from the initial shared pool in

ascending order by physical core ID. This shared pool is the set of CPUs on which any

containers in BestEffortBestEffort and BurstableBurstable pods run. Containers in GuaranteedGuaranteed pods with

fractional CPU requestsrequests also run on CPUs in the shared pool. Only containers that are both

file:///docs/tasks/configure-pod-container/quality-service-pod/
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

part of a GuaranteedGuaranteed pod and have integer CPU requestsrequests are assigned exclusive CPUs.

Note: The kubelet requires a CPU reservation greater than zero be made using either

--kube-reserved--kube-reserved and/or --system-reserved--system-reserved when the static policy is enabled. This

is because zero CPU reservation would allow the shared pool to become empty.

As GuaranteedGuaranteed pods whose containers fit the requirements for being statically assigned are

scheduled to the node, CPUs are removed from the shared pool and placed in the cpuset for

the container. CFS quota is not used to bound the CPU usage of these containers as their

usage is bound by the scheduling domain itself. In others words, the number of CPUs in the

container cpuset is equal to the integer CPU limitlimit specified in the pod spec. This static

assignment increases CPU affinity and decreases context switches due to throttling for the

CPU-bound workload.

Consider the containers in the following pod specs:

This pod runs in the BestEffortBestEffort QoS class because no resource requestsrequests or limitslimits are

specified. It runs in the shared pool.

This pod runs in the BurstableBurstable QoS class because resource requestsrequests do not equal limitslimits

and the cpucpu quantity is not specified. It runs in the shared pool.

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 requestsrequests::

 memorymemory:: ""100Mi"100Mi"

This pod runs in the BurstableBurstable QoS class because resource requestsrequests do not equal limitslimits

. It runs in the shared pool.

This pod runs in the GuaranteedGuaranteed QoS class because requestsrequests are equal to limitslimits . And the

container’s resource limit for the CPU resource is an integer greater than or equal to one. The

nginxnginx container is granted 2 exclusive CPUs.

This pod runs in the GuaranteedGuaranteed QoS class because requestsrequests are equal to limitslimits . But the

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""2"2"

 requestsrequests::

 memorymemory:: ""100Mi"100Mi"

 cpucpu:: ""1"1"

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""2"2"

 requestsrequests::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""2"2"

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""1.5"1.5"

 requestsrequests::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""1.5"1.5"

container’s resource limit for the CPU resource is a fraction. It runs in the shared pool.

This pod runs in the GuaranteedGuaranteed QoS class because only limitslimits are specified and

requestsrequests are set equal to limitslimits when not explicitly specified. And the container’s resource

limit for the CPU resource is an integer greater than or equal to one. The nginxnginx container is

granted 2 exclusive CPUs.

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 resourcesresources::

 limitslimits::

 memorymemory:: ""200Mi"200Mi"

 cpucpu:: ""2"2"

Access Clusters Using the Kubernetes
API

This page shows how to access clusters using the Kubernetes API.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Accessing the cluster API

Accessing for the first time with kubectl

When accessing the Kubernetes API for the first time, use the Kubernetes command-line tool,

kubectlkubectl .

Before you begin

Accessing the cluster API

Accessing for the first time with kubectl

Directly accessing the REST API

Using kubectl proxy

Without kubectl proxy

Programmatic access to the API

Go client

Python client

Other languages

Accessing the API from a Pod

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

To access a cluster, you need to know the location of the cluster and have credentials to

access it. Typically, this is automatically set-up when you work through a Getting started guide,

or someone else setup the cluster and provided you with credentials and a location.

Check the location and credentials that kubectl knows about with this command:

Many of the examples provide an introduction to using kubectl. Complete documentation is

found in the kubectl manual.

Directly accessing the REST API

kubectl handles locating and authenticating to the API server. If you want to directly access the

REST API with an http client like curlcurl or wgetwget , or a browser, there are multiple ways you can

locate and authenticate against the API server:

1. Run kubectl in proxy mode (recommended). This method is recommended, since it uses

the stored apiserver location and verifies the identity of the API server using a self-signed

cert. No man-in-the-middle (MITM) attack is possible using this method.

2. Alternatively, you can provide the location and credentials directly to the http client. This

works with client code that is confused by proxies. To protect against man in the middle

attacks, you’ll need to import a root cert into your browser.

Using the Go or Python client libraries provides accessing kubectl in proxy mode.

Using kubectl proxy

The following command runs kubectl in a mode where it acts as a reverse proxy. It handles

locating the API server and authenticating.

Run it like this:

See kubectl proxy for more details.

Then you can explore the API with curl, wget, or a browser, like so:

$ $ kubectl config viewkubectl config view

$ $ kubectl proxy kubectl proxy --port--port==8080 &8080 &

file:///docs/setup/
https://github.com/kubernetes/examples/tree/master/
file:///docs/reference/kubectl/overview/
file:///docs/user-guide/kubectl/v1.10/#proxy

Without kubectl proxy

It is possible to avoid using kubectl proxy by passing an authentication token directly to the API

server, like this:

The above example uses the --insecure--insecure flag. This leaves it subject to MITM attacks. When

kubectl accesses the cluster it uses a stored root certificate and client certificates to access

the server. (These are installed in the ~/.kube~/.kube directory). Since cluster certificates are

typically self-signed, it may take special configuration to get your http client to use root

certificate.

On some clusters, the API server does not require authentication; it may serve on localhost, or

be protected by a firewall. There is not a standard for this. Configuring Access to the API

describes how a cluster admin can configure this. Such approaches may conflict with future

$ $ curl http://localhost:8080/api/curl http://localhost:8080/api/

{{

 "versions""versions": : [[

 "v1""v1"

]],,

 "serverAddressByClientCIDRs""serverAddressByClientCIDRs": : [[

 {{

 "clientCIDR""clientCIDR": : "0.0.0.0/0""0.0.0.0/0",,

 "serverAddress""serverAddress": : "10.0.1.149:443""10.0.1.149:443"

 }}

]]

}}

$ APISERVER$ APISERVER==$($(kubectl config view | kubectl config view | grep grep server | cut server | cut -f-f 2- 2- -d-d ":"":" | tr | tr -d-d " "" "

$ TOKEN$ TOKEN==$($(kubectl describe secret kubectl describe secret $($(kubectl get secrets | kubectl get secrets | grep grep default | cut default | cut

$ $ curl curl $APISERVER$APISERVER/api /api --header--header "Authorization: Bearer "Authorization: Bearer $TOKEN$TOKEN"" --insecure--insecure

{{

 "kind""kind": : "APIVersions""APIVersions",,

 "versions""versions": : [[

 "v1""v1"

]],,

 "serverAddressByClientCIDRs""serverAddressByClientCIDRs": : [[

 {{

 "clientCIDR""clientCIDR": : "0.0.0.0/0""0.0.0.0/0",,

 "serverAddress""serverAddress": : "10.0.1.149:443""10.0.1.149:443"

 }}

]]

}}

file:///docs/admin/accessing-the-api

high-availability support.

Programmatic access to the API

Kubernetes officially supports client libraries for Go and Python.

Go client

To get the library, run the following command:

go get k8s.io/client-go/<versiongo get k8s.io/client-go/<version

number>/kubernetesnumber>/kubernetes See

https://github.com/kubernetes/client-go to see which versions are supported.

Write an application atop of the client-go clients. Note that client-go defines its own API

objects, so if needed, please import API definitions from client-go rather than from the

main repository, e.g., import "k8s.io/client-go/1.4/pkg/api/v1"import "k8s.io/client-go/1.4/pkg/api/v1" is correct.

The Go client can use the same kubeconfig file as the kubectl CLI does to locate and

authenticate to the API server. See this example:

If the application is deployed as a Pod in the cluster, please refer to the next section.

Python client

To use Python client, run the following command: pip install kubernetespip install kubernetes See Python

Client Library page for more installation options.

importimport ((

 "fmt""fmt"

 "k8s.io/client-go/1.4/kubernetes""k8s.io/client-go/1.4/kubernetes"

 "k8s.io/client-go/1.4/pkg/api/v1""k8s.io/client-go/1.4/pkg/api/v1"

 "k8s.io/client-go/1.4/tools/clientcmd""k8s.io/client-go/1.4/tools/clientcmd"

))

......

 // uses the current context in kubeconfig// uses the current context in kubeconfig
 configconfig,, __ :=:= clientcmdclientcmd..BuildConfigFromFlagsBuildConfigFromFlags(("""",, "path to kubeconfig""path to kubeconfig"))

 // creates the clientset// creates the clientset
 clientsetclientset,, __:=:= kuberneteskubernetes..NewForConfigNewForConfig((configconfig))

 // access the API to list pods// access the API to list pods
 podspods,, __:=:= clientsetclientset..CoreV1CoreV1()()..PodsPods((""""))..ListList((v1v1..ListOptionsListOptions{}){})

 fmtfmt..PrintfPrintf(("There are %d pods in the cluster"There are %d pods in the cluster\n\n"",, lenlen((podspods..ItemsItems))))

......

https://github.com/kubernetes/client-go
file:///docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://git.k8s.io/client-go/examples/out-of-cluster-client-configuration/main.go
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python

The Python client can use the same kubeconfig file as the kubectl CLI does to locate and

authenticate to the API server. See this example:

Other languages

There are client libraries for accessing the API from other languages. See documentation for

other libraries for how they authenticate.

Accessing the API from a Pod

When accessing the API from a Pod, locating and authenticating to the API server are

somewhat different.

The easiest way to use the Kubernetes API from a Pod is to use one of the official client

libraries. These libraries can automatically discover the API server and authenticate.

While running in a Pod, the Kubernetes apiserver is accessible via a Service named

kuberneteskubernetes in the defaultdefault namespace. Therefore, Pods can use the kubernetes.defaultkubernetes.default

hostname to query the API server. Official client libraries do this automatically.

From within a Pod, the recommended way to authenticate to the API server is with a service

account credential. By default, a Pod is associated with a service account, and a credential

(token) for that service account is placed into the filesystem tree of each container in that Pod,

at /var/run/secrets/kubernetes.io/serviceaccount/token/var/run/secrets/kubernetes.io/serviceaccount/token .

If available, a certificate bundle is placed into the filesystem tree of each container at

/var/run/secrets/kubernetes.io/serviceaccount/ca.crt/var/run/secrets/kubernetes.io/serviceaccount/ca.crt , and should be used to verify

the serving certificate of the API server.

Finally, the default namespace to be used for namespaced API operations is placed in a file at

/var/run/secrets/kubernetes.io/serviceaccount/namespace/var/run/secrets/kubernetes.io/serviceaccount/namespace in each container.

fromfrom kuberneteskubernetes importimport clientclient,, configconfig

configconfig..load_kube_configload_kube_config()()

v1v1==clientclient..CoreV1ApiCoreV1Api()()

printprint(("Listing pods with their IPs:""Listing pods with their IPs:"))

retret == v1v1..list_pod_for_all_namespaceslist_pod_for_all_namespaces((watchwatch==FalseFalse))

forfor ii inin retret..itemsitems::

 printprint((""%%ss\t\t%%ss\t\t%%s"s" %% ((ii..statusstatus..pod_ippod_ip,, ii..metadatametadata..namespacenamespace,, ii..metadatametadata..namename

file:///docs/concepts/cluster-administration/authenticate-across-clusters-kubeconfig/
https://github.com/kubernetes-client/python/tree/master/examples/example1.py
file:///docs/reference/client-libraries/
file:///docs/reference/client-libraries/
file:///docs/user-guide/service-accounts

From within a Pod, the recommended ways to connect to the Kubernetes API are:

Use one of the official client libraries as they handle API host discovery and authentication

automatically. For Go client, the rest.InClusterConfig()rest.InClusterConfig() function assists with this. See

an example here.

If you would like to query the API without an official client library, you can run

kubectl proxykubectl proxy as the command of a new sidecar container in the Pod. This way,

kubectl proxykubectl proxy will authenticate to the API and expose it on the localhostlocalhost interface of

the Pod, so that other containers in the Pod can use it directly.

In each case, the service account credentials of the Pod are used to communicate securely

with the API server.

file:///docs/reference/client-libraries/
https://git.k8s.io/client-go/examples/in-cluster-client-configuration/main.go
file:///docs/tasks/inject-data-application/define-command-argument-container/

Access Services Running on Clusters

This page shows how to connect to services running on the Kubernetes cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Accessing services running on the cluster

In Kubernetes, nodes, pods and services all have their own IPs. In many cases, the node IPs,

pod IPs, and some service IPs on a cluster will not be routable, so they will not be reachable

from a machine outside the cluster, such as your desktop machine.

Ways to connect

You have several options for connecting to nodes, pods and services from outside the cluster:

Access services through public IPs.

Before you begin

Accessing services running on the cluster

Ways to connect

Discovering builtin services

Manually constructing apiserver proxy URLs

Examples

Using web browsers to access services running on the cluster

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/admin/node
file:///docs/user-guide/pods
file:///docs/user-guide/services

Use a service with type NodePortNodePort or LoadBalancerLoadBalancer to make the service reachable

outside the cluster. See the services and kubectl expose documentation.

Depending on your cluster environment, this may just expose the service to your

corporate network, or it may expose it to the internet. Think about whether the service

being exposed is secure. Does it do its own authentication?

Place pods behind services. To access one specific pod from a set of replicas, such

as for debugging, place a unique label on the pod and create a new service which

selects this label.

In most cases, it should not be necessary for application developer to directly access

nodes via their nodeIPs.

Access services, nodes, or pods using the Proxy Verb.

Does apiserver authentication and authorization prior to accessing the remote service.

Use this if the services are not secure enough to expose to the internet, or to gain

access to ports on the node IP, or for debugging.

Proxies may cause problems for some web applications.

Only works for HTTP/HTTPS.

Described here.

Access from a node or pod in the cluster.

Run a pod, and then connect to a shell in it using kubectl exec. Connect to other

nodes, pods, and services from that shell.

Some clusters may allow you to ssh to a node in the cluster. From there you may be

able to access cluster services. This is a non-standard method, and will work on some

clusters but not others. Browsers and other tools may or may not be installed. Cluster

DNS may not work.

Discovering builtin services

Typically, there are several services which are started on a cluster by kube-system. Get a list of

these with the

kubectl cluster-kubectl cluster-

infoinfo command:

file:///docs/user-guide/services
file:///docs/user-guide/kubectl/v1.10/#expose
file:///docs/user-guide/kubectl/v1.10/#exec

This shows the proxy-verb URL for accessing each service. For example, this cluster has

cluster-level logging enabled (using Elasticsearch), which can be reached at

https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/logging/proxy/

if suitable credentials are passed, or through a kubectl proxy at, for example:

http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/logging/proxy/

. (See Access Clusters Using the Kubernetes API for how to pass credentials or use kubectl

proxy.)

Manually constructing apiserver proxy URLs

As mentioned above, you use the

kubectl cluster-kubectl cluster-

infoinfo command to retrieve the service’s

proxy URL. To create proxy URLs that include service endpoints, suffixes, and parameters, you

simply append to the service’s proxy URL: http://http:// kubernetes_master_addresskubernetes_master_address

/api/v1/namespaces//api/v1/namespaces/ namespace_namenamespace_name /services//services/ service_name[:port_name]service_name[:port_name] /proxy/proxy

If you haven’t specified a name for your port, you don’t have to specify port_name in the URL

Examples

To access the Elasticsearch service endpoint _search?q=user:kimchy_search?q=user:kimchy , you would use:

http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-

logging/proxy/_search?q=user:kimchylogging/proxy/_search?q=user:kimchy

To access the Elasticsearch cluster health information _cluster/health?pretty=true_cluster/health?pretty=true ,

you would use:

$ $ kubectl cluster-infokubectl cluster-info

 Kubernetes master is running at https://104.197.5.247 Kubernetes master is running at https://104.197.5.247

 elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy

 kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kibana-logging/proxy kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kibana-logging/proxy

 kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kube-dns/proxy kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kube-dns/proxy

 grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy

 heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy

file:///docs/tasks/administer-cluster/access-cluster-api/#accessing-the-cluster-api

https://104.197.5.247/api/v1/namespaces/kube-https://104.197.5.247/api/v1/namespaces/kube-

system/services/elasticsearch-logging/proxy/_cluster/health?pretty=truesystem/services/elasticsearch-logging/proxy/_cluster/health?pretty=true

Using web browsers to access services running on the cluster

You may be able to put an apiserver proxy URL into the address bar of a browser. However:

Web browsers cannot usually pass tokens, so you may need to use basic (password) auth.

Apiserver can be configured to accept basic auth, but your cluster may not be configured

to accept basic auth.

Some web apps may not work, particularly those with client side javascript that construct

URLs in a way that is unaware of the proxy path prefix.

 {{

 "cluster_name""cluster_name" :: "kubernetes_logging""kubernetes_logging",,

 "status""status" :: "yellow""yellow",,

 "timed_out""timed_out" :: falsefalse,,

 "number_of_nodes""number_of_nodes" :: 11,,

 "number_of_data_nodes""number_of_data_nodes" :: 11,,

 "active_primary_shards""active_primary_shards" :: 55,,

 "active_shards""active_shards" :: 55,,

 "relocating_shards""relocating_shards" :: 00,,

 "initializing_shards""initializing_shards" :: 00,,

 "unassigned_shards""unassigned_shards" :: 55

 }}

Securing a Cluster

This document covers topics related to protecting a cluster from accidental or malicious

access and provides recommendations on overall security.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Before you begin

Controlling access to the Kubernetes API

Use Transport Level Security (TLS) for all API traffic

API Authentication

API Authorization

Controlling access to the Kubelet

Controlling the capabilities of a workload or user at runtime

Limiting resource usage on a cluster

Controlling what privileges containers run with

Restricting network access

Restricting cloud metadata API access

Controlling which nodes pods may access

Protecting cluster components from compromise

Restrict access to etcd

Enable audit logging

Restrict access to alpha or beta features

Rotate infrastructure credentials frequently

Review third party integrations before enabling them

Encrypt secrets at rest

Receiving alerts for security updates and reporting vulnerabilities

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Controlling access to the Kubernetes API

As Kubernetes is entirely API driven, controlling and limiting who can access the cluster and

what actions they are allowed to perform is the first line of defense.

Use Transport Level Security (TLS) for all API traffic

Kubernetes expects that all API communication in the cluster is encrypted by default with TLS,

and the majority of installation methods will allow the necessary certificates to be created and

distributed to the cluster components. Note that some components and installation methods

may enable local ports over HTTP and administrators should familiarize themselves with the

settings of each component to identify potentially unsecured traffic.

API Authentication

Choose an authentication mechanism for the API servers to use that matches the common

access patterns when you install a cluster. For instance, small single user clusters may wish to

use a simple certificate or static Bearer token approach. Larger clusters may wish to integrate

an existing OIDC or LDAP server that allow users to be subdivided into groups.

All API clients must be authenticated, even those that are part of the infrastructure like nodes,

proxies, the scheduler, and volume plugins. These clients are typically service accounts or use

x509 client certificates, and they are created automatically at cluster startup or are setup as

part of the cluster installation.

Consult the authentication reference document for more information.

API Authorization

Once authenticated, every API call is also expected to pass an authorization check. Kubernetes

ships an integrated Role-Based Access Control (RBAC) component that matches an incoming

user or group to a set of permissions bundled into roles. These permissions combine verbs

(get, create, delete) with resources (pods, services, nodes) and can be namespace or cluster

scoped. A set of out of the box roles are provided that offer reasonable default separation of

responsibility depending on what actions a client might want to perform. It is recommended

that you use the Node and RBAC authorizers together, in combination with the NodeRestriction

admission plugin.

file:///docs/admin/service-accounts-admin/
file:///docs/admin/authentication/
file:///docs/admin/authorization/rbac/
file:///docs/admin/authorization/node/
file:///docs/admin/authorization/rbac/
file:///docs/admin/admission-controllers/#noderestriction

As with authentication, simple and broad roles may be appropriate for smaller clusters, but as

more users interact with the cluster, it may become necessary to separate teams into separate

namespaces with more limited roles.

With authorization, it is important to understand how updates on one object may cause

actions in other places. For instance, a user may not be able to create pods directly, but

allowing them to create a deployment, which creates pods on their behalf, will let them create

those pods indirectly. Likewise, deleting a node from the API will result in the pods scheduled

to that node being terminated and recreated on other nodes. The out of the box roles represent

a balance between flexibility and the common use cases, but more limited roles should be

carefully reviewed to prevent accidental escalation. You can make roles specific to your use

case if the out-of-box ones don’t meet your needs.

Consult the authorization reference section for more information.

Controlling access to the Kubelet

Kubelets expose HTTPS endpoints which grant powerful control over the node and containers.

By default Kubelets allow unauthenticated access to this API.

Production clusters should enable Kubelet authentication and authorization.

Consult the Kubelet authentication/authorization reference for more information.

Controlling the capabilities of a workload or user at
runtime

Authorization in Kubernetes is intentionally high level, focused on coarse actions on resources.

More powerful controls exist as policies to limit by use case how those objects act on the

cluster, themselves, and other resources.

Limiting resource usage on a cluster

Resource quota limits the number or capacity of resources granted to a namespace. This is

most often used to limit the amount of CPU, memory, or persistent disk a namespace can

allocate, but can also control how many pods, services, or volumes exist in each namespace.

Limit ranges restrict the maximum or minimum size of some of the resources above, to

file:///docs/admin/authorization/
file:///docs/admin/kubelet-authentication-authorization
file:///docs/concepts/policy/resource-quotas/
file:///docs/tasks/administer-cluster/memory-default-namespace/

prevent users from requesting unreasonably high or low values for commonly reserved

resources like memory, or to provide default limits when none are specified.

Controlling what privileges containers run with

A pod definition contains a security context that allows it to request access to running as a

specific Linux user on a node (like root), access to run privileged or access the host network,

and other controls that would otherwise allow it to run unfettered on a hosting node. Pod

security policies can limit which users or service accounts can provide dangerous security

context settings. For example, pod security policies can limit volume mounts, especially

hostPathhostPath , which are aspects of a pod that should be controlled.

Generally, most application workloads need limited access to host resources so they can

successfully run as a root process (uid 0) without access to host information. However,

considering the privileges associated with the root user, you should write application

containers to run as a non-root user. Similarly, administrators who wish to prevent client

applications from escaping their containers should use a restrictive pod security policy.

Restricting network access

The network policies for a namespace allows application authors to restrict which pods in

other namespaces may access pods and ports within their namespaces. Many of the

supported Kubernetes networking providers now respect network policy.

Quota and limit ranges can also be used to control whether users may request node ports or

load balanced services, which on many clusters can control whether those users applications

are visible outside of the cluster.

Additional protections may be available that control network rules on a per plugin or per

environment basis, such as per-node firewalls, physically separating cluster nodes to prevent

cross talk, or advanced networking policy.

Restricting cloud metadata API access

Cloud platforms (AWS, Azure, GCE, etc.) often expose metadata services locally to instances.

By default these APIs are accessible by pods running on an instance and can contain cloud

credentials for that node, or provisioning data such as kubelet credentials. These credentials

can be used to escalate within the cluster or to other cloud services under the same account.

When running Kubernetes on a cloud platform limit permissions given to instance credentials,

file:///docs/tasks/configure-pod-container/security-context/
file:///docs/concepts/policy/pod-security-policy/
file:///docs/tasks/administer-cluster/declare-network-policy/
file:///docs/concepts/cluster-administration/networking/

use network policies to restrict pod access to the metadata API, and avoid using provisioning

data to deliver secrets.

Controlling which nodes pods may access

By default, there are no restrictions on which nodes may run a pod. Kubernetes offers a rich set

of policies for controlling placement of pods onto nodes and the taint based pod placement

and eviction that are available to end users. For many clusters use of these policies to separate

workloads can be a convention that authors adopt or enforce via tooling.

As an administrator, a beta admission plugin PodNodeSelectorPodNodeSelector can be used to force pods

within a namespace to default or require a specific node selector, and if end users cannot alter

namespaces, this can strongly limit the placement of all of the pods in a specific workload.

Protecting cluster components from compromise

This section describes some common patterns for protecting clusters from compromise.

Restrict access to etcd

Write access to the etcd backend for the API is equivalent to gaining root on the entire cluster,

and read access can be used to escalate fairly quickly. Administrators should always use

strong credentials from the API servers to their etcd server, such as mutual auth via TLS client

certificates, and it is often recommended to isolate the etcd servers behind a firewall that only

the API servers may access.

CAUTION: Allowing other components within the cluster to access the master etcd instance

with read or write access to the full keyspace is equivalent to granting cluster-admin access.

Using separate etcd instances for non-master components or using etcd ACLs to restrict read

and write access to a subset of the keyspace is strongly recommended.

Enable audit logging

The audit logger is a beta feature that records actions taken by the API for later analysis in the

event of a compromise. It is recommended to enable audit logging and archive the audit file on

a secure server.

Restrict access to alpha or beta features

file:///docs/tasks/administer-cluster/declare-network-policy/
file:///docs/concepts/configuration/assign-pod-node/
file:///docs/concepts/configuration/taint-and-toleration/
file:///docs/tasks/debug-application-cluster/audit/

Alpha and beta Kubernetes features are in active development and may have limitations or

bugs that result in security vulnerabilities. Always assess the value an alpha or beta feature

may provide against the possible risk to your security posture. When in doubt, disable features

you do not use.

Rotate infrastructure credentials frequently

The shorter the lifetime of a secret or credential the harder it is for an attacker to make use of

that credential. Set short lifetimes on certificates and automate their rotation. Use an

authentication provider that can control how long issued tokens are available and use short

lifetimes where possible. If you use service account tokens in external integrations, plan to

rotate those tokens frequently. For example, once the bootstrap phase is complete, a bootstrap

token used for setting up nodes should be revoked or its authorization removed.

Review third party integrations before enabling them

Many third party integrations to Kubernetes may alter the security profile of your cluster. When

enabling an integration, always review the permissions that an extension requests before

granting it access. For example, many security integrations may request access to view all

secrets on your cluster which is effectively making that component a cluster admin. When in

doubt, restrict the integration to functioning in a single namespace if possible.

Components that create pods may also be unexpectedly powerful if they can do so inside

namespaces like the kube-systemkube-system namespace, because those pods can gain access to

service account secrets or run with elevated permissions if those service accounts are granted

access to permissive pod security policies.

Encrypt secrets at rest

In general, the etcd database will contain any information accessible via the Kubernetes API

and may grant an attacker significant visibility into the state of your cluster. Always encrypt

your backups using a well reviewed backup and encryption solution, and consider using full

disk encryption where possible.

Kubernetes 1.7 contains encryption at rest, an alpha feature that will encrypt SecretSecret

resources in etcd, preventing parties that gain access to your etcd backups from viewing the

content of those secrets. While this feature is currently experimental, it may offer an additional

level of defense when backups are not encrypted or an attacker gains read access to etcd.

file:///docs/concepts/policy/pod-security-policy/
file:///docs/tasks/administer-cluster/encrypt-data/

Receiving alerts for security updates and reporting
vulnerabilities

Join the kubernetes-announce group for emails about security announcements. See the

security reporting page for more on how to report vulnerabilities.

https://groups.google.com/forum/#!forum/kubernetes-announce
file:///security/

Using Sysctls in a Kubernetes Cluster

This document describes how sysctls are used within a Kubernetes cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Listing all Sysctl Parameters

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime.

Parameters are available via the /proc/sys//proc/sys/ virtual process file system. The parameters

cover various subsystems such as:

kernel (common prefix: kernel.kernel.)

networking (common prefix: net.net.)

virtual memory (common prefix: vm.vm.)

MDADM (common prefix: dev.dev.)

Before you begin

Listing all Sysctl Parameters

Enabling Unsafe Sysctls

Setting Sysctls for a Pod

PodSecurityPolicy Annotations

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

More subsystems are described in Kernel docs.

To get a list of all parameters, you can run

Enabling Unsafe Sysctls

Sysctls are grouped into safe and unsafe sysctls. In addition to proper namespacing a safe

sysctl must be properly isolated between pods on the same node. This means that setting a

safe sysctl for one pod

must not have any influence on any other pod on the node

must not allow to harm the node’s health

must not allow to gain CPU or memory resources outside of the resource limits of a pod.

By far, most of the namespaced sysctls are not necessarily considered safe. The following

sysctls are supported in the safe set:

kernel.shm_rmid_forcedkernel.shm_rmid_forced ,

net.ipv4.ip_local_port_rangenet.ipv4.ip_local_port_range ,

net.ipv4.tcp_syncookiesnet.ipv4.tcp_syncookies .

Note: The example net.ipv4.tcp_syncookiesnet.ipv4.tcp_syncookies is not namespaced on Linux kernel

version 4.4 or lower.

This list will be extended in future Kubernetes versions when the kubelet supports better

isolation mechanisms.

All safe sysctls are enabled by default.

All unsafe sysctls are disabled by default and must be allowed manually by the cluster admin

on a per-node basis. Pods with disabled unsafe sysctls will be scheduled, but will fail to launch.

With the warning above in mind, the cluster admin can allow certain unsafe sysctls for very

$ $ sudo sudo sysctl sysctl -a-a

https://www.kernel.org/doc/Documentation/sysctl/README

special situations like e.g. high-performance or real-time application tuning. Unsafe sysctls are

enabled on a node-by-node basis with a flag of the kubelet, e.g.:

For minikube, this can be done via the extra-configextra-config flag:

Only namespaced sysctls can be enabled this way.

Setting Sysctls for a Pod

A number of sysctls are namespaced in today’s Linux kernels. This means that they can be set

independently for each pod on a node. Being namespaced is a requirement for sysctls to be

accessible in a pod context within Kubernetes.

The following sysctls are known to be namespaced:

kernel.shm*kernel.shm* ,

kernel.msg*kernel.msg* ,

kernel.semkernel.sem ,

fs.mqueue.*fs.mqueue.* ,

net.*net.* .

Sysctls which are not namespaced are called node-level and must be set manually by the

cluster admin, either by means of the underlying Linux distribution of the nodes (e.g. via

/etc/sysctls.conf/etc/sysctls.conf) or using a DaemonSet with privileged containers.

The sysctl feature is an alpha API. Therefore, sysctls are set using annotations on pods. They

apply to all containers in the same pod.

Here is an example, with different annotations for safe and unsafe sysctls:

$ $ kubelet kubelet --experimental-allowed-unsafe-sysctls--experimental-allowed-unsafe-sysctls \\

 'kernel.msg*,net.ipv4.route.min_pmtu''kernel.msg*,net.ipv4.route.min_pmtu'

$ $ minikube start minikube start --extra-config--extra-config=="kubelet.AllowedUnsafeSysctls=kernel.msg*,net.ipv4.route.min_pmtu""kubelet.AllowedUnsafeSysctls=kernel.msg*,net.ipv4.route.min_pmtu"

Warning: Due to their nature of being unsafe, the use of unsafe sysctls is at-your-own-

risk and can lead to severe problems like wrong behavior of containers, resource

shortage or complete breakage of a node.

It is good practice to consider nodes with special sysctl settings as tainted within a cluster, and

only schedule pods onto them which need those sysctl settings. It is suggested to use the

Kubernetes taints and toleration feature to implement this.

A pod with the unsafe sysctls will fail to launch on any node which has not enabled those two

unsafe sysctls explicitly. As with node-level sysctls it is recommended to use taints and

toleration feature or taints on nodes to schedule those pods onto the right nodes.

PodSecurityPolicy Annotations

The use of sysctl in pods can be controlled via annotation on the PodSecurityPolicy.

Sysctl annotation represents a whitelist of allowed safe and unsafe sysctls in a pod spec. It’s a

comma-separated list of plain sysctl names or sysctl patterns (which end in **). The string **

matches all sysctls.

Here is an example, it authorizes binding user creating pod with corresponding sysctls.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: sysctl-examplesysctl-example

 annotationsannotations::

 security.alpha.kubernetes.io/sysctlssecurity.alpha.kubernetes.io/sysctls:: kernel.shm_rmid_forced=1kernel.shm_rmid_forced=1

 security.alpha.kubernetes.io/unsafe-sysctlssecurity.alpha.kubernetes.io/unsafe-sysctls:: net.ipv4.route.min_pmtu=1000,kernel.msgmax=1 2 3net.ipv4.route.min_pmtu=1000,kernel.msgmax=1 2 3

specspec::

file:///docs/user-guide/kubectl/v1.10/#taint
file:///docs/user-guide/kubectl/v1.10/#taint
file:///docs/concepts/configuration/taint-and-toleration/

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: PodSecurityPolicyPodSecurityPolicy

metadatametadata::

 namename:: sysctl-pspsysctl-psp

 annotationsannotations::

 security.alpha.kubernetes.io/sysctlssecurity.alpha.kubernetes.io/sysctls:: ''net.ipv4.route.*,kernel.msg*'net.ipv4.route.*,kernel.msg*'

specspec::

Encrypting Secret Data at Rest

This page shows how to enable and configure encryption of secret data at rest.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Kubernetes version 1.7.0 or later is required

etcd v3 or later is required

Encryption at rest is alpha in 1.7.0 which means it may change without notice. Users may

be required to decrypt their data prior to upgrading to 1.8.0.

Configuration and determining whether encryption at
rest is already enabled

Before you begin

Configuration and determining whether encryption at rest is already enabled

Understanding the encryption at rest configuration.

Providers:

Encrypting your data

Verifying that data is encrypted

Ensure all secrets are encrypted

Rotating a decryption key

Decrypting all data

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

The kube-apiserverkube-apiserver process accepts an argument

--experimental-encryption-provider-config--experimental-encryption-provider-config that controls how API data is encrypted in

etcd. An example configuration is provided below.

Understanding the encryption at rest configuration.

Each resourcesresources array item is a separate config and contains a complete configuration. The

resources.resourcesresources.resources field is an array of Kubernetes resource names (resourceresource or

resource.groupresource.group) that should be encrypted. The providersproviders array is an ordered list of the

possible encryption providers. Only one provider type may be specified per entry (identityidentity or

aescbcaescbc may be provided, but not both in the same item).

The first provider in the list is used to encrypt resources going into storage. When reading

resources from storage each provider that matches the stored data attempts to decrypt the

data in order. If no provider can read the stored data due to a mismatch in format or secret key,

an error is returned which prevents clients from accessing that resource.

IMPORTANT: If any resource is not readable via the encryption config (because keys were

kindkind:: EncryptionConfigEncryptionConfig

apiVersionapiVersion:: v1v1

resourcesresources::

 -- resourcesresources::

 -- secretssecrets

 providersproviders::

 -- identityidentity:: {}{}

 -- aesgcmaesgcm::

 keyskeys::

 -- namename:: key1key1

 secretsecret:: c2VjcmV0IGlzIHNlY3VyZQ==c2VjcmV0IGlzIHNlY3VyZQ==

 -- namename:: key2key2

 secretsecret:: dGhpcyBpcyBwYXNzd29yZA==dGhpcyBpcyBwYXNzd29yZA==

 -- aescbcaescbc::

 keyskeys::

 -- namename:: key1key1

 secretsecret:: c2VjcmV0IGlzIHNlY3VyZQ==c2VjcmV0IGlzIHNlY3VyZQ==

 -- namename:: key2key2

 secretsecret:: dGhpcyBpcyBwYXNzd29yZA==dGhpcyBpcyBwYXNzd29yZA==

 -- secretboxsecretbox::

 keyskeys::

 -- namename:: key1key1

 secretsecret:: YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY=YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY=

changed), the only recourse is to delete that key from the underlying etcd directly. Calls that

attempt to read that resource will fail until it is deleted or a valid decryption key is provided.

Providers:

Name Encryption Strength Speed
Key
Length

Other
Considerations

identityidentity None N/A N/A N/A

Resources written
as-is without
encryption. When
set as the first
provider, the
resource will be
decrypted as new
values are written.

aescbcaescbc AES-CBC with PKCS#7 padding Strongest Fast 32-byte

The recommended
choice for
encryption at rest
but may be slightly
slower than

secretboxsecretbox .

secretboxsecretbox XSalsa20 and Poly1305 Strong Faster 32-byte

A newer standard
and may not be
considered
acceptable in
environments that
require high levels
of review.

aesgcmaesgcm AES-GCM with random nonce

Must be
rotated
every
200k
writes

Fastest
16, 24,
or 32-
byte

Is not
recommended for
use except when
an automated key
rotation scheme is
implemented.

kmskms

Uses envelope encryption scheme: Data is
encrypted by data encryption keys (DEKs)
using AES-CBC with PKCS#7 padding, DEKs
are encrypted by key encryption keys (KEKs)
according to configuration in Key
Management Service (KMS)

Strongest Fast
32-
bytes

The recommended
choice for using a
third party tool for
key management.
Simplifies key
rotation, with a new
DEK generated for
each encryption,
and KEK rotation
controlled by the
user. Configure the
KMS provider

Each provider supports multiple keys - the keys are tried in order for decryption, and if the

provider is the first provider, the first key is used for encryption.

Encrypting your data

file:///docs/tasks/administer-cluster/kms-provider/

Create a new encryption config file:

To create a new secret perform the following steps:

1. Generate a 32 byte random key and base64 encode it. If you’re on Linux or Mac OS X, run

the following command:

2. Place that value in the secret field.

3. Set the --experimental-encryption-provider-config--experimental-encryption-provider-config flag on the kube-apiserverkube-apiserver to

point to the location of the config file.

4. Restart your API server.

IMPORTANT: Your config file contains keys that can decrypt content in etcd, so you must

properly restrict permissions on your masters so only the user who runs the kube-apiserver

can read it.

Verifying that data is encrypted

Data is encrypted when written to etcd. After restarting your kube-apiserverkube-apiserver , any newly

created or updated secret should be encrypted when stored. To check, you can use the

etcdctletcdctl command line program to retrieve the contents of your secret.

1. Create a new secret called secret1secret1 in the defaultdefault namespace:

kindkind:: EncryptionConfigEncryptionConfig

apiVersionapiVersion:: v1v1

resourcesresources::

 -- resourcesresources::

 -- secretssecrets

 providersproviders::

 -- aescbcaescbc::

 keyskeys::

 -- namename:: key1key1

 secretsecret:: <BASE 64 ENCODED SECRET><BASE 64 ENCODED SECRET>

 -- identityidentity:: {}{}

 head -c 32 /dev/urandom | base64 head -c 32 /dev/urandom | base64

2. Using the etcdctl commandline, read that secret out of etcd:

where [...][...] must be the additional arguments for connecting to the etcd server.

3. Verify the stored secret is prefixed with k8s:enc:aescbc:v1:k8s:enc:aescbc:v1: which indicates the

aescbcaescbc provider has encrypted the resulting data.

4. Verify the secret is correctly decrypted when retrieved via the API:

should match

mykey:mykey:

mydatamydata

Ensure all secrets are encrypted

Since secrets are encrypted on write, performing an update on a secret will encrypt that

content.

The command above reads all secrets and then updates them to apply server side encryption.

If an error occurs due to a conflicting write, retry the command. For larger clusters, you may

wish to subdivide the secrets by namespace or script an update.

Rotating a decryption key

Changing the secret without incurring downtime requires a multi step operation, especially in

 kubectl create secret generic secret1 -n default --from-literal=mykey=mydata kubectl create secret generic secret1 -n default --from-literal=mykey=mydata

 ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] | hexdump -C ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] | hexdump -C

 kubectl describe secret secret1 -n default kubectl describe secret secret1 -n default

kubectl get secrets --all-namespaces -o json | kubectl replace -f -kubectl get secrets --all-namespaces -o json | kubectl replace -f -

the presence of a highly available deployment where multiple kube-apiserverkube-apiserver processes are

running.

1. Generate a new key and add it as the second key entry for the current provider on all

servers

2. Restart all kube-apiserverkube-apiserver processes to ensure each server can decrypt using the new

key

3. Make the new key the first entry in the keyskeys array so that it is used for encryption in the

config

4. Restart all kube-apiserverkube-apiserver processes to ensure each server now encrypts using the new

key

5. Run

kubectl get secrets --all-namespaces -o json | kubectl replace -fkubectl get secrets --all-namespaces -o json | kubectl replace -f

-- to

encrypt all existing secrets with the new key

6. Remove the old decryption key from the config after you back up etcd with the new key in

use and update all secrets

With a single kube-apiserverkube-apiserver , step 2 may be skipped.

Decrypting all data

To disable encryption at rest place the identityidentity provider as the first entry in the config:

kindkind:: EncryptionConfigEncryptionConfig

apiVersionapiVersion:: v1v1

resourcesresources::

 -- resourcesresources::

 -- secretssecrets

 providersproviders::

 -- identityidentity:: {}{}

 -- aescbcaescbc::

 keyskeys::

 -- namename:: key1key1

 secretsecret:: <BASE 64 ENCODED SECRET><BASE 64 ENCODED SECRET>

and restart all kube-apiserverkube-apiserver processes. Then run the command

kubectl get secrets --all-namespaces -o json | kubectl replace -fkubectl get secrets --all-namespaces -o json | kubectl replace -f

-- to force all

secrets to be decrypted.

Operating etcd clusters for Kubernetes

etcd is a consistent and highly-available key value store used as Kubernetes’ backing store for

all cluster data.

Always have a backup plan for etcd’s data for your Kubernetes cluster. For in-depth

information on etcd, see etcd documentation.

Prerequisites

Run etcd as a cluster of odd members.

etcd is a leader-based distributed system. Ensure that the leader periodically send

heartbeats on time to all followers to keep the cluster stable.

Ensure that no resource starvation occurs.

Performance and stability of the cluster is sensitive to network and disk IO. Any resource

starvation can lead to heartbeat timeout, causing instability of the cluster. An unstable

etcd indicates that no leader is elected. Under such circumstances, a cluster cannot make

any changes to its current state, which implies no new pods can be scheduled.

Keeping stable etcd clusters is critical to the stability of Kubernetes clusters. Therefore,

run etcd clusters on dedicated machines or isolated environments for guaranteed

resource requirements.

Resource requirements

Operating etcd with limited resources is suitable only for testing purposes. For deploying in

production, advanced hardware configuration is required. Before deploying etcd in production,

see resource requirement reference documentation.

Starting Kubernetes API server

https://github.com/coreos/etcd/blob/master/Documentation/docs.md
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/hardware.md#hardware-recommendations
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/hardware.md#example-hardware-configurations

This section covers starting a Kubernetes API server with an etcd cluster in the deployment.

Single-node etcd cluster

Use a single-node etcd cluster only for testing purpose.

1. Run the following:

2. Start Kubernetes API server with the flag --etcd-servers=$PRIVATE_IP:2379--etcd-servers=$PRIVATE_IP:2379 .

Replace PRIVATE_IPPRIVATE_IP with your etcd client IP.

Multi-node etcd cluster

For durability and high availability, run etcd as a multi-node cluster in production and back it up

periodically. A five-member cluster is recommended in production. For more information, see

FAQ Documentation.

Configure an etcd cluster either by static member information or by dynamic discovery. For

more information on clustering, see etcd Clustering Documentation.

For an example, consider a five-member etcd cluster running with the following client URLs:

http://$IP1:2379http://$IP1:2379 , http://$IP2:2379http://$IP2:2379 , http://$IP3:2379http://$IP3:2379 , http://$IP4:2379http://$IP4:2379 , and

http://$IP5:2379http://$IP5:2379 . To start a Kubernetes API server:

1. Run the following:

2. Start Kubernetes API servers with the flag

--etcd-servers=$IP1:2379, $IP2:2379, $IP3:2379, $IP4:2379, $IP5:2379--etcd-servers=$IP1:2379, $IP2:2379, $IP3:2379, $IP4:2379, $IP5:2379 .

Replace IPIP with your client IP addresses.

Multi-node etcd cluster with load balancer

 ./etcd --listen-client-urls=http://$PRIVATE_IP:2379 --advertise-client-urls=http://$PRIVATE_IP:2379 ./etcd --listen-client-urls=http://$PRIVATE_IP:2379 --advertise-client-urls=http://$PRIVATE_IP:2379

./etcd --listen-client-urls=http://$IP1:2379, http://$IP2:2379, http://$IP3:2379, http://$IP4:2379, http://$IP5:2379 --advertise-client-urls=http://$IP1:2379, http://$IP2:2379, http://$IP3:2379, http://$IP4:2379, http://$IP5:2379./etcd --listen-client-urls=http://$IP1:2379, http://$IP2:2379, http://$IP3:2379, http://$IP4:2379, http://$IP5:2379 --advertise-client-urls=http://$IP1:2379, http://$IP2:2379, http://$IP3:2379, http://$IP4:2379, http://$IP5:2379

https://github.com/coreos/etcd/blob/master/Documentation/faq.md#what-is-failure-tolerance
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering.md

To run a load balancing etcd cluster:

1. Set up an etcd cluster.

2. Configure a load balancer in front of the etcd cluster. For example, let the address of the

load balancer be LBLB .

3. Start Kubernetes API Servers with the flag --etcd-servers=$LB:2379--etcd-servers=$LB:2379 .

Securing etcd clusters

Access to etcd is equivalent to root permission in the cluster so ideally only the API server

should have access to it. Considering the sensitivity of the data, it is recommended to grant

permission to only those nodes that require access to etcd clusters.

To secure etcd, either set up firewall rules or use the security features provided by etcd. etcd

security features depend on x509 Public Key Infrastructure (PKI). To begin, establish secure

communication channels by generating a key and certificate pair. For example, use key pairs

peer.keypeer.key and peer.certpeer.cert for securing communication between etcd members, and

client.keyclient.key and client.certclient.cert for securing communication between etcd and its clients. See

the example scripts provided by the etcd project to generate key pairs and CA files for client

authentication.

Securing communication

To configure etcd with secure peer communication, specify flags

--peer-key-file=peer.key--peer-key-file=peer.key and --peer-cert-file=peer.cert--peer-cert-file=peer.cert , and use https as URL

schema.

Similarly, to configure etcd with secure client communication, specify flags

--key-file=k8sclient.key--key-file=k8sclient.key and --cert-file=k8sclient.cert--cert-file=k8sclient.cert , and use https as URL

schema.

Limiting access of etcd clusters

After configuring secure communication, restrict the access of etcd cluster to only the

Kubernetes API server. Use TLS authentication to do so.

https://github.com/coreos/etcd/tree/master/hack/tls-setup

For example, consider key pairs k8sclient.keyk8sclient.key and k8sclient.certk8sclient.cert that are trusted by the

CA etcd.caetcd.ca . When etcd is configured with --client-cert-auth--client-cert-auth along with TLS, it verifies

the certificates from clients by using system CAs or the CA passed in by --trusted-ca-file--trusted-ca-file

flag. Specifying flags --client-cert-auth=true--client-cert-auth=true and --trusted-ca-file=etcd.ca--trusted-ca-file=etcd.ca will

restrict the access to clients with the certificate k8sclient.certk8sclient.cert .

Once etcd is configured correctly, only clients with valid certificates can access it. To give

Kubernetes API server the access, configure it with the flags

--etcd-certfile=k8sclient.cert--etcd-certfile=k8sclient.cert and --etcd-keyfile=k8sclient.key--etcd-keyfile=k8sclient.key .

Note: etcd authentication is not currently supported by Kubernetes. For more

information, see the related issue Support Basic Auth for Etcd v2.

Replacing a failed etcd member

etcd cluster achieves high availability by tolerating minor member failures. However, to

improve the overall health of the cluster, replace failed members immediately. When multiple

members fail, replace them one by one. Replacing a failed member involves two steps:

removing the failed member and adding a new member.

Though etcd keeps unique member IDs internally, it is recommended to use a unique name for

each member to avoid human errors. For example, consider a three-member etcd cluster. Let

the URLs be, member1=http://10.0.0.1, member2=http://10.0.0.2, and

member3=http://10.0.0.3. When member1 fails, replace it with member4=http://10.0.0.4.

1. Get the member ID of the failed member1:

etcdctl --endpoints=http://10.0.0.2,http://10.0.0.3 memberetcdctl --endpoints=http://10.0.0.2,http://10.0.0.3 member

listlist

The following message is displayed:

 8211f1d0f64f3269, started, member1, http://10.0.0.1:12380, http://10.0.0.1:2379 8211f1d0f64f3269, started, member1, http://10.0.0.1:12380, http://10.0.0.1:2379

 91bc3c398fb3c146, started, member2, http://10.0.0.1:2380, http://10.0.0.2:2379 91bc3c398fb3c146, started, member2, http://10.0.0.1:2380, http://10.0.0.2:2379

 fd422379fda50e48, started, member3, http://10.0.0.1:2380, http://10.0.0.3:2379 fd422379fda50e48, started, member3, http://10.0.0.1:2380, http://10.0.0.3:2379

https://github.com/kubernetes/kubernetes/issues/23398

2. Remove the failed member:

etcdctl member removeetcdctl member remove

8211f1d0f64f32698211f1d0f64f3269

The following message is displayed:

3. Add the new member:

./etcdctl member add member4 --peer-./etcdctl member add member4 --peer-

urls=http://10.0.0.4:2380urls=http://10.0.0.4:2380

The following message is displayed:

4. Start the newly added member on a machine with the IP 10.0.0.410.0.0.4 :

5. Do either of the following:

1. Update its --etcd-servers--etcd-servers flag to make Kubernetes aware of the configuration

changes, then restart the Kubernetes API server.

2. Update the load balancer configuration if a load balancer is used in the deployment.

For more information on cluster reconfiguration, see etcd Reconfiguration Documentation.

Backing up an etcd cluster

All Kubernetes objects are stored on etcd. Periodically backing up the etcd cluster data is

Removed member 8211f1d0f64f3269 from clusterRemoved member 8211f1d0f64f3269 from cluster

Member 2be1eb8f84b7f63e added to cluster ef37ad9dc622a7c4Member 2be1eb8f84b7f63e added to cluster ef37ad9dc622a7c4

 export ETCD_NAME="member4" export ETCD_NAME="member4"

 export ETCD_INITIAL_CLUSTER="member2=http://10.0.0.2:2380,member3=http://10.0.0.3:2380,member4=http://10.0.0.4:2380" export ETCD_INITIAL_CLUSTER="member2=http://10.0.0.2:2380,member3=http://10.0.0.3:2380,member4=http://10.0.0.4:2380"

 export ETCD_INITIAL_CLUSTER_STATE=existing export ETCD_INITIAL_CLUSTER_STATE=existing

 etcd [flags] etcd [flags]

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-configuration.md#remove-a-member

important to recover Kubernetes clusters under disaster scenarios, such as losing all master

nodes. The snapshot file contains all the Kubernetes states and critical information. In order to

keep the sensitive Kubernetes data safe, encrypt the snapshot files.

Backing up an etcd cluster can be accomplished in two ways: etcd built-in snapshot and

volume snapshot.

Built-in snapshot

etcd supports built-in snapshot, so backing up an etcd cluster is easy. A snapshot may either

be taken from a live member with the

etcdctl snapshotetcdctl snapshot

savesave command or by copying the

member/snap/dbmember/snap/db file from an etcd data directory that is not currently used by an etcd process.

datadirdatadir is located at $DATA_DIR/member/snap/db$DATA_DIR/member/snap/db . Taking the snapshot will normally not

affect the performance of the member.

Below is an example for taking a snapshot of the keyspace served by $ENDPOINT$ENDPOINT to the file

snapshotdbsnapshotdb :

Volume snapshot

If etcd is running on a storage volume that supports backup, such as Amazon Elastic Block

Store, back up etcd data by taking a snapshot of the storage volume.

Scaling up etcd clusters

Scaling up etcd clusters increases availability by trading off performance. Scaling does not

increase cluster performance nor capability. A general rule is not to scale up or down etcd

ETCDCTL_APIETCDCTL_API==3 etcdctl 3 etcdctl --endpoints--endpoints $ENDPOINT$ENDPOINT snapshot save snapshotdb snapshot save snapshotdb

exit 0# exit 0

verify the snapshot# verify the snapshot

ETCDCTL_APIETCDCTL_API==3 etcdctl 3 etcdctl --write-out--write-out==table snapshot status snapshotdbtable snapshot status snapshotdb

+----------+----------+------------+------------++----------+----------+------------+------------+

| HASH | REVISION | TOTAL KEYS | TOTAL SIZE || HASH | REVISION | TOTAL KEYS | TOTAL SIZE |

+----------+----------+------------+------------++----------+----------+------------+------------+

| fe01cf57 | 10 | 7 | 2.1 MB || fe01cf57 | 10 | 7 | 2.1 MB |

+----------+----------+------------+------------++----------+----------+------------+------------+

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#--data-dir

clusters. Do not configure any auto scaling groups for etcd clusters. It is highly recommended

to always run a static five-member etcd cluster for production Kubernetes clusters at any

officially supported scale.

A reasonable scaling is to upgrade a three-member cluster to a five-member one, when more

reliability is desired. See etcd Reconfiguration Documentation for information on how to add

members into an existing cluster.

Restoring an etcd cluster

etcd supports restoring from snapshots that are taken from an etcd process of the

major.minor version. Restoring a version from a different patch version of etcd also is

supported. A restore operation is employed to recover the data of a failed cluster.

Before starting the restore operation, a snapshot file must be present. It can either be a

snapshot file from a previous backup operation, or from a remaining data directory. datadirdatadir

is located at $DATA_DIR/member/snap/db$DATA_DIR/member/snap/db . For more information and examples on restoring a

cluster from a snapshot file, see etcd disaster recovery documentation.

If the access URLs of the restored cluster is changed from the previous cluster, the Kubernetes

API server must be reconfigured accordingly. In this case, restart Kubernetes API server with

the flag --etcd-servers=$NEW_ETCD_CLUSTER--etcd-servers=$NEW_ETCD_CLUSTER instead of the flag

--etcd-servers=$OLD_ETCD_CLUSTER--etcd-servers=$OLD_ETCD_CLUSTER . Replace $NEW_ETCD_CLUSTER$NEW_ETCD_CLUSTER and

$OLD_ETCD_CLUSTER$OLD_ETCD_CLUSTER with the respective IP addresses. If a load balancer is used in front of an

etcd cluster, you might need to update the load balancer instead.

If the majority of etcd members have permanently failed, the etcd cluster is considered failed.

In this scenario, Kubernetes cannot make any changes to its current state. Although the

scheduled pods might continue to run, no new pods can be scheduled. In such cases, recover

the etcd cluster and potentially reconfigure Kubernetes API server to fix the issue.

Upgrading and rolling back etcd clusters

Important assumptions

The upgrade procedure described in this document assumes that either:

1. The etcd cluster has only a single node.

https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-configuration.md#remove-a-member
http://semver.org/
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#--data-dir
https://github.com/coreos/etcd/blob/master/Documentation/op-guide/recovery.md#restoring-a-cluster

2. The etcd cluster has multiple nodes.

In this case, the upgrade procedure requires shutting down the etcd cluster. During the

time the etcd cluster is shut down, the Kubernetes API Server will be read only.

Warning: Deviations from the assumptions are untested by continuous integration, and

deviations might create undesirable consequences. Additional information about

operating an etcd cluster is available from the etcd maintainers.

Background

As of Kubernetes version 1.5.1, we are still using etcd from the 2.2.1 release with the v2 API.

Also, we have no pre-existing process for updating etcd, as we have never updated etcd by

either minor or major version.

Note that we need to migrate both the etcd versions that we are using (from 2.2.1 to at least

3.0.x) as well as the version of the etcd API that Kubernetes talks to. The etcd 3.0.x binaries

support both the v2 and v3 API.

This document describes how to do this migration. If you want to skip the background and cut

right to the procedure, see Upgrade Procedure.

etcd upgrade requirements

There are requirements on how an etcd cluster upgrade can be performed. The primary

considerations are:

Upgrade between one minor release at a time

Rollback supported through additional tooling

One minor release at a time

Upgrade only one minor release at a time. For example, we cannot upgrade directly from 2.1.x

to 2.3.x. Within patch releases it is possible to upgrade and downgrade between arbitrary

versions. Starting a cluster for any intermediate minor release, waiting until the cluster is

healthy, and then shutting down the cluster will perform the migration. For example, to

upgrade from version 2.1.x to 2.3.y, it is enough to start etcd in 2.2.z version, wait until it is

healthy, stop it, and then start the 2.3.y version.

https://github.com/coreos/etcd/tree/master/Documentation

Rollback via additional tooling

Versions 3.0+ of etcd do not support general rollback. That is, after migrating from M.N to

M.N+1, there is no way to go back to M.N. The etcd team has provided a custom rollback tool

but the rollback tool has these limitations:

This custom rollback tool is not part of the etcd repo and does not receive the same

testing as the rest of etcd. We are testing it in a couple of end-to-end tests. There is only

community support here.

The rollback can be done only from the 3.0.x version (that is using the v3 API) to the 2.2.1

version (that is using the v2 API).

The tool only works if the data is stored in application/jsonapplication/json format.

Rollback doesn’t preserve resource versions of objects stored in etcd.

Warning: If the data is not kept in application/jsonapplication/json format (see Upgrade Procedure),

you will lose the option to roll back to etcd 2.2.

The last bullet means that any component or user that has some logic depending on resource

versions may require restart after etcd rollback. This includes that all clients using the watch

API, which depends on resource versions. Since both the kubelet and kube-proxy use the

watch API, a rollback might require restarting all Kubernetes components on all nodes.

Note: At the time of writing, both Kubelet and KubeProxy are using “resource version”

only for watching (i.e. are not using resource versions for anything else). And both are

using reflector and/or informer frameworks for watching (i.e. they don’t send watch

requests themselves). Both those frameworks if they can’t renew watch, they will start

from “current version” by doing “list + watch from the resource version returned by list”.

That means that if the apiserver will be down for the period of rollback, all of node

components should basically restart their watches and start from “now” when apiserver

is back. And it will be back with new resource version. That would mean that restarting

node components is not needed. But the assumptions here may not hold forever.

Design

https://git.k8s.io/kubernetes/cluster/_site/images/etcd/rollback

This section describes how we are going to do the migration, given the etcd upgrade

requirements.

Note that because the code changes in Kubernetes code needed to support the etcd v3 API are

local and straightforward, we do not focus on them at all. We focus only on the

upgrade/rollback here.

New etcd Docker image

We decided to completely change the content of the etcd image and the way it works. So far,

the Docker image for etcd in version X has contained only the etcd and etcdctl binaries.

Going forward, the Docker image for etcd in version X will contain multiple versions of etcd. For

example, the 3.0.17 image will contain the 2.2.1, 2.3.7, and 3.0.17 binaries of etcd and etcdctl.

This will allow running etcd in multiple different versions using the same Docker image.

Additionally, the image will contain a custom script, written by the Kubernetes team, for doing

migration between versions. The image will also contain the rollback tool provided by the etcd

team.

Migration script

The migration script that will be part of the etcd Docker image is a bash script that works as

follows:

1. Detect which version of etcd we were previously running. For that purpose, we have added

a dedicated file, version.txtversion.txt , that holds that information and is stored in the etcd-data-

specific directory, next to the etcd data. If the file doesn’t exist, we default it to version

2.2.1.

2. If we are in version 2.2.1 and are supposed to upgrade, backup data.

3. Based on the detected previous etcd version and the desired one (communicated via

environment variable), do the upgrade steps as needed. This means that for every minor

etcd release greater than the detected one and less than or equal to the desired one:

1. Start etcd in that version.

2. Wait until it is healthy. Healthy means that you can write some data to it.

3. Stop this etcd. Note that this etcd will not listen on the default etcd port. It is hard

coded to listen on ports that the API server is not configured to connect to, which

means that API server won’t be able to connect to it. Assuming no other client goes

out of its way to try to connect and write to this obscure port, no new data will be

written during this period.

4. If the desired API version is v3 and the detected version is v2, do the offline migration

from the v2 to v3 data format. For that we use two tools:

1. ./etcdctl migrate: This is the official tool for migration provided by the etcd team.

2. A custom script that is attaching TTLs to events in the etcd. Note that etcdctl migrate

doesn’t support TTLs.

5. After every successful step, update contents of the version file. This will protect us from

the situation where something crashes in the meantime ,and the version file gets

completely unsynchronized with the real data. Note that it is safe if the script crashes

after the step is done and before the file is updated. This will only result in redoing one

step in the next try.

All the previous steps are for the case where the detected version is less than or equal to the

desired version. In the opposite case, that is for a rollback, the script works as follows:

1. Verify that the detected version is 3.0.x with the v3 API, and the desired version is 2.2.1

with the v2 API. We don’t support any other rollback.

2. If so, we run the custom tool provided by etcd team to do the offline rollback. This tool

reads the v3 formatted data and writes it back to disk in v2 format.

3. Finally update the contents of the version file.

Upgrade procedure

Simply modify the command line in the etcd manifest to:

1. Run the migration script. If the previously run version is already in the desired version, this

will be no-op.

2. Start etcd in the desired version.

Starting in Kubernetes version 1.6, this has been done in the manifests for new Google

Compute Engine clusters. You should also specify these environment variables. In particular,

you must keep STORAGE_MEDIA_TYPESTORAGE_MEDIA_TYPE set to application/jsonapplication/json if you wish to preserve the

option to roll back.

To roll back, use these:

Notes for etcd Version 2.2.1

Default configuration

The default setup scripts use kubelet’s file-based static pods feature to run etcd in a pod. This

manifest should only be run on master VMs. The default location that kubelet scans for

manifests is /etc/kubernetes/manifests//etc/kubernetes/manifests/ .

Kubernetes’s usage of etcd

By default, Kubernetes objects are stored under the /registry/registry key in etcd. This path can be

prefixed by using the kube-apiserver flag --etcd-prefix="/foo"--etcd-prefix="/foo" .

etcdetcd is the only place that Kubernetes keeps state.

Troubleshooting

To test whether etcdetcd is running correctly, you can try writing a value to a test key. On your

master VM (or somewhere with firewalls configured such that you can talk to your cluster’s

etcd), try:

TARGET_STORAGE=etcd3TARGET_STORAGE=etcd3

ETCD_IMAGE=3.0.17ETCD_IMAGE=3.0.17

TARGET_VERSION=3.0.17TARGET_VERSION=3.0.17

STORAGE_MEDIA_TYPE=application/jsonSTORAGE_MEDIA_TYPE=application/json

TARGET_STORAGE=etcd2TARGET_STORAGE=etcd2

ETCD_IMAGE=3.0.17ETCD_IMAGE=3.0.17

TARGET_VERSION=2.2.1TARGET_VERSION=2.2.1

STORAGE_MEDIA_TYPE=application/jsonSTORAGE_MEDIA_TYPE=application/json

curl curl -X-X PUT PUT "http://"http://${${hosthost}}::${${portport}}/v2/keys/_test"/v2/keys/_test"

http://releases.k8s.io/master/cluster/gce/manifests/etcd.manifest
file:///docs/admin/kube-apiserver

Static Pods

If you are running clustered Kubernetes and are using static pods to run a pod on every node,

you should probably be using a DaemonSet!

Static pods are managed directly by kubelet daemon on a specific node, without the API server

observing it. It does not have an associated replication controller, and kubelet daemon itself

watches it and restarts it when it crashes. There is no health check. Static pods are always

bound to one kubelet daemon and always run on the same node with it.

Kubelet automatically creates so-called mirror pod on the Kubernetes API server for each

static pod, so the pods are visible there, but they cannot be controlled from the API server.

Static pod creation

Static pod can be created in two ways: either by using configuration file(s) or by HTTP.

Configuration files

The configuration files are just standard pod definitions in json or yaml format in a specific

directory. Use

kubelet --pod-manifest-path=<thekubelet --pod-manifest-path=<the

directory>directory> to start kubelet daemon,

which periodically scans the directory and creates/deletes static pods as yaml/json files

appear/disappear there. Note that kubelet will ignore files starting with dots when scanning

the specified directory.

For example, this is how to start a simple web server as a static pod:

1. Choose a node where we want to run the static pod. In this example, it’s my-node1my-node1 .

2. Choose a directory, say /etc/kubelet.d/etc/kubelet.d and place a web server pod definition there, e.g.

/etc/kubelet.d/static-web.yaml/etc/kubelet.d/static-web.yaml :

 [joe@host ~] $ ssh my-node1 [joe@host ~] $ ssh my-node1

file:///docs/concepts/workloads/controllers/daemonset/

1. Configure your kubelet daemon on the node to use this directory by running it with

--pod-manifest-path=/etc/kubelet.d/--pod-manifest-path=/etc/kubelet.d/ argument. On Fedora edit

/etc/kubernetes/kubelet/etc/kubernetes/kubelet to include this line:

Instructions for other distributions or Kubernetes installations may vary.

2. Restart kubelet. On Fedora, this is:

Pods created via HTTP

Kubelet periodically downloads a file specified by --manifest-url=<URL>--manifest-url=<URL> argument and

interprets it as a json/yaml file with a pod definition. It works the same as

--pod-manifest-path=<directory>--pod-manifest-path=<directory> , i.e. it’s reloaded every now and then and changes are

applied to running static pods (see below).

Behavior of static pods

[[root@my-node1 ~] root@my-node1 ~] $ $ mkdir /etc/kubelet.d/mkdir /etc/kubelet.d/

[[root@my-node1 ~] root@my-node1 ~] $ $ catcat <<<<EOFEOF >/etc/kubelet.d/static-web.yaml >/etc/kubelet.d/static-web.yaml

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 name: static-web name: static-web

 labels: labels:

 role: myrole role: myrole

spec:spec:

 containers: containers:

 - name: web - name: web

 image: nginx image: nginx

 ports: ports:

 - name: web - name: web

 containerPort: 80 containerPort: 80

 protocol: TCP protocol: TCP

EOFEOF

 KUBELET_ARGS="--cluster-dns=10.254.0.10 --cluster-domain=kube.local --pod-manifest-path=/etc/kubelet.d/" KUBELET_ARGS="--cluster-dns=10.254.0.10 --cluster-domain=kube.local --pod-manifest-path=/etc/kubelet.d/"

 [root@my-node1 ~] $ systemctl restart kubelet [root@my-node1 ~] $ systemctl restart kubelet

When kubelet starts, it automatically starts all pods defined in directory specified in

--pod-manifest-path=--pod-manifest-path= or --manifest-url=--manifest-url= arguments, i.e. our static-web. (It may take

some time to pull nginx image, be patient…):

If we look at our Kubernetes API server (running on host my-mastermy-master), we see that a new

mirror-pod was created there too:

Labels from the static pod are propagated into the mirror-pod and can be used as usual for

filtering.

Notice we cannot delete the pod with the API server (e.g. via kubectlkubectl command), kubelet

simply won’t remove it.

Back to our my-node1my-node1 host, we can try to stop the container manually and see, that kubelet

automatically restarts it in a while:

Dynamic addition and removal of static pods

[[joe@my-node1 ~] joe@my-node1 ~] $ $ docker psdocker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMESCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

f6d05272b57e nginx:latest f6d05272b57e nginx:latest "nginx""nginx" 8 minutes ago Up 8 minutes k8s_web.6f802af4_static-web-fk-node1_default_67e24ed9466ba55986d120c867395f3c_378e5f3c 8 minutes ago Up 8 minutes k8s_web.6f802af4_static-web-fk-node1_default_67e24ed9466ba55986d120c867395f3c_378e5f3c

[[joe@host ~] joe@host ~] $ $ ssh my-masterssh my-master

[[joe@my-master ~] joe@my-master ~] $ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

static-web-my-node1 1/1 Running 0 2mstatic-web-my-node1 1/1 Running 0 2m

[[joe@my-master ~] joe@my-master ~] $ $ kubectl delete pod static-web-my-node1kubectl delete pod static-web-my-node1

pod pod "static-web-my-node1""static-web-my-node1" deleted deleted

[[joe@my-master ~] joe@my-master ~] $ $ kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

static-web-my-node1 1/1 Running 0 12sstatic-web-my-node1 1/1 Running 0 12s

[[joe@host ~] joe@host ~] $ $ ssh my-node1ssh my-node1

[[joe@my-node1 ~] joe@my-node1 ~] $ $ docker stop f6d05272b57edocker stop f6d05272b57e

[[joe@my-node1 ~] joe@my-node1 ~] $ $ sleep 20sleep 20

[[joe@my-node1 ~] joe@my-node1 ~] $ $ docker psdocker ps

CONTAINER ID IMAGE COMMAND CREATED ...CONTAINER ID IMAGE COMMAND CREATED ...

5b920cbaf8b1 nginx:latest 5b920cbaf8b1 nginx:latest "nginx -g 'daemon of 2 seconds ago ..."nginx -g 'daemon of 2 seconds ago ...

file:///docs/user-guide/kubectl/

Running kubelet periodically scans the configured directory (/etc/kubelet.d/etc/kubelet.d in our example)

for changes and adds/removes pods as files appear/disappear in this directory.

[[joe@my-node1 ~] joe@my-node1 ~] $ $ mv /etc/kubelet.d/static-web.yaml /tmpmv /etc/kubelet.d/static-web.yaml /tmp

[[joe@my-node1 ~] joe@my-node1 ~] $ $ sleep 20sleep 20

[[joe@my-node1 ~] joe@my-node1 ~] $ $ docker psdocker ps

// no nginx container is running// no nginx container is running

[[joe@my-node1 ~] joe@my-node1 ~] $ $ mv /tmp/static-web.yaml /etc/kubelet.d/mv /tmp/static-web.yaml /etc/kubelet.d/

[[joe@my-node1 ~] joe@my-node1 ~] $ $ sleep 20sleep 20

[[joe@my-node1 ~] joe@my-node1 ~] $ $ docker psdocker ps

CONTAINER ID IMAGE COMMAND CREATED ...CONTAINER ID IMAGE COMMAND CREATED ...

e7a62e3427f1 nginx:latest e7a62e3427f1 nginx:latest "nginx -g 'daemon of 27 seconds ago"nginx -g 'daemon of 27 seconds ago

Cluster Management

This document describes several topics related to the lifecycle of a cluster: creating a new

cluster, upgrading your cluster’s master and worker nodes, performing node maintenance (e.g.

kernel upgrades), and upgrading the Kubernetes API version of a running cluster.

Creating and configuring a Cluster

To install Kubernetes on a set of machines, consult one of the existing Getting Started guides

depending on your environment.

Upgrading a cluster

The current state of cluster upgrades is provider dependent, and some releases may require

special care when upgrading. It is recommended that administrators consult both the release

notes, as well as the version specific upgrade notes prior to upgrading their clusters.

Upgrading to 1.6

Creating and configuring a Cluster

Upgrading a cluster

Upgrading an Azure Kubernetes Service (AKS) cluster

Upgrading Google Compute Engine clusters

Upgrading Google Kubernetes Engine clusters

Upgrading clusters on other platforms

Resizing a cluster

Resizing an Azure Kubernetes Service (AKS) cluster

Cluster autoscaling

Maintenance on a Node

Advanced Topics

Upgrading to a different API version

Turn on or off an API version for your cluster

Switching your cluster’s storage API version

Switching your config files to a new API version

file:///docs/setup/
https://git.k8s.io/kubernetes/CHANGELOG.md
file:///docs/admin/upgrade-1-6

Upgrading an Azure Kubernetes Service (AKS) cluster

Azure Kubernetes Service enables easy self-service upgrades of the control plane and nodes in

your cluster. The process is currently user-initiated and is described in the Azure AKS

documentation.

Upgrading Google Compute Engine clusters

Google Compute Engine Open Source (GCE-OSS) support master upgrades by deleting and

recreating the master, while maintaining the same Persistent Disk (PD) to ensure that data is

retained across the upgrade.

Node upgrades for GCE use a Managed Instance Group, each node is sequentially destroyed

and then recreated with new software. Any Pods that are running on that node need to be

controlled by a Replication Controller, or manually re-created after the roll out.

Upgrades on open source Google Compute Engine (GCE) clusters are controlled by the

cluster/gce/upgrade.shcluster/gce/upgrade.sh script.

Get its usage by running

cluster/gce/upgrade.sh -cluster/gce/upgrade.sh -

hh .

For example, to upgrade just your master to a specific version (v1.0.2):

Alternatively, to upgrade your entire cluster to the latest stable release:

Upgrading Google Kubernetes Engine clusters

Google Kubernetes Engine automatically updates master components (e.g. kube-apiserverkube-apiserver ,

kube-schedulerkube-scheduler) to the latest version. It also handles upgrading the operating system and

other components that the master runs on.

The node upgrade process is user-initiated and is described in the Google Kubernetes Engine

documentation.

cluster/gce/upgrade.sh cluster/gce/upgrade.sh -M-M v1.0.2 v1.0.2

cluster/gce/upgrade.sh release/stablecluster/gce/upgrade.sh release/stable

https://docs.microsoft.com/en-us/azure/aks/upgrade-cluster
https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/kubernetes-engine/docs/clusters/upgrade

Upgrading clusters on other platforms

Different providers, and tools, will manage upgrades differently. It is recommended that you

consult their main documentation regarding upgrades.

kops

kubespray

CoreOS Tectonic

…

Resizing a cluster

If your cluster runs short on resources you can easily add more machines to it if your cluster is

running in Node self-registration mode. If you’re using GCE or Google Kubernetes Engine it’s

done by resizing Instance Group managing your Nodes. It can be accomplished by modifying

number of instances on

Compute > Compute Engine > Instance groups > your group > EditCompute > Compute Engine > Instance groups > your group > Edit

groupgroup Google

Cloud Console page or using gcloud CLI:

Instance Group will take care of putting appropriate image on new machines and start them,

while Kubelet will register its Node with API server to make it available for scheduling. If you

scale the instance group down, system will randomly choose Nodes to kill.

In other environments you may need to configure the machine yourself and tell the Kubelet on

which machine API server is running.

Resizing an Azure Kubernetes Service (AKS) cluster

Azure Kubernetes Service enables user-initiated resizing of the cluster from either the CLI or

the Azure Portal and is described in the Azure AKS documentation.

Cluster autoscaling

gcloud compute instance-groups managed resize kubernetes-minion-group gcloud compute instance-groups managed resize kubernetes-minion-group --size--size==

https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kubespray
https://coreos.com/tectonic/docs/latest/admin/upgrade.html
file:///docs/admin/node/#self-registration-of-nodes
https://console.developers.google.com
https://docs.microsoft.com/en-us/azure/aks/scale-cluster

If you are using GCE or Google Kubernetes Engine, you can configure your cluster so that it is

automatically rescaled based on pod needs.

As described in Compute Resource, users can reserve how much CPU and memory is

allocated to pods. This information is used by the Kubernetes scheduler to find a place to run

the pod. If there is no node that has enough free capacity (or doesn’t match other pod

requirements) then the pod has to wait until some pods are terminated or a new node is

added.

Cluster autoscaler looks for the pods that cannot be scheduled and checks if adding a new

node, similar to the other in the cluster, would help. If yes, then it resizes the cluster to

accommodate the waiting pods.

Cluster autoscaler also scales down the cluster if it notices that one or more nodes are not

needed anymore for an extended period of time (10min but it may change in the future).

Cluster autoscaler is configured per instance group (GCE) or node pool (Google Kubernetes

Engine).

If you are using GCE then you can either enable it while creating a cluster with kube-up.sh

script. To configure cluster autoscaler you have to set three environment variables:

KUBE_ENABLE_CLUSTER_AUTOSCALERKUBE_ENABLE_CLUSTER_AUTOSCALER - it enables cluster autoscaler if set to true.

KUBE_AUTOSCALER_MIN_NODESKUBE_AUTOSCALER_MIN_NODES - minimum number of nodes in the cluster.

KUBE_AUTOSCALER_MAX_NODESKUBE_AUTOSCALER_MAX_NODES - maximum number of nodes in the cluster.

Example:

On Google Kubernetes Engine you configure cluster autoscaler either on cluster creation or

update or when creating a particular node pool (which you want to be autoscaled) by passing

flags --enable-autoscaling--enable-autoscaling --min-nodes--min-nodes and --max-nodes--max-nodes to the corresponding

gcloudgcloud commands.

Examples:

KUBE_ENABLE_CLUSTER_AUTOSCALERKUBE_ENABLE_CLUSTER_AUTOSCALER==true true KUBE_AUTOSCALER_MIN_NODESKUBE_AUTOSCALER_MIN_NODES==3 3 KUBE_AUTOSCALER_MAX_NODESKUBE_AUTOSCALER_MAX_NODES

gcloud container clusters create mytestcluster gcloud container clusters create mytestcluster --zone--zone==us-central1-b us-central1-b --enable-autoscaling--enable-autoscaling

file:///docs/concepts/configuration/manage-compute-resources-container/

Cluster autoscaler expects that nodes have not been manually modified (e.g. by adding

labels via kubectl) as those properties would not be propagated to the new nodes within the

same instance group.

For more details about how the cluster autoscaler decides whether, when and how to scale a

cluster, please refer to the FAQ documentation from the autoscaler project.

Maintenance on a Node

If you need to reboot a node (such as for a kernel upgrade, libc upgrade, hardware repair, etc.),

and the downtime is brief, then when the Kubelet restarts, it will attempt to restart the pods

scheduled to it. If the reboot takes longer (the default time is 5 minutes, controlled by

--pod-eviction-timeout--pod-eviction-timeout on the controller-manager), then the node controller will terminate

the pods that are bound to the unavailable node. If there is a corresponding replica set (or

replication controller), then a new copy of the pod will be started on a different node. So, in the

case where all pods are replicated, upgrades can be done without special coordination,

assuming that not all nodes will go down at the same time.

If you want more control over the upgrading process, you may use the following workflow:

Use kubectl drainkubectl drain to gracefully terminate all pods on the node while marking the node as

unschedulable:

This keeps new pods from landing on the node while you are trying to get them off.

For pods with a replica set, the pod will be replaced by a new pod which will be scheduled to a

new node. Additionally, if the pod is part of a service, then clients will automatically be

redirected to the new pod.

For pods with no replica set, you need to bring up a new copy of the pod, and assuming it is

not part of a service, redirect clients to it.

gcloud container clusters update mytestcluster gcloud container clusters update mytestcluster --enable-autoscaling--enable-autoscaling --min-nodes--min-nodes

kubectl drain kubectl drain $NODENAME$NODENAME

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md

Perform maintenance work on the node.

Make the node schedulable again:

If you deleted the node’s VM instance and created a new one, then a new schedulable node

resource will be created automatically (if you’re using a cloud provider that supports node

discovery; currently this is only Google Compute Engine, not including CoreOS on Google

Compute Engine using kube-register). See Node for more details.

Advanced Topics

Upgrading to a different API version

When a new API version is released, you may need to upgrade a cluster to support the new API

version (e.g. switching from ‘v1’ to ‘v2’ when ‘v2’ is launched).

This is an infrequent event, but it requires careful management. There is a sequence of steps

to upgrade to a new API version.

1. Turn on the new API version.

2. Upgrade the cluster’s storage to use the new version.

3. Upgrade all config files. Identify users of the old API version endpoints.

4. Update existing objects in the storage to new version by running

cluster/update-storage-objects.shcluster/update-storage-objects.sh .

5. Turn off the old API version.

Turn on or off an API version for your cluster

Specific API versions can be turned on or off by passing --runtime-config=api/<version>--runtime-config=api/<version>

flag while bringing up the API server. For example: to turn off v1 API, pass

--runtime-config=api/v1=false--runtime-config=api/v1=false . runtime-config also supports 2 special keys: api/all and

api/legacy to control all and legacy APIs respectively. For example, for turning off all API

versions except v1, pass --runtime-config=api/all=false,api/v1=true--runtime-config=api/all=false,api/v1=true . For the

kubectl uncordon kubectl uncordon $NODENAME$NODENAME

file:///docs/admin/node

purposes of these flags, legacy APIs are those APIs which have been explicitly deprecated (e.g.

v1beta3v1beta3).

Switching your cluster’s storage API version

The objects that are stored to disk for a cluster’s internal representation of the Kubernetes

resources active in the cluster are written using a particular version of the API. When the

supported API changes, these objects may need to be rewritten in the newer API. Failure to do

this will eventually result in resources that are no longer decodable or usable by the

Kubernetes API server.

KUBE_API_VERSIONSKUBE_API_VERSIONS environment variable for the kube-apiserverkube-apiserver binary which controls the

API versions that are supported in the cluster. The first version in the list is used as the

cluster’s storage version. Hence, to set a specific version as the storage version, bring it to the

front of list of versions in the value of KUBE_API_VERSIONSKUBE_API_VERSIONS . You need to restart the

kube-apiserverkube-apiserver binary for changes to this variable to take effect.

Switching your config files to a new API version

You can use kubectl convertkubectl convert command to convert config files between different API

versions.

For more options, please refer to the usage of kubectl convert command.

kubectl convert kubectl convert -f-f pod.yaml pod.yaml --output-version--output-version v1 v1

file:///docs/user-guide/kubectl/v1.10/#convert

Share a Cluster with Namespaces

This page shows how to view, work in, and delete namespaces. The page also shows how to

use Kubernetes namespaces to subdivide your cluster.

Before you begin

Have an existing Kubernetes cluster.

Have a basic understanding of Kubernetes Pods, Services, and Deployments.

Viewing namespaces

1. List the current namespaces in a cluster using:

Kubernetes starts with two initial namespaces:

defaultdefault The default namespace for objects with no other namespace

kube-systemkube-system The namespace for objects created by the Kubernetes system

You can also get the summary of a specific namespace using:

Before you begin

Viewing namespaces

Creating a new namespace

Deleting a namespace

Subdividing your cluster using Kubernetes namespaces

Understanding the motivation for using namespaces

Understanding namespaces and DNS

What’s next

$ $ kubectl get namespaceskubectl get namespaces

NAME STATUS AGENAME STATUS AGE

default Active 11ddefault Active 11d

kube-system Active 11dkube-system Active 11d

file:///docs/setup/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/workloads/controllers/deployment/

Or you can get detailed information with:

Note that these details show both resource quota (if present) as well as resource limit ranges.

Resource quota tracks aggregate usage of resources in the Namespace and allows cluster

operators to define Hard resource usage limits that a Namespace may consume.

A limit range defines min/max constraints on the amount of resources a single entity can

consume in a Namespace.

See Admission control: Limit Range

A namespace can be in one of two phases:

ActiveActive the namespace is in use

TerminatingTerminating the namespace is being deleted, and can not be used for new objects

See the design doc for more details.

Creating a new namespace

1. Create a new YAML file called my-namespace.yamlmy-namespace.yaml with the contents:

$ $ kubectl get namespaces <name>kubectl get namespaces <name>

$ $ kubectl describe namespaces <name>kubectl describe namespaces <name>

Name: defaultName: default

Labels: <none>Labels: <none>

Annotations: <none>Annotations: <none>

Status: ActiveStatus: Active

No resource quota.No resource quota.

Resource LimitsResource Limits

 Type Resource Min Max Default Type Resource Min Max Default

 -------- ---------------- ------ ------ ------

 Container cpu - - 100m Container cpu - - 100m

https://git.k8s.io/community/contributors/design-proposals/resource-management/admission_control_limit_range.md
https://git.k8s.io/community/contributors/design-proposals/architecture/namespaces.md#phases

Then run:

Note that the name of your namespace must be a DNS compatible label.

There’s an optional field finalizersfinalizers , which allows observables to purge resources whenever

the namespace is deleted. Keep in mind that if you specify a nonexistent finalizer, the

namespace will be created but will get stuck in the TerminatingTerminating state if the user tries to

delete it.

More information on finalizersfinalizers can be found in the namespace design doc.

Deleting a namespace

1. Delete a namespace with

WARNING, this deletes everything under the namespace!

This delete is asynchronous, so for a time you will see the namespace in the TerminatingTerminating

state.

Subdividing your cluster using Kubernetes
namespaces

1. Understand the default namespace

By default, a Kubernetes cluster will instantiate a default namespace when provisioning the

cluster to hold the default set of Pods, Services, and Deployments used by the cluster.

apiVersionapiVersion:: v1v1

kindkind:: NamespaceNamespace

metadatametadata::

 namename:: <insert-namespace-name-here><insert-namespace-name-here>

$ $ kubectl create kubectl create -f-f ./my-namespace.yaml ./my-namespace.yaml

$ $ kubectl delete namespaces <insert-some-namespace-name>kubectl delete namespaces <insert-some-namespace-name>

https://git.k8s.io/community/contributors/design-proposals/architecture/namespaces.md#finalizers

Assuming you have a fresh cluster, you can introspect the available namespace’s by doing the

following:

1. Create new namespaces

For this exercise, we will create two additional Kubernetes namespaces to hold our content.

In a scenario where an organization is using a shared Kubernetes cluster for development and

production use cases:

The development team would like to maintain a space in the cluster where they can get a view

on the list of Pods, Services, and Deployments they use to build and run their application. In

this space, Kubernetes resources come and go, and the restrictions on who can or cannot

modify resources are relaxed to enable agile development.

The operations team would like to maintain a space in the cluster where they can enforce strict

procedures on who can or cannot manipulate the set of Pods, Services, and Deployments that

run the production site.

One pattern this organization could follow is to partition the Kubernetes cluster into two

namespaces: development and production.

Let’s create two new namespaces to hold our work.

Use the file namespace-dev.jsonnamespace-dev.json which describes a development namespace:

namespace-dev.jsonnamespace-dev.json

$ $ kubectl get namespaceskubectl get namespaces

NAME STATUS AGENAME STATUS AGE

default Active 13mdefault Active 13m

{{

 "kind""kind":: "Namespace""Namespace",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "development""development",,

 "labels""labels":: {{

 "name""name":: "development""development"

 }}

 }}

}}

file:///docs/tasks/administer-cluster/namespace-dev.json
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/namespace-dev.json

Create the development namespace using kubectl.

And then let’s create the production namespace using kubectl.

To be sure things are right, list all of the namespaces in our cluster.

1. Create pods in each namespace

A Kubernetes namespace provides the scope for Pods, Services, and Deployments in the

cluster.

Users interacting with one namespace do not see the content in another namespace.

To demonstrate this, let’s spin up a simple Deployment and Pods in the development

namespace.

We first check what is the current context:

$ $ kubectl create kubectl create -f-f docs/tasks/administer-cluster/namespace-dev.json docs/tasks/administer-cluster/namespace-dev.json

$ $ kubectl create kubectl create -f-f docs/tasks/administer-cluster/namespace-prod.json docs/tasks/administer-cluster/namespace-prod.json

$ $ kubectl get namespaces kubectl get namespaces --show-labels--show-labels

NAME STATUS AGE LABELSNAME STATUS AGE LABELS

default Active 32m <none>default Active 32m <none>

development Active 29s development Active 29s namename==developmentdevelopment

production Active 23s production Active 23s namename==productionproduction

The next step is to define a context for the kubectl client to work in each namespace. The

values of “cluster” and “user” fields are copied from the current context.

The above commands provided two request contexts you can alternate against depending on

what namespace you wish to work against.

Let’s switch to operate in the development namespace.

You can verify your current context by doing the following:

$ $ kubectl config viewkubectl config view

apiVersion: v1apiVersion: v1

clusters:clusters:

- cluster:- cluster:

 certificate-authority-data: REDACTED certificate-authority-data: REDACTED

 server: https://130.211.122.180 server: https://130.211.122.180

 name: lithe-cocoa-92103_kubernetes name: lithe-cocoa-92103_kubernetes

contexts:contexts:

- context:- context:

 cluster: lithe-cocoa-92103_kubernetes cluster: lithe-cocoa-92103_kubernetes

 user: lithe-cocoa-92103_kubernetes user: lithe-cocoa-92103_kubernetes

 name: lithe-cocoa-92103_kubernetes name: lithe-cocoa-92103_kubernetes

current-context: lithe-cocoa-92103_kubernetescurrent-context: lithe-cocoa-92103_kubernetes

kind: Configkind: Config

preferences: preferences: {}{}

users:users:

- name: lithe-cocoa-92103_kubernetes- name: lithe-cocoa-92103_kubernetes

 user: user:

 client-certificate-data: REDACTED client-certificate-data: REDACTED

 client-key-data: REDACTED client-key-data: REDACTED

 token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b

- name: lithe-cocoa-92103_kubernetes-basic-auth- name: lithe-cocoa-92103_kubernetes-basic-auth

 user: user:

 password: h5M0FtUUIflBSdI7 password: h5M0FtUUIflBSdI7

 username: admin username: admin

$ $ kubectl config current-contextkubectl config current-context

lithe-cocoa-92103_kuberneteslithe-cocoa-92103_kubernetes

$ $ kubectl config set-context dev kubectl config set-context dev --namespace--namespace==development development --cluster--cluster==lithe-cocoa-92103_kubernetes lithe-cocoa-92103_kubernetes

$ $ kubectl config set-context prod kubectl config set-context prod --namespace--namespace==production production --cluster--cluster==lithe-cocoa-92103_kubernetes lithe-cocoa-92103_kubernetes

$ $ kubectl config use-context devkubectl config use-context dev

At this point, all requests we make to the Kubernetes cluster from the command line are

scoped to the development namespace.

Let’s create some contents.

We have just created a deployment whose replica size is 2 that is running the pod called

snowflake with a basic container that just serves the hostname. Note that

kubectlkubectl

runrun

creates deployments only on Kubernetes cluster >= v1.2. If you are running older versions, it

creates replication controllers instead. If you want to obtain the old behavior, use

--generator=run/v1--generator=run/v1 to create replication controllers. See

kubectlkubectl

runrun for more details.

And this is great, developers are able to do what they want, and they do not have to worry

about affecting content in the production namespace.

Let’s switch to the production namespace and show how resources in one namespace are

hidden from the other.

The production namespace should be empty, and the following commands should return

nothing.

$ $ kubectl config current-contextkubectl config current-context

devdev

$ $ kubectl run snowflake kubectl run snowflake --image--image==kubernetes/serve_hostname kubernetes/serve_hostname --replicas--replicas==22

$ $ kubectl get deploymentkubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

snowflake 2 2 2 2 2msnowflake 2 2 2 2 2m

$ $ kubectl get pods kubectl get pods -l-l runrun==snowflakesnowflake

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

snowflake-3968820950-9dgr8 1/1 Running 0 2msnowflake-3968820950-9dgr8 1/1 Running 0 2m

snowflake-3968820950-vgc4n 1/1 Running 0 2msnowflake-3968820950-vgc4n 1/1 Running 0 2m

$ $ kubectl config use-context prodkubectl config use-context prod

file:///docs/user-guide/kubectl/v1.10/#run

Production likes to run cattle, so let’s create some cattle pods.

At this point, it should be clear that the resources users create in one namespace are hidden

from the other namespace.

As the policy support in Kubernetes evolves, we will extend this scenario to show how you can

provide different authorization rules for each namespace.

Understanding the motivation for using namespaces

A single cluster should be able to satisfy the needs of multiple users or groups of users

(henceforth a ‘user community’).

Kubernetes namespaces help different projects, teams, or customers to share a Kubernetes

cluster.

It does this by providing the following:

1. A scope for Names.

2. A mechanism to attach authorization and policy to a subsection of the cluster.

Use of multiple namespaces is optional.

Each user community wants to be able to work in isolation from other communities.

$ $ kubectl get deploymentkubectl get deployment

$ $ kubectl get podskubectl get pods

$ $ kubectl run cattle kubectl run cattle --image--image==kubernetes/serve_hostname kubernetes/serve_hostname --replicas--replicas==55

$ $ kubectl get deploymentkubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

cattle 5 5 5 5 10scattle 5 5 5 5 10s

kubectl get pods kubectl get pods -l-l runrun==cattlecattle

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

cattle-2263376956-41xy6 1/1 Running 0 34scattle-2263376956-41xy6 1/1 Running 0 34s

cattle-2263376956-kw466 1/1 Running 0 34scattle-2263376956-kw466 1/1 Running 0 34s

cattle-2263376956-n4v97 1/1 Running 0 34scattle-2263376956-n4v97 1/1 Running 0 34s

cattle-2263376956-p5p3i 1/1 Running 0 34scattle-2263376956-p5p3i 1/1 Running 0 34s

cattle-2263376956-sxpth 1/1 Running 0 34scattle-2263376956-sxpth 1/1 Running 0 34s

file:///docs/concepts/overview/working-with-objects/names/

Each user community has its own:

1. resources (pods, services, replication controllers, etc.)

2. policies (who can or cannot perform actions in their community)

3. constraints (this community is allowed this much quota, etc.)

A cluster operator may create a Namespace for each unique user community.

The Namespace provides a unique scope for:

1. named resources (to avoid basic naming collisions)

2. delegated management authority to trusted users

3. ability to limit community resource consumption

Use cases include:

1. As a cluster operator, I want to support multiple user communities on a single cluster.

2. As a cluster operator, I want to delegate authority to partitions of the cluster to trusted

users in those communities.

3. As a cluster operator, I want to limit the amount of resources each community can

consume in order to limit the impact to other communities using the cluster.

4. As a cluster user, I want to interact with resources that are pertinent to my user community

in isolation of what other user communities are doing on the cluster.

Understanding namespaces and DNS

When you create a Service, it creates a corresponding DNS entry. This entry is of the form

<service-name>.<namespace-name>.svc.cluster.local<service-name>.<namespace-name>.svc.cluster.local , which means that if a container

just uses <service-name><service-name> it will resolve to the service which is local to a namespace. This is

useful for using the same configuration across multiple namespaces such as Development,

Staging and Production. If you want to reach across namespaces, you need to use the fully

qualified domain name (FQDN).

What’s next

file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/dns-pod-service/

Learn more about setting the namespace preference.

Learn more about setting the namespace for a request

See namespaces design.

file:///docs/concepts/overview/working-with-objects/namespaces/#setting-the-namespace-preference
file:///docs/concepts/overview/working-with-objects/namespaces/#setting-the-namespace-for-a-request
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/namespaces.md

Namespaces Walkthrough

Kubernetes namespaces help different projects, teams, or customers to share a Kubernetes

cluster.

It does this by providing the following:

1. A scope for Names.

2. A mechanism to attach authorization and policy to a subsection of the cluster.

Use of multiple namespaces is optional.

This example demonstrates how to use Kubernetes namespaces to subdivide your cluster.

Step Zero: Prerequisites

This example assumes the following:

1. You have an existing Kubernetes cluster.

2. You have a basic understanding of Kubernetes Pods, Services, and Deployments.

Step One: Understand the default namespace

By default, a Kubernetes cluster will instantiate a default namespace when provisioning the

cluster to hold the default set of Pods, Services, and Deployments used by the cluster.

Assuming you have a fresh cluster, you can inspect the available namespaces by doing the

following:

Step Two: Create new namespaces

For this exercise, we will create two additional Kubernetes namespaces to hold our content.

Let’s imagine a scenario where an organization is using a shared Kubernetes cluster for

$ $ kubectl get namespaceskubectl get namespaces

NAME STATUS AGENAME STATUS AGE

default Active 13mdefault Active 13m

file:///docs/concepts/overview/working-with-objects/names/
file:///docs/setup/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/workloads/controllers/deployment/

development and production use cases.

The development team would like to maintain a space in the cluster where they can get a view

on the list of Pods, Services, and Deployments they use to build and run their application. In

this space, Kubernetes resources come and go, and the restrictions on who can or cannot

modify resources are relaxed to enable agile development.

The operations team would like to maintain a space in the cluster where they can enforce strict

procedures on who can or cannot manipulate the set of Pods, Services, and Deployments that

run the production site.

One pattern this organization could follow is to partition the Kubernetes cluster into two

namespaces: development and production.

Let’s create two new namespaces to hold our work.

Use the file namespace-dev.jsonnamespace-dev.json which describes a development namespace:

namespace-dev.jsonnamespace-dev.json

Create the development namespace using kubectl.

Save the following contents into file namespace-prod.jsonnamespace-prod.json which describes a production

namespace:

namespace-prod.jsonnamespace-prod.json

{{

 "kind""kind":: "Namespace""Namespace",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "development""development",,

 "labels""labels":: {{

 "name""name":: "development""development"

 }}

 }}

}}

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/namespace-dev.json https://k8s.io/docs/tasks/administer-cluster/namespace-dev.json

file:///docs/tasks/administer-cluster/namespace-dev.json
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/namespace-dev.json
file:///docs/tasks/administer-cluster/namespace-prod.json
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/namespace-prod.json

namespace-prod.jsonnamespace-prod.json

And then let’s create the production namespace using kubectl.

To be sure things are right, let’s list all of the namespaces in our cluster.

Step Three: Create pods in each namespace

A Kubernetes namespace provides the scope for Pods, Services, and Deployments in the

cluster.

Users interacting with one namespace do not see the content in another namespace.

To demonstrate this, let’s spin up a simple Deployment and Pods in the development

namespace.

We first check what is the current context:

{{

 "kind""kind":: "Namespace""Namespace",,

 "apiVersion""apiVersion":: "v1""v1",,

 "metadata""metadata":: {{

 "name""name":: "production""production",,

 "labels""labels":: {{

 "name""name":: "production""production"

 }}

 }}

}}

$ $ kubectl create kubectl create -f-f https://k8s.io/docs/tasks/administer-cluster/namespace-prod.json https://k8s.io/docs/tasks/administer-cluster/namespace-prod.json

$ $ kubectl get namespaces kubectl get namespaces --show-labels--show-labels

NAME STATUS AGE LABELSNAME STATUS AGE LABELS

default Active 32m <none>default Active 32m <none>

development Active 29s development Active 29s namename==developmentdevelopment

production Active 23s production Active 23s namename==productionproduction

The next step is to define a context for the kubectl client to work in each namespace. The

value of “cluster” and “user” fields are copied from the current context.

By default, the above commands adds two contexts that are saved into file .kube/config.kube/config .

You can now view the contexts and alternate against the two new request contexts depending

on which namespace you wish to work against.

To view the new contexts:

$ $ kubectl config viewkubectl config view

apiVersion: v1apiVersion: v1

clusters:clusters:

- cluster:- cluster:

 certificate-authority-data: REDACTED certificate-authority-data: REDACTED

 server: https://130.211.122.180 server: https://130.211.122.180

 name: lithe-cocoa-92103_kubernetes name: lithe-cocoa-92103_kubernetes

contexts:contexts:

- context:- context:

 cluster: lithe-cocoa-92103_kubernetes cluster: lithe-cocoa-92103_kubernetes

 user: lithe-cocoa-92103_kubernetes user: lithe-cocoa-92103_kubernetes

 name: lithe-cocoa-92103_kubernetes name: lithe-cocoa-92103_kubernetes

current-context: lithe-cocoa-92103_kubernetescurrent-context: lithe-cocoa-92103_kubernetes

kind: Configkind: Config

preferences: preferences: {}{}

users:users:

- name: lithe-cocoa-92103_kubernetes- name: lithe-cocoa-92103_kubernetes

 user: user:

 client-certificate-data: REDACTED client-certificate-data: REDACTED

 client-key-data: REDACTED client-key-data: REDACTED

 token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b

- name: lithe-cocoa-92103_kubernetes-basic-auth- name: lithe-cocoa-92103_kubernetes-basic-auth

 user: user:

 password: h5M0FtUUIflBSdI7 password: h5M0FtUUIflBSdI7

 username: admin username: admin

$ $ kubectl config current-contextkubectl config current-context

lithe-cocoa-92103_kuberneteslithe-cocoa-92103_kubernetes

$ $ kubectl config set-context dev kubectl config set-context dev --namespace--namespace==development development \\

 --cluster--cluster==lithe-cocoa-92103_kubernetes lithe-cocoa-92103_kubernetes \\

 --user--user==lithe-cocoa-92103_kuberneteslithe-cocoa-92103_kubernetes

$ $ kubectl config set-context prod kubectl config set-context prod --namespace--namespace==production production \\

 --cluster--cluster==lithe-cocoa-92103_kubernetes lithe-cocoa-92103_kubernetes \\

 --user--user==lithe-cocoa-92103_kuberneteslithe-cocoa-92103_kubernetes

Let’s switch to operate in the development namespace.

You can verify your current context by doing the following:

At this point, all requests we make to the Kubernetes cluster from the command line are

$ $ kubectl config viewkubectl config view

apiVersion: v1apiVersion: v1

clusters:clusters:

- cluster:- cluster:

 certificate-authority-data: REDACTED certificate-authority-data: REDACTED

 server: https://130.211.122.180 server: https://130.211.122.180

 name: lithe-cocoa-92103_kubernetes name: lithe-cocoa-92103_kubernetes

contexts:contexts:

- context:- context:

 cluster: lithe-cocoa-92103_kubernetes cluster: lithe-cocoa-92103_kubernetes

 user: lithe-cocoa-92103_kubernetes user: lithe-cocoa-92103_kubernetes

 name: lithe-cocoa-92103_kubernetes name: lithe-cocoa-92103_kubernetes

- context:- context:

 cluster: lithe-cocoa-92103_kubernetes cluster: lithe-cocoa-92103_kubernetes

 namespace: development namespace: development

 user: lithe-cocoa-92103_kubernetes user: lithe-cocoa-92103_kubernetes

 name: dev name: dev

- context:- context:

 cluster: lithe-cocoa-92103_kubernetes cluster: lithe-cocoa-92103_kubernetes

 namespace: production namespace: production

 user: lithe-cocoa-92103_kubernetes user: lithe-cocoa-92103_kubernetes

 name: prod name: prod

current-context: lithe-cocoa-92103_kubernetescurrent-context: lithe-cocoa-92103_kubernetes

kind: Configkind: Config

preferences: preferences: {}{}

users:users:

- name: lithe-cocoa-92103_kubernetes- name: lithe-cocoa-92103_kubernetes

 user: user:

 client-certificate-data: REDACTED client-certificate-data: REDACTED

 client-key-data: REDACTED client-key-data: REDACTED

 token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b token: 65rZW78y8HbwXXtSXuUw9DbP4FLjHi4b

- name: lithe-cocoa-92103_kubernetes-basic-auth- name: lithe-cocoa-92103_kubernetes-basic-auth

 user: user:

 password: h5M0FtUUIflBSdI7 password: h5M0FtUUIflBSdI7

 username: admin username: admin

$ $ kubectl config use-context devkubectl config use-context dev

$ $ kubectl config current-contextkubectl config current-context

devdev

scoped to the development namespace.

Let’s create some contents.

We have just created a deployment whose replica size is 2 that is running the pod called

snowflake with a basic container that just serves the hostname. Note that

kubectlkubectl

runrun

creates deployments only on Kubernetes cluster >= v1.2. If you are running older versions, it

creates replication controllers instead. If you want to obtain the old behavior, use

--generator=run/v1--generator=run/v1 to create replication controllers. See

kubectlkubectl

runrun for more details.

And this is great, developers are able to do what they want, and they do not have to worry

about affecting content in the production namespace.

Let’s switch to the production namespace and show how resources in one namespace are

hidden from the other.

The production namespace should be empty, and the following commands should return

nothing.

Production likes to run cattle, so let’s create some cattle pods.

$ $ kubectl run snowflake kubectl run snowflake --image--image==kubernetes/serve_hostname kubernetes/serve_hostname --replicas--replicas==22

$ $ kubectl get deploymentkubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

snowflake 2 2 2 2 2msnowflake 2 2 2 2 2m

$ $ kubectl get pods kubectl get pods -l-l runrun==snowflakesnowflake

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

snowflake-3968820950-9dgr8 1/1 Running 0 2msnowflake-3968820950-9dgr8 1/1 Running 0 2m

snowflake-3968820950-vgc4n 1/1 Running 0 2msnowflake-3968820950-vgc4n 1/1 Running 0 2m

$ $ kubectl config use-context prodkubectl config use-context prod

$ $ kubectl get deploymentkubectl get deployment

$ $ kubectl get podskubectl get pods

file:///docs/user-guide/kubectl/v1.10/#run

At this point, it should be clear that the resources users create in one namespace are hidden

from the other namespace.

As the policy support in Kubernetes evolves, we will extend this scenario to show how you can

provide different authorization rules for each namespace.

$ $ kubectl run cattle kubectl run cattle --image--image==kubernetes/serve_hostname kubernetes/serve_hostname --replicas--replicas==55

$ $ kubectl get deploymentkubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

cattle 5 5 5 5 10scattle 5 5 5 5 10s

kubectl get pods kubectl get pods -l-l runrun==cattlecattle

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

cattle-2263376956-41xy6 1/1 Running 0 34scattle-2263376956-41xy6 1/1 Running 0 34s

cattle-2263376956-kw466 1/1 Running 0 34scattle-2263376956-kw466 1/1 Running 0 34s

cattle-2263376956-n4v97 1/1 Running 0 34scattle-2263376956-n4v97 1/1 Running 0 34s

cattle-2263376956-p5p3i 1/1 Running 0 34scattle-2263376956-p5p3i 1/1 Running 0 34s

cattle-2263376956-sxpth 1/1 Running 0 34scattle-2263376956-sxpth 1/1 Running 0 34s

Autoscale the DNS Service in a Cluster

This page shows how to enable and configure autoscaling of the DNS service in a Kubernetes

cluster.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Make sure the DNS feature itself is enabled.

Kubernetes version 1.4.0 or later is recommended.

Determining whether DNS horizontal autoscaling is
already enabled

Before you begin

Determining whether DNS horizontal autoscaling is already enabled

Getting the name of your DNS Deployment or ReplicationController

Determining your scale target

Enabling DNS horizontal autoscaling

Tuning autoscaling parameters

Disable DNS horizontal autoscaling

Option 1: Scale down the kube-dns-autoscaler deployment to 0 replicas

Option 2: Delete the kube-dns-autoscaler deployment

Option 3: Delete the kube-dns-autoscaler manifest file from the master node

Understanding how DNS horizontal autoscaling works

Future enhancements

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/services-networking/dns-pod-service/

List the Deployments in your cluster in the kube-system namespace:

The output is similar to this:

If you see “kube-dns-autoscaler” in the output, DNS horizontal autoscaling is already enabled,

and you can skip to Tuning autoscaling parameters.

Getting the name of your DNS Deployment or
ReplicationController

List the Deployments in your cluster in the kube-system namespace:

The output is similar to this:

In Kubernetes versions earlier than 1.5 DNS is implemented using a ReplicationController

instead of a Deployment. So if you don’t see kube-dns, or a similar name, in the preceding

output, list the ReplicationControllers in your cluster in the kube-system namespace:

The output is similar to this:

kubectl get deployment --namespace=kube-systemkubectl get deployment --namespace=kube-system

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

......

kube-dns-autoscaler 1 1 1 1 ...kube-dns-autoscaler 1 1 1 1 ...

......

kubectl get deployment --namespace=kube-systemkubectl get deployment --namespace=kube-system

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

......

kube-dns 1 1 1 1 ...kube-dns 1 1 1 1 ...

......

kubectl get rc --namespace=kube-systemkubectl get rc --namespace=kube-system

Determining your scale target

If you have a DNS Deployment, your scale target is:

where is the name of your DNS Deployment. For example, if your DNS Deployment name is

kube-dns, your scale target is Deployment/kube-dns.

If you have a DNS ReplicationController, your scale target is:

where is the name of your DNS ReplicationController. For example, if your DNS

ReplicationController name is kube-dns-v20, your scale target is ReplicationController/kube-

dns-v20.

Enabling DNS horizontal autoscaling

In this section, you create a Deployment. The Pods in the Deployment run a container based on

the cluster-proportional-autoscaler-amd64cluster-proportional-autoscaler-amd64 image.

Create a file named dns-horizontal-autoscaler.yamldns-horizontal-autoscaler.yaml with this content:

dns-horizontal-autoscaler.yamldns-horizontal-autoscaler.yaml

NAME DESIRED CURRENT READY AGENAME DESIRED CURRENT READY AGE

......

kube-dns-v20 1 1 1 ...kube-dns-v20 1 1 1 ...

......

Deployment/<your-deployment-name>Deployment/<your-deployment-name>

ReplicationController/<your-rc-name>ReplicationController/<your-rc-name>

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/dns-horizontal-autoscaler.yaml

dns-horizontal-autoscaler.yamldns-horizontal-autoscaler.yaml

In the file, replace <SCALE_TARGET><SCALE_TARGET> with your scale target.

Go to the directory that contains your configuration file, and enter this command to create the

Deployment:

The output of a successful command is:

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: kube-dns-autoscalerkube-dns-autoscaler

 namespacenamespace:: kube-systemkube-system

 labelslabels::

 k8s-appk8s-app:: kube-dns-autoscalerkube-dns-autoscaler

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 k8s-appk8s-app:: kube-dns-autoscalerkube-dns-autoscaler

 templatetemplate::

 metadatametadata::

 labelslabels::

 k8s-appk8s-app:: kube-dns-autoscalerkube-dns-autoscaler

 specspec::

 containerscontainers::

 -- namename:: autoscalerautoscaler

 imageimage:: k8s.gcr.io/cluster-proportional-autoscaler-amd64:1.1.1k8s.gcr.io/cluster-proportional-autoscaler-amd64:1.1.1

 resourcesresources::

 requestsrequests::

 cpucpu:: ""20m"20m"

 memorymemory:: ""10Mi"10Mi"

 commandcommand::

 -- /cluster-proportional-autoscaler/cluster-proportional-autoscaler

 -- --namespace=kube-system--namespace=kube-system

 -- --configmap=kube-dns-autoscaler--configmap=kube-dns-autoscaler

 -- --target=<SCALE_TARGET>--target=<SCALE_TARGET>

 # When cluster is using large nodes(with more cores), "coresPerReplica" should dominate.# When cluster is using large nodes(with more cores), "coresPerReplica" should dominate.

 # If using small nodes, "nodesPerReplica" should dominate.# If using small nodes, "nodesPerReplica" should dominate.

 -- --default-params={"linear":{"coresPerReplica":256,"nodesPerReplica":16,"min":1}}--default-params={"linear":{"coresPerReplica":256,"nodesPerReplica":16,"min":1}}

 -- --logtostderr=true--logtostderr=true

 -- --v=2--v=2

kubectl create -f dns-horizontal-autoscaler.yamlkubectl create -f dns-horizontal-autoscaler.yaml

deployment "kube-dns-autoscaler" createddeployment "kube-dns-autoscaler" created

DNS horizontal autoscaling is now enabled.

Tuning autoscaling parameters

Verify that the kube-dns-autoscaler ConfigMap exists:

The output is similar to this:

Modify the data in the ConfigMap:

Look for this line:

Modify the fields according to your needs. The “min” field indicates the minimal number of DNS

backends. The actual number of backends number is calculated using this equation:

Note that the values of both coresPerReplicacoresPerReplica and nodesPerReplicanodesPerReplica are integers.

The idea is that when a cluster is using nodes that have many cores, coresPerReplicacoresPerReplica

dominates. When a cluster is using nodes that have fewer cores, nodesPerReplicanodesPerReplica

dominates.

There are other supported scaling patterns. For details, see cluster-proportional-autoscaler.

kubectl get configmap --namespace=kube-systemkubectl get configmap --namespace=kube-system

NAME DATA AGENAME DATA AGE

......

kube-dns-autoscaler 1 ...kube-dns-autoscaler 1 ...

......

kubectl edit configmap kube-dns-autoscaler --namespace=kube-systemkubectl edit configmap kube-dns-autoscaler --namespace=kube-system

linear: '{"coresPerReplica":256,"min":1,"nodesPerReplica":16}'linear: '{"coresPerReplica":256,"min":1,"nodesPerReplica":16}'

replicas = max(ceil(cores * 1/coresPerReplica) , ceil(nodes * 1/nodesPerReplica))replicas = max(ceil(cores * 1/coresPerReplica) , ceil(nodes * 1/nodesPerReplica))

https://github.com/kubernetes-incubator/cluster-proportional-autoscaler

Disable DNS horizontal autoscaling

There are a few options for turning DNS horizontal autoscaling. Which option to use depends

on different conditions.

Option 1: Scale down the kube-dns-autoscaler deployment to 0
replicas

This option works for all situations. Enter this command:

The output is:

Verify that the replica count is zero:

The output displays 0 in the DESIRED and CURRENT columns:

Option 2: Delete the kube-dns-autoscaler deployment

This option works if kube-dns-autoscaler is under your own control, which means no one will

re-create it:

The output is:

kubectl scale deployment --replicas=0 kube-dns-autoscaler --namespace=kube-systemkubectl scale deployment --replicas=0 kube-dns-autoscaler --namespace=kube-system

deployment "kube-dns-autoscaler" scaleddeployment "kube-dns-autoscaler" scaled

kubectl get deployment --namespace=kube-systemkubectl get deployment --namespace=kube-system

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

......

kube-dns-autoscaler 0 0 0 0 ...kube-dns-autoscaler 0 0 0 0 ...

......

kubectl delete deployment kube-dns-autoscaler --namespace=kube-systemkubectl delete deployment kube-dns-autoscaler --namespace=kube-system

Option 3: Delete the kube-dns-autoscaler manifest file from the
master node

This option works if kube-dns-autoscaler is under control of the Addon Manager’s control, and

you have write access to the master node.

Sign in to the master node and delete the corresponding manifest file. The common path for

this kube-dns-autoscaler is:

After the manifest file is deleted, the Addon Manager will delete the kube-dns-autoscaler

Deployment.

Understanding how DNS horizontal autoscaling
works

The cluster-proportional-autoscaler application is deployed separately from the DNS

service.

An autoscaler Pod runs a client that polls the Kubernetes API server for the number of

nodes and cores in the cluster.

A desired replica count is calculated and applied to the DNS backends based on the

current schedulable nodes and cores and the given scaling parameters.

The scaling parameters and data points are provided via a ConfigMap to the autoscaler,

and it refreshes its parameters table every poll interval to be up to date with the latest

desired scaling parameters.

Changes to the scaling parameters are allowed without rebuilding or restarting the

autoscaler Pod.

The autoscaler provides a controller interface to support two control patterns: linear and

ladder.

deployment "kube-dns-autoscaler" deleteddeployment "kube-dns-autoscaler" deleted

/etc/kubernetes/addons/dns-horizontal-autoscaler/dns-horizontal-autoscaler.yaml/etc/kubernetes/addons/dns-horizontal-autoscaler/dns-horizontal-autoscaler.yaml

https://git.k8s.io/kubernetes/cluster/addons/README.md

Future enhancements

Control patterns, in addition to linear and ladder, that consider custom metrics are under

consideration as a future development.

Scaling of DNS backends based on DNS-specific metrics is under consideration as a future

development. The current implementation, which uses the number of nodes and cores in

cluster, is limited.

Support for custom metrics, similar to that provided by Horizontal Pod Autoscaling, is under

consideration as a future development.

What’s next

Learn more about the implementation of cluster-proportional-autoscaler.

file:///docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-incubator/cluster-proportional-autoscaler

Using CoreDNS for Service Discovery

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

This page describes how to enable CoreDNS instead of kube-dns for service discovery.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

Your Kubernetes server must be version v1.9 or later. To check the version, enter

kubectl versionkubectl version .

Installing CoreDNS with kubeadm

In Kubernetes 1.9, CoreDNS is available as an alpha feature, and in Kubernetes 1.10 it is

available as a beta feature. In either case, you may install it during cluster creation by setting

the CoreDNSCoreDNS feature gate to truetrue during kubeadm initkubeadm init :

This installs CoreDNS instead of kube-dns.

Before you begin

Installing CoreDNS with kubeadm

Upgrading an Existing Cluster with kubeadm

What’s next

kubeadm init --feature-gates=CoreDNS=truekubeadm init --feature-gates=CoreDNS=true

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://coredns.io

Upgrading an Existing Cluster with kubeadm

In Kubernetes 1.10, you can also move to CoreDNS when you use kubeadmkubeadm to upgrade a

cluster that is using kube-dnskube-dns . In this case, kubeadmkubeadm will generate the CoreDNS configuration

(“Corefile”) based upon the kube-dnskube-dns ConfigMap, preserving configurations for federation,

stub domains, and upstream name server.

Note that if you are running CoreDNS in your cluster already, prior to upgrade, your existing

Corefile will be overwritten by the one created during upgrade. You should save your existing

ConfigMap if you have customized it. You may re-apply your customizations after the new

ConfigMap is up and running.

This process will be modified for the GA release of this feature, such that an existing Corefile

will not be overwritten.

What’s next

You can configure CoreDNS to support many more use cases than kube-dns by modifying the

CorefileCorefile . For more information, see the CoreDNS site.

https://coredns.io
https://coredns.io/2017/05/08/custom-dns-entries-for-kubernetes/

Safely Drain a Node while Respecting
Application SLOs

This page shows how to safely drain a machine, respecting the application-level disruption

SLOs you have specified using PodDisruptionBudget.

Before you begin

This task assumes that you have met the following prerequisites:

You are using Kubernetes release >= 1.5.

Either:

1. You do not require your applications to be highly available during the node drain, or

2. You have read about the PodDisruptionBudget concept and Configured

PodDisruptionBudgets for applications that need them.

Use kubectl drain to remove a node from service

You can use kubectl drainkubectl drain to safely evict all of your pods from a node before you perform

maintenance on the node (e.g. kernel upgrade, hardware maintenance, etc.). Safe evictions

allow the pod’s containers to gracefully terminate and will respect the

PodDisruptionBudgetsPodDisruptionBudgets you have specified.

Note: By default kubectl drainkubectl drain will ignore certain system pods on the node that cannot be

killed; see the kubectl drain documentation for more details.

Before you begin

Use kubectl drainkubectl drain to remove a node from service

Draining multiple nodes in parallel

The Eviction API

What’s next

file:///docs/concepts/workloads/pods/disruptions/
file:///docs/tasks/run-application/configure-pdb/
file:///docs/concepts/workloads/pods/pod/#termination-of-pods
file:///docs/user-guide/kubectl/v1.10/#drain

When kubectl drainkubectl drain returns successfully, that indicates that all of the pods (except the

ones excluded as described in the previous paragraph) have been safely evicted (respecting

the desired graceful termination period, and without violating any application-level disruption

SLOs). It is then safe to bring down the node by powering down its physical machine or, if

running on a cloud platform, deleting its virtual machine.

First, identify the name of the node you wish to drain. You can list all of the nodes in your

cluster with

Next, tell Kubernetes to drain the node:

Once it returns (without giving an error), you can power down the node (or equivalently, if on a

cloud platform, delete the virtual machine backing the node). If you leave the node in the

cluster during the maintenance operation, you need to run

afterwards to tell Kubernetes that it can resume scheduling new pods onto the node.

Draining multiple nodes in parallel

The kubectl drainkubectl drain command should only be issued to a single node at a time. However, you

can run multiple kubectl drainkubectl drain commands for different node in parallel, in different

terminals or in the background. Multiple drain commands running concurrently will still respect

the PodDisruptionBudgetPodDisruptionBudget you specify.

For example, if you have a StatefulSet with three replicas and have set a

PodDisruptionBudgetPodDisruptionBudget for that set specifying

minAvailable:minAvailable:

22 . kubectl drainkubectl drain will only

evict a pod from the StatefulSet if all three pods are ready, and if you issue multiple drain

commands in parallel, Kubernetes will respect the PodDisruptionBudget and ensure that only

one pod is unavailable at any given time. Any drains that would cause the number of ready

kubectl get nodeskubectl get nodes

kubectl drain <node name>kubectl drain <node name>

kubectl uncordon <node name>kubectl uncordon <node name>

replicas to fall below the specified budget are blocked.

The Eviction API

If you prefer not to use kubectl drain (such as to avoid calling to an external command, or to

get finer control over the pod eviction process), you can also programmatically cause evictions

using the eviction API.

You should first be familiar with using Kubernetes language clients.

The eviction subresource of a pod can be thought of as a kind of policy-controlled DELETE

operation on the pod itself. To attempt an eviction (perhaps more REST-precisely, to attempt

to create an eviction), you POST an attempted operation. Here’s an example:

You can attempt an eviction using curlcurl :

The API can respond in one of three ways:

If the eviction is granted, then the pod is deleted just as if you had sent a DELETEDELETE request

to the pod’s URL and you get back 200 OK200 OK .

If the current state of affairs wouldn’t allow an eviction by the rules set forth in the budget,

you get back

429 Too Many429 Too Many

RequestsRequests . This is typically used for generic rate limiting of

any requests, but here we mean that this request isn’t allowed right now but it may be

allowed later. Currently, callers do not get any Retry-AfterRetry-After advice, but they may in future

versions.

{{

 "apiVersion""apiVersion":: "policy/v1beta1""policy/v1beta1",,

 "kind""kind":: "Eviction""Eviction",,

 "metadata""metadata":: {{

 "name""name":: "quux""quux",,

 "namespace""namespace":: "default""default"

 }}

}}

$ $ curl curl -v-v -H-H 'Content-type: application/json''Content-type: application/json' http://127.0.0.1:8080/api/v1/namespaces/default/pods/quux/eviction http://127.0.0.1:8080/api/v1/namespaces/default/pods/quux/eviction

file:///docs/user-guide/kubectl/v1.10/#drain
file:///docs/tasks/administer-cluster/access-cluster-api/#programmatic-access-to-the-api

If there is some kind of misconfiguration, like multiple budgets pointing at the same pod,

you will get

500 Internal Server500 Internal Server

ErrorError .

For a given eviction request, there are two cases:

There is no budget that matches this pod. In this case, the server always returns 200 OK200 OK .

There is at least one budget. In this case, any of the three above responses may apply.

In some cases, an application may reach a broken state where it will never return anything

other than 429 or 500. This can happen, for example, if the replacement pod created by the

application’s controller does not become ready, or if the last pod evicted has a very long

termination grace period.

In this case, there are two potential solutions:

Abort or pause the automated operation. Investigate the reason for the stuck application,

and restart the automation.

After a suitably long wait, DELETEDELETE the pod instead of using the eviction API.

Kubernetes does not specify what the behavior should be in this case; it is up to the application

owners and cluster owners to establish an agreement on behavior in these cases.

What’s next

Follow steps to protect your application by configuring a Pod Disruption Budget .

file:///docs/tasks/run-application/configure-pdb/

Configure Out Of Resource Handling

This page explains how to configure out of resource handling with kubeletkubelet .

The kubeletkubelet needs to preserve node stability when available compute resources are low.

This is especially important when dealing with incompressible compute resources, such as

memory or disk space. If such resources are exhausted, nodes become unstable.

Eviction Policy

The kubeletkubelet can proactively monitor for and prevent total starvation of a compute resource.

Eviction Policy

Eviction Signals

Eviction Thresholds

Soft Eviction Thresholds

Hard Eviction Thresholds

Eviction Monitoring Interval

Node Conditions

Oscillation of node conditions

Reclaiming node level resources

With imagefsimagefs

Without imagefsimagefs

Evicting end-user Pods

With imagefsimagefs

Without imagefsimagefs

Minimum eviction reclaim

Scheduler

Node OOM Behavior

Best Practices

Schedulable resources and eviction policies

DaemonSet

Deprecation of existing feature flags to reclaim disk

Known issues

kubelet may not observe memory pressure right away

kubelet may evict more Pods than needed

In those cases, the kubeletkubelet can reclaim the starved resource by proactively failing one or

more Pods. When the kubeletkubelet fails a Pod, it terminates all of its containers and transitions its

PodPhasePodPhase to FailedFailed .

Eviction Signals

The kubeletkubelet supports eviction decisions based on the signals described in the following

table. The value of each signal is described in the Description column, which is based on the

kubeletkubelet summary API.

Eviction Signal Description

memory.availablememory.available
memory.availablememory.available := node.status.capacity[memory]node.status.capacity[memory] -

node.stats.memory.workingSetnode.stats.memory.workingSet

nodefs.availablenodefs.available nodefs.availablenodefs.available := node.stats.fs.availablenode.stats.fs.available

nodefs.inodesFreenodefs.inodesFree nodefs.inodesFreenodefs.inodesFree := node.stats.fs.inodesFreenode.stats.fs.inodesFree

imagefs.availableimagefs.available
imagefs.availableimagefs.available :=

node.stats.runtime.imagefs.availablenode.stats.runtime.imagefs.available

imagefs.inodesFreeimagefs.inodesFree
imagefs.inodesFreeimagefs.inodesFree :=

node.stats.runtime.imagefs.inodesFreenode.stats.runtime.imagefs.inodesFree

Each of the above signals supports either a literal or percentage based value. The percentage

based value is calculated relative to the total capacity associated with each signal.

The value for memory.availablememory.available is derived from the cgroupfs instead of tools like

free -free -

mm .

This is important because

free -free -

mm does not work in a container, and if users use the node

allocatable feature, out of resource decisions are made local to the end user Pod part of the

cgroup hierarchy as well as the root node. This script reproduces the same set of steps that

the kubeletkubelet performs to calculate memory.availablememory.available . The kubeletkubelet excludes inactive_file

(i.e. # of bytes of file-backed memory on inactive LRU list) from its calculation as it assumes

that memory is reclaimable under pressure.

kubeletkubelet supports only two filesystem partitions.

file:///docs/tasks/administer-cluster/reserve-compute-resources/#node-allocatable
file:///docs/tasks/administer-cluster/out-of-resource/memory-available.sh

1. The nodefsnodefs filesystem that kubelet uses for volumes, daemon logs, etc.

2. The imagefsimagefs filesystem that container runtimes uses for storing images and container

writable layers.

imagefsimagefs is optional. kubeletkubelet auto-discovers these filesystems using cAdvisor. kubeletkubelet

does not care about any other filesystems. Any other types of configurations are not currently

supported by the kubelet. For example, it is not OK to store volumes and logs in a dedicated

filesystemfilesystem .

In future releases, the kubeletkubelet will deprecate the existing garbage collection support in favor

of eviction in response to disk pressure.

Eviction Thresholds

The kubeletkubelet supports the ability to specify eviction thresholds that trigger the kubeletkubelet to

reclaim resources.

Each threshold has the following form:

[eviction-signal][operator][quantity][eviction-signal][operator][quantity]

where:

eviction-signaleviction-signal is an eviction signal token as defined in the previous table.

operatoroperator is the desired relational operator, such as << (less than).

quantityquantity is the eviction threshold quantity, such as 1Gi1Gi . These tokens must match the

quantity representation used by Kubernetes. An eviction threshold can also be expressed

as a percentage using the %% token.

For example, if a node has 10Gi10Gi of total memory and you want trigger eviction if the available

memory falls below 1Gi1Gi , you can define the eviction threshold as either

memory.available<10%memory.available<10% or memory.available<1Gimemory.available<1Gi . You cannot use both.

Soft Eviction Thresholds

A soft eviction threshold pairs an eviction threshold with a required administrator-specified

grace period. No action is taken by the kubeletkubelet to reclaim resources associated with the

file:///docs/concepts/cluster-administration/kubelet-garbage-collection/

eviction signal until that grace period has been exceeded. If no grace period is provided, the

kubeletkubelet returns an error on startup.

In addition, if a soft eviction threshold has been met, an operator can specify a maximum

allowed Pod termination grace period to use when evicting pods from the node. If specified,

the kubeletkubelet uses the lesser value among the pod.Spec.TerminationGracePeriodSecondspod.Spec.TerminationGracePeriodSeconds

and the max allowed grace period. If not specified, the kubeletkubelet kills Pods immediately with

no graceful termination.

To configure soft eviction thresholds, the following flags are supported:

eviction-softeviction-soft describes a set of eviction thresholds (e.g. memory.available<1.5Gimemory.available<1.5Gi)

that if met over a corresponding grace period would trigger a Pod eviction.

eviction-soft-grace-periodeviction-soft-grace-period describes a set of eviction grace periods (e.g.

memory.available=1m30smemory.available=1m30s) that correspond to how long a soft eviction threshold must

hold before triggering a Pod eviction.

eviction-max-pod-grace-periodeviction-max-pod-grace-period describes the maximum allowed grace period (in

seconds) to use when terminating pods in response to a soft eviction threshold being met.

Hard Eviction Thresholds

A hard eviction threshold has no grace period, and if observed, the kubeletkubelet will take

immediate action to reclaim the associated starved resource. If a hard eviction threshold is

met, the kubeletkubelet kills the Pod immediately with no graceful termination.

To configure hard eviction thresholds, the following flag is supported:

eviction-hardeviction-hard describes a set of eviction thresholds (e.g. memory.available<1Gimemory.available<1Gi)

that if met would trigger a Pod eviction.

The kubeletkubelet has the following default hard eviction threshold:

--eviction-hard=memory.available<100Mi--eviction-hard=memory.available<100Mi

Eviction Monitoring Interval

The kubeletkubelet evaluates eviction thresholds per its configured housekeeping interval.

housekeeping-intervalhousekeeping-interval is the interval between container housekeepings.

Node Conditions

The kubeletkubelet maps one or more eviction signals to a corresponding node condition.

If a hard eviction threshold has been met, or a soft eviction threshold has been met

independent of its associated grace period, the kubeletkubelet reports a condition that reflects the

node is under pressure.

The following node conditions are defined that correspond to the specified eviction signal.

Node Condition Eviction Signal Description

MemoryPressureMemoryPressure memory.availablememory.available
Available memory on the node has satisfied
an eviction threshold

DiskPressureDiskPressure

nodefs.availablenodefs.available ,

nodefs.inodesFreenodefs.inodesFree ,

imagefs.availableimagefs.available , or

imagefs.inodesFreeimagefs.inodesFree

Available disk space and inodes on either the
node’s root filesystem or image filesystem
has satisfied an eviction threshold

The kubeletkubelet continues to report node status updates at the frequency specified by

--node-status-update-frequency--node-status-update-frequency which defaults to 10s10s .

Oscillation of node conditions

If a node is oscillating above and below a soft eviction threshold, but not exceeding its

associated grace period, it would cause the corresponding node condition to constantly

oscillate between true and false, and could cause poor scheduling decisions as a

consequence.

To protect against this oscillation, the following flag is defined to control how long the

kubeletkubelet must wait before transitioning out of a pressure condition.

eviction-pressure-transition-periodeviction-pressure-transition-period is the duration for which the kubeletkubelet has to

wait before transitioning out of an eviction pressure condition.

The kubeletkubelet would ensure that it has not observed an eviction threshold being met for the

specified pressure condition for the period specified before toggling the condition back to

falsefalse .

Reclaiming node level resources

If an eviction threshold has been met and the grace period has passed, the kubeletkubelet initiates

the process of reclaiming the pressured resource until it has observed the signal has gone

below its defined threshold.

The kubeletkubelet attempts to reclaim node level resources prior to evicting end-user Pods. If disk

pressure is observed, the kubeletkubelet reclaims node level resources differently if the machine

has a dedicated imagefsimagefs configured for the container runtime.

With imagefs

If nodefsnodefs filesystem has met eviction thresholds, kubeletkubelet frees up disk space by deleting

the dead Pods and their containers.

If imagefsimagefs filesystem has met eviction thresholds, kubeletkubelet frees up disk space by deleting

all unused images.

Without imagefs

If nodefsnodefs filesystem has met eviction thresholds, kubeletkubelet frees up disk space in the

following order:

1. Delete dead Pods and their containers

2. Delete all unused images

Evicting end-user Pods

If the kubeletkubelet is unable to reclaim sufficient resource on the node, kubeletkubelet begins evicting

Pods.

The kubeletkubelet ranks Pods for eviction first by whether or not their usage of the starved

resource exceeds requests, then by Priority, and then by the consumption of the starved

compute resource relative to the Pods’ scheduling requests.

As a result, kubeletkubelet ranks and evicts Pods in the following order:

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/

BestEffortBestEffort or BurstableBurstable Pods whose usage of a starved resource exceeds its request.

Such pods are ranked by Priority, and then usage above request.

GuaranteedGuaranteed pods and BurstableBurstable pods whose usage is beneath requests are evicted

last. GuaranteedGuaranteed Pods are guaranteed only when requests and limits are specified for all

the containers and they are equal. Such pods are guaranteed to never be evicted because

of another Pod’s resource consumption. If a system daemon (such as kubeletkubelet , dockerdocker ,

and journaldjournald) is consuming more resources than were reserved via system-reservedsystem-reserved

or kube-reservedkube-reserved allocations, and the node only has GuaranteedGuaranteed or BurstableBurstable Pods

using less than requests remaining, then the node must choose to evict such a Pod in

order to preserve node stability and to limit the impact of the unexpected consumption to

other Pods. In this case, it will choose to evict pods of Lowest Priority first.

If necessary, kubeletkubelet evicts Pods one at a time to reclaim disk when DiskPressureDiskPressure is

encountered. If the kubeletkubelet is responding to inodeinode starvation, it reclaims inodesinodes by

evicting Pods with the lowest quality of service first. If the kubeletkubelet is responding to lack of

available disk, it ranks Pods within a quality of service that consumes the largest amount of

disk and kill those first.

With imagefs

If nodefsnodefs is triggering evictions, kubeletkubelet sorts Pods based on the usage on nodefsnodefs

local volumes + logs of all its containers.

If imagefsimagefs is triggering evictions, kubeletkubelet sorts Pods based on the writable layer usage of

all its containers.

Without imagefs

If nodefsnodefs is triggering evictions, kubeletkubelet sorts Pods based on their total disk usage

local volumes + logs & writable layer of all its containers.

Minimum eviction reclaim

In certain scenarios, eviction of Pods could result in reclamation of small amount of resources.

This can result in kubeletkubelet hitting eviction thresholds in repeated successions. In addition to

that, eviction of resources like diskdisk , is time consuming.

To mitigate these issues, kubeletkubelet can have a per-resource minimum-reclaimminimum-reclaim . Whenever

kubeletkubelet observes resource pressure, kubeletkubelet attempts to reclaim at least

minimum-reclaimminimum-reclaim amount of resource below the configured eviction threshold.

For example, with the following configuration:

If an eviction threshold is triggered for memory.availablememory.available , the kubeletkubelet works to ensure that

memory.availablememory.available is at least 500Mi500Mi . For nodefs.availablenodefs.available , the kubeletkubelet works to ensure

that nodefs.availablenodefs.available is at least 1.5Gi1.5Gi , and for imagefs.availableimagefs.available it works to ensure

that imagefs.availableimagefs.available is at least 102Gi102Gi before no longer reporting pressure on their

associated resources.

The default eviction-minimum-reclaimeviction-minimum-reclaim is 00 for all resources.

Scheduler

The node reports a condition when a compute resource is under pressure. The scheduler

views that condition as a signal to dissuade placing additional pods on the node.

Node Condition Scheduler Behavior

MemoryPressureMemoryPressure No new BestEffortBestEffort Pods are scheduled to the node.

DiskPressureDiskPressure No new Pods are scheduled to the node.

Node OOM Behavior

If the node experiences a system OOM (out of memory) event prior to the kubeletkubelet is able to

reclaim memory, the node depends on the oom_killer to respond.

The kubeletkubelet sets a oom_score_adjoom_score_adj value for each container based on the quality of service

--eviction-hard=memory.available<500Mi,nodefs.available<1Gi,imagefs.available<100Gi--eviction-hard=memory.available<500Mi,nodefs.available<1Gi,imagefs.available<100Gi

--eviction-minimum-reclaim="memory.available=0Mi,nodefs.available=500Mi,imagefs.available=2Gi"`--eviction-minimum-reclaim="memory.available=0Mi,nodefs.available=500Mi,imagefs.available=2Gi"`

https://lwn.net/Articles/391222/

for the Pod.

Quality of Service oom_score_adj

GuaranteedGuaranteed -998

BestEffortBestEffort 1000

BurstableBurstable min(max(2, 1000 - (1000 * memoryRequestBytes) / machineMemoryCapacityBytes), 999)

If the kubeletkubelet is unable to reclaim memory prior to a node experiencing system OOM, the

oom_killeroom_killer calculates an oom_scoreoom_score based on the percentage of memory it’s using on the

node, and then add the oom_score_adjoom_score_adj to get an effective oom_scoreoom_score for the container, and

then kills the container with the highest score.

The intended behavior should be that containers with the lowest quality of service that are

consuming the largest amount of memory relative to the scheduling request should be killed

first in order to reclaim memory.

Unlike Pod eviction, if a Pod container is OOM killed, it may be restarted by the kubeletkubelet based

on its RestartPolicyRestartPolicy .

Best Practices

The following sections describe best practices for out of resource handling.

Schedulable resources and eviction policies

Consider the following scenario:

Node memory capacity: 10Gi10Gi

Operator wants to reserve 10% of memory capacity for system daemons (kernel,

kubeletkubelet , etc.)

Operator wants to evict Pods at 95% memory utilization to reduce thrashing and incidence

of system OOM.

To facilitate this scenario, the kubeletkubelet would be launched as follows:

Implicit in this configuration is the understanding that “System reserved” should include the

amount of memory covered by the eviction threshold.

To reach that capacity, either some Pod is using more than its request, or the system is using

more than

1.5Gi - 500Mi =1.5Gi - 500Mi =

1Gi1Gi .

This configuration ensures that the scheduler does not place Pods on a node that immediately

induce memory pressure and trigger eviction assuming those Pods use less than their

configured request.

DaemonSet

It is never desired for kubeletkubelet to evict a DaemonSetDaemonSet Pod, since the Pod is immediately

recreated and rescheduled back to the same node.

At the moment, the kubeletkubelet has no ability to distinguish a Pod created from DaemonSetDaemonSet

versus any other object. If/when that information is available, the kubeletkubelet could pro-actively

filter those Pods from the candidate set of Pods provided to the eviction strategy.

In general, it is strongly recommended that DaemonSetDaemonSet not create BestEffortBestEffort Pods to avoid

being identified as a candidate Pod for eviction. Instead DaemonSetDaemonSet should ideally launch

GuaranteedGuaranteed Pods.

Deprecation of existing feature flags to reclaim disk

kubeletkubelet has been freeing up disk space on demand to keep the node stable.

As disk based eviction matures, the following kubeletkubelet flags are marked for deprecation in

favor of the simpler configuration supported around eviction.

Existing Flag New Flag

--image-gc-high-threshold--image-gc-high-threshold --eviction-hard--eviction-hard or eviction-softeviction-soft

--eviction-hard=memory.available<500Mi--eviction-hard=memory.available<500Mi

--system-reserved=memory=1.5Gi--system-reserved=memory=1.5Gi

--image-gc-low-threshold--image-gc-low-threshold --eviction-minimum-reclaim--eviction-minimum-reclaim

--maximum-dead-containers--maximum-dead-containers deprecated

--maximum-dead-containers-per---maximum-dead-containers-per-

containercontainer
deprecated

--minimum-container-ttl-duration--minimum-container-ttl-duration deprecated

--low-diskspace-threshold-mb--low-diskspace-threshold-mb --eviction-hard--eviction-hard or eviction-softeviction-soft

--outofdisk-transition-frequency--outofdisk-transition-frequency
--eviction-pressure-transition---eviction-pressure-transition-

periodperiod

Existing Flag New Flag

Known issues

The following sections describe known issues related to out of resource handling.

kubelet may not observe memory pressure right away

The kubeletkubelet currently polls cAdvisorcAdvisor to collect memory usage stats at a regular interval. If

memory usage increases within that window rapidly, the kubeletkubelet may not observe

MemoryPressureMemoryPressure fast enough, and the OOMKillerOOMKiller will still be invoked. We intend to integrate

with the memcgmemcg notification API in a future release to reduce this latency, and instead have the

kernel tell us when a threshold has been crossed immediately.

If you are not trying to achieve extreme utilization, but a sensible measure of overcommit, a

viable workaround for this issue is to set eviction thresholds at approximately 75% capacity.

This increases the ability of this feature to prevent system OOMs, and promote eviction of

workloads so cluster state can rebalance.

kubelet may evict more Pods than needed

The Pod eviction may evict more Pods than needed due to stats collection timing gap. This

can be mitigated by adding the ability to get root container stats on an on-demand basis

(https://github.com/google/cadvisor/issues/1247) in the future.

https://github.com/google/cadvisor/issues/1247

Reserve Compute Resources for System
Daemons

Kubernetes nodes can be scheduled to CapacityCapacity . Pods can consume all the available

capacity on a node by default. This is an issue because nodes typically run quite a few system

daemons that power the OS and Kubernetes itself. Unless resources are set aside for these

system daemons, pods and system daemons compete for resources and lead to resource

starvation issues on the node.

The kubeletkubelet exposes a feature named

NodeNode

AllocatableAllocatable that helps to reserve compute

resources for system daemons. Kubernetes recommends cluster administrators to configure

NodeNode

AllocatableAllocatable based on their workload density on each node.

Node Allocatable

Node Allocatable

Enabling QoS and Pod level cgroups

Configuring a cgroup driver

Kube Reserved

System Reserved

Eviction Thresholds

Enforcing Node Allocatable

General Guidelines

Example Scenario

Feature Availability

AllocatableAllocatable on a Kubernetes node is defined as the amount of compute resources that are

available for pods. The scheduler does not over-subscribe AllocatableAllocatable . CPUCPU , memorymemory and

ephemeral-storageephemeral-storage are supported as of now.

Node Allocatable is exposed as part of v1.Nodev1.Node object in the API and as part of

kubectl describekubectl describe

nodenode in the CLI.

Resources can be reserved for two categories of system daemons in the kubeletkubelet .

Enabling QoS and Pod level cgroups

To properly enforce node allocatable constraints on the node, you must enable the new cgroup

hierarchy via the --cgroups-per-qos--cgroups-per-qos flag. This flag is enabled by default. When enabled, the

kubeletkubelet will parent all end-user pods under a cgroup hierarchy managed by the kubeletkubelet .

Configuring a cgroup driver

The kubeletkubelet supports manipulation of the cgroup hierarchy on the host using a cgroup

driver. The driver is configured via the --cgroup-driver--cgroup-driver flag.

The supported values are the following:

cgroupfscgroupfs is the default driver that performs direct manipulation of the cgroup filesystem

on the host in order to manage cgroup sandboxes.

systemdsystemd is an alternative driver that manages cgroup sandboxes using transient slices

 Node Capacity Node Capacity

--

| kube-reserved || kube-reserved |

|-------------------------||-------------------------|

| system-reserved || system-reserved |

|-------------------------||-------------------------|

| eviction-threshold || eviction-threshold |

|-------------------------||-------------------------|

| || |

| allocatable || allocatable |

| (available for pods) || (available for pods) |

| || |

| || |

--

for resources that are supported by that init system.

Depending on the configuration of the associated container runtime, operators may have to

choose a particular cgroup driver to ensure proper system behavior. For example, if operators

use the systemdsystemd cgroup driver provided by the dockerdocker runtime, the kubeletkubelet must be

configured to use the systemdsystemd cgroup driver.

Kube Reserved

Kubelet Flag:

--kube-reserved=[cpu=100m][,][memory=100Mi][,][ephemeral-storage=1Gi]--kube-reserved=[cpu=100m][,][memory=100Mi][,][ephemeral-storage=1Gi]

Kubelet Flag: --kube-reserved-cgroup=--kube-reserved-cgroup=

kube-reservedkube-reserved is meant to capture resource reservation for kubernetes system daemons

like the kubeletkubelet , container runtimecontainer runtime ,

node problemnode problem

detectordetector , etc. It is not meant to

reserve resources for system daemons that are run as pods. kube-reservedkube-reserved is typically a

function of pod densitypod density on the nodes. This performance dashboard exposes cpucpu and

memorymemory usage profiles of kubeletkubelet and

dockerdocker

engineengine at multiple levels of pod density.

This blog post explains how the dashboard can be interpreted to come up with a suitable

kube-reservedkube-reserved reservation.

To optionally enforce kube-reservedkube-reserved on system daemons, specify the parent control group

for kube daemons as the value for --kube-reserved-cgroup--kube-reserved-cgroup kubelet flag.

It is recommended that the kubernetes system daemons are placed under a top level control

group (runtime.sliceruntime.slice on systemd machines for example). Each system daemon should

ideally run within its own child control group. Refer to this doc for more details on

recommended control group hierarchy.

Note that Kubelet does not create --kube-reserved-cgroup--kube-reserved-cgroup if it doesn’t exist. Kubelet will

fail if an invalid cgroup is specified.

System Reserved

http://node-perf-dash.k8s.io/#/builds
http://blog.kubernetes.io/2016/11/visualize-kubelet-performance-with-node-dashboard.html
https://git.k8s.io/community/contributors/design-proposals/node/node-allocatable.md#recommended-cgroups-setup

Kubelet Flag:

--system-reserved=[cpu=100mi][,][memory=100Mi][,][ephemeral-storage=1Gi]--system-reserved=[cpu=100mi][,][memory=100Mi][,][ephemeral-storage=1Gi]

Kubelet Flag: --system-reserved-cgroup=--system-reserved-cgroup=

system-reservedsystem-reserved is meant to capture resource reservation for OS system daemons like

sshdsshd , udevudev , etc. system-reservedsystem-reserved should reserve memorymemory for the kernelkernel too since

kernelkernel memory is not accounted to pods in Kubernetes at this time. Reserving resources for

user login sessions is also recommended (user.sliceuser.slice in systemd world).

To optionally enforce system-reservedsystem-reserved on system daemons, specify the parent control

group for OS system daemons as the value for --system-reserved-cgroup--system-reserved-cgroup kubelet flag.

It is recommended that the OS system daemons are placed under a top level control group (

system.slicesystem.slice on systemd machines for example).

Note that Kubelet does not create --system-reserved-cgroup--system-reserved-cgroup if it doesn’t exist. Kubelet will

fail if an invalid cgroup is specified.

Eviction Thresholds

Kubelet Flag: --eviction-hard=[memory.available<500Mi]--eviction-hard=[memory.available<500Mi]

Memory pressure at the node level leads to System OOMs which affects the entire node and all

pods running on it. Nodes can go offline temporarily until memory has been reclaimed. To

avoid (or reduce the probability of) system OOMs kubelet provides

Out ofOut of

ResourceResource

management. Evictions are supported for memorymemory and ephemeral-storageephemeral-storage only. By

reserving some memory via --eviction-hard--eviction-hard flag, the kubeletkubelet attempts to evictevict pods

whenever memory availability on the node drops below the reserved value. Hypothetically, if

system daemons did not exist on a node, pods cannot use more than

capacity - eviction-capacity - eviction-

hardhard . For this reason, resources reserved for evictions are not

available for pods.

Enforcing Node Allocatable

file:///docs/tasks/administer-cluster/out-of-resource/

Kubelet Flag:

--enforce-node-allocatable=pods[,][system-reserved][,][kube-reserved]--enforce-node-allocatable=pods[,][system-reserved][,][kube-reserved]

The scheduler treats AllocatableAllocatable as the available capacitycapacity for pods.

kubeletkubelet enforce AllocatableAllocatable across pods by default. Enforcement is performed by evicting

pods whenever the overall usage across all pods exceeds AllocatableAllocatable . More details on

eviction policy can be found here. This enforcement is controlled by specifying podspods value to

the kubelet flag --enforce-node-allocatable--enforce-node-allocatable .

Optionally, kubeletkubelet can be made to enforce kube-reservedkube-reserved and system-reservedsystem-reserved by

specifying kube-reservedkube-reserved & system-reservedsystem-reserved values in the same flag. Note that to enforce

kube-reservedkube-reserved or system-reservedsystem-reserved , --kube-reserved-cgroup--kube-reserved-cgroup or

--system-reserved-cgroup--system-reserved-cgroup needs to be specified respectively.

General Guidelines

System daemons are expected to be treated similar to GuaranteedGuaranteed pods. System daemons

can burst within their bounding control groups and this behavior needs to be managed as part

of kubernetes deployments. For example, kubeletkubelet should have its own control group and

share Kube-reservedKube-reserved resources with the container runtime. However, Kubelet cannot burst

and use up all available Node resources if kube-reservedkube-reserved is enforced.

Be extra careful while enforcing system-reservedsystem-reserved reservation since it can lead to critical

system services being CPU starved or OOM killed on the node. The recommendation is to

enforce system-reservedsystem-reserved only if a user has profiled their nodes exhaustively to come up with

precise estimates and is confident in their ability to recover if any process in that group is

oom_killed.

To begin with enforce AllocatableAllocatable on podspods .

Once adequate monitoring and alerting is in place to track kube system daemons, attempt

to enforce kube-reservedkube-reserved based on usage heuristics.

If absolutely necessary, enforce system-reservedsystem-reserved over time.

The resource requirements of kube system daemons may grow over time as more and more

file:///docs/tasks/administer-cluster/out-of-resource/#eviction-policy

features are added. Over time, kubernetes project will attempt to bring down utilization of node

system daemons, but that is not a priority as of now. So expect a drop in AllocatableAllocatable

capacity in future releases.

Example Scenario

Here is an example to illustrate Node Allocatable computation:

Node has 32Gi32Gi of memorymemory , 16 CPUs16 CPUs and 100Gi100Gi of StorageStorage

--kube-reserved--kube-reserved is set to cpu=1,memory=2Gi,ephemeral-storage=1Gicpu=1,memory=2Gi,ephemeral-storage=1Gi

--system-reserved--system-reserved is set to cpu=500m,memory=1Gi,ephemeral-storage=1Gicpu=500m,memory=1Gi,ephemeral-storage=1Gi

--eviction-hard--eviction-hard is set to memory.available<500Mi,nodefs.available<10%memory.available<500Mi,nodefs.available<10%

Under this scenario, AllocatableAllocatable will be 14.5 CPUs14.5 CPUs , 28.5Gi28.5Gi of memory and 98Gi98Gi of local

storage. Scheduler ensures that the total memory requestsrequests across all pods on this node

does not exceed 28.5Gi28.5Gi and storage doesn’t exceed 88Gi88Gi . Kubelet evicts pods whenever

the overall memory usage across pods exceeds 28.5Gi28.5Gi , or if overall disk usage exceeds

88Gi88Gi If all processes on the node consume as much CPU as they can, pods together cannot

consume more than 14.5 CPUs14.5 CPUs .

If kube-reservedkube-reserved and/or system-reservedsystem-reserved is not enforced and system daemons exceed

their reservation, kubeletkubelet evicts pods whenever the overall node memory usage is higher

than 31.5Gi31.5Gi or storagestorage is greater than 90Gi90Gi

Feature Availability

As of Kubernetes version 1.2, it has been possible to optionally specify kube-reservedkube-reserved and

system-reservedsystem-reserved reservations. The scheduler switched to using AllocatableAllocatable instead of

CapacityCapacity when available in the same release.

As of Kubernetes version 1.6, eviction-thresholdseviction-thresholds are being considered by computing

AllocatableAllocatable . To revert to the old behavior set

--experimental-allocatable-ignore-eviction--experimental-allocatable-ignore-eviction kubelet flag to truetrue .

As of Kubernetes version 1.6, kubeletkubelet enforces AllocatableAllocatable on pods using control groups.

To revert to the old behavior unset --enforce-node-allocatable--enforce-node-allocatable kubelet flag. Note that

unless --kube-reserved--kube-reserved , or --system-reserved--system-reserved or --eviction-hard--eviction-hard flags have non-

default values, AllocatableAllocatable enforcement does not affect existing deployments.

As of Kubernetes version 1.6, kubeletkubelet launches pods in their own cgroup sandbox in a

dedicated part of the cgroup hierarchy it manages. Operators are required to drain their nodes

prior to upgrade of the kubeletkubelet from prior versions in order to ensure pods and their

associated containers are launched in the proper part of the cgroup hierarchy.

As of Kubernetes version 1.7, kubeletkubelet supports specifying storagestorage as a resource for

kube-reservedkube-reserved and system-reservedsystem-reserved .

Guaranteed Scheduling For Critical Add-
On Pods

Overview

In addition to Kubernetes core components like api-server, scheduler, controller-manager

running on a master machine there are a number of add-ons which, for various reasons, must

run on a regular cluster node (rather than the Kubernetes master). Some of these add-ons are

critical to a fully functional cluster, such as Heapster, DNS, and UI. A cluster may stop working

properly if a critical add-on is evicted (either manually or as a side effect of another operation

like upgrade) and becomes pending (for example when the cluster is highly utilized and either

there are other pending pods that schedule into the space vacated by the evicted critical add-

on pod or the amount of resources available on the node changed for some other reason).

Rescheduler: guaranteed scheduling of critical add-
ons

Rescheduler is deprecated as of Kubernetes 1.10 and will be removed in version 1.11 in

accordance with the deprecation policy for beta features.

To avoid eviction of critical pods, you must enable priorities in scheduler before upgrading to

Kubernetes 1.10 or higher.

Rescheduler ensures that critical add-ons are always scheduled (assuming the cluster has

enough resources to run the critical add-on pods in the absence of regular pods). If the

scheduler determines that no node has enough free resources to run the critical add-on pod

given the pods that are already running in the cluster (indicated by critical add-on pod’s pod

condition PodScheduled set to false, the reason set to Unschedulable) the rescheduler tries to

Overview

Rescheduler: guaranteed scheduling of critical add-ons

Config

Marking pod as critical when using Rescheduler.

Marking pod as critical when priorites are enabled.

file:///docs/reference/deprecation-policy
file:///docs/concepts/configuration/pod-priority-preemption/

free up space for the add-on by evicting some pods; then the scheduler will schedule the add-

on pod.

To avoid situation when another pod is scheduled into the space prepared for the critical add-

on, the chosen node gets a temporary taint “CriticalAddonsOnly” before the eviction(s) (see

more details). Each critical add-on has to tolerate it, while the other pods shouldn’t tolerate the

taint. The taint is removed once the add-on is successfully scheduled.

Warning: currently there is no guarantee which node is chosen and which pods are being killed

in order to schedule critical pods, so if rescheduler is enabled your pods might be occasionally

killed for this purpose. Please ensure that rescheduler is not enabled along with priorities &

preemptions in default-scheduler as rescheduler is oblivious to priorities and it may evict high

priority pods, instead of low priority ones.

Config

Rescheduler doesn’t have any user facing configuration (component config) or API.

Marking pod as critical when using Rescheduler.

** Marking pod as critical when using Rescheduler.

To be considered critical, the pod has to run in the kube-systemkube-system namespace (configurable via

flag) and

have the scheduler.alpha.kubernetes.io/critical-podscheduler.alpha.kubernetes.io/critical-pod annotation set to empty

string, and

have the PodSpec’s tolerationstolerations field set to

[{"key":"CriticalAddonsOnly",[{"key":"CriticalAddonsOnly",

"operator":"Exists"}]"operator":"Exists"}] .

The first one marks a pod a critical. The second one is required by Rescheduler algorithm.

Marking pod as critical when priorites are enabled.

To be considered critical, the pod has to run in the kube-systemkube-system namespace (configurable via

flag) and

https://git.k8s.io/community/contributors/design-proposals/scheduling/taint-toleration-dedicated.md

Have the priorityClass set as “system-cluster-critical” or “system-node-critical”, the latter

being the highest for entire cluster and

scheduler.alpha.kubernetes.io/critical-podscheduler.alpha.kubernetes.io/critical-pod annotation set to empty string(This

will be deprecated too).

Declare Network Policy

This document helps you get started using the Kubernetes NetworkPolicy API to declare

network policies that govern how pods communicate with each other.

Before you begin

You’ll need to have a Kubernetes cluster in place, with network policy support. There are a

number of network providers that support NetworkPolicy, including:

Calico

Cilium

Kube-router

Romana

Weave Net

Note: The above list is sorted alphabetically by product name, not by recommendation or

preference. This example is valid for a Kubernetes cluster using any of these providers.

Create an nginx deployment and expose it via a

service

To see how Kubernetes network policy works, start off by creating an nginxnginx deployment and

exposing it via a service.

Before you begin

Create an nginxnginx deployment and expose it via a service

Test the service by accessing it from another pod

Limit access to the nginxnginx service

Assign the policy to the service

Test access to the service when access label is not defined

Define access label and test again

file:///docs/concepts/services-networking/network-policies/
file:///docs/tasks/configure-pod-container/calico-network-policy/
file:///docs/tasks/administer-cluster/cilium-network-policy/
file:///docs/tasks/administer-cluster/kube-router-network-policy/
file:///docs/tasks/configure-pod-container/romana-network-policy/
file:///docs/tasks/administer-cluster/weave-network-policy/

This runs two nginxnginx pods in the default namespace, and exposes them through a service

called nginxnginx .

Test the service by accessing it from another pod

You should be able to access the new nginxnginx service from other pods. To test, access the

service from another pod in the default namespace. Make sure you haven’t enabled isolation

on the namespace.

Start a busybox container, and use wgetwget on the nginxnginx service:

Limit access to the nginx service

Let’s say you want to limit access to the nginxnginx service so that only pods with the label

$$ kubectl run nginx kubectl run nginx --image--image==nginx nginx --replicas--replicas==22

deployment "nginx" createddeployment "nginx" created

$$ kubectl expose deployment nginx kubectl expose deployment nginx --port--port==8080

service "nginx" exposedservice "nginx" exposed

$$ kubectl get svc,pod kubectl get svc,pod

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

svc/kubernetes 10.100.0.1 <none>svc/kubernetes 10.100.0.1 <none> 443/TCP 46m 443/TCP 46m

svc/nginx 10.100.0.16 <none>svc/nginx 10.100.0.16 <none> 80/TCP 33s 80/TCP 33s

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

po/nginx-701339712-e0qfq 1/1 Running 0 35spo/nginx-701339712-e0qfq 1/1 Running 0 35s

po/nginx-701339712-o00ef 1/1 Running 0 35spo/nginx-701339712-o00ef 1/1 Running 0 35s

$$ kubectl run busybox kubectl run busybox --rm--rm -ti-ti --image--image==busybox /bin/shbusybox /bin/sh

Waiting for pod default/busybox-472357175-y0m47 to be running, status is Pending, pod ready: falseWaiting for pod default/busybox-472357175-y0m47 to be running, status is Pending, pod ready: false

Hit enter for command promptHit enter for command prompt

/ #/ # wget wget --spider--spider --timeout--timeout==1 nginx1 nginx

Connecting to nginx (10.100.0.16:80)Connecting to nginx (10.100.0.16:80)

/ #/ #

access: trueaccess: true can query it. To do that, create a NetworkPolicyNetworkPolicy that allows connections

only from those pods:

Assign the policy to the service

Use kubectl to create a NetworkPolicy from the above nginx-policy.yaml file:

Test access to the service when access label is not
defined

If we attempt to access the nginx Service from a pod without the correct labels, the request

will now time out:

kindkind:: NetworkPolicyNetworkPolicy

apiVersionapiVersion:: networking.k8s.io/v1networking.k8s.io/v1

metadatametadata::

 namename:: access-nginxaccess-nginx

specspec::

 podSelectorpodSelector::

 matchLabelsmatchLabels::

 runrun:: nginxnginx

 ingressingress::

 -- fromfrom::

 -- podSelectorpodSelector::

 matchLabelsmatchLabels::

 accessaccess:: ""true"true"

$$ kubectl create kubectl create -f-f nginx-policy.yaml nginx-policy.yaml

networkpolicy "access-nginx" creatednetworkpolicy "access-nginx" created

$$ kubectl run busybox kubectl run busybox --rm--rm -ti-ti --image--image==busybox /bin/shbusybox /bin/sh

Waiting for pod default/busybox-472357175-y0m47 to be running, status is Pending, pod ready: falseWaiting for pod default/busybox-472357175-y0m47 to be running, status is Pending, pod ready: false

Hit enter for command promptHit enter for command prompt

/ #/ # wget wget --spider--spider --timeout--timeout==1 nginx1 nginx

Connecting to nginx (10.100.0.16:80)Connecting to nginx (10.100.0.16:80)

wget: download timed outwget: download timed out

/ #/ #

Define access label and test again

Create a pod with the correct labels, and you’ll see that the request is allowed:

$$ kubectl run busybox kubectl run busybox --rm--rm -ti-ti --labels--labels=="access=true""access=true" --image--image==busybox /bin/shbusybox /bin/sh

Waiting for pod default/busybox-472357175-y0m47 to be running, status is Pending, pod ready: falseWaiting for pod default/busybox-472357175-y0m47 to be running, status is Pending, pod ready: false

Hit enter for command promptHit enter for command prompt

/ #/ # wget wget --spider--spider --timeout--timeout==1 nginx1 nginx

Connecting to nginx (10.100.0.16:80)Connecting to nginx (10.100.0.16:80)

/ #/ #

Using a KMS provider for data encryption

This page shows how to configure a Key Management Service (KMS) provider and plugin to

enable secret data encryption.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Kubernetes version 1.10.0 or later is required

etcd v3 or later is required

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

The KMS encryption provider uses an envelope encryption scheme to encrypt data in etcd. The

data is encrypted using a data encryption key (DEK); a new DEK is generated for each

Before you begin

Configuring the KMS provider

Implementing a KMS plugin

Enabling the KMS supported by your cloud provider

Developing a KMS plugin gRPC server

Integrating a KMS plugin with the remote KMS

Deploying the KMS plugin

Encrypting your data with the KMS provider

Verifying that the data is encrypted

Ensuring all secrets are encrypted

Switching from a local encryption provider to the KMS provider

Disabling encryption at rest

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

encryption. The DEKs are encrypted with a key encryption key (KEK) that is stored and

managed in a remote KMS. The KMS provider uses gRPC to communicate with a specific KMS

plugin. The KMS plugin, which is implemented as a gRPC server and deployed on the same

host(s) as the Kubernetes master(s), is responsible for all communication with the remote

KMS.

Configuring the KMS provider

To configure a KMS provider on the API server, include a provider of type kmskms in the providers

array in the encryption configuration file and set the following properties:

namename : Display name of the KMS plugin.

endpointendpoint : Listen address of the gRPC server (KMS plugin). The endpoint is a UNIX

domain socket.

cachesizecachesize : Number of data encryption keys (DEKs) to be cached in the clear. When

cached, DEKs can be used without another call to the KMS; whereas DEKs that are not

cached require a call to the KMS to unwrap..

See Understanding the encryption at rest configuration.

Implementing a KMS plugin

To implement a KMS plugin, you can develop a new plugin gRPC server or enable a KMS plugin

already provided by your cloud provider. You then integrate the plugin with the remote KMS

and deploy it on the Kubernetes master.

Enabling the KMS supported by your cloud provider

Refer to your cloud provider for instructions on enabling the cloud provider-specific KMS

plugin.

Developing a KMS plugin gRPC server

You can develop a KMS plugin gRPC server using a stub file available for Go. For other

languages, you use a proto file to create a stub file that you can use to develop the gRPC server

file:///docs/tasks/administer-cluster/encrypt-data

code.

Using Go: Use the functions and data structures in the stub file: service.pb.go to develop

the gRPC server code

Using languages other than Go: Use the protoc compiler with the proto file: service.proto to

generate a stub file for the specific language

Then use the functions and data structures in the stub file to develop the server code.

Notes:

kms plugin version: v1beta1v1beta1

In response to procedure call Version, a compatible KMS plugin should return v1beta1 as

VersionResponse.version

message version: v1beta1v1beta1

All messages from KMS provider have the version field set to current version v1beta1

protocol: UNIX domain socket (unixunix)

The gRPC server should listen at UNIX domain socket

Integrating a KMS plugin with the remote KMS

The KMS plugin can communicate with the remote KMS using any protocol supported by the

KMS. All configuration data, including authentication credentials the KMS plugin uses to

communicate with the remote KMS, are stored and managed by the KMS plugin independently.

The KMS plugin can encode the ciphertext with additional metadata that may be required

before sending it to the KMS for decryption.

Deploying the KMS plugin

Ensure that the KMS plugin runs on the same host(s) as the Kubernetes master(s).

Encrypting your data with the KMS provider

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apiserver/pkg/storage/value/encrypt/envelope/v1beta1/service.pb.go
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apiserver/pkg/storage/value/encrypt/envelope/v1beta1/service.proto

To encrypt the data:

1. Create a new encryption configuration file using the appropriate properties for the kmskms

provider:

1. Set the --experimental-encryption-provider-config--experimental-encryption-provider-config flag on the kube-apiserver to

point to the location of the configuration file.

2. Restart your API server.

Verifying that the data is encrypted

Data is encrypted when written to etcd. After restarting your kube-apiserver, any newly created

or updated secret should be encrypted when stored. To verify, you can use the etcdctl

command line program to retrieve the contents of your secret.

1. Create a new secret called secret1 in the default namespace:

2. Using the etcdctl command line, read that secret out of etcd:

where [...][...] must be the additional arguments for connecting to the etcd server.

kindkind:: EncryptionConfigEncryptionConfig

apiVersionapiVersion:: v1v1

resourcesresources::

 -- resourcesresources::

 -- secretssecrets

 providersproviders::

 -- kmskms::

 namename:: myKmsPluginmyKmsPlugin

 endpointendpoint:: unix:///tmp/socketfile.sockunix:///tmp/socketfile.sock

 cachesizecachesize:: 100100

 -- identityidentity:: {}{}

kubectl create secret generic secret1 -n default --from-literal=mykey=mydatakubectl create secret generic secret1 -n default --from-literal=mykey=mydata

ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] | hexdump -CETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] | hexdump -C

3. Verify the stored secret is prefixed with k8s:enc:kms:v1:k8s:enc:kms:v1: , which indicates that the kmskms

provider has encrypted the resulting data.

4. Verify that the secret is correctly decrypted when retrieved via the API:

should match

mykey:mykey:

mydatamydata

Ensuring all secrets are encrypted

Because secrets are encrypted on write, performing an update on a secret encrypts that

content.

The following command reads all secrets and then updates them to apply server side

encryption. If an error occurs due to a conflicting write, retry the command. For larger clusters,

you may wish to subdivide the secrets by namespace or script an update.

Switching from a local encryption provider to the
KMS provider

To switch from a local encryption provider to the kmskms provider and re-encrypt all of the

secrets:

1. Add the kmskms provider as the first entry in the configuration file as shown in the following

example.

kubectl describe secret secret1 -n defaultkubectl describe secret secret1 -n default

kubectl get secrets --all-namespaces -o json | kubectl replace -f -kubectl get secrets --all-namespaces -o json | kubectl replace -f -

1. Restart all kube-apiserver processes.

2. Run the following command to force all secrets to be re-encrypted using the kmskms

provider.

Disabling encryption at rest

To disable encryption at rest:

1. Place the identityidentity provider as the first entry in the configuration file:

1. Restart all kube-apiserver processes.

2. Run the following command to force all secrets to be decrypted.

kindkind:: EncryptionConfigEncryptionConfig

apiVersionapiVersion:: v1v1

resourcesresources::

 -- resourcesresources::

 -- secretssecrets

 providersproviders::

 -- kmskms::

 name name :: myKmsPluginmyKmsPlugin

 endpointendpoint:: unix:///tmp/socketfile.sockunix:///tmp/socketfile.sock

 cachesizecachesize:: 100100

 -- aescbcaescbc::

 keyskeys::

 -- namename:: key1key1

 secretsecret:: <BASE 64 ENCODED SECRET><BASE 64 ENCODED SECRET>

kubectl get secrets --all-namespaces -o json| kubectl replace -f -kubectl get secrets --all-namespaces -o json| kubectl replace -f -

kindkind:: EncryptionConfigEncryptionConfig

apiVersionapiVersion:: v1v1

resourcesresources::

 -- resourcesresources::

 -- secretssecrets

 providersproviders::

 -- identityidentity:: {}{}

 -- kmskms::

 name name :: myKmsPluginmyKmsPlugin

 endpointendpoint:: unix:///tmp/socketfile.sockunix:///tmp/socketfile.sock

 cachesizecachesize:: 100100

kubectl get secrets --all-namespaces -o json | kubectl replace -f -kubectl get secrets --all-namespaces -o json | kubectl replace -f -

Use Calico for NetworkPolicy

This page shows a couple of quick ways to create a Calico cluster on Kubernetes.

Before you begin

Decide whether you want to deploy a cloud or local cluster.

Creating a Calico cluster with Google Kubernetes
Engine (GKE)

Prerequisite: gcloud.

1. To launch a GKE cluster with Calico, just include the --enable-network-policy--enable-network-policy flag.

Syntax

Example

2. To verify the deployment, use the following command.

Before you begin

Creating a Calico cluster with Google Kubernetes Engine (GKE)

Creating a local Calico cluster with kubeadm

What’s next

gcloud container clusters create gcloud container clusters create [[CLUSTER_NAME] CLUSTER_NAME] --enable-network-policy--enable-network-policy

gcloud container clusters create my-calico-cluster gcloud container clusters create my-calico-cluster --enable-network-policy--enable-network-policy

kubectl get pods kubectl get pods --namespace--namespace==kube-systemkube-system

https://cloud.google.com/sdk/docs/quickstarts

The Calico pods begin with calicocalico . Check to make sure each one has a status of

RunningRunning .

Creating a local Calico cluster with kubeadm

To get a local single-host Calico cluster in fifteen minutes using kubeadm, refer to the Calico

Quickstart.

What’s next

Once your cluster is running, you can follow the Declare Network Policy to try out Kubernetes

NetworkPolicy.

https://docs.projectcalico.org/latest/getting-started/kubernetes/
file:///docs/tasks/administer-cluster/declare-network-policy/

Use Cilium for NetworkPolicy

This page shows how to use Cilium for NetworkPolicy.

For background on Cilium, read the Introduction to Cilium.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Deploying Cilium on Minikube for Basic Testing

To get familiar with Cilium easily you can follow the Cilium Kubernetes Getting Started Guide

to perform a basic DaemonSet installation of Cilium in minikube.

Installation in a minikube setup uses a simple ‘‘all-in-one’’ YAML file that includes DaemonSet

configurations for Cilium, to connect to the minikube’s etcd instance as well as appropriate

RBAC settings:

Before you begin

Deploying Cilium on Minikube for Basic Testing

Deploying Cilium for Production Use

Understanding Cilium components

What’s next

https://cilium.readthedocs.io/en/latest/intro
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://docs.cilium.io/en/latest/gettingstarted/minikube/

The remainder of the Getting Started Guide explains how to enforce both L3/L4 (i.e., IP

address + port) security policies, as well as L7 (e.g., HTTP) security policies using an example

application.

Deploying Cilium for Production Use

For detailed instructions around deploying Cilium for production, see: Cilium Kubernetes

Installation Guide This documentation includes detailed requirements, instructions and

example production DaemonSet files.

Understanding Cilium components

Deploying a cluster with Cilium adds Pods to the kube-systemkube-system namespace. To see this list of

Pods run:

You’ll see a list of Pods similar to this:

There are two main components to be aware of:

One ciliumcilium Pod runs on each node in your cluster and enforces network policy on the

traffic to/from Pods on that node using Linux BPF.

$ $ kubectl create kubectl create -f-f https://raw.githubusercontent.com/cilium/cilium/master/examples/kubernetes/cilium.yaml https://raw.githubusercontent.com/cilium/cilium/master/examples/kubernetes/cilium.yaml

configmap configmap "cilium-config""cilium-config" created created

secret secret "cilium-etcd-secrets""cilium-etcd-secrets" created created

serviceaccount serviceaccount "cilium""cilium" created created

clusterrolebinding clusterrolebinding "cilium""cilium" created created

daemonset daemonset "cilium""cilium" created created

clusterrole clusterrole "cilium""cilium" created created

kubectl get pods kubectl get pods --namespace--namespace==kube-systemkube-system

NAME DESIRED CURRENT READY NODE-SELECTOR AGENAME DESIRED CURRENT READY NODE-SELECTOR AGE

cilium 1 1 1 <none>cilium 1 1 1 <none> 2m 2m

......

https://cilium.readthedocs.io/en/latest/kubernetes/install/

For production deployments, Cilium should leverage the key-value store cluster (e.g., etcd)

used by Kubernetes, which typically runs on the Kubernetes master nodes. The Cilium

Kubernetes Installation Guide includes an example DaemonSet which can be customized

to point to this key-value store cluster. The simple ‘‘all-in-one’’ DaemonSet for minikube

requires no such configuration because it automatically connects to the minikube’s etcd

instance.

What’s next

Once your cluster is running, you can follow the Declare Network Policy to try out Kubernetes

NetworkPolicy with Cilium. Have fun, and if you have questions, contact us using the Cilium

Slack Channel.

https://cilium.readthedocs.io/en/latest/kubernetes/install/
file:///docs/tasks/administer-cluster/declare-network-policy/
https://cilium.herokuapp.com/

Use Kube-router for NetworkPolicy

This page shows how to use Kube-router for NetworkPolicy.

Before you begin

You need to have a Kubernetes cluster running. If you do not already have a cluster, you can

create one by using any of the cluster installers like Kops, Bootkube, Kubeadm etc.

Installing Kube-router addon

The Kube-router Addon comes with a Network Policy Controller that watches Kubernetes API

server for any NetworkPolicy and pods updated and configures iptables rules and ipsets to

allow or block traffic as directed by the policies. Please follow the trying Kube-router with

cluster installers guide to install Kube-router addon.

What’s next

Once you have installed the Kube-router addon, you can follow the Declare Network Policy to

try out Kubernetes NetworkPolicy.

Before you begin

Installing Kube-router addon

What’s next

https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router/tree/master/Documentation#try-kube-router-with-cluster-installers
file:///docs/tasks/administer-cluster/declare-network-policy/

Romana for NetworkPolicy

This page shows how to use Romana for NetworkPolicy.

Before you begin

Complete steps 1, 2, and 3 of the kubeadm getting started guide.

Installing Romana with kubeadm

Follow the containerized installation guide for kubeadmin.

Applying network policies

To apply network policies use one of the following:

Romana network policies.

Example of Romana network policy.

The NetworkPolicy API.

What’s next

Once your have installed Romana, you can follow the Declare Network Policy to try out

Kubernetes NetworkPolicy.

Before you begin

Installing Romana with kubeadm

Applying network policies

What’s next

file:///docs/getting-started-guides/kubeadm/
https://github.com/romana/romana/tree/master/containerize
https://github.com/romana/romana/wiki/Romana-policies
https://github.com/romana/core/blob/master/doc/policy.md
file:///docs/tasks/administer-cluster/declare-network-policy/

Weave Net for NetworkPolicy

This page shows how to use Weave Net for NetworkPolicy.

Before you begin

You need to have a Kubernetes cluster. Follow the kubeadm getting started guide to bootstrap

one.

Install the Weave Net addon

Follow the Integrating Kubernetes via the Addon guide.

The Weave Net addon for Kubernetes comes with a Network Policy Controller that

automatically monitors Kubernetes for any NetworkPolicy annotations on all namespaces and

configures iptablesiptables rules to allow or block traffic as directed by the policies.

Test the installation

Verify that the weave works.

Enter the following command:

The output is similar to this:

Before you begin

Install the Weave Net addon

Test the installation

What’s next

kubectl get po kubectl get po -n-n kube-system kube-system -o-o wide wide

file:///docs/getting-started-guides/kubeadm/
https://www.weave.works/docs/net/latest/kube-addon/
https://www.weave.works/docs/net/latest/kube-addon/#npc

Each Node has a weave Pod, and all Pods are RunningRunning and 2/2 READY2/2 READY . (2/22/2 means that

each Pod has weaveweave and weave-npcweave-npc .)

What’s next

Once you have installed the Weave Net addon, you can follow the Declare Network Policy to try

out Kubernetes NetworkPolicy. If you have any question, contact us at #weave-community on

Slack or Weave User Group.

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

weave-net-1t1qg 2/2 Running 0 9d 192.168.2.10 worknode3weave-net-1t1qg 2/2 Running 0 9d 192.168.2.10 worknode3

weave-net-231d7 2/2 Running 1 7d 10.2.0.17 worknodegpuweave-net-231d7 2/2 Running 1 7d 10.2.0.17 worknodegpu

weave-net-7nmwt 2/2 Running 3 9d 192.168.2.131 masternodeweave-net-7nmwt 2/2 Running 3 9d 192.168.2.131 masternode

weave-net-pmw8w 2/2 Running 0 9d 192.168.2.216 worknode2weave-net-pmw8w 2/2 Running 0 9d 192.168.2.216 worknode2

file:///docs/tasks/administer-cluster/declare-network-policy/
https://github.com/weaveworks/weave#getting-help

Reconfigure a Node's Kubelet in a Live
Cluster

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

As of Kubernetes 1.8, the new Dynamic Kubelet Configuration feature is available in alpha. This

allows you to change the configuration of Kubelets in a live Kubernetes cluster via first-class

Kubernetes concepts. Specifically, this feature allows you to configure individual Nodes’

Kubelets via ConfigMaps.

Warning: All Kubelet configuration parameters may be changed dynamically, but not all

parameters are safe to change dynamically. This feature is intended for system experts who

have a strong understanding of how configuration changes will affect behavior. No

documentation currently exists which plainly lists “safe to change” fields, but we plan to add it

before this feature graduates from alpha.

Before you begin

Reconfiguring the Kubelet on a Live Node in your Cluster

Basic Workflow Overview

Node Authorizer Workarounds

Generating a file that contains the current configuration

Edit the configuration file

Push the configuration file to the control plane

Authorize your Node to read the new ConfigMap

Set the Node to use the new configuration

Observe that the Node begins using the new configuration

Edit the configuration file again

Push the newly edited configuration to the control plane

Authorize your Node to read the new ConfigMap

Configure the Node to use the new configuration

Observe that the Kubelet is using the new configuration

Deauthorize your Node fom reading the old ConfigMap

Reset the Node to use its local default configuration

Observe that the Node is using its local default configuration

Deauthorize your Node fom reading the old ConfigMap

Kubectl Patch Example

Understanding KubeletConfigOK Conditions

https://github.com/kubernetes/features/issues/281

Before you begin

A live Kubernetes cluster with both Master and Node at v1.8 or higher must be running,

with the DynamicKubeletConfigDynamicKubeletConfig feature gate enabled and the Kubelet’s

--dynamic-config-dir--dynamic-config-dir flag set to a writeable directory on the Node. This flag must be

set to enable Dynamic Kubelet Configuration.

The kubectl command-line tool must be also v1.8 or higher, and must be configured to

communicate with the cluster.

Reconfiguring the Kubelet on a Live Node in your
Cluster

Basic Workflow Overview

The basic workflow for configuring a Kubelet in a live cluster is as follows:

1. Write a YAML or JSON configuration file containing the Kubelet’s configuration.

2. Wrap this file in a ConfigMap and save it to the Kubernetes control plane.

3. Update the Kubelet’s corresponding Node object to use this ConfigMap.

Each Kubelet watches a configuration reference on its respective Node object. When this

reference changes, the Kubelet downloads the new configuration, updates a local reference to

refer to the file, and exits. For the feature to work correctly, you must be running a process

manager (like systemd) which will restart the Kubelet when it exits. When the Kubelet is

restarted, it will begin using the new configuration.

The new configuration completely overrides configuration provided by --config--config , and is

overridden by command-line flags. Unspecified values in the new configuration will receive

default values appropriate to the configuration version (e.g.

kubelet.config.k8s.io/v1beta1kubelet.config.k8s.io/v1beta1), unless overridden by flags.

The status of the Node’s Kubelet configuration is reported via the KubeletConfigOKKubeletConfigOK

condition in the Node status. Once you have updated a Node to use the new ConfigMap, you

can observe this condition to confirm that the Node is using the intended configuration. A table

describing the possible conditions can be found at the end of this article.

This document describes editing Nodes using kubectl editkubectl edit . There are other ways to modify

a Node’s spec, including kubectl patchkubectl patch , for example, which facilitate scripted workflows.

This document only describes a single Node consuming each ConfigMap. Keep in mind that it

is also valid for multiple Nodes to consume the same ConfigMap.

Node Authorizer Workarounds

The Node Authorizer does not yet pay attention to which ConfigMaps are assigned to which

Nodes. If you currently use the Node authorizer, your Kubelets will not be automatically

granted permission to download their respective ConfigMaps.

The temporary workaround used in this document is to manually create the RBAC Roles and

RoleBindings for each ConfigMap. The Node Authorizer will be extended before the Dynamic

Kubelet Configuration feature graduates from alpha, so doing this in production should never

be necessary.

Generating a file that contains the current configuration

The Dynamic Kubelet Configuration feature allows you to provide an override for the entire

configuration object, rather than a per-field overlay. This is a simpler model that makes it

easier to trace the source of configuration values and debug issues. The compromise,

however, is that you must start with knowledge of the existing configuration to ensure that you

only change the fields you intend to change.

In the future, the Kubelet will be bootstrapped from a file on disk (see Set Kubelet parameters

via a config file), and you will simply edit a copy of this file (which, as a best practice, should

live in version control) while creating the first Kubelet ConfigMap. Today, however, the Kubelet

is still bootstrapped with command-line flags. Fortunately, there is a dirty trick you can use to

generate a config file containing a Node’s current configuration. The trick involves accessing

the Kubelet server’s configzconfigz endpoint via the kubectl proxy. This endpoint, in its current

implementation, is intended to be used only as a debugging aid, which is part of why this is a

dirty trick. The endpoint may be improved in the future, but until then it should not be relied on

for production scenarios. This trick also requires the jqjq command to be installed on your

machine, for unpacking and editing the JSON response from the endpoint.

Do the following to generate the file:

1. Pick a Node to reconfigure. We will refer to this Node’s name as NODE_NAME.

file:///docs/tasks/administer-cluster/kubelet-config-file

2. Start the kubectl proxy in the background with

kubectl proxy --port=8001kubectl proxy --port=8001

&&

3. Run the following command to download and unpack the configuration from the configz

endpoint:

Note that we have to manually add the kindkind and apiVersionapiVersion to the downloaded object, as

these are not reported by the configz endpoint. This is one of the limitations of the endpoint.

Edit the configuration file

Using your editor of choice, change one of the parameters in the

kubelet_configz_${NODE_NAME}kubelet_configz_${NODE_NAME} file from the previous step. A QPS parameter,

eventRecordQPSeventRecordQPS for example, is a good candidate.

Push the configuration file to the control plane

Push the edited configuration file to the control plane with the following command:

You should see a response similar to:

$ export NODE_NAME=the-name-of-the-node-you-are-reconfiguring$ export NODE_NAME=the-name-of-the-node-you-are-reconfiguring

$ curl -sSL http://localhost:8001/api/v1/proxy/nodes/${NODE_NAME}/configz | jq '.kubeletconfig|.kind="KubeletConfiguration"|.apiVersion="kubelet.config.k8s.io/v1beta1"' > kubelet_configz_${NODE_NAME}$ curl -sSL http://localhost:8001/api/v1/proxy/nodes/${NODE_NAME}/configz | jq '.kubeletconfig|.kind="KubeletConfiguration"|.apiVersion="kubelet.config.k8s.io/v1beta1"' > kubelet_configz_${NODE_NAME}

$ kubectl -n kube-system create configmap my-node-config --from-file=kubelet=kubelet_configz_${NODE_NAME} --append-hash -o yaml$ kubectl -n kube-system create configmap my-node-config --from-file=kubelet=kubelet_configz_${NODE_NAME} --append-hash -o yaml

apiVersion: v1apiVersion: v1

data:data:

 kubelet: | kubelet: |

 {...} {...}

kind: ConfigMapkind: ConfigMap

metadata:metadata:

 creationTimestamp: 2017-09-14T20:23:33Z creationTimestamp: 2017-09-14T20:23:33Z

 name: my-node-config-gkt4c2m4b2 name: my-node-config-gkt4c2m4b2

 namespace: kube-system namespace: kube-system

 resourceVersion: "119980" resourceVersion: "119980"

 selfLink: /api/v1/namespaces/kube-system/configmaps/my-node-config-gkt4c2m4b2 selfLink: /api/v1/namespaces/kube-system/configmaps/my-node-config-gkt4c2m4b2

 uid: 946d785e-998a-11e7-a8dd-42010a800006 uid: 946d785e-998a-11e7-a8dd-42010a800006

Note that the configuration data must appear under the ConfigMap’s kubeletkubelet key.

We create the ConfigMap in the kube-systemkube-system namespace, which is appropriate because this

ConfigMap configures a Kubernetes system component - the Kubelet.

The --append-hash--append-hash option appends a short checksum of the ConfigMap contents to the

name. This is convenient for an edit->push workflow, as it will automatically, yet

deterministically, generate new names for new ConfigMaps.

We use the -o yaml-o yaml output format so that the name, namespace, and uid are all reported

following creation. We will need these in the next step. We will refer to the name as

CONFIG_MAP_NAME and the uid as CONFIG_MAP_UID.

Authorize your Node to read the new ConfigMap

Now that you’ve created a new ConfigMap, you need to authorize your node to read it. First,

create a Role for your new ConfigMap with the following commands:

Next, create a RoleBinding to associate your Node with the new Role:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Set the Node to use the new configuration

Edit the Node’s reference to point to the new ConfigMap with the following command:

Once in your editor, add the following YAML under specspec :

$ export CONFIG_MAP_NAME=name-from-previous-output$ export CONFIG_MAP_NAME=name-from-previous-output

$ kubectl -n kube-system create role ${CONFIG_MAP_NAME}-reader --verb=get --resource=configmap --resource-name=${CONFIG_MAP_NAME}$ kubectl -n kube-system create role ${CONFIG_MAP_NAME}-reader --verb=get --resource=configmap --resource-name=${CONFIG_MAP_NAME}

$ kubectl -n kube-system create rolebinding ${CONFIG_MAP_NAME}-reader --role=${CONFIG_MAP_NAME}-reader --user=system:node:${NODE_NAME}$ kubectl -n kube-system create rolebinding ${CONFIG_MAP_NAME}-reader --role=${CONFIG_MAP_NAME}-reader --user=system:node:${NODE_NAME}

kubectl edit node ${NODE_NAME}kubectl edit node ${NODE_NAME}

Be sure to specify all three of namename , namespacenamespace , and uiduid .

Observe that the Node begins using the new configuration

Retrieve the Node with

kubectl get node ${NODE_NAME} -okubectl get node ${NODE_NAME} -o

yamlyaml , and look for the

KubeletConfigOKKubeletConfigOK condition in status.conditionsstatus.conditions . You should see the message

Using current (UID: CONFIG_MAP_UID)Using current (UID: CONFIG_MAP_UID) when the Kubelet starts using the new

configuration.

For convenience, you can use the following command (using jqjq) to filter down to the

KubeletConfigOKKubeletConfigOK condition:

If something goes wrong, you may see one of several different error conditions, detailed in the

table of KubeletConfigOK conditions, below. When this happens, you should check the

Kubelet’s log for more details.

Edit the configuration file again

To change the configuration again, we simply repeat the above workflow. Try editing the

kubeletkubelet file, changing the previously changed parameter to a new value.

configSource:configSource:

 configMapRef: configMapRef:

 name: CONFIG_MAP_NAME name: CONFIG_MAP_NAME

 namespace: kube-system namespace: kube-system

 uid: CONFIG_MAP_UID uid: CONFIG_MAP_UID

$ kubectl get no ${NODE_NAME} -o json | jq '.status.conditions|map(select(.type=="KubeletConfigOK"))'$ kubectl get no ${NODE_NAME} -o json | jq '.status.conditions|map(select(.type=="KubeletConfigOK"))'

[[

 { {

 "lastHeartbeatTime": "2017-09-20T18:08:29Z", "lastHeartbeatTime": "2017-09-20T18:08:29Z",

 "lastTransitionTime": "2017-09-20T18:08:17Z", "lastTransitionTime": "2017-09-20T18:08:17Z",

 "message": "using current: /api/v1/namespaces/kube-system/configmaps/my-node-config-gkt4c2m4b2", "message": "using current: /api/v1/namespaces/kube-system/configmaps/my-node-config-gkt4c2m4b2",

 "reason": "passing all checks", "reason": "passing all checks",

 "status": "True", "status": "True",

 "type": "KubeletConfigOK" "type": "KubeletConfigOK"

 } }

]]

Push the newly edited configuration to the control plane

Push the new configuration to the control plane in a new ConfigMap with the following

command:

This new ConfigMap will get a new name, as we have changed the contents. We will refer to

the new name as NEW_CONFIG_MAP_NAME and the new uid as NEW_CONFIG_MAP_UID.

Authorize your Node to read the new ConfigMap

Now that you’ve created a new ConfigMap, you need to authorize your node to read it. First,

create a Role for your new ConfigMap with the following commands:

Next, create a RoleBinding to associate your Node with the new Role:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Configure the Node to use the new configuration

Once more, edit the Node’s spec.configSourcespec.configSource with kubectl edit node ${NODE_NAME}kubectl edit node ${NODE_NAME} .

Your new spec.configSourcespec.configSource should look like the following, with namename and uiduid substituted

as necessary:

$ kubectl create configmap my-node-config --namespace=kube-system --from-file=kubelet=kubelet_configz_${NODE_NAME} --append-hash -o yaml$ kubectl create configmap my-node-config --namespace=kube-system --from-file=kubelet=kubelet_configz_${NODE_NAME} --append-hash -o yaml

$ export NEW_CONFIG_MAP_NAME=name-from-previous-output$ export NEW_CONFIG_MAP_NAME=name-from-previous-output

$ kubectl -n kube-system create role ${NEW_CONFIG_MAP_NAME}-reader --verb=get --resource=configmap --resource-name=${NEW_CONFIG_MAP_NAME}$ kubectl -n kube-system create role ${NEW_CONFIG_MAP_NAME}-reader --verb=get --resource=configmap --resource-name=${NEW_CONFIG_MAP_NAME}

$ kubectl -n kube-system create rolebinding ${NEW_CONFIG_MAP_NAME}-reader --role=${NEW_CONFIG_MAP_NAME}-reader --user=system:node:${NODE_NAME}$ kubectl -n kube-system create rolebinding ${NEW_CONFIG_MAP_NAME}-reader --role=${NEW_CONFIG_MAP_NAME}-reader --user=system:node:${NODE_NAME}

configSource:configSource:

 configMapRef: configMapRef:

 name: ${NEW_CONFIG_MAP_NAME} name: ${NEW_CONFIG_MAP_NAME}

 namespace: kube-system namespace: kube-system

 uid: ${NEW_CONFIG_MAP_UID} uid: ${NEW_CONFIG_MAP_UID}

Observe that the Kubelet is using the new configuration

Once more, retrieve the Node with

kubectl get node ${NODE_NAME} -okubectl get node ${NODE_NAME} -o

yamlyaml , and look for

the KubeletConfigOKKubeletConfigOK condition in status.conditionsstatus.conditions . You should see the message

using current: /api/v1/namespaces/kube-using current: /api/v1/namespaces/kube-

system/configmaps/${NEW_CONFIG_MAP_NAME}system/configmaps/${NEW_CONFIG_MAP_NAME}

when the Kubelet starts using the new configuration.

Deauthorize your Node fom reading the old ConfigMap

Once you know your Node is using the new configuration and are confident that the new

configuration has not caused any problems, it is a good idea to deauthorize the node from

reading the old ConfigMap. Run the following commands to remove the RoleBinding and Role:

Note that this does not necessarily prevent the Node from reverting to the old configuration, as

it may locally cache the old ConfigMap for an indefinite period of time.

You may optionally also choose to remove the old ConfigMap:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Reset the Node to use its local default configuration

Finally, if you wish to reset the Node to use the configuration it was provisioned with, simply

edit the Node with kubectl edit node ${NODE_NAME}kubectl edit node ${NODE_NAME} and remove the spec.configSourcespec.configSource

subfield.

Observe that the Node is using its local default configuration

After removing this subfield, you should eventually observe that the KubeletConfigOK

$ kubectl -n kube-system delete rolebinding ${CONFIG_MAP_NAME}-reader$ kubectl -n kube-system delete rolebinding ${CONFIG_MAP_NAME}-reader

$ kubectl -n kube-system delete role ${CONFIG_MAP_NAME}-reader$ kubectl -n kube-system delete role ${CONFIG_MAP_NAME}-reader

$ kubectl -n kube-system delete configmap ${CONFIG_MAP_NAME}$ kubectl -n kube-system delete configmap ${CONFIG_MAP_NAME}

condition’s message reverts to

using current:using current:

locallocal .

Deauthorize your Node fom reading the old ConfigMap

Once you know your Node is using the default configuration again, it is a good idea to

deauthorize the node from reading the old ConfigMap. Run the following commands to

remove the RoleBinding and Role:

Note that this does not necessarily prevent the Node from reverting to the old ConfigMap, as it

may locally cache the old ConfigMap for an indefinite period of time.

You may optionally also choose to remove the old ConfigMap:

Once the Node Authorizer is updated to do this automatically, you will be able to skip this step.

Kubectl Patch Example

As mentioned above, there are many ways to change a Node’s configSource. Here is an

example command that uses kubectl patchkubectl patch :

Understanding KubeletConfigOK Conditions

The following table describes several of the KubeletConfigOKKubeletConfigOK Node conditions you might

encounter in a cluster that has Dynamic Kubelet Config enabled. If you observe a condition

with status=Falsestatus=False , you should check the Kubelet log for more error details by searching for

the message or reason text.

$ kubectl -n kube-system delete rolebinding ${NEW_CONFIG_MAP_NAME}-reader$ kubectl -n kube-system delete rolebinding ${NEW_CONFIG_MAP_NAME}-reader

$ kubectl -n kube-system delete role ${NEW_CONFIG_MAP_NAME}-reader$ kubectl -n kube-system delete role ${NEW_CONFIG_MAP_NAME}-reader

$ kubectl -n kube-system delete configmap ${NEW_CONFIG_MAP_NAME}$ kubectl -n kube-system delete configmap ${NEW_CONFIG_MAP_NAME}

kubectl patch node ${NODE_NAME} -p "{\"spec\":{\"configSource\":{\"configMapRef\":{\"name\":\"${CONFIG_MAP_NAME}\",\"namespace\":\"kube-system\",\"uid\":\"${CONFIG_MAP_UID}\"}}}}"kubectl patch node ${NODE_NAME} -p "{\"spec\":{\"configSource\":{\"configMapRef\":{\"name\":\"${CONFIG_MAP_NAME}\",\"namespace\":\"kube-system\",\"uid\":\"${CONFIG_MAP_UID}\"}}}}"

Possible Messages

using current: local

using current: /api/v1/namespaces/${CURRENT_CONFIG_MAP_NAMESPACE}/configmaps/${CURRENT_CONFIG_MAP_NAME}

using last-known-good: local

using last-known-good:

/api/v1/namespaces/${LAST_KNOWN_GOOD_CONFIG_MAP_NAMESPACE}/configmaps/${LAST_KNOWN_GOOD_CONFIG_MAP_NAME}

The reasons in the next column could potentially appear for any of the above messages.

This condition indicates that the Kubelet is having trouble reconciling `spec.configSource`, and thus no change to the in-use

configuration has occurred.

The "failed to sync" reasons are specific to the failure that occurred, and the next column does not necessarily contain all

reasons.

Set Kubelet parameters via a config file

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

A subset of the Kubelet’s configuration parameters may be set via an on-disk config file, as a

substitute for command-line flags. This functionality is considered beta in v1.10.

Providing parameters via a config file is the recommended approach because it simplifies

node deployment and configuration management.

Before you begin

A v1.10 or higher Kubelet binary must be installed for beta functionality.

Create the config file

The subset of the Kubelet’s configuration that can be configured via a file is defined by the

KubeletConfigurationKubeletConfiguration struct here (v1beta1).

The configuration file must be a JSON or YAML representation of the parameters in this struct.

Make sure the Kubelet has read permissions on the file.

Here is an example of what this file might look like:

In the example, the Kubelet is configured to evict Pods when available memory drops below

200Mi. All other Kubelet configuration values are left at their built-in defaults, unless overridden

Before you begin

Create the config file

Start a Kubelet process configured via the config file

Relationship to Dynamic Kubelet Config

kind: KubeletConfigurationkind: KubeletConfiguration

apiVersion: kubelet.config.k8s.io/v1beta1apiVersion: kubelet.config.k8s.io/v1beta1

evictionHard:evictionHard:

 memory.available: "200Mi" memory.available: "200Mi"

https://github.com/kubernetes/kubernetes/blob/release-1.10/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go

by flags. Command line flags which target the same value as a config file will override that

value.

For a trick to generate a configuration file from a live node, see Reconfigure a Node’s Kubelet in

a Live Cluster.

Start a Kubelet process configured via the config file

Start the Kubelet with the --config--config flag set to the path of the Kubelet’s config file. The

Kubelet will then load its config from this file.

Note that command line flags which target the same value as a config file will override that

value. This helps ensure backwards compatibility with the command-line API.

Note that relative file paths in the Kubelet config file are resolved relative to the location of the

Kubelet config file, whereas relative paths in command line flags are resolved relative to the

Kubelet’s current working directory.

Note that some default values differ between command-line flags and the Kubelet config file. If

--config--config is provided and the values are not specified via the command line, the defaults for

the KubeletConfigurationKubeletConfiguration version apply. In the above example, this version is

kubelet.config.k8s.io/v1beta1kubelet.config.k8s.io/v1beta1 .

Relationship to Dynamic Kubelet Config

If you are using the Dynamic Kubelet Configuration feature, the combination of configuration

provided via --config--config and any flags which override these values is considered the default

“last known good” configuration by the automatic rollback mechanism.

file:///docs/tasks/administer-cluster/reconfigure-kubelet
file:///docs/tasks/administer-cluster/reconfigure-kubelet

Change the Reclaim Policy of a
PersistentVolume

This page shows how to change the reclaim policy of a Kubernetes PersistentVolume.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Why change reclaim policy of a PersistentVolume

PersistentVolumesPersistentVolumes can have various reclaim policies, including “Retain”, “Recycle”, and

“Delete”. For dynamically provisioned PersistentVolumesPersistentVolumes , the default reclaim policy is

“Delete”. This means that a dynamically provisioned volume is automatically deleted when a

user deletes the corresponding PersistentVolumeClaimPersistentVolumeClaim . This automatic behavior might be

inappropriate if the volume contains precious data. In that case, it is more appropriate to use

the “Retain” policy. With the “Retain” policy, if a user deletes a PersistentVolumeClaimPersistentVolumeClaim , the

corresponding PersistentVolumePersistentVolume is not be deleted. Instead, it is moved to the ReleasedReleased

phase, where all of its data can be manually recovered.

Before you begin

Why change reclaim policy of a PersistentVolume

Changing the reclaim policy of a PersistentVolume

What’s next

Reference

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Changing the reclaim policy of a PersistentVolume

1. List the PersistentVolumes in your cluster:

The output is similar to this:

This list also includes the name of the claims that are bound to each volume for easier

identification of dynamically provisioned volumes.

2. Choose one of your PersistentVolumes and change its reclaim policy:

where <your-pv-name><your-pv-name> is the name of your chosen PersistentVolume.

3. Verify that your chosen PersistentVolume has the right policy:

The output is similar to this:

kubectl get pvkubectl get pv

 NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE

 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim1 10s pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim1 10s

 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim2 6s pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim2 6s

 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim3 3s pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim3 3s

kubectl patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'kubectl patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

kubectl get pvkubectl get pv

 NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM REASON AGE

 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim1 40s pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim1 40s

 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim2 36s pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound default/claim2 36s

 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain Bound default/claim3 33s pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain Bound default/claim3 33s

In the preceding output, you can see that the volume bound to claim default/claim3default/claim3

has reclaim policy RetainRetain . It will not be automatically deleted when a user deletes claim

default/claim3default/claim3 .

What’s next

Learn more about PersistentVolumes.

Learn more about PersistentVolumeClaims.

Reference

PersistentVolume

PersistentVolumeClaim

See the persistentVolumeReclaimPolicypersistentVolumeReclaimPolicy field of PersistentVolumeSpec.

file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolume-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolumeclaim-v1-core
file:///docs/reference/generated/kubernetes-api/v1.10/#persistentvolumeclaim-v1-core

Limit Storage Consumption

This example demonstrates an easy way to limit the amount of storage consumed in a

namespace.

The following resources are used in the demonstration: ResourceQuota, LimitRange, and

PersistentVolumeClaim.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Scenario: Limiting Storage Consumption

The cluster-admin is operating a cluster on behalf of a user population and the admin wants to

control how much storage a single namespace can consume in order to control cost.

The admin would like to limit:

1. The number of persistent volume claims in a namespace

2. The amount of storage each claim can request

Before you begin

Scenario: Limiting Storage Consumption

LimitRange to limit requests for storage

StorageQuota to limit PVC count and cumulative storage capacity

Summary

file:///docs/concepts/policy/resource-quotas/
file:///docs/tasks/administer-cluster/memory-default-namespace/
file:///docs/concepts/storage/persistent-volumes/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

3. The amount of cumulative storage the namespace can have

LimitRange to limit requests for storage

Adding a LimitRangeLimitRange to a namespace enforces storage request sizes to a minimum and

maximum. Storage is requested via PersistentVolumeClaimPersistentVolumeClaim . The admission controller that

enforces limit ranges will reject any PVC that is above or below the values set by the admin.

In this example, a PVC requesting 10Gi of storage would be rejected because it exceeds the

2Gi max.

Minimum storage requests are used when the underlying storage provider requires certain

minimums. For example, AWS EBS volumes have a 1Gi minimum requirement.

StorageQuota to limit PVC count and cumulative
storage capacity

Admins can limit the number of PVCs in a namespace as well as the cumulative capacity of

those PVCs. New PVCs that exceed either maximum value will be rejected.

In this example, a 6th PVC in the namespace would be rejected because it exceeds the

maximum count of 5. Alternatively, a 5Gi maximum quota when combined with the 2Gi max

limit above, cannot have 3 PVCs where each has 2Gi. That would be 6Gi requested for a

namespace capped at 5Gi.

apiVersion: v1apiVersion: v1

kind: LimitRangekind: LimitRange

metadata:metadata:

 name: storagelimits name: storagelimits

spec:spec:

 limits: limits:

 - type: PersistentVolumeClaim - type: PersistentVolumeClaim

 max: max:

 storage: 2Gi storage: 2Gi

 min: min:

 storage: 1Gi storage: 1Gi

Summary

A limit range can put a ceiling on how much storage is requested while a resource quota can

effectively cap the storage consumed by a namespace through claim counts and cumulative

storage capacity. The allows a cluster-admin to plan their cluster’s storage budget without risk

of any one project going over their allotment.

apiVersion: v1apiVersion: v1

kind: ResourceQuotakind: ResourceQuota

metadata:metadata:

 name: storagequota name: storagequota

spec:spec:

 hard: hard:

 persistentvolumeclaims: "5" persistentvolumeclaims: "5"

 requests.storage: "5Gi" requests.storage: "5Gi"

Change the default StorageClass

This page shows how to change the default Storage Class that is used to provision volumes

for PersistentVolumeClaims that have no special requirements.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Why change the default storage class?

Depending on the installation method, your Kubernetes cluster may be deployed with an

existing StorageClass that is marked as default. This default StorageClass is then used to

dynamically provision storage for PersistentVolumeClaims that do not require any specific

storage class. See PersistentVolumeClaim documentation for details.

The pre-installed default StorageClass may not fit well with your expected workload; for

example, it might provision storage that is too expensive. If this is the case, you can either

change the default StorageClass or disable it completely to avoid dynamic provisioning of

storage.

Simply deleting the default StorageClass may not work, as it may be re-created automatically

Before you begin

Why change the default storage class?

Changing the default StorageClass

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/persistent-volumes/#class-1

by the addon manager running in your cluster. Please consult the docs for your installation for

details about addon manager and how to disable individual addons.

Changing the default StorageClass

1. List the StorageClasses in your cluster:

The output is similar to this:

The default StorageClass is marked by (default)(default) .

2. Mark the default StorageClass as non-default:

The default StorageClass has an annotation

storageclass.kubernetes.io/is-default-classstorageclass.kubernetes.io/is-default-class set to truetrue . Any other value or

absence of the annotation is interpreted as falsefalse .

To mark a StorageClass as non-default, you need to change its value to falsefalse :

where <your-class-name><your-class-name> is the name of your chosen StorageClass.

3. Mark a StorageClass as default:

Similarly to the previous step, you need to add/set the annotation

storageclass.kubernetes.io/is-default-class=truestorageclass.kubernetes.io/is-default-class=true .

kubectl get storageclasskubectl get storageclass

 NAME TYPE NAME TYPE

 standard (default) kubernetes.io/gce-pd standard (default) kubernetes.io/gce-pd

 gold kubernetes.io/gce-pd gold kubernetes.io/gce-pd

kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

Please note that at most one StorageClass can be marked as default. If two or more of

them are marked as default, Kubernetes ignores the annotation, i.e. it behaves as if there

is no default StorageClass.

4. Verify that your chosen StorageClass is default:

The output is similar to this:

What’s next

Learn more about StorageClasses.

kubectl get storageclasskubectl get storageclass

 NAME TYPE NAME TYPE

 standard kubernetes.io/gce-pd standard kubernetes.io/gce-pd

 gold (default) kubernetes.io/gce-pd gold (default) kubernetes.io/gce-pd

file:///docs/concepts/storage/persistent-volumes/

Kubernetes Cloud Controller Manager

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

Cloud Controller Manager

Kubernetes v1.6 introduced a new binary called cloud-controller-managercloud-controller-manager .

cloud-controller-managercloud-controller-manager is a daemon that embeds cloud-specific control loops. These

cloud-specific control loops were originally in the kube-controller-managerkube-controller-manager . Since cloud

providers develop and release at a different pace compared to the Kubernetes project,

abstracting the provider-specific code to the cloud-controller-managercloud-controller-manager binary allows cloud

vendors to evolve independently from the core Kubernetes code.

The cloud-controller-managercloud-controller-manager can be linked to any cloud provider that satisfies

cloudprovider.Interface. For backwards compatibility, the cloud-controller-manager provided in

the core Kubernetes project uses the same cloud libraries as kube-controller-managerkube-controller-manager .

Cloud providers already supported in Kubernetes core are expected to use the in-tree cloud-

controller-manager to transition out of Kubernetes core. In future Kubernetes releases, all

cloud controller managers will be developed outside of the core Kubernetes project managed

by sig leads or cloud vendors.

Administration

Cloud Controller Manager

Administration

Requirements

Running cloud-controller-manager

Examples

Limitations

Support for Volumes

Scalability

Chicken and Egg

Developing your own Cloud Controller Manager

https://git.k8s.io/kubernetes/pkg/cloudprovider/cloud.go
https://github.com/kubernetes/kubernetes/tree/master/cmd/cloud-controller-manager

Requirements

Every cloud has their own set of requirements for running their own cloud provider integration,

it should not be too different from the requirements when running

kube-controller-managerkube-controller-manager . As a general rule of thumb you’ll need:

cloud authentication/authorization: your cloud may require a token or IAM rules to allow

access to their APIs

kubernetes authentication/authorization: cloud-controller-manager may need RBAC rules

set to speak to the kubernetes apiserver

high availability: like kube-controller-manager, you may want a high available setup for

cloud controller manager using leader election (on by default).

Running cloud-controller-manager

Successfully running cloud-controller-manager requires some changes to your cluster

configuration.

kube-apiserverkube-apiserver and kube-controller-managerkube-controller-manager MUST NOT specify the

--cloud-provider--cloud-provider flag. This ensures that it does not run any cloud specific loops that

would be run by cloud controller manager. In the future, this flag will be deprecated and

removed.

kubeletkubelet must run with --cloud-provider=external--cloud-provider=external . This is to ensure that the kubelet

is aware that it must be initialized by the cloud controller manager before it is scheduled

any work.

kube-apiserverkube-apiserver SHOULD NOT run the PersistentVolumeLabelPersistentVolumeLabel admission controller

since the cloud controller manager takes over labeling persistent volumes. To prevent the

PersistentVolumeLabel admission plugin from running in kube-apiserverkube-apiserver , include the

PersistentVolumeLabelPersistentVolumeLabel as a listed value in the --disable-admission-plugins--disable-admission-plugins flag.

For the cloud-controller-managercloud-controller-manager to label persistent volumes, initializers will need to

be enabled and an InitializerConifguration needs to be added to the system. Follow these

instructions to enable initializers. Use the following YAML to create the

InitializerConfiguration:

file:///docs/admin/extensible-admission-controllers.md#enable-initializers-alpha-feature

persistent-volume-label-initializer-config.yamlpersistent-volume-label-initializer-config.yaml

Keep in mind that setting up your cluster to use cloud controller manager will change your

cluster behaviour in a few ways:

kubelets specifying --cloud-provider=external--cloud-provider=external will add a taint

node.cloudprovider.kubernetes.io/uninitializednode.cloudprovider.kubernetes.io/uninitialized with an effect NoScheduleNoSchedule

during initialization. This marks the node as needing a second initialization from an

external controller before it can be scheduled work. Note that in the event that cloud

controller manager is not available, new nodes in the cluster will be left unschedulable. The

taint is important since the scheduler may require cloud specific information about nodes

such as their region or type (high cpu, gpu, high memory, spot instance, etc).

cloud information about nodes in the cluster will no longer be retrieved using local

metadata, but instead all API calls to retrieve node information will go through cloud

controller manager. This may mean you can restrict access to your cloud API on the

kubelets for better security. For larger clusters you may want to consider if cloud controller

manager will hit rate limits since it is now responsible for almost all API calls to your cloud

from within the cluster.

As of v1.8, cloud controller manager can implement:

node controller - responsible for updating kubernetes nodes using cloud APIs and deleting

kubernetes nodes that were deleted on your cloud.

service controller - responsible for loadbalancers on your cloud against services of type

LoadBalancer.

kindkind:: InitializerConfigurationInitializerConfiguration

apiVersionapiVersion:: admissionregistration.k8s.io/v1alpha1admissionregistration.k8s.io/v1alpha1

metadatametadata::

 namename:: pvlabel.kubernetes.iopvlabel.kubernetes.io

initializersinitializers::

 -- namename:: pvlabel.kubernetes.iopvlabel.kubernetes.io

 rulesrules::

 -- apiGroupsapiGroups::

 -- """"

 apiVersionsapiVersions::

 -- ""*"*"

 resourcesresources::

 -- persistentvolumespersistentvolumes

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/persistent-volume-label-initializer-config.yaml

route controller - responsible for setting up network routes on your cloud

PersistentVolumeLabel Admission Controller - responsible for labeling persistent volumes

on your cloud - ensure that the persistent volume label admission plugin is not enabled on

your kube-apiserver.

any other features you would like to implement if you are running an out-of-tree provider.

Examples

If you are using a cloud that is currently supported in Kubernetes core and would like to adopt

cloud controller manager, see the cloud controller manager in kubernetes core.

For cloud controller managers not in Kubernetes core, you can find the respective projects in

repos maintained by cloud vendors or sig leads.

DigitalOcean

keepalived

Oracle Cloud Infrastructure

Rancher

For providers already in Kubernetes core, you can run the in-tree cloud controller manager as a

Daemonset in your cluster, use the following as a guideline:

cloud-controller-manager-daemonset-example.yamlcloud-controller-manager-daemonset-example.yaml

This is an example of how to setup cloud-controller-manger as a Daemonset in your cluster.# This is an example of how to setup cloud-controller-manger as a Daemonset in your cluster.

It assumes that your masters can run pods and has the role node-role.kubernetes.io/master# It assumes that your masters can run pods and has the role node-role.kubernetes.io/master

Note that this Daemonset will not work straight out of the box for your cloud, this is# Note that this Daemonset will not work straight out of the box for your cloud, this is

meant to be a guideline.# meant to be a guideline.

apiVersionapiVersion:: v1v1

kindkind:: ServiceAccountServiceAccount

metadatametadata::

 namename:: cloud-controller-managercloud-controller-manager

 namespacenamespace:: kube-systemkube-system

kindkind:: ClusterRoleBindingClusterRoleBinding

apiVersionapiVersion:: rbac.authorization.k8s.io/v1beta1rbac.authorization.k8s.io/v1beta1

metadatametadata::

 namename:: system:cloud-controller-managersystem:cloud-controller-manager

file:///docs/admin/admission-controllers#persistentvolumelabel
https://github.com/kubernetes/kubernetes/tree/master/cmd/cloud-controller-manager
https://github.com/digitalocean/digitalocean-cloud-controller-manager
https://github.com/munnerz/keepalived-cloud-provider
https://github.com/oracle/oci-cloud-controller-manager
https://github.com/rancher/rancher-cloud-controller-manager
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/cloud-controller-manager-daemonset-example.yaml

cloud-controller-manager-daemonset-example.yamlcloud-controller-manager-daemonset-example.yaml

 namename:: system:cloud-controller-managersystem:cloud-controller-manager

roleRefroleRef::

 apiGroupapiGroup:: rbac.authorization.k8s.iorbac.authorization.k8s.io

 kindkind:: ClusterRoleClusterRole

 namename:: cluster-admincluster-admin

subjectssubjects::

-- kindkind:: ServiceAccountServiceAccount

 namename:: cloud-controller-managercloud-controller-manager

 namespacenamespace:: kube-systemkube-system

apiVersionapiVersion:: extensions/v1beta1extensions/v1beta1

kindkind:: DaemonSetDaemonSet

metadatametadata::

 labelslabels::

 k8s-appk8s-app:: cloud-controller-managercloud-controller-manager

 namename:: cloud-controller-managercloud-controller-manager

 namespacenamespace:: kube-systemkube-system

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 k8s-appk8s-app:: cloud-controller-managercloud-controller-manager

 templatetemplate::

 metadatametadata::

 labelslabels::

 k8s-appk8s-app:: cloud-controller-managercloud-controller-manager

 specspec::

 serviceAccountNameserviceAccountName:: cloud-controller-managercloud-controller-manager

 containerscontainers::

 -- namename:: cloud-controller-managercloud-controller-manager

 # for in-tree providers we use k8s.gcr.io/cloud-controller-manager# for in-tree providers we use k8s.gcr.io/cloud-controller-manager

 # this can be replaced with any other image for out-of-tree providers# this can be replaced with any other image for out-of-tree providers

 imageimage:: k8s.gcr.io/cloud-controller-manager:v1.8.0k8s.gcr.io/cloud-controller-manager:v1.8.0

 commandcommand::

 -- /usr/local/bin/cloud-controller-manager/usr/local/bin/cloud-controller-manager

 -- --cloud-provider=<YOUR_CLOUD_PROVIDER>--cloud-provider=<YOUR_CLOUD_PROVIDER> # Add your own cloud provider here!# Add your own cloud provider here!

 -- --leader-elect=true--leader-elect=true

 -- --use-service-account-credentials--use-service-account-credentials

 # these flags will vary for every cloud provider# these flags will vary for every cloud provider

 -- --allocate-node-cidrs=true--allocate-node-cidrs=true

 -- --configure-cloud-routes=true--configure-cloud-routes=true

 -- --cluster-cidr=172.17.0.0/16--cluster-cidr=172.17.0.0/16

 tolerationstolerations::

 # this is required so CCM can bootstrap itself# this is required so CCM can bootstrap itself

 -- keykey:: node.cloudprovider.kubernetes.io/uninitializednode.cloudprovider.kubernetes.io/uninitialized

 valuevalue:: ""true"true"

 effecteffect:: NoScheduleNoSchedule

 # this is to have the daemonset runnable on master nodes# this is to have the daemonset runnable on master nodes

 # the taint may vary depending on your cluster setup# the taint may vary depending on your cluster setup

 -- keykey:: node-role.kubernetes.io/masternode-role.kubernetes.io/master

 effecteffect:: NoScheduleNoSchedule

 # this is to restrict CCM to only run on master nodes# this is to restrict CCM to only run on master nodes

 # the node selector may vary depending on your cluster setup# the node selector may vary depending on your cluster setup

 nodeSelectornodeSelector::

 node-role.kubernetes.io/masternode-role.kubernetes.io/master:: """"

cloud-controller-manager-daemonset-example.yamlcloud-controller-manager-daemonset-example.yaml

Limitations

Running cloud controller manager comes with a few possible limitations. Although these

limitations are being addressed in upcoming releases, it’s important that you are aware of

these limitations for production workloads.

Support for Volumes

Cloud controller manager does not implement any of the volume controllers found in

kube-controller-managerkube-controller-manager as the volume integrations also require coordination with

kubelets. As we evolve CSI (container storage interface) and add stronger support for flex

volume plugins, necessary support will be added to cloud controller manager so that clouds

can fully integrate with volumes. Learn more about out-of-tree CSI volume plugins here.

Scalability

In the previous architecture for cloud providers, we relied on kubelets using a local metadata

service to retrieve node information about itself. With this new architecture, we now fully rely

on the cloud controller managers to retrieve information for all nodes. For very larger clusters,

you should consider possible bottle necks such as resource requirements and API rate limiting.

Chicken and Egg

The goal of the cloud controller manager project is to decouple development of cloud features

from the core Kubernetes project. Unfortunately, many aspects of the Kubernetes project has

assumptions that cloud provider features are tightly integrated into the project. As a result,

adopting this new architecture can create several situations where a request is being made for

information from a cloud provider, but the cloud controller manager may not be able to return

that information without the original request being complete.

A good example of this is the TLS bootstrapping feature in the Kubelet. Currently, TLS

bootstrapping assumes that the Kubelet has the ability to ask the cloud provider (or a local

metadata service) for all its address types (private, public, etc) but cloud controller manager

cannot set a node’s address types without being initialized in the first place which requires that

the kubelet has TLS certificates to communicate with the apiserver.

https://github.com/kubernetes/features/issues/178

As this initiative evolves, changes will be made to address these issues in upcoming releases.

Developing your own Cloud Controller Manager

To build and develop your own cloud controller manager, read the Developing Cloud Controller

Manager doc.

file:///docs/tasks/administer-cluster/developing-cloud-controller-manager.md

Developing Cloud Controller Manager

Cloud Controller Manager is an alpha feature in 1.8. In upcoming releases it will be the

preferred way to integrate Kubernetes with any cloud. This will ensure cloud providers can

develop their features independently from the core Kubernetes release cycles.

Background

Before going into how to build your own cloud controller manager, some background on how it

works under the hood is helpful. The cloud controller manager is code from

kube-controller-managerkube-controller-manager utilizing Go interfaces to allow implementations from any cloud

to be plugged in. Most of the scaffolding and generic controller implementations will be in core,

but it will always exec out to the cloud interfaces it is provided, so long as the cloud provider

interface is satisfied.

To dive a little deeper into implementation details, all cloud controller managers will import

packages from Kubernetes core, the only difference being each project will register their own

cloud providers by calling cloudprovider.RegisterCloudProvider where a global variable of

available cloud providers is updated.

Developing

Out of Tree

To build an out-of-tree cloud-controller-manager for your cloud, follow these steps:

1. Create a go package with an implementation that satisfies cloudprovider.Interface.

2. Use main.go in cloud-controller-manager from Kubernetes core as a template for your

main.go. As mentioned above, the only difference should be the cloud package that will be

Background

Developing

Out of Tree

In Tree

https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/cloud.go#L29-L50
https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/plugins.go#L42-L52
https://git.k8s.io/kubernetes/pkg/cloudprovider/cloud.go
https://github.com/kubernetes/kubernetes/blob/master/cmd/cloud-controller-manager/controller-manager.go

imported.

3. Import your cloud package in main.gomain.go , ensure your package has an initinit block to run

cloudprovider.RegisterCloudProvider.

Using existing out-of-tree cloud providers as an example may be helpful. You can find the list

here.

In Tree

For in-tree cloud providers, you can run the in-tree cloud controller manager as a Daemonset in

your cluster. See the running cloud controller manager docs for more details.

https://github.com/kubernetes/kubernetes/blob/master/pkg/cloudprovider/plugins.go#L42-L52
file:///docs/tasks/administer-cluster/running-cloud-controller.md#examples
file:///docs/tasks/administer-cluster/cloud-controller-manager-daemonset-example.yaml
file:///docs/tasks/administer-cluster/running-cloud-controller.md

Set up High-Availability Kubernetes
Masters

Kubernetes version 1.5 adds alpha support for replicating Kubernetes masters in kube-upkube-up or

kube-downkube-down scripts for Google Compute Engine. This document describes how to use kube-

up/down scripts to manage highly available (HA) masters and how HA masters are

implemented for use with GCE.

Starting an HA-compatible cluster

To create a new HA-compatible cluster, you must set the following flags in your kube-upkube-up

script:

MULTIZONE=trueMULTIZONE=true - to prevent removal of master replicas kubelets from zones different

than server’s default zone. Required if you want to run master replicas in different zones,

which is recommended.

ENABLE_ETCD_QUORUM_READS=trueENABLE_ETCD_QUORUM_READS=true - to ensure that reads from all API servers will return

most up-to-date data. If true, reads will be directed to leader etcd replica. Setting this value

to true is optional: reads will be more reliable but will also be slower.

Optionally, you can specify a GCE zone where the first master replica is to be created. Set the

Starting an HA-compatible cluster

Adding a new master replica

Removing a master replica

Handling master replica failures

Best practices for replicating masters for HA clusters

Implementation notes

Overview

Load balancing

Master service & kubelets

Master certificates

Clustering etcd

Additional reading

following flag:

KUBE_GCE_ZONE=zoneKUBE_GCE_ZONE=zone - zone where the first master replica will run.

The following sample command sets up a HA-compatible cluster in the GCE zone europe-

west1-b:

Note that the commands above create a cluster with one master; however, you can add new

master replicas to the cluster with subsequent commands.

Adding a new master replica

After you have created an HA-compatible cluster, you can add master replicas to it. You add

master replicas by using a kube-upkube-up script with the following flags:

KUBE_REPLICATE_EXISTING_MASTER=trueKUBE_REPLICATE_EXISTING_MASTER=true - to create a replica of an existing master.

KUBE_GCE_ZONE=zoneKUBE_GCE_ZONE=zone - zone where the master replica will run. Must be in the same

region as other replicas’ zones.

You don’t need to set the MULTIZONEMULTIZONE or ENABLE_ETCD_QUORUM_READSENABLE_ETCD_QUORUM_READS flags, as those are

inherited from when you started your HA-compatible cluster.

The following sample command replicates the master on an existing HA-compatible cluster:

Removing a master replica

You can remove a master replica from an HA cluster by using a kube-downkube-down script with the

following flags:

KUBE_DELETE_NODES=falseKUBE_DELETE_NODES=false - to restrain deletion of kubelets.

$ MULTIZONE$ MULTIZONE==true true KUBE_GCE_ZONEKUBE_GCE_ZONE==europe-west1-b europe-west1-b ENABLE_ETCD_QUORUM_READSENABLE_ETCD_QUORUM_READS==truetrue ./cluster/kube-up.sh ./cluster/kube-up.sh

$ KUBE_GCE_ZONE$ KUBE_GCE_ZONE==europe-west1-c europe-west1-c KUBE_REPLICATE_EXISTING_MASTERKUBE_REPLICATE_EXISTING_MASTER==truetrue ./cluster/kube-up.sh ./cluster/kube-up.sh

KUBE_GCE_ZONE=zoneKUBE_GCE_ZONE=zone - the zone from where master replica will be removed.

KUBE_REPLICA_NAME=replica_nameKUBE_REPLICA_NAME=replica_name - (optional) the name of master replica to remove. If

empty: any replica from the given zone will be removed.

The following sample command removes a master replica from an existing HA cluster:

Handling master replica failures

If one of the master replicas in your HA cluster fails, the best practice is to remove the replica

from your cluster and add a new replica in the same zone. The following sample commands

demonstrate this process:

1. Remove the broken replica:

2. Add a new replica in place of the old one:

Best practices for replicating masters for HA
clusters

Try to place master replicas in different zones. During a zone failure, all masters placed

inside the zone will fail. To survive zone failure, also place nodes in multiple zones (see

multiple-zones for details).

Do not use a cluster with two master replicas. Consensus on a two-replica cluster requires

both replicas running when changing persistent state. As a result, both replicas are needed

and a failure of any replica turns cluster into majority failure state. A two-replica cluster is

$ KUBE_DELETE_NODES$ KUBE_DELETE_NODES==false false KUBE_GCE_ZONEKUBE_GCE_ZONE==europe-west1-c ./cluster/kube-down.sheurope-west1-c ./cluster/kube-down.sh

$ KUBE_DELETE_NODES$ KUBE_DELETE_NODES==false false KUBE_GCE_ZONEKUBE_GCE_ZONE==replica_zone replica_zone KUBE_REPLICA_NAMEKUBE_REPLICA_NAME==replica_name ./cluster/kube-down.shreplica_name ./cluster/kube-down.sh

$ KUBE_GCE_ZONE$ KUBE_GCE_ZONE==replica-zone replica-zone KUBE_REPLICATE_EXISTING_MASTERKUBE_REPLICATE_EXISTING_MASTER==truetrue ./cluster/kube-up.sh ./cluster/kube-up.sh

file:///docs/admin/multiple-zones/

thus inferior, in terms of HA, to a single replica cluster.

When you add a master replica, cluster state (etcd) is copied to a new instance. If the

cluster is large, it may take a long time to duplicate its state. This operation may be sped

up by migrating etcd data directory, as described here (we are considering adding support

for etcd data dir migration in future).

Implementation notes

Overview

Each of master replicas will run the following components in the following mode:

etcd instance: all instances will be clustered together using consensus;

API server: each server will talk to local etcd - all API servers in the cluster will be available;

controllers, scheduler, and cluster auto-scaler: will use lease mechanism - only one

instance of each of them will be active in the cluster;

https://coreos.com/etcd/docs/latest/admin_guide.html#member-migration

add-on manager: each manager will work independently trying to keep add-ons in sync.

In addition, there will be a load balancer in front of API servers that will route external and

internal traffic to them.

Load balancing

When starting the second master replica, a load balancer containing the two replicas will be

created and the IP address of the first replica will be promoted to IP address of load balancer.

Similarly, after removal of the penultimate master replica, the load balancer will be removed

and its IP address will be assigned to the last remaining replica. Please note that creation and

removal of load balancer are complex operations and it may take some time (~20 minutes) for

them to propagate.

Master service & kubelets

Instead of trying to keep an up-to-date list of Kubernetes apiserver in the Kubernetes service,

the system directs all traffic to the external IP:

in one master cluster the IP points to the single master,

in multi-master cluster the IP points to the load balancer in-front of the masters.

Similarly, the external IP will be used by kubelets to communicate with master.

Master certificates

Kubernetes generates Master TLS certificates for the external public IP and local IP for each

replica. There are no certificates for the ephemeral public IP for replicas; to access a replica via

its ephemeral public IP, you must skip TLS verification.

Clustering etcd

To allow etcd clustering, ports needed to communicate between etcd instances will be opened

(for inside cluster communication). To make such deployment secure, communication

between etcd instances is authorized using SSL.

Additional reading

Automated HA master deployment - design doc

https://git.k8s.io/community/contributors/design-proposals/cluster-lifecycle/ha_master.md

Configure Multiple Schedulers

Kubernetes ships with a default scheduler that is described here. If the default scheduler does

not suit your needs you can implement your own scheduler. Not just that, you can even run

multiple schedulers simultaneously alongside the default scheduler and instruct Kubernetes

what scheduler to use for each of your pods. Let’s learn how to run multiple schedulers in

Kubernetes with an example.

A detailed description of how to implement a scheduler is outside the scope of this document.

Please refer to the kube-scheduler implementation in pkg/scheduler in the Kubernetes source

directory for a canonical example.

1. Package the scheduler

Package your scheduler binary into a container image. For the purposes of this example, let’s

just use the default scheduler (kube-scheduler) as our second scheduler as well. Clone the

Kubernetes source code from Github and build the source.

Create a container image containing the kube-scheduler binary. Here is the DockerfileDockerfile to

build the image:

Save the file as DockerfileDockerfile , build the image and push it to a registry. This example pushes

the image to Google Container Registry (GCR). For more details, please read the GCR

documentation.

git clone https://github.com/kubernetes/kubernetes.gitgit clone https://github.com/kubernetes/kubernetes.git

cd cd kuberneteskubernetes

makemake

FROMFROM busybox busybox

ADDADD ./_output/dockerized/bin/linux/amd64/kube-scheduler /usr/local/bin/kube-scheduler ./_output/dockerized/bin/linux/amd64/kube-scheduler /usr/local/bin/kube-scheduler

docker build docker build -t-t my-kube-scheduler:1.0 my-kube-scheduler:1.0 ..

gcloud docker gcloud docker ---- push gcr.io/my-gcp-project/my-kube-scheduler:1.0 push gcr.io/my-gcp-project/my-kube-scheduler:1.0

file:///docs/admin/kube-scheduler/
https://github.com/kubernetes/kubernetes/tree/master/pkg/scheduler
https://github.com/kubernetes/kubernetes
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/docs/

2. Define a Kubernetes Deployment for the scheduler

Now that we have our scheduler in a container image, we can just create a pod config for it

and run it in our Kubernetes cluster. But instead of creating a pod directly in the cluster, let’s

use a Deployment for this example. A Deployment manages a Replica Set which in turn

manages the pods, thereby making the scheduler resilient to failures. Here is the deployment

config. Save it as my-scheduler.yamlmy-scheduler.yaml :

my-scheduler.yamlmy-scheduler.yaml

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/my-scheduler.yaml

my-scheduler.yamlmy-scheduler.yaml

An important thing to note here is that the name of the scheduler specified as an argument to

the scheduler command in the container spec should be unique. This is the name that is

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 labelslabels::

 componentcomponent:: schedulerscheduler

 tiertier:: control-planecontrol-plane

 namename:: my-schedulermy-scheduler

 namespacenamespace:: kube-systemkube-system

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 componentcomponent:: schedulerscheduler

 tiertier:: control-planecontrol-plane

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 componentcomponent:: schedulerscheduler

 tiertier:: control-planecontrol-plane

 versionversion:: secondsecond

 specspec::

 containerscontainers::

 -- commandcommand::

 -- /usr/local/bin/kube-scheduler/usr/local/bin/kube-scheduler

 -- --address=0.0.0.0--address=0.0.0.0

 -- --leader-elect=false--leader-elect=false

 -- --scheduler-name=my-scheduler--scheduler-name=my-scheduler

 imageimage:: gcr.io/my-gcp-project/my-kube-scheduler:1.0gcr.io/my-gcp-project/my-kube-scheduler:1.0

 livenessProbelivenessProbe::

 httpGethttpGet::

 pathpath:: /healthz/healthz

 portport:: 1025110251

 initialDelaySecondsinitialDelaySeconds:: 1515

 namename:: kube-second-schedulerkube-second-scheduler

 readinessProbereadinessProbe::

 httpGethttpGet::

 pathpath:: /healthz/healthz

 portport:: 1025110251

 resourcesresources::

 requestsrequests::

 cpucpu:: ''0.1'0.1'

 securityContextsecurityContext::

 privilegedprivileged:: falsefalse

 volumeMountsvolumeMounts:: [][]

 hostNetworkhostNetwork:: falsefalse

 hostPIDhostPID:: falsefalse

 volumesvolumes:: [][]

matched against the value of the optional spec.schedulerNamespec.schedulerName on pods, to determine

whether this scheduler is responsible for scheduling a particular pod.

Please see the kube-scheduler documentation for detailed description of other command line

arguments.

3. Run the second scheduler in the cluster

In order to run your scheduler in a Kubernetes cluster, just create the deployment specified in

the config above in a Kubernetes cluster:

Verify that the scheduler pod is running:

You should see a “Running” my-scheduler pod, in addition to the default kube-scheduler pod in

this list.

To run multiple-scheduler with leader election enabled, you must do the following:

First, update the following fields in your YAML file:

--leader-elect=true--leader-elect=true

--lock-object-namespace=lock-object-namespace--lock-object-namespace=lock-object-namespace

--lock-object-name=lock-object-name--lock-object-name=lock-object-name

If RBAC is enabled on your cluster, you must update the system:kube-schedulersystem:kube-scheduler cluster

role. Add you scheduler name to the resourceNames of the rule applied for endpoints

resources, as in the following example:

kubectl create kubectl create -f-f my-scheduler.yaml my-scheduler.yaml

$ $ kubectl get pods kubectl get pods --namespace--namespace==kube-systemkube-system

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

........

my-scheduler-lnf4s-4744f 1/1 Running 0 2mmy-scheduler-lnf4s-4744f 1/1 Running 0 2m

......

file:///docs/admin/kube-scheduler/

4. Specify schedulers for pods

Now that our second scheduler is running, let’s create some pods, and direct them to be

scheduled by either the default scheduler or the one we just deployed. In order to schedule a

given pod using a specific scheduler, we specify the name of the scheduler in that pod spec.

Let’s look at three examples.

Pod spec without any scheduler name

pod1.yamlpod1.yaml

$ kubectl edit clusterrole system:kube-scheduler$ kubectl edit clusterrole system:kube-scheduler

- apiVersion: rbac.authorization.k8s.io/v1- apiVersion: rbac.authorization.k8s.io/v1

 kind: ClusterRole kind: ClusterRole

 metadata: metadata:

 annotations: annotations:

 rbac.authorization.kubernetes.io/autoupdate: "true" rbac.authorization.kubernetes.io/autoupdate: "true"

 labels: labels:

 kubernetes.io/bootstrapping: rbac-defaults kubernetes.io/bootstrapping: rbac-defaults

 name: system:kube-scheduler name: system:kube-scheduler

 rules: rules:

 - apiGroups: - apiGroups:

 - "" - ""

 resourceNames: resourceNames:

 - kube-scheduler - kube-scheduler

 - my-scheduler - my-scheduler

 resources: resources:

 - endpoints - endpoints

 verbs: verbs:

 - delete - delete

 - get - get

 - patch - patch

 - update - update

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: no-annotationno-annotation

 labelslabels::

 namename:: multischeduler-examplemultischeduler-example

specspec::

 containerscontainers::

 -- namename:: pod-with-no-annotation-containerpod-with-no-annotation-container

 imageimage:: k8s.gcr.io/pause:2.0k8s.gcr.io/pause:2.0

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/pod1.yaml

When no scheduler name is supplied, the pod is automatically scheduled using the default-

scheduler.

Save this file as pod1.yamlpod1.yaml and submit it to the Kubernetes cluster.

Pod spec with default-schedulerdefault-scheduler

pod2.yamlpod2.yaml

A scheduler is specified by supplying the scheduler name as a value to spec.schedulerNamespec.schedulerName .

In this case, we supply the name of the default scheduler which is default-schedulerdefault-scheduler .

Save this file as pod2.yamlpod2.yaml and submit it to the Kubernetes cluster.

Pod spec with my-schedulermy-scheduler

pod3.yamlpod3.yaml

kubectl create kubectl create -f-f pod1.yaml pod1.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: annotation-default-schedulerannotation-default-scheduler

 labelslabels::

 namename:: multischeduler-examplemultischeduler-example

specspec::

 schedulerNameschedulerName:: default-schedulerdefault-scheduler

 containerscontainers::

 -- namename:: pod-with-default-annotation-containerpod-with-default-annotation-container

 imageimage:: k8s.gcr.io/pause:2.0k8s.gcr.io/pause:2.0

kubectl create kubectl create -f-f pod2.yaml pod2.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/pod2.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/pod3.yaml

pod3.yamlpod3.yaml

In this case, we specify that this pod should be scheduled using the scheduler that we

deployed - my-schedulermy-scheduler . Note that the value of spec.schedulerNamespec.schedulerName should match the

name supplied to the scheduler command as an argument in the deployment config for the

scheduler.

Save this file as pod3.yamlpod3.yaml and submit it to the Kubernetes cluster.

Verify that all three pods are running.

Verifying that the pods were scheduled using the desired
schedulers

In order to make it easier to work through these examples, we did not verify that the pods were

actually scheduled using the desired schedulers. We can verify that by changing the order of

pod and deployment config submissions above. If we submit all the pod configs to a

Kubernetes cluster before submitting the scheduler deployment config, we see that the pod

second-schedulersecond-scheduler remains in “Pending” state forever while the other two pods get

scheduled. Once we submit the scheduler deployment config and our new scheduler starts

running, the second-schedulersecond-scheduler pod gets scheduled as well.

Alternatively, one could just look at the “Scheduled” entries in the event logs to verify that the

pods were scheduled by the desired schedulers.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: annotation-second-schedulerannotation-second-scheduler

 labelslabels::

 namename:: multischeduler-examplemultischeduler-example

specspec::

 schedulerNameschedulerName:: my-schedulermy-scheduler

 containerscontainers::

 -- namename:: pod-with-second-annotation-containerpod-with-second-annotation-container

 imageimage:: k8s.gcr.io/pause:2.0k8s.gcr.io/pause:2.0

kubectl create kubectl create -f-f pod3.yaml pod3.yaml

kubectl get podskubectl get pods

kubectl get eventskubectl get events

IP Masquerade Agent User Guide

This page shows how to configure and enable the ip-masq-agent.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Create an ip-masq-agent

To create an ip-masq-agent, run the following kubectl command:

kubectl create -f https://raw.githubusercontent.com/kubernetes-incubator/ip-kubectl create -f https://raw.githubusercontent.com/kubernetes-incubator/ip-

masq-agent/master/ip-masq-agent.yamlmasq-agent/master/ip-masq-agent.yaml

You must also apply the appropriate node label to any nodes in your cluster that you want the

agent to run on.

kubectl label nodes my-node beta.kubernetes.io/masq-agent-ds-kubectl label nodes my-node beta.kubernetes.io/masq-agent-ds-

ready=trueready=true

More information can be found in the ip-masq-agent documentation here

In most cases, the default set of rules should be sufficient; however, if this is not the case for

Before you begin

Create an ip-masq-agent

IP Masquerade Agent User Guide

Key Terms

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes-incubator/ip-masq-agent

your cluster, you can create and apply a ConfigMap to customize the IP ranges that are

affected. For example, to allow only 10.0.0.0/8 to be considered by the ip-masq-agent, you can

create the following ConfigMap in a file called “config”. Note: It is important that the file is

called config since, by default, that will be used as the key for lookup by the ip-masq-agent:

Run the following command to add the config map to your cluster:

This will update a file located at /etc/config/ip-masq-agent which is periodically checked every

resyscInterval and applied to the cluster node. After the resync interval has expired, you should

see the iptables rules reflect your changes:

By default, the link local range (169.254.0.0/16) is also handled by the ip-masq agent, which

sets up the appropriate iptables rules. To have the ip-masq-agent ignore link local, you can set

masqLinkLocal to true in the config map.

IP Masquerade Agent User Guide

The ip-masq-agent configures iptables rules to hide a pod’s IP address behind the cluster

nonMasqueradeCIDRs:nonMasqueradeCIDRs:

 - 10.0.0.0/8 - 10.0.0.0/8

resyncInterval: 60sresyncInterval: 60s

kubectl create configmap ip-masq-agent --from-file=config --namespace=kube-systemkubectl create configmap ip-masq-agent --from-file=config --namespace=kube-system

iptables -t nat -L IP-MASQ-AGENTiptables -t nat -L IP-MASQ-AGENT

Chain IP-MASQ-AGENT (1 references)Chain IP-MASQ-AGENT (1 references)

target prot opt source destination target prot opt source destination

RETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCALRETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL

RETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cluster-localRETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cluster-local

MASQUERADE all -- anywhere anywhere /* ip-masq-agent: outbound traffic should be subject to MASQUERADE (this match must come after cluster-local CIDR matches) */ ADDRTYPE match dst-type !LOCALMASQUERADE all -- anywhere anywhere /* ip-masq-agent: outbound traffic should be subject to MASQUERADE (this match must come after cluster-local CIDR matches) */ ADDRTYPE match dst-type !LOCAL

nonMasqueradeCIDRs:nonMasqueradeCIDRs:

 - 10.0.0.0/8 - 10.0.0.0/8

resyncInterval: 60sresyncInterval: 60s

masqLinkLocal: truemasqLinkLocal: true

file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

node’s IP address. This is typically done when sending traffic to destinations outside the

cluster’s pod CIDR range.

Key Terms

NAT (Network Address Translation) Is a method of remapping one IP address to another

by modifying either the source and/or destination address information in the IP header.

Typically performed by a device doing IP routing.

Masquerading A form of NAT that is typically used to perform a many to one address

translation, where multiple source IP addresses are masked behind a single address,

which is typically the device doing the IP routing. In Kubernetes this is the Node’s IP

address.

CIDR (Classless Inter-Domain Routing) Based on the variable-length subnet masking,

allows specifying arbitrary-length prefixes. CIDR introduced a new method of

representation for IP addresses, now commonly known as CIDR notation, in which an

address or routing prefix is written with a suffix indicating the number of bits of the prefix,

such as 192.168.2.0/24.

Link Local A link-local address is a network address that is valid only for communications

within the network segment or the broadcast domain that the host is connected to. Link-

local addresses for IPv4 are defined in the address block 169.254.0.0/16 in CIDR notation.

The ip-masq-agent configures iptables rules to handle masquerading node/pod IP addresses

when sending traffic to destinations outside the cluster node’s IP and the Cluster IP range.

This essentially hides pod IP addresses behind the cluster node’s IP address. In some

environments, traffic to “external” addresses must come from a known machine address. For

example, in Google Cloud, any traffic to the internet must come from a VM’s IP. When

containers are used, as in Google Kubernetes Engine, the Pod IP will be rejected for egress. To

avoid this, we must hide the Pod IP behind the VM’s own IP address - generally known as

“masquerade”. By default, the agent is configured to treat the three private IP ranges specified

by RFC 1918 as non-masquerade CIDR. These ranges are 10.0.0.0/8, 172.16.0.0/12, and

192.168.0.0/16. The agent will also treat link-local (169.254.0.0/16) as a non-masquerade

CIDR by default. The agent is configured to reload its configuration from the location

/etc/config/ip-masq-agent every 60 seconds, which is also configurable.

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://tools.ietf.org/html/rfc1918
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

The agent configuration file must be written in YAML or JSON syntax, and may contain three

optional keys:

nonMasqueradeCIDRs: A list of strings in CIDR notation that specify the non-masquerade

ranges.

masqLinkLocal: A Boolean (true / false) which indicates whether to masquerade traffic to

the link local prefix 169.254.0.0/16. False by default.

resyncInterval: An interval at which the agent attempts to reload config from disk. e.g.

’30s’ where ‘s’ is seconds, ‘ms’ is milliseconds etc…

Traffic to 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16) ranges will NOT be masqueraded. Any

other traffic (assumed to be internet) will be masqueraded. An example of a local destination

from a pod could be its Node’s IP address as well as another node’s address or one of the IP

addresses in Cluster’s IP range. Any other traffic will be masqueraded by default. The below

entries show the default set of rules that are applied by the ip-masq-agent:

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

By default, in GCE/Google Kubernetes Engine starting with Kubernetes version 1.7.0, if network

policy is enabled or you are using a cluster CIDR not in the 10.0.0.0/8 range, the ip-masq-agent

will run in your cluster. If you are running in another environment, you can add the ip-masq-

agent DaemonSet to your cluster:

iptables -t nat -L IP-MASQ-AGENTiptables -t nat -L IP-MASQ-AGENT

RETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCALRETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL

RETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCALRETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL

RETURN all -- anywhere 172.16.0.0/12 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCALRETURN all -- anywhere 172.16.0.0/12 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL

RETURN all -- anywhere 192.168.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCALRETURN all -- anywhere 192.168.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL

MASQUERADE all -- anywhere anywhere /* ip-masq-agent: outbound traffic should be subject to MASQUERADE (this match must come after cluster-local CIDR matches) */ ADDRTYPE match dst-type !LOCALMASQUERADE all -- anywhere anywhere /* ip-masq-agent: outbound traffic should be subject to MASQUERADE (this match must come after cluster-local CIDR matches) */ ADDRTYPE match dst-type !LOCAL

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Customizing DNS Service

This page provides hints on configuring DNS Pod and guidance on customizing the DNS

resolution process.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Kubernetes version 1.6 and above.

The cluster must be configured to use the kube-dnskube-dns addon.

Introduction

Starting from Kubernetes v1.3, DNS is a built-in service launched automatically using the

addon manager cluster add-on.

Before you begin

Introduction

Inheriting DNS from the node

Configure stub-domain and upstream DNS servers

Impacts on Pods

ConfigMap options

Examples

Example: Stub domain

Example: Upstream nameserver

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
http://releases.k8s.io/master/cluster/addons/README.md

The running Kubernetes DNS pod holds 3 containers:

“ kubednskubedns ”: The kubednskubedns process watches the Kubernetes master for changes in

Services and Endpoints, and maintains in-memory lookup structures to serve DNS

requests.

“ dnsmasqdnsmasq ”: The dnsmasqdnsmasq container adds DNS caching to improve performance.

“ healthzhealthz ”: The healthzhealthz container provides a single health check endpoint while

performing dual healthchecks (for dnsmasqdnsmasq and kubednskubedns).

The DNS pod is exposed as a Kubernetes Service with a static IP. Once assigned the kubelet

passes DNS configured using the --cluster-dns=<dns-service-ip>--cluster-dns=<dns-service-ip> flag to each container.

DNS names also need domains. The local domain is configurable in the kubelet using the flag

--cluster-domain=<default-local-domain>--cluster-domain=<default-local-domain> .

The Kubernetes cluster DNS server is based off the SkyDNS library. It supports forward

lookups (A records), service lookups (SRV records) and reverse IP address lookups (PTR

records).

Inheriting DNS from the node

When running a pod, kubelet will prepend the cluster DNS server and search paths to the

node’s own DNS settings. If the node is able to resolve DNS names specific to the larger

environment, pods should be able to, also. See Known issues below for a caveat.

If you don’t want this, or if you want a different DNS config for pods, you can use the kubelet’s

--resolv-conf--resolv-conf flag. Setting it to “” means that pods will not inherit DNS. Setting it to a valid

file path means that kubelet will use this file instead of /etc/resolv.conf/etc/resolv.conf for DNS

inheritance.

Configure stub-domain and upstream DNS servers

Cluster administrators can specify custom stub domains and upstream nameservers by

providing a ConfigMap for kube-dns (kube-system:kube-dnskube-system:kube-dns).

For example, the following ConfigMap sets up a DNS configuration with a single stub domain

https://github.com/skynetservices/skydns

and two upstream nameservers.

As specified, DNS requests with the “.acme.local” suffix are forwarded to a DNS listening at

1.2.3.4. Google Public DNS serves the upstream queries.

The table below describes how queries with certain domain names would map to their

destination DNS servers:

Domain name Server answering the query

kubernetes.default.svc.cluster.local kube-dns

foo.acme.local custom DNS (1.2.3.4)

widget.com upstream DNS (one of 8.8.8.8, 8.8.4.4)

See ConfigMap options for details about the configuration option format.

Impacts on Pods

Custom upstream nameservers and stub domains won’t impact Pods that have their

dnsPolicydnsPolicy set to “ DefaultDefault ” or “ NoneNone ”.

If a Pod’s dnsPolicydnsPolicy is set to “ ClusterFirstClusterFirst ”, its name resolution is handled differently,

depending on whether stub-domain and upstream DNS servers are configured.

Without custom configurations: Any query that does not match the configured cluster domain

suffix, such as “www.kubernetes.io”, is forwarded to the upstream nameserver inherited from

the node.

With custom configurations: If stub domains and upstream DNS servers are configured (as in

the previous example), DNS queries will be routed according to the following flow:

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: kube-dnskube-dns

 namespacenamespace:: kube-systemkube-system

datadata::

 stubDomainsstubDomains:: ||

 {"acme.local": ["1.2.3.4"]}{"acme.local": ["1.2.3.4"]}

 upstreamNameserversupstreamNameservers:: ||

 ["8.8.8.8", "8.8.4.4"]["8.8.8.8", "8.8.4.4"]

1. The query is first sent to the DNS caching layer in kube-dns.

2. From the caching layer, the suffix of the request is examined and then forwarded to the

appropriate DNS, based on the following cases:

1. Names with the cluster suffix (e.g.”.cluster.local”): The request is sent to kube-dns.

2. Names with the stub domain suffix (e.g. “.acme.local”): The request is sent to the

configured custom DNS resolver (e.g. listening at 1.2.3.4).

3. Names without a matching suffix (e.g.”widget.com”): The request is forwarded to the

upstream DNS (e.g. Google public DNS servers at 8.8.8.8 and 8.8.4.4).

ConfigMap options

Options for the kube-dns kube-system:kube-dnskube-system:kube-dns ConfigMap:

Field Format Description

stubDomainsstubDomains (optional)

A JSON map using a DNS
suffix key (e.g. “acme.local”)
and a value consisting of a
JSON array of DNS IPs.

The target nameserver may itself be a Kubernetes
service. For instance, you can run your own copy of
dnsmasq to export custom DNS names into the
ClusterDNS namespace.

upstreamNameserversupstreamNameservers
(optional)

A JSON array of DNS IPs.

Note: If specified, then the values specified replace the
nameservers taken by default from the node’s

/etc/resolv.conf/etc/resolv.conf . Limits: a maximum of

three upstream nameservers can be specified.

Examples

Example: Stub domain

In this example, the user has a Consul DNS service discovery system that they wish to

integrate with kube-dns. The consul domain server is located at 10.150.0.1, and all consul

names have the suffix “.consul.local”. To configure Kubernetes, the cluster administrator

simply creates a ConfigMap object as shown below.

Note that the cluster administrator did not wish to override the node’s upstream nameservers,

so they did not specify the optional upstreamNameserversupstreamNameservers field.

Example: Upstream nameserver

In this example the cluster administrator wants to explicitly force all non-cluster DNS lookups

to go through their own nameserver at 172.16.0.1. Again, this is easy to accomplish; they just

need to create a ConfigMap with the upstreamNameserversupstreamNameservers field specifying the desired

nameserver.

What’s next

Debugging DNS Resolution.

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: kube-dnskube-dns

 namespacenamespace:: kube-systemkube-system

datadata::

 stubDomainsstubDomains:: ||

 {"consul.local": ["10.150.0.1"]}{"consul.local": ["10.150.0.1"]}

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: kube-dnskube-dns

 namespacenamespace:: kube-systemkube-system

datadata::

 upstreamNameserversupstreamNameservers:: ||

 ["172.16.0.1"]["172.16.0.1"]

file:///docs/tasks/administer-cluster/dns-debugging-resolution/

Debugging DNS Resolution

This page provides hints on diagnosing DNS problems.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Kubernetes version 1.6 and above.

The cluster must be configured to use the kube-dnskube-dns addon.

Create a simple Pod to use as a test environment

Create a file named busybox.yaml with the following contents:

Before you begin

Create a simple Pod to use as a test environment

Check the local DNS configuration first

Check if the DNS pod is running

Check for Errors in the DNS pod

Is DNS service up?

Are DNS endpoints exposed?

Known issues

Kubernetes Federation (Multiple Zone support)

References

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

busybox.yamlbusybox.yaml

Then create a pod using this file and verify its status:

Once that pod is running, you can exec nslookupnslookup in that environment. If you see something

like the following, DNS is working correctly.

If the nslookupnslookup command fails, check the following:

Check the local DNS configuration first

Take a look inside the resolv.conf file. (See Inheriting DNS from the node and Known issues

below for more information)

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: busyboxbusybox

 namespacenamespace:: defaultdefault

specspec::

 containerscontainers::

 -- namename:: busyboxbusybox

 imageimage:: busyboxbusybox

 commandcommand::

 -- sleepsleep

 -- ""3600"3600"

 imagePullPolicyimagePullPolicy:: IfNotPresentIfNotPresent

 restartPolicyrestartPolicy:: AlwaysAlways

$ $ kubectl create kubectl create -f-f busybox.yaml busybox.yaml

pod pod "busybox""busybox" created created

$ $ kubectl get pods busyboxkubectl get pods busybox

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

busybox 1/1 Running 0 <some-time>busybox 1/1 Running 0 <some-time>

$ $ kubectl kubectl execexec -ti-ti busybox busybox ---- nslookup kubernetes.default nslookup kubernetes.default

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10Address 1: 10.0.0.10

Name: kubernetes.defaultName: kubernetes.default

Address 1: 10.0.0.1Address 1: 10.0.0.1

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/administer-cluster/busybox.yaml

Verify that the search path and name server are set up like the following (note that search path

may vary for different cloud providers):

Errors such as the following indicate a problem with the kube-dns add-on or associated

Services:

or

Check if the DNS pod is running

Use the

kubectl getkubectl get

podspods command to verify that the DNS pod is running.

If you see that no pod is running or that the pod has failed/completed, the DNS add-on may

not be deployed by default in your current environment and you will have to deploy it manually.

$ $ kubectl kubectl exec exec busybox busybox catcat /etc/resolv.conf /etc/resolv.conf

search default.svc.cluster.local svc.cluster.local cluster.local google.internal c.gce_project_id.internalsearch default.svc.cluster.local svc.cluster.local cluster.local google.internal c.gce_project_id.internal

nameserver 10.0.0.10nameserver 10.0.0.10

options ndots:5options ndots:5

$ kubectl exec -ti busybox -- nslookup kubernetes.default$ kubectl exec -ti busybox -- nslookup kubernetes.default

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10Address 1: 10.0.0.10

nslookup: can't resolve 'kubernetes.default'nslookup: can't resolve 'kubernetes.default'

$ kubectl exec -ti busybox -- nslookup kubernetes.default$ kubectl exec -ti busybox -- nslookup kubernetes.default

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

nslookup: can't resolve 'kubernetes.default'nslookup: can't resolve 'kubernetes.default'

$ $ kubectl get pods kubectl get pods --namespace--namespace==kube-system kube-system -l-l k8s-app k8s-app==kube-dnskube-dns

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

......

kube-dns-v19-ezo1y 3/3 Running 0 1hkube-dns-v19-ezo1y 3/3 Running 0 1h

......

Check for Errors in the DNS pod

Use kubectl logskubectl logs command to see logs for the DNS daemons.

See if there is any suspicious log. Letter ‘ WW ’, ‘ EE ’, ‘ FF ’ at the beginning represent Warning, Error

and Failure. Please search for entries that have these as the logging level and use kubernetes

issues to report unexpected errors.

Is DNS service up?

Verify that the DNS service is up by using the

kubectl getkubectl get

serviceservice command.

If you have created the service or in the case it should be created by default but it does not

appear, see debugging services for more information.

Are DNS endpoints exposed?

You can verify that DNS endpoints are exposed by using the

kubectl getkubectl get

endpointsendpoints

command.

If you do not see the endpoints, see endpoints section in the debugging services

$ $ kubectl logs kubectl logs --namespace--namespace==kube-system kube-system $($(kubectl get pods kubectl get pods --namespace--namespace==kube-system kube-system

$ $ kubectl logs kubectl logs --namespace--namespace==kube-system kube-system $($(kubectl get pods kubectl get pods --namespace--namespace==kube-system kube-system

$ $ kubectl logs kubectl logs --namespace--namespace==kube-system kube-system $($(kubectl get pods kubectl get pods --namespace--namespace==kube-system kube-system

$ $ kubectl get svc kubectl get svc --namespace--namespace==kube-systemkube-system

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

......

kube-dns 10.0.0.10 <none> 53/UDP,53/TCP 1hkube-dns 10.0.0.10 <none> 53/UDP,53/TCP 1h

......

$ $ kubectl get ep kube-dns kubectl get ep kube-dns --namespace--namespace==kube-systemkube-system

NAME ENDPOINTS AGENAME ENDPOINTS AGE

kube-dns 10.180.3.17:53,10.180.3.17:53 1hkube-dns 10.180.3.17:53,10.180.3.17:53 1h

https://github.com/kubernetes/kubernetes/issues
file:///docs/tasks/debug-application-cluster/debug-service/
file:///docs/tasks/debug-application-cluster/debug-service/

documentation.

For additional Kubernetes DNS examples, see the cluster-dns examples in the Kubernetes

GitHub repository.

Known issues

Kubernetes installs do not configure the nodes’ resolv.conf files to use the cluster DNS by

default, because that process is inherently distro-specific. This should probably be

implemented eventually.

Linux’s libc is impossibly stuck (see this bug from 2005) with limits of just 3 DNS nameservernameserver

records and 6 DNS searchsearch records. Kubernetes needs to consume 1 nameservernameserver record and

3 searchsearch records. This means that if a local installation already uses 3 nameservernameserver s or uses

more than 3 searchsearch es, some of those settings will be lost. As a partial workaround, the node

can run dnsmasqdnsmasq which will provide more nameservernameserver entries, but not more searchsearch entries.

You can also use kubelet’s --resolv-conf--resolv-conf flag.

If you are using Alpine version 3.3 or earlier as your base image, DNS may not work properly

owing to a known issue with Alpine. Check here for more information.

Kubernetes Federation (Multiple Zone support)

Release 1.3 introduced Cluster Federation support for multi-site Kubernetes installations. This

required some minor (backward-compatible) changes to the way the Kubernetes cluster DNS

server processes DNS queries, to facilitate the lookup of federated services (which span

multiple Kubernetes clusters). See the Cluster Federation Administrators’ Guide for more

details on Cluster Federation and multi-site support.

References

DNS for Services and Pods

Docs for the DNS cluster addon

https://github.com/kubernetes/examples/tree/master/staging/cluster-dns
https://bugzilla.redhat.com/show_bug.cgi?id=168253
https://github.com/kubernetes/kubernetes/issues/30215
file:///docs/concepts/cluster-administration/federation/
file:///docs/concepts/services-networking/dns-pod-service/
http://releases.k8s.io/master/cluster/addons/dns/README.md

What’s next

Autoscaling the DNS Service in a Cluster.

file:///docs/tasks/administer-cluster/dns-horizontal-autoscaling/

Persistent Volume Claim Protection

FEATURE STATE: Kubernetes v1.9Kubernetes v1.9 alpha

As of Kubernetes 1.9, persistent volume claims (PVCs) that are in active use by a pod can be

protected from pre-mature removal.

Before you begin

A v1.9 or higher Kubernetes must be installed.

As PVC Protection is a Kubernetes v1.9 alpha feature it must be enabled:

1. Admission controller must be started with the PVC Protection plugin.

2. All Kubernetes components must be started with the PVCProtectionPVCProtection alpha features

enabled.

PVC Protection Verification

The example below uses a GCE PD StorageClassStorageClass , however, similar steps can be performed

for any volume type.

Create a StorageClassStorageClass for convenient storage provisioning:

Before you begin

PVC Protection Verification

Scenario 1: The PVC is not in active use by a pod

Scenario 2: The PVC is in active use by a pod

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

kindkind:: StorageClassStorageClass

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/gce-pdkubernetes.io/gce-pd

parametersparameters::

 typetype:: pd-standardpd-standard

file:///docs/admin/admission-controllers/
file:///docs/admin/admission-controllers/#persistent-volume-claim-protection-alpha

There are two scenarios: a PVC deleted by a user is either in active use or not in active use by a

pod.

Scenario 1: The PVC is not in active use by a pod

Create a PVC:

Check that the PVC has the finalizer kubernetes.io/pvc-protectionkubernetes.io/pvc-protection set:

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: slzcslzc

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 storageClassNamestorageClassName:: slowslow

 resourcesresources::

 requestsrequests::

 storagestorage:: 3.7Gi3.7Gi

$ $ kubectl describe pvc slzckubectl describe pvc slzc

Name: slzcName: slzc

Namespace: defaultNamespace: default

StorageClass: slowStorageClass: slow

Status: BoundStatus: Bound

Volume: pvc-bee8c30a-d6a3-11e7-9af0-42010a800002Volume: pvc-bee8c30a-d6a3-11e7-9af0-42010a800002

Labels: <none>Labels: <none>

Annotations: pv.kubernetes.io/bind-completedAnnotations: pv.kubernetes.io/bind-completed==yesyes

 pv.kubernetes.io/bound-by-controller pv.kubernetes.io/bound-by-controller==yesyes

 volume.beta.kubernetes.io/storage-provisioner volume.beta.kubernetes.io/storage-provisioner==kubernetes.io/gce-pdkubernetes.io/gce-pd

Finalizers: Finalizers: [[kubernetes.io/pvc-protection]kubernetes.io/pvc-protection]

Capacity: 4GiCapacity: 4Gi

Access Modes: RWOAccess Modes: RWO

Events:Events:

Type Reason Age From MessageType Reason Age From Message

-------- ------------ -------- -------- --------------

Normal ProvisioningSucceeded 2m persistentvolume-controller Successfully provisioned volume pvc-bee8c30a-d6a3-11e7-9af0-42010a800002 using kubernetes.io/gce-pdNormal ProvisioningSucceeded 2m persistentvolume-controller Successfully provisioned volume pvc-bee8c30a-d6a3-11e7-9af0-42010a800002 using kubernetes.io/gce-pd

Delete the PVC and check that the PVC (not in active use by a pod) was removed

successfully.

Scenario 2: The PVC is in active use by a pod

Again, create the same PVC.

Create a pod that uses the PVC:

Wait until the pod status is RunningRunning , i.e. the PVC becomes in active use.

Delete the PVC that is now in active use by a pod and verify that the PVC is not removed

but its status is TerminatingTerminating :

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: app1app1

specspec::

 containerscontainers::

 -- namename:: test-podtest-pod

 imageimage:: k8s.gcr.io/busybox:1.24k8s.gcr.io/busybox:1.24

 commandcommand::

 -- ""/bin/sh"/bin/sh"

 argsargs::

 -- ""-c"-c"

 -- ""datedate >> /mnt/app1.txt;/mnt/app1.txt; sleepsleep 6060 &&&& exitexit 00 |||| exitexit 1"1"

 volumeMountsvolumeMounts::

 -- namename:: path-pvcpath-pvc

 mountPathmountPath:: ""/mnt"/mnt"

 restartPolicyrestartPolicy:: ""Never"Never"

 volumesvolumes::

 -- namename:: path-pvcpath-pvc

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: slzcslzc

Wait until the pod status is TerminatedTerminated (either delete the pod or wait until it finishes).

Afterwards, check that the PVC is removed.

Name: slzcName: slzc

Namespace: defaultNamespace: default

StorageClass: slowStorageClass: slow

Status: Terminating Status: Terminating ((since Fri, 01 Dec 2017 14:47:55 +0000since Fri, 01 Dec 2017 14:47:55 +0000))

Volume: pvc-803a1f4d-d6a6-11e7-9af0-42010a800002Volume: pvc-803a1f4d-d6a6-11e7-9af0-42010a800002

Labels: <none>Labels: <none>

Annotations: pv.kubernetes.io/bind-completedAnnotations: pv.kubernetes.io/bind-completed==yesyes

 pv.kubernetes.io/bound-by-controller pv.kubernetes.io/bound-by-controller==yesyes

 volume.beta.kubernetes.io/storage-provisioner volume.beta.kubernetes.io/storage-provisioner==kubernetes.io/gce-pdkubernetes.io/gce-pd

Finalizers: Finalizers: [[kubernetes.io/pvc-protection]kubernetes.io/pvc-protection]

Capacity: 4GiCapacity: 4Gi

Access Modes: RWOAccess Modes: RWO

Events:Events:

 Type Reason Age From Message Type Reason Age From Message

 -------- ------------ -------- -------- --------------

 Normal ProvisioningSucceeded 52s persistentvolume-controller Successfully provisioned volume pvc-803a1f4d-d6a6-11e7-9af0-42010a800002 using kubernetes.io/gce-pd Normal ProvisioningSucceeded 52s persistentvolume-controller Successfully provisioned volume pvc-803a1f4d-d6a6-11e7-9af0-42010a800002 using kubernetes.io/gce-pd

Storage Object in Use Protection

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Persistent volume claims (PVCs) that are in active use by a pod and persistent volumes (PVs)

that are bound to PVCs can be protected from pre-mature removal.

Before you begin

The Storage Object in Use Protection feature is enabled in a version of Kubernetes in

which it is supported.

Storage Object in Use Protection feature used for
PVC Protection

The example below uses a GCE PD StorageClassStorageClass , however, similar steps can be performed

for any volume type.

Create a StorageClassStorageClass for convenient storage provisioning:

Before you begin

Storage Object in Use Protection feature used for PVC Protection

Scenario 1: The PVC is not in active use by a pod

Scenario 2: The PVC is in active use by a pod

Scenario 3: A pod starts using a PVC that is in Terminating state

Storage Object in Use Protection feature used for PV Protection

Scenario 1: The PV is not bound to a PVC

Scenario 2: The PV is bound to a PVC

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

kindkind:: StorageClassStorageClass

metadatametadata::

 namename:: slowslow

provisionerprovisioner:: kubernetes.io/gce-pdkubernetes.io/gce-pd

parametersparameters::

 typetype:: pd-standardpd-standard

Verification scenarios follow below.

Scenario 1: The PVC is not in active use by a pod

Create a PVC:

Check that the PVC has the finalizer kubernetes.io/pvc-protectionkubernetes.io/pvc-protection set:

Delete the PVC and check that the PVC (not in active use by a pod) was removed

successfully.

Scenario 2: The PVC is in active use by a pod

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: slzcslzc

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 storageClassNamestorageClassName:: slowslow

 resourcesresources::

 requestsrequests::

 storagestorage:: 3.7Gi3.7Gi

kubectl describe pvc slzckubectl describe pvc slzc

Name: slzcName: slzc

Namespace: defaultNamespace: default

StorageClass: slowStorageClass: slow

Status: BoundStatus: Bound

Volume: pvc-bee8c30a-d6a3-11e7-9af0-42010a800002Volume: pvc-bee8c30a-d6a3-11e7-9af0-42010a800002

Labels: <none>Labels: <none>

Annotations: pv.kubernetes.io/bind-completedAnnotations: pv.kubernetes.io/bind-completed==yesyes

 pv.kubernetes.io/bound-by-controller pv.kubernetes.io/bound-by-controller==yesyes

 volume.beta.kubernetes.io/storage-provisioner volume.beta.kubernetes.io/storage-provisioner==kubernetes.io/gce-pdkubernetes.io/gce-pd

Finalizers: Finalizers: [[kubernetes.io/pvc-protection]kubernetes.io/pvc-protection]

Capacity: 4GiCapacity: 4Gi

Access Modes: RWOAccess Modes: RWO

Events:Events:

 Type Reason Age From Message Type Reason Age From Message

 -------- ------------ -------- -------- --------------

 Normal ProvisioningSucceeded 2m persistentvolume-controller Successfully provisioned volume pvc-bee8c30a-d6a3-11e7-9af0-42010a800002 using kubernetes.io/gce-pd Normal ProvisioningSucceeded 2m persistentvolume-controller Successfully provisioned volume pvc-bee8c30a-d6a3-11e7-9af0-42010a800002 using kubernetes.io/gce-pd

Again, create the same PVC.

Create a pod that uses the PVC:

Wait until the pod status is RunningRunning , i.e. the PVC becomes in active use.

Delete the PVC that is now in active use by a pod and verify that the PVC is not removed

but its status is TerminatingTerminating :

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: app1app1

specspec::

 containerscontainers::

 -- namename:: test-podtest-pod

 imageimage:: k8s.gcr.io/busybox:1.24k8s.gcr.io/busybox:1.24

 commandcommand::

 -- ""/bin/sh"/bin/sh"

 argsargs::

 -- ""-c"-c"

 -- ""datedate >> /mnt/app1.txt;/mnt/app1.txt; sleepsleep 6060 &&&& exitexit 00 |||| exitexit 1"1"

 volumeMountsvolumeMounts::

 -- namename:: path-pvcpath-pvc

 mountPathmountPath:: ""/mnt"/mnt"

 restartPolicyrestartPolicy:: ""Never"Never"

 volumesvolumes::

 -- namename:: path-pvcpath-pvc

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: slzcslzc

Name: slzcName: slzc

Namespace: defaultNamespace: default

StorageClass: slowStorageClass: slow

Status: Terminating Status: Terminating ((since Fri, 01 Dec 2017 14:47:55 +0000since Fri, 01 Dec 2017 14:47:55 +0000))

Volume: pvc-803a1f4d-d6a6-11e7-9af0-42010a800002Volume: pvc-803a1f4d-d6a6-11e7-9af0-42010a800002

Labels: <none>Labels: <none>

Annotations: pv.kubernetes.io/bind-completedAnnotations: pv.kubernetes.io/bind-completed==yesyes

 pv.kubernetes.io/bound-by-controller pv.kubernetes.io/bound-by-controller==yesyes

 volume.beta.kubernetes.io/storage-provisioner volume.beta.kubernetes.io/storage-provisioner==kubernetes.io/gce-pdkubernetes.io/gce-pd

Finalizers: Finalizers: [[kubernetes.io/pvc-protection]kubernetes.io/pvc-protection]

Capacity: 4GiCapacity: 4Gi

Access Modes: RWOAccess Modes: RWO

Events:Events:

 Type Reason Age From Message Type Reason Age From Message

 -------- ------------ -------- -------- --------------

 Normal ProvisioningSucceeded 52s persistentvolume-controller Successfully provisioned volume pvc-803a1f4d-d6a6-11e7-9af0-42010a800002 using kubernetes.io/gce-pd Normal ProvisioningSucceeded 52s persistentvolume-controller Successfully provisioned volume pvc-803a1f4d-d6a6-11e7-9af0-42010a800002 using kubernetes.io/gce-pd

Wait until the pod status is TerminatedTerminated (either delete the pod or wait until it finishes).

Afterwards, check that the PVC is removed.

Scenario 3: A pod starts using a PVC that is in Terminating
state

Again, create the same PVC.

Create a first pod that uses the PVC:

Wait until the pod status is RunningRunning , i.e. the PVC becomes in active use.

Delete the PVC that is now in active use by a pod and verify that the PVC is not removed

but its status is TerminatingTerminating :

kindkind:: PodPod

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: app1app1

specspec::

 containerscontainers::

 -- namename:: test-podtest-pod

 imageimage:: k8s.gcr.io/busybox:1.24k8s.gcr.io/busybox:1.24

 commandcommand::

 -- ""/bin/sh"/bin/sh"

 argsargs::

 -- ""-c"-c"

 -- ""datedate >> /mnt/app1.txt;/mnt/app1.txt; sleepsleep 600600 &&&& exitexit 00 |||| exitexit 1"1"

 volumeMountsvolumeMounts::

 -- namename:: path-pvcpath-pvc

 mountPathmountPath:: ""/mnt"/mnt"

 restartPolicyrestartPolicy:: ""Never"Never"

 volumesvolumes::

 -- namename:: path-pvcpath-pvc

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: slzcslzc

Create a second pod that uses the same PVC:

Verify that the scheduling of the second pod fails with the below warning:

Name: slzcName: slzc

Namespace: defaultNamespace: default

StorageClass: slowStorageClass: slow

Status: Terminating Status: Terminating ((since Fri, 01 Dec 2017 14:47:55 +0000since Fri, 01 Dec 2017 14:47:55 +0000))

Volume: pvc-803a1f4d-d6a6-11e7-9af0-42010a800002Volume: pvc-803a1f4d-d6a6-11e7-9af0-42010a800002

Labels: <none>Labels: <none>

Annotations: pv.kubernetes.io/bind-completedAnnotations: pv.kubernetes.io/bind-completed==yesyes

 pv.kubernetes.io/bound-by-controller pv.kubernetes.io/bound-by-controller==yesyes

 volume.beta.kubernetes.io/storage-provisioner volume.beta.kubernetes.io/storage-provisioner==kubernetes.io/gce-pdkubernetes.io/gce-pd

Finalizers: Finalizers: [[kubernetes.io/pvc-protection]kubernetes.io/pvc-protection]

Capacity: 4GiCapacity: 4Gi

Access Modes: RWOAccess Modes: RWO

Events:Events:

 Type Reason Age From Message Type Reason Age From Message

 -------- ------------ -------- -------- --------------

 Normal ProvisioningSucceeded 52s persistentvolume-controller Successfully provisioned volume pvc-803a1f4d-d6a6-11e7-9af0-42010a800002 using kubernetes.io/gce-pd Normal ProvisioningSucceeded 52s persistentvolume-controller Successfully provisioned volume pvc-803a1f4d-d6a6-11e7-9af0-42010a800002 using kubernetes.io/gce-pd

kind: Podkind: Pod

apiVersion: v1apiVersion: v1

metadata:metadata:

 name: app2 name: app2

spec:spec:

 containers: containers:

 - name: test-pod - name: test-pod

 image: gcr.io/google_containers/busybox:1.24 image: gcr.io/google_containers/busybox:1.24

 command: command:

 - "/bin/sh" - "/bin/sh"

 args: args:

 - "-c" - "-c"

 - "date > /mnt/app1.txt; sleep 600 && exit 0 || exit 1" - "date > /mnt/app1.txt; sleep 600 && exit 0 || exit 1"

 volumeMounts: volumeMounts:

 - name: path-pvc - name: path-pvc

 mountPath: "/mnt" mountPath: "/mnt"

 restartPolicy: "Never" restartPolicy: "Never"

 volumes: volumes:

 - name: path-pvc - name: path-pvc

 persistentVolumeClaim: persistentVolumeClaim:

 claimName: slzc claimName: slzc

Warning FailedScheduling 18s (x4 over 21s) default-scheduler persistentvolumeclaim "slzc" is being deletedWarning FailedScheduling 18s (x4 over 21s) default-scheduler persistentvolumeclaim "slzc" is being deleted

Wait until the pod status of both pods is TerminatedTerminated or CompletedCompleted (either delete the

pods or wait until they finish). Afterwards, check that the PVC is removed.

Storage Object in Use Protection feature used for PV
Protection

The example below uses a HostPathHostPath PV.

Verification scenarios follow below.

Scenario 1: The PV is not bound to a PVC

Create a PV:

Check that the PV has the finalizer kubernetes.io/pv-protectionkubernetes.io/pv-protection set:

kindkind:: PersistentVolumePersistentVolume

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: task-pv-volumetask-pv-volume

 labelslabels::

 typetype:: locallocal

specspec::

 capacitycapacity::

 storagestorage:: 1Gi1Gi

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 persistentVolumeReclaimPolicypersistentVolumeReclaimPolicy:: DeleteDelete

 storageClassNamestorageClassName:: standardstandard

 hostPathhostPath::

 pathpath:: ""/tmp/data"/tmp/data"

Delete the PV and check that the PV (not bound to a PVC) is removed successfully.

Scenario 2: The PV is bound to a PVC

Again, create the same PV.

Create a PVC

Wait until the PV and PVC are bound to each other.

Delete the PV and verify that the PV is not removed but its status is TerminatingTerminating :

Name: task-pv-volumeName: task-pv-volume

Labels: Labels: typetype==locallocal

Annotations: pv.kubernetes.io/bound-by-controllerAnnotations: pv.kubernetes.io/bound-by-controller==yesyes

Finalizers: Finalizers: [[kubernetes.io/pv-protection]kubernetes.io/pv-protection]

StorageClass: standardStorageClass: standard

Status: Terminating Status: Terminating ((lasts 1mlasts 1m))

Claim: default/task-pv-claimClaim: default/task-pv-claim

Reclaim Policy: DeleteReclaim Policy: Delete

Access Modes: RWOAccess Modes: RWO

Capacity: 1GiCapacity: 1Gi

Message: Message:

Source:Source:

 Type: HostPath Type: HostPath ((bare host directory volumebare host directory volume))

 Path: /tmp/data Path: /tmp/data

 HostPathType: HostPathType:

Events: <none>Events: <none>

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: task-pv-claimtask-pv-claim

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 1Gi1Gi

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGENAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

task-pv-volume 1Gi RWO Delete Terminating default/task-pv-claim standard 59stask-pv-volume 1Gi RWO Delete Terminating default/task-pv-claim standard 59s

Delete the PVC and verify that the PV is removed too.

kubectl delete pvc task-pv-claimkubectl delete pvc task-pv-claim

persistentvolumeclaim persistentvolumeclaim "task-pv-claim""task-pv-claim" deleted deleted

$ $ kubectl get pvckubectl get pvc

No resources found.No resources found.

$ $ kubectl get pvkubectl get pv

No resources found.No resources found.

Cross-cluster Service Discovery using
Federated Services

This guide explains how to use Kubernetes Federated Services to deploy a common Service

across multiple Kubernetes clusters. This makes it easy to achieve cross-cluster service

discovery and availability zone fault tolerance for your Kubernetes applications.

Prerequisites

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, for example this one by Kelsey

Hightower, are also available to help you.

Prerequisites

Overview

Hybrid cloud capabilities

Creating a federated service

Adding backend pods

Verifying public DNS records

Some notes about the above example

Discovering a federated service

From pods inside your federated clusters

From other clients outside your federated clusters

Handling failures of backend pods and whole clusters

Troubleshooting

I cannot connect to my cluster federation API

I can create a federated service successfully against the cluster federation API, but

no matching services are created in my underlying clusters

I can create a federated service successfully, but no matching DNS records are

created in my DNS provider.

Matching DNS records are created in my DNS provider, but clients are unable to

resolve against those names

This troubleshooting guide did not help me solve my problem

For more information

file:///docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

You are also expected to have a basic working knowledge of Kubernetes in general, and

Services in particular.

Overview

Federated Services are created in much that same way as traditional Kubernetes Services by

making an API call which specifies the desired properties of your service. In the case of

Federated Services, this API call is directed to the Federation API endpoint, rather than a

Kubernetes cluster API endpoint. The API for Federated Services is 100% compatible with the

API for traditional Kubernetes Services.

Once created, the Federated Service automatically:

1. Creates matching Kubernetes Services in every cluster underlying your Cluster Federation,

2. Monitors the health of those service “shards” (and the clusters in which they reside), and

3. Manages a set of DNS records in a public DNS provider (like Google Cloud DNS, or AWS

Route 53), thus ensuring that clients of your federated service can seamlessly locate an

appropriate healthy service endpoint at all times, even in the event of cluster, availability

zone or regional outages.

Clients inside your federated Kubernetes clusters (i.e. Pods) will automatically find the local

shard of the Federated Service in their cluster if it exists and is healthy, or the closest healthy

shard in a different cluster if it does not.

Hybrid cloud capabilities

Federations of Kubernetes Clusters can include clusters running in different cloud providers

(e.g. Google Cloud, AWS), and on-premises (e.g. on OpenStack). Simply create all of the

clusters that you require, in the appropriate cloud providers and/or locations, and register each

cluster’s API endpoint and credentials with your Federation API Server (See the federation

admin guide for details).

Thereafter, your applications and services can span different clusters and cloud providers as

described in more detail below.

file:///docs/setup/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/service/
file:///docs/admin/federation/

Creating a federated service

This is done in the usual way, for example:

The ‘–context=federation-cluster’ flag tells kubectl to submit the request to the Federation API

endpoint, with the appropriate credentials. If you have not yet configured such a context, visit

the federation admin guide or one of the administration tutorials to find out how to do so.

As described above, the Federated Service will automatically create and maintain matching

Kubernetes services in all of the clusters underlying your federation.

You can verify this by checking in each of the underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone. The name and namespace of the underlying services will

automatically match those of the Federated Service that you created above (and if you happen

to have had services of the same name and namespace already existing in any of those

clusters, they will be automatically adopted by the Federation and updated to conform with the

specification of your Federated Service - either way, the end result will be the same).

The status of your Federated Service will automatically reflect the real-time status of the

underlying Kubernetes services, for example:

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f services/nginx.yaml services/nginx.yaml

kubectl kubectl --context--context==gce-asia-east1a get services nginxgce-asia-east1a get services nginx

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

nginx 10.63.250.98 104.199.136.89 80/TCP 9mnginx 10.63.250.98 104.199.136.89 80/TCP 9m

file:///docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

Note the ‘LoadBalancer Ingress’ addresses of your Federated Service correspond with the

‘LoadBalancer Ingress’ addresses of all of the underlying Kubernetes services (once these have

been allocated - this may take a few seconds). For inter-cluster and inter-cloud-provider

networking between service shards to work correctly, your services need to have an externally

visible IP address. Service Type: Loadbalancer is typically used for this, although other options

(e.g. External IP’s) exist.

Note also that we have not yet provisioned any backend Pods to receive the network traffic

directed to these addresses (i.e. ‘Service Endpoints’), so the Federated Service does not yet

consider these to be healthy service shards, and has accordingly not yet added their addresses

to the DNS records for this Federated Service (more on this aspect later).

Adding backend pods

To render the underlying service shards healthy, we need to add backend Pods behind them.

This is currently done directly against the API endpoints of the underlying clusters (although in

future the Federation server will be able to do all this for you with a single command, to save

you the trouble). For example, to create backend Pods in 13 underlying clusters:

$kubectl$kubectl --context--context==federation-cluster describe services nginxfederation-cluster describe services nginx

Name: nginxName: nginx

Namespace: defaultNamespace: default

Labels: Labels: runrun==nginxnginx

Annotations: <none>Annotations: <none>

Selector: Selector: runrun==nginxnginx

Type: LoadBalancerType: LoadBalancer

IP: 10.63.250.98IP: 10.63.250.98

LoadBalancer Ingress: 104.197.246.190, 130.211.57.243, 104.196.14.231, 104.199.136.89, ...LoadBalancer Ingress: 104.197.246.190, 130.211.57.243, 104.196.14.231, 104.199.136.89, ...

Port: http 80/TCPPort: http 80/TCP

Endpoints: <none>Endpoints: <none>

Session Affinity: NoneSession Affinity: None

Events: <none>Events: <none>

file:///docs/concepts/services-networking/service/#type-loadbalancer
file:///docs/concepts/services-networking/service/#external-ips

Note that

kubectlkubectl

runrun automatically adds the run=nginxrun=nginx labels required to associate the

backend pods with their services.

Verifying public DNS records

Once the above Pods have successfully started and have begun listening for connections,

Kubernetes will report them as healthy endpoints of the service in that cluster (via automatic

health checks). The Cluster Federation will in turn consider each of these service ‘shards’ to be

healthy, and place them in serving by automatically configuring corresponding public DNS

records. You can use your preferred interface to your configured DNS provider to verify this.

For example, if your Federation is configured to use Google Cloud DNS, and a managed DNS

domain ‘example.com’:

for for CLUSTER CLUSTER in in asia-east1-c asia-east1-a asia-east1-b asia-east1-c asia-east1-a asia-east1-b \\

 europe-west1-d europe-west1-c europe-west1-b europe-west1-d europe-west1-c europe-west1-b \\

 us-central1-f us-central1-a us-central1-b us-central1-c us-central1-f us-central1-a us-central1-b us-central1-c

 us-east1-d us-east1-c us-east1-b us-east1-d us-east1-c us-east1-b

dodo

 kubectl kubectl --context--context==$CLUSTER$CLUSTER run nginx run nginx --image--image==nginx:1.11.1-alpine nginx:1.11.1-alpine --port--port==8080

donedone

$ $ gcloud dns managed-zones describe example-dot-comgcloud dns managed-zones describe example-dot-com

creationTime: creationTime: '2016-06-26T18:18:39.229Z''2016-06-26T18:18:39.229Z'

description: Example domain description: Example domain for for Kubernetes Cluster FederationKubernetes Cluster Federation

dnsName: example.com.dnsName: example.com.

id: id: '3229332181334243121''3229332181334243121'

kind: dns#managedZonekind: dns#managedZone

name: example-dot-comname: example-dot-com

nameServers:nameServers:

- ns-cloud-a1.googledomains.com.- ns-cloud-a1.googledomains.com.

- ns-cloud-a2.googledomains.com.- ns-cloud-a2.googledomains.com.

- ns-cloud-a3.googledomains.com.- ns-cloud-a3.googledomains.com.

- ns-cloud-a4.googledomains.com.- ns-cloud-a4.googledomains.com.

Note: If your Federation is configured to use AWS Route53, you can use one of the equivalent

AWS tools, for example:

and

Whatever DNS provider you use, any DNS query tool (for example ‘dig’ or ‘nslookup’) will of

course also allow you to see the records created by the Federation for you. Note that you

should either point these tools directly at your DNS provider (e.g.

dig @ns-cloud-e1.googledomains.com...dig @ns-cloud-e1.googledomains.com...) or expect delays in the order of your configured

TTL (180 seconds, by default) before seeing updates, due to caching by intermediate DNS

servers.

Some notes about the above example

1. Notice that there is a normal (‘A’) record for each service shard that has at least one

healthy backend endpoint. For example, in us-central1-a, 104.197.247.191 is the external

IP address of the service shard in that zone, and in asia-east1-a the address is

130.211.56.221.

$ $ gcloud dns record-sets list gcloud dns record-sets list --zone--zone example-dot-com example-dot-com

NAME TYPE TTL DATANAME TYPE TTL DATA

example.com. NS 21600 ns-cloud-e1.googledomains.com., ns-cloud-e2.googledomains.com.example.com. NS 21600 ns-cloud-e1.googledomains.com., ns-cloud-e2.googledomains.com.

example.com. OA 21600 ns-cloud-e1.googledomains.com. cloud-dns-hostmaster.google.com. 1 21600 3600 1209600 300example.com. OA 21600 ns-cloud-e1.googledomains.com. cloud-dns-hostmaster.google.com. 1 21600 3600 1209600 300

nginx.mynamespace.myfederation.svc.example.com. A 180 104.197.246.190, 130.211.57.243, 104.196.14.231, 104.199.136.89,...nginx.mynamespace.myfederation.svc.example.com. A 180 104.197.246.190, 130.211.57.243, 104.196.14.231, 104.199.136.89,...

nginx.mynamespace.myfederation.svc.us-central1-a.example.com. A 180 104.197.247.191nginx.mynamespace.myfederation.svc.us-central1-a.example.com. A 180 104.197.247.191

nginx.mynamespace.myfederation.svc.us-central1-b.example.com. A 180 104.197.244.180nginx.mynamespace.myfederation.svc.us-central1-b.example.com. A 180 104.197.244.180

nginx.mynamespace.myfederation.svc.us-central1-c.example.com. A 180 104.197.245.170nginx.mynamespace.myfederation.svc.us-central1-c.example.com. A 180 104.197.245.170

nginx.mynamespace.myfederation.svc.us-central1-f.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.us-central1.example.com.nginx.mynamespace.myfederation.svc.us-central1-f.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.us-central1.example.com.

nginx.mynamespace.myfederation.svc.us-central1.example.com. A 180 104.197.247.191, 104.197.244.180, 104.197.245.170nginx.mynamespace.myfederation.svc.us-central1.example.com. A 180 104.197.247.191, 104.197.244.180, 104.197.245.170

nginx.mynamespace.myfederation.svc.asia-east1-a.example.com. A 180 130.211.57.243nginx.mynamespace.myfederation.svc.asia-east1-a.example.com. A 180 130.211.57.243

nginx.mynamespace.myfederation.svc.asia-east1-b.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.asia-east1.example.com.nginx.mynamespace.myfederation.svc.asia-east1-b.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.asia-east1.example.com.

nginx.mynamespace.myfederation.svc.asia-east1-c.example.com. A 180 130.211.56.221nginx.mynamespace.myfederation.svc.asia-east1-c.example.com. A 180 130.211.56.221

nginx.mynamespace.myfederation.svc.asia-east1.example.com. A 180 130.211.57.243, 130.211.56.221nginx.mynamespace.myfederation.svc.asia-east1.example.com. A 180 130.211.57.243, 130.211.56.221

nginx.mynamespace.myfederation.svc.europe-west1.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.example.com.nginx.mynamespace.myfederation.svc.europe-west1.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.example.com.

nginx.mynamespace.myfederation.svc.europe-west1-d.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.europe-west1.example.com.nginx.mynamespace.myfederation.svc.europe-west1-d.example.com. CNAME 180 nginx.mynamespace.myfederation.svc.europe-west1.example.com.

... etc.... etc.

$ $ aws route53 list-hosted-zonesaws route53 list-hosted-zones

$ $ aws route53 list-resource-record-sets aws route53 list-resource-record-sets --hosted-zone-id--hosted-zone-id Z3ECL0L9QLOVBX Z3ECL0L9QLOVBX

2. Similarly, there are regional ‘A’ records which include all healthy shards in that region. For

example, ‘us-central1’. These regional records are useful for clients which do not have a

particular zone preference, and as a building block for the automated locality and failover

mechanism described below.

3. For zones where there are currently no healthy backend endpoints, a CNAME (‘Canonical

Name’) record is used to alias (automatically redirect) those queries to the next closest

healthy zone. In the example, the service shard in us-central1-f currently has no healthy

backend endpoints (i.e. Pods), so a CNAME record has been created to automatically

redirect queries to other shards in that region (us-central1 in this case).

4. Similarly, if no healthy shards exist in the enclosing region, the search progresses further

afield. In the europe-west1-d availability zone, there are no healthy backends, so queries

are redirected to the broader europe-west1 region (which also has no healthy backends),

and onward to the global set of healthy addresses (‘

nginx.mynamespace.myfederation.svc.example.com.’).

The above set of DNS records is automatically kept in sync with the current state of health of

all service shards globally by the Federated Service system. DNS resolver libraries (which are

invoked by all clients) automatically traverse the hierarchy of ‘CNAME’ and ‘A’ records to return

the correct set of healthy IP addresses. Clients can then select any one of the returned

addresses to initiate a network connection (and fail over automatically to one of the other

equivalent addresses if required).

Discovering a federated service

From pods inside your federated clusters

By default, Kubernetes clusters come pre-configured with a cluster-local DNS server

(‘KubeDNS’), as well as an intelligently constructed DNS search path which together ensure

that DNS queries like “myservice”, “myservice.mynamespace”, “bobsservice.othernamespace”

etc issued by your software running inside Pods are automatically expanded and resolved

correctly to the appropriate service IP of services running in the local cluster.

With the introduction of Federated Services and Cross-Cluster Service Discovery, this concept

is extended to cover Kubernetes services running in any other cluster across your Cluster

Federation, globally. To take advantage of this extended range, you use a slightly different DNS

name (of the form “ ..", e.g. myservice.mynamespace.myfederation) to resolve Federated

Services. Using a different DNS name also avoids having your existing applications

accidentally traversing cross-zone or cross-region networks and you incurring perhaps

unwanted network charges or latency, without you explicitly opting in to this behavior.

So, using our NGINX example service above, and the Federated Service DNS name form just

described, let’s consider an example: A Pod in a cluster in the us-central1-fus-central1-f availability zone

needs to contact our NGINX service. Rather than use the service’s traditional cluster-local DNS

name ("nginx.mynamespace""nginx.mynamespace" , which is automatically expanded to

"nginx.mynamespace.svc.cluster.local""nginx.mynamespace.svc.cluster.local") it can now use the service’s Federated DNS

name, which is "nginx.mynamespace.myfederation""nginx.mynamespace.myfederation" . This will be automatically expanded

and resolved to the closest healthy shard of my NGINX service, wherever in the world that may

be. If a healthy shard exists in the local cluster, that service’s cluster-local (typically 10.x.y.z) IP

address will be returned (by the cluster-local KubeDNS). This is almost exactly equivalent to

non-federated service resolution (almost because KubeDNS actually returns both a CNAME

and an A record for local federated services, but applications will be oblivious to this minor

technical difference).

But if the service does not exist in the local cluster (or it exists but has no healthy backend

pods), the DNS query is automatically expanded to

"nginx.mynamespace.myfederation.svc.us-central1-f.example.com""nginx.mynamespace.myfederation.svc.us-central1-f.example.com" (i.e. logically “find

the external IP of one of the shards closest to my availability zone”). This expansion is

performed automatically by KubeDNS, which returns the associated CNAME record. This

results in automatic traversal of the hierarchy of DNS records in the above example, and ends

up at one of the external IP’s of the Federated Service in the local us-central1 region (i.e.

104.197.247.191, 104.197.244.180 or 104.197.245.170).

It is of course possible to explicitly target service shards in availability zones and regions other

than the ones local to a Pod by specifying the appropriate DNS names explicitly, and not relying

on automatic DNS expansion. For example, “nginx.mynamespace.myfederation.svc.europe-

west1.example.com” will resolve to all of the currently healthy service shards in Europe, even if

the Pod issuing the lookup is located in the U.S., and irrespective of whether or not there are

healthy shards of the service in the U.S. This is useful for remote monitoring and other similar

applications.

From other clients outside your federated clusters

Much of the above discussion applies equally to external clients, except that the automatic

DNS expansion described is no longer possible. So external clients need to specify one of the

fully qualified DNS names of the Federated Service, be that a zonal, regional or global name.

For convenience reasons, it is often a good idea to manually configure additional static

CNAME records in your service, for example:

That way your clients can always use the short form on the left, and always be automatically

routed to the closest healthy shard on their home continent. All of the required failover is

handled for you automatically by Kubernetes Cluster Federation. Future releases will improve

upon this even further.

Handling failures of backend pods and whole
clusters

Standard Kubernetes service cluster-IP’s already ensure that non-responsive individual Pod

endpoints are automatically taken out of service with low latency (a few seconds). In addition,

as alluded above, the Kubernetes Cluster Federation system automatically monitors the health

of clusters and the endpoints behind all of the shards of your Federated Service, taking shards

in and out of service as required (e.g. when all of the endpoints behind a service, or perhaps the

entire cluster or availability zone go down, or conversely recover from an outage). Due to the

latency inherent in DNS caching (the cache timeout, or TTL for Federated Service DNS records

is configured to 3 minutes, by default, but can be adjusted), it may take up to that long for all

clients to completely fail over to an alternative cluster in the case of catastrophic failure.

However, given the number of discrete IP addresses which can be returned for each regional

service endpoint (see e.g. us-central1 above, which has three alternatives) many clients will fail

over automatically to one of the alternative IP’s in less time than that given appropriate

configuration.

Troubleshooting

I cannot connect to my cluster federation API

Check that your

eu.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.europe-west1.example.com.eu.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.europe-west1.example.com.

us.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.us-central1.example.com.us.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.us-central1.example.com.

nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.example.com.nginx.acme.com CNAME nginx.mynamespace.myfederation.svc.example.com.

1. Client (typically kubectl) is correctly configured (including API endpoints and login

credentials).

2. Cluster Federation API server is running and network-reachable.

See the federation admin guide to learn how to bring up a cluster federation correctly (or have

your cluster administrator do this for you), and how to correctly configure your client.

I can create a federated service successfully against the cluster
federation API, but no matching services are created in my underlying
clusters

Check that:

1. Your clusters are correctly registered in the Cluster Federation API (

kubectl describekubectl describe

clustersclusters).

2. Your clusters are all ‘Active’. This means that the cluster Federation system was able to

connect and authenticate against the clusters’ endpoints. If not, consult the logs of the

federation-controller-manager pod to ascertain what the failure might be.

kubectl --namespace=federation logs $(kubectl get pods --kubectl --namespace=federation logs $(kubectl get pods --

namespace=federation -l module=federation-controller-manager -o name)namespace=federation -l module=federation-controller-manager -o name)

3. That the login credentials provided to the Cluster Federation API for the clusters have the

correct authorization and quota to create services in the relevant namespace in the

clusters. Again you should see associated error messages providing more detail in the

above log file if this is not the case.

4. Whether any other error is preventing the service creation operation from succeeding (look

for service-controllerservice-controller errors in the output of

kubectl logs federation-controller-manager --namespacekubectl logs federation-controller-manager --namespace

federationfederation).

I can create a federated service successfully, but no matching DNS
records are created in my DNS provider.

Check that:

1. Your federation name, DNS provider, DNS domain name are configured correctly. Consult

the federation admin guide or tutorial to learn how to configure your Cluster Federation

file:///docs/admin/federation/
file:///docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

system’s DNS provider (or have your cluster administrator do this for you).

2. Confirm that the Cluster Federation’s service-controller is successfully connecting to and

authenticating against your selected DNS provider (look for service-controllerservice-controller errors

or successes in the output of

kubectl logs federation-controller-manager --namespacekubectl logs federation-controller-manager --namespace

federationfederation).

3. Confirm that the Cluster Federation’s service-controller is successfully creating DNS

records in your DNS provider (or outputting errors in its logs explaining in more detail

what’s failing).

Matching DNS records are created in my DNS provider, but clients are
unable to resolve against those names

Check that:

1. The DNS registrar that manages your federation DNS domain has been correctly

configured to point to your configured DNS provider’s nameservers. See for example

Google Domains Documentation and Google Cloud DNS Documentation, or equivalent

guidance from your domain registrar and DNS provider.

This troubleshooting guide did not help me solve my problem

1. Please use one of our support channels to seek assistance.

For more information

Federation proposal details use cases that motivated this work.

https://support.google.com/domains/answer/3290309?hl=en&ref_topic=3251230
https://cloud.google.com/dns/update-name-servers
file:///docs/tasks/debug-application-cluster/troubleshooting/
https://git.k8s.io/community/contributors/design-proposals/multicluster/federation.md

Set up Cluster Federation with Kubefed

Kubernetes version 1.5 and above includes a new command line tool called kubefedkubefed to help

you administrate your federated clusters. kubefedkubefed helps you to deploy a new Kubernetes

cluster federation control plane, and to add clusters to or remove clusters from an existing

federation control plane.

This guide explains how to administer a Kubernetes Cluster Federation using kubefedkubefed .

Note: kubefedkubefed is a beta feature in Kubernetes 1.6.

Prerequisites

This guide assumes that you have a running Kubernetes cluster. Please see one of the getting

started guides for installation instructions for your platform.

Prerequisites

Getting kubefedkubefed

For k8s versions 1.8.x and earlier:

For k8s versions 1.9.x and above:

Install kubectl

Choosing a host cluster.

Deploying a federation control plane

Basic and token authentication support

Passing command line arguments to federation components

Configuring a DNS provider

On-premises host clusters

API server service type

Provisioning storage for etcd

CoreDNS support

Adding a cluster to a federation

Naming rules and customization

Secret name

kube-dnskube-dns configuration

Removing a cluster from a federation

Turning down the federation control plane

file:///docs/admin/kubefed/
file:///docs/setup/

Getting kubefed

Download the client tarball corresponding to the particular release and extract the binaries in

the tarball:

Note that until kubernetes versions 1.8.x1.8.x the federation project was maintained as part of

core kubernetes repo. At some point between kubernetes releases 1.8.01.8.0 and 1.9.01.9.0 , it

moved into a separate federation repo and is now maintained there. After this move, the

federation release information is available at the release page here.

For k8s versions 1.8.x and earlier:

Note that the variable RELEASE-VERSIONRELEASE-VERSION should be either appropriately set to or replaced with

the actual version needed.

Copy the extracted binary to one of the directories in your $PATH$PATH and set the executable

permission on the binary.

For k8s versions 1.9.x and above:

Note that the variable RELEASE-VERSIONRELEASE-VERSION should be replaced with one of the release versions

available at federation release page.

Copy the extracted binary to one of the directories in your $PATH$PATH and set the executable

permission on the binary.

curl curl -LO-LO https://storage.googleapis.com/kubernetes-release/release/ https://storage.googleapis.com/kubernetes-release/release/${${RELEASERELEASE-VERSION-VERSION

tartar -xzvf-xzvf kubernetes-client-linux-amd64.tar.gz kubernetes-client-linux-amd64.tar.gz

sudo sudo cp kubernetes/client/bin/kubefed /usr/local/bincp kubernetes/client/bin/kubefed /usr/local/bin

sudo sudo chmod +x /usr/local/bin/kubefedchmod +x /usr/local/bin/kubefed

curl curl -LO-LO https://storage.cloud.google.com/kubernetes-federation-release/release/ https://storage.cloud.google.com/kubernetes-federation-release/release/

tartar -xzvf-xzvf federation-client-linux-amd64.tar.gz federation-client-linux-amd64.tar.gz

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/federation
https://github.com/kubernetes/federation/releases
https://github.com/kubernetes/federation/releases

Install kubectl

You can install a matching version of kubectl using the instructions on the kubectl install page.

Choosing a host cluster.

You’ll need to choose one of your Kubernetes clusters to be the host cluster. The host cluster

hosts the components that make up your federation control plane. Ensure that you have a

kubeconfigkubeconfig entry in your local kubeconfigkubeconfig that corresponds to the host cluster. You can

verify that you have the required kubeconfigkubeconfig entry by running:

The output should contain an entry corresponding to your host cluster, similar to the following:

You’ll need to provide the kubeconfigkubeconfig context (called name in the entry above) for your host

cluster when you deploy your federation control plane.

Deploying a federation control plane

To deploy a federation control plane on your host cluster, run kubefed initkubefed init command. When

you use kubefed initkubefed init , you must provide the following:

Federation name

--host-cluster-context--host-cluster-context , the kubeconfigkubeconfig context for the host cluster

--dns-provider--dns-provider , one of 'google-clouddns''google-clouddns' , aws-route53aws-route53 or corednscoredns

sudo sudo cp federation/client/bin/kubefed /usr/local/bincp federation/client/bin/kubefed /usr/local/bin

sudo sudo chmod +x /usr/local/bin/kubefedchmod +x /usr/local/bin/kubefed

kubectl config get-contextskubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACECURRENT NAME CLUSTER AUTHINFO NAMESPACE

* gke_myproject_asia-east1-b_gce-asia-east1 gke_myproject_asia-east1-b_gce-asia-east1 gke_myproject_asia-east1-b_gce-asia-east1* gke_myproject_asia-east1-b_gce-asia-east1 gke_myproject_asia-east1-b_gce-asia-east1 gke_myproject_asia-east1-b_gce-asia-east1

https://kubernetes.io/docs/tasks/tools/install-kubectl/
file:///docs/admin/kubefed_init/

--dns-zone-name--dns-zone-name , a domain name suffix for your federated services

If your host cluster is running in a non-cloud environment or an environment that doesn’t

support common cloud primitives such as load balancers, you might need additional flags.

Please see the on-premises host clusters section below.

The following example command deploys a federation control plane with the name

fellowshipfellowship , a host cluster context rivendellrivendell , and the domain suffix example.com.example.com. :

The domain suffix specified in --dns-zone-name--dns-zone-name must be an existing domain that you

control, and that is programmable by your DNS provider. It must also end with a trailing dot.

Once the federation control plane is initialized, query the namespaces:

If you do not see the defaultdefault namespace listed (this is due to a bug). Create it yourself with

the following command:

The machines in your host cluster must have the appropriate permissions to program the DNS

service that you are using. For example, if your cluster is running on Google Compute Engine,

you must enable the Google Cloud DNS API for your project.

The machines in Google Kubernetes Engine clusters are created without the Google Cloud DNS

API scope by default. If you want to use a Google Kubernetes Engine cluster as a Federation

host, you must create it using the gcloudgcloud command with the appropriate value in the

--scopes--scopes field. You cannot modify a Google Kubernetes Engine cluster directly to add this

scope, but you can create a new node pool for your cluster and delete the old one. Note that

this will cause pods in the cluster to be rescheduled.

To add the new node pool, run:

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="google-clouddns""google-clouddns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com."

kubectl get namespace kubectl get namespace --context--context==fellowshipfellowship

kubectl create namespace default kubectl create namespace default --context--context==fellowshipfellowship

https://github.com/kubernetes/kubernetes/issues/33292

To delete the old node pool, run:

kubefed initkubefed init sets up the federation control plane in the host cluster and also adds an entry

for the federation API server in your local kubeconfig. Note that in the beta release in

Kubernetes 1.6, kubefed initkubefed init does not automatically set the current context to the newly

deployed federation. You can set the current context manually by running:

where fellowshipfellowship is the name of your federation.

Basic and token authentication support

kubefed initkubefed init by default only generates TLS certificates and keys to authenticate with the

federation API server and writes them to your local kubeconfig file. If you wish to enable basic

authentication or token authentication for debugging purposes, you can enable them by

passing the --apiserver-enable-basic-auth--apiserver-enable-basic-auth flag or the

--apiserver-enable-token-auth--apiserver-enable-token-auth flag.

Passing command line arguments to federation components

kubefed initkubefed init bootstraps a federation control plane with default arguments to federation API

scopesscopes==""$($(gcloud container node-pools describe gcloud container node-pools describe --cluster--cluster==gke-cluster default-pool gke-cluster default-pool

gcloud container node-pools create new-np gcloud container node-pools create new-np \\

 --cluster--cluster==gke-cluster gke-cluster \\

 --scopes--scopes==""${${scopesscopes}},https://www.googleapis.com/auth/ndev.clouddns.readwrite",https://www.googleapis.com/auth/ndev.clouddns.readwrite"

gcloud container node-pools delete default-pool gcloud container node-pools delete default-pool --cluster--cluster gke-cluster gke-cluster

kubectl config use-context fellowshipkubectl config use-context fellowship

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="google-clouddns""google-clouddns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com." \\

 --apiserver-enable-basic-auth--apiserver-enable-basic-auth==truetrue \\

 --apiserver-enable-token-auth--apiserver-enable-token-auth==truetrue

server and federation controller manager. Some of these arguments are derived from

kubefed initkubefed init ’s flags. However, you can override these command line arguments by passing

them via the appropriate override flags.

You can override the federation API server arguments by passing them to

--apiserver-arg-overrides--apiserver-arg-overrides and override the federation controller manager arguments by

passing them to --controllermanager-arg-overrides--controllermanager-arg-overrides .

Configuring a DNS provider

The Federated service controller programs a DNS provider to expose federated services via

DNS names. Certain cloud providers automatically provide the configuration required to

program the DNS provider if the host cluster’s cloud provider is same as the DNS provider. In

all other cases, you have to provide the DNS provider configuration to your federation

controller manager which will in-turn be passed to the federated service controller. You can

provide this configuration to federation controller manager by storing it in a file and passing

the file’s local filesystem path to kubefed initkubefed init ’s --dns-provider-config--dns-provider-config flag. For

example, save the config below in $HOME/coredns-provider.conf$HOME/coredns-provider.conf .

And then pass this file to kubefed initkubefed init :

On-premises host clusters

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="google-clouddns""google-clouddns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com." \\

 --apiserver-arg-overrides--apiserver-arg-overrides=="--anonymous-auth=false,--v=4""--anonymous-auth=false,--v=4" \\

 --controllermanager-arg-overrides--controllermanager-arg-overrides=="--controllers=services=false""--controllers=services=false"

[Global][Global]

etcd-endpointsetcd-endpoints == http://etcd-cluster.ns:2379http://etcd-cluster.ns:2379

zoneszones == example.com.example.com.

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="coredns""coredns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com." \\

 --dns-provider-config--dns-provider-config==""$HOME$HOME/coredns-provider.conf"/coredns-provider.conf"

API server service type

kubefed initkubefed init exposes the federation API server as a Kubernetes service on the host cluster.

By default, this service is exposed as a load balanced service. Most on-premises and bare-

metal environments, and some cloud environments lack support for load balanced services.

kubefed initkubefed init allows exposing the federation API server as a NodePortNodePort service on such

environments. This can be accomplished by passing the

--api-server-service-type=NodePort--api-server-service-type=NodePort flag. You can also specify the preferred address to

advertise the federation API server by passing the

--api-server-advertise-address=<IP-address>--api-server-advertise-address=<IP-address> flag. Otherwise, one of the host cluster’s

node address is chosen as the default.

Provisioning storage for etcd

Federation control plane stores its state in etcdetcd . etcdetcd data must be stored in a persistent

storage volume to ensure correct operation across federation control plane restarts. On host

clusters that support dynamic provisioning of storage volumes, kubefed initkubefed init dynamically

provisions a PersistentVolumePersistentVolume and binds it to a PersistentVolumeClaimPersistentVolumeClaim to store etcdetcd

data. If your host cluster doesn’t support dynamic provisioning, you can also statically

provision a PersistentVolumePersistentVolume . kubefed initkubefed init creates a PersistentVolumeClaimPersistentVolumeClaim that has

the following configuration:

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="google-clouddns""google-clouddns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com." \\

 --api-server-service-type--api-server-service-type=="NodePort""NodePort" \\

 --api-server-advertise-address--api-server-advertise-address=="10.0.10.20""10.0.10.20"

file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/service/#type-loadbalancer
file:///docs/concepts/services-networking/service/#type-nodeport
https://coreos.com/etcd/docs/latest/
https://coreos.com/etcd/docs/latest/
file:///docs/concepts/storage/persistent-volumes/#dynamic
file:///docs/concepts/storage/persistent-volumes/#persistent-volumes
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://coreos.com/etcd/docs/latest/
file:///docs/concepts/storage/persistent-volumes/#persistent-volumes
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

To statically provision a PersistentVolumePersistentVolume , you must ensure that the PersistentVolumePersistentVolume

that you create has the matching storage class, access mode and at least as much capacity

as the requested PersistentVolumeClaimPersistentVolumeClaim .

Alternatively, you can disable persistent storage completely by passing

--etcd-persistent-storage=false--etcd-persistent-storage=false to kubefed initkubefed init . However, we do not recommended

this because your federation control plane cannot survive restarts in this mode.

kubefed initkubefed init still doesn’t support attaching an existing PersistentVolumeClaimPersistentVolumeClaim to the

federation control plane that it bootstraps. We are planning to support this in a future version

of kubefedkubefed .

CoreDNS support

Federated services now support CoreDNS as one of the DNS providers. If you are running your

clusters and federation in an environment that does not have access to cloud-based DNS

providers, then you can run your own CoreDNS instance and publish the federated service DNS

names to that server.

You can configure your federation to use CoreDNS, by passing appropriate values to

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

metadatametadata::

 annotationsannotations::

 volume.alpha.kubernetes.io/storage-classvolume.alpha.kubernetes.io/storage-class:: ""yes"yes"

 labelslabels::

 appapp:: federated-clusterfederated-cluster

 namename:: fellowship-federation-apiserver-etcd-claimfellowship-federation-apiserver-etcd-claim

 namespacenamespace:: federation-systemfederation-system

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 10Gi10Gi

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="google-clouddns""google-clouddns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com." \\

 --etcd-persistent-storage--etcd-persistent-storage==falsefalse

file:///docs/concepts/storage/persistent-volumes/#persistent-volumes
file:///docs/concepts/storage/persistent-volumes/#persistent-volumes
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://coredns.io/
https://coredns.io/
https://coredns.io/

kubefed initkubefed init ’s --dns-provider--dns-provider and --dns-provider-config--dns-provider-config flags.

For more information see Setting up CoreDNS as DNS provider for Cluster Federation.

Adding a cluster to a federation

After you’ve deployed a federation control plane, you’ll need to make that control plane aware

of the clusters it should manage.

To join clusters into the federation:

1. Change the context:

2. If you are using a managed cluster service, allow the service to access the cluster. To do

this, create a clusterrolebindingclusterrolebinding for the account associated with your cluster service:

3. Join the cluster to the federation, using kubefed joinkubefed join , and make sure you provide the

following:

1. The name of the cluster that you are joining to the federation

2. --host-cluster-context--host-cluster-context , the kubeconfig context for the host cluster

For example, this command adds the cluster gondorgondor to the federation running on host

cluster rivendellrivendell :

kubefed init fellowship kubefed init fellowship \\

 --host-cluster-context--host-cluster-context==rivendell rivendell \\

 --dns-provider--dns-provider=="coredns""coredns" \\

 --dns-zone-name--dns-zone-name=="example.com.""example.com." \\

 --dns-provider-config--dns-provider-config==""$HOME$HOME/coredns-provider.conf"/coredns-provider.conf"

kubectl config use-context fellowshipkubectl config use-context fellowship

kubectl create clusterrolebinding <your_user>-cluster-admin-binding --clusterrole=cluster-admin --user=<your_user>@example.org --context=<joining_cluster_context>kubectl create clusterrolebinding <your_user>-cluster-admin-binding --clusterrole=cluster-admin --user=<your_user>@example.org --context=<joining_cluster_context>

 kubefed join gondor --host-cluster-context=rivendell kubefed join gondor --host-cluster-context=rivendell

file:///docs/tasks/federation/set-up-coredns-provider-federation/

A new context has now been added to your kubeconfig named fellowshipfellowship (after the name of

your federation).

Note: The name that you provide to the joinjoin command is used as the joining cluster’s

identity in federation. If this name adheres to the rules described in the identifiers doc. If the

context corresponding to your joining cluster conforms to these rules then you can use the

same name in the join command. Otherwise, you will have to choose a different name for your

cluster’s identity.

Naming rules and customization

The cluster name you supply to kubefed joinkubefed join must be a valid RFC 1035 label and are

enumerated in the Identifiers doc.

Furthermore, federation control plane requires credentials of the joined clusters to operate on

them. These credentials are obtained from the local kubeconfig. kubefed joinkubefed join uses the

cluster name specified as the argument to look for the cluster’s context in the local kubeconfig.

If it fails to find a matching context, it exits with an error.

This might cause issues in cases where context names for each cluster in the federation don’t

follow RFC 1035 label naming rules. In such cases, you can specify a cluster name that

conforms to the RFC 1035 label naming rules and specify the cluster context using the

--cluster-context--cluster-context flag. For example, if context of the cluster you are joining is

gondor_needs-no_kinggondor_needs-no_king , then you can join the cluster by running:

Secret name

Cluster credentials required by the federation control plane as described above are stored as a

secret in the host cluster. The name of the secret is also derived from the cluster name.

However, the name of a secret object in Kubernetes should conform to the DNS subdomain

name specification described in RFC 1123. If this isn’t the case, you can pass the secret name

to kubefed joinkubefed join using the --secret-name--secret-name flag. For example, if the cluster name is noldornoldor

and the secret name is 11kingdom11kingdom , you can join the cluster by running:

kubefed join gondor kubefed join gondor --host-cluster-context--host-cluster-context==rivendell rivendell --cluster-context--cluster-context==gondor_needs-no_kinggondor_needs-no_king

file:///docs/concepts/overview/working-with-objects/names/
https://www.ietf.org/rfc/rfc1035.txt
file:///docs/concepts/overview/working-with-objects/names/
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/rfc1123

Note: If your cluster name does not conform to the DNS subdomain name specification, all you

need to do is supply the secret name via the --secret-name--secret-name flag. kubefed joinkubefed join

automatically creates the secret for you.

kube-dns configuration

kube-dnskube-dns configuration must be updated in each joining cluster to enable federated service

discovery. If the joining Kubernetes cluster is version 1.5 or newer and your kubefedkubefed is

version 1.6 or newer, then this configuration is automatically managed for you when the

clusters are joined or unjoined using kubefed joinkubefed join or unjoinunjoin commands.

In all other cases, you must update kube-dnskube-dns configuration manually as described in the

Updating KubeDNS section of the admin guide.

Removing a cluster from a federation

To remove a cluster from a federation, run the

kubefedkubefed

unjoinunjoin command with the cluster

name and the federation’s --host-cluster-context--host-cluster-context :

Turning down the federation control plane

Proper cleanup of federation control plane is not fully implemented in this beta release of

kubefedkubefed . However, for the time being, deleting the federation system namespace should

remove all the resources except the persistent storage volume dynamically provisioned for the

federation control plane’s etcd. You can delete the federation namespace by running the

following command:

kubefed join noldor kubefed join noldor --host-cluster-context--host-cluster-context==rivendell rivendell --secret-name--secret-name==11kingdom11kingdom

kubefed unjoin gondor --host-cluster-context=rivendellkubefed unjoin gondor --host-cluster-context=rivendell

file:///docs/admin/federation/
file:///docs/admin/kubefed_unjoin/

Note that rivendellrivendell is the host cluster name, replace that with the appropriate name in your

configuration.

kubectl delete ns federation-system --context=rivendellkubectl delete ns federation-system --context=rivendell

Set up CoreDNS as DNS provider for
Cluster Federation

This page shows how to configure and deploy CoreDNS to be used as the DNS provider for

Cluster Federation.

Objectives

Configure and deploy CoreDNS server

Bring up federation with CoreDNS as dns provider

Setup CoreDNS server in nameserver lookup chain

Before you begin

You need to have a running Kubernetes cluster (which is referenced as host cluster).

Please see one of the getting started guides for installation instructions for your platform.

Support for LoadBalancerLoadBalancer services in member clusters of federation is mandatory to

enable CoreDNSCoreDNS for service discovery across federated clusters.

Deploying CoreDNS and etcd charts

CoreDNS can be deployed in various configurations. Explained below is a reference and can be

tweaked to suit the needs of the platform and the cluster federation.

To deploy CoreDNS, we shall make use of helm charts. CoreDNS will be deployed with etcd as

Objectives

Before you begin

Deploying CoreDNS and etcd charts

Deploying Federation with CoreDNS as DNS provider

Setup CoreDNS server in nameserver resolv.conf chain

file:///docs/setup/
https://coreos.com/etcd

the backend and should be pre-installed. etcd can also be deployed using helm charts. Shown

below are the instructions to deploy etcd.

Note: etcd default deployment configurations can be overridden, suiting the host cluster.

After deployment succeeds, etcd can be accessed with the http://etcd-cluster.my-

namespace:2379 endpoint within the host cluster.

The CoreDNS default configuration should be customized to suit the federation. Shown below

is the Values.yaml, which overrides the default configuration parameters on the CoreDNS

chart.

Values.yamlValues.yaml

The above configuration file needs some explanation:

isClusterServiceisClusterService specifies whether CoreDNS should be deployed as a cluster-service,

which is the default. You need to set it to false, so that CoreDNS is deployed as a

Kubernetes application service.

serviceTypeserviceType specifies the type of Kubernetes service to be created for CoreDNS. You

need to choose either “LoadBalancer” or “NodePort” to make the CoreDNS service

accessible outside the Kubernetes cluster.

Disable middleware.kubernetesmiddleware.kubernetes , which is enabled by default by setting

middleware.kubernetes.enabledmiddleware.kubernetes.enabled to false.

helm install --namespace my-namespace --name etcd-operator stable/etcd-operatorhelm install --namespace my-namespace --name etcd-operator stable/etcd-operator

helm upgrade --namespace my-namespace --set cluster.enabled=true etcd-operator stable/etcd-operatorhelm upgrade --namespace my-namespace --set cluster.enabled=true etcd-operator stable/etcd-operator

isClusterServiceisClusterService:: falsefalse

serviceTypeserviceType:: ""LoadBalancer"LoadBalancer"

middlewaremiddleware::

 kuberneteskubernetes::

 enabledenabled:: falsefalse

 etcdetcd::

 enabledenabled:: truetrue

 zoneszones::

 -- ""example.com."example.com."

 endpointendpoint:: ""http://etcd-cluster.my-namespace:2379"http://etcd-cluster.my-namespace:2379"

http://etcd-cluster.my-namespace:2379
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/federation/Values.yaml

Enable middleware.etcdmiddleware.etcd by setting middleware.etcd.enabledmiddleware.etcd.enabled to true.

Configure the DNS zone (federation domain) for which CoreDNS is authoritative by setting

middleware.etcd.zonesmiddleware.etcd.zones as shown above.

Configure the etcd endpoint which was deployed earlier by setting

middleware.etcd.endpointmiddleware.etcd.endpoint

Now deploy CoreDNS by running

Verify that both etcd and CoreDNS pods are running as expected.

Deploying Federation with CoreDNS as DNS provider

The Federation control plane can be deployed using kubefed initkubefed init . CoreDNS can be chosen

as the DNS provider by specifying two additional parameters.

coredns-provider.conf has below format:

etcd-endpointsetcd-endpoints is the endpoint to access etcd.

zoneszones is the federation domain for which CoreDNS is authoritative and is same as –dns-

zone-name flag of kubefed initkubefed init .

coredns-endpointscoredns-endpoints is the endpoint to access CoreDNS server. This is an optional

parameter introduced from v1.7 onwards.

helm install --namespace my-namespace --name coredns -f Values.yaml stable/corednshelm install --namespace my-namespace --name coredns -f Values.yaml stable/coredns

--dns-provider=coredns--dns-provider=coredns

--dns-provider-config=coredns-provider.conf--dns-provider-config=coredns-provider.conf

[Global][Global]

etcd-endpoints = http://etcd-cluster.my-namespace:2379etcd-endpoints = http://etcd-cluster.my-namespace:2379

zones = example.com.zones = example.com.

coredns-endpoints = <coredns-server-ip>:<port>coredns-endpoints = <coredns-server-ip>:<port>

Note: middleware.etcd.zones in CoreDNS configuration and –dns-zone-name flag to kubefed init

should match.

Setup CoreDNS server in nameserver resolv.conf
chain

Note: The following section applies only to versions prior to v1.7 and will be automatically taken

care of if the coredns-endpointscoredns-endpoints parameter is configured in coredns-provider.confcoredns-provider.conf as

described in section above.

Once the federation control plane is deployed and federated clusters are joined to the

federation, you need to add the CoreDNS server to the pod’s nameserver resolv.conf chain in

all the federated clusters as this self hosted CoreDNS server is not discoverable publicly. This

can be achieved by adding the below line to dnsmasqdnsmasq container’s arg in kube-dnskube-dns

deployment.

Replace example.comexample.com above with federation domain.

Now the federated cluster is ready for cross-cluster service discovery!

--server=/example.com./<CoreDNS endpoint>--server=/example.com./<CoreDNS endpoint>

Set up placement policies in Federation

This page shows how to enforce policy-based placement decisions over Federated resources

using an external policy engine.

Before you begin

You need to have a running Kubernetes cluster (which is referenced as host cluster). Please

see one of the getting started guides for installation instructions for your platform.

Deploying Federation and configuring an external
policy engine

The Federation control plane can be deployed using kubefed initkubefed init .

After deploying the Federation control plane, you must configure an Admission Controller in the

Federation API server that enforces placement decisions received from the external policy

engine.

Shown below is an example ConfigMap for the Admission Controller:

scheduling-policy-admission.yamlscheduling-policy-admission.yaml

Before you begin

Deploying Federation and configuring an external policy engine

Deploying an external policy engine

Configuring placement policies via ConfigMaps

Testing placement policies

kubectl create -f scheduling-policy-admission.yamlkubectl create -f scheduling-policy-admission.yaml

file:///docs/setup/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/federation/scheduling-policy-admission.yaml

scheduling-policy-admission.yamlscheduling-policy-admission.yaml

The ConfigMap contains three files:

config.ymlconfig.yml specifies the location of the SchedulingPolicySchedulingPolicy Admission Controller

config file.

scheduling-policy-config.ymlscheduling-policy-config.yml specifies the location of the kubeconfig file required to

contact the external policy engine. This file can also include a retryBackoffretryBackoff value that

controls the initial retry backoff delay in milliseconds.

opa-kubeconfigopa-kubeconfig is a standard kubeconfig containing the URL and credentials needed to

contact the external policy engine.

Edit the Federation API server deployment to enable the SchedulingPolicySchedulingPolicy Admission

Controller.

apiVersionapiVersion:: v1v1

kindkind:: ConfigMapConfigMap

metadatametadata::

 namename:: admissionadmission

 namespacenamespace:: federation-systemfederation-system

datadata::

 config.ymlconfig.yml:: ||

 apiVersion: apiserver.k8s.io/v1alpha1apiVersion: apiserver.k8s.io/v1alpha1

 kind: AdmissionConfigurationkind: AdmissionConfiguration

 plugins:plugins:

 - name: SchedulingPolicy- name: SchedulingPolicy

 path: /etc/kubernetes/admission/scheduling-policy-config.ymlpath: /etc/kubernetes/admission/scheduling-policy-config.yml

 scheduling-policy-config.ymlscheduling-policy-config.yml:: ||

 kubeconfig: /etc/kubernetes/admission/opa-kubeconfigkubeconfig: /etc/kubernetes/admission/opa-kubeconfig

 opa-kubeconfigopa-kubeconfig:: ||

 clusters:clusters:

 - name: opa-api- name: opa-api

 cluster:cluster:

 server: http://opa.federation-system.svc.cluster.local:8181/v0/data/kubernetes/placementserver: http://opa.federation-system.svc.cluster.local:8181/v0/data/kubernetes/placement

 users:users:

 - name: scheduling-policy- name: scheduling-policy

 user:user:

 token: deadbeefsecrettoken: deadbeefsecret

 contexts:contexts:

 - name: default- name: default

 context:context:

 cluster: opa-apicluster: opa-api

 user: scheduling-policyuser: scheduling-policy

 current-context: defaultcurrent-context: default

Update the Federation API server command line arguments to enable the Admission Controller

and mount the ConfigMap into the container. If there’s an existing

--enable-admission-plugins--enable-admission-plugins flag, append ,SchedulingPolicy,SchedulingPolicy instead of adding another

line.

Add the following volume to the Federation API server pod:

Add the following volume mount the Federation API server apiserverapiserver container:

Deploying an external policy engine

The Open Policy Agent (OPA) is an open source, general-purpose policy engine that you can

use to enforce policy-based placement decisions in the Federation control plane.

Create a Service in the host cluster to contact the external policy engine:

Shown below is an example Service for OPA.

policy-engine-service.yamlpolicy-engine-service.yaml

kubectl -n federation-system edit deployment federation-apiserverkubectl -n federation-system edit deployment federation-apiserver

--enable-admission-plugins=SchedulingPolicy--enable-admission-plugins=SchedulingPolicy

--admission-control-config-file=/etc/kubernetes/admission/config.yml--admission-control-config-file=/etc/kubernetes/admission/config.yml

- name: admission-config- name: admission-config

 configMap: configMap:

 name: admission name: admission

volumeMounts:volumeMounts:

- name: admission-config- name: admission-config

 mountPath: /etc/kubernetes/admission mountPath: /etc/kubernetes/admission

kubectl create -f policy-engine-service.yamlkubectl create -f policy-engine-service.yaml

http://openpolicyagent.org
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/federation/policy-engine-service.yaml

policy-engine-service.yamlpolicy-engine-service.yaml

Create a Deployment in the host cluster with the Federation control plane:

Shown below is an example Deployment for OPA.

policy-engine-deployment.yamlpolicy-engine-deployment.yaml

kindkind:: ServiceService

apiVersionapiVersion:: v1v1

metadatametadata::

 namename:: opaopa

 namespacenamespace:: federation-systemfederation-system

specspec::

 selectorselector::

 appapp:: opaopa

 portsports::

 -- namename:: httphttp

 protocolprotocol:: TCPTCP

 portport:: 81818181

 targetPorttargetPort:: 81818181

kubectl create -f policy-engine-deployment.yamlkubectl create -f policy-engine-deployment.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/federation/policy-engine-deployment.yaml

policy-engine-deployment.yamlpolicy-engine-deployment.yaml

Configuring placement policies via ConfigMaps

The external policy engine will discover placement policies created in the

kube-federation-scheduling-policykube-federation-scheduling-policy namespace in the Federation API server.

Create the namespace if it does not already exist:

Configure a sample policy to test the external policy engine:

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 labelslabels::

 appapp:: opaopa

 namename:: opaopa

 namespacenamespace:: federation-systemfederation-system

specspec::

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: opaopa

 namename:: opaopa

 specspec::

 containerscontainers::

 -- namename:: opaopa

 imageimage:: openpolicyagent/opa:0.4.10openpolicyagent/opa:0.4.10

 argsargs::

 -- ""run"run"

 -- ""--server"--server"

 -- namename:: kube-mgmtkube-mgmt

 imageimage:: openpolicyagent/kube-mgmt:0.2openpolicyagent/kube-mgmt:0.2

 argsargs::

 -- ""-kubeconfig=/srv/kubernetes/kubeconfig"-kubeconfig=/srv/kubernetes/kubeconfig"

 -- ""-cluster=federation/v1beta1/clusters"-cluster=federation/v1beta1/clusters"

 volumeMountsvolumeMounts::

 -- namename:: federation-kubeconfigfederation-kubeconfig

 mountPathmountPath:: /srv/kubernetes/srv/kubernetes

 readOnlyreadOnly:: truetrue

 volumesvolumes::

 -- namename:: federation-kubeconfigfederation-kubeconfig

 secretsecret::

 secretNamesecretName:: federation-controller-manager-kubeconfigfederation-controller-manager-kubeconfig

kubectl --context=federation create namespace kube-federation-scheduling-policykubectl --context=federation create namespace kube-federation-scheduling-policy

policy.regopolicy.rego

OPA supports a high-level declarative language named Rego for authoring and# OPA supports a high-level declarative language named Rego for authoring and
enforcing policies. For more infomration on Rego, visit# enforcing policies. For more infomration on Rego, visit
http://openpolicyagent.org.# http://openpolicyagent.org.

Rego policies are namespaced by the "package" directive.# Rego policies are namespaced by the "package" directive.
package kubernetes.placementpackage kubernetes.placement

Imports provide aliases for data inside the policy engine. In this case, the# Imports provide aliases for data inside the policy engine. In this case, the
policy simply refers to "clusters" below.# policy simply refers to "clusters" below.
import data.kubernetes.clustersimport data.kubernetes.clusters

The "annotations" rule generates a JSON object containing the key# The "annotations" rule generates a JSON object containing the key
"federation.kubernetes.io/replica-set-preferences" mapped to <preferences>.# "federation.kubernetes.io/replica-set-preferences" mapped to <preferences>.
The preferences values is generated dynamically by OPA when it evaluates the# The preferences values is generated dynamically by OPA when it evaluates the
rule.# rule.
##
The SchedulingPolicy Admission Controller running inside the Federation API# The SchedulingPolicy Admission Controller running inside the Federation API
server will merge these annotatiosn into incoming Federated resources. By# server will merge these annotatiosn into incoming Federated resources. By
setting replica-set-preferences, we can control the placement of Federated# setting replica-set-preferences, we can control the placement of Federated
ReplicaSets.# ReplicaSets.
##
Rules are defined to generate JSON values (booleans, strings, objects, etc.)# Rules are defined to generate JSON values (booleans, strings, objects, etc.)
When OPA evaluates a rule, it generates a value IF all of the expressions in# When OPA evaluates a rule, it generates a value IF all of the expressions in
the body evaluate successfully. All rules can be understood intuitively as# the body evaluate successfully. All rules can be understood intuitively as
<head> if <body> where <body> is true if <expr-1> AND <expr-2> AND ...# <head> if <body> where <body> is true if <expr-1> AND <expr-2> AND ...
<expr-N> is true (for some set of data.)# <expr-N> is true (for some set of data.)
annotations["federation.kubernetes.io/replica-set-preferences"] = preferences {annotations["federation.kubernetes.io/replica-set-preferences"] = preferences {

 input.kind = "ReplicaSet"input.kind = "ReplicaSet"

 value = {"clusters"value = {"clusters":: cluster_map, "rebalance"cluster_map, "rebalance":: truetrue}}

 json.marshal(value, preferences)json.marshal(value, preferences)

}}

This "annotations" rule generates a value for the "federation.alpha.kubernetes.io/cluster-selector"# This "annotations" rule generates a value for the "federation.alpha.kubernetes.io/cluster-selector"
annotation.# annotation.
##
In English, the policy asserts that resources in the "production" namespace# In English, the policy asserts that resources in the "production" namespace
that are not annotated with "criticality=low" MUST be placed on clusters# that are not annotated with "criticality=low" MUST be placed on clusters
labelled with "on-premises=true".# labelled with "on-premises=true".
annotations["federation.alpha.kubernetes.io/cluster-selector"] = selector {annotations["federation.alpha.kubernetes.io/cluster-selector"] = selector {

 input.metadata.namespace = "production"input.metadata.namespace = "production"

 not input.metadata.annotations.criticality = "low"not input.metadata.annotations.criticality = "low"

 json.marshal([{json.marshal([{

 "operator""operator":: ""="=",,

 ""key"key":: ""on-premises"on-premises",,

 ""values"values":: ""[true]"[true]",,

 }], }], selector)selector)

}}

Generates a set of cluster names that satisfy the incoming Federated# Generates a set of cluster names that satisfy the incoming Federated
ReplicaSet's requirements. In this case, just PCI compliance.# ReplicaSet's requirements. In this case, just PCI compliance.
replica_set_clusters[cluster_name] {replica_set_clusters[cluster_name] {

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/federation/policy.rego

policy.regopolicy.rego

Shown below is the command to create the sample policy:

This sample policy illustrates a few key ideas:

Placement policies can refer to any field in Federated resources.

Placement policies can leverage external context (for example, Cluster metadata) to make

decisions.

Administrative policy can be managed centrally.

Policies can define simple interfaces (such as the requires-pcirequires-pci annotation) to avoid

duplicating logic in manifests.

Testing placement policies

replica_set_clusters[cluster_name] {replica_set_clusters[cluster_name] {

 clusters[cluster_name]clusters[cluster_name]

 not insufficient_pci[cluster_name]not insufficient_pci[cluster_name]

}}

Generates a set of clusters that must not be used for Federated ReplicaSets# Generates a set of clusters that must not be used for Federated ReplicaSets
that request PCI compliance.# that request PCI compliance.
insufficient_pci[cluster_name] {insufficient_pci[cluster_name] {

 clusters[cluster_name]clusters[cluster_name]

 input.metadata.annotations["requires-pci"] = "true"input.metadata.annotations["requires-pci"] = "true"

 not pci_clusters[cluster_name]not pci_clusters[cluster_name]

}}

Generates a set of clusters that are PCI certified. In this case, we assume# Generates a set of clusters that are PCI certified. In this case, we assume
clusters are annotated to indicate if they have passed PCI compliance audits.# clusters are annotated to indicate if they have passed PCI compliance audits.
pci_clusters[cluster_name] {pci_clusters[cluster_name] {

 clusters[cluster_name].metadata.annotations["pci-certified"] = "true"clusters[cluster_name].metadata.annotations["pci-certified"] = "true"

}}

Helper rule to generate a mapping of desired clusters to weights. In this# Helper rule to generate a mapping of desired clusters to weights. In this
case, weights are static.# case, weights are static.
cluster_map[cluster_name] = {"weight"cluster_map[cluster_name] = {"weight":: 1} {1} {

 replica_set_clusters[cluster_name]replica_set_clusters[cluster_name]

}}

kubectl --context=federation -n kube-federation-scheduling-policy create configmap scheduling-policy --from-file=policy.regokubectl --context=federation -n kube-federation-scheduling-policy create configmap scheduling-policy --from-file=policy.rego

Annotate one of the clusters to indicate that it is PCI certified.

Deploy a Federated ReplicaSet to test the placement policy.

replicaset-example-policy.yamlreplicaset-example-policy.yaml

Shown below is the command to deploy a ReplicaSet that does match the policy.

Inspect the ReplicaSet to confirm the appropriate annotations have been applied:

kubectl --context=federation annotate clusters cluster-name-1 pci-certified=truekubectl --context=federation annotate clusters cluster-name-1 pci-certified=true

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: ReplicaSetReplicaSet

metadatametadata::

 labelslabels::

 appapp:: nginx-pcinginx-pci

 namename:: nginx-pcinginx-pci

 annotationsannotations::

 requires-pcirequires-pci:: ""true"true"

specspec::

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginx-pcinginx-pci

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginx-pcinginx-pci

 specspec::

 containerscontainers::

 -- imageimage:: nginxnginx

 namename:: nginx-pcinginx-pci

kubectl --context=federation create -f replicaset-example-policy.yamlkubectl --context=federation create -f replicaset-example-policy.yaml

kubectl --context=federation get rs nginx-pci -o jsonpath='{.metadata.annotations}'kubectl --context=federation get rs nginx-pci -o jsonpath='{.metadata.annotations}'

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/federation/replicaset-example-policy.yaml

Federated Cluster

This guide explains how to use Clusters API resource in a Federation control plane.

Different than other Kubernetes resources, such as Deployments, Services and ConfigMaps,

clusters only exist in the federation context, i.e. those requests must be submitted to the

federation api-server.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You should also have a basic working knowledge of Kubernetes in general.

Listing Clusters

To list the clusters available in your federation, you can use kubectl by running:

The --context=federation--context=federation flag tells kubectl to submit the request to the Federation

apiserver instead of sending it to a Kubernetes cluster. If you submit it to a k8s cluster, you will

Before you begin

Listing Clusters

Creating a Federated Cluster

Deleting a Federated Cluster

Labeling Clusters

ClusterSelector Annotation

Clusters API reference

kubectl kubectl --context--context==federation get clustersfederation get clusters

file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/pick-right-solution/
file:///docs/user-guide/kubectl/

receive an error saying

the server doesn't have a resource typethe server doesn't have a resource type

"clusters""clusters"

If you passed the correct Federation context but received a message error saying

No resourcesNo resources

found.found.

it means that you haven’t added any cluster to the Federation yet.

Creating a Federated Cluster

Creating a clustercluster resource in federation means joining it to the federation. To do so, you

can use kubefed joinkubefed join . Basically, you need to give the new cluster a name and say what is

the name of the context that corresponds to a cluster that hosts the federation. The following

example command adds the cluster gondorgondor to the federation running on host cluster

rivendellrivendell :

You can find more details on how to do that in the respective section in the kubefed guide.

Deleting a Federated Cluster

Converse to creating a cluster, deleting a cluster means unjoining this cluster from the

federation. This can be done with

kubefedkubefed

unjoinunjoin command. To remove the gondorgondor cluster,

just do:

You can find more details on unjoin in the kubefed guide.

Labeling Clusters

kubefed join gondor kubefed join gondor --host-cluster-context--host-cluster-context==rivendellrivendell

kubefed unjoin gondor kubefed unjoin gondor --host-cluster-context--host-cluster-context==rivendellrivendell

file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/#adding-a-cluster-to-a-federation
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/#removing-a-cluster-from-a-federation

You can label clusters the same way as any other Kubernetes object, which can help with

grouping clusters and can also be leveraged by the ClusterSelector.

ClusterSelector Annotation

Starting in Kubernetes 1.7, there is alpha support for directing objects across the federated

clusters with the annotation federation.alpha.kubernetes.io/cluster-selectorfederation.alpha.kubernetes.io/cluster-selector . The

ClusterSelector is conceptually similar to nodeSelectornodeSelector , but instead of selecting against

labels on nodes, it selects against labels on federated clusters.

The annotation value must be JSON formatted and must be parsable into the ClusterSelector

API type. For example:

[{"key": "load", "operator": "Lt", "values":[{"key": "load", "operator": "Lt", "values":

["10"]}]["10"]}] .

Content that doesn’t parse correctly will throw an error and prevent distribution of the object to

any federated clusters. Objects of type ConfigMap, Secret, Daemonset, Service and Ingress are

included in the alpha implementation.

Here is an example ClusterSelector annotation, which will only select clusters WITH the label

pci=truepci=true and WITHOUT the label environment=testenvironment=test :

The key is matched against label names on the federated clusters.

The values are matched against the label values on the federated clusters.

The possible operators are: InIn , NotInNotIn , ExistsExists , DoesNotExistDoesNotExist , GtGt , LtLt .

The values field is expected to be empty when ExistsExists or DoesNotExistDoesNotExist is specified and

may include more than one string when InIn or NotInNotIn are used.

kubectl kubectl --context--context==rivendell label cluster gondor rivendell label cluster gondor key1key1==value1 value1 key2key2==value2value2

 metadatametadata::

 annotationsannotations::

 federation.alpha.kubernetes.io/cluster-selectorfederation.alpha.kubernetes.io/cluster-selector:: ''[{"key":[{"key": "pci","pci", "operator":"operator":

 "In","In", "values":"values": ["true"]},["true"]}, {"key":{"key": "environment","environment", "operator":"operator": "NotIn","NotIn",

 ["test"]}]'["test"]}]'

file:///docs/reference/federation/v1beta1/definitions/#_v1beta1_clusterselector

Currently, only integers are supported with GtGt or LtLt .

Clusters API reference

The full clusters API reference is currently in federation/v1beta1federation/v1beta1 and more details can be

found in the Federation API reference page.

file:///docs/reference/generated/federation/

Federated ConfigMap

This guide explains how to use ConfigMaps in a Federation control plane.

Federated ConfigMaps are very similar to the traditional Kubernetes ConfigMaps and provide

the same functionality. Creating them in the federation control plane ensures that they are

synchronized across all the clusters in federation.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You should also have a basic working knowledge of Kubernetes in general and

ConfigMaps in particular.

Creating a Federated ConfigMap

The API for Federated ConfigMap is 100% compatible with the API for traditional Kubernetes

ConfigMap. You can create a ConfigMap by sending a request to the federation apiserver.

You can do that using kubectl by running:

The --context=federation-cluster--context=federation-cluster flag tells kubectl to submit the request to the

Federation apiserver instead of sending it to a Kubernetes cluster.

Before you begin

Creating a Federated ConfigMap

Updating a Federated ConfigMap

Deleting a Federated ConfigMap

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f myconfigmap.yaml myconfigmap.yaml

file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/pick-right-solution/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/user-guide/kubectl/

Once a Federated ConfigMap is created, the federation control plane will create a matching

ConfigMap in all underlying Kubernetes clusters. You can verify this by checking each of the

underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone.

These ConfigMaps in underlying clusters will match the Federated ConfigMap.

Updating a Federated ConfigMap

You can update a Federated ConfigMap as you would update a Kubernetes ConfigMap;

however, for a Federated ConfigMap, you must send the request to the federation apiserver

instead of sending it to a specific Kubernetes cluster. The federation control plane ensures that

whenever the Federated ConfigMap is updated, it updates the corresponding ConfigMaps in all

underlying clusters to match it.

Deleting a Federated ConfigMap

You can delete a Federated ConfigMap as you would delete a Kubernetes ConfigMap; however,

for a Federated ConfigMap, you must send the request to the federation apiserver instead of

sending it to a specific Kubernetes cluster.

For example, you can do that using kubectl by running:

Note that at this point, deleting a Federated ConfigMap will not delete the corresponding

ConfigMaps from underlying clusters. You must delete the underlying ConfigMaps manually.

We intend to fix this in the future.

kubectl kubectl --context--context==gce-asia-east1a get configmap myconfigmapgce-asia-east1a get configmap myconfigmap

kubectl kubectl --context--context==federation-cluster delete configmapfederation-cluster delete configmap

Federated DaemonSet

This guide explains how to use DaemonSets in a federation control plane.

DaemonSets in the federation control plane (“Federated Daemonsets” in this guide) are very

similar to the traditional Kubernetes DaemonSets and provide the same functionality. Creating

them in the federation control plane ensures that they are synchronized across all the clusters

in federation.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

DaemonSets in particular.

Creating a Federated Daemonset

The API for Federated Daemonset is 100% compatible with the API for traditional Kubernetes

DaemonSet. You can create a DaemonSet by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin

Creating a Federated Daemonset

Updating a Federated Daemonset

Deleting a Federated Daemonset

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f mydaemonset.yaml mydaemonset.yaml

file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/pick-right-solution/
file:///docs/concepts/workloads/controllers/daemonset/
file:///docs/user-guide/kubectl/

The --context=federation-cluster--context=federation-cluster flag tells kubectl to submit the request to the

Federation apiserver instead of sending it to a Kubernetes cluster.

Once a Federated Daemonset is created, the federation control plane will create a matching

DaemonSet in all underlying Kubernetes clusters. You can verify this by checking each of the

underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone.

Updating a Federated Daemonset

You can update a Federated Daemonset as you would update a Kubernetes DaemonSet;

however, for a Federated Daemonset, you must send the request to the federation apiserver

instead of sending it to a specific Kubernetes cluster. The federation control plane ensures that

whenever the Federated Daemonset is updated, it updates the corresponding DaemonSets in

all underlying clusters to match it.

Deleting a Federated Daemonset

You can delete a Federated Daemonset as you would delete a Kubernetes DaemonSet;

however, for a Federated Daemonset, you must send the request to the federation apiserver

instead of sending it to a specific Kubernetes cluster.

For example, you can do that using kubectl by running:

kubectl kubectl --context--context==gce-asia-east1a get daemonset mydaemonsetgce-asia-east1a get daemonset mydaemonset

kubectl kubectl --context--context==federation-cluster delete daemonset mydaemonsetfederation-cluster delete daemonset mydaemonset

Federated Deployment

This guide explains how to use Deployments in the Federation control plane.

Deployments in the federation control plane (referred to as “Federated Deployments” in this

guide) are very similar to the traditional Kubernetes Deployment and provide the same

functionality. Creating them in the federation control plane ensures that the desired number of

replicas exist across the registered clusters.

As of Kubernetes version 1.5, Federated Deployment is an Alpha feature. The core

functionality of Deployment is present, but some features (such as full rollout compatibility)

are still in development.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You should also have a basic working knowledge of Kubernetes in general and

Deployments in particular.

Creating a Federated Deployment

The API for Federated Deployment is compatible with the API for traditional Kubernetes

Deployment. You can create a Deployment by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin

Creating a Federated Deployment

Spreading Replicas in Underlying Clusters

Updating a Federated Deployment

Deleting a Federated Deployment

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/pick-right-solution/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/user-guide/kubectl/

The ‘–context=federation-cluster’ flag tells kubectl to submit the request to the Federation

apiserver instead of sending it to a Kubernetes cluster.

Once a Federated Deployment is created, the federation control plane will create a Deployment

in all underlying Kubernetes clusters. You can verify this by checking each of the underlying

clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone.

These Deployments in underlying clusters will match the federation Deployment except in the

number of replicas and revision-related annotations. Federation control plane ensures that the

sum of replicas in each cluster combined matches the desired number of replicas in the

Federated Deployment.

Spreading Replicas in Underlying Clusters

By default, replicas are spread equally in all the underlying clusters. For example: if you have 3

registered clusters and you create a Federated Deployment with

spec.replicas =spec.replicas =

99 , then

each Deployment in the 3 clusters will have spec.replicas=3spec.replicas=3 . To modify the number of

replicas in each cluster, you can specify FederatedReplicaSetPreference as an annotation with

key federation.kubernetes.io/deployment-preferencesfederation.kubernetes.io/deployment-preferences on Federated Deployment.

Updating a Federated Deployment

You can update a Federated Deployment as you would update a Kubernetes Deployment;

however, for a Federated Deployment, you must send the request to the federation apiserver

instead of sending it to a specific Kubernetes cluster. The federation control plane ensures that

whenever the Federated Deployment is updated, it updates the corresponding Deployments in

all underlying clusters to match it. So if the rolling update strategy was chosen then the

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f mydeployment.yaml mydeployment.yaml

kubectl kubectl --context--context==gce-asia-east1a get deployment mydepgce-asia-east1a get deployment mydep

https://github.com/kubernetes/federation/blob/master/apis/federation/types.go

underlying cluster will do the rolling update independently and maxSurgemaxSurge and

maxUnavailablemaxUnavailable will apply only to individual clusters. This behavior may change in the future.

If your update includes a change in number of replicas, the federation control plane will change

the number of replicas in underlying clusters to ensure that their sum remains equal to the

number of desired replicas in Federated Deployment.

Deleting a Federated Deployment

You can delete a Federated Deployment as you would delete a Kubernetes Deployment;

however, for a Federated Deployment, you must send the request to the federation apiserver

instead of sending it to a specific Kubernetes cluster.

For example, you can do that using kubectl by running:

kubectl kubectl --context--context==federation-cluster delete deployment mydepfederation-cluster delete deployment mydep

Federated Events

This guide explains how to use events in federation control plane to help in debugging.

Prerequisites

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, for example this one by Kelsey

Hightower, are also available to help you.

You are also expected to have a basic working knowledge of Kubernetes in general.

Overview

Events in federation control plane (referred to as “federation events” in this guide) are very

similar to the traditional Kubernetes Events providing the same functionality. Federation

Events are stored only in federation control plane and are not passed on to the underlying

Kubernetes clusters.

Federation controllers create events as they process API resources to surface to the user, the

state that they are in. You can get all events from federation apiserver by running:

The standard kubectl get, update, delete commands will all work.

Prerequisites

Overview

kubectl kubectl --context--context==federation-cluster get eventsfederation-cluster get events

file:///docs/concepts/cluster-administration/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/

Federated Horizontal Pod Autoscalers
(HPA)

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

This guide explains how to use federated horizontal pod autoscalers (HPAs) in the federation

control plane.

HPAs in the federation control plane are similar to the traditional Kubernetes HPAs, and

provide the same functionality. Creating an HPA targeting a federated object in the federation

control plane ensures that the desired number of replicas of the target object are scaled

across the registered clusters, instead of a single cluster. Also, the control plane keeps

monitoring the status of each individual HPA in the federated clusters and ensures the

workload replicas move where they are needed most by manipulating the min and max limits

of the HPA objects in the federated clusters.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

HPAs in particular.

The federated HPA is an alpha feature. The API is not enabled by default on the federated API

Before you begin

Creating a federated HPA

Spreading HPA min and max replicas in underlying clusters

Updating a federated ReplicaSet

Deleting a federated HPA

Alternative ways to use federated HPA

Conclusion

file:///docs/tasks/run-application/horizontal-pod-autoscale/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/
file:///docs/tasks/run-application/horizontal-pod-autoscale/

server. To use this feature, the user or the admin deploying the federation control plane needs

to run the federated API server with option --runtime-config=api/all=true--runtime-config=api/all=true to enable all

APIs, including alpha APIs. Additionally, the federated HPA only works when used with CPU

utilization metrics.

Creating a federated HPA

The API for federated HPAs is 100% compatible with the API for traditional Kubernetes HPA.

You can create an HPA by sending a request to the federation API server.

You can do that with kubectl by running:

The --context=federation-cluster--context=federation-cluster flag tells kubectlkubectl to submit the request to the

federation API server instead of sending it to a Kubernetes cluster.

Once a federated HPA is created, the federation control plane partitions and creates the HPA in

all underlying Kubernetes clusters. As of Kubernetes V1.7, cluster selectors can also be used to

restrict any federated object, including the HPAs in a subset of clusters.

You can verify the creation by checking each of the underlying clusters. For example, with a

context named gce-asia-east1agce-asia-east1a configured in your client for your cluster in that zone:

The HPA in the underlying clusters will match the federation HPA except in the number of min

catcat <<<<EOFEOF | kubectl --context=federation-cluster create -f - | kubectl --context=federation-cluster create -f -

apiVersion: autoscaling/v1apiVersion: autoscaling/v1

kind: HorizontalPodAutoscalerkind: HorizontalPodAutoscaler

metadata:metadata:

 name: php-apache name: php-apache

 namespace: default namespace: default

spec:spec:

 scaleTargetRef: scaleTargetRef:

 apiVersion: apps/v1beta1 apiVersion: apps/v1beta1

 kind: Deployment kind: Deployment

 name: php-apache name: php-apache

 minReplicas: 1 minReplicas: 1

 maxReplicas: 10 maxReplicas: 10

 targetCPUUtilizationPercentage: 50 targetCPUUtilizationPercentage: 50

EOFEOF

kubectl kubectl --context--context==gce-asia-east1a get HPA php-apachegce-asia-east1a get HPA php-apache

file:///docs/user-guide/kubectl/
file:///docs/tasks/administer-federation/cluster/#clusterselector-annotation

and max replicas. The federation control plane ensures that the sum of max replicas in each

cluster matches the specified max replicas on the federated HPA object, and the sum of

minimum replicas will be greater than or equal to the minimum specified on the federated HPA

object.

Note: A particular cluster cannot have a minimum replica sum of 0.

Spreading HPA min and max replicas in underlying clusters

By default, first max replicas are spread equally in all the underlying clusters, then min replicas

are distributed to those clusters that received their maximum value. This means that each

cluster will get an HPA if the specified max replicas are greater than the total clusters

participating in this federation, and some clusters will be skipped if specified max replicas are

less than the total clusters participating in the federation.

For example: if you have 3 registered clusters and you create a federated HPA with

spec.maxReplicas =spec.maxReplicas =

99 , and

spec.minReplicas =spec.minReplicas =

22 , then each HPA in the 3 clusters will

get spec.maxReplicas=3spec.maxReplicas=3 and

spec.minReplicas =spec.minReplicas =

11 .

Currently the default distribution is only available on the federated HPA, but in the future, users

preferences could also be specified to control and/or restrict this distribution.

Updating a federated ReplicaSet

You can update a federated HPA as you would update a Kubernetes HPA; however, for a

federated HPA, you must send the request to the federation API server instead of sending it to

a specific Kubernetes cluster. The Federation control plane ensures that whenever the

federated HPA is updated, it updates the corresponding HPA in all underlying clusters to match

it.

If your update includes a change in the number of replicas, the federation control plane will

change the number of replicas in underlying clusters to ensure that the sum of the max and

min replicas remains matched as specified in the previous section.

Deleting a federated HPA

You can delete a federated HPA as you would delete a Kubernetes HPA; however, for a

federated HPA, you must send the request to the federation API server instead of sending it to

a specific Kubernetes cluster. It should also be noted that for the federated resource to be

deleted from all underlying clusters, cascading deletion should be used.

For example, you can do that using kubectlkubectl by running:

Alternative ways to use federated HPA

To a federation user interacting with federated control plane (or simply federation), the

interaction is almost identical to interacting with a normal Kubernetes cluster (but with a

limited set of APIs that are federated). As both Deployments and HorizontalPodAutoscalers

are now federated, kubectlkubectl commands like

kubectlkubectl

runrun and kubectl autoscalekubectl autoscale work

on federation. Given this fact, the mechanism specified in horizontal pod autoscaler

walkthrough will also work when used with federation. Care however will need to be taken that

when generating load on a target deployment , it should be done against a specific federated

cluster (or multiple clusters) not the federation.

Conclusion

The use of federated HPA is to ensure workload replicas move to the cluster(s) where they are

needed most, or in other words where the load is beyond expected threshold. The federated

HPA feature achieves this by manipulating the min and max replicas on the HPAs it creates in

the federated clusters. It does not directly monitor the target object metrics from the federated

clusters. It actually relies on the in-cluster HPA controllers to monitor the metrics and update

relevant fields. The in-cluster HPA controller monitors the target pod metrics and updates the

fields like desired replicas (after metrics based calculations) and current replicas (observing

the current status of in cluster pods). The federated HPA controller, on the other hand,

monitors only the cluster-specific HPA object fields and updates the min replica and max

kubectl kubectl --context--context==federation-cluster delete HPA php-apachefederation-cluster delete HPA php-apache

file:///docs/concepts/cluster-administration/federation/#cascading-deletion
file:///docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
file:///docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#step-three-increase-load

replica fields of those in cluster HPA objects, which have replicas matching thresholds.

For example, if a cluster has both desired replicas and current replicas the same as the max

replicas, and averaged current CPU utilization still higher than the target CPU utilization (all of

which are fields on local HPA object), then the target app in this cluster needs more replicas,

and the scaling is currently restricted by max replicas set on this local HPA object. In such a

scenario, the federated HPA controller scans all clusters and tries to find clusters which do not

have such a condition (meaning the desired replicas are less than the max, and current

averaged CPU utilization is lower then the threshold). If it finds such a cluster, it reduces the

max replica on the HPA in this cluster and increases the max replicas on the HPA in the cluster

which needed the replicas.

There are many other similar conditions which the federated HPA controller checks and moves

the max replicas and min replicas around the local HPAs in federated clusters to eventually

ensure that the replicas move (or remain) in the cluster(s) which need them.

For more information, see “federated HPA design proposal”.

https://github.com/kubernetes/community/pull/593

Federated Ingress

This page explains how to use Kubernetes Federated Ingress to deploy a common HTTP(S)

virtual IP load balancer across a federated service running in multiple Kubernetes clusters. As

of v1.4, clusters hosted in Google Cloud (both Google Kubernetes Engine and GCE, or both) are

supported. This makes it easy to deploy a service that reliably serves HTTP(S) traffic

originating from web clients around the globe on a single, static IP address. Low network

latency, high fault tolerance and easy administration are ensured through intelligent request

routing and automatic replica relocation (using Federated ReplicaSets. Clients are

automatically routed, via the shortest network path, to the cluster closest to them with

available capacity (despite the fact that all clients use exactly the same static IP address). The

load balancer automatically checks the health of the pods comprising the service, and avoids

sending requests to unresponsive or slow pods (or entire unresponsive clusters).

Federated Ingress is released as an alpha feature, and supports Google Cloud Platform

(Google Kubernetes Engine, GCE and hybrid scenarios involving both) in Kubernetes v1.4. Work

is under way to support other cloud providers such as AWS, and other hybrid cloud scenarios

(e.g. services spanning private on-premises as well as public cloud Kubernetes clusters).

You create Federated Ingresses in much that same way as traditional Kubernetes Ingresses:

by making an API call which specifies the desired properties of your logical ingress point. In the

case of Federated Ingress, this API call is directed to the Federation API endpoint, rather than a

Kubernetes cluster API endpoint. The API for Federated Ingress is 100% compatible with the

API for traditional Kubernetes Services.

Once created, the Federated Ingress automatically:

Creates matching Kubernetes Ingress objects in every cluster underlying your Cluster

Federation

Ensures that all of these in-cluster ingress objects share the same logical global L7 (that is,

HTTP(S)) load balancer and IP address

Monitors the health and capacity of the service shards (that is, your pods) behind this

ingress in each cluster

Ensures that all client connections are routed to an appropriate healthy backend service

endpoint at all times, even in the event of pod, cluster, availability zone or regional outages

file:///docs/tasks/administer-federation/replicaset/
file:///docs/concepts/services-networking/ingress/

Note that in the case of Google Cloud, the logical L7 load balancer is not a single physical

device (which would present both a single point of failure, and a single global network routing

choke point), but rather a truly global, highly available load balancing managed service, globally

reachable via a single, static IP address.

Clients inside your federated Kubernetes clusters (Pods) will be automatically routed to the

cluster-local shard of the Federated Service backing the Ingress in their cluster if it exists and

is healthy, or the closest healthy shard in a different cluster if it does not. Note that this

involves a network trip to the HTTP(s) load balancer, which resides outside your local

Kubernetes cluster but inside the same GCP region.

Before you begin

This document assumes that you have a running Kubernetes Cluster Federation installation. If

not, then see the federation admin guide to learn how to bring up a cluster federation (or have

your cluster administrator do this for you). Other tutorials, for example this one by Kelsey

Hightower, are also available to help you.

You must also have a basic working knowledge of Kubernetes in general, and Ingress in

particular.

Creating a federated ingress

Before you begin

Creating a federated ingress

Adding backend services and pods

Hybrid cloud capabilities

Discovering a federated ingress

Handling failures of backend pods and whole clusters

Troubleshooting

I cannot connect to my cluster federation API.

I can create a Federated Ingress/service/replicaset successfully against the cluster

federation API, but no matching ingresses/services/replicasets are created in my

underlying clusters.

I can create a federated ingress successfully, but request load is not correctly

distributed across the underlying clusters.

What’s next

https://cloud.google.com/load-balancing/
file:///docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/
file:///docs/concepts/services-networking/ingress/

You can create a federated ingress in any of the usual ways, for example, using kubectl:

For example ingress YAML configurations, see the Ingress User Guide. The ‘–

context=federation-cluster’ flag tells kubectl to submit the request to the Federation API

endpoint, with the appropriate credentials. If you have not yet configured such a context, see

the federation admin guide or one of the administration tutorials to find out how to do so.

The Federated Ingress automatically creates and maintains matching Kubernetes ingresses in

all of the clusters underlying your federation. These cluster-specific ingresses (and their

associated ingress controllers) configure and manage the load balancing and health checking

infrastructure that ensures that traffic is load balanced to each cluster appropriately.

You can verify this by checking in each of the underlying clusters. For example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone. The name and namespace of the underlying ingress automatically

matches those of the Federated Ingress that you created above (and if you happen to have

had ingresses of the same name and namespace already existing in any of those clusters, they

will be automatically adopted by the Federation and updated to conform with the specification

of your Federated Ingress. Either way, the end result will be the same).

The status of your Federated Ingress automatically reflects the real-time status of the

underlying Kubernetes ingresses. For example:

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f myingress.yaml myingress.yaml

kubectl kubectl --context--context==gce-asia-east1a get ingress myingressgce-asia-east1a get ingress myingress

NAME HOSTS ADDRESS PORTS AGENAME HOSTS ADDRESS PORTS AGE

myingress myingress ** 130.211.5.194 80, 443 1m 130.211.5.194 80, 443 1m

file:///docs/concepts/services-networking/ingress/
file:///docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation

Note that:

The address of your Federated Ingress corresponds with the address of all of the

underlying Kubernetes ingresses (once these have been allocated - this may take up to a

few minutes).

You have not yet provisioned any backend Pods to receive the network traffic directed to

this ingress (that is, ‘Service Endpoints’ behind the service backing the Ingress), so the

Federated Ingress does not yet consider these to be healthy shards and will not direct

traffic to any of these clusters.

The federation control system automatically reconfigures the load balancer controllers in

all of the clusters in your federation to make them consistent, and allows them to share

global load balancers. But this reconfiguration can only complete successfully if there are

no pre-existing Ingresses in those clusters (this is a safety feature to prevent accidental

breakage of existing ingresses). So, to ensure that your federated ingresses function

correctly, either start with new, empty clusters, or make sure that you delete (and recreate

if necessary) all pre-existing Ingresses in the clusters comprising your federation.

kubectl kubectl --context--context==federation-cluster describe ingress myingressfederation-cluster describe ingress myingress

Name: myingressName: myingress

Namespace: defaultNamespace: default

Address: 130.211.5.194Address: 130.211.5.194

TLS:TLS:

 tls-secret terminates tls-secret terminates

Rules:Rules:

 Host Path Backends Host Path Backends

 -------- -------- ----------------

 ** ** echoheaders-https:80 echoheaders-https:80 ((10.152.1.3:8080,10.152.2.4:808010.152.1.3:8080,10.152.2.4:8080))

Annotations:Annotations:

 https-target-proxy: k8s-tps-default-myingress--ff1107f83ed600c0 https-target-proxy: k8s-tps-default-myingress--ff1107f83ed600c0

 target-proxy: k8s-tp-default-myingress--ff1107f83ed600c0 target-proxy: k8s-tp-default-myingress--ff1107f83ed600c0

 url-map: k8s-um-default-myingress--ff1107f83ed600c0 url-map: k8s-um-default-myingress--ff1107f83ed600c0

 backends: backends: {{"k8s-be-30301--ff1107f83ed600c0""k8s-be-30301--ff1107f83ed600c0"::"Unknown""Unknown"}}

 forwarding-rule: k8s-fw-default-myingress--ff1107f83ed600c0 forwarding-rule: k8s-fw-default-myingress--ff1107f83ed600c0

 https-forwarding-rule: k8s-fws-default-myingress--ff1107f83ed600c0 https-forwarding-rule: k8s-fws-default-myingress--ff1107f83ed600c0

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- -------------------------- ----------------

 3m 3m 1 3m 3m 1 {{loadbalancer-controller loadbalancer-controller }} Normal ADD default/myingress Normal ADD default/myingress

 2m 2m 1 2m 2m 1 {{loadbalancer-controller loadbalancer-controller }} Normal CREATE ip: 130.211.5.194 Normal CREATE ip: 130.211.5.194

Adding backend services and pods

To render the underlying ingress shards healthy, you need to add backend Pods behind the

service upon which the Ingress is based. There are several ways to achieve this, but the

easiest is to create a Federated Service and Federated ReplicaSet. To create appropriately

labelled pods and services in the 13 underlying clusters of your federation:

Note that in order for your federated ingress to work correctly on Google Cloud, the node ports

of all of the underlying cluster-local services need to be identical. If you’re using a federated

service this is easy to do. Simply pick a node port that is not already being used in any of your

clusters, and add that to the spec of your federated service. If you do not specify a node port

for your federated service, each cluster will choose its own node port for its cluster-local shard

of the service, and these will probably end up being different, which is not what you want.

You can verify this by checking in each of the underlying clusters. For example:

Hybrid cloud capabilities

Federations of Kubernetes Clusters can include clusters running in different cloud providers

(for example, Google Cloud, AWS), and on-premises (for example, on OpenStack). However, in

Kubernetes v1.4, Federated Ingress is only supported across Google Cloud clusters.

Discovering a federated ingress

Ingress objects (in both plain Kubernetes clusters, and in federations of clusters) expose one

or more IP addresses (via the Status.Loadbalancer.Ingress field) that remains static for the

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f services/nginx.yaml services/nginx.yaml

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f myreplicaset.yaml myreplicaset.yaml

kubectl kubectl --context--context==gce-asia-east1a get services nginxgce-asia-east1a get services nginx

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

nginx 10.63.250.98 104.199.136.89 80/TCP 9mnginx 10.63.250.98 104.199.136.89 80/TCP 9m

lifetime of the Ingress object (in future, automatically managed DNS names might also be

added). All clients (whether internal to your cluster, or on the external network or internet)

should connect to one of these IP or DNS addresses. All client requests are automatically

routed, via the shortest network path, to a healthy pod in the closest cluster to the origin of the

request. So for example, HTTP(S) requests from internet users in Europe will be routed directly

to the closest cluster in Europe that has available capacity. If there are no such clusters in

Europe, the request will be routed to the next closest cluster (typically in the U.S.).

Handling failures of backend pods and whole
clusters

Ingresses are backed by Services, which are typically (but not always) backed by one or more

ReplicaSets. For Federated Ingresses, it is common practise to use the federated variants of

Services and ReplicaSets for this purpose.

In particular, Federated ReplicaSets ensure that the desired number of pods are kept running in

each cluster, even in the event of node failures. In the event of entire cluster or availability zone

failures, Federated ReplicaSets automatically place additional replicas in the other available

clusters in the federation to accommodate the traffic which was previously being served by the

now unavailable cluster. While the Federated ReplicaSet ensures that sufficient replicas are

kept running, the Federated Ingress ensures that user traffic is automatically redirected away

from the failed cluster to other available clusters.

Troubleshooting

I cannot connect to my cluster federation API.

Check that your:

1. Client (typically kubectlkubectl) is correctly configured (including API endpoints and login

credentials).

2. Cluster Federation API server is running and network-reachable.

See the federation admin guide to learn how to bring up a cluster federation correctly (or have

your cluster administrator do this for you), and how to correctly configure your client.

file:///docs/admin/federation/

I can create a Federated Ingress/service/replicaset successfully against
the cluster federation API, but no matching
ingresses/services/replicasets are created in my underlying clusters.

Check that:

1. Your clusters are correctly registered in the Cluster Federation API. (

kubectl describekubectl describe

clustersclusters)

2. Your clusters are all ‘Active’. This means that the cluster Federation system was able to

connect and authenticate against the clusters’ endpoints. If not, consult the event logs of

the federation-controller-manager pod to ascertain what the failure might be. (

kubectl --namespace=federation logs $(kubectl get pods --kubectl --namespace=federation logs $(kubectl get pods --

namespace=federation -l module=federation-controller-manager -o namenamespace=federation -l module=federation-controller-manager -o name

)

3. That the login credentials provided to the Cluster Federation API for the clusters have the

correct authorization and quota to create ingresses/services/replicasets in the relevant

namespace in the clusters. Again you should see associated error messages providing

more detail in the above event log file if this is not the case.

4. Whether any other error is preventing the service creation operation from succeeding (look

for ingress-controlleringress-controller , service-controllerservice-controller or replicaset-controllerreplicaset-controller , errors in

the output of

kubectl logs federation-controller-manager --namespacekubectl logs federation-controller-manager --namespace

federationfederation).

I can create a federated ingress successfully, but request load is not
correctly distributed across the underlying clusters.

Check that:

1. The services underlying your federated ingress in each cluster have identical node ports.

See above for further explanation.

2. The load balancer controllers in each of your clusters are of the correct type (“GLBC”) and

have been correctly reconfigured by the federation control plane to share a global GCE

load balancer (this should happen automatically). If they are of the correct type, and have

been correctly reconfigured, the UID data item in the GLBC configmap in each cluster will

be identical across all clusters. See the GLBC docs for further details. If this is not the

case, check the logs of your federation controller manager to determine why this

automated reconfiguration might be failing.

3. No ingresses have been manually created in any of your clusters before the above

reconfiguration of the load balancer controller completed successfully. Ingresses created

before the reconfiguration of your GLBC will interfere with the behavior of your federated

ingresses created after the reconfiguration (see the GLBC docs for further information). To

remedy this, delete any ingresses created before the cluster joined the federation (and had

its GLBC reconfigured), and recreate them if necessary.

What’s next

If you need assistance, use one of the support channels to seek assistance.

For details about use cases that motivated this work, see Federation proposal.

https://github.com/kubernetes/ingress/blob/7dcb4ae17d5def23d3e9c878f3146ac6df61b09d/controllers/gce/README.md
https://github.com/kubernetes/ingress/blob/7dcb4ae17d5def23d3e9c878f3146ac6df61b09d/controllers/gce/README.md
file:///docs/tasks/debug-application-cluster/troubleshooting/
https://git.k8s.io/community/contributors/design-proposals/multicluster/federation.md

Federated Jobs

This guide explains how to use jobs in the federation control plane.

Jobs in the federation control plane (referred to as “federated jobs” in this guide) are similar to

the traditional Kubernetes jobs, and provide the same functionality. Creating jobs in the

federation control plane ensures that the desired number of parallelism and completions exist

across the registered clusters.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

jobs in particular.

Creating a federated job

The API for federated jobs is fully compatible with the API for traditional Kubernetes jobs. You

can create a job by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin

Creating a federated job

Spreading job tasks in underlying clusters

Updating a federated job

Deleting a federated job

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f myjob.yaml myjob.yaml

file:///docs/concepts/workloads/controllers/job/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/
file:///docs/user-guide/kubectl/

The ‘–context=federation-cluster’ flag tells kubectl to submit the request to the federation API

server instead of sending it to a Kubernetes cluster.

Once a federated job is created, the federation control plane creates a job in all underlying

Kubernetes clusters. You can verify this by checking each of the underlying clusters, for

example:

The previous example assumes that you have a context named gce-asia-east1agce-asia-east1a configured

in your client for your cluster in that zone.

The jobs in the underlying clusters match the federated job except in the number of parallelism

and completions. The federation control plane ensures that the sum of the parallelism and

completions in each cluster matches the desired number of parallelism and completions in the

federated job.

Spreading job tasks in underlying clusters

By default, parallelism and completions are spread equally in all underlying clusters. For

example: if you have 3 registered clusters and you create a federated job with

spec.parallelism =spec.parallelism =

99 and

spec.completions =spec.completions =

1818 , then each job in the 3 clusters has

spec.parallelism =spec.parallelism =

33 and

spec.completions =spec.completions =

66 . To modify the number of parallelism

and completions in each cluster, you can specify ReplicaAllocationPreferences as an

annotation with key federation.kubernetes.io/job-preferencesfederation.kubernetes.io/job-preferences on the federated job.

Updating a federated job

You can update a federated job as you would update a Kubernetes job; however, for a

federated job, you must send the request to the federation API server instead of sending it to a

specific Kubernetes cluster. The federation control plane ensures that whenever the federated

job is updated, it updates the corresponding job in all underlying clusters to match it.

If your update includes a change in number of parallelism and completions, the federation

control plane changes the number of parallelism and completions in underlying clusters to

kubectl kubectl --context--context==gce-asia-east1a get job myjobgce-asia-east1a get job myjob

https://github.com/kubernetes/federation/blob/master/apis/federation/types.go

ensure that their sum remains equal to the number of desired parallelism and completions in

federated job.

Deleting a federated job

You can delete a federated job as you would delete a Kubernetes job; however, for a federated

job, you must send the request to the federation API server instead of sending it to a specific

Kubernetes cluster.

For example, with kubectl:

Note: Deleting a federated job will not delete the corresponding jobs from underlying

clusters. You must delete the underlying jobs manually.

kubectl kubectl --context--context==federation-cluster delete job myjobfederation-cluster delete job myjob

Federated Namespaces

This guide explains how to use Namespaces in Federation control plane.

Namespaces in federation control plane (referred to as “federated Namespaces” in this guide)

are very similar to the traditional Kubernetes Namespaces providing the same functionality.

Creating them in the federation control plane ensures that they are synchronized across all the

clusters in federation.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

Namespaces in particular.

Creating a Federated Namespace

The API for Federated Namespaces is 100% compatible with the API for traditional Kubernetes

Namespaces. You can create a Namespace by sending a request to the federation apiserver.

You can do that using kubectl by running:

The ‘–context=federation-cluster’ flag tells kubectl to submit the request to the Federation

Before you begin

Creating a Federated Namespace

Updating a Federated Namespace

Deleting a Federated Namespace

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f myns.yaml myns.yaml

file:///docs/concepts/overview/working-with-objects/namespaces/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/pick-right-solution/
file:///docs/concepts/overview/working-with-objects/namespaces/

apiserver instead of sending it to a Kubernetes cluster.

Once a federated Namespace is created, the federation control plane will create a matching

Namespace in all underlying Kubernetes clusters. You can verify this by checking each of the

underlying clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone. The name and spec of the underlying Namespace will match

those of the Federated Namespace that you created above.

Updating a Federated Namespace

You can update a federated Namespace as you would update a Kubernetes Namespace, just

send the request to federation apiserver instead of sending it to a specific Kubernetes cluster.

Federation control plan will ensure that whenever the federated Namespace is updated, it

updates the corresponding Namespaces in all underlying clusters to match it.

Deleting a Federated Namespace

You can delete a federated Namespace as you would delete a Kubernetes Namespace, just

send the request to federation apiserver instead of sending it to a specific Kubernetes cluster.

For example, you can do that using kubectl by running:

As in Kubernetes, deleting a federated Namespace will delete all resources in that Namespace

from the federation control plane.

Note that at this point, deleting a federated Namespace will not delete the corresponding

Namespace and resources in those Namespaces from underlying clusters. Users are expected

to delete them manually. We intend to fix this in the future.

kubectl kubectl --context--context==gce-asia-east1a get namespaces mynsgce-asia-east1a get namespaces myns

kubectl kubectl --context--context==federation-cluster delete ns mynsfederation-cluster delete ns myns

Federated ReplicaSets

This guide explains how to use ReplicaSets in the Federation control plane.

ReplicaSets in the federation control plane (referred to as “federated ReplicaSets” in this guide)

are very similar to the traditional Kubernetes ReplicaSets, and provide the same functionality.

Creating them in the federation control plane ensures that the desired number of replicas exist

across the registered clusters.

Before you begin

This guide assumes that you have a running Kubernetes Cluster Federation installation. If

not, then head over to the federation admin guide to learn how to bring up a cluster

federation (or have your cluster administrator do this for you). Other tutorials, such as

Kelsey Hightower’s Federated Kubernetes Tutorial, might also help you create a Federated

Kubernetes cluster.

You are also expected to have a basic working knowledge of Kubernetes in general and

ReplicaSets in particular.

Creating a Federated ReplicaSet

The API for Federated ReplicaSet is 100% compatible with the API for traditional Kubernetes

ReplicaSet. You can create a ReplicaSet by sending a request to the federation apiserver.

You can do that using kubectl by running:

Before you begin

Creating a Federated ReplicaSet

Spreading Replicas in Underlying Clusters

Updating a Federated ReplicaSet

Deleting a Federated ReplicaSet

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f myrs.yaml myrs.yaml

file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/tutorials/federation/set-up-cluster-federation-kubefed/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/user-guide/kubectl/

The --context=federation-cluster--context=federation-cluster flag tells kubectl to submit the request to the

Federation apiserver instead of sending it to a Kubernetes cluster.

Once a federated ReplicaSet is created, the federation control plane will create a ReplicaSet in

all underlying Kubernetes clusters. You can verify this by checking each of the underlying

clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone.

The ReplicaSets in the underlying clusters will match the federation ReplicaSet except in the

number of replicas. The federation control plane will ensure that the sum of the replicas in

each cluster match the desired number of replicas in the federation ReplicaSet.

Spreading Replicas in Underlying Clusters

By default, replicas are spread equally in all the underlying clusters. For example: if you have 3

registered clusters and you create a federated ReplicaSet with

spec.replicas =spec.replicas =

99 , then each

ReplicaSet in the 3 clusters will have spec.replicas=3spec.replicas=3 . To modify the number of replicas in

each cluster, you can add an annotation with key

federation.kubernetes.io/replica-set-preferencesfederation.kubernetes.io/replica-set-preferences to the federated ReplicaSet. The

value of the annoation is a serialized JSON that contains fields shown in the following

example:

kubectl kubectl --context--context==gce-asia-east1a get rs myrsgce-asia-east1a get rs myrs

{{

 "rebalance": true, "rebalance": true,

 "clusters": { "clusters": {

 "foo": { "foo": {

 "minReplicas": 10, "minReplicas": 10,

 "maxReplicas": 50, "maxReplicas": 50,

 "weight": 100 "weight": 100

 }, },

 "bar": { "bar": {

 "minReplicas": 10, "minReplicas": 10,

 "maxReplicas": 100, "maxReplicas": 100,

 "weight": 200 "weight": 200

 } }

 } }

}}

The rebalancerebalance boolean field specifies whether replicas already scheduled and running may

be moved in order to match current state to the specified preferences. The clustersclusters object

field contains a map where users can specify the constraints for replica placement across the

clusters (foofoo and barbar in the example). For each cluster, you can specify the minimum

number of replicas that should be assigned to it (default is zero), the maximum number of

replicas the cluster can accept (default is unbounded) and a number expressing the relative

weight of preferences to place additional replicas to that cluster.

Updating a Federated ReplicaSet

You can update a federated ReplicaSet as you would update a Kubernetes ReplicaSet; however,

for a federated ReplicaSet, you must send the request to the federation apiserver instead of

sending it to a specific Kubernetes cluster. The Federation control plane ensures that

whenever the federated ReplicaSet is updated, it updates the corresponding ReplicaSet in all

underlying clusters to match it. If your update includes a change in number of replicas, the

federation control plane will change the number of replicas in underlying clusters to ensure that

their sum remains equal to the number of desired replicas in federated ReplicaSet.

Deleting a Federated ReplicaSet

You can delete a federated ReplicaSet as you would delete a Kubernetes ReplicaSet; however,

for a federated ReplicaSet, you must send the request to the federation apiserver instead of

sending it to a specific Kubernetes cluster.

For example, you can do that using kubectl by running:

Note that at this point, deleting a federated ReplicaSet will not delete the corresponding

ReplicaSets from underlying clusters. You must delete the underlying ReplicaSets manually.

We intend to fix this in the future.

kubectl kubectl --context--context==federation-cluster delete rs myrsfederation-cluster delete rs myrs

Federated Secrets

This guide explains how to use secrets in Federation control plane.

Prerequisites

This guide assumes that you have a running Kubernetes Cluster Federation installation. If not,

then head over to the federation admin guide to learn how to bring up a cluster federation (or

have your cluster administrator do this for you). Other tutorials, for example this one by Kelsey

Hightower, are also available to help you.

You are also expected to have a basic working knowledge of Kubernetes in general and

Secrets in particular.

Overview

Secrets in federation control plane (referred to as “federated secrets” in this guide) are very

similar to the traditional Kubernetes Secrets providing the same functionality. Creating them in

the federation control plane ensures that they are synchronized across all the clusters in

federation.

Creating a Federated Secret

The API for Federated Secret is 100% compatible with the API for traditional Kubernetes

Secret. You can create a secret by sending a request to the federation apiserver.

You can do that using kubectl by running:

Prerequisites

Overview

Creating a Federated Secret

Updating a Federated Secret

Deleting a Federated Secret

file:///docs/admin/federation/
https://github.com/kelseyhightower/kubernetes-cluster-federation
file:///docs/setup/
file:///docs/concepts/configuration/secret/
file:///docs/concepts/configuration/secret/
file:///docs/user-guide/kubectl/

The --context=federation-cluster--context=federation-cluster flag tells kubectl to submit the request to the

Federation apiserver instead of sending it to a Kubernetes cluster.

Once a federated secret is created, the federation control plane will create a matching secret in

all underlying Kubernetes clusters. You can verify this by checking each of the underlying

clusters, for example:

The above assumes that you have a context named ‘gce-asia-east1a’ configured in your client

for your cluster in that zone.

These secrets in underlying clusters will match the federated secret.

Updating a Federated Secret

You can update a federated secret as you would update a Kubernetes secret; however, for a

federated secret, you must send the request to the federation apiserver instead of sending it to

a specific Kubernetes cluster. The Federation control plan ensures that whenever the

federated secret is updated, it updates the corresponding secrets in all underlying clusters to

match it.

Deleting a Federated Secret

You can delete a federated secret as you would delete a Kubernetes secret; however, for a

federated secret, you must send the request to the federation apiserver instead of sending it to

a specific Kubernetes cluster.

For example, you can do that using kubectl by running:

Note that at this point, deleting a federated secret will not delete the corresponding secrets

kubectl kubectl --context--context==federation-cluster create federation-cluster create -f-f mysecret.yaml mysecret.yaml

kubectl kubectl --context--context==gce-asia-east1a get secret mysecretgce-asia-east1a get secret mysecret

kubectl kubectl --context--context==federation-cluster delete secret mysecretfederation-cluster delete secret mysecret

from underlying clusters. You must delete the underlying secrets manually. We intend to fix this

in the future.

Perform a Rolling Update on a
DaemonSet

This page shows how to perform a rolling update on a DaemonSet.

Before you begin

The DaemonSet rolling update feature is only supported in Kubernetes version 1.6 or later.

DaemonSet Update Strategy

DaemonSet has two update strategy types:

OnDelete: This is the default update strategy for backward-compatibility. With OnDeleteOnDelete

update strategy, after you update a DaemonSet template, new DaemonSet pods will only

be created when you manually delete old DaemonSet pods. This is the same behavior of

Before you begin

DaemonSet Update Strategy

Caveat: Updating DaemonSet created from Kubernetes version 1.5 or before

Performing a Rolling Update

Step 1: Checking DaemonSet RollingUpdateRollingUpdate update strategy

Step 2: Creating a DaemonSet with RollingUpdateRollingUpdate update strategy

Step 3: Updating a DaemonSet template

Declarative commands

Imperative commands

Updating only the container image

Step 4: Watching the rolling update status

Troubleshooting

DaemonSet rolling update is stuck

Some nodes run out of resources

Broken rollout

Clock skew

What’s next

DaemonSet in Kubernetes version 1.5 or before.

RollingUpdate: With RollingUpdateRollingUpdate update strategy, after you update a DaemonSet

template, old DaemonSet pods will be killed, and new DaemonSet pods will be created

automatically, in a controlled fashion.

Caveat: Updating DaemonSet created from
Kubernetes version 1.5 or before

If you try a rolling update on a DaemonSet that was created from Kubernetes version 1.5 or

before, a rollout will be triggered when you first change the DaemonSet update strategy to

RollingUpdateRollingUpdate , no matter if DaemonSet template is modified or not. If the DaemonSet

template is not changed, all existing DaemonSet pods will be restarted (deleted and created).

Therefore, make sure you want to trigger a rollout before you first switch the strategy to

RollingUpdateRollingUpdate .

Performing a Rolling Update

To enable the rolling update feature of a DaemonSet, you must set its

.spec.updateStrategy.type.spec.updateStrategy.type to RollingUpdateRollingUpdate .

You may want to set .spec.updateStrategy.rollingUpdate.maxUnavailable.spec.updateStrategy.rollingUpdate.maxUnavailable (default to 1)

and .spec.minReadySeconds.spec.minReadySeconds (default to 0) as well.

Step 1: Checking DaemonSet RollingUpdate update strategy

First, check the update strategy of your DaemonSet, and make sure it’s set to RollingUpdateRollingUpdate :

If you haven’t created the DaemonSet in the system, check your DaemonSet manifest with the

following command instead:

kubectl get ds/<daemonset-name> kubectl get ds/<daemonset-name> -o-o go-template go-template=='{{.spec.updateStrategy.type}}{{"\n"}}''{{.spec.updateStrategy.type}}{{"\n"}}'

kubectl create kubectl create -f-f ds.yaml ds.yaml --dry-run--dry-run -o-o go-template go-template=='{{.spec.updateStrategy.type}}{{"\n"}}''{{.spec.updateStrategy.type}}{{"\n"}}'

The output from both commands should be:

If the output isn’t RollingUpdateRollingUpdate , go back and modify the DaemonSet object or manifest

accordingly.

Step 2: Creating a DaemonSet with RollingUpdate update
strategy

If you have already created the DaemonSet, you may skip this step and jump to step 3.

After verifying the update strategy of the DaemonSet manifest, create the DaemonSet:

Alternatively, use kubectl applykubectl apply to create the same DaemonSet if you plan to update the

DaemonSet with kubectl applykubectl apply .

Step 3: Updating a DaemonSet template

Any updates to a RollingUpdateRollingUpdate DaemonSet .spec.template.spec.template will trigger a rolling update.

This can be done with several different kubectlkubectl commands.

Declarative commands

If you update DaemonSets using configuration files, use kubectl applykubectl apply :

Imperative commands

If you update DaemonSets using imperative commands, use kubectl editkubectl edit or

RollingUpdateRollingUpdate

kubectl create kubectl create -f-f ds.yaml ds.yaml

kubectl apply kubectl apply -f-f ds.yaml ds.yaml

kubectl apply kubectl apply -f-f ds-v2.yaml ds-v2.yaml

file:///docs/concepts/overview/object-management-kubectl/declarative-config/
file:///docs/concepts/overview/object-management-kubectl/imperative-command/

kubectl patchkubectl patch :

Updating only the container image

If you just need to update the container image in the DaemonSet template, i.e.

.spec.template.spec.containers[*].image.spec.template.spec.containers[*].image , use

kubectl setkubectl set

imageimage :

Step 4: Watching the rolling update status

Finally, watch the rollout status of the latest DaemonSet rolling update:

When the rollout is complete, the output is similar to this:

Troubleshooting

DaemonSet rolling update is stuck

Sometimes, a DaemonSet rolling update may be stuck. Here are some possible causes:

Some nodes run out of resources

The rollout is stuck because new DaemonSet pods can’t be scheduled on at least one node.

This is possible when the node is running out of resources.

kubectl edit ds/<daemonset-name>kubectl edit ds/<daemonset-name>

kubectl patch ds/<daemonset-name> kubectl patch ds/<daemonset-name> -p-p==<strategic-merge-patch><strategic-merge-patch>

kubectl kubectl set set image ds/<daemonset-name> <container-name>image ds/<daemonset-name> <container-name>==<container-new-image><container-new-image>

kubectl rollout status ds/<daemonset-name> kubectl rollout status ds/<daemonset-name>

daemonset daemonset "<daemonset-name>""<daemonset-name>" successfully rolled out successfully rolled out

file:///docs/tasks/administer-cluster/out-of-resource/

When this happens, find the nodes that don’t have the DaemonSet pods scheduled on by

comparing the output of

kubectl getkubectl get

nodesnodes and the output of:

Once you’ve found those nodes, delete some non-DaemonSet pods from the node to make

room for new DaemonSet pods. Note that this will cause service disruption if the deleted pods

are not controlled by any controllers, or if the pods aren’t replicated. This doesn’t respect

PodDisruptionBudget either.

Broken rollout

If the recent DaemonSet template update is broken, for example, the container is crash

looping, or the container image doesn’t exist (often due to a typo), DaemonSet rollout won’t

progress.

To fix this, just update the DaemonSet template again. New rollout won’t be blocked by

previous unhealthy rollouts.

Clock skew

If .spec.minReadySeconds.spec.minReadySeconds is specified in the DaemonSet, clock skew between master and

nodes will make DaemonSet unable to detect the right rollout progress.

What’s next

See Task: Performing a rollback on a DaemonSet

See Concepts: Creating a DaemonSet to adopt existing DaemonSet pods

kubectl get pods kubectl get pods -l-l <daemonset-selector-key> <daemonset-selector-key>==<daemonset-selector-value> <daemonset-selector-value> -o-o wide wide

file:///docs/tasks/configure-pod-container/configure-pod-disruption-budget/
file:///docs/tasks/manage-daemon/rollback-daemon-set/
file:///docs/concepts/workloads/controllers/daemonset/

Performing a Rollback on a DaemonSet

This page shows how to perform a rollback on a DaemonSet.

Before you begin

The DaemonSet rollout history and DaemonSet rollback features are only supported in

kubectlkubectl in Kubernetes version 1.7 or later.

Make sure you know how to perform a rolling update on a DaemonSet .

Performing a Rollback on a DaemonSet

Step 1: Find the DaemonSet revision you want to roll back to

You can skip this step if you just want to roll back to the last revision.

List all revisions of a DaemonSet:

This returns a list of DaemonSet revisions:

Before you begin

Performing a Rollback on a DaemonSet

Step 1: Find the DaemonSet revision you want to roll back to

Step 2: Roll back to a specific revision

Step 3: Watch the progress of the DaemonSet rollback

Understanding DaemonSet Revisions

Troubleshooting

kubectl rollout kubectl rollout history history daemonset <daemonset-name>daemonset <daemonset-name>

daemonsets daemonsets "<daemonset-name>""<daemonset-name>"

REVISION CHANGE-CAUSEREVISION CHANGE-CAUSE

1 ...1 ...

2 ...2 ...

......

file:///docs/tasks/manage-daemon/update-daemon-set/

Change cause is copied from DaemonSet annotation kubernetes.io/change-causekubernetes.io/change-cause to

its revisions upon creation. You may specify --record=true--record=true in kubectlkubectl to record the

command executed in the change cause annotation.

To see the details of a specific revision:

This returns the details of that revision:

Step 2: Roll back to a specific revision

If it succeeds, the command returns:

If --to-revision--to-revision flag is not specified, the last revision will be picked.

Step 3: Watch the progress of the DaemonSet rollback

kubectl rollout undo daemonsetkubectl rollout undo daemonset tells the server to start rolling back the DaemonSet. The

real rollback is done asynchronously on the server side.

To watch the progress of the rollback:

kubectl rollout kubectl rollout history history daemonset <daemonset-name> daemonset <daemonset-name> --revision--revision==11

daemonsets daemonsets "<daemonset-name>""<daemonset-name>" with revision with revision #1#1

Pod Template:Pod Template:

Labels: Labels: foofoo==barbar

Containers:Containers:

app:app:

 Image: ... Image: ...

 Port: ... Port: ...

 Environment: ... Environment: ...

 Mounts: ... Mounts: ...

Volumes: ...Volumes: ...

Specify the revision number you get from Step 1 in --to-revision# Specify the revision number you get from Step 1 in --to-revision

kubectl rollout undo daemonset <daemonset-name> kubectl rollout undo daemonset <daemonset-name> --to-revision--to-revision==<revision><revision>

daemonset daemonset "<daemonset-name>""<daemonset-name>" rolled back rolled back

When the rollback is complete, the output is similar to this:

Understanding DaemonSet Revisions

In the previous kubectl rollout historykubectl rollout history step, you got a list of DaemonSet revisions. Each

revision is stored in a resource named ControllerRevisionControllerRevision . ControllerRevisionControllerRevision is a

resource only available in Kubernetes release 1.7 or later.

To see what is stored in each revision, find the DaemonSet revision raw resources:

This returns a list of ControllerRevisionsControllerRevisions :

Each ControllerRevisionControllerRevision stores the annotations and template of a DaemonSet revision.

kubectl rollout undokubectl rollout undo takes a specific ControllerRevisionControllerRevision and replaces DaemonSet

template with the template stored in the ControllerRevisionControllerRevision . kubectl rollout undokubectl rollout undo is

equivalent to updating DaemonSet template to a previous revision through other commands,

such as kubectl editkubectl edit or kubectl applykubectl apply .

Note that DaemonSet revisions only roll forward. That is to say, after a rollback is complete,

the revision number (.revision.revision field) of the ControllerRevisionControllerRevision being rolled back to will

advance. For example, if you have revision 1 and 2 in the system, and roll back from revision 2

to revision 1, the ControllerRevisionControllerRevision with

.revision:.revision:

11 will become

.revision:.revision:

33 .

kubectl rollout status ds/<daemonset-name> kubectl rollout status ds/<daemonset-name>

daemonset daemonset "<daemonset-name>""<daemonset-name>" successfully rolled out successfully rolled out

kubectl get controllerrevision kubectl get controllerrevision -l-l <daemonset-selector-key> <daemonset-selector-key>==<daemonset-selector-value><daemonset-selector-value>

NAME CONTROLLER REVISION AGENAME CONTROLLER REVISION AGE

<daemonset-name>-<revision-hash> DaemonSet/<daemonset-name> 1 1h<daemonset-name>-<revision-hash> DaemonSet/<daemonset-name> 1 1h

<daemonset-name>-<revision-hash> DaemonSet/<daemonset-name> 2 1h<daemonset-name>-<revision-hash> DaemonSet/<daemonset-name> 2 1h

Troubleshooting

See troubleshooting DaemonSet rolling update.

file:///docs/tasks/manage-daemon/update-daemon-set/#troubleshooting

Schedule GPUs

Kubernetes includes experimental support for managing NVIDIA GPUs spread across nodes.

The support for NVIDIA GPUs was added in v1.6 and has gone through multiple backwards

incompatible iterations. This page describes how users can consume GPUs across different

Kubernetes versions and the current limitations.

v1.8 onwards

From 1.8 onwards, the recommended way to consume GPUs is to use device plugins.

To enable GPU support through device plugins before 1.10, the DevicePluginsDevicePlugins feature gate

has to be explicitly set to true across the system: --feature-gates="DevicePlugins=true"--feature-gates="DevicePlugins=true" .

This is no longer required starting from 1.10.

Then you have to install NVIDIA drivers on the nodes and run an NVIDIA GPU device plugin (see

below).

When the above conditions are true, Kubernetes will expose nvidia.com/gpunvidia.com/gpu as a

schedulable resource.

You can consume these GPUs from your containers by requesting nvidia.com/gpunvidia.com/gpu just like

you request cpucpu or memorymemory . However, there are some limitations in how you specify the

resource requirements when using GPUs:

GPUs are only supposed to be specified in the limitslimits section, which means:

You can specify GPU limitslimits without specifying requestsrequests because Kubernetes will

use the limit as the request value by default.

You can specify GPU in both limitslimits and requestsrequests but these two values must be

equal.

You cannot specify GPU requestsrequests without specifying limitslimits .

Containers (and pods) do not share GPUs. There’s no overcommitting of GPUs.

file:///docs/concepts/cluster-administration/device-plugins

Each container can request one or more GPUs. It is not possible to request a fraction of a

GPU.

Here’s an example:

Deploying NVIDIA GPU device plugin

There are currently two device plugin implementations for NVIDIA GPUs:

Official NVIDIA GPU device plugin

The official NVIDIA GPU device plugin has the following requirements:

Kubernetes nodes have to be pre-installed with NVIDIA drivers.

Kubernetes nodes have to be pre-installed with nvidia-docker 2.0

nvidia-container-runtime must be configured as the default runtime for docker instead of

runc.

NVIDIA drivers ~= 361.93

To deploy the NVIDIA device plugin once your cluster is running and the above requirements

are satisfied:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: cuda-vector-addcuda-vector-add

specspec::

 restartPolicyrestartPolicy:: OnFailureOnFailure

 containerscontainers::

 -- namename:: cuda-vector-addcuda-vector-add

 # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/_site/images/nvidia-cuda/Dockerfile# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/_site/images/nvidia-cuda/Dockerfile

 imageimage:: ""k8s.gcr.io/cuda-vector-add:v0.1"k8s.gcr.io/cuda-vector-add:v0.1"

 resourcesresources::

 limitslimits::

 nvidia.com/gpunvidia.com/gpu:: 11 # requesting 1 GPU# requesting 1 GPU

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/k8s-device-plugin#preparing-your-gpu-nodes

Report issues with this device plugin to NVIDIA/k8s-device-plugin.

NVIDIA GPU device plugin used by GKE/GCE

The NVIDIA GPU device plugin used by GKE/GCE doesn’t require using nvidia-docker and

should work with any container runtime that is compatible with the Kubernetes Container

Runtime Interface (CRI). It’s tested on Container-Optimized OS and has experimental code for

Ubuntu from 1.9 onwards.

On your 1.9 cluster, you can use the following commands to install the NVIDIA drivers and

device plugin:

Report issues with this device plugin and installation method to

GoogleCloudPlatform/container-engine-accelerators.

Clusters containing different types of NVIDIA GPUs

If different nodes in your cluster have different types of NVIDIA GPUs, then you can use Node

Labels and Node Selectors to schedule pods to appropriate nodes.

For example:

For Kubernetes v1.8# For Kubernetes v1.8

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.8/nvidia-device-plugin.ymlkubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.8/nvidia-device-plugin.yml

For Kubernetes v1.9# For Kubernetes v1.9

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.ymlkubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.yml

Install NVIDIA drivers on Container-Optimized OS:# Install NVIDIA drivers on Container-Optimized OS:

kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/daemonset.yamlkubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/daemonset.yaml

Install NVIDIA drivers on Ubuntu (experimental):# Install NVIDIA drivers on Ubuntu (experimental):

kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/nvidia-driver-installer/ubuntu/daemonset.yamlkubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/k8s-1.9/nvidia-driver-installer/ubuntu/daemonset.yaml

Install the device plugin:# Install the device plugin:

kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.9/cluster/addons/device-plugins/nvidia-gpu/daemonset.yamlkubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.9/cluster/addons/device-plugins/nvidia-gpu/daemonset.yaml

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://cloud.google.com/container-optimized-os/
https://github.com/GoogleCloudPlatform/container-engine-accelerators
file:///docs/tasks/configure-pod-container/assign-pods-nodes/

Specify the GPU type in the pod spec:

This will ensure that the pod will be scheduled to a node that has the GPU type you specified.

v1.6 and v1.7

To enable GPU support in 1.6 and 1.7, a special alpha feature gate AcceleratorsAccelerators has to be

set to true across the system: --feature-gates="Accelerators=true"--feature-gates="Accelerators=true" . It also requires

using the Docker Engine as the container runtime.

Further, the Kubernetes nodes have to be pre-installed with NVIDIA drivers. Kubelet will not

detect NVIDIA GPUs otherwise.

When you start Kubernetes components after all the above conditions are true, Kubernetes will

expose alpha.kubernetes.io/nvidia-gpualpha.kubernetes.io/nvidia-gpu as a schedulable resource.

You can consume these GPUs from your containers by requesting

alpha.kubernetes.io/nvidia-gpualpha.kubernetes.io/nvidia-gpu just like you request cpucpu or memorymemory . However, there are

some limitations in how you specify the resource requirements when using GPUs:

Label your nodes with the accelerator type they have.# Label your nodes with the accelerator type they have.

kubectl label nodes <node-with-k80> kubectl label nodes <node-with-k80> acceleratoraccelerator==nvidia-tesla-k80nvidia-tesla-k80

kubectl label nodes <node-with-p100> kubectl label nodes <node-with-p100> acceleratoraccelerator==nvidia-tesla-p100nvidia-tesla-p100

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: cuda-vector-addcuda-vector-add

specspec::

 restartPolicyrestartPolicy:: OnFailureOnFailure

 containerscontainers::

 -- namename:: cuda-vector-addcuda-vector-add

 # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/_site/images/nvidia-cuda/Dockerfile# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/_site/images/nvidia-cuda/Dockerfile

 imageimage:: ""k8s.gcr.io/cuda-vector-add:v0.1"k8s.gcr.io/cuda-vector-add:v0.1"

 resourcesresources::

 limitslimits::

 nvidia.com/gpunvidia.com/gpu:: 11

 nodeSelectornodeSelector::

 acceleratoraccelerator:: nvidia-tesla-p100nvidia-tesla-p100 # or nvidia-tesla-k80 etc.# or nvidia-tesla-k80 etc.

GPUs are only supposed to be specified in the limitslimits section, which means:

You can specify GPU limitslimits without specifying requestsrequests because Kubernetes will

use the limit as the request value by default.

You can specify GPU in both limitslimits and requestsrequests but these two values must be

equal.

You cannot specify GPU requestsrequests without specifying limitslimits .

Containers (and pods) do not share GPUs. There’s no overcommitting of GPUs.

Each container can request one or more GPUs. It is not possible to request a fraction of a

GPU.

When using alpha.kubernetes.io/nvidia-gpualpha.kubernetes.io/nvidia-gpu as the resource, you also have to mount

host directories containing NVIDIA libraries (libcuda.so, libnvidia.so etc.) to the container.

Here’s an example:

The AcceleratorsAccelerators feature gate and alpha.kubernetes.io/nvidia-gpualpha.kubernetes.io/nvidia-gpu resource works on

1.8 and 1.9 as well. It will be deprecated in 1.10 and removed in 1.11.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: cuda-vector-addcuda-vector-add

specspec::

 restartPolicyrestartPolicy:: OnFailureOnFailure

 containerscontainers::

 -- namename:: cuda-vector-addcuda-vector-add

 # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/_site/images/nvidia-cuda/Dockerfile# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/_site/images/nvidia-cuda/Dockerfile

 imageimage:: ""k8s.gcr.io/cuda-vector-add:v0.1"k8s.gcr.io/cuda-vector-add:v0.1"

 resourcesresources::

 limitslimits::

 alpha.kubernetes.io/nvidia-gpualpha.kubernetes.io/nvidia-gpu:: 11 # requesting 1 GPU# requesting 1 GPU

 volumeMountsvolumeMounts::

 -- namename:: ""nvidia-libraries"nvidia-libraries"

 mountPathmountPath:: ""/usr/local/nvidia/lib64"/usr/local/nvidia/lib64"

 volumesvolumes::

 -- namename:: ""nvidia-libraries"nvidia-libraries"

 hostPathhostPath::

 pathpath:: ""/usr/lib/nvidia-375"/usr/lib/nvidia-375"

Future

Support for hardware accelerators in Kubernetes is still in alpha.

Better APIs will be introduced to provision and consume accelerators in a scalable

manner.

Kubernetes will automatically ensure that applications consuming GPUs get the best

possible performance.

Manage HugePages

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 beta

Kubernetes supports the allocation and consumption of pre-allocated huge pages by

applications in a Pod as a beta feature. This page describes how users can consume huge

pages and the current limitations.

Before you begin

1. Kubernetes nodes must pre-allocate huge pages in order for the node to report its huge

page capacity. A node may only pre-allocate huge pages for a single size.

The nodes will automatically discover and report all huge page resources as a schedulable

resource.

API

Huge pages can be consumed via container level resource requirements using the resource

name hugepages-<size>hugepages-<size> , where size is the most compact binary notation using integer

values supported on a particular node. For example, if a node supports 2048KiB page sizes, it

will expose a schedulable resource hugepages-2Mihugepages-2Mi . Unlike CPU or memory, huge pages do

not support overcommit.

Before you begin

API

Future

Huge page requests must equal the limits. This is the default if limits are specified, but

requests are not.

Huge pages are isolated at a pod scope, container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages may not consume more huge page memory

than the pod request.

Applications that consume huge pages via shmget()shmget() with SHM_HUGETLBSHM_HUGETLB must run with a

supplemental group that matches proc/sys/vm/hugetlb_shm_groupproc/sys/vm/hugetlb_shm_group .

Huge page usage in a namespace is controllable via ResourceQuota similar to other

compute resources like cpucpu or memorymemory using the hugepages-<size>hugepages-<size> token.

Future

Support container isolation of huge pages in addition to pod isolation.

NUMA locality guarantees as a feature of quality of service.

LimitRange support.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 generateNamegenerateName:: hugepages-volume-hugepages-volume-

specspec::

 containerscontainers::

 -- imageimage:: fedora:latestfedora:latest

 commandcommand::

 -- sleepsleep

 -- infinf

 namename:: exampleexample

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /hugepages/hugepages

 namename:: hugepagehugepage

 resourcesresources::

 limitslimits::

 hugepages-2Mihugepages-2Mi:: 100Mi100Mi

 volumesvolumes::

 -- namename:: hugepagehugepage

 emptyDiremptyDir::

 mediummedium:: HugePagesHugePages

Extend kubectl with plugins

FEATURE STATE: Kubernetes v1.10Kubernetes v1.10 alpha

This guide shows you how to install and write extensions for kubectl. Usually called plugins or

binary extensions, this feature allows you to extend the default set of commands available in

kubectlkubectl by adding new subcommands to perform new tasks and extend the set of features

available in the main distribution of kubectlkubectl .

Before you begin

You need to have a working kubectlkubectl binary installed. Note that plugins were officially

introduced as an alpha feature in the v1.8.0 release. So, while some parts of the plugins feature

were already available in previous versions, a kubectlkubectl version of 1.8.0 or later is

recommended.

Until a GA version is released, plugins will only be available under the

kubectlkubectl

pluginplugin

subcommand.

Installing kubectl plugins

A plugin is nothing more than a set of files: at least a plugin.yaml descriptor, and likely one or

more binary, script, or assets files. To install a plugin, copy those files to one of the locations in

Before you begin

Installing kubectl plugins

Plugin loader

Search order

Writing kubectl plugins

The plugin.yaml descriptor

Recommended directory structure

Accessing runtime attributes

What’s next

file:///docs/user-guide/kubectl/

the filesystem where kubectlkubectl searches for plugins.

Note that Kubernetes does not provide a package manager or something similar to install or

update plugins, so it’s your responsibility to place the plugin files in the correct location. We

recommend that each plugin is located on its own directory, so installing a plugin that is

distributed as a compressed file is as simple as extracting it to one of the locations specified

in the Plugin loader section.

Plugin loader

The plugin loader is responsible for searching plugin files in the filesystem locations specified

below, and checking if the plugin provides the minimum amount of information required for it

to run. Files placed in the right location that don’t provide the minimum amount of information,

for example an incomplete plugin.yaml descriptor, are ignored.

Search order

The plugin loader uses the following search order:

1. ${KUBECTL_PLUGINS_PATH}${KUBECTL_PLUGINS_PATH} If specified, the search stops here.

2. ${XDG_DATA_DIRS}/kubectl/plugins${XDG_DATA_DIRS}/kubectl/plugins

3. ~/.kube/plugins~/.kube/plugins

If the KUBECTL_PLUGINS_PATHKUBECTL_PLUGINS_PATH environment variable is present, the loader uses it as the only

location to look for plugins. The KUBECTL_PLUGINS_PATHKUBECTL_PLUGINS_PATH environment variable is a list of

directories. In Linux and Mac, the list is colon-delimited. In Windows, the list is semicolon-

delimited.

If KUBECTL_PLUGINS_PATHKUBECTL_PLUGINS_PATH is not present, the loader searches these additional locations:

First, one or more directories specified according to the XDG System Directory Structure

specification. Specifically, the loader locates the directories specified by the XDG_DATA_DIRSXDG_DATA_DIRS

environment variable, and then searches kubectl/pluginskubectl/plugins directory inside of those. If

XDG_DATA_DIRSXDG_DATA_DIRS is not specified, it defaults to /usr/local/share:/usr/share/usr/local/share:/usr/share .

Second, the pluginsplugins directory under the user’s kubeconfig dir. In most cases, this is

~/.kube/plugins~/.kube/plugins .

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

Writing kubectl plugins

You can write a plugin in any programming language or script that allows you to write

command-line commands. A plugin does not necessarily need to have a binary component. It

could rely entirely on operating system utilities like echoecho , sedsed , or grepgrep . Or it could rely on the

kubectlkubectl binary.

The only strong requirement for a kubectlkubectl plugin is the plugin.yamlplugin.yaml descriptor file. This file

is responsible for declaring at least the minimum attributes required to register a plugin and

must be located under one of the locations specified in the Search order section.

The plugin.yaml descriptor

The descriptor file supports the following attributes:

The preceding descriptor declares the

kubectl pluginkubectl plugin

targaryentargaryen plugin, which has one flag

named

-h | ---h | --

heatheat . When the plugin is invoked, it calls the dracarysdracarys binary or script, which

is located in the same directory as the descriptor file. The Accessing runtime attributes section

describes how the dracarysdracarys command accesses the flag value and other runtime context.

Loads plugins from both /path/to/dir1 and /path/to/dir2# Loads plugins from both /path/to/dir1 and /path/to/dir2
KUBECTL_PLUGINS_PATHKUBECTL_PLUGINS_PATH==/path/to/dir1:/path/to/dir2 kubectl plugin /path/to/dir1:/path/to/dir2 kubectl plugin -h-h

name: "targaryen" # REQUIRED: the plugin command name, to be invoked under 'kubectl'name: "targaryen" # REQUIRED: the plugin command name, to be invoked under 'kubectl'

shortDesc: "Dragonized plugin" # REQUIRED: the command short description, for helpshortDesc: "Dragonized plugin" # REQUIRED: the command short description, for help

longDesc: "" # the command long description, for helplongDesc: "" # the command long description, for help

example: "" # command example(s), for helpexample: "" # command example(s), for help

command: "./dracarys" # REQUIRED: the command, binary, or script to invoke when running the plugincommand: "./dracarys" # REQUIRED: the command, binary, or script to invoke when running the plugin

flags: # flags supported by the pluginflags: # flags supported by the plugin

 - name: "heat" # REQUIRED for each flag: flag name - name: "heat" # REQUIRED for each flag: flag name

 shorthand: "h" # short version of the flag name shorthand: "h" # short version of the flag name

 desc: "Fire heat" # REQUIRED for each flag: flag description desc: "Fire heat" # REQUIRED for each flag: flag description

 defValue: "extreme" # default value of the flag defValue: "extreme" # default value of the flag

tree: # allows the declaration of subcommandstree: # allows the declaration of subcommands

 - ... # subcommands support the same set of attributes - ... # subcommands support the same set of attributes

Recommended directory structure

It is recommended that each plugin has its own subdirectory in the filesystem, preferably with

the same name as the plugin command. The directory must contain the plugin.yamlplugin.yaml

descriptor and any binary, script, asset, or other dependency it might require.

For example, the directory structure for the targaryentargaryen plugin could look like this:

Accessing runtime attributes

In most use cases, the binary or script file you write to support the plugin must have access to

some contextual information provided by the plugin framework. For example, if you declared

flags in the descriptor file, your plugin must have access to the user-provided flag values at

runtime. The same is true for global flags. The plugin framework is responsible for doing that,

so plugin writers don’t need to worry about parsing arguments. This also ensures the best level

of consistency between plugins and regular kubectlkubectl commands.

Plugins have access to runtime context attributes through environment variables. So to access

the value provided through a flag, for example, just look for the value of the proper

environment variable using the appropriate function call for your binary or script.

The supported environment variables are:

KUBECTL_PLUGINS_CALLERKUBECTL_PLUGINS_CALLER : The full path to the kubectlkubectl binary that was used in the

current command invocation. As a plugin writer, you don’t have to implement logic to

authenticate and access the Kubernetes API. Instead, you can invoke kubectlkubectl to obtain

the information you need, through something like

kubectl get --kubectl get --

raw=/apisraw=/apis .

KUBECTL_PLUGINS_CURRENT_NAMESPACEKUBECTL_PLUGINS_CURRENT_NAMESPACE : The current namespace that is the context for

this call. This is the actual namespace to be used, meaning it was already processed in

terms of the precedence between what was provided through the kubeconfig, the

--namespace--namespace global flag, environment variables, and so on.

~/.kube/plugins/~/.kube/plugins/

└── targaryen targaryen

 ├── plugin.yaml plugin.yaml

 └── dracarys dracarys

KUBECTL_PLUGINS_DESCRIPTOR_*KUBECTL_PLUGINS_DESCRIPTOR_* : One environment variable for every attribute declared

in the plugin.yamlplugin.yaml descriptor. For example, KUBECTL_PLUGINS_DESCRIPTOR_NAMEKUBECTL_PLUGINS_DESCRIPTOR_NAME ,

KUBECTL_PLUGINS_DESCRIPTOR_COMMANDKUBECTL_PLUGINS_DESCRIPTOR_COMMAND .

KUBECTL_PLUGINS_GLOBAL_FLAG_*KUBECTL_PLUGINS_GLOBAL_FLAG_* : One environment variable for every global flag

supported by kubectlkubectl . For example, KUBECTL_PLUGINS_GLOBAL_FLAG_NAMESPACEKUBECTL_PLUGINS_GLOBAL_FLAG_NAMESPACE ,

KUBECTL_PLUGINS_GLOBAL_FLAG_VKUBECTL_PLUGINS_GLOBAL_FLAG_V .

KUBECTL_PLUGINS_LOCAL_FLAG_*KUBECTL_PLUGINS_LOCAL_FLAG_* : One environment variable for every local flag declared

in the plugin.yamlplugin.yaml descriptor. For example, KUBECTL_PLUGINS_LOCAL_FLAG_HEATKUBECTL_PLUGINS_LOCAL_FLAG_HEAT in the

preceding targaryentargaryen example.

What’s next

Check the repository for some more examples of plugins.

In case of any questions, feel free to reach out to the CLI SIG team.

Binary plugins is still an alpha feature, so this is the time to contribute ideas and

improvements to the codebase. We’re also excited to hear about what you’re planning to

implement with plugins, so let us know!

https://github.com/kubernetes/kubernetes/tree/master/pkg/kubectl/plugins/examples
https://github.com/kubernetes/community/tree/master/sig-cli
https://github.com/kubernetes/community/tree/master/sig-cli

Troubleshooting

Sometimes things go wrong. This guide is aimed at making them right. It has two sections:

Troubleshooting your application - Useful for users who are deploying code into

Kubernetes and wondering why it is not working.

Troubleshooting your cluster - Useful for cluster administrators and people whose

Kubernetes cluster is unhappy.

You should also check the known issues for the release you’re using.

Getting help

If your problem isn’t answered by any of the guides above, there are variety of ways for you to

get help from the Kubernetes team.

Questions

The documentation on this site has been structured to provide answers to a wide range of

questions. Concepts explain the Kubernetes architecture and how each component works,

while Setup provides practical instructions for getting started. Tasks show how to accomplish

commonly used tasks, and Tutorials are more comprehensive walkthroughs of real-world,

industry-specific, or end-to-end development scenarios. The Reference section provides

detailed documentation on the Kubernetes API and command-line interfaces (CLIs), such as

kubectlkubectl .

You may also find the Stack Overflow topics relevant:

Kubernetes

Google Kubernetes Engine

Help! My question isn’t covered! I need help now!

file:///docs/tasks/debug-application-cluster/debug-application/
file:///docs/tasks/debug-application-cluster/debug-cluster/
https://github.com/kubernetes/kubernetes/releases
file:///docs/concepts/
file:///docs/setup/
file:///docs/tasks/
file:///docs/tutorials/
file:///docs/reference/
file:///docs/reference/generated/kubernetes-api/v1.10/
file:///docs/user-guide/kubectl-overview/
http://stackoverflow.com/questions/tagged/kubernetes
http://stackoverflow.com/questions/tagged/google-container-engine

Stack Overflow

Someone else from the community may have already asked a similar question or may be able

to help with your problem. The Kubernetes team will also monitor posts tagged Kubernetes. If

there aren’t any existing questions that help, please ask a new one!

Slack

The Kubernetes team hangs out on Slack in the #kubernetes-users#kubernetes-users channel. You can

participate in discussion with the Kubernetes team here. Slack requires registration, but the

Kubernetes team is open invitation to anyone to register here. Feel free to come and ask any

and all questions.

Once registered, browse the growing list of channels for various subjects of interest. For

example, people new to Kubernetes may also want to join the #kubernetes-novice#kubernetes-novice channel.

As another example, developers should join the #kubernetes-dev#kubernetes-dev channel.

There are also many country specific/local language channels. Feel free to join these channels

for localized support and info:

France: #fr-users#fr-users , #fr-events#fr-events

Germany: #de-users#de-users , #de-events#de-events

Japan: #jp-users#jp-users , #jp-events#jp-events

Mailing List

The Kubernetes / Google Kubernetes Engine mailing list is kubernetes-

users@googlegroups.com

Bugs and Feature requests

If you have what looks like a bug, or you would like to make a feature request, please use the

Github issue tracking system.

Before you file an issue, please search existing issues to see if your issue is already covered.

If filing a bug, please include detailed information about how to reproduce the problem, such

as:

http://stackoverflow.com/questions/tagged/kubernetes
http://stackoverflow.com/questions/ask?tags=kubernetes
https://kubernetes.slack.com
http://slack.kubernetes.io
https://groups.google.com/forum/#!forum/kubernetes-users
https://github.com/kubernetes/kubernetes/issues

Kubernetes version: kubectl versionkubectl version

Cloud provider, OS distro, network configuration, and Docker version

Steps to reproduce the problem

Tutorials

This section of the Kubernetes documentation contains tutorials. A tutorial shows how to

accomplish a goal that is larger than a single task. Typically a tutorial has several sections,

each of which has a sequence of steps. Before walking through each tutorial, you may want to

bookmark the Standardized Glossary page for later references.

Kubernetes Basics is an in-depth interactive tutorial that helps you understand the

Kubernetes system and try out some basic Kubernetes features.

Scalable Microservices with Kubernetes (Udacity)

Introduction to Kubernetes (edX)

Hello Minikube

Stateless Applications

Running a Stateless Application Using a Deployment

Example: PHP Guestbook application with Redis

Using a Service to Access an Application in a Cluster

Exposing an External IP Address to Access an Application in a Cluster

Stateful Applications

StatefulSet Basics

Running a Single-Instance Stateful Application

Running a Replicated Stateful Application

Example: WordPress and MySQL with Persistent Volumes

Example: Deploying Cassandra with Stateful Sets

Running ZooKeeper, A CP Distributed System

file:///docs/tasks/
file:///docs/reference/glossary/
file:///docs/tutorials/kubernetes-basics/
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.edx.org/course/introduction-kubernetes-linuxfoundationx-lfs158x#
file:///docs/tutorials/stateless-application/hello-minikube/
file:///docs/tutorials/stateless-application/run-stateless-application-deployment/
file:///docs/tutorials/stateless-application/guestbook/
file:///docs/tutorials/stateless-application/expose-external-ip-address-service/
file:///docs/tutorials/stateless-application/expose-external-ip-address/
file:///docs/tutorials/stateful-application/basic-stateful-set/
file:///docs/tutorials/stateful-application/run-stateful-application/
file:///docs/tasks/run-application/run-replicated-stateful-application/
file:///docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
file:///docs/tutorials/stateful-application/cassandra/
file:///docs/tutorials/stateful-application/zookeeper/

CI/CD Pipeline

Set Up a CI/CD Pipeline with Kubernetes Part 1: Overview

Set Up a CI/CD Pipeline with a Jenkins Pod in Kubernetes (Part 2)

Run and Scale a Distributed Crossword Puzzle App with CI/CD on Kubernetes (Part 3)

Set Up CI/CD for a Distributed Crossword Puzzle App on Kubernetes (Part 4)

Connecting Applications

Connecting a Front End to a Back End Using a Service

Services

Using Source IP

What’s next

If you would like to write a tutorial, see Using Page Templates for information about the tutorial

page type and the tutorial template.

https://www.linux.com/blog/learn/chapter/Intro-to-Kubernetes/2017/5/set-cicd-pipeline-kubernetes-part-1-overview
https://www.linux.com/blog/learn/chapter/Intro-to-Kubernetes/2017/6/set-cicd-pipeline-jenkins-pod-kubernetes-part-2
https://www.linux.com/blog/learn/chapter/intro-to-kubernetes/2017/6/run-and-scale-distributed-crossword-puzzle-app-cicd-kubernetes-part-3
https://www.linux.com/blog/learn/chapter/intro-to-kubernetes/2017/6/set-cicd-distributed-crossword-puzzle-app-kubernetes-part-4
file:///docs/tutorials/connecting-apps/connecting-frontend-backend/
file:///docs/tutorials/services/source-ip/
file:///docs/home/contribute/page-templates/

Overview

Kubernetes Basics

This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration

system. Each module contains some background information on major Kubernetes features

and concepts, and includes an interactive online tutorial. These interactive tutorials let you

manage a simple cluster and its containerized applications for yourself.

Using the interactive tutorials, you can learn to:

Deploy a containerized application on a cluster

Scale the deployment

Update the containerized application with a new software version

Debug the containerized application

The tutorials use Katacoda to run a virtual terminal in your web browser that runs Minikube, a

small-scale local deployment of Kubernetes that can run anywhere. There's no need to install

any software or configure anything; each interactive tutorial runs directly out of your web

browser itself.

What can Kubernetes do for you?

With modern web services, users expect applications to be available 24/7, and developers

expect to deploy new versions of those applications several times a day. Containerization

helps package software to serve these goals, enabling applications to be released and updated

in an easy and fast way without downtime. Kubernetes helps you make sure those

containerized applications run where and when you want, and helps them find the resources

and tools they need to work. Kubernetes is a production-ready, open source platform designed

with Google's accumulated experience in container orchestration, combined with best-of-breed

ideas from the community.

Kubernetes Basics Modules

file:///docs/concepts/overview/what-is-kubernetes/#why-containers
file:///docs/concepts/overview/what-is-kubernetes/
file:///_site/docs/tutorials/kubernetes-basics/cluster-intro/
file:///_site/docs/tutorials/kubernetes-basics/deploy-intro/
file:///_site/docs/tutorials/kubernetes-basics/explore-intro/
file:///_site/docs/tutorials/kubernetes-basics/expose-intro/
file:///_site/docs/tutorials/kubernetes-basics/scale-intro/
file:///_site/docs/tutorials/kubernetes-basics/update-intro/

1. Create a Kubernetes cluster

2. Deploy an app

3. Explore your app

4. Expose your app publicly

5. Scale up your app

6. Update your app

Start the tutorial›

file:///docs/tutorials/kubernetes-basics/cluster-intro/
file:///docs/tutorials/kubernetes-basics/deploy-intro/
file:///docs/tutorials/kubernetes-basics/explore-intro/
file:///docs/tutorials/kubernetes-basics/expose-intro/
file:///docs/tutorials/kubernetes-basics/scale-intro/
file:///docs/tutorials/kubernetes-basics/update-intro/
file:///docs/tutorials/kubernetes-basics/cluster-intro/

Using Minikube to Create a Cluster

Objectives

Learn what a Kubernetes cluster is.

Learn what Minikube is.

Start a Kubernetes cluster using an online terminal.

Kubernetes Clusters

Kubernetes coordinates a highly available cluster of computers that are connected to work

as a single unit. The abstractions in Kubernetes allow you to deploy containerized applications

to a cluster without tying them specifically to individual machines. To make use of this new

model of deployment, applications need to be packaged in a way that decouples them from

individual hosts: they need to be containerized. Containerized applications are more flexible

and available than in past deployment models, where applications were installed directly onto

specific machines as packages deeply integrated into the host. Kubernetes automates the

distribution and scheduling of application containers across a cluster in a more efficient way.

Kubernetes is an open-source platform and is production-ready.

A Kubernetes cluster consists of two types of resources:

The Master coordinates the cluster

Nodes are the workers that run applications

Summary:

Kubernetes cluster

Minikube

Kubernetes is a production-grade, open-source platform that orchestrates the placement

(scheduling) and execution of application containers within and across computer clusters.

Cluster Diagram

https://github.com/kubernetes/kubernetes

The Master is responsible for managing the cluster. The master coordinates all activities in

your cluster, such as scheduling applications, maintaining applications' desired state, scaling

applications, and rolling out new updates.

A node is a VM or a physical computer that serves as a worker machine in a Kubernetes

cluster. Each node has a Kubelet, which is an agent for managing the node and

communicating with the Kubernetes master. The node should also have tools for handling

container operations, such as Docker or rkt. A Kubernetes cluster that handles production

traffic should have a minimum of three nodes.

Masters manage the cluster and the nodes are used to host the running applications.

When you deploy applications on Kubernetes, you tell the master to start the application

containers. The master schedules the containers to run on the cluster's nodes. The nodes

communicate with the master using the Kubernetes API, which the master exposes. End

users can also use the Kubernetes API directly to interact with the cluster.

A Kubernetes cluster can be deployed on either physical or virtual machines. To get started

with Kubernetes development, you can use Minikube. Minikube is a lightweight Kubernetes

implementation that creates a VM on your local machine and deploys a simple cluster

containing only one node. Minikube is available for Linux, macOS, and Windows systems. The

Minikube CLI provides basic bootstrapping operations for working with your cluster, including

start, stop, status, and delete. For this tutorial, however, you'll use a provided online terminal

with Minikube pre-installed.

Now that you know what Kubernetes is, let's go to the online tutorial and start our first cluster!

Start Interactive Tutorial ›

https://www.docker.com/
https://coreos.com/rkt/
https://github.com/kubernetes/minikube
file:///docs/tutorials/kubernetes-basics/cluster-interactive/

Interactive Tutorial - Creating a Cluster

To interact with the Terminal, please use the desktop/tablet version

Continue to Module 2›

file:///docs/tutorials/kubernetes-basics/deploy-intro/

Using kubectl to Create a Deployment

Objectives

Learn about application Deployments.

Deploy your first app on Kubernetes with kubectl.

Kubernetes Deployments

Once you have a running Kubernetes cluster, you can deploy your containerized applications

on top of it. To do so, you create a Kubernetes Deployment configuration. The Deployment

instructs Kubernetes how to create and update instances of your application. Once you've

created a Deployment, the Kubernetes master schedules mentioned application instances

onto individual Nodes in the cluster.

Once the application instances are created, a Kubernetes Deployment Controller continuously

monitors those instances. If the Node hosting an instance goes down or is deleted, the

Deployment controller replaces it. This provides a self-healing mechanism to address

machine failure or maintenance.

In a pre-orchestration world, installation scripts would often be used to start applications, but

they did not allow recovery from machine failure. By both creating your application instances

and keeping them running across Nodes, Kubernetes Deployments provide a fundamentally

different approach to application management.

Summary:

Deployments

Kubectl

A Deployment is responsible for creating and updating instances of your application

Deploying your first app on Kubernetes

You can create and manage a Deployment by using the Kubernetes command line interface,

Kubectl. Kubectl uses the Kubernetes API to interact with the cluster. In this module, you'll

learn the most common Kubectl commands needed to create Deployments that run your

applications on a Kubernetes cluster.

When you create a Deployment, you'll need to specify the container image for your application

and the number of replicas that you want to run. You can change that information later by

updating your Deployment; Modules 5 and 6 of the bootcamp discuss how you can scale and

update your Deployments.

Applications need to be packaged into one of the supported container formats in order to be

deployed on Kubernetes

For our first Deployment, we'll use a Node.js application packaged in a Docker container. The

source code and the Dockerfile are available in the GitHub repository for the Kubernetes

Bootcamp.

Now that you know what Deployments are, let's go to the online tutorial and deploy our first

app!

Start Interactive Tutorial ›

file:///docs/tutorials/kubernetes-basics/scale-intro/
file:///docs/tutorials/kubernetes-basics/update-intro/
https://nodejs.org
https://github.com/kubernetes/kubernetes-bootcamp
file:///docs/tutorials/kubernetes-basics/deploy-interactive/

Interactive Tutorial - Deploying an App

To interact with the Terminal, please use the desktop/tablet version

Continue to Module 3›

file:///docs/tutorials/kubernetes-basics/explore-intro/

Viewing Pods and Nodes

Objectives

Learn about Kubernetes Pods.

Learn about Kubernetes Nodes.

Troubleshoot deployed applications.

Kubernetes Pods

When you created a Deployment in Module 2, Kubernetes created a Pod to host your

application instance. A Pod is a Kubernetes abstraction that represents a group of one or more

application containers (such as Docker or rkt), and some shared resources for those

containers. Those resources include:

Shared storage, as Volumes

Networking, as a unique cluster IP address

Information about how to run each container, such as the container image version or

specific ports to use

A Pod models an application-specific "logical host" and can contain different application

containers which are relatively tightly coupled. For example, a Pod might include both the

container with your Node.js app as well as a different container that feeds the data to be

published by the Node.js webserver. The containers in a Pod share an IP Address and port

space, are always co-located and co-scheduled, and run in a shared context on the same

Node.

Pods are the atomic unit on the Kubernetes platform. When we create a Deployment on

Kubernetes, that Deployment creates Pods with containers inside them (as opposed to

creating containers directly). Each Pod is tied to the Node where it is scheduled, and remains

there until termination (according to restart policy) or deletion. In case of a Node failure,

identical Pods are scheduled on other available Nodes in the cluster.

file:///docs/tutorials/kubernetes-basics/deploy-intro/

Summary:

Pods

Nodes

Kubectl main commands

A Pod is a group of one or more application containers (such as Docker or rkt) and includes

shared storage (volumes), IP address and information about how to run them.

Pods overview

Nodes

A Pod always runs on a Node. A Node is a worker machine in Kubernetes and may be either a

virtual or a physical machine, depending on the cluster. Each Node is managed by the Master.

A Node can have multiple pods, and the Kubernetes master automatically handles scheduling

the pods across the Nodes in the cluster. The Master's automatic scheduling takes into

account the available resources on each Node.

Every Kubernetes Node runs at least:

Kubelet, a process responsible for communication between the Kubernetes Master and

the Node; it manages the Pods and the containers running on a machine.

A container runtime (like Docker, rkt) responsible for pulling the container image from a

registry, unpacking the container, and running the application.

Containers should only be scheduled together in a single Pod if they are tightly coupled and need

to share resources such as disk.

Node overview

Troubleshooting with kubectl

In Module 2, you used Kubectl command-line interface. You'll continue to use it in Module 3 to

get information about deployed applications and their environments. The most common

operations can be done with the following kubectl commands:

kubectl get - list resources

kubectl describe - show detailed information about a resource

kubectl logs - print the logs from a container in a pod

kubectl exec - execute a command on a container in a pod

You can use these commands to see when applications were deployed, what their current

statuses are, where they are running and what their configurations are.

Now that we know more about our cluster components and the command line, let's explore

our application.

A node is a worker machine in Kubernetes and may be a VM or physical machine, depending on

the cluster. Multiple Pods can run on one Node.

Start Interactive Tutorial ›

file:///docs/tutorials/kubernetes-basics/deploy-intro/
file:///docs/tutorials/kubernetes-basics/explore-interactive/

Interactive Tutorial - Exploring Your App

To interact with the Terminal, please use the desktop/tablet version

Continue to Module 4›

file:///docs/tutorials/kubernetes-basics/expose-intro/

Using a Service to Expose Your App

Objectives

Learn about a Service in Kubernetes

Understand how labels and LabelSelector objects relate to a Service

Expose an application outside a Kubernetes cluster using a Service

Overview of Kubernetes Services

Kubernetes Pods are mortal. Pods in fact have a lifecycle. When a worker node dies, the Pods

running on the Node are also lost. A ReplicationController might then dynamically drive the

cluster back to desired state via creation of new Pods to keep your application running. As

another example, consider an image-processing backend with 3 replicas. Those replicas are

fungible; the front-end system should not care about backend replicas or even if a Pod is lost

and recreated. That said, each Pod in a Kubernetes cluster has a unique IP address, even Pods

on the same Node, so there needs to be a way of automatically reconciling changes among

Pods so that your applications continue to function.

A Service in Kubernetes is an abstraction which defines a logical set of Pods and a policy by

which to access them. Services enable a loose coupling between dependent Pods. A Service is

defined using YAML (preferred) or JSON, like all Kubernetes objects. The set of Pods targeted

by a Service is usually determined by a LabelSelector (see below for why you might want a

Service without including selectorselector in the spec).

Although each Pod has a unique IP address, those IPs are not exposed outside the cluster

without a Service. Services allow your applications to receive traffic. Services can be exposed

in different ways by specifying a typetype in the ServiceSpec:

ClusterIP (default) - Exposes the Service on an internal IP in the cluster. This type makes

the Service only reachable from within the cluster.

NodePort - Exposes the Service on the same port of each selected Node in the cluster

using NAT. Makes a Service accessible from outside the cluster using

<NodeIP>:<NodePort><NodeIP>:<NodePort> . Superset of ClusterIP.

file:///docs/concepts/workloads/pods/pod-overview/
file:///docs/concepts/workloads/pods/pod-lifecycle/
file:///docs/user-guide/replication-controller/#what-is-a-replicationcontroller
file:///docs/concepts/configuration/overview/#general-config-tips

LoadBalancer - Creates an external load balancer in the current cloud (if supported) and

assigns a fixed, external IP to the Service. Superset of NodePort.

ExternalName - Exposes the Service using an arbitrary name (specified by externalNameexternalName

in the spec) by returning a CNAME record with the name. No proxy is used. This type

requires v1.7 or higher of kube-dnskube-dns .

More information about the different types of Services can be found in the Using Source IP

tutorial. Also see Connecting Applications with Services.

Additionally, note that there are some use cases with Services that involve not defining

selectorselector in the spec. A Service created without selectorselector will also not create the

corresponding Endpoints object. This allows users to manually map a Service to specific

endpoints. Another possibility why there may be no selector is you are strictly using

type: ExternalNametype: ExternalName .

Summary

Exposing Pods to external traffic

Load balancing traffic across multiple Pods

Using labels

A Kubernetes Service is an abstraction layer which defines a logical set of Pods and enables

external traffic exposure, load balancing and service discovery for those Pods.

Services and Labels

A Service routes traffic across a set of Pods. Services are the abstraction that allow pods to

die and replicate in Kubernetes without impacting your application. Discovery and routing

among dependent Pods (such as the frontend and backend components in an application) is

handled by Kubernetes Services.

Services match a set of Pods using labels and selectors, a grouping primitive that allows

logical operation on objects in Kubernetes. Labels are key/value pairs attached to objects and

can be used in any number of ways:

Designate objects for development, test, and production

Embed version tags

file:///docs/tutorials/services/source-ip/
file:///docs/concepts/services-networking/connect-applications-service
file:///docs/concepts/overview/working-with-objects/labels

Classify an object using tags

You can create a Service at the same time you create a Deployment by using

--expose--expose in kubectl.

Labels can be attached to objects at creation time or later on. They can be modified at any

time. Let's expose our application now using a Service and apply some labels.

Start Interactive Tutorial›

file:///docs/tutorials/kubernetes-basics/expose-interactive/

Interactive Tutorial - Exposing Your App

To interact with the Terminal, please use the desktop/tablet version

Continue to Module 5›

file:///docs/tutorials/kubernetes-basics/scale-intro/

Previous Next

Running Multiple Instances of Your App

Objectives

Scale an app using kubectl.

Scaling an application

In the previous modules we created a Deployment, and then exposed it publicly via a Service.

The Deployment created only one Pod for running our application. When traffic increases, we

will need to scale the application to keep up with user demand.

Scaling is accomplished by changing the number of replicas in a Deployment

Summary:

Scaling a Deployment

You can create from the start a Deployment with multiple instances using the --replicas

parameter for the kubectl run command

Scaling overview

1.

2.

Scaling out a Deployment will ensure new Pods are created and scheduled to Nodes with

available resources. Scaling in will reduce the number of Pods to the new desired state.

Kubernetes also supports autoscaling of Pods, but it is outside of the scope of this tutorial.

Scaling to zero is also possible, and it will terminate all Pods of the specified Deployment.

Running multiple instances of an application will require a way to distribute the traffic to all of

them. Services have an integrated load-balancer that will distribute network traffic to all Pods

of an exposed Deployment. Services will monitor continuously the running Pods using

endpoints, to ensure the traffic is sent only to available Pods.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/

Scaling is accomplished by changing the number of replicas in a Deployment.

Once you have multiple instances of an Application running, you would be able to do Rolling

updates without downtime. We'll cover that in the next module. Now, let's go to the online

terminal and scale our application.

Start Interactive Tutorial ›

file:///docs/tutorials/kubernetes-basics/scale-interactive/

Interactive Tutorial - Scaling Your App

To interact with the Terminal, please use the desktop/tablet version

Continue to Module 6›

file:///docs/tutorials/kubernetes-basics/update-intro/

Performing a Rolling Update

Objectives

Perform a rolling update using kubectl.

Updating an application

Users expect applications to be available all the time and developers are expected to deploy

new versions of them several times a day. In Kubernetes this is done with rolling updates.

Rolling updates allow Deployments' update to take place with zero downtime by incrementally

updating Pods instances with new ones. The new Pods will be scheduled on Nodes with

available resources.

In the previous module we scaled our application to run multiple instances. This is a

requirement for performing updates without affecting application availability. By default, the

maximum number of Pods that can be unavailable during the update and the maximum

number of new Pods that can be created, is one. Both options can be configured to either

numbers or percentages (of Pods). In Kubernetes, updates are versioned and any Deployment

update can be reverted to previous (stable) version.

Summary:

Updating an app

Rolling updates allow Deployments' update to take place with zero downtime by incrementally

updating Pods instances with new ones.

Rolling updates overview

1.

2.

3.

4.

Previous Next

Similar to application Scaling, if a Deployment is exposed publicly, the Service will load-balance

the traffic only to available Pods during the update. An available Pod is an instance that is

available to the users of the application.

Rolling updates allow the following actions:

Promote an application from one environment to another (via container image updates)

Rollback to previous versions

Continuous Integration and Continuous Delivery of applications with zero downtime

If a Deployment is exposed publicly, the Service will load-balance the traffic only to available

Pods during the update.

In the following interactive tutorial, we'll update our application to a new version, and also

perform a rollback.

Start Interactive Tutorial ›

file:///docs/tutorials/kubernetes-basics/update-interactive/

Interactive Tutorial - Updating Your App

To interact with the Terminal, please use the desktop/tablet version

Overview of Kubernetes Online Training

Here are some of the sites that offer online training for Kubernetes:

Scalable Microservices with Kubernetes (Udacity)

Introduction to Kubernetes (edX)

https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.edx.org/course/introduction-kubernetes-linuxfoundationx-lfs158x

Hello Minikube

The goal of this tutorial is for you to turn a simple Hello World Node.js app into an application

running on Kubernetes. The tutorial shows you how to take code that you have developed on

your machine, turn it into a Docker container image and then run that image on Minikube.

Minikube provides a simple way of running Kubernetes on your local machine for free.

Objectives

Run a hello world Node.js application.

Deploy the application to Minikube.

View application logs.

Update the application image.

Before you begin

For OS X, you need Homebrew to install the xhyvexhyve driver.

NodeJS is required to run the sample application.

Install Docker. On OS X, we recommend Docker for Mac.

Objectives

Before you begin

Create a Minikube cluster

Create your Node.js application

Create a Docker container image

Create a Deployment

Create a Service

Update your app

Enable addons

Clean up

What’s next

file:///docs/getting-started-guides/minikube
https://brew.sh
https://nodejs.org/en/
https://docs.docker.com/engine/installation/mac/

Create a Minikube cluster

This tutorial uses Minikube to create a local cluster. This tutorial also assumes you are using

Docker for Mac on OS X. If you are on a different platform like Linux, or using VirtualBox

instead of Docker for Mac, the instructions to install Minikube may be slightly different. For

general Minikube installation instructions, see the Minikube installation guide.

Use curlcurl to download and install the latest Minikube release:

Use Homebrew to install the xhyve driver and set its permissions:

Use Homebrew to download the kubectlkubectl command-line tool, which you can use to interact

with Kubernetes clusters:

Determine whether you can access sites like https://cloud.google.com/container-registry/

directly without a proxy, by opening a new terminal and using

Make sure that the Docker daemon is started. You can determine if docker is running by using

a command such as:

If NO proxy is required, start the Minikube cluster:

curl curl -Lo-Lo minikube https://storage.googleapis.com/minikube/releases/latest/minikube-darwin-amd64 minikube https://storage.googleapis.com/minikube/releases/latest/minikube-darwin-amd64

 chmod +x minikube chmod +x minikube &&&& \\

 sudo sudo mv minikube /usr/local/bin/mv minikube /usr/local/bin/

brew install docker-machine-driver-xhyvebrew install docker-machine-driver-xhyve

sudo sudo chown root:wheel chown root:wheel $($(brew brew --prefix--prefix))/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyve/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyve

sudo sudo chmod u+s chmod u+s $($(brew brew --prefix--prefix))/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyve/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyve

brew install kubectlbrew install kubectl

curl curl --proxy--proxy """" https://cloud.google.com/container-registry/ https://cloud.google.com/container-registry/

docker imagesdocker images

https://github.com/kubernetes/minikube
https://docs.docker.com/engine/installation/mac/
file:///docs/getting-started-guides/minikube/
https://cloud.google.com/container-registry/

If a proxy server is required, use the following method to start Minikube cluster with proxy

setting:

The --vm-driver=xhyve--vm-driver=xhyve flag specifies that you are using Docker for Mac. The default VM

driver is VirtualBox.

Note if

minikube start --vm-minikube start --vm-

driver=xhyvedriver=xhyve is unsuccessful due to the error:

Then the following may resolve the

minikube start --vm-minikube start --vm-

driver=xhyvedriver=xhyve issue:

Now set the Minikube context. The context is what determines which cluster kubectlkubectl is

interacting with. You can see all your available contexts in the ~/.kube/config~/.kube/config file.

Verify that kubectlkubectl is configured to communicate with your cluster:

Open the Kubernetes dashboard in a browser:

minikube start minikube start --vm-driver--vm-driver==xhyvexhyve

minikube start minikube start --vm-driver--vm-driver==xhyve xhyve --docker-env--docker-env HTTP_PROXYHTTP_PROXY==http://your-http-proxy-host:your-http-proxy-port http://your-http-proxy-host:your-http-proxy-port

Error creating machine: Error in driver during machine creation: Could not convert the UUID to MAC address: exit status 1Error creating machine: Error in driver during machine creation: Could not convert the UUID to MAC address: exit status 1

rm -rf ~/.minikuberm -rf ~/.minikube

sudo chown root:wheel $(brew --prefix)/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyvesudo chown root:wheel $(brew --prefix)/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyve

sudo chmod u+s $(brew --prefix)/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyvesudo chmod u+s $(brew --prefix)/opt/docker-machine-driver-xhyve/bin/docker-machine-driver-xhyve

kubectl config use-context minikubekubectl config use-context minikube

kubectl cluster-infokubectl cluster-info

Create your Node.js application

The next step is to write the application. Save this code in a folder named hellonodehellonode with the

filename server.jsserver.js :

server.jsserver.js

Run your application:

You should be able to see your “Hello World!” message at http://localhost:8080/.

Stop the running Node.js server by pressing Ctrl-C.

The next step is to package your application in a Docker container.

Create a Docker container image

Create a file, also in the hellonodehellonode folder, named DockerfileDockerfile . A Dockerfile describes the

image that you want to build. You can build a Docker container image by extending an existing

image. The image in this tutorial extends an existing Node.js image.

minikube dashboardminikube dashboard

varvar httphttp == requirerequire(('http''http'););

varvar handleRequesthandleRequest == functionfunction((requestrequest,, responseresponse)) {{

 consoleconsole..loglog(('Received request for URL: ''Received request for URL: ' ++ requestrequest..urlurl););

 responseresponse..writeHeadwriteHead((200200););

 responseresponse..endend(('Hello World!''Hello World!'););

};};

varvar wwwwww == httphttp..createServercreateServer((handleRequesthandleRequest););

wwwwww..listenlisten((80808080););

node server.jsnode server.js

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/server.js

DockerfileDockerfile

This recipe for the Docker image starts from the official Node.js LTS image found in the Docker

registry, exposes port 8080, copies your server.jsserver.js file to the image and starts the Node.js

server.

Because this tutorial uses Minikube, instead of pushing your Docker image to a registry, you

can simply build the image using the same Docker host as the Minikube VM, so that the

images are automatically present. To do so, make sure you are using the Minikube Docker

daemon:

Note: Later, when you no longer wish to use the Minikube host, you can undo this change by

running

eval $(minikube docker-env -eval $(minikube docker-env -

u)u) .

Build your Docker image, using the Minikube Docker daemon (mind the trailing dot):

Now the Minikube VM can run the image you built.

Create a Deployment

A Kubernetes Pod is a group of one or more Containers, tied together for the purposes of

administration and networking. The Pod in this tutorial has only one Container. A Kubernetes

Deployment checks on the health of your Pod and restarts the Pod’s Container if it terminates.

Deployments are the recommended way to manage the creation and scaling of Pods.

FROMFROM nodenode::66..99..22

EXPOSEEXPOSE 80808080

COPYCOPY serverserver..jsjs . .

CMDCMD nodenode serverserver..jsjs

evaleval $($(minikube docker-envminikube docker-env))

docker build docker build -t-t hello-node:v1 hello-node:v1 ..

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/Dockerfile
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/controllers/deployment/

Use the

kubectlkubectl

runrun command to create a Deployment that manages a Pod. The Pod runs a

Container based on your hello-node:v1hello-node:v1 Docker image:

View the Deployment:

Output:

View the Pod:

Output:

View cluster events:

View the kubectlkubectl configuration:

For more information about kubectlkubectl commands, see the kubectl overview.

Create a Service

kubectl run hello-node kubectl run hello-node --image--image==hello-node:v1 hello-node:v1 --port--port==80808080

kubectl get deploymentskubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGENAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

hello-node 1 1 1 1 3mhello-node 1 1 1 1 3m

kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

hello-node-714049816-ztzrb 1/1 Running 0 6mhello-node-714049816-ztzrb 1/1 Running 0 6m

kubectl get eventskubectl get events

kubectl config viewkubectl config view

file:///docs/user-guide/kubectl-overview/

By default, the Pod is only accessible by its internal IP address within the Kubernetes cluster.

To make the hello-nodehello-node Container accessible from outside the Kubernetes virtual network,

you have to expose the Pod as a Kubernetes Service.

From your development machine, you can expose the Pod to the public internet using the

kubectlkubectl

exposeexpose command:

View the Service you just created:

Output:

The --type=LoadBalancer--type=LoadBalancer flag indicates that you want to expose your Service outside of the

cluster. On cloud providers that support load balancers, an external IP address would be

provisioned to access the Service. On Minikube, the LoadBalancerLoadBalancer type makes the Service

accessible through the minikube serviceminikube service command.

This automatically opens up a browser window using a local IP address that serves your app

and shows the “Hello World” message.

Assuming you’ve sent requests to your new web service using the browser or curl, you should

now be able to see some logs:

kubectl expose deployment hello-node kubectl expose deployment hello-node --type--type==LoadBalancerLoadBalancer

kubectl get serviceskubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

hello-node 10.0.0.71 <pending> 8080/TCP 6mhello-node 10.0.0.71 <pending> 8080/TCP 6m

kubernetes 10.0.0.1 <none> 443/TCP 14dkubernetes 10.0.0.1 <none> 443/TCP 14d

minikube service hello-nodeminikube service hello-node

kubectl logs <POD-NAME>kubectl logs <POD-NAME>

file:///docs/concepts/services-networking/service/

Update your app

Edit your server.jsserver.js file to return a new message:

Build a new version of your image (mind the trailing dot):

Update the image of your Deployment:

Run your app again to view the new message:

Enable addons

Minikube has a set of built-in addons that can be enabled, disabled and opened in the local

Kubernetes environment.

First list the currently supported addons:

Output:

responseresponse..endend(('Hello World Again!''Hello World Again!'););

docker build docker build -t-t hello-node:v2 hello-node:v2 ..

kubectl kubectl set set image deployment/hello-node hello-nodeimage deployment/hello-node hello-node==hello-node:v2hello-node:v2

minikube service hello-nodeminikube service hello-node

minikube addons listminikube addons list

Minikube must be running for these commands to take effect. To enable heapsterheapster addon, for

example:

Output:

View the Pod and Service you just created:

Output:

Open the endpoint to interacting with heapster in a browser:

- storage-provisioner: enabled- storage-provisioner: enabled

- kube-dns: enabled- kube-dns: enabled

- registry: disabled- registry: disabled

- registry-creds: disabled- registry-creds: disabled

- addon-manager: enabled- addon-manager: enabled

- dashboard: disabled- dashboard: disabled

- default-storageclass: enabled- default-storageclass: enabled

- coredns: disabled- coredns: disabled

- heapster: disabled- heapster: disabled

- efk: disabled- efk: disabled

- ingress: disabled- ingress: disabled

minikube addons minikube addons enable enable heapsterheapster

heapster was successfully enabledheapster was successfully enabled

kubectl get po,svc kubectl get po,svc -n-n kube-system kube-system

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

po/heapster-zbwzv 1/1 Running 0 2mpo/heapster-zbwzv 1/1 Running 0 2m

po/influxdb-grafana-gtht9 2/2 Running 0 2mpo/influxdb-grafana-gtht9 2/2 Running 0 2m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORTNAME TYPE CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

svc/heapster NodePort 10.0.0.52 <none> 80:31655/TCP 2msvc/heapster NodePort 10.0.0.52 <none> 80:31655/TCP 2m

svc/monitoring-grafana NodePort 10.0.0.33 <none> 80:30002/TCP 2msvc/monitoring-grafana NodePort 10.0.0.33 <none> 80:30002/TCP 2m

svc/monitoring-influxdb ClusterIP 10.0.0.43 <none> 8083/TCP,8086/TCP 2msvc/monitoring-influxdb ClusterIP 10.0.0.43 <none> 8083/TCP,8086/TCP 2m

minikube addons open heapsterminikube addons open heapster

Output:

Clean up

Now you can clean up the resources you created in your cluster:

Optionally, force removal of the Docker images created:

Optionally, stop the Minikube VM:

Optionally, delete the Minikube VM:

What’s next

Learn more about Deployment objects.

Learn more about Deploying applications.

Learn more about Service objects.

Opening kubernetes service kube-system/monitoring-grafana Opening kubernetes service kube-system/monitoring-grafana in in default browser...default browser...

kubectl delete service hello-nodekubectl delete service hello-node

kubectl delete deployment hello-nodekubectl delete deployment hello-node

docker rmi hello-node:v1 hello-node:v2 docker rmi hello-node:v1 hello-node:v2 -f-f

minikube stopminikube stop

evaleval $($(minikube docker-env minikube docker-env -u-u))

minikube deleteminikube delete

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/user-guide/deploying-applications/
file:///docs/concepts/services-networking/service/

Kubernetes 101

Kubectl CLI and Pods

For Kubernetes 101, we will cover kubectl, pods, volumes, and multiple containers

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

In order for the kubectl usage examples to work, make sure you have an example directory

locally, either from a release or the latest .yaml files located at:

https://github.com/kubernetes/website/tree/master/docs/user-guide/walkthrough.

Kubectl CLI

The easiest way to interact with Kubernetes is through the kubectl command-line interface.

For more info about kubectl, including its usage, commands, and parameters, see Overview of

kubectl.

Kubectl CLI and Pods

Kubectl CLI

Pods

Pod Definition

Pod Management

Volumes

Volume Types

Multiple Containers

What’s Next?

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes/kubernetes/releases
file:///docs/reference/kubectl/overview/
file:///docs/reference/kubectl/overview/

For more information about installing and configuring kubectl, see Install and Set Up kubectl.

Pods

In Kubernetes, a group of one or more containers is called a pod. Containers in a pod are

deployed together, and are started, stopped, and replicated as a group.

For more information, see Pods.

Pod Definition

The simplest pod definition describes the deployment of a single container. For example, an

nginx web server pod might be defined as:

pod-nginx.yamlpod-nginx.yaml

A pod definition is a declaration of a desired state. Desired state is a very important concept in

the Kubernetes model. Many things present a desired state to the system, and Kubernetes’

ensures that the current state matches the desired state. For example, when you create a pod

and declare that the containers in it to be running. If the containers happen not to be running

because of a program failure, Kubernetes continues to (re-)create the pod in order to drive the

pod to the desired state. This process continues until you delete the pod.

For more information, see Kubernetes Design Documents and Proposals.

Pod Management

Create a pod containing an nginx server (pod-nginx.yaml):

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

file:///docs/tasks/tools/install-kubectl/
file:///docs/concepts/workloads/pods/pod/
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/pod-nginx.yaml
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/README.md
file:///docs/user-guide/walkthrough/pod-nginx.yaml

List all pods:

On most providers, the pod IPs are not externally accessible. The easiest way to test that the

pod is working is to create a busybox pod and exec commands on it remotely. For more

information, see Get a Shell to a Running Container .

If the IP of the pod is accessible, you can access its http endpoint with wget on port 80:

To delete a pod named nginx:

Volumes

That’s great for a simple static web server, but what about persistent storage?

The container file system only lives as long as the container does. So if your app’s state needs

to survive relocation, reboots, and crashes, you’ll need to configure some persistent storage.

In this example you can create a Redis pod with a named volume, and a volume mount that

defines the path to mount the volume.

1. Define a volume:

$ $ kubectl create kubectl create -f-f docs/user-guide/walkthrough/pod-nginx.yaml docs/user-guide/walkthrough/pod-nginx.yaml

$ $ kubectl get podskubectl get pods

$ $ kubectl run busybox kubectl run busybox --image--image==busybox busybox --restart--restart==Never Never --tty--tty -i-i --generator--generator==run-pod/v1 run-pod/v1

u@busyboxu@busybox$ $ wget wget -qO--qO- http:// http://POD_IPPOD_IP # Run in the busybox container# Run in the busybox container

u@busyboxu@busybox$ $ exitexit # Exit the busybox container# Exit the busybox container

$ $ kubectl delete pod busybox kubectl delete pod busybox # Clean up the pod we created with "kubectl run"# Clean up the pod we created with "kubectl run"

$ $ kubectl delete pod nginxkubectl delete pod nginx

volumesvolumes::

 -- namename:: redis-persistent-storageredis-persistent-storage

 emptyDiremptyDir:: {}{}

file:///_site/docs/user-guide/walkthrough/docs/tasks/debug-application-cluster/get-shell-running-container/

1. Define a volume mount within a container definition:

Here is an example of Redis pod definition with a persistent storage volume (pod-redis.yaml):

pod-redis.yamlpod-redis.yaml

Where:

The volumeMountsvolumeMounts namename is a reference to a specific volumesvolumes namename .

The volumeMountsvolumeMounts mountPathmountPath is the path to mount the volume within the container.

Volume Types

EmptyDir: Creates a new directory that exists as long as the pod is running on the node,

but it can persist across container failures and restarts.

HostPath: Mounts an existing directory on the node’s file system. For example (

/var/logs/var/logs).

For more information, see Volumes.

volumeMountsvolumeMounts::

 # name must match the volume name defined in volumes # name must match the volume name defined in volumes

 - name - name:: redis-persistent-storageredis-persistent-storage

 # mount path within the container# mount path within the container

 mountPathmountPath:: /data/redis/data/redis

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: redisredis

specspec::

 containerscontainers::

 -- namename:: redisredis

 imageimage:: redisredis

 volumeMountsvolumeMounts::

 -- namename:: redis-persistent-storageredis-persistent-storage

 mountPathmountPath:: /data/redis/data/redis

 volumesvolumes::

 -- namename:: redis-persistent-storageredis-persistent-storage

 emptyDiremptyDir:: {}{}

file:///docs/user-guide/walkthrough/pod-redis.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/pod-redis.yaml
file:///docs/concepts/storage/volumes/

Multiple Containers

Note: The examples below are syntactically correct, but some of the images (e.g. kubernetes/git-

monitor) don’t exist yet. We’re working on turning these into working examples.

However, often you want to have two different containers that work together. An example of

this would be a web server, and a helper job that polls a git repository for new updates:

Note that we have also added a volume here. In this case, the volume is mounted into both

containers. It is marked readOnlyreadOnly in the web server’s case, since it doesn’t need to write to

the directory.

Finally, we have also introduced an environment variable to the git-monitorgit-monitor container, which

allows us to parameterize that container with the particular git repository that we want to

track.

What’s Next?

Continue on to Kubernetes 201 or for a complete application see the guestbook example

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: wwwwww

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /srv/www/srv/www

 namename:: www-datawww-data

 readOnlyreadOnly:: truetrue

 -- namename:: git-monitorgit-monitor

 imageimage:: kubernetes/git-monitorkubernetes/git-monitor

 envenv::

 -- namename:: GIT_REPOGIT_REPO

 valuevalue:: http://github.com/some/repo.githttp://github.com/some/repo.git

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /data/data

 namename:: www-datawww-data

 volumesvolumes::

 -- namename:: www-datawww-data

 emptyDiremptyDir:: {}{}

file:///docs/user-guide/walkthrough/k8s201/
https://github.com/kubernetes/examples/tree/master/guestbook/

Kubernetes 201

Labels, Deployments, Services and Health Checking

If you went through Kubernetes 101, you learned about kubectl, Pods, Volumes, and multiple

containers. For Kubernetes 201, we will pick up where 101 left off and cover some slightly

more advanced topics in Kubernetes, related to application productionization, Deployment and

scaling.

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

In order for the kubectl usage examples to work, make sure you have an examples directory

locally, either from a release or the source.

Labels

Having already learned about Pods and how to create them, you may be struck by an urge to

Labels, Deployments, Services and Health Checking

Labels

Deployments

Deployment Management

Services

Service Management

Health Checking

Process Health Checking

Application Health Checking

What’s Next?

file:///docs/user-guide/walkthrough/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes

create many, many Pods. Please do! But eventually you will need a system to organize these

Pods into groups. The system for achieving this in Kubernetes is Labels. Labels are key-value

pairs that are attached to each object in Kubernetes. Label selectors can be passed along with

a RESTful listlist request to the apiserver to retrieve a list of objects which match that label

selector.

To add a label, add a labels section under metadata in the Pod definition:

For example, here is the nginx Pod definition with labels (pod-nginx-with-label.yaml):

pod-nginx-with-label.yamlpod-nginx-with-label.yaml

Create the labeled Pod (pod-nginx-with-label.yaml):

List all Pods with the label app=nginxapp=nginx :

Delete the Pod by label:

 labelslabels::

 appapp:: nginxnginx

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 appapp:: nginxnginx

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl create kubectl create -f-f https://k8s.io/docs/user-guide/walkthrough/pod-nginx-with-label.yaml https://k8s.io/docs/user-guide/walkthrough/pod-nginx-with-label.yaml

kubectl get pods kubectl get pods -l-l appapp==nginxnginx

kubectl delete pod kubectl delete pod -l-l appapp==nginxnginx

file:///docs/user-guide/walkthrough/pod-nginx-with-label.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/pod-nginx-with-label.yaml
file:///docs/user-guide/walkthrough/pod-nginx-with-label.yaml

For more information, see Labels. They are a core concept used by two additional Kubernetes

building blocks: Deployments and Services.

Deployments

Now that you know how to make awesome, multi-container, labeled Pods and you want to use

them to build an application, you might be tempted to just start building a whole bunch of

individual Pods, but if you do that, a whole host of operational concerns pop up. For example:

how will you scale the number of Pods up or down? How will you roll out a new release?

The answer to those questions and more is to use a Deployment to manage maintaining and

updating your running Pods.

A Deployment object defines a Pod creation template (a “cookie-cutter” if you will) and desired

replica count. The Deployment uses a label selector to identify the Pods it manages, and will

create or delete Pods as needed to meet the replica count. Deployments are also used to

manage safely rolling out changes to your running Pods.

Here is a Deployment that instantiates two nginx Pods:

deployment.yamldeployment.yaml

file:///docs/concepts/overview/working-with-objects/labels/
file:///docs/concepts/workloads/controllers/deployment/
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/deployment.yaml

deployment.yamldeployment.yaml

Deployment Management

Create an nginx Deployment:

List all Deployments:

List the Pods created by the Deployment:

Upgrade the nginx container from 1.7.9 to 1.8 by changing the Deployment and calling applyapply .

The following config contains the desired changes:

deployment-update.yamldeployment-update.yaml

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 replicasreplicas:: 22 # tells deployment to run 2 pods matching the template# tells deployment to run 2 pods matching the template
 templatetemplate:: # create pods using pod definition in this template# create pods using pod definition in this template
 metadatametadata::

 # unlike pod-nginx.yaml, the name is not included in the meta data as a unique name is# unlike pod-nginx.yaml, the name is not included in the meta data as a unique name is
 # generated from the deployment name# generated from the deployment name
 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.7.9nginx:1.7.9

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl create kubectl create -f-f https://k8s.io/docs/user-guide/walkthrough/deployment.yaml https://k8s.io/docs/user-guide/walkthrough/deployment.yaml

kubectl get deploymentkubectl get deployment

kubectl get pods kubectl get pods -l-l appapp==nginxnginx

https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/deployment-update.yaml

deployment-update.yamldeployment-update.yaml

Watch the Deployment create Pods with new names and delete the old Pods:

Delete the Deployment by name:

For more information, such as how to rollback Deployment changes to a previous version, see

Deployments.

Services

Once you have a replicated set of Pods, you need an abstraction that enables connectivity

between the layers of your application. For example, if you have a Deployment managing your

backend jobs, you don’t want to have to reconfigure your front-ends whenever you re-scale

your backends. Likewise, if the Pods in your backends are scheduled (or rescheduled) onto

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: nginx-deploymentnginx-deployment

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 replicasreplicas:: 22

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginx:1.8nginx:1.8 # Update the version of nginx from 1.7.9 to 1.8# Update the version of nginx from 1.7.9 to 1.8
 portsports::

 -- containerPortcontainerPort:: 8080

kubectl apply kubectl apply -f-f https://k8s.io/docs/user-guide/walkthrough//deployment-update.yaml https://k8s.io/docs/user-guide/walkthrough//deployment-update.yaml

kubectl get pods kubectl get pods -l-l appapp==nginxnginx

kubectl delete deployment nginx-deploymentkubectl delete deployment nginx-deployment

file:///docs/concepts/workloads/controllers/deployment/

different machines, you can’t be required to re-configure your front-ends. In Kubernetes, the

service abstraction achieves these goals. A service provides a way to refer to a set of Pods

(selected by labels) with a single static IP address. It may also provide load balancing, if

supported by the provider.

For example, here is a service that balances across the Pods created in the previous nginx

Deployment example (service.yaml):

service.yamlservice.yaml

Service Management

Create an nginx service (service.yaml):

List all services:

On most providers, the service IPs are not externally accessible. The easiest way to test that

the service is working is to create a busybox Pod and exec commands on it remotely. See the

command execution documentation for details.

Provided the service IP is accessible, you should be able to access its http endpoint with wget

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: nginx-servicenginx-service

specspec::

 portsports::

 -- portport:: 80008000 # the port that this service should serve on# the port that this service should serve on
 # the container on each pod to connect to, can be a name# the container on each pod to connect to, can be a name
 # (e.g. 'www') or a number (e.g. 80)# (e.g. 'www') or a number (e.g. 80)
 targetPorttargetPort:: 8080

 protocolprotocol:: TCPTCP

 # just like the selector in the deployment,# just like the selector in the deployment,
 # but this time it identifies the set of pods to load balance# but this time it identifies the set of pods to load balance
 # traffic to.# traffic to.
 selectorselector::

 appapp:: nginxnginx

kubectl create kubectl create -f-f https://k8s.io/docs/user-guide/walkthrough/service.yaml https://k8s.io/docs/user-guide/walkthrough/service.yaml

kubectl get serviceskubectl get services

file:///docs/user-guide/walkthrough/service.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/service.yaml
file:///docs/user-guide/walkthrough/service.yaml
file:///docs/user-guide/kubectl-overview/

on the exposed port:

The service definition exposed the Nginx Service as port 8000 ($SERVCE_PORT$SERVCE_PORT). We can also

access the service from a host running Kubernetes using that port:

(This works on AWS with Weave.)

To delete the service by name:

When created, each service is assigned a unique IP address. This address is tied to the

lifespan of the Service, and will not change while the Service is alive. Pods can be configured to

talk to the service, and know that communication to the service will be automatically load-

balanced out to some Pod that is a member of the set identified by the label selector in the

Service.

For more information, see Services.

Health Checking

When I write code it never crashes, right? Sadly the Kubernetes issues list indicates otherwise…

Rather than trying to write bug-free code, a better approach is to use a management system to

perform periodic health checking and repair of your application. That way a system outside of

your application itself is responsible for monitoring the application and taking action to fix it.

It’s important that the system be outside of the application, since if your application fails and

$ $ export export SERVICE_IPSERVICE_IP==$($(kubectl get service nginx-service kubectl get service nginx-service -o-o go-template go-template=='{{.spec.clusterIP}}''{{.spec.clusterIP}}'

$ $ export export SERVICE_PORTSERVICE_PORT==$($(kubectl get service nginx-service kubectl get service nginx-service -o-o go-template go-template=='{{(index .spec.ports 0).port}}''{{(index .spec.ports 0).port}}'

$ $ echoecho ""$SERVICE_IP$SERVICE_IP::$SERVICE_PORT$SERVICE_PORT""

$ $ kubectl run busybox kubectl run busybox --generator--generator==run-pod/v1 run-pod/v1 --image--image==busybox busybox --restart--restart==Never Never

u@busyboxu@busybox$ $ wget wget -qO--qO- http:// http://$SERVICE_IP$SERVICE_IP::$SERVICE_PORT$SERVICE_PORT # Run in the busybox container# Run in the busybox container
u@busyboxu@busybox$ $ exitexit # Exit the busybox container# Exit the busybox container
$ $ kubectl delete pod busybox kubectl delete pod busybox # Clean up the pod we created with "kubectl run"# Clean up the pod we created with "kubectl run"

wget wget -qO--qO- http:// http://$SERVICE_IP$SERVICE_IP::$SERVICE_PORT$SERVICE_PORT # Run on a Kubernetes host# Run on a Kubernetes host

kubectl delete service nginx-servicekubectl delete service nginx-service

file:///docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/
file:///docs/concepts/services-networking/service/
https://github.com/kubernetes/kubernetes/issues

the health checking agent is part of your application, it may fail as well and you’ll never know.

In Kubernetes, the health check monitor is the Kubelet agent.

Process Health Checking

The simplest form of health-checking is just process level health checking. The Kubelet

constantly asks the Docker daemon if the container process is still running, and if not, the

container process is restarted. In all of the Kubernetes examples you have run so far, this

health checking was actually already enabled. It’s on for every single container that runs in

Kubernetes.

Application Health Checking

However, in many cases this low-level health checking is insufficient. Consider, for example,

the following code:

This is a classic example of a problem in computer science known as “Deadlock”. From

Docker’s perspective your application is still operating and the process is still running, but from

your application’s perspective your code is locked up and will never respond correctly.

To address this problem, Kubernetes supports user implemented application health-checks.

These checks are performed by the Kubelet to ensure that your application is operating

correctly for a definition of “correctly” that you provide.

Currently, there are three types of application health checks that you can choose from:

HTTP Health Checks - The Kubelet will call a web hook. If it returns between 200 and 399,

it is considered success, failure otherwise. See health check examples here.

Container Exec - The Kubelet will execute a command inside your container. If it exits with

status 0 it will be considered a success. See health check examples here.

lockOnelockOne :=:= syncsync..MutexMutex{}{}

lockTwolockTwo :=:= syncsync..MutexMutex{}{}

gogo funcfunc()() {{

 lockOnelockOne..LockLock();();

 lockTwolockTwo..LockLock();();

}()}()

lockTwolockTwo..LockLock();();

lockOnelockOne..LockLock();();

https://en.wikipedia.org/wiki/Deadlock
file:///docs/user-guide/liveness/
file:///docs/user-guide/liveness/

TCP Socket - The Kubelet will attempt to open a socket to your container. If it can

establish a connection, the container is considered healthy, if it can’t it is considered a

failure.

In all cases, if the Kubelet discovers a failure the container is restarted.

The container health checks are configured in the livenessProbelivenessProbe section of your container

config. There you can also specify an initialDelaySecondsinitialDelaySeconds that is a grace period from when

the container is started to when health checks are performed, to enable your container to

perform any necessary initialization.

Here is an example config for a Pod with an HTTP health check (pod-with-http-

healthcheck.yaml):

pod-with-http-healthcheck.yamlpod-with-http-healthcheck.yaml

And here is an example config for a Pod with a TCP Socket health check (pod-with-tcp-socket-

healthcheck.yaml):

pod-with-tcp-socket-healthcheck.yamlpod-with-tcp-socket-healthcheck.yaml

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: pod-with-http-healthcheckpod-with-http-healthcheck

specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: nginxnginx

 # defines the health checking# defines the health checking
 livenessProbelivenessProbe::

 # an http probe# an http probe
 httpGethttpGet::

 pathpath:: /_status/healthz/_status/healthz

 portport:: 8080

 # length of time to wait for a pod to initialize# length of time to wait for a pod to initialize
 # after pod startup, before applying health checking# after pod startup, before applying health checking
 initialDelaySecondsinitialDelaySeconds:: 3030

 timeoutSecondstimeoutSeconds:: 11

 portsports::

 -- containerPortcontainerPort:: 8080

file:///docs/user-guide/walkthrough/pod-with-http-healthcheck.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/pod-with-http-healthcheck.yaml
file:///docs/user-guide/walkthrough/pod-with-tcp-socket-healthcheck.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/user-guide/walkthrough/pod-with-tcp-socket-healthcheck.yaml

pod-with-tcp-socket-healthcheck.yamlpod-with-tcp-socket-healthcheck.yaml

For more information about health checking, see Container Probes.

What’s Next?

For a complete application see the guestbook example.

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: pod-with-tcp-socket-healthcheckpod-with-tcp-socket-healthcheck

specspec::

 containerscontainers::

 -- namename:: redisredis

 imageimage:: redisredis

 # defines the health checking# defines the health checking
 livenessProbelivenessProbe::

 # a TCP socket probe# a TCP socket probe
 tcpSockettcpSocket::

 portport:: 63796379

 # length of time to wait for a pod to initialize# length of time to wait for a pod to initialize
 # after pod startup, before applying health checking# after pod startup, before applying health checking
 initialDelaySecondsinitialDelaySeconds:: 3030

 timeoutSecondstimeoutSeconds:: 11

 portsports::

 -- containerPortcontainerPort:: 63796379

file:///docs/user-guide/pod-states/#container-probes
https://github.com/kubernetes/examples/tree/master/guestbook/

Configuring Redis using a ConfigMap

This page provides a real world example of how to configure Redis using a ConfigMap and

builds upon the Configure Containers Using a ConfigMap task.

Objectives

Create a ConfigMap.

Create a pod specification using the ConfigMap.

Create the pod.

Verify that the configuration was correctly applied.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be

configured to communicate with your cluster. If you do not already have a cluster, you can

create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Understand Configure Containers Using a ConfigMap.

Real World Example: Configuring Redis using a
ConfigMap

Objectives

Before you begin

Real World Example: Configuring Redis using a ConfigMap

What’s next

file:///docs/tasks/configure-pod-container/configure-pod-configmap/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

You can follow the steps below to configure a Redis cache using data stored in a ConfigMap.

1. Create a ConfigMap from the

docs/tutorials/configuration/configmap/redis/redis-configdocs/tutorials/configuration/configmap/redis/redis-config file:

2. Create a pod specification that uses the config data stored in the ConfigMap:

kubectl create configmap example-redis-config kubectl create configmap example-redis-config --from-file--from-file==https://k8s.io/docs/tutorials/configuration/configmap/redis/redis-confighttps://k8s.io/docs/tutorials/configuration/configmap/redis/redis-config

kubectl get configmap example-redis-config kubectl get configmap example-redis-config -o-o yaml yaml

apiVersionapiVersion:: v1v1

datadata::

 redis-configredis-config:: ||

 maxmemory 2mbmaxmemory 2mb

 maxmemory-policy allkeys-lrumaxmemory-policy allkeys-lru

kindkind:: ConfigMapConfigMap

metadatametadata::

 creationTimestampcreationTimestamp:: 2016-03-30T18:14:41Z2016-03-30T18:14:41Z

 namename:: example-redis-configexample-redis-config

 namespacenamespace:: defaultdefault

 resourceVersionresourceVersion:: ""24686"24686"

 selfLinkselfLink:: /api/v1/namespaces/default/configmaps/example-redis-config/api/v1/namespaces/default/configmaps/example-redis-config

 uiduid:: 460a2b6e-f6a3-11e5-8ae5-42010af00002460a2b6e-f6a3-11e5-8ae5-42010af00002

3. Create the pod:

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: redisredis

specspec::

 containerscontainers::

 -- namename:: redisredis

 imageimage:: kubernetes/redis:v1kubernetes/redis:v1

 envenv::

 -- namename:: MASTERMASTER

 valuevalue:: ""true"true"

 portsports::

 -- containerPortcontainerPort:: 63796379

 resourcesresources::

 limitslimits::

 cpucpu:: ""0.1"0.1"

 volumeMountsvolumeMounts::

 -- mountPathmountPath:: /redis-master-data/redis-master-data

 namename:: datadata

 -- mountPathmountPath:: /redis-master/redis-master

 namename:: configconfig

 volumesvolumes::

 -- namename:: datadata

 emptyDiremptyDir:: {}{}

 -- namename:: configconfig

 configMapconfigMap::

 namename:: example-redis-configexample-redis-config

 itemsitems::

 -- keykey:: redis-configredis-config

 pathpath:: redis.confredis.conf

kubectl create kubectl create -f-f https://k8s.io/tutorials/configuration/configmap/redis/redis-pod.yaml https://k8s.io/tutorials/configuration/configmap/redis/redis-pod.yaml

In the example, the config volume is mounted at /redis-master/redis-master . It uses pathpath to add the

redis-configredis-config key to a file named redis.confredis.conf . The file path for the redis config,

therefore, is /redis-master/redis.conf/redis-master/redis.conf . This is where the image will look for the config

file for the redis master.

4. Use kubectl execkubectl exec to enter the pod and run the redis-cliredis-cli tool to verify that the

configuration was correctly applied:

What’s next

Learn more about ConfigMaps.

kubectl kubectl execexec -it-it redis redis-cli redis redis-cli

127.0.0.1:6379> CONFIG GET maxmemory127.0.0.1:6379> CONFIG GET maxmemory

11)) "maxmemory""maxmemory"

22)) "2097152""2097152"

127.0.0.1:6379> CONFIG GET maxmemory-policy127.0.0.1:6379> CONFIG GET maxmemory-policy

11)) "maxmemory-policy""maxmemory-policy"

22)) "allkeys-lru""allkeys-lru"

file:///docs/tasks/configure-pod-container/configure-pod-configmap/

Run a Stateless Application Using a Deployment

This page shows how to run an application using a Kubernetes Deployment object.

Objectives
Before you begin
Creating and exploring an nginx deployment
Updating the deployment
Scaling the application by increasing the replica count
Deleting a deployment
ReplicationControllers – the Old Way
What’s next

Objectives

Create an nginx deployment.
Use kubectl to list information about the deployment.
Update the deployment.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured
to communicate with your cluster. If you do not already have a cluster, you can create one by
using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda
Play with Kubernetes

Your Kubernetes server must be version v1.9 or later. To check the version, enter kubectl version.

Creating and exploring an nginx deployment

You can run an application by creating a Kubernetes Deployment object, and you can describe a
Deployment in a YAML file. For example, this YAML file describes a Deployment that runs the
nginx:1.7.9 Docker image:

deployment.yaml

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods matching the template
 template: # create pods using pod definition in this template
 metadata:
 # unlike pod-nginx.yaml, the name is not included in the meta data as a unique name is
 # generated from the deployment name
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment.yaml

 ports:
 - containerPort: 80

deployment.yaml

1. Create a Deployment based on the YAML file:

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment.yaml

2. Display information about the Deployment:

kubectl describe deployment nginx-deployment

The output is similar to this:

 user@computer:~/website$ kubectl describe deployment nginx-deployment
 Name: nginx-deployment
 Namespace: default
 CreationTimestamp: Tue, 30 Aug 2016 18:11:37 -0700
 Labels: app=nginx
 Annotations: deployment.kubernetes.io/revision=1
 Selector: app=nginx
 Replicas: 2 desired | 2 updated | 2 total | 2 available | 0 unavailable
 StrategyType: RollingUpdate
 MinReadySeconds: 0
 RollingUpdateStrategy: 1 max unavailable, 1 max surge
 Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: nginx:1.7.9
 Port: 80/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
 Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
 OldReplicaSets: <none>
 NewReplicaSet: nginx-deployment-1771418926 (2/2 replicas created)
 No events.

3. List the pods created by the deployment:

kubectl get pods -l app=nginx

The output is similar to this:

 NAME READY STATUS RESTARTS AGE
 nginx-deployment-1771418926-7o5ns 1/1 Running 0 16h
 nginx-deployment-1771418926-r18az 1/1 Running 0 16h

4. Display information about a pod:

kubectl describe pod <pod-name>

where <pod-name> is the name of one of your pods.

Updating the deployment

You can update the deployment by applying a new YAML file. This YAML file specifies that the
deployment should be updated to use nginx 1.8.

deployment-update.yaml

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.8 # Update the version of nginx from 1.7.9 to 1.8
 ports:
 - containerPort: 80

1. Apply the new YAML file:

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment-update.yaml

2. Watch the deployment create pods with new names and delete the old pods:

kubectl get pods -l app=nginx

Scaling the application by increasing the replica count

You can increase the number of pods in your Deployment by applying a new YAML file. This
YAML file sets replicas to 4, which specifies that the Deployment should have four pods:

deployment-scale.yaml

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 4 # Update the replicas from 2 to 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.8
 ports:
 - containerPort: 80

1. Apply the new YAML file:

kubectl apply -f https://k8s.io/docs/tasks/run-application/deployment-scale.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment-update.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/deployment-scale.yaml

2. Verify that the Deployment has four pods:

kubectl get pods -l app=nginx

The output is similar to this:

 NAME READY STATUS RESTARTS AGE
 nginx-deployment-148880595-4zdqq 1/1 Running 0 25s
 nginx-deployment-148880595-6zgi1 1/1 Running 0 25s
 nginx-deployment-148880595-fxcez 1/1 Running 0 2m
 nginx-deployment-148880595-rwovn 1/1 Running 0 2m

Deleting a deployment

Delete the deployment by name:

kubectl delete deployment nginx-deployment

ReplicationControllers – the Old Way

The preferred way to create a replicated application is to use a Deployment, which in turn uses a
ReplicaSet. Before the Deployment and ReplicaSet were added to Kubernetes, replicated
applications were configured by using a ReplicationController.

What’s next

Learn more about Deployment objects.

file:///docs/concepts/workloads/controllers/replicationcontroller/
file:///docs/concepts/workloads/controllers/deployment/

Example: Deploying PHP Guestbook
application with Redis

This tutorial shows you how to build and deploy a simple, multi-tier web application using

Kubernetes and Docker. This example consists of the following components:

Objectives

Start up a Redis master.

Start up Redis slaves.

Start up the guestbook frontend.

Expose and view the Frontend Service.

Clean up.

Before you begin

Objectives

Before you begin

Start up the Redis Master

Creating the Redis Master Deployment

Creating the Redis Master Service

Start up the Redis Slaves

Creating the Redis Slave Deployment

Creating the Redis Slave Service

Set up and Expose the Guestbook Frontend

Creating the Guestbook Frontend Deployment

Creating the Frontend Service

Viewing the Frontend Service via NodePortNodePort

Viewing the Frontend Service via LoadBalancerLoadBalancer

Scale the Web Frontend

Cleaning up

What’s next

https://www.docker.com/

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Download the following configuration files:

1. redis-master-deployment.yaml

2. redis-master-service.yaml

3. redis-slave-deployment.yaml

4. redis-slave-service.yaml

5. frontend-deployment.yaml

6. frontend-service.yaml

Start up the Redis Master

The guestbook application uses Redis to store its data. It writes its data to a Redis master

instance and reads data from multiple Redis slave instances.

Creating the Redis Master Deployment

The manifest file, included below, specifies a Deployment controller that runs a single replica

Redis master Pod.

1. Launch a terminal window in the directory you downloaded the manifest files.

2. Apply the Redis Master Deployment from the redis-master-deployment.yamlredis-master-deployment.yaml file:

kubectl apply -f redis-master-deployment.yamlkubectl apply -f redis-master-deployment.yaml

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/tutorials/stateless-application/guestbook/redis-master-deployment.yaml
file:///docs/tutorials/stateless-application/guestbook/redis-master-service.yaml
file:///docs/tutorials/stateless-application/guestbook/redis-slave-deployment.yaml
file:///docs/tutorials/stateless-application/guestbook/redis-slave-service.yaml
file:///docs/tutorials/stateless-application/guestbook/frontend-deployment.yaml
file:///docs/tutorials/stateless-application/guestbook/frontend-service.yaml

guestbook/redis-master-deployment.yamlguestbook/redis-master-deployment.yaml

1. Query the list of Pods to verify that the Redis Master Pod is running:

The response should be similar to this:

2. Run the following command to view the logs from the Redis Master Pod:

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: redis-masterredis-master

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: redisredis

 rolerole:: mastermaster

 tiertier:: backendbackend

 replicasreplicas:: 11

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: redisredis

 rolerole:: mastermaster

 tiertier:: backendbackend

 specspec::

 containerscontainers::

 -- namename:: mastermaster

 imageimage:: k8s.gcr.io/redis:e2ek8s.gcr.io/redis:e2e # or just image: redis# or just image: redis

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 portsports::

 -- containerPortcontainerPort:: 63796379

kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

redis-master-1068406935-3lswp 1/1 Running 0 28sredis-master-1068406935-3lswp 1/1 Running 0 28s

kubectl logs -f POD-NAMEkubectl logs -f POD-NAME

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/guestbook/redis-master-deployment.yaml

Note: Replace POD-NAME with the name of your Pod.

Creating the Redis Master Service

The guestbook applications needs to communicate to the Redis master to write its data. You

need to apply a Service to proxy the traffic to the Redis master Pod. A Service defines a policy

to access the Pods.

1. Apply the Redis Master Service from the following redis-master-service.yamlredis-master-service.yaml file:

guestbook/redis-master-service.yamlguestbook/redis-master-service.yaml

Note: This manifest file creates a Service named redis-masterredis-master with a set of labels

that match the labels previously defined, so the Service routes network traffic to the

Redis master Pod.

1. Query the list of Services to verify that the Redis Master Service is running:

kubectl apply -f redis-master-service.yamlkubectl apply -f redis-master-service.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: redis-masterredis-master

 labelslabels::

 appapp:: redisredis

 rolerole:: mastermaster

 tiertier:: backendbackend

specspec::

 portsports::

 -- portport:: 63796379

 targetPorttargetPort:: 63796379

 selectorselector::

 appapp:: redisredis

 rolerole:: mastermaster

 tiertier:: backendbackend

file:///docs/concepts/services-networking/service/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/guestbook/redis-master-service.yaml

The response should be similar to this:

Start up the Redis Slaves

Although the Redis master is a single pod, you can make it highly available to meet traffic

demands by adding replica Redis slaves.

Creating the Redis Slave Deployment

Deployments scale based off of the configurations set in the manifest file. In this case, the

Deployment object specifies two replicas.

If there are not any replicas running, this Deployment would start the two replicas on your

container cluster. Conversely, if there are more than two replicas are running, it would scale

down until two replicas are running.

1. Apply the Redis Slave Deployment from the redis-slave-deployment.yamlredis-slave-deployment.yaml file:

guestbook/redis-slave-deployment.yamlguestbook/redis-slave-deployment.yaml

kubectl get servicekubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 1mkubernetes 10.0.0.1 <none> 443/TCP 1m

redis-master 10.0.0.151 <none> 6379/TCP 8sredis-master 10.0.0.151 <none> 6379/TCP 8s

kubectl apply -f redis-slave-deployment.yamlkubectl apply -f redis-slave-deployment.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/guestbook/redis-slave-deployment.yaml

guestbook/redis-slave-deployment.yamlguestbook/redis-slave-deployment.yaml

1. Query the list of Pods to verify that the Redis Slave Pods are running:

The response should be similar to this:

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: redis-slaveredis-slave

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: redisredis

 rolerole:: slaveslave

 tiertier:: backendbackend

 replicasreplicas:: 22

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: redisredis

 rolerole:: slaveslave

 tiertier:: backendbackend

 specspec::

 containerscontainers::

 -- namename:: slaveslave

 imageimage:: gcr.io/google_samples/gb-redisslave:v1gcr.io/google_samples/gb-redisslave:v1

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 envenv::

 -- namename:: GET_HOSTS_FROMGET_HOSTS_FROM

 valuevalue:: dnsdns

 # Using `GET_HOSTS_FROM=dns` requires your cluster to# Using `GET_HOSTS_FROM=dns` requires your cluster to

 # provide a dns service. As of Kubernetes 1.3, DNS is a built-in# provide a dns service. As of Kubernetes 1.3, DNS is a built-in

 # service launched automatically. However, if the cluster you are using# service launched automatically. However, if the cluster you are using

 # does not have a built-in DNS service, you can instead# does not have a built-in DNS service, you can instead

 # access an environment variable to find the master# access an environment variable to find the master

 # service's host. To do so, comment out the 'value: dns' line above, and# service's host. To do so, comment out the 'value: dns' line above, and

 # uncomment the line below:# uncomment the line below:

 # value: env# value: env

 portsports::

 -- containerPortcontainerPort:: 63796379

kubectl get podskubectl get pods

Creating the Redis Slave Service

The guestbook application needs to communicate to Redis slaves to read data. To make the

Redis slaves discoverable, you need to set up a Service. A Service provides transparent load

balancing to a set of Pods.

1. Apply the Redis Slave Service from the following redis-slave-service.yamlredis-slave-service.yaml file:

guestbook/redis-slave-service.yamlguestbook/redis-slave-service.yaml

1. Query the list of Services to verify that the Redis Slave Service is running:

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

redis-master-1068406935-3lswp 1/1 Running 0 1mredis-master-1068406935-3lswp 1/1 Running 0 1m

redis-slave-2005841000-fpvqc 0/1 ContainerCreating 0 6sredis-slave-2005841000-fpvqc 0/1 ContainerCreating 0 6s

redis-slave-2005841000-phfv9 0/1 ContainerCreating 0 6sredis-slave-2005841000-phfv9 0/1 ContainerCreating 0 6s

kubectl apply -f redis-slave-service.yamlkubectl apply -f redis-slave-service.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: redis-slaveredis-slave

 labelslabels::

 appapp:: redisredis

 rolerole:: slaveslave

 tiertier:: backendbackend

specspec::

 portsports::

 -- portport:: 63796379

 selectorselector::

 appapp:: redisredis

 rolerole:: slaveslave

 tiertier:: backendbackend

kubectl get serviceskubectl get services

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/guestbook/redis-slave-service.yaml

The response should be similar to this:

Set up and Expose the Guestbook Frontend

The guestbook application has a web frontend serving the HTTP requests written in PHP. It is

configured to connect to the redis-masterredis-master Service for write requests and the redis-slaveredis-slave

service for Read requests.

Creating the Guestbook Frontend Deployment

1. Apply the frontend Deployment from the following frontend-deployment.yamlfrontend-deployment.yaml file:

guestbook/frontend-deployment.yamlguestbook/frontend-deployment.yaml

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 2mkubernetes 10.0.0.1 <none> 443/TCP 2m

redis-master 10.0.0.151 <none> 6379/TCP 1mredis-master 10.0.0.151 <none> 6379/TCP 1m

redis-slave 10.0.0.223 <none> 6379/TCP 6sredis-slave 10.0.0.223 <none> 6379/TCP 6s

kubectl apply -f frontend-deployment.yamlkubectl apply -f frontend-deployment.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/guestbook/frontend-deployment.yaml

guestbook/frontend-deployment.yamlguestbook/frontend-deployment.yaml

1. Query the list of Pods to verify that the three frontend replicas are running:

The response should be similar to this:

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: frontendfrontend

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

 replicasreplicas:: 33

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

 specspec::

 containerscontainers::

 -- namename:: php-redisphp-redis

 imageimage:: gcr.io/google-samples/gb-frontend:v4gcr.io/google-samples/gb-frontend:v4

 resourcesresources::

 requestsrequests::

 cpucpu:: 100m100m

 memorymemory:: 100Mi100Mi

 envenv::

 -- namename:: GET_HOSTS_FROMGET_HOSTS_FROM

 valuevalue:: dnsdns

 # Using `GET_HOSTS_FROM=dns` requires your cluster to# Using `GET_HOSTS_FROM=dns` requires your cluster to

 # provide a dns service. As of Kubernetes 1.3, DNS is a built-in# provide a dns service. As of Kubernetes 1.3, DNS is a built-in

 # service launched automatically. However, if the cluster you are using# service launched automatically. However, if the cluster you are using

 # does not have a built-in DNS service, you can instead# does not have a built-in DNS service, you can instead

 # access an environment variable to find the master# access an environment variable to find the master

 # service's host. To do so, comment out the 'value: dns' line above, and# service's host. To do so, comment out the 'value: dns' line above, and

 # uncomment the line below:# uncomment the line below:

 # value: env# value: env

 portsports::

 -- containerPortcontainerPort:: 8080

kubectl get pods -l app=guestbook -l tier=frontendkubectl get pods -l app=guestbook -l tier=frontend

Creating the Frontend Service

The redis-slaveredis-slave and redis-masterredis-master Services you applied are only accessible within the

container cluster because the default type for a Service is ClusterIP. ClusterIPClusterIP provides a

single IP address for the set of Pods the Service is pointing to. This IP address is accessible

only within the cluster.

If you want guests to be able to access your guestbook, you must configure the frontend

Service to be externally visible, so a client can request the Service from outside the container

cluster. Minikube can only expose Services through NodePortNodePort .

Note: Some cloud providers, like Google Compute Engine or Google Kubernetes Engine,

support external load balancers. If your cloud provider supports load balancers and you

want to use it, simply delete or comment out

type:type:

NodePortNodePort , and uncomment

type: LoadBalancertype: LoadBalancer .

1. Apply the frontend Service from the following frontend-service.yamlfrontend-service.yaml file:

guestbook/frontend-service.yamlguestbook/frontend-service.yaml

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

frontend-3823415956-dsvc5 1/1 Running 0 54sfrontend-3823415956-dsvc5 1/1 Running 0 54s

frontend-3823415956-k22zn 1/1 Running 0 54sfrontend-3823415956-k22zn 1/1 Running 0 54s

frontend-3823415956-w9gbt 1/1 Running 0 54sfrontend-3823415956-w9gbt 1/1 Running 0 54s

kubectl apply -f frontend-service.yamlkubectl apply -f frontend-service.yaml

file:///docs/concepts/services-networking/service/#publishing-services---service-types
https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateless-application/guestbook/frontend-service.yaml

guestbook/frontend-service.yamlguestbook/frontend-service.yaml

1. Query the list of Services to verify that the frontend Service is running:

The response should be similar to this:

Viewing the Frontend Service via NodePort

If you deployed this application to Minikube or a local cluster, you need to find the IP address to

view your Guestbook.

1. Run the following command to get the IP address for the frontend Service.

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: frontendfrontend

 labelslabels::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

specspec::

 # comment or delete the following line if you want to use a LoadBalancer# comment or delete the following line if you want to use a LoadBalancer

 typetype:: NodePortNodePort

 # if your cluster supports it, uncomment the following to automatically create# if your cluster supports it, uncomment the following to automatically create

 # an external load-balanced IP for the frontend service.# an external load-balanced IP for the frontend service.

 # type: LoadBalancer# type: LoadBalancer

 portsports::

 -- portport:: 8080

 selectorselector::

 appapp:: guestbookguestbook

 tiertier:: frontendfrontend

kubectl get services kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend 10.0.0.112 <nodes> 80:31323/TCP 6sfrontend 10.0.0.112 <nodes> 80:31323/TCP 6s

kubernetes 10.0.0.1 <none> 443/TCP 4mkubernetes 10.0.0.1 <none> 443/TCP 4m

redis-master 10.0.0.151 <none> 6379/TCP 2mredis-master 10.0.0.151 <none> 6379/TCP 2m

redis-slave 10.0.0.223 <none> 6379/TCP 1mredis-slave 10.0.0.223 <none> 6379/TCP 1m

minikube service frontend --urlminikube service frontend --url

The response should be similar to this:

2. Copy the IP address, and load the page in your browser to view your guestbook.

Viewing the Frontend Service via LoadBalancer

If you deployed the frontend-service.yamlfrontend-service.yaml manifest with type: LoadBalancerLoadBalancer you need to

find the IP address to view your Guestbook.

1. Run the following command to get the IP address for the frontend Service.

The response should be similar to this:

2. Copy the External IP address, and load the page in your browser to view your guestbook.

Scale the Web Frontend

Scaling up or down is easy because your servers are defined as a Service that uses a

Deployment controller.

1. Run the following command to scale up the number of frontend Pods:

2. Query the list of Pods to verify the number of frontend Pods running:

http://192.168.99.100:31323http://192.168.99.100:31323

kubectl get service frontendkubectl get service frontend

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

frontend 10.51.242.136 109.197.92.229 80:32372/TCP 1mfrontend 10.51.242.136 109.197.92.229 80:32372/TCP 1m

kubectl scale deployment frontend --replicas=5kubectl scale deployment frontend --replicas=5

kubectl get podskubectl get pods

The response should look similar to this:

3. Run the following command to scale down the number of frontend Pods:

4. Query the list of Pods to verify the number of frontend Pods running:

The response should look similar to this:

Cleaning up

Deleting the Deployments and Services also deletes any running Pods. Use labels to delete

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

frontend-3823415956-70qj5 1/1 Running 0 5sfrontend-3823415956-70qj5 1/1 Running 0 5s

frontend-3823415956-dsvc5 1/1 Running 0 54mfrontend-3823415956-dsvc5 1/1 Running 0 54m

frontend-3823415956-k22zn 1/1 Running 0 54mfrontend-3823415956-k22zn 1/1 Running 0 54m

frontend-3823415956-w9gbt 1/1 Running 0 54mfrontend-3823415956-w9gbt 1/1 Running 0 54m

frontend-3823415956-x2pld 1/1 Running 0 5sfrontend-3823415956-x2pld 1/1 Running 0 5s

redis-master-1068406935-3lswp 1/1 Running 0 56mredis-master-1068406935-3lswp 1/1 Running 0 56m

redis-slave-2005841000-fpvqc 1/1 Running 0 55mredis-slave-2005841000-fpvqc 1/1 Running 0 55m

redis-slave-2005841000-phfv9 1/1 Running 0 55mredis-slave-2005841000-phfv9 1/1 Running 0 55m

kubectl scale deployment frontend --replicas=2kubectl scale deployment frontend --replicas=2

kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

frontend-3823415956-k22zn 1/1 Running 0 1hfrontend-3823415956-k22zn 1/1 Running 0 1h

frontend-3823415956-w9gbt 1/1 Running 0 1hfrontend-3823415956-w9gbt 1/1 Running 0 1h

redis-master-1068406935-3lswp 1/1 Running 0 1hredis-master-1068406935-3lswp 1/1 Running 0 1h

redis-slave-2005841000-fpvqc 1/1 Running 0 1hredis-slave-2005841000-fpvqc 1/1 Running 0 1h

redis-slave-2005841000-phfv9 1/1 Running 0 1hredis-slave-2005841000-phfv9 1/1 Running 0 1h

multiple resources with one command.

1. Run the following commands to delete all Pods, Deployments, and Services.

The responses should be:

2. Query the list of Pods to verify that no Pods are running:

The response should be this:

What’s next

Complete the Kubernetes Basics Interactive Tutorials

Use Kubernetes to create a blog using Persistent Volumes for MySQL and Wordpress

Read more about connecting applications

Read more about Managing Resources

kubectl delete deployment -l app=rediskubectl delete deployment -l app=redis

kubectl delete service -l app=rediskubectl delete service -l app=redis

kubectl delete deployment -l app=guestbookkubectl delete deployment -l app=guestbook

kubectl delete service -l app=guestbookkubectl delete service -l app=guestbook

deployment "redis-master" deleteddeployment "redis-master" deleted

deployment "redis-slave" deleteddeployment "redis-slave" deleted

service "redis-master" deletedservice "redis-master" deleted

service "redis-slave" deletedservice "redis-slave" deleted

deployment "frontend" deleted deployment "frontend" deleted

service "frontend" deletedservice "frontend" deleted

kubectl get podskubectl get pods

No resources found.No resources found.

file:///docs/tutorials/kubernetes-basics/
file:///docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/#visit-your-new-wordpress-blog
file:///docs/concepts/services-networking/connect-applications-service/
file:///docs/concepts/cluster-administration/manage-deployment/#using-labels-effectively

Use a Service to Access an Application in a Cluster

This page shows how to create a Kubernetes Service object that external clients can use to access an
application running in a cluster. The Service provides load balancing for an application that has two running
instances.

Objectives
Before you begin
Creating a service for an application running in two pods
Using a service configuration file
Cleaning up
What’s next

Objectives

Run two instances of a Hello World application.
Create a Service object that exposes a node port.
Use the Service object to access the running application.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate
with your cluster. If you do not already have a cluster, you can create one by using Minikube, or you can use one
of these Kubernetes playgrounds:

Katacoda
Play with Kubernetes

To check the version, enter kubectl version.

Creating a service for an application running in two pods

1. Run a Hello World application in your cluster:

kubectl run hello-world --replicas=2 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080

The preceding command creates a Deployment object and an associated ReplicaSet object. The
ReplicaSet has two Pods, each of which runs the Hello World application.

2. Display information about the Deployment:

kubectl get deployments hello-world
kubectl describe deployments hello-world

3. Display information about your ReplicaSet objects:

kubectl get replicasets
kubectl describe replicasets

4. Create a Service object that exposes the deployment:

kubectl expose deployment hello-world --type=NodePort --name=example-service

5. Display information about the Service:

kubectl describe services example-service

The output is similar to this:

 Name: example-service
 Namespace: default
 Labels: run=load-balancer-example
 Annotations: <none>
 Selector: run=load-balancer-example
 Type: NodePort
 IP: 10.32.0.16
 Port: <unset> 8080/TCP

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/pods/pod/

 TargetPort: 8080/TCP
 NodePort: <unset> 31496/TCP
 Endpoints: 10.200.1.4:8080,10.200.2.5:8080
 Session Affinity: None
 Events: <none>

Make a note of the NodePort value for the service. For example, in the preceding output, the NodePort
value is 31496.

6. List the pods that are running the Hello World application:

kubectl get pods --selector="run=load-balancer-example" --output=wide

The output is similar to this:

 NAME READY STATUS ... IP NODE
 hello-world-2895499144-bsbk5 1/1 Running ... 10.200.1.4 worker1
 hello-world-2895499144-m1pwt 1/1 Running ... 10.200.2.5 worker2

7. Get the public IP address of one of your nodes that is running a Hello World pod. How you get this address
depends on how you set up your cluster. For example, if you are using Minikube, you can see the node
address by running kubectl cluster-info. If you are using Google Compute Engine instances, you can use the
gcloud compute instances list command to see the public addresses of your nodes. For more information about
this command, see the GCE documentation.

8. On your chosen node, create a firewall rule that allows TCP traffic on your node port. For example, if your
Service has a NodePort value of 31568, create a firewall rule that allows TCP traffic on port 31568.
Different cloud providers offer different ways of configuring firewall rules. See the GCE documentation on
firewall rules, for example.

9. Use the node address and node port to access the Hello World application:

curl http://<public-node-ip>:<node-port>

where <public-node-ip> is the public IP address of your node, and <node-port> is the NodePort value for your
service.

The response to a successful request is a hello message:

 Hello Kubernetes!

Using a service configuration file

As an alternative to using kubectl expose, you can use a service configuration file to create a Service.

Cleaning up

To delete the Service, enter this command:

kubectl delete services example-service

To delete the Deployment, the ReplicaSet, and the Pods that are running the Hello World application, enter this
command:

kubectl delete deployment hello-world

What’s next

Learn more about connecting applications with services.

https://cloud.google.com/sdk/gcloud/reference/compute/instances/list
https://cloud.google.com/compute/docs/vpc/firewalls
file:///docs/concepts/services-networking/service/
file:///docs/concepts/services-networking/connect-applications-service/

Exposing an External IP Address to
Access an Application in a Cluster

This page shows how to create a Kubernetes Service object that exposes an external IP

address.

Objectives

Run five instances of a Hello World application.

Create a Service object that exposes an external IP address.

Use the Service object to access the running application.

Before you begin

Install kubectl.

Use a cloud provider like Google Kubernetes Engine or Amazon Web Services to create a

Kubernetes cluster. This tutorial creates an external load balancer, which requires a cloud

provider.

Configure kubectlkubectl to communicate with your Kubernetes API server. For instructions,

see the documentation for your cloud provider.

Creating a service for an application running in five
pods

Objectives

Before you begin

Creating a service for an application running in five pods

Cleaning up

What’s next

file:///docs/tasks/tools/install-kubectl/
file:///docs/tasks/access-application-cluster/create-external-load-balancer/

1. Run a Hello World application in your cluster:

The preceding command creates a Deployment object and an associated ReplicaSet

object. The ReplicaSet has five Pods, each of which runs the Hello World application.

2. Display information about the Deployment:

3. Display information about your ReplicaSet objects:

4. Create a Service object that exposes the deployment:

5. Display information about the Service:

The output is similar to this:

Note: If the external IP address is shown as <pending>, wait for a minute and enter the

same command again.

kubectl run hello-world --replicas=5 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080kubectl run hello-world --replicas=5 --labels="run=load-balancer-example" --image=gcr.io/google-samples/node-hello:1.0 --port=8080

kubectl get deployments hello-worldkubectl get deployments hello-world

kubectl describe deployments hello-worldkubectl describe deployments hello-world

kubectl get replicasetskubectl get replicasets

kubectl describe replicasetskubectl describe replicasets

kubectl expose deployment hello-world --type=LoadBalancer --name=my-servicekubectl expose deployment hello-world --type=LoadBalancer --name=my-service

kubectl get services my-servicekubectl get services my-service

 NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

 my-service 10.3.245.137 104.198.205.71 8080/TCP 54s my-service 10.3.245.137 104.198.205.71 8080/TCP 54s

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/concepts/workloads/controllers/replicaset/
file:///docs/concepts/workloads/pods/pod/

6. Display detailed information about the Service:

The output is similar to this:

Make a note of the external IP address (LoadBalancer IngressLoadBalancer Ingress) exposed by your

service. In this example, the external IP address is 104.198.205.71. Also note the value of

PortPort and NodePortNodePort . In this example, the PortPort is 8080 and the NodePortNodePort is 32377.

7. In the preceding output, you can see that the service has several endpoints:

10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more. These are internal addresses of the

pods that are running the Hello World application. To verify these are pod addresses, enter

this command:

The output is similar to this:

kubectl describe services my-servicekubectl describe services my-service

 Name: my-service Name: my-service

 Namespace: default Namespace: default

 Labels: run=load-balancer-example Labels: run=load-balancer-example

 Annotations: <none> Annotations: <none>

 Selector: run=load-balancer-example Selector: run=load-balancer-example

 Type: LoadBalancer Type: LoadBalancer

 IP: 10.3.245.137 IP: 10.3.245.137

 LoadBalancer Ingress: 104.198.205.71 LoadBalancer Ingress: 104.198.205.71

 Port: <unset> 8080/TCP Port: <unset> 8080/TCP

 NodePort: <unset> 32377/TCP NodePort: <unset> 32377/TCP

 Endpoints: 10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more... Endpoints: 10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more...

 Session Affinity: None Session Affinity: None

 Events: <none> Events: <none>

kubectl get pods --output=widekubectl get pods --output=wide

8. Use the external IP address (LoadBalancer IngressLoadBalancer Ingress) to access the Hello World

application:

where <external-ip><external-ip> is the external IP address (LoadBalancer IngressLoadBalancer Ingress) of your

Service, and <port><port> is the value of NodePortNodePort in your Service description. If you are using

minikube, typing

minikube service my-minikube service my-

serviceservice will automatically open the Hello World

application in a browser.

The response to a successful request is a hello message:

Cleaning up

To delete the Service, enter this command:

To delete the Deployment, the ReplicaSet, and the Pods that are running the Hello World

application, enter this command:

 NAME ... IP NODE NAME ... IP NODE

 hello-world-2895499144-1jaz9 ... 10.0.1.6 gke-cluster-1-default-pool-e0b8d269-1afc hello-world-2895499144-1jaz9 ... 10.0.1.6 gke-cluster-1-default-pool-e0b8d269-1afc

 hello-world-2895499144-2e5uh ... 10.0.1.8 gke-cluster-1-default-pool-e0b8d269-1afc hello-world-2895499144-2e5uh ... 10.0.1.8 gke-cluster-1-default-pool-e0b8d269-1afc

 hello-world-2895499144-9m4h1 ... 10.0.0.6 gke-cluster-1-default-pool-e0b8d269-5v7a hello-world-2895499144-9m4h1 ... 10.0.0.6 gke-cluster-1-default-pool-e0b8d269-5v7a

 hello-world-2895499144-o4z13 ... 10.0.1.7 gke-cluster-1-default-pool-e0b8d269-1afc hello-world-2895499144-o4z13 ... 10.0.1.7 gke-cluster-1-default-pool-e0b8d269-1afc

 hello-world-2895499144-segjf ... 10.0.2.5 gke-cluster-1-default-pool-e0b8d269-cpuc hello-world-2895499144-segjf ... 10.0.2.5 gke-cluster-1-default-pool-e0b8d269-cpuc

curl http://<external-ip>:<port>curl http://<external-ip>:<port>

 Hello Kubernetes! Hello Kubernetes!

kubectl delete services my-servicekubectl delete services my-service

kubectl delete deployment hello-worldkubectl delete deployment hello-world

What’s next

Learn more about connecting applications with services .

file:///docs/concepts/services-networking/connect-applications-service/

StatefulSet Basics

This tutorial provides an introduction to managing applications with StatefulSets. It

demonstrates how to create, delete, scale, and update the Pods of StatefulSets.

Objectives

StatefulSets are intended to be used with stateful applications and distributed systems.

However, the administration of stateful applications and distributed systems on Kubernetes is

a broad, complex topic. In order to demonstrate the basic features of a StatefulSet, and not to

conflate the former topic with the latter, you will deploy a simple web application using a

Objectives

Before you begin

Creating a StatefulSet

Ordered Pod Creation

Pods in a StatefulSet

Examining the Pod’s Ordinal Index

Using Stable Network Identities

Writing to Stable Storage

Scaling a StatefulSet

Scaling Up

Scaling Down

Ordered Pod Termination

Updating StatefulSets

Rolling Update

Staging an Update

Rolling Out a Canary

Phased Roll Outs

On Delete

Deleting StatefulSets

Non-Cascading Delete

Cascading Delete

Pod Management Policy

OrderedReady Pod Management

Parallel Pod Management

Cleaning up

file:///docs/concepts/workloads/controllers/statefulset/

StatefulSet.

After this tutorial, you will be familiar with the following.

How to create a StatefulSet

How a StatefulSet manages its Pods

How to delete a StatefulSet

How to scale a StatefulSet

How to update a StatefulSet’s Pods

Before you begin

Before you begin this tutorial, you should familiarize yourself with the following Kubernetes

concepts.

Pods

Cluster DNS

Headless Services

PersistentVolumes

PersistentVolume Provisioning

StatefulSets

kubectl CLI

This tutorial assumes that your cluster is configured to dynamically provision

PersistentVolumes. If your cluster is not configured to do so, you will have to manually

provision two 1 GiB volumes prior to starting this tutorial.

Creating a StatefulSet

Begin by creating a StatefulSet using the example below. It is similar to the example presented

in the StatefulSets concept. It creates a Headless Service, nginxnginx , to publish the IP addresses

of Pods in the StatefulSet, webweb .

file:///docs/user-guide/pods/single-container/
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/concepts/services-networking/service/#headless-services
file:///docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/user-guide/kubectl/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/services-networking/service/#headless-services

web.yamlweb.yaml

Download the example above, and save it to a file named web.yamlweb.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 appapp:: nginxnginx

specspec::

 portsports::

 -- portport:: 8080

 namename:: webweb

 clusterIPclusterIP:: NoneNone

 selectorselector::

 appapp:: nginxnginx

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: StatefulSetStatefulSet

metadatametadata::

 namename:: webweb

specspec::

 serviceNameserviceName:: ""nginx"nginx"

 replicasreplicas:: 22

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

 portsports::

 -- containerPortcontainerPort:: 8080

 namename:: webweb

 volumeMountsvolumeMounts::

 -- namename:: wwwwww

 mountPathmountPath:: /usr/share/nginx/html/usr/share/nginx/html

 volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: wwwwww

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 resourcesresources::

 requestsrequests::

 storagestorage:: 1Gi1Gi

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/web.yaml

You will need to use two terminal windows. In the first terminal, use

kubectlkubectl

getget to watch

the creation of the StatefulSet’s Pods.

In the second terminal, use

kubectlkubectl

createcreate to create the Headless Service and StatefulSet

defined in web.yamlweb.yaml .

The command above creates two Pods, each running an NGINX webserver. Get the nginxnginx

Service and the webweb StatefulSet to verify that they were created successfully.

Ordered Pod Creation

For a StatefulSet with N replicas, when Pods are being deployed, they are created sequentially,

in order from {0..N-1}. Examine the output of the

kubectlkubectl

getget command in the first terminal.

Eventually, the output will look like the example below.

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

kubectl create kubectl create -f-f web.yaml web.yaml

service service "nginx""nginx" created created

statefulset statefulset "web""web" created created

kubectl get service nginxkubectl get service nginx

NAME CLUSTER-IP EXTERNAL-IP PORTNAME CLUSTER-IP EXTERNAL-IP PORT((SS)) AGE AGE

nginx None <none> 80/TCP 12snginx None <none> 80/TCP 12s

kubectl get statefulset webkubectl get statefulset web

NAME DESIRED CURRENT AGENAME DESIRED CURRENT AGE

web 2 1 20sweb 2 1 20s

file:///docs/user-guide/kubectl/v1.10/#get
file:///docs/user-guide/kubectl/v1.10/#create
https://www.nginx.com

Notice that the web-1web-1 Pod is not launched until the web-0web-0 Pod is Running and Ready.

Pods in a StatefulSet

Pods in a StatefulSet have a unique ordinal index and a stable network identity.

Examining the Pod’s Ordinal Index

Get the StatefulSet’s Pods.

As mentioned in the StatefulSets concept, the Pods in a StatefulSet have a sticky, unique

identity. This identity is based on a unique ordinal index that is assigned to each Pod by the

StatefulSet controller. The Pods’ names take the form

<statefulset name>-<ordinal<statefulset name>-<ordinal

index>index> . Since the webweb StatefulSet has two replicas, it

creates two Pods, web-0web-0 and web-1web-1 .

Using Stable Network Identities

Each Pod has a stable hostname based on its ordinal index. Use kubectl execkubectl exec to execute

the hostnamehostname command in each Pod.

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

web-0 1/1 Running 0 19sweb-0 1/1 Running 0 19s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 ContainerCreating 0 0sweb-1 0/1 ContainerCreating 0 0s

web-1 1/1 Running 0 18sweb-1 1/1 Running 0 18s

kubectl get pods kubectl get pods -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 1mweb-0 1/1 Running 0 1m

web-1 1/1 Running 0 1mweb-1 1/1 Running 0 1m

file:///docs/user-guide/pod-states
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/user-guide/kubectl/v1.10/#exec

Use

kubectlkubectl

runrun to execute a container that provides the nslookupnslookup command from the

dnsutilsdnsutils package. Using nslookupnslookup on the Pods’ hostnames, you can examine their in-

cluster DNS addresses.

The CNAME of the headless service points to SRV records (one for each Pod that is Running

and Ready). The SRV records point to A record entries that contain the Pods’ IP addresses.

In one terminal, watch the StatefulSet’s Pods.

In a second terminal, use

kubectlkubectl

deletedelete to delete all the Pods in the StatefulSet.

Wait for the StatefulSet to restart them, and for both Pods to transition to Running and Ready.

for for i i in in 0 10 1;; do do kubectl kubectl exec exec web-web-ii ---- sh sh -c-c 'hostname''hostname';; donedone

web-0web-0

web-1web-1

kubectl run kubectl run -i-i --tty--tty --image--image busybox dns-test busybox dns-test --restart--restart==Never Never --rm--rm /bin/sh /bin/sh

nslookup web-0.nginxnslookup web-0.nginx

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-0.nginxName: web-0.nginx

Address 1: 10.244.1.6Address 1: 10.244.1.6

nslookup web-1.nginxnslookup web-1.nginx

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-1.nginxName: web-1.nginx

Address 1: 10.244.2.6Address 1: 10.244.2.6

kubectl get pod kubectl get pod -w-w -l-l appapp==nginxnginx

kubectl delete pod kubectl delete pod -l-l appapp==nginxnginx

pod pod "web-0""web-0" deleted deleted

pod pod "web-1""web-1" deleted deleted

file:///docs/user-guide/kubectl/v1.10/#run
file:///docs/user-guide/kubectl/v1.10/#delete

Use kubectl execkubectl exec and

kubectlkubectl

runrun to view the Pods hostnames and in-cluster DNS

entries.

The Pods’ ordinals, hostnames, SRV records, and A record names have not changed, but the IP

addresses associated with the Pods may have changed. In the cluster used for this tutorial,

they have. This is why it is important not to configure other applications to connect to Pods in

a StatefulSet by IP address.

If you need to find and connect to the active members of a StatefulSet, you should query the

CNAME of the Headless Service (nginx.default.svc.cluster.localnginx.default.svc.cluster.local). The SRV records

associated with the CNAME will contain only the Pods in the StatefulSet that are Running and

Ready.

If your application already implements connection logic that tests for liveness and readiness,

kubectl get pod kubectl get pod -w-w -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 2sweb-0 1/1 Running 0 2s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 ContainerCreating 0 0sweb-1 0/1 ContainerCreating 0 0s

web-1 1/1 Running 0 34sweb-1 1/1 Running 0 34s

for for i i in in 0 10 1;; do do kubectl kubectl exec exec web-web-ii ---- sh sh -c-c 'hostname''hostname';; donedone

web-0web-0

web-1web-1

kubectl run kubectl run -i-i --tty--tty --image--image busybox dns-test busybox dns-test --restart--restart==Never Never --rm--rm /bin/sh /bin/sh

nslookup web-0.nginxnslookup web-0.nginx

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-0.nginxName: web-0.nginx

Address 1: 10.244.1.7Address 1: 10.244.1.7

nslookup web-1.nginxnslookup web-1.nginx

Server: 10.0.0.10Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.localAddress 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: web-1.nginxName: web-1.nginx

Address 1: 10.244.2.8Address 1: 10.244.2.8

you can use the SRV records of the Pods (web-0.nginx.default.svc.cluster.localweb-0.nginx.default.svc.cluster.local ,

web-1.nginx.default.svc.cluster.localweb-1.nginx.default.svc.cluster.local), as they are stable, and your application will be

able to discover the Pods’ addresses when they transition to Running and Ready.

Writing to Stable Storage

Get the PersistentVolumeClaims for web-0web-0 and web-1web-1 .

The StatefulSet controller created two PersistentVolumeClaims that are bound to two

PersistentVolumes. As the cluster used in this tutorial is configured to dynamically provision

PersistentVolumes, the PersistentVolumes were created and bound automatically.

The NGINX webservers, by default, will serve an index file at

/usr/share/nginx/html/index.html/usr/share/nginx/html/index.html . The volumeMountsvolumeMounts field in the StatefulSets specspec

ensures that the /usr/share/nginx/html/usr/share/nginx/html directory is backed by a PersistentVolume.

Write the Pods’ hostnames to their index.htmlindex.html files and verify that the NGINX webservers

serve the hostnames.

Note, if you instead see 403 Forbidden responses for the above curl command, you will need

to fix the permissions of the directory mounted by the volumeMountsvolumeMounts (due to a bug when

using hostPath volumes) with:

before retrying the curl command above.

kubectl get pvc kubectl get pvc -l-l appapp==nginxnginx

NAME STATUS VOLUME CAPACITY ACCESSMODES AGENAME STATUS VOLUME CAPACITY ACCESSMODES AGE

www-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO 48swww-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO 48s

www-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO 48swww-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO 48s

for for i i in in 0 10 1;; do do kubectl kubectl exec exec web-web-ii ---- sh sh -c-c 'echo $(hostname) > /usr/share/nginx/html/index.html''echo $(hostname) > /usr/share/nginx/html/index.html'

for for i i in in 0 10 1;; do do kubectl kubectl execexec -it-it web- web-ii ---- curl localhost curl localhost;; donedone

web-0web-0

web-1web-1

for for i i in in 0 10 1;; do do kubectl kubectl exec exec web-web-ii ---- chmod 755 /usr/share/nginx/html chmod 755 /usr/share/nginx/html;; donedone

file:///docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes/kubernetes/issues/2630

In one terminal, watch the StatefulSet’s Pods.

In a second terminal, delete all of the StatefulSet’s Pods.

Examine the output of the

kubectlkubectl

getget command in the first terminal, and wait for all of the

Pods to transition to Running and Ready.

Verify the web servers continue to serve their hostnames.

Even though web-0web-0 and web-1web-1 were rescheduled, they continue to serve their hostnames

because the PersistentVolumes associated with their PersistentVolumeClaims are remounted

to their volumeMountsvolumeMounts . No matter what node web-0web-0 and web-1web-1 are scheduled on, their

PersistentVolumes will be mounted to the appropriate mount points.

Scaling a StatefulSet

Scaling a StatefulSet refers to increasing or decreasing the number of replicas. This is

kubectl get pod kubectl get pod -w-w -l-l appapp==nginxnginx

kubectl delete pod kubectl delete pod -l-l appapp==nginxnginx

pod pod "web-0""web-0" deleted deleted

pod pod "web-1""web-1" deleted deleted

kubectl get pod kubectl get pod -w-w -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 2sweb-0 1/1 Running 0 2s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 ContainerCreating 0 0sweb-1 0/1 ContainerCreating 0 0s

web-1 1/1 Running 0 34sweb-1 1/1 Running 0 34s

for i in 0 1; do kubectl exec -it web-$i -- curl localhost; donefor i in 0 1; do kubectl exec -it web-$i -- curl localhost; done

web-0web-0

web-1web-1

accomplished by updating the replicasreplicas field. You can use either kubectl scalekubectl scale or

kubectl patchkubectl patch to scale a StatefulSet.

Scaling Up

In one terminal window, watch the Pods in the StatefulSet.

In another terminal window, use kubectl scalekubectl scale to scale the number of replicas to 5.

Examine the output of the

kubectlkubectl

getget command in the first terminal, and wait for the three

additional Pods to transition to Running and Ready.

The StatefulSet controller scaled the number of replicas. As with StatefulSet creation, the

StatefulSet controller created each Pod sequentially with respect to its ordinal index, and it

waited for each Pod’s predecessor to be Running and Ready before launching the subsequent

Pod.

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

kubectl scale sts web kubectl scale sts web --replicas--replicas==55

statefulset statefulset "web""web" scaled scaled

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 2hweb-0 1/1 Running 0 2h

web-1 1/1 Running 0 2hweb-1 1/1 Running 0 2h

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-2 0/1 Pending 0 0sweb-2 0/1 Pending 0 0s

web-2 0/1 Pending 0 0sweb-2 0/1 Pending 0 0s

web-2 0/1 ContainerCreating 0 0sweb-2 0/1 ContainerCreating 0 0s

web-2 1/1 Running 0 19sweb-2 1/1 Running 0 19s

web-3 0/1 Pending 0 0sweb-3 0/1 Pending 0 0s

web-3 0/1 Pending 0 0sweb-3 0/1 Pending 0 0s

web-3 0/1 ContainerCreating 0 0sweb-3 0/1 ContainerCreating 0 0s

web-3 1/1 Running 0 18sweb-3 1/1 Running 0 18s

web-4 0/1 Pending 0 0sweb-4 0/1 Pending 0 0s

web-4 0/1 Pending 0 0sweb-4 0/1 Pending 0 0s

web-4 0/1 ContainerCreating 0 0sweb-4 0/1 ContainerCreating 0 0s

web-4 1/1 Running 0 19sweb-4 1/1 Running 0 19s

file:///docs/user-guide/kubectl/v1.10/#scale
file:///docs/user-guide/kubectl/v1.10/#patch

Scaling Down

In one terminal, watch the StatefulSet’s Pods.

In another terminal, use kubectl patchkubectl patch to scale the StatefulSet back down to three replicas.

Wait for web-4web-4 and web-3web-3 to transition to Terminating.

Ordered Pod Termination

The controller deleted one Pod at a time, in reverse order with respect to its ordinal index, and

it waited for each to be completely shutdown before deleting the next.

Get the StatefulSet’s PersistentVolumeClaims.

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

kubectl patch sts web kubectl patch sts web -p-p '{"spec":{"replicas":3}}''{"spec":{"replicas":3}}'

statefulset statefulset "web""web" patched patched

kubectl get pods -w -l app=nginxkubectl get pods -w -l app=nginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 3hweb-0 1/1 Running 0 3h

web-1 1/1 Running 0 3hweb-1 1/1 Running 0 3h

web-2 1/1 Running 0 55sweb-2 1/1 Running 0 55s

web-3 1/1 Running 0 36sweb-3 1/1 Running 0 36s

web-4 0/1 ContainerCreating 0 18sweb-4 0/1 ContainerCreating 0 18s

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-4 1/1 Running 0 19sweb-4 1/1 Running 0 19s

web-4 1/1 Terminating 0 24sweb-4 1/1 Terminating 0 24s

web-4 1/1 Terminating 0 24sweb-4 1/1 Terminating 0 24s

web-3 1/1 Terminating 0 42sweb-3 1/1 Terminating 0 42s

web-3 1/1 Terminating 0 42sweb-3 1/1 Terminating 0 42s

kubectl get pvc kubectl get pvc -l-l appapp==nginxnginx

NAME STATUS VOLUME CAPACITY ACCESSMODES AGENAME STATUS VOLUME CAPACITY ACCESSMODES AGE

www-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO 13hwww-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO 13h

www-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO 13hwww-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO 13h

www-web-2 Bound pvc-e1125b27-b508-11e6-932f-42010a800002 1Gi RWO 13hwww-web-2 Bound pvc-e1125b27-b508-11e6-932f-42010a800002 1Gi RWO 13h

www-web-3 Bound pvc-e1176df6-b508-11e6-932f-42010a800002 1Gi RWO 13hwww-web-3 Bound pvc-e1176df6-b508-11e6-932f-42010a800002 1Gi RWO 13h

www-web-4 Bound pvc-e11bb5f8-b508-11e6-932f-42010a800002 1Gi RWO 13hwww-web-4 Bound pvc-e11bb5f8-b508-11e6-932f-42010a800002 1Gi RWO 13h

There are still five PersistentVolumeClaims and five PersistentVolumes. When exploring a

Pod’s stable storage, we saw that the PersistentVolumes mounted to the Pods of a StatefulSet

are not deleted when the StatefulSet’s Pods are deleted. This is still true when Pod deletion is

caused by scaling the StatefulSet down.

Updating StatefulSets

In Kubernetes 1.7 and later, the StatefulSet controller supports automated updates. The

strategy used is determined by the spec.updateStrategyspec.updateStrategy field of the StatefulSet API Object.

This feature can be used to upgrade the container images, resource requests and/or limits,

labels, and annotations of the Pods in a StatefulSet. There are two valid update strategies,

RollingUpdateRollingUpdate and OnDeleteOnDelete .

Rolling Update

The RollingUpdateRollingUpdate update strategy will update all Pods in a StatefulSet, in reverse ordinal

order, while respecting the StatefulSet guarantees.

Patch the webweb StatefulSet to apply the RollingUpdateRollingUpdate update strategy.

In one terminal window, patch the webweb StatefulSet to change the container image again.

In another terminal, watch the Pods in the StatefulSet.

kubectl patch statefulset web kubectl patch statefulset web -p-p '{"spec":{"updateStrategy":{"type":"RollingUpdate"}}}''{"spec":{"updateStrategy":{"type":"RollingUpdate"}}}'

statefulset statefulset "web""web" patched patched

kubectl patch statefulset web kubectl patch statefulset web --type--type=='json''json' -p-p=='[{"op": "replace", "path": "/spec/template/spec/containers/0/image", "value":"gcr.io/google_containers/nginx-slim:0.8"}]''[{"op": "replace", "path": "/spec/template/spec/containers/0/image", "value":"gcr.io/google_containers/nginx-slim:0.8"}]'

statefulset statefulset "web""web" patched patched

The Pods in the StatefulSet are updated in reverse ordinal order. The StatefulSet controller

terminates each Pod, and waits for it to transition to Running and Ready prior to updating the

next Pod. Note that, even though the StatefulSet controller will not proceed to update the next

Pod until its ordinal successor is Running and Ready, it will restore any Pod that fails during

the update to its current version. Pods that have already received the update will be restored to

the updated version, and Pods that have not yet received the update will be restored to the

previous version. In this way, the controller attempts to continue to keep the application

healthy and the update consistent in the presence of intermittent failures.

Get the Pods to view their container images.

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 7mweb-0 1/1 Running 0 7m

web-1 1/1 Running 0 7mweb-1 1/1 Running 0 7m

web-2 1/1 Running 0 8mweb-2 1/1 Running 0 8m

web-2 1/1 Terminating 0 8mweb-2 1/1 Terminating 0 8m

web-2 1/1 Terminating 0 8mweb-2 1/1 Terminating 0 8m

web-2 0/1 Terminating 0 8mweb-2 0/1 Terminating 0 8m

web-2 0/1 Terminating 0 8mweb-2 0/1 Terminating 0 8m

web-2 0/1 Terminating 0 8mweb-2 0/1 Terminating 0 8m

web-2 0/1 Terminating 0 8mweb-2 0/1 Terminating 0 8m

web-2 0/1 Pending 0 0sweb-2 0/1 Pending 0 0s

web-2 0/1 Pending 0 0sweb-2 0/1 Pending 0 0s

web-2 0/1 ContainerCreating 0 0sweb-2 0/1 ContainerCreating 0 0s

web-2 1/1 Running 0 19sweb-2 1/1 Running 0 19s

web-1 1/1 Terminating 0 8mweb-1 1/1 Terminating 0 8m

web-1 0/1 Terminating 0 8mweb-1 0/1 Terminating 0 8m

web-1 0/1 Terminating 0 8mweb-1 0/1 Terminating 0 8m

web-1 0/1 Terminating 0 8mweb-1 0/1 Terminating 0 8m

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 ContainerCreating 0 0sweb-1 0/1 ContainerCreating 0 0s

web-1 1/1 Running 0 6sweb-1 1/1 Running 0 6s

web-0 1/1 Terminating 0 7mweb-0 1/1 Terminating 0 7m

web-0 1/1 Terminating 0 7mweb-0 1/1 Terminating 0 7m

web-0 0/1 Terminating 0 7mweb-0 0/1 Terminating 0 7m

web-0 0/1 Terminating 0 7mweb-0 0/1 Terminating 0 7m

web-0 0/1 Terminating 0 7mweb-0 0/1 Terminating 0 7m

web-0 0/1 Terminating 0 7mweb-0 0/1 Terminating 0 7m

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

web-0 1/1 Running 0 10sweb-0 1/1 Running 0 10s

All the Pods in the StatefulSet are now running the previous container image.

Tip You can also use

kubectl rollout statuskubectl rollout status

sts/<name>sts/<name> to view the status of a rolling

update.

Staging an Update

You can stage an update to a StatefulSet by using the partitionpartition parameter of the

RollingUpdateRollingUpdate update strategy. A staged update will keep all of the Pods in the StatefulSet

at the current version while allowing mutations to the StatefulSet’s .spec.template.spec.template .

Patch the webweb StatefulSet to add a partition to the updateStrategyupdateStrategy field.

Patch the StatefulSet again to change the container’s image.

Delete a Pod in the StatefulSet.

Wait for the Pod to be Running and Ready.

for for p p in in 0 1 20 1 2;; do do kubectl get po web-kubectl get po web-pp --template--template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}''{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'

k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

kubectl patch statefulset web kubectl patch statefulset web -p-p '{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":3}}}}''{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":3}}}}'

statefulset statefulset "web""web" patched patched

kubectl patch statefulset web kubectl patch statefulset web --type--type=='json''json' -p-p=='[{"op": "replace", "path": "/spec/template/spec/containers/0/image", "value":"k8s.gcr.io/nginx-slim:0.7"}]''[{"op": "replace", "path": "/spec/template/spec/containers/0/image", "value":"k8s.gcr.io/nginx-slim:0.7"}]'

statefulset statefulset "web""web" patched patched

kubectl delete po web-2kubectl delete po web-2

pod pod "web-2""web-2" deleted deleted

Get the Pod’s container.

Notice that, even though the update strategy is RollingUpdateRollingUpdate the StatefulSet controller

restored the Pod with its original container. This is because the ordinal of the Pod is less than

the partitionpartition specified by the updateStrategyupdateStrategy .

Rolling Out a Canary

You can roll out a canary to test a modification by decrementing the partitionpartition you specified

above.

Patch the StatefulSet to decrement the partition.

Wait for web-2web-2 to be Running and Ready.

Get the Pod’s container.

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 4mweb-0 1/1 Running 0 4m

web-1 1/1 Running 0 4mweb-1 1/1 Running 0 4m

web-2 0/1 ContainerCreating 0 11sweb-2 0/1 ContainerCreating 0 11s

web-2 1/1 Running 0 18sweb-2 1/1 Running 0 18s

kubectl get po web-2 kubectl get po web-2 --template--template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}''{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'

k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

kubectl patch statefulset web kubectl patch statefulset web -p-p '{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":2}}}}''{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":2}}}}'

statefulset statefulset "web""web" patched patched

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 4mweb-0 1/1 Running 0 4m

web-1 1/1 Running 0 4mweb-1 1/1 Running 0 4m

web-2 0/1 ContainerCreating 0 11sweb-2 0/1 ContainerCreating 0 11s

web-2 1/1 Running 0 18sweb-2 1/1 Running 0 18s

When you changed the partitionpartition , the StatefulSet controller automatically updated the

web-2web-2 Pod because the Pod’s ordinal was greater than or equal to the partitionpartition .

Delete the web-1web-1 Pod.

Wait for the web-1web-1 Pod to be Running and Ready.

Get the web-1web-1 Pods container.

web-1web-1 was restored to its original configuration because the Pod’s ordinal was less than the

partition. When a partition is specified, all Pods with an ordinal that is greater than or equal to

the partition will be updated when the StatefulSet’s .spec.template.spec.template is updated. If a Pod that

has an ordinal less than the partition is deleted or otherwise terminated, it will be restored to its

original configuration.

kubectl get po web-2 kubectl get po web-2 --template--template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}''{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'

k8s.gcr.io/nginx-slim:0.7k8s.gcr.io/nginx-slim:0.7

kubectl delete po web-1kubectl delete po web-1

pod pod "web-1""web-1" deleted deleted

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 6mweb-0 1/1 Running 0 6m

web-1 0/1 Terminating 0 6mweb-1 0/1 Terminating 0 6m

web-2 1/1 Running 0 2mweb-2 1/1 Running 0 2m

web-1 0/1 Terminating 0 6mweb-1 0/1 Terminating 0 6m

web-1 0/1 Terminating 0 6mweb-1 0/1 Terminating 0 6m

web-1 0/1 Terminating 0 6mweb-1 0/1 Terminating 0 6m

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 ContainerCreating 0 0sweb-1 0/1 ContainerCreating 0 0s

web-1 1/1 Running 0 18sweb-1 1/1 Running 0 18s

kubectl get po web-1 kubectl get po web-1 --template--template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}''{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'

k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

Phased Roll Outs

You can perform a phased roll out (e.g. a linear, geometric, or exponential roll out) using a

partitioned rolling update in a similar manner to how you rolled out a canary. To perform a

phased roll out, set the partitionpartition to the ordinal at which you want the controller to pause the

update.

The partition is currently set to 22 . Set the partition to 00 .

Wait for all of the Pods in the StatefulSet to become Running and Ready.

Get the Pod’s containers.

By moving the partitionpartition to 00 , you allowed the StatefulSet controller to continue the update

process.

kubectl patch statefulset web kubectl patch statefulset web -p-p '{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":0}}}}''{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":0}}}}'

statefulset statefulset "web""web" patched patched

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 3mweb-0 1/1 Running 0 3m

web-1 0/1 ContainerCreating 0 11sweb-1 0/1 ContainerCreating 0 11s

web-2 1/1 Running 0 2mweb-2 1/1 Running 0 2m

web-1 1/1 Running 0 18sweb-1 1/1 Running 0 18s

web-0 1/1 Terminating 0 3mweb-0 1/1 Terminating 0 3m

web-0 1/1 Terminating 0 3mweb-0 1/1 Terminating 0 3m

web-0 0/1 Terminating 0 3mweb-0 0/1 Terminating 0 3m

web-0 0/1 Terminating 0 3mweb-0 0/1 Terminating 0 3m

web-0 0/1 Terminating 0 3mweb-0 0/1 Terminating 0 3m

web-0 0/1 Terminating 0 3mweb-0 0/1 Terminating 0 3m

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

web-0 1/1 Running 0 3sweb-0 1/1 Running 0 3s

for for p p in in 0 1 20 1 2;; do do kubectl get po web-kubectl get po web-pp --template--template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}''{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'

k8s.gcr.io/nginx-slim:0.7k8s.gcr.io/nginx-slim:0.7

k8s.gcr.io/nginx-slim:0.7k8s.gcr.io/nginx-slim:0.7

k8s.gcr.io/nginx-slim:0.7k8s.gcr.io/nginx-slim:0.7

On Delete

The OnDeleteOnDelete update strategy implements the legacy (1.6 and prior) behavior, When you

select this update strategy, the StatefulSet controller will not automatically update Pods when

a modification is made to the StatefulSet’s .spec.template.spec.template field. This strategy can be

selected by setting the .spec.template.updateStrategy.type.spec.template.updateStrategy.type to OnDeleteOnDelete .

Deleting StatefulSets

StatefulSet supports both Non-Cascading and Cascading deletion. In a Non-Cascading Delete,

the StatefulSet’s Pods are not deleted when the StatefulSet is deleted. In a Cascading Delete,

both the StatefulSet and its Pods are deleted.

Non-Cascading Delete

In one terminal window, watch the Pods in the StatefulSet.

Use

kubectlkubectl

deletedelete to delete the StatefulSet. Make sure to supply the --cascade=false--cascade=false

parameter to the command. This parameter tells Kubernetes to only delete the StatefulSet,

and to not delete any of its Pods.

Get the Pods to examine their status.

Even though webweb has been deleted, all of the Pods are still Running and Ready. Delete web-0web-0 .

kubectl get pods -w -l app=nginxkubectl get pods -w -l app=nginx

kubectl delete statefulset web kubectl delete statefulset web --cascade--cascade==falsefalse

statefulset statefulset "web""web" deleted deleted

kubectl get pods kubectl get pods -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 6mweb-0 1/1 Running 0 6m

web-1 1/1 Running 0 7mweb-1 1/1 Running 0 7m

web-2 1/1 Running 0 5mweb-2 1/1 Running 0 5m

file:///docs/user-guide/kubectl/v1.10/#delete

Get the StatefulSet’s Pods.

As the webweb StatefulSet has been deleted, web-0web-0 has not been relaunched.

In one terminal, watch the StatefulSet’s Pods.

In a second terminal, recreate the StatefulSet. Note that, unless you deleted the nginxnginx Service

(which you should not have), you will see an error indicating that the Service already exists.

Ignore the error. It only indicates that an attempt was made to create the nginx Headless

Service even though that Service already exists.

Examine the output of the

kubectlkubectl

getget command running in the first terminal.

kubectl delete pod web-0kubectl delete pod web-0

pod pod "web-0""web-0" deleted deleted

kubectl get pods kubectl get pods -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-1 1/1 Running 0 10mweb-1 1/1 Running 0 10m

web-2 1/1 Running 0 7mweb-2 1/1 Running 0 7m

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

kubectl create kubectl create -f-f web.yaml web.yaml

statefulset statefulset "web""web" created created

Error from server Error from server ((AlreadyExistsAlreadyExists)): error when creating : error when creating "web.yaml""web.yaml": services : services "nginx""nginx"

When the webweb StatefulSet was recreated, it first relaunched web-0web-0 . Since web-1web-1 was already

Running and Ready, when web-0web-0 transitioned to Running and Ready, it simply adopted this

Pod. Since you recreated the StatefulSet with replicasreplicas equal to 2, once web-0web-0 had been

recreated, and once web-1web-1 had been determined to already be Running and Ready, web-2web-2

was terminated.

Let’s take another look at the contents of the index.htmlindex.html file served by the Pods’ webservers.

Even though you deleted both the StatefulSet and the web-0web-0 Pod, it still serves the hostname

originally entered into its index.htmlindex.html file. This is because the StatefulSet never deletes the

PersistentVolumes associated with a Pod. When you recreated the StatefulSet and it

relaunched web-0web-0 , its original PersistentVolume was remounted.

Cascading Delete

In one terminal window, watch the Pods in the StatefulSet.

In another terminal, delete the StatefulSet again. This time, omit the --cascade=false--cascade=false

parameter.

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-1 1/1 Running 0 16mweb-1 1/1 Running 0 16m

web-2 1/1 Running 0 2mweb-2 1/1 Running 0 2m

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

web-0 1/1 Running 0 18sweb-0 1/1 Running 0 18s

web-2 1/1 Terminating 0 3mweb-2 1/1 Terminating 0 3m

web-2 0/1 Terminating 0 3mweb-2 0/1 Terminating 0 3m

web-2 0/1 Terminating 0 3mweb-2 0/1 Terminating 0 3m

web-2 0/1 Terminating 0 3mweb-2 0/1 Terminating 0 3m

for for i i in in 0 10 1;; do do kubectl kubectl execexec -it-it web- web-ii ---- curl localhost curl localhost;; donedone

web-0web-0

web-1web-1

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

Examine the output of the

kubectlkubectl

getget command running in the first terminal, and wait for

all of the Pods to transition to Terminating.

As you saw in the Scaling Down section, the Pods are terminated one at a time, with respect to

the reverse order of their ordinal indices. Before terminating a Pod, the StatefulSet controller

waits for the Pod’s successor to be completely terminated.

Note that, while a cascading delete will delete the StatefulSet and its Pods, it will not delete the

Headless Service associated with the StatefulSet. You must delete the nginxnginx Service

manually.

Recreate the StatefulSet and Headless Service one more time.

When all of the StatefulSet’s Pods transition to Running and Ready, retrieve the contents of

kubectl delete statefulset webkubectl delete statefulset web

statefulset statefulset "web""web" deleted deleted

kubectl get pods kubectl get pods -w-w -l-l appapp==nginxnginx

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Running 0 11mweb-0 1/1 Running 0 11m

web-1 1/1 Running 0 27mweb-1 1/1 Running 0 27m

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 1/1 Terminating 0 12mweb-0 1/1 Terminating 0 12m

web-1 1/1 Terminating 0 29mweb-1 1/1 Terminating 0 29m

web-0 0/1 Terminating 0 12mweb-0 0/1 Terminating 0 12m

web-0 0/1 Terminating 0 12mweb-0 0/1 Terminating 0 12m

web-0 0/1 Terminating 0 12mweb-0 0/1 Terminating 0 12m

web-1 0/1 Terminating 0 29mweb-1 0/1 Terminating 0 29m

web-1 0/1 Terminating 0 29mweb-1 0/1 Terminating 0 29m

web-1 0/1 Terminating 0 29mweb-1 0/1 Terminating 0 29m

kubectl delete service nginxkubectl delete service nginx

service service "nginx""nginx" deleted deleted

kubectl create kubectl create -f-f web.yaml web.yaml

service service "nginx""nginx" created created

statefulset statefulset "web""web" created created

their index.htmlindex.html files.

Even though you completely deleted the StatefulSet, and all of its Pods, the Pods are recreated

with their PersistentVolumes mounted, and web-0web-0 and web-1web-1 will still serve their hostnames.

Finally delete the webweb StatefulSet and the nginxnginx service.

Pod Management Policy

For some distributed systems, the StatefulSet ordering guarantees are unnecessary and/or

undesirable. These systems require only uniqueness and identity. To address this, in

Kubernetes 1.7, we introduced .spec.podManagementPolicy.spec.podManagementPolicy to the StatefulSet API Object.

OrderedReady Pod Management

OrderedReadyOrderedReady pod management is the default for StatefulSets. It tells the StatefulSet

controller to respect the ordering guarantees demonstrated above.

Parallel Pod Management

ParallelParallel pod management tells the StatefulSet controller to launch or terminate all Pods in

parallel, and not to wait for Pods to become Running and Ready or completely terminated prior

to launching or terminating another Pod.

webp.yamlwebp.yaml

for for i i in in 0 10 1;; do do kubectl kubectl execexec -it-it web- web-ii ---- curl localhost curl localhost;; donedone

web-0web-0

web-1web-1

kubectl delete service nginxkubectl delete service nginx

service service "nginx""nginx" deleted deleted

kubectl delete statefulset webkubectl delete statefulset web

statefulset statefulset "web""web" deleted deleted

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/webp.yaml

webp.yamlwebp.yaml

Download the example above, and save it to a file named webp.yamlwebp.yaml

This manifest is identical to the one you downloaded above except that the

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: nginxnginx

 labelslabels::

 appapp:: nginxnginx

specspec::

 portsports::

 -- portport:: 8080

 namename:: webweb

 clusterIPclusterIP:: NoneNone

 selectorselector::

 appapp:: nginxnginx

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: StatefulSetStatefulSet

metadatametadata::

 namename:: webweb

specspec::

 serviceNameserviceName:: ""nginx"nginx"

 podManagementPolicypodManagementPolicy:: ""Parallel"Parallel"

 replicasreplicas:: 22

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: nginxnginx

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: nginxnginx

 specspec::

 containerscontainers::

 -- namename:: nginxnginx

 imageimage:: k8s.gcr.io/nginx-slim:0.8k8s.gcr.io/nginx-slim:0.8

 portsports::

 -- containerPortcontainerPort:: 8080

 namename:: webweb

 volumeMountsvolumeMounts::

 -- namename:: wwwwww

 mountPathmountPath:: /usr/share/nginx/html/usr/share/nginx/html

 volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: wwwwww

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 resourcesresources::

 requestsrequests::

 storagestorage:: 1Gi1Gi

.spec.podManagementPolicy.spec.podManagementPolicy of the webweb StatefulSet is set to ParallelParallel .

In one terminal, watch the Pods in the StatefulSet.

In another terminal, create the StatefulSet and Service in the manifest.

Examine the output of the

kubectlkubectl

getget command that you executed in the first terminal.

The StatefulSet controller launched both web-0web-0 and web-1web-1 at the same time.

Keep the second terminal open, and, in another terminal window scale the StatefulSet.

Examine the output of the terminal where the

kubectlkubectl

getget command is running.

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

kubectl create kubectl create -f-f webp.yaml webp.yaml

service service "nginx""nginx" created created

statefulset statefulset "web""web" created created

kubectl get po kubectl get po -l-l appapp==nginx nginx -w-w

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-0 0/1 Pending 0 0sweb-0 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-1 0/1 Pending 0 0sweb-1 0/1 Pending 0 0s

web-0 0/1 ContainerCreating 0 0sweb-0 0/1 ContainerCreating 0 0s

web-1 0/1 ContainerCreating 0 0sweb-1 0/1 ContainerCreating 0 0s

web-0 1/1 Running 0 10sweb-0 1/1 Running 0 10s

web-1 1/1 Running 0 10sweb-1 1/1 Running 0 10s

kubectl scale statefulset/web kubectl scale statefulset/web --replicas--replicas==44

statefulset statefulset "web""web" scaled scaled

web-3 0/1 Pending 0 0sweb-3 0/1 Pending 0 0s

web-3 0/1 Pending 0 0sweb-3 0/1 Pending 0 0s

web-3 0/1 Pending 0 7sweb-3 0/1 Pending 0 7s

web-3 0/1 ContainerCreating 0 7sweb-3 0/1 ContainerCreating 0 7s

web-2 1/1 Running 0 10sweb-2 1/1 Running 0 10s

web-3 1/1 Running 0 26sweb-3 1/1 Running 0 26s

The StatefulSet controller launched two new Pods, and it did not wait for the first to become

Running and Ready prior to launching the second.

Keep this terminal open, and in another terminal delete the webweb StatefulSet.

Again, examine the output of the

kubectlkubectl

getget command running in the other terminal.

The StatefulSet controller deletes all Pods concurrently, it does not wait for a Pod’s ordinal

successor to terminate prior to deleting that Pod.

Close the terminal where the

kubectlkubectl

getget command is running and delete the nginxnginx

Service.

web-3 1/1 Running 0 26sweb-3 1/1 Running 0 26s

kubectl delete sts webkubectl delete sts web

web-3 1/1 Terminating 0 9mweb-3 1/1 Terminating 0 9m

web-2 1/1 Terminating 0 9mweb-2 1/1 Terminating 0 9m

web-3 1/1 Terminating 0 9mweb-3 1/1 Terminating 0 9m

web-2 1/1 Terminating 0 9mweb-2 1/1 Terminating 0 9m

web-1 1/1 Terminating 0 44mweb-1 1/1 Terminating 0 44m

web-0 1/1 Terminating 0 44mweb-0 1/1 Terminating 0 44m

web-0 0/1 Terminating 0 44mweb-0 0/1 Terminating 0 44m

web-3 0/1 Terminating 0 9mweb-3 0/1 Terminating 0 9m

web-2 0/1 Terminating 0 9mweb-2 0/1 Terminating 0 9m

web-1 0/1 Terminating 0 44mweb-1 0/1 Terminating 0 44m

web-0 0/1 Terminating 0 44mweb-0 0/1 Terminating 0 44m

web-2 0/1 Terminating 0 9mweb-2 0/1 Terminating 0 9m

web-2 0/1 Terminating 0 9mweb-2 0/1 Terminating 0 9m

web-2 0/1 Terminating 0 9mweb-2 0/1 Terminating 0 9m

web-1 0/1 Terminating 0 44mweb-1 0/1 Terminating 0 44m

web-1 0/1 Terminating 0 44mweb-1 0/1 Terminating 0 44m

web-1 0/1 Terminating 0 44mweb-1 0/1 Terminating 0 44m

web-0 0/1 Terminating 0 44mweb-0 0/1 Terminating 0 44m

web-0 0/1 Terminating 0 44mweb-0 0/1 Terminating 0 44m

web-0 0/1 Terminating 0 44mweb-0 0/1 Terminating 0 44m

web-3 0/1 Terminating 0 9mweb-3 0/1 Terminating 0 9m

web-3 0/1 Terminating 0 9mweb-3 0/1 Terminating 0 9m

web-3 0/1 Terminating 0 9mweb-3 0/1 Terminating 0 9m

kubectl delete svc nginxkubectl delete svc nginx

Cleaning up

You will need to delete the persistent storage media for the PersistentVolumes used in this

tutorial. Follow the necessary steps, based on your environment, storage configuration, and

provisioning method, to ensure that all storage is reclaimed.

Run a Single-Instance Stateful Application

This page shows you how to run a single-instance stateful application in Kubernetes using a PersistentVolume
and a Deployment. The application is MySQL.

Objectives
Before you begin
Deploy MySQL
Accessing the MySQL instance
Updating
Deleting a deployment
What’s next

Objectives

Create a PersistentVolume referencing a disk in your environment.
Create a MySQL Deployment.
Expose MySQL to other pods in the cluster at a known DNS name.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to
communicate with your cluster. If you do not already have a cluster, you can create one by using
Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda
Play with Kubernetes

To check the version, enter kubectl version.

You need to either have a dynamic PersistentVolume provisioner with a default StorageClass, or statically
provision PersistentVolumes yourself to satisfy the PersistentVolumeClaims used here.

Deploy MySQL

You can run a stateful application by creating a Kubernetes Deployment and connecting it to an existing
PersistentVolume using a PersistentVolumeClaim. For example, this YAML file describes a Deployment that
runs MySQL and references the PersistentVolumeClaim. The file defines a volume mount for /var/lib/mysql, and
then creates a PersistentVolumeClaim that looks for a 20G volume. This claim is satisfied by any existing
volume that meets the requirements, or by a dynamic provisioner.

Note: The password is defined in the config yaml, and this is insecure. See Kubernetes Secrets for a secure
solution.

mysql-deployment.yaml

apiVersion: v1
kind: Service
metadata:
 name: mysql
spec:
 ports:
 - port: 3306
 selector:
 app: mysql
 clusterIP: None

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/storage-classes/
file:///docs/user-guide/persistent-volumes/#provisioning
file:///docs/user-guide/persistent-volumes/#persistentvolumeclaims
file:///docs/concepts/configuration/secret/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-deployment.yaml

 storage: 20Gi

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: mysql
spec:
 selector:
 matchLabels:
 app: mysql
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 # Use secret in real usage
 - name: MYSQL_ROOT_PASSWORD
 value: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

mysql-deployment.yaml

1. Deploy the contents of the YAML file:

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-deployment.yaml

2. Display information about the Deployment:

kubectl describe deployment mysql

 Name: mysql
 Namespace: default
 CreationTimestamp: Tue, 01 Nov 2016 11:18:45 -0700
 Labels: app=mysql
 Annotations: deployment.kubernetes.io/revision=1
 Selector: app=mysql
 Replicas: 1 desired | 1 updated | 1 total | 0 available | 1 unavailable
 StrategyType: Recreate
 MinReadySeconds: 0
 Pod Template:
 Labels: app=mysql
 Containers:
 mysql:
 Image: mysql:5.6
 Port: 3306/TCP
 Environment:
 MYSQL_ROOT_PASSWORD: password
 Mounts:
 /var/lib/mysql from mysql-persistent-storage (rw)
 Volumes:
 mysql-persistent-storage:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: mysql-pv-claim
 ReadOnly: false
 Conditions:
 Type Status Reason
 ---- ------ ------
 Available False MinimumReplicasUnavailable
 Progressing True ReplicaSetUpdated
 OldReplicaSets: <none>
 NewReplicaSet: mysql-63082529 (1/1 replicas created)
 Events:
 FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 --------- -------- ----- ---- ------------- -------- ------ -------
 33s 33s 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set mysql-63082529 to 1

3. List the pods created by the Deployment:

kubectl get pods -l app=mysql

 NAME READY STATUS RESTARTS AGE
 mysql-63082529-2z3ki 1/1 Running 0 3m

4. Inspect the PersistentVolumeClaim:

kubectl describe pvc mysql-pv-claim

 Name: mysql-pv-claim
 Namespace: default
 StorageClass:
 Status: Bound
 Volume: mysql-pv
 Labels: <none>
 Annotations: pv.kubernetes.io/bind-completed=yes
 pv.kubernetes.io/bound-by-controller=yes
 Capacity: 20Gi
 Access Modes: RWO
 Events: <none>

Accessing the MySQL instance

The preceding YAML file creates a service that allows other Pods in the cluster to access the database. The
Service option clusterIP: None lets the Service DNS name resolve directly to the Pod’s IP address. This is optimal
when you have only one Pod behind a Service and you don’t intend to increase the number of Pods.

Run a MySQL client to connect to the server:

kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql -ppassword

This command creates a new Pod in the cluster running a MySQL client and connects it to the server through
the Service. If it connects, you know your stateful MySQL database is up and running.

Waiting for pod default/mysql-client-274442439-zyp6i to be running, status is Pending, pod ready: false
If you don't see a command prompt, try pressing enter.

mysql>

Updating

The image or any other part of the Deployment can be updated as usual with the kubectl apply command. Here
are some precautions that are specific to stateful apps:

Don’t scale the app. This setup is for single-instance apps only. The underlying PersistentVolume can
only be mounted to one Pod. For clustered stateful apps, see the StatefulSet documentation.
Use strategy: type: Recreate in the Deployment configuration YAML file. This instructs Kubernetes to not use
rolling updates. Rolling updates will not work, as you cannot have more than one Pod running at a time.
The Recreate strategy will stop the first pod before creating a new one with the updated configuration.

Deleting a deployment

Delete the deployed objects by name:

kubectl delete deployment,svc mysql
kubectl delete pvc mysql-pv-claim

If you manually provisioned a PersistentVolume, you also need to manually delete it, as well as release the
underlying resource. If you used a dynamic provisioner, it automatically deletes the PersistentVolume when it
sees that you deleted the PersistentVolumeClaim. Some dynamic provisioners (such as those for EBS and PD)
also release the underlying resource upon deleting the PersistentVolume.

What’s next

file:///docs/concepts/workloads/controllers/statefulset/

Learn more about Deployment objects.

Learn more about Deploying applications

kubectl run documentation

Volumes and Persistent Volumes

file:///docs/concepts/workloads/controllers/deployment/
file:///docs/user-guide/deploying-applications/
file:///docs/user-guide/kubectl/v1.10/#run
file:///docs/concepts/storage/volumes/
file:///docs/concepts/storage/persistent-volumes/

Run a Replicated Stateful Application

This page shows how to run a replicated stateful application using a StatefulSet controller. The
example is a MySQL single-master topology with multiple slaves running asynchronous
replication.

Note that this is not a production configuration. In particular, MySQL settings remain on
insecure defaults to keep the focus on general patterns for running stateful applications in
Kubernetes.

Objectives
Before you begin
Deploy MySQL

ConfigMap
Services
StatefulSet

Understanding stateful Pod initialization
Generating configuration
Cloning existing data
Starting replication

Sending client traffic
Simulating Pod and Node downtime

Break the Readiness Probe
Delete Pods
Drain a Node

Scaling the number of slaves
Cleaning up
What’s next

Objectives

Deploy a replicated MySQL topology with a StatefulSet controller.
Send MySQL client traffic.
Observe resistance to downtime.
Scale the StatefulSet up and down.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be
configured to communicate with your cluster. If you do not already have a cluster, you can
create one by using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda
Play with Kubernetes

To check the version, enter kubectl version.

You need to either have a dynamic PersistentVolume provisioner with a default
StorageClass, or statically provision PersistentVolumes yourself to satisfy the
PersistentVolumeClaims used here.

This tutorial assumes you are familiar with PersistentVolumes and StatefulSets, as well as
other core concepts like Pods, Services, and ConfigMaps.
Some familiarity with MySQL helps, but this tutorial aims to present general patterns that
should be useful for other systems.

file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/concepts/storage/storage-classes/
file:///docs/user-guide/persistent-volumes/#provisioning
file:///docs/user-guide/persistent-volumes/#persistentvolumeclaims
file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/
file:///docs/tasks/configure-pod-container/configure-pod-configmap/

Deploy MySQL

The example MySQL deployment consists of a ConfigMap, two Services, and a StatefulSet.

ConfigMap

Create the ConfigMap from the following YAML configuration file:

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-configmap.yaml

mysql-configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: mysql
 labels:
 app: mysql
data:
 master.cnf: |
 # Apply this config only on the master.
 [mysqld]
 log-bin
 slave.cnf: |
 # Apply this config only on slaves.
 [mysqld]
 super-read-only

This ConfigMap provides my.cnf overrides that let you independently control configuration on the
MySQL master and slaves. In this case, you want the master to be able to serve replication logs
to slaves and you want slaves to reject any writes that don’t come via replication.

There’s nothing special about the ConfigMap itself that causes different portions to apply to
different Pods. Each Pod decides which portion to look at as it’s initializing, based on information
provided by the StatefulSet controller.

Services

Create the Services from the following YAML configuration file:

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-services.yaml

mysql-services.yaml

Headless service for stable DNS entries of StatefulSet members.
apiVersion: v1
kind: Service
metadata:
 name: mysql
 labels:
 app: mysql
spec:
 ports:
 - name: mysql
 port: 3306
 clusterIP: None
 selector:
 app: mysql

Client service for connecting to any MySQL instance for reads.

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-configmap.yaml
https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-services.yaml

For writes, you must instead connect to the master: mysql-0.mysql.
apiVersion: v1
kind: Service
metadata:
 name: mysql-read
 labels:
 app: mysql
spec:
 ports:
 - name: mysql
 port: 3306
 selector:
 app: mysql

mysql-services.yaml

The Headless Service provides a home for the DNS entries that the StatefulSet controller
creates for each Pod that’s part of the set. Because the Headless Service is named mysql, the
Pods are accessible by resolving <pod-name>.mysql from within any other Pod in the same
Kubernetes cluster and namespace.

The Client Service, called mysql-read, is a normal Service with its own cluster IP that distributes
connections across all MySQL Pods that report being Ready. The set of potential endpoints
includes the MySQL master and all slaves.

Note that only read queries can use the load-balanced Client Service. Because there is only one
MySQL master, clients should connect directly to the MySQL master Pod (through its DNS entry
within the Headless Service) to execute writes.

StatefulSet

Finally, create the StatefulSet from the following YAML configuration file:

kubectl create -f https://k8s.io/docs/tasks/run-application/mysql-statefulset.yaml

mysql-statefulset.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mysql
spec:
 selector:
 matchLabels:
 app: mysql
 serviceName: mysql
 replicas: 3
 template:
 metadata:
 labels:
 app: mysql
 spec:
 initContainers:
 - name: init-mysql
 image: mysql:5.7
 command:
 - bash
 - "-c"
 - |
 set -ex
 # Generate mysql server-id from pod ordinal index.
 [[`hostname` =~ -([0-9]+)$]] || exit 1
 ordinal=${BASH_REMATCH[1]}
 echo [mysqld] > /mnt/conf.d/server-id.cnf
 # Add an offset to avoid reserved server-id=0 value.

https://raw.githubusercontent.com/kubernetes/website/master/docs/tasks/run-application/mysql-statefulset.yaml

 echo server-id=$((100 + $ordinal)) >> /mnt/conf.d/server-id.cnf
 # Copy appropriate conf.d files from config-map to emptyDir.
 if [[$ordinal -eq 0]]; then
 cp /mnt/config-map/master.cnf /mnt/conf.d/
 else
 cp /mnt/config-map/slave.cnf /mnt/conf.d/
 fi
 volumeMounts:
 - name: conf
 mountPath: /mnt/conf.d
 - name: config-map
 mountPath: /mnt/config-map
 - name: clone-mysql
 image: gcr.io/google-samples/xtrabackup:1.0
 command:
 - bash
 - "-c"
 - |
 set -ex
 # Skip the clone if data already exists.
 [[-d /var/lib/mysql/mysql]] && exit 0
 # Skip the clone on master (ordinal index 0).
 [[`hostname` =~ -([0-9]+)$]] || exit 1
 ordinal=${BASH_REMATCH[1]}
 [[$ordinal -eq 0]] && exit 0
 # Clone data from previous peer.
 ncat --recv-only mysql-$(($ordinal-1)).mysql 3307 | xbstream -x -C /var/lib/mysql
 # Prepare the backup.
 xtrabackup --prepare --target-dir=/var/lib/mysql
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 - name: conf
 mountPath: /etc/mysql/conf.d
 containers:
 - name: mysql
 image: mysql:5.7
 env:
 - name: MYSQL_ALLOW_EMPTY_PASSWORD
 value: "1"
 ports:
 - name: mysql
 containerPort: 3306
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 - name: conf
 mountPath: /etc/mysql/conf.d
 resources:
 requests:
 cpu: 500m
 memory: 1Gi
 livenessProbe:
 exec:
 command: ["mysqladmin", "ping"]
 initialDelaySeconds: 30
 periodSeconds: 10
 timeoutSeconds: 5
 readinessProbe:
 exec:
 # Check we can execute queries over TCP (skip-networking is off).
 command: ["mysql", "-h", "127.0.0.1", "-e", "SELECT 1"]
 initialDelaySeconds: 5
 periodSeconds: 2
 timeoutSeconds: 1
 - name: xtrabackup

mysql-statefulset.yaml

 image: gcr.io/google-samples/xtrabackup:1.0
 ports:
 - name: xtrabackup
 containerPort: 3307
 command:
 - bash
 - "-c"
 - |
 set -ex
 cd /var/lib/mysql

 # Determine binlog position of cloned data, if any.
 if [[-f xtrabackup_slave_info]]; then
 # XtraBackup already generated a partial "CHANGE MASTER TO" query
 # because we're cloning from an existing slave.
 mv xtrabackup_slave_info change_master_to.sql.in
 # Ignore xtrabackup_binlog_info in this case (it's useless).
 rm -f xtrabackup_binlog_info
 elif [[-f xtrabackup_binlog_info]]; then
 # We're cloning directly from master. Parse binlog position.
 [[`cat xtrabackup_binlog_info` =~ ^(.*?)[[:space:]]+(.*?)$]] || exit 1
 rm xtrabackup_binlog_info
 echo "CHANGE MASTER TO MASTER_LOG_FILE='${BASH_REMATCH[1]}',\
 MASTER_LOG_POS=${BASH_REMATCH[2]}" > change_master_to.sql.in
 fi

 # Check if we need to complete a clone by starting replication.
 if [[-f change_master_to.sql.in]]; then
 echo "Waiting for mysqld to be ready (accepting connections)"
 until mysql -h 127.0.0.1 -e "SELECT 1"; do sleep 1; done

 echo "Initializing replication from clone position"
 # In case of container restart, attempt this at-most-once.
 mv change_master_to.sql.in change_master_to.sql.orig
 mysql -h 127.0.0.1 <<EOF
 $(<change_master_to.sql.orig),
 MASTER_HOST='mysql-0.mysql',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_CONNECT_RETRY=10;
 START SLAVE;
 EOF
 fi

 # Start a server to send backups when requested by peers.
 exec ncat --listen --keep-open --send-only --max-conns=1 3307 -c \
 "xtrabackup --backup --slave-info --stream=xbstream --host=127.0.0.1 --user=root"
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 - name: conf
 mountPath: /etc/mysql/conf.d
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 volumes:
 - name: conf
 emptyDir: {}
 - name: config-map
 configMap:
 name: mysql
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]

mysql-statefulset.yaml

 resources:
 requests:
 storage: 10Gi

mysql-statefulset.yaml

You can watch the startup progress by running:

kubectl get pods -l app=mysql --watch

After a while, you should see all 3 Pods become Running:

NAME READY STATUS RESTARTS AGE
mysql-0 2/2 Running 0 2m
mysql-1 2/2 Running 0 1m
mysql-2 2/2 Running 0 1m

Press Ctrl+C to cancel the watch. If you don’t see any progress, make sure you have a dynamic
PersistentVolume provisioner enabled as mentioned in the prerequisites.

This manifest uses a variety of techniques for managing stateful Pods as part of a StatefulSet.
The next section highlights some of these techniques to explain what happens as the
StatefulSet creates Pods.

Understanding stateful Pod initialization

The StatefulSet controller starts Pods one at a time, in order by their ordinal index. It waits until
each Pod reports being Ready before starting the next one.

In addition, the controller assigns each Pod a unique, stable name of the form <statefulset-name>-

<ordinal-index>. In this case, that results in Pods named mysql-0, mysql-1, and mysql-2.

The Pod template in the above StatefulSet manifest takes advantage of these properties to
perform orderly startup of MySQL replication.

Generating configuration

Before starting any of the containers in the Pod spec, the Pod first runs any Init Containers in the
order defined.

The first Init Container, named init-mysql, generates special MySQL config files based on the
ordinal index.

The script determines its own ordinal index by extracting it from the end of the Pod name, which
is returned by the hostname command. Then it saves the ordinal (with a numeric offset to avoid
reserved values) into a file called server-id.cnf in the MySQL conf.d directory. This translates the
unique, stable identity provided by the StatefulSet controller into the domain of MySQL server
IDs, which require the same properties.

The script in the init-mysql container also applies either master.cnf or slave.cnf from the ConfigMap by
copying the contents into conf.d. Because the example topology consists of a single MySQL
master and any number of slaves, the script simply assigns ordinal 0 to be the master, and
everyone else to be slaves. Combined with the StatefulSet controller’s deployment order
guarantee, this ensures the MySQL master is Ready before creating slaves, so they can begin
replicating.

Cloning existing data

In general, when a new Pod joins the set as a slave, it must assume the MySQL master might

file:///docs/concepts/workloads/pods/init-containers/
file:///docs/concepts/workloads/controllers/statefulset/#deployment-and-scaling-guarantees/

already have data on it. It also must assume that the replication logs might not go all the way
back to the beginning of time. These conservative assumptions are the key to allow a running
StatefulSet to scale up and down over time, rather than being fixed at its initial size.

The second Init Container, named clone-mysql, performs a clone operation on a slave Pod the first
time it starts up on an empty PersistentVolume. That means it copies all existing data from
another running Pod, so its local state is consistent enough to begin replicating from the master.

MySQL itself does not provide a mechanism to do this, so the example uses a popular open-
source tool called Percona XtraBackup. During the clone, the source MySQL server might suffer
reduced performance. To minimize impact on the MySQL master, the script instructs each Pod
to clone from the Pod whose ordinal index is one lower. This works because the StatefulSet
controller always ensures Pod N is Ready before starting Pod N+1.

Starting replication

After the Init Containers complete successfully, the regular containers run. The MySQL Pods
consist of a mysql container that runs the actual mysqld server, and an xtrabackup container that acts
as a sidecar.

The xtrabackup sidecar looks at the cloned data files and determines if it’s necessary to initialize
MySQL replication on the slave. If so, it waits for mysqld to be ready and then executes the
CHANGE MASTER TO and START SLAVE commands with replication parameters extracted from the
XtraBackup clone files.

Once a slave begins replication, it remembers its MySQL master and reconnects automatically if
the server restarts or the connection dies. Also, because slaves look for the master at its stable
DNS name (mysql-0.mysql), they automatically find the master even if it gets a new Pod IP due to
being rescheduled.

Lastly, after starting replication, the xtrabackup container listens for connections from other Pods
requesting a data clone. This server remains up indefinitely in case the StatefulSet scales up, or
in case the next Pod loses its PersistentVolumeClaim and needs to redo the clone.

Sending client traffic

You can send test queries to the MySQL master (hostname mysql-0.mysql) by running a temporary
container with the mysql:5.7 image and running the mysql client binary.

kubectl run mysql-client --image=mysql:5.7 -i --rm --restart=Never --\
 mysql -h mysql-0.mysql <<EOF
CREATE DATABASE test;
CREATE TABLE test.messages (message VARCHAR(250));
INSERT INTO test.messages VALUES ('hello');
EOF

Use the hostname mysql-read to send test queries to any server that reports being Ready:

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never --\
 mysql -h mysql-read -e "SELECT * FROM test.messages"

You should get output like this:

Waiting for pod default/mysql-client to be running, status is Pending, pod ready: false
+---------+
| message |
+---------+
| hello |
+---------+

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

pod "mysql-client" deleted

To demonstrate that the mysql-read Service distributes connections across servers, you can run
SELECT @@server_id in a loop:

kubectl run mysql-client-loop --image=mysql:5.7 -i -t --rm --restart=Never --\
 bash -ic "while sleep 1; do mysql -h mysql-read -e 'SELECT @@server_id,NOW()'; done"

You should see the reported @@server_id change randomly, because a different endpoint might
be selected upon each connection attempt:

+-------------+---------------------+
| @@server_id | NOW() |
+-------------+---------------------+
| 100 | 2006-01-02 15:04:05 |
+-------------+---------------------+
+-------------+---------------------+
| @@server_id | NOW() |
+-------------+---------------------+
| 102 | 2006-01-02 15:04:06 |
+-------------+---------------------+
+-------------+---------------------+
| @@server_id | NOW() |
+-------------+---------------------+
| 101 | 2006-01-02 15:04:07 |
+-------------+---------------------+

You can press Ctrl+C when you want to stop the loop, but it’s useful to keep it running in
another window so you can see the effects of the following steps.

Simulating Pod and Node downtime

To demonstrate the increased availability of reading from the pool of slaves instead of a single
server, keep the SELECT @@server_id loop from above running while you force a Pod out of the
Ready state.

Break the Readiness Probe

The readiness probe for the mysql container runs the command mysql -h 127.0.0.1 -e 'SELECT 1' to
make sure the server is up and able to execute queries.

One way to force this readiness probe to fail is to break that command:

kubectl exec mysql-2 -c mysql -- mv /usr/bin/mysql /usr/bin/mysql.off

This reaches into the actual container’s filesystem for Pod mysql-2 and renames the mysql

command so the readiness probe can’t find it. After a few seconds, the Pod should report one of
its containers as not Ready, which you can check by running:

kubectl get pod mysql-2

Look for 1/2 in the READY column:

NAME READY STATUS RESTARTS AGE
mysql-2 1/2 Running 0 3m

At this point, you should see your SELECT @@server_id loop continue to run, although it never
reports 102 anymore. Recall that the init-mysql script defined server-id as 100 + $ordinal , so server ID
102 corresponds to Pod mysql-2.

Now repair the Pod and it should reappear in the loop output after a few seconds:

file:///docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes

kubectl exec mysql-2 -c mysql -- mv /usr/bin/mysql.off /usr/bin/mysql

Delete Pods

The StatefulSet also recreates Pods if they’re deleted, similar to what a ReplicaSet does for
stateless Pods.

kubectl delete pod mysql-2

The StatefulSet controller notices that no mysql-2 Pod exists anymore, and creates a new one
with the same name and linked to the same PersistentVolumeClaim. You should see server ID
102 disappear from the loop output for a while and then return on its own.

Drain a Node

If your Kubernetes cluster has multiple Nodes, you can simulate Node downtime (such as when
Nodes are upgraded) by issuing a drain.

First determine which Node one of the MySQL Pods is on:

kubectl get pod mysql-2 -o wide

The Node name should show up in the last column:

NAME READY STATUS RESTARTS AGE IP NODE
mysql-2 2/2 Running 0 15m 10.244.5.27 kubernetes-minion-group-9l2t

Then drain the Node by running the following command, which cordons it so no new Pods may
schedule there, and then evicts any existing Pods. Replace <node-name> with the name of the
Node you found in the last step.

This might impact other applications on the Node, so it’s best to only do this in a test cluster.

kubectl drain <node-name> --force --delete-local-data --ignore-daemonsets

Now you can watch as the Pod reschedules on a different Node:

kubectl get pod mysql-2 -o wide --watch

It should look something like this:

NAME READY STATUS RESTARTS AGE IP NODE
mysql-2 2/2 Terminating 0 15m 10.244.1.56 kubernetes-minion-group-9l2t
[...]
mysql-2 0/2 Pending 0 0s <none> kubernetes-minion-group-fjlm
mysql-2 0/2 Init:0/2 0 0s <none> kubernetes-minion-group-fjlm
mysql-2 0/2 Init:1/2 0 20s 10.244.5.32 kubernetes-minion-group-fjlm
mysql-2 0/2 PodInitializing 0 21s 10.244.5.32 kubernetes-minion-group-fjlm
mysql-2 1/2 Running 0 22s 10.244.5.32 kubernetes-minion-group-fjlm
mysql-2 2/2 Running 0 30s 10.244.5.32 kubernetes-minion-group-fjlm

And again, you should see server ID 102 disappear from the SELECT @@server_id loop output for a
while and then return.

Now uncordon the Node to return it to a normal state:

kubectl uncordon <node-name>

Scaling the number of slaves

file:///docs/user-guide/kubectl/v1.10/#drain

With MySQL replication, you can scale your read query capacity by adding slaves. With
StatefulSet, you can do this with a single command:

kubectl scale statefulset mysql --replicas=5

Watch the new Pods come up by running:

kubectl get pods -l app=mysql --watch

Once they’re up, you should see server IDs 103 and 104 start appearing in the SELECT @@server_id

loop output.

You can also verify that these new servers have the data you added before they existed:

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never --\
 mysql -h mysql-3.mysql -e "SELECT * FROM test.messages"

Waiting for pod default/mysql-client to be running, status is Pending, pod ready: false
+---------+
| message |
+---------+
| hello |
+---------+
pod "mysql-client" deleted

Scaling back down is also seamless:

kubectl scale statefulset mysql --replicas=3

Note, however, that while scaling up creates new PersistentVolumeClaims automatically, scaling
down does not automatically delete these PVCs. This gives you the choice to keep those
initialized PVCs around to make scaling back up quicker, or to extract data before deleting them.

You can see this by running:

kubectl get pvc -l app=mysql

Which shows that all 5 PVCs still exist, despite having scaled the StatefulSet down to 3:

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
data-mysql-0 Bound pvc-8acbf5dc-b103-11e6-93fa-42010a800002 10Gi RWO 20m
data-mysql-1 Bound pvc-8ad39820-b103-11e6-93fa-42010a800002 10Gi RWO 20m
data-mysql-2 Bound pvc-8ad69a6d-b103-11e6-93fa-42010a800002 10Gi RWO 20m
data-mysql-3 Bound pvc-50043c45-b1c5-11e6-93fa-42010a800002 10Gi RWO 2m
data-mysql-4 Bound pvc-500a9957-b1c5-11e6-93fa-42010a800002 10Gi RWO 2m

If you don’t intend to reuse the extra PVCs, you can delete them:

kubectl delete pvc data-mysql-3
kubectl delete pvc data-mysql-4

Cleaning up

1. Cancel the SELECT @@server_id loop by pressing Ctrl+C in its terminal, or running the
following from another terminal:

kubectl delete pod mysql-client-loop --now

2. Delete the StatefulSet. This also begins terminating the Pods.

kubectl delete statefulset mysql

3. Verify that the Pods disappear. They might take some time to finish terminating.

kubectl get pods -l app=mysql

You’ll know the Pods have terminated when the above returns:

No resources found.

4. Delete the ConfigMap, Services, and PersistentVolumeClaims.

kubectl delete configmap,service,pvc -l app=mysql

5. If you manually provisioned PersistentVolumes, you also need to manually delete them, as
well as release the underlying resources. If you used a dynamic provisioner, it
automatically deletes the PersistentVolumes when it sees that you deleted the
PersistentVolumeClaims. Some dynamic provisioners (such as those for EBS and PD)
also release the underlying resources upon deleting the PersistentVolumes.

What’s next

Look in the Helm Charts repository for other stateful application examples.

https://github.com/kubernetes/charts

Example: Deploying WordPress and
MySQL with Persistent Volumes

This tutorial shows you how to deploy a WordPress site and a MySQL database using

Minikube. Both applications use PersistentVolumes and PersistentVolumeClaims to store

data.

A PersistentVolume (PV) is a piece of storage in the cluster that has been manually

provisioned by an administrator, or dynamically provisioned by Kubernetes using a

StorageClass. A PersistentVolumeClaim (PVC) is a request for storage by a user that can be

fulfilled by a PV. PersistentVolumes and PersistentVolumeClaims are independent from Pod

lifecycles and preserve data through restarting, rescheduling, and even deleting Pods.

Warning: This deployment is not suitable for production use cases, as it uses single

instance WordPress and MySQL Pods. Consider using WordPress Helm Chart to deploy

WordPress in production.

Note: The files provided in this tutorial are using GA Deployment APIs and are specific to

kubernetes version 1.9 and later. If you wish to use this tutorial with an earlier version of

Kubernetes, please update the API version appropriately, or reference earlier versions of

this tutorial.

Objectives

Objectives

Before you begin

Create PersistentVolumeClaims and PersistentVolumes

Create a Secret for MySQL Password

Deploy MySQL

Deploy WordPress

Cleaning up

What’s next

file:///docs/concepts/storage/persistent-volumes/
file:///docs/concepts/storage/storage-classes
file:///docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://github.com/kubernetes/charts/tree/master/stable/wordpress

Create PersistentVolumeClaims and PersistentVolumes

Create a Secret

Deploy MySQL

Deploy WordPress

Clean up

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Download the following configuration files:

1. mysql-deployment.yaml

2. wordpress-deployment.yaml

Create PersistentVolumeClaims and
PersistentVolumes

MySQL and Wordpress each require a PersistentVolume to store data. Their

PersistentVolumeClaims will be created at the deployment step.

Many cluster environments have a default StorageClass installed. When a StorageClass is not

specified in the PersistentVolumeClaim, the cluster’s default StorageClass is used instead.

When a PersistentVolumeClaim is created, a PersistentVolume is dynamically provisioned

based on the StorageClass configuration.

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/
file:///docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/mysql-deployment.yaml
file:///docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/wordpress-deployment.yaml

Warning: In local clusters, the default StorageClass uses the hostPathhostPath provisioner.

hostPathhostPath volumes are only suitable for development and testing. With hostPathhostPath

volumes, your data lives in /tmp/tmp on the node the Pod is scheduled onto and does not

move between nodes. If a Pod dies and gets scheduled to another node in the cluster, or

the node is rebooted, the data is lost.

Note: If you are bringing up a cluster that needs to use the hostPathhostPath provisioner, the

--enable-hostpath-provisioner--enable-hostpath-provisioner flag must be set in the controller-managercontroller-manager

component.

Note: If you have a Kubernetes cluster running on Google Kubernetes Engine, please

follow this guide.

Create a Secret for MySQL Password

A Secret is an object that stores a piece of sensitive data like a password or key. The manifest

files are already configured to use a Secret, but you have to create your own Secret.

1. Create the Secret object from the following command:

Note: Replace YOUR_PASSWORDYOUR_PASSWORD with the password you want to apply.

2. Verify that the Secret exists by running the following command:

kubectl create secret generic mysql-pass --from-literal=password=YOUR_PASSWORDkubectl create secret generic mysql-pass --from-literal=password=YOUR_PASSWORD

kubectl get secretskubectl get secrets

https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk
file:///docs/concepts/configuration/secret/

The response should be like this:

Note: To protect the Secret from exposure, neither getget nor describedescribe show its

contents.

Deploy MySQL

The following manifest describes a single-instance MySQL Deployment. The MySQL container

mounts the PersistentVolume at /var/lib/mysql. The MYSQL_ROOT_PASSWORDMYSQL_ROOT_PASSWORD environment

variable sets the database password from the Secret.

mysql-wordpress-persistent-volume/mysql-deployment.yamlmysql-wordpress-persistent-volume/mysql-deployment.yaml

NAME TYPE DATA AGENAME TYPE DATA AGE

mysql-pass Opaque 1 42smysql-pass Opaque 1 42s

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: wordpress-mysqlwordpress-mysql

 labelslabels::

 appapp:: wordpresswordpress

specspec::

 portsports::

 -- portport:: 33063306

 selectorselector::

 appapp:: wordpresswordpress

 tiertier:: mysqlmysql

 clusterIPclusterIP:: NoneNone

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

metadatametadata::

 namename:: mysql-pv-claimmysql-pv-claim

 labelslabels::

 appapp:: wordpresswordpress

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/mysql-deployment.yaml

mysql-wordpress-persistent-volume/mysql-deployment.yamlmysql-wordpress-persistent-volume/mysql-deployment.yaml

1. Deploy MySQL from the mysql-deployment.yamlmysql-deployment.yaml file:

2. Verify that a PersistentVolume got dynamically provisioned:

 requestsrequests::

 storagestorage:: 20Gi20Gi

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: wordpress-mysqlwordpress-mysql

 labelslabels::

 appapp:: wordpresswordpress

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: wordpresswordpress

 tiertier:: mysqlmysql

 strategystrategy::

 typetype:: RecreateRecreate

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: wordpresswordpress

 tiertier:: mysqlmysql

 specspec::

 containerscontainers::

 -- imageimage:: mysql:5.6mysql:5.6

 namename:: mysqlmysql

 envenv::

 -- namename:: MYSQL_ROOT_PASSWORDMYSQL_ROOT_PASSWORD

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: mysql-passmysql-pass

 keykey:: passwordpassword

 portsports::

 -- containerPortcontainerPort:: 33063306

 namename:: mysqlmysql

 volumeMountsvolumeMounts::

 -- namename:: mysql-persistent-storagemysql-persistent-storage

 mountPathmountPath:: /var/lib/mysql/var/lib/mysql

 volumesvolumes::

 -- namename:: mysql-persistent-storagemysql-persistent-storage

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: mysql-pv-claimmysql-pv-claim

kubectl create -f mysql-deployment.yamlkubectl create -f mysql-deployment.yaml

Note: It can take up to a few minutes for the PVs to be provisioned and bound.

The response should be like this:

3. Verify that the Pod is running by running the following command:

Note: It can take up to a few minutes for the Pod’s Status to be RUNNINGRUNNING .

The response should be like this:

Deploy WordPress

The following manifest describes a single-instance WordPress Deployment and Service. It

uses many of the same features like a PVC for persistent storage and a Secret for the

password. But it also uses a different setting:

type:type:

NodePortNodePort . This setting exposes

WordPress to traffic from outside of the cluster.

kubectl get pvckubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGENAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

mysql-pv-claim Bound pvc-91e44fbf-d477-11e7-ac6a-42010a800002 20Gi RWO standard 29smysql-pv-claim Bound pvc-91e44fbf-d477-11e7-ac6a-42010a800002 20Gi RWO standard 29s

kubectl get podskubectl get pods

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

wordpress-mysql-1894417608-x5dzt 1/1 Running 0 40swordpress-mysql-1894417608-x5dzt 1/1 Running 0 40s

mysql-wordpress-persistent-volume/wordpress-deployment.yamlmysql-wordpress-persistent-volume/wordpress-deployment.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: wordpresswordpress

 labelslabels::

 appapp:: wordpresswordpress

specspec::

 portsports::

 -- portport:: 8080

 selectorselector::

 appapp:: wordpresswordpress

 tiertier:: frontendfrontend

 typetype:: LoadBalancerLoadBalancer

apiVersionapiVersion:: v1v1

kindkind:: PersistentVolumeClaimPersistentVolumeClaim

metadatametadata::

 namename:: wp-pv-claimwp-pv-claim

 labelslabels::

 appapp:: wordpresswordpress

specspec::

 accessModesaccessModes::

 -- ReadWriteOnceReadWriteOnce

 resourcesresources::

 requestsrequests::

 storagestorage:: 20Gi20Gi

apiVersionapiVersion:: apps/v1apps/v1 # for versions before 1.9.0 use apps/v1beta2# for versions before 1.9.0 use apps/v1beta2

kindkind:: DeploymentDeployment

metadatametadata::

 namename:: wordpresswordpress

 labelslabels::

 appapp:: wordpresswordpress

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: wordpresswordpress

 tiertier:: frontendfrontend

 strategystrategy::

 typetype:: RecreateRecreate

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: wordpresswordpress

 tiertier:: frontendfrontend

 specspec::

 containerscontainers::

 -- imageimage:: wordpress:4.8-apachewordpress:4.8-apache

 namename:: wordpresswordpress

 envenv::

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/wordpress-deployment.yaml

mysql-wordpress-persistent-volume/wordpress-deployment.yamlmysql-wordpress-persistent-volume/wordpress-deployment.yaml

1. Create a WordPress Service and Deployment from the wordpress-deployment.yamlwordpress-deployment.yaml file:

2. Verify that a PersistentVolume got dynamically provisioned:

Note: It can take up to a few minutes for the PVs to be provisioned and bound.

The response should be like this:

3. Verify that the Service is running by running the following command:

 envenv::

 -- namename:: WORDPRESS_DB_HOSTWORDPRESS_DB_HOST

 valuevalue:: wordpress-mysqlwordpress-mysql

 -- namename:: WORDPRESS_DB_PASSWORDWORDPRESS_DB_PASSWORD

 valueFromvalueFrom::

 secretKeyRefsecretKeyRef::

 namename:: mysql-passmysql-pass

 keykey:: passwordpassword

 portsports::

 -- containerPortcontainerPort:: 8080

 namename:: wordpresswordpress

 volumeMountsvolumeMounts::

 -- namename:: wordpress-persistent-storagewordpress-persistent-storage

 mountPathmountPath:: /var/www/html/var/www/html

 volumesvolumes::

 -- namename:: wordpress-persistent-storagewordpress-persistent-storage

 persistentVolumeClaimpersistentVolumeClaim::

 claimNameclaimName:: wp-pv-claimwp-pv-claim

kubectl create -f wordpress-deployment.yamlkubectl create -f wordpress-deployment.yaml

kubectl get pvckubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGENAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

wp-pv-claim Bound pvc-e69d834d-d477-11e7-ac6a-42010a800002 20Gi RWO standard 7swp-pv-claim Bound pvc-e69d834d-d477-11e7-ac6a-42010a800002 20Gi RWO standard 7s

kubectl get services wordpresskubectl get services wordpress

The response should be like this:

Note: Minikube can only expose Services through NodePortNodePort .

The EXTERNAL-IPEXTERNAL-IP is always <pending><pending> .

4. Run the following command to get the IP Address for the WordPress Service:

The response should be like this:

5. Copy the IP address, and load the page in your browser to view your site.

You should see the WordPress set up page similar to the following screenshot.

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

wordpress 10.0.0.89 <pending> 80:32406/TCP 4mwordpress 10.0.0.89 <pending> 80:32406/TCP 4m

minikube service wordpress --urlminikube service wordpress --url

http://1.2.3.4:32406http://1.2.3.4:32406

Warning: Do not leave your WordPress installation on this page. If another user

finds it, they can set up a website on your instance and use it to serve malicious

content.

Either install WordPress by creating a username and password or delete your

instance.

Cleaning up

1. Run the following command to delete your Secret:

2. Run the following commands to delete all Deployments and Services:

kubectl delete secret mysql-passkubectl delete secret mysql-pass

3. Run the following commands to delete the PersistentVolumeClaims. The dynamically

provisioned PersistentVolumes will be automatically deleted.

What’s next

Learn more about Introspection and Debugging

Learn more about Jobs

Learn more about Port Forwarding

Learn how to Get a Shell to a Container

kubectl delete deployment -l app=wordpresskubectl delete deployment -l app=wordpress

kubectl delete service -l app=wordpresskubectl delete service -l app=wordpress

kubectl delete pvc -l app=wordpresskubectl delete pvc -l app=wordpress

file:///docs/tasks/debug-application-cluster/debug-application-introspection/
file:///docs/concepts/workloads/controllers/jobs-run-to-completion/
file:///docs/tasks/access-application-cluster/port-forward-access-application-cluster/
file:///docs/tasks/debug-application-cluster/get-shell-running-container/

Example: Deploying Cassandra with
Stateful Sets

This tutorial shows you how to develop a native cloud Cassandra deployment on Kubernetes.

In this instance, a custom Cassandra SeedProviderSeedProvider enables Cassandra to discover new

Cassandra nodes as they join the cluster.

Deploying stateful distributed applications, like Cassandra, within a clustered environment can

be challenging. StatefulSets greatly simplify this process. Please read about StatefulSets for

more information about the features used in this tutorial.

Cassandra Docker

The Pods use the gcr.io/google-samples/cassandra:v13gcr.io/google-samples/cassandra:v13 image from Google’s container

registry. The docker image above is based on debian-base and includes OpenJDK 8. This

image includes a standard Cassandra installation from the Apache Debian repo. By using

environment variables you can change values that are inserted into cassandra.yamlcassandra.yaml .

ENV VAR DEFAULT VALUE

CASSANDRA_CLUSTER_NAME ‘Test Cluster’

CASSANDRA_NUM_TOKENS 32

CASSANDRA_RPC_ADDRESS 0.0.0.0

Objectives

Objectives

Before you begin

Additional Minikube Setup Instructions

Creating a Cassandra Headless Service

Validating (optional)

Using a StatefulSet to Create a Cassandra Ring

Validating The Cassandra StatefulSet

Modifying the Cassandra StatefulSet

Cleaning up

What’s next

http://cassandra.apache.org/
file:///docs/concepts/workloads/controllers/statefulset/
https://github.com/kubernetes/examples/blob/master/cassandra/image/Dockerfile
https://cloud.google.com/container-registry/docs/
https://github.com/kubernetes/kubernetes/tree/master/build/debian-base

Create and Validate a Cassandra headless Services.

Use a StatefulSet to create a Cassandra ring.

Validate the StatefulSet.

Modify the StatefulSet.

Delete the StatefulSet and its Pods.

Before you begin

To complete this tutorial, you should already have a basic familiarity with Pods, Services, and

StatefulSets. In addition, you should:

Install and Configure the kubectlkubectl command line

Download cassandra-service.yaml and cassandra-statefulset.yaml

Have a supported Kubernetes Cluster running

Note: Please read the getting started guides if you do not already have a cluster.

Additional Minikube Setup Instructions

Caution: Minikube defaults to 1024MB of memory and 1 CPU which results in an

insufficient resource errors during this tutorial.

To avoid these errors, run minikube with:

Creating a Cassandra Headless Service

A Kubernetes Service describes a set of Pods that perform the same task.

minikube start --memory 5120 --cpus=4minikube start --memory 5120 --cpus=4

file:///docs/concepts/services-networking/service/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/workloads/pods/pod/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/tasks/tools/install-kubectl/
file:///docs/tutorials/stateful-application/cassandra/cassandra-service.yaml
file:///docs/tutorials/stateful-application/cassandra/cassandra-statefulset.yaml
file:///docs/setup/pick-right-solution/
file:///docs/getting-started-guides/minikube/
file:///docs/concepts/services-networking/service/
file:///docs/concepts/workloads/pods/pod/

The following ServiceService is used for DNS lookups between Cassandra Pods and clients within

the Kubernetes Cluster.

1. Launch a terminal window in the directory you downloaded the manifest files.

2. Create a ServiceService to track all Cassandra StatefulSet Nodes from the

cassandra-service.yamlcassandra-service.yaml file:

cassandra/cassandra-service.yamlcassandra/cassandra-service.yaml

Validating (optional)

Get the Cassandra ServiceService .

The response should be

If anything else returns, the service was not successfully created. Read Debug Services for

common issues.

kubectl create -f cassandra-service.yamlkubectl create -f cassandra-service.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 labelslabels::

 appapp:: cassandracassandra

 namename:: cassandracassandra

specspec::

 clusterIPclusterIP:: NoneNone

 portsports::

 -- portport:: 90429042

 selectorselector::

 appapp:: cassandracassandra

kubectl get svc cassandrakubectl get svc cassandra

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

cassandra None <none> 9042/TCP 45scassandra None <none> 9042/TCP 45s

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/cassandra/cassandra-service.yaml
file:///docs/tasks/debug-application-cluster/debug-service/

Using a StatefulSet to Create a Cassandra Ring

The StatefulSet manifest, included below, creates a Cassandra ring that consists of three

Pods.

Note: This example uses the default provisioner for Minikube. Please update the

following StatefulSet for the cloud you are working with.

1. Update the StatefulSet if necessary.

2. Create the Cassandra StatefulSet from the cassandra-statefulset.yamlcassandra-statefulset.yaml file:

cassandra/cassandra-statefulset.yamlcassandra/cassandra-statefulset.yaml

kubectl create -f cassandra-statefulset.yamlkubectl create -f cassandra-statefulset.yaml

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: StatefulSetStatefulSet

metadatametadata::

 namename:: cassandracassandra

 labelslabels::

 appapp:: cassandracassandra

specspec::

 serviceNameserviceName:: cassandracassandra

 replicasreplicas:: 33

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: cassandracassandra

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: cassandracassandra

 specspec::

 terminationGracePeriodSecondsterminationGracePeriodSeconds:: 18001800

 containerscontainers::

 -- namename:: cassandracassandra

 imageimage:: gcr.io/google-samples/cassandra:v13gcr.io/google-samples/cassandra:v13

 imagePullPolicyimagePullPolicy:: AlwaysAlways

 portsports::

 -- containerPortcontainerPort:: 70007000

 namename:: intra-nodeintra-node

 -- containerPortcontainerPort:: 70017001

 namename:: tls-intra-nodetls-intra-node

 -- containerPortcontainerPort:: 71997199

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/cassandra/cassandra-statefulset.yaml

cassandra/cassandra-statefulset.yamlcassandra/cassandra-statefulset.yaml

 -- containerPortcontainerPort:: 71997199

 namename:: jmxjmx

 -- containerPortcontainerPort:: 90429042

 namename:: cqlcql

 resourcesresources::

 limitslimits::

 cpucpu:: ""500m"500m"

 memorymemory:: 1Gi1Gi

 requestsrequests::

 cpucpu:: ""500m"500m"

 memorymemory:: 1Gi1Gi

 securityContextsecurityContext::

 capabilitiescapabilities::

 addadd::

 -- IPC_LOCKIPC_LOCK

 lifecyclelifecycle::

 preStoppreStop::

 execexec::

 commandcommand::

 -- /bin/sh/bin/sh

 -- -c-c

 -- nodetool drainnodetool drain

 envenv::

 -- namename:: MAX_HEAP_SIZEMAX_HEAP_SIZE

 valuevalue:: 512M512M

 -- namename:: HEAP_NEWSIZEHEAP_NEWSIZE

 valuevalue:: 100M100M

 -- namename:: CASSANDRA_SEEDSCASSANDRA_SEEDS

 valuevalue:: ""cassandra-0.cassandra.default.svc.cluster.local"cassandra-0.cassandra.default.svc.cluster.local"

 -- namename:: CASSANDRA_CLUSTER_NAMECASSANDRA_CLUSTER_NAME

 valuevalue:: ""K8Demo"K8Demo"

 -- namename:: CASSANDRA_DCCASSANDRA_DC

 valuevalue:: ""DC1-K8Demo"DC1-K8Demo"

 -- namename:: CASSANDRA_RACKCASSANDRA_RACK

 valuevalue:: ""Rack1-K8Demo"Rack1-K8Demo"

 -- namename:: POD_IPPOD_IP

 valueFromvalueFrom::

 fieldReffieldRef::

 fieldPathfieldPath:: status.podIPstatus.podIP

 readinessProbereadinessProbe::

 execexec::

 commandcommand::

 -- /bin/bash/bin/bash

 -- -c-c

 -- /ready-probe.sh/ready-probe.sh

 initialDelaySecondsinitialDelaySeconds:: 1515

 timeoutSecondstimeoutSeconds:: 55

 # These volume mounts are persistent. They are like inline claims,# These volume mounts are persistent. They are like inline claims,
 # but not exactly because the names need to match exactly one of# but not exactly because the names need to match exactly one of
 # the stateful pod volumes.# the stateful pod volumes.
 volumeMountsvolumeMounts::

 -- namename:: cassandra-datacassandra-data

 mountPathmountPath:: /cassandra_data/cassandra_data

 # These are converted to volume claims by the controller# These are converted to volume claims by the controller
 # and mounted at the paths mentioned above.# and mounted at the paths mentioned above.

cassandra/cassandra-statefulset.yamlcassandra/cassandra-statefulset.yaml

Validating The Cassandra StatefulSet

1. Get the Cassandra StatefulSet:

The response should be

The StatefulSet resource deploys Pods sequentially.

2. Get the Pods to see the ordered creation status:

The response should be

 # and mounted at the paths mentioned above.# and mounted at the paths mentioned above.
 # do not use these in production until ssd GCEPersistentDisk or other ssd pd# do not use these in production until ssd GCEPersistentDisk or other ssd pd
 volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: cassandra-datacassandra-data

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 storageClassNamestorageClassName:: fastfast

 resourcesresources::

 requestsrequests::

 storagestorage:: 1Gi1Gi

kindkind:: StorageClassStorageClass

apiVersionapiVersion:: storage.k8s.io/v1storage.k8s.io/v1

metadatametadata::

 namename:: fastfast

provisionerprovisioner:: k8s.io/minikube-hostpathk8s.io/minikube-hostpath

parametersparameters::

 typetype:: pd-ssdpd-ssd

kubectl get statefulset cassandrakubectl get statefulset cassandra

NAME DESIRED CURRENT AGENAME DESIRED CURRENT AGE

cassandra 3 0 13scassandra 3 0 13s

kubectl get pods -l="app=cassandra"kubectl get pods -l="app=cassandra"

Note: It can take up to ten minutes for all three Pods to deploy.

Once all Pods are deployed, the same command returns:

3. Run the Cassandra utility nodetool to display the status of the ring.

The response is:

Modifying the Cassandra StatefulSet

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

cassandra-0 1/1 Running 0 1mcassandra-0 1/1 Running 0 1m

cassandra-1 0/1 ContainerCreating 0 8scassandra-1 0/1 ContainerCreating 0 8s

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

cassandra-0 1/1 Running 0 10mcassandra-0 1/1 Running 0 10m

cassandra-1 1/1 Running 0 9mcassandra-1 1/1 Running 0 9m

cassandra-2 1/1 Running 0 8mcassandra-2 1/1 Running 0 8m

kubectl exec cassandra-0 -- nodetool statuskubectl exec cassandra-0 -- nodetool status

Datacenter: DC1-K8DemoDatacenter: DC1-K8Demo

==

Status=Up/DownStatus=Up/Down

|/ State=Normal/Leaving/Joining/Moving|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack-- Address Load Tokens Owns (effective) Host ID Rack

UN 172.17.0.5 83.57 KiB 32 74.0% e2dd09e6-d9d3-477e-96c5-45094c08db0f Rack1-K8DemoUN 172.17.0.5 83.57 KiB 32 74.0% e2dd09e6-d9d3-477e-96c5-45094c08db0f Rack1-K8Demo

UN 172.17.0.4 101.04 KiB 32 58.8% f89d6835-3a42-4419-92b3-0e62cae1479c Rack1-K8DemoUN 172.17.0.4 101.04 KiB 32 58.8% f89d6835-3a42-4419-92b3-0e62cae1479c Rack1-K8Demo

UN 172.17.0.6 84.74 KiB 32 67.1% a6a1e8c2-3dc5-4417-b1a0-26507af2aaad Rack1-K8DemoUN 172.17.0.6 84.74 KiB 32 67.1% a6a1e8c2-3dc5-4417-b1a0-26507af2aaad Rack1-K8Demo

Use kubectl editkubectl edit to modify the size of a Cassandra StatefulSet.

1. Run the following command:

This command opens an editor in your terminal. The line you need to change is the

replicasreplicas field.

Note: The following sample is an excerpt of the StatefulSet file.

2. Change the number of replicas to 4, and then save the manifest.

The StatefulSet now contains 4 Pods.

3. Get the Cassandra StatefulSet to verify:

kubectl edit statefulset cassandrakubectl edit statefulset cassandra

 # Please edit the object below. Lines beginning with a '#' will be ignored, # Please edit the object below. Lines beginning with a '#' will be ignored,

 # and an empty file will abort the edit. If an error occurs while saving this file will be # and an empty file will abort the edit. If an error occurs while saving this file will be

 # reopened with the relevant failures. # reopened with the relevant failures.

 # #

 apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2 apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2

 kind: StatefulSet kind: StatefulSet

 metadata: metadata:

 creationTimestamp: 2016-08-13T18:40:58Z creationTimestamp: 2016-08-13T18:40:58Z

 generation: 1 generation: 1

 labels: labels:

 app: cassandra app: cassandra

 name: cassandra name: cassandra

 namespace: default namespace: default

 resourceVersion: "323" resourceVersion: "323"

 selfLink: /apis/apps/v1/namespaces/default/statefulsets/cassandra selfLink: /apis/apps/v1/namespaces/default/statefulsets/cassandra

 uid: 7a219483-6185-11e6-a910-42010a8a0fc0 uid: 7a219483-6185-11e6-a910-42010a8a0fc0

 spec: spec:

 replicas: 3 replicas: 3

The response should be

Cleaning up

Deleting or scaling a StatefulSet down does not delete the volumes associated with the

StatefulSet. This ensures safety first: your data is more valuable than an auto purge of all

related StatefulSet resources.

Warning: Depending on the storage class and reclaim policy, deleting the Persistent

Volume Claims may cause the associated volumes to also be deleted. Never assume

you’ll be able to access data if its volume claims are deleted.

1. Run the following commands to delete everything in a StatefulSetStatefulSet :

2. Run the following command to delete the Cassandra ServiceService .

What’s next

kubectl get statefulset cassandrakubectl get statefulset cassandra

NAME DESIRED CURRENT AGENAME DESIRED CURRENT AGE

cassandra 4 4 36mcassandra 4 4 36m

grace=$(kubectl get po cassandra-0 -o=jsonpath='{.spec.terminationGracePeriodSeconds}') \grace=$(kubectl get po cassandra-0 -o=jsonpath='{.spec.terminationGracePeriodSeconds}') \

 && kubectl delete statefulset -l app=cassandra \ && kubectl delete statefulset -l app=cassandra \

 && echo "Sleeping $grace" \ && echo "Sleeping $grace" \

 && sleep $grace \ && sleep $grace \

 && kubectl delete pvc -l app=cassandra && kubectl delete pvc -l app=cassandra

kubectl delete service -l app=cassandrakubectl delete service -l app=cassandra

Learn how to Scale a StatefulSet.

Learn more about the KubernetesSeedProvider

See more custom Seed Provider Configurations

file:///docs/tasks/run-application/scale-stateful-set/
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://git.k8s.io/examples/cassandra/java/README.md

Running ZooKeeper, A CP Distributed
System

This tutorial demonstrates Apache Zookeeper on Kubernetes using StatefulSets,

PodDisruptionBudgets, and PodAntiAffinity.

Objectives

After this tutorial, you will know the following.

How to deploy a ZooKeeper ensemble using StatefulSet.

How to consistently configure the ensemble using ConfigMaps.

How to spread the deployment of ZooKeeper servers in the ensemble.

How to use PodDisruptionBudgets to ensure service availability during planned

maintenance.

Objectives

Before you begin

ZooKeeper Basics

Creating a ZooKeeper Ensemble

Facilitating Leader Election

Achieving Consensus

Sanity Testing the Ensemble

Providing Durable Storage

Ensuring Consistent Configuration

Configuring Logging

Configuring a Non-Privileged User

Managing the ZooKeeper Process

Updating the Ensemble

Handling Process Failure

Testing for Liveness

Testing for Readiness

Tolerating Node Failure

Surviving Maintenance

Cleaning up

https://zookeeper.apache.org
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/pods/disruptions/#specifying-a-poddisruptionbudget
file:///docs/user-guide/node-selection/#inter-pod-affinity-and-anti-affinity-beta-feature

Before you begin

Before starting this tutorial, you should be familiar with the following Kubernetes concepts.

Pods

Cluster DNS

Headless Services

PersistentVolumes

PersistentVolume Provisioning

StatefulSets

PodDisruptionBudgets

PodAntiAffinity

kubectl CLI

You will require a cluster with at least four nodes, and each node will require at least 2 CPUs

and 4 GiB of memory. In this tutorial you will cordon and drain the cluster’s nodes. This means

that all Pods on the cluster’s nodes will be terminated and evicted, and the nodes will,

temporarily, become unschedulable. You should use a dedicated cluster for this tutorial, or you

should ensure that the disruption you cause will not interfere with other tenants.

This tutorial assumes that your cluster is configured to dynamically provision

PersistentVolumes. If your cluster is not configured to do so, you will have to manually

provision three 20 GiB volumes prior to starting this tutorial.

ZooKeeper Basics

Apache ZooKeeper is a distributed, open-source coordination service for distributed

applications. ZooKeeper allows you to read, write, and observe updates to data. Data are

organized in a file system like hierarchy and replicated to all ZooKeeper servers in the

ensemble (a set of ZooKeeper servers). All operations on data are atomic and sequentially

consistent. ZooKeeper ensures this by using the Zab consensus protocol to replicate a state

machine across all servers in the ensemble.

file:///docs/user-guide/pods/single-container/
file:///docs/concepts/services-networking/dns-pod-service/
file:///docs/concepts/services-networking/service/#headless-services
file:///docs/concepts/storage/volumes/
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/
file:///docs/concepts/workloads/controllers/statefulset/
file:///docs/concepts/workloads/pods/disruptions/#specifying-a-poddisruptionbudget
file:///docs/user-guide/node-selection/#inter-pod-affinity-and-anti-affinity-beta-feature
file:///docs/user-guide/kubectl/
https://zookeeper.apache.org/doc/current/
https://pdfs.semanticscholar.org/b02c/6b00bd5dbdbd951fddb00b906c82fa80f0b3.pdf

The ensemble uses the Zab protocol to elect a leader, and data can not be written until a leader

is elected. Once a leader is elected, the ensemble uses Zab to ensure that all writes are

replicated to a quorum before they are acknowledged and made visible to clients. Without

respect to weighted quorums, a quorum is a majority component of the ensemble containing

the current leader. For instance, if the ensemble has three servers, a component that contains

the leader and one other server constitutes a quorum. If the ensemble can not achieve a

quorum, data can not be written.

ZooKeeper servers keep their entire state machine in memory, but every mutation is written to

a durable WAL (Write Ahead Log) on storage media. When a server crashes, it can recover its

previous state by replaying the WAL. In order to prevent the WAL from growing without bound,

ZooKeeper servers will periodically snapshot their in memory state to storage media. These

snapshots can be loaded directly into memory, and all WAL entries that preceded the snapshot

may be safely discarded.

Creating a ZooKeeper Ensemble

The manifest below contains a Headless Service, a Service, a PodDisruptionBudget, and a

StatefulSet.

zookeeper.yamlzookeeper.yaml

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: zk-hszk-hs

 labelslabels::

 appapp:: zkzk

specspec::

 portsports::

 -- portport:: 28882888

 namename:: serverserver

 -- portport:: 38883888

 namename:: leader-electionleader-election

 clusterIPclusterIP:: NoneNone

 selectorselector::

 appapp:: zkzk

apiVersionapiVersion:: v1v1

kindkind:: ServiceService

metadatametadata::

 namename:: zk-cszk-cs

 labelslabels::

file:///docs/concepts/services-networking/service/#headless-services
file:///docs/concepts/services-networking/service/
file:///docs/concepts/workloads/pods/disruptions//#specifying-a-poddisruptionbudget
file:///docs/concepts/workloads/controllers/statefulset/
https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/zookeeper.yaml

zookeeper.yamlzookeeper.yaml

 labelslabels::

 appapp:: zkzk

specspec::

 portsports::

 -- portport:: 21812181

 namename:: clientclient

 selectorselector::

 appapp:: zkzk

apiVersionapiVersion:: policy/v1beta1policy/v1beta1

kindkind:: PodDisruptionBudgetPodDisruptionBudget

metadatametadata::

 namename:: zk-pdbzk-pdb

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: zkzk

 maxUnavailablemaxUnavailable:: 11

apiVersionapiVersion:: apps/v1apps/v1

kindkind:: StatefulSetStatefulSet

metadatametadata::

 namename:: zkzk

specspec::

 selectorselector::

 matchLabelsmatchLabels::

 appapp:: zkzk

 serviceNameserviceName:: zk-hszk-hs

 replicasreplicas:: 33

 updateStrategyupdateStrategy::

 typetype:: RollingUpdateRollingUpdate

 podManagementPolicypodManagementPolicy:: ParallelParallel

 templatetemplate::

 metadatametadata::

 labelslabels::

 appapp:: zkzk

 specspec::

 affinityaffinity::

 podAntiAffinitypodAntiAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 -- labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: ""app"app"

 operatoroperator:: InIn

 valuesvalues::

 -- zkzk

 topologyKeytopologyKey:: ""kubernetes.io/hostname"kubernetes.io/hostname"

 containerscontainers::

 -- namename:: kubernetes-zookeeperkubernetes-zookeeper

 imagePullPolicyimagePullPolicy:: AlwaysAlways

 imageimage:: ""k8s.gcr.io/kubernetes-zookeeper:1.0-3.4.10"k8s.gcr.io/kubernetes-zookeeper:1.0-3.4.10"

 resourcesresources::

 requestsrequests::

 memorymemory:: ""1Gi"1Gi"

 cpucpu:: ""0.5"0.5"

zookeeper.yamlzookeeper.yaml

 cpucpu:: ""0.5"0.5"

 portsports::

 -- containerPortcontainerPort:: 21812181

 namename:: clientclient

 -- containerPortcontainerPort:: 28882888

 namename:: serverserver

 -- containerPortcontainerPort:: 38883888

 namename:: leader-electionleader-election

 commandcommand::

 -- shsh

 -- -c-c

 -- ""start-zookeeperstart-zookeeper \\

 --servers=3--servers=3 \\

 --data_dir=/var/lib/zookeeper/data--data_dir=/var/lib/zookeeper/data \\

 --data_log_dir=/var/lib/zookeeper/data/log--data_log_dir=/var/lib/zookeeper/data/log \\

 --conf_dir=/opt/zookeeper/conf--conf_dir=/opt/zookeeper/conf \\

 --client_port=2181--client_port=2181 \\

 --election_port=3888--election_port=3888 \\

 --server_port=2888--server_port=2888 \\

 --tick_time=2000--tick_time=2000 \\

 --init_limit=10--init_limit=10 \\

 --sync_limit=5--sync_limit=5 \\

 --heap=512M--heap=512M \\

 --max_client_cnxns=60--max_client_cnxns=60 \\

 --snap_retain_count=3--snap_retain_count=3 \\

 --purge_interval=12--purge_interval=12 \\

 --max_session_timeout=40000--max_session_timeout=40000 \\

 --min_session_timeout=4000--min_session_timeout=4000 \\

 --log_level=INFO"--log_level=INFO"

 readinessProbereadinessProbe::

 execexec::

 commandcommand::

 -- shsh

 -- -c-c

 -- ""zookeeper-readyzookeeper-ready 2181"2181"

 initialDelaySecondsinitialDelaySeconds:: 1010

 timeoutSecondstimeoutSeconds:: 55

 livenessProbelivenessProbe::

 execexec::

 commandcommand::

 -- shsh

 -- -c-c

 -- ""zookeeper-readyzookeeper-ready 2181"2181"

 initialDelaySecondsinitialDelaySeconds:: 1010

 timeoutSecondstimeoutSeconds:: 55

 volumeMountsvolumeMounts::

 -- namename:: datadirdatadir

 mountPathmountPath:: /var/lib/zookeeper/var/lib/zookeeper

 securityContextsecurityContext::

 runAsUserrunAsUser:: 10001000

 fsGroupfsGroup:: 10001000

 volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: datadirdatadir

 specspec::

zookeeper.yamlzookeeper.yaml

Open a command terminal, and use kubectl applykubectl apply to create the manifest.

This creates the zk-hszk-hs Headless Service, the zk-cszk-cs Service, the zk-pdbzk-pdb

PodDisruptionBudget, and the zkzk StatefulSet.

Use

kubectlkubectl

getget to watch the StatefulSet controller create the StatefulSet’s Pods.

Once the zk-2zk-2 Pod is Running and Ready, use CTRL-CCTRL-C to terminate kubectl.

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 resourcesresources::

 requestsrequests::

 storagestorage:: 10Gi10Gi

kubectl apply kubectl apply -f-f https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/zookeeper.yaml https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/zookeeper.yaml

service service "zk-hs""zk-hs" created created

service service "zk-cs""zk-cs" created created

poddisruptionbudget poddisruptionbudget "zk-pdb""zk-pdb" created created

statefulset statefulset "zk""zk" created created

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 ContainerCreating 0 0szk-0 0/1 ContainerCreating 0 0s

zk-0 0/1 Running 0 19szk-0 0/1 Running 0 19s

zk-0 1/1 Running 0 40szk-0 1/1 Running 0 40s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 ContainerCreating 0 0szk-1 0/1 ContainerCreating 0 0s

zk-1 0/1 Running 0 18szk-1 0/1 Running 0 18s

zk-1 1/1 Running 0 40szk-1 1/1 Running 0 40s

zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s

zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s

zk-2 0/1 ContainerCreating 0 0szk-2 0/1 ContainerCreating 0 0s

zk-2 0/1 Running 0 19szk-2 0/1 Running 0 19s

zk-2 1/1 Running 0 40szk-2 1/1 Running 0 40s

file:///docs/user-guide/kubectl/v1.10/#apply
file:///docs/user-guide/kubectl/v1.10/#get

The StatefulSet controller creates three Pods, and each Pod has a container with a ZooKeeper

server.

Facilitating Leader Election

As there is no terminating algorithm for electing a leader in an anonymous network, Zab

requires explicit membership configuration in order to perform leader election. Each server in

the ensemble needs to have a unique identifier, all servers need to know the global set of

identifiers, and each identifier needs to be associated with a network address.

Use kubectl execkubectl exec to get the hostnames of the Pods in the zkzk StatefulSet.

The StatefulSet controller provides each Pod with a unique hostname based on its ordinal

index. The hostnames take the form

<statefulset name>-<ordinal<statefulset name>-<ordinal

index>index> . As the

replicasreplicas field of the zkzk StatefulSet is set to 33 , the Set’s controller creates three Pods with

their hostnames set to zk-0zk-0 , zk-1zk-1 , and zk-2zk-2 .

The servers in a ZooKeeper ensemble use natural numbers as unique identifiers, and each

server’s identifier is stored in a file called myidmyid in the server’s data directory.

Examine the contents of the myidmyid file for each server.

As the identifiers are natural numbers and the ordinal indices are non-negative integers, you

can generate an identifier by adding one to the ordinal.

for for i i in in 0 1 20 1 2;; do do kubectl kubectl exec exec zk-zk-ii ---- hostname hostname;; donedone

zk-0zk-0

zk-1zk-1

zk-2zk-2

for for i i in in 0 1 20 1 2;; do do echoecho "myid zk-"myid zk-ii"";;kubectl kubectl exec exec zk-zk-ii ---- catcat /var/lib/zookeeper/data/myid /var/lib/zookeeper/data/myid

http://www-us.apache.org/dist/zookeeper/stable/
file:///docs/user-guide/kubectl/v1.10/#exec

Get the FQDN (Fully Qualified Domain Name) of each Pod in the zkzk StatefulSet.

The zk-hszk-hs Service creates a domain for all of the Pods,

zk-hs.default.svc.cluster.localzk-hs.default.svc.cluster.local .

The A records in Kubernetes DNS resolve the FQDNs to the Pods’ IP addresses. If the Pods are

rescheduled, the A records will be updated with the Pods’ new IP addresses, but the A record’s

names will not change.

ZooKeeper stores its application configuration in a file named zoo.cfgzoo.cfg . Use kubectl execkubectl exec

to view the contents of the zoo.cfgzoo.cfg file in the zk-0zk-0 Pod.

For the server.1server.1 , server.2server.2 , and server.3server.3 properties at the bottom of the file, the 11 , 22 ,

and 33 correspond to the identifiers in the ZooKeeper servers’ myidmyid files. They are set to the

FQDNs for the Pods in the zkzk StatefulSet.

myid zk-0myid zk-0

11

myid zk-1myid zk-1

22

myid zk-2myid zk-2

33

for for i i in in 0 1 20 1 2;; do do kubectl kubectl exec exec zk-zk-ii ---- hostname hostname -f-f;; donedone

zk-0.zk-hs.default.svc.cluster.localzk-0.zk-hs.default.svc.cluster.local

zk-1.zk-hs.default.svc.cluster.localzk-1.zk-hs.default.svc.cluster.local

zk-2.zk-hs.default.svc.cluster.localzk-2.zk-hs.default.svc.cluster.local

kubectl exec zk-0 -- cat /opt/zookeeper/conf/zoo.cfgkubectl exec zk-0 -- cat /opt/zookeeper/conf/zoo.cfg

file:///docs/concepts/services-networking/dns-pod-service/

Achieving Consensus

Consensus protocols require that the identifiers of each participant be unique. No two

participants in the Zab protocol should claim the same unique identifier. This is necessary to

allow the processes in the system to agree on which processes have committed which data. If

two Pods were launched with the same ordinal, two ZooKeeper servers would both identify

themselves as the same server.

The A records for each Pod are only entered when the Pod becomes Ready. Therefore, the

FQDNs of the ZooKeeper servers will only resolve to a single endpoint, and that endpoint will

be the unique ZooKeeper server claiming the identity configured in its myidmyid file.

clientPortclientPort==21812181

dataDirdataDir==/var/lib/zookeeper/data/var/lib/zookeeper/data

dataLogDirdataLogDir==/var/lib/zookeeper/log/var/lib/zookeeper/log

tickTimetickTime==20002000

initLimitinitLimit==1010

syncLimitsyncLimit==20002000

maxClientCnxnsmaxClientCnxns==6060

minSessionTimeoutminSessionTimeout== 4000 4000

maxSessionTimeoutmaxSessionTimeout== 40000 40000

autopurge.snapRetainCountautopurge.snapRetainCount==33

autopurge.purgeIntervalautopurge.purgeInterval==00

server.1server.1==zk-0.zk-hs.default.svc.cluster.local:2888:3888zk-0.zk-hs.default.svc.cluster.local:2888:3888

server.2server.2==zk-1.zk-hs.default.svc.cluster.local:2888:3888zk-1.zk-hs.default.svc.cluster.local:2888:3888

server.3server.3==zk-2.zk-hs.default.svc.cluster.local:2888:3888zk-2.zk-hs.default.svc.cluster.local:2888:3888

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 ContainerCreating 0 0szk-0 0/1 ContainerCreating 0 0s

zk-0 0/1 Running 0 19szk-0 0/1 Running 0 19s

zk-0 1/1 Running 0 40szk-0 1/1 Running 0 40s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 ContainerCreating 0 0szk-1 0/1 ContainerCreating 0 0s

zk-1 0/1 Running 0 18szk-1 0/1 Running 0 18s

zk-1 1/1 Running 0 40szk-1 1/1 Running 0 40s

zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s

zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s

zk-2 0/1 ContainerCreating 0 0szk-2 0/1 ContainerCreating 0 0s

zk-2 0/1 Running 0 19szk-2 0/1 Running 0 19s

zk-2 1/1 Running 0 40szk-2 1/1 Running 0 40s

This ensures that the serversservers properties in the ZooKeepers’ zoo.cfgzoo.cfg files represents a

correctly configured ensemble.

When the servers use the Zab protocol to attempt to commit a value, they will either achieve

consensus and commit the value (if leader election has succeeded and at least two of the

Pods are Running and Ready), or they will fail to do so (if either of the aforementioned

conditions are not met). No state will arise where one server acknowledges a write on behalf of

another.

Sanity Testing the Ensemble

The most basic sanity test is to write some data to one ZooKeeper server and to read the data

from another.

Use the zkCli.shzkCli.sh script to write worldworld to the path /hello/hello on the zk-0zk-0 Pod.

This will write worldworld to the /hello/hello path in the ensemble.

Get the data from the zk-1zk-1 Pod.

zk-0.zk-hs.default.svc.cluster.localzk-0.zk-hs.default.svc.cluster.local

zk-1.zk-hs.default.svc.cluster.localzk-1.zk-hs.default.svc.cluster.local

zk-2.zk-hs.default.svc.cluster.localzk-2.zk-hs.default.svc.cluster.local

server.1server.1==zk-0.zk-hs.default.svc.cluster.local:2888:3888zk-0.zk-hs.default.svc.cluster.local:2888:3888

server.2server.2==zk-1.zk-hs.default.svc.cluster.local:2888:3888zk-1.zk-hs.default.svc.cluster.local:2888:3888

server.3server.3==zk-2.zk-hs.default.svc.cluster.local:2888:3888zk-2.zk-hs.default.svc.cluster.local:2888:3888

kubectl kubectl exec exec zk-0 zkCli.sh create /hello worldzk-0 zkCli.sh create /hello world

WATCHER::WATCHER::

WatchedEvent state:SyncConnected WatchedEvent state:SyncConnected typetype:None path:null:None path:null

Created /helloCreated /hello

kubectl kubectl exec exec zk-1 zkCli.sh get /hellozk-1 zkCli.sh get /hello

The data that you created on zk-0zk-0 is available on all of the servers in the ensemble.

Providing Durable Storage

As mentioned in the ZooKeeper Basics section, ZooKeeper commits all entries to a durable

WAL, and periodically writes snapshots in memory state, to storage media. Using WALs to

provide durability is a common technique for applications that use consensus protocols to

achieve a replicated state machine and for storage applications in general.

Use

kubectlkubectl

deletedelete to delete the zkzk StatefulSet.

Watch the termination of the Pods in the StatefulSet.

When zk-0zk-0 if fully terminated, use CTRL-CCTRL-C to terminate kubectl.

WATCHER::WATCHER::

WatchedEvent state:SyncConnected WatchedEvent state:SyncConnected typetype:None path:null:None path:null

worldworld

cZxid cZxid == 0x100000002 0x100000002

ctime ctime == Thu Dec 08 15:13:30 UTC 2016 Thu Dec 08 15:13:30 UTC 2016

mZxid mZxid == 0x100000002 0x100000002

mtime mtime == Thu Dec 08 15:13:30 UTC 2016 Thu Dec 08 15:13:30 UTC 2016

pZxid pZxid == 0x100000002 0x100000002

cversion cversion == 0 0

dataVersion dataVersion == 0 0

aclVersion aclVersion == 0 0

ephemeralOwner ephemeralOwner == 0x0 0x0

dataLength dataLength == 5 5

numChildren numChildren == 0 0

kubectl delete statefulset zkkubectl delete statefulset zk

statefulset statefulset "zk""zk" deleted deleted

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

file:///docs/user-guide/kubectl/v1.10/#delete

Reapply the manifest in zookeeper.yamlzookeeper.yaml .

The zkzk StatefulSet will be created, but, as they already exist, the other API Objects in the

manifest will not be modified.

Watch the StatefulSet controller recreate the StatefulSet’s Pods.

Once the zk-2zk-2 Pod is Running and Ready, use CTRL-CCTRL-C to terminate kubectl.

zk-2 1/1 Terminating 0 9mzk-2 1/1 Terminating 0 9m

zk-0 1/1 Terminating 0 11mzk-0 1/1 Terminating 0 11m

zk-1 1/1 Terminating 0 10mzk-1 1/1 Terminating 0 10m

zk-2 0/1 Terminating 0 9mzk-2 0/1 Terminating 0 9m

zk-2 0/1 Terminating 0 9mzk-2 0/1 Terminating 0 9m

zk-2 0/1 Terminating 0 9mzk-2 0/1 Terminating 0 9m

zk-1 0/1 Terminating 0 10mzk-1 0/1 Terminating 0 10m

zk-1 0/1 Terminating 0 10mzk-1 0/1 Terminating 0 10m

zk-1 0/1 Terminating 0 10mzk-1 0/1 Terminating 0 10m

zk-0 0/1 Terminating 0 11mzk-0 0/1 Terminating 0 11m

zk-0 0/1 Terminating 0 11mzk-0 0/1 Terminating 0 11m

zk-0 0/1 Terminating 0 11mzk-0 0/1 Terminating 0 11m

kubectl apply kubectl apply -f-f https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/zookeeper.yaml https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/stateful-application/zookeeper.yaml

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 ContainerCreating 0 0szk-0 0/1 ContainerCreating 0 0s

zk-0 0/1 Running 0 19szk-0 0/1 Running 0 19s

zk-0 1/1 Running 0 40szk-0 1/1 Running 0 40s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 ContainerCreating 0 0szk-1 0/1 ContainerCreating 0 0s

zk-1 0/1 Running 0 18szk-1 0/1 Running 0 18s

zk-1 1/1 Running 0 40szk-1 1/1 Running 0 40s

zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s

zk-2 0/1 Pending 0 0szk-2 0/1 Pending 0 0s

zk-2 0/1 ContainerCreating 0 0szk-2 0/1 ContainerCreating 0 0s

zk-2 0/1 Running 0 19szk-2 0/1 Running 0 19s

zk-2 1/1 Running 0 40szk-2 1/1 Running 0 40s

Get the value you entered during the sanity test, from the zk-2zk-2 Pod.

Even though all of the Pods in the zkzk StatefulSet have been terminated and recreated, the

ensemble still serves the original value.

The volumeClaimTemplatesvolumeClaimTemplates field, of the zkzk StatefulSet’s specspec , specifies a

PersistentVolume that will be provisioned for each Pod.

The StatefulSet controller generates a PersistentVolumeClaim for each Pod in the StatefulSet.

Get the StatefulSet’s PersistentVolumeClaims.

kubectl kubectl exec exec zk-2 zkCli.sh get /hellozk-2 zkCli.sh get /hello

WATCHER::WATCHER::

WatchedEvent state:SyncConnected WatchedEvent state:SyncConnected typetype:None path:null:None path:null

worldworld

cZxid cZxid == 0x100000002 0x100000002

ctime ctime == Thu Dec 08 15:13:30 UTC 2016 Thu Dec 08 15:13:30 UTC 2016

mZxid mZxid == 0x100000002 0x100000002

mtime mtime == Thu Dec 08 15:13:30 UTC 2016 Thu Dec 08 15:13:30 UTC 2016

pZxid pZxid == 0x100000002 0x100000002

cversion cversion == 0 0

dataVersion dataVersion == 0 0

aclVersion aclVersion == 0 0

ephemeralOwner ephemeralOwner == 0x0 0x0

dataLength dataLength == 5 5

numChildren numChildren == 0 0

volumeClaimTemplatesvolumeClaimTemplates::

 -- metadatametadata::

 namename:: datadirdatadir

 annotationsannotations::

 volume.alpha.kubernetes.io/storage-classvolume.alpha.kubernetes.io/storage-class:: anythinganything

 specspec::

 accessModesaccessModes:: [[""ReadWriteOnce"ReadWriteOnce"]]

 resourcesresources::

 requestsrequests::

 storagestorage:: 20Gi20Gi

kubectl get pvc kubectl get pvc -l-l appapp==zkzk

When the StatefulSet recreated its Pods, the Pods’ PersistentVolumes were remounted.

The volumeMountsvolumeMounts section of the StatefulSet’s container templatetemplate causes the

PersistentVolumes to be mounted to the ZooKeeper servers’ data directories.

When a Pod in the zkzk StatefulSet is (re)scheduled, it will always have the same

PersistentVolume mounted to the ZooKeeper server’s data directory. Even when the Pods are

rescheduled, all of the writes made to the ZooKeeper servers’ WALs, and all of their snapshots,

remain durable.

Ensuring Consistent Configuration

As noted in the Facilitating Leader Election and Achieving Consensus sections, the servers in a

ZooKeeper ensemble require consistent configuration in order to elect a leader and form a

quorum. They also require consistent configuration of the Zab protocol in order for the

protocol to work correctly over a network. In our example we achieve consistent configuration

by embedding the configuration directly into the manifest.

Get the zkzk StatefulSet.

NAME STATUS VOLUME CAPACITY ACCESSMODES AGENAME STATUS VOLUME CAPACITY ACCESSMODES AGE

datadir-zk-0 Bound pvc-bed742cd-bcb1-11e6-994f-42010a800002 20Gi RWO 1hdatadir-zk-0 Bound pvc-bed742cd-bcb1-11e6-994f-42010a800002 20Gi RWO 1h

datadir-zk-1 Bound pvc-bedd27d2-bcb1-11e6-994f-42010a800002 20Gi RWO 1hdatadir-zk-1 Bound pvc-bedd27d2-bcb1-11e6-994f-42010a800002 20Gi RWO 1h

datadir-zk-2 Bound pvc-bee0817e-bcb1-11e6-994f-42010a800002 20Gi RWO 1hdatadir-zk-2 Bound pvc-bee0817e-bcb1-11e6-994f-42010a800002 20Gi RWO 1h

volumeMounts:volumeMounts:

 - name: datadir - name: datadir

 mountPath: /var/lib/zookeeper mountPath: /var/lib/zookeeper

Notice that the command used to start the ZooKeeper servers passed the configuration as

command line parameter. Environment variables are another, equally good, way to pass

configuration to ensemble.

Configuring Logging

One of the files generated by the zkGenConfig.shzkGenConfig.sh script controls ZooKeeper’s logging.

ZooKeeper uses Log4j, and, by default, it uses a time and size based rolling file appender for

its logging configuration. Get the logging configuration from one of Pods in the zkzk

StatefulSet.

The logging configuration below will cause the ZooKeeper process to write all of its logs to the

standard output file stream.

 kubectl get sts zk kubectl get sts zk -o-o yaml yaml

......

 commandcommand::

 - sh - sh

 - - -c-c

 - - "start-zookeeper "start-zookeeper \\

 --servers=3 --servers=3 \\

 --data_dir=/var/lib/zookeeper/data --data_dir=/var/lib/zookeeper/data \\

 --data_log_dir=/var/lib/zookeeper/data/log --data_log_dir=/var/lib/zookeeper/data/log \\

 --conf_dir=/opt/zookeeper/conf --conf_dir=/opt/zookeeper/conf \\

 --client_port=2181 --client_port=2181 \\

 --election_port=3888 --election_port=3888 \\

 --server_port=2888 --server_port=2888 \\

 --tick_time=2000 --tick_time=2000 \\

 --init_limit=10 --init_limit=10 \\

 --sync_limit=5 --sync_limit=5 \\

 --heap=512M --heap=512M \\

 --max_client_cnxns=60 --max_client_cnxns=60 \\

 --snap_retain_count=3 --snap_retain_count=3 \\

 --purge_interval=12 --purge_interval=12 \\

 --max_session_timeout=40000 --max_session_timeout=40000 \\

 --min_session_timeout=4000 --min_session_timeout=4000 \\

 --log_level=INFO" --log_level=INFO"

......

kubectl kubectl exec exec zk-0 zk-0 catcat /usr/etc/zookeeper/log4j.properties /usr/etc/zookeeper/log4j.properties

http://logging.apache.org/log4j/2.x/

This is the simplest possible way to safely log inside the container. As the application’s logs

are being written to standard out, Kubernetes will handle log rotation for you. Kubernetes also

implements a sane retention policy that ensures application logs written to standard out and

standard error do not exhaust local storage media.

Use kubectl logskubectl logs to retrieve the last few log lines from one of the Pods.

Application logs that are written to standard out or standard error are viewable using

kubectl logskubectl logs and from the Kubernetes Dashboard.

Kubernetes also supports more powerful, but more complex, logging integrations with Logging

zookeeper.root.loggerzookeeper.root.logger==CONSOLECONSOLE

zookeeper.console.thresholdzookeeper.console.threshold==INFOINFO

log4j.rootLoggerlog4j.rootLogger==${${zookeeperzookeeper.root.logger.root.logger}}

log4j.appender.CONSOLElog4j.appender.CONSOLE==org.apache.log4j.ConsoleAppenderorg.apache.log4j.ConsoleAppender

log4j.appender.CONSOLE.Thresholdlog4j.appender.CONSOLE.Threshold==${${zookeeperzookeeper.console.threshold.console.threshold}}

log4j.appender.CONSOLE.layoutlog4j.appender.CONSOLE.layout==org.apache.log4j.PatternLayoutorg.apache.log4j.PatternLayout

log4j.appender.CONSOLE.layout.ConversionPatternlog4j.appender.CONSOLE.layout.ConversionPattern==%d%d{{ISO8601ISO8601}} [[myid:%Xmyid:%X{{myidmyid}]}] - %-5p - %-5p

kubectl logs zk-0 kubectl logs zk-0 --tail--tail 20 20

2016-12-06 19:34:16,236 2016-12-06 19:34:16,236 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:16,237 2016-12-06 19:34:16,237 [[myid:1] - INFO myid:1] - INFO [[Thread-1136:NIOServerCnxn@1008] - Closed socket connection Thread-1136:NIOServerCnxn@1008] - Closed socket connection

2016-12-06 19:34:26,155 2016-12-06 19:34:26,155 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52749NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52749

2016-12-06 19:34:26,155 2016-12-06 19:34:26,155 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:26,156 2016-12-06 19:34:26,156 [[myid:1] - INFO myid:1] - INFO [[Thread-1137:NIOServerCnxn@1008] - Closed socket connection Thread-1137:NIOServerCnxn@1008] - Closed socket connection

2016-12-06 19:34:26,222 2016-12-06 19:34:26,222 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52750NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52750

2016-12-06 19:34:26,222 2016-12-06 19:34:26,222 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:26,226 2016-12-06 19:34:26,226 [[myid:1] - INFO myid:1] - INFO [[Thread-1138:NIOServerCnxn@1008] - Closed socket connection Thread-1138:NIOServerCnxn@1008] - Closed socket connection

2016-12-06 19:34:36,151 2016-12-06 19:34:36,151 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52760NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52760

2016-12-06 19:34:36,152 2016-12-06 19:34:36,152 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:36,152 2016-12-06 19:34:36,152 [[myid:1] - INFO myid:1] - INFO [[Thread-1139:NIOServerCnxn@1008] - Closed socket connection Thread-1139:NIOServerCnxn@1008] - Closed socket connection

2016-12-06 19:34:36,230 2016-12-06 19:34:36,230 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52761NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52761

2016-12-06 19:34:36,231 2016-12-06 19:34:36,231 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:36,231 2016-12-06 19:34:36,231 [[myid:1] - INFO myid:1] - INFO [[Thread-1140:NIOServerCnxn@1008] - Closed socket connection Thread-1140:NIOServerCnxn@1008] - Closed socket connection

2016-12-06 19:34:46,149 2016-12-06 19:34:46,149 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52767NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52767

2016-12-06 19:34:46,149 2016-12-06 19:34:46,149 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:46,149 2016-12-06 19:34:46,149 [[myid:1] - INFO myid:1] - INFO [[Thread-1141:NIOServerCnxn@1008] - Closed socket connection Thread-1141:NIOServerCnxn@1008] - Closed socket connection

2016-12-06 19:34:46,230 2016-12-06 19:34:46,230 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52768NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxnFactory@192] - Accepted socket connection from /127.0.0.1:52768

2016-12-06 19:34:46,230 2016-12-06 19:34:46,230 [[myid:1] - INFO myid:1] - INFO [[NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:NIOServerCnxn@827] - Processing ruok

2016-12-06 19:34:46,230 2016-12-06 19:34:46,230 [[myid:1] - INFO myid:1] - INFO [[Thread-1142:NIOServerCnxn@1008] - Closed socket connection Thread-1142:NIOServerCnxn@1008] - Closed socket connection

file:///docs/user-guide/kubectl/v1.10/#logs
file:///docs/tasks/debug-application-cluster/logging-stackdriver/

Using Stackdriver and Logging Using Elasticsearch and Kibana. For cluster level log shipping

and aggregation, you should consider deploying a sidecar container to rotate and ship your

logs.

Configuring a Non-Privileged User

The best practices with respect to allowing an application to run as a privileged user inside of a

container are a matter of debate. If your organization requires that applications be run as a

non-privileged user you can use a SecurityContext to control the user that the entry point runs

as.

The zkzk StatefulSet’s Pod templatetemplate contains a SecurityContext.

In the Pods’ containers, UID 1000 corresponds to the zookeeper user and GID 1000

corresponds to the zookeeper group.

Get the ZooKeeper process information from the zk-0zk-0 Pod.

As the runAsUserrunAsUser field of the securityContextsecurityContext object is set to 1000, instead of running as

root, the ZooKeeper process runs as the zookeeper user.

By default, when the Pod’s PersistentVolume is mounted to the ZooKeeper server’s data

directory, it is only accessible by the root user. This configuration prevents the ZooKeeper

process from writing to its WAL and storing its snapshots.

Get the file permissions of the ZooKeeper data directory on the zk-0zk-0 Pod.

securityContextsecurityContext::

 runAsUserrunAsUser:: 10001000

 fsGroupfsGroup:: 10001000

kubectl kubectl exec exec zk-0 zk-0 ---- ps ps -elf-elf

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMDF S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S zookeep+ 1 0 0 80 0 - 1127 - 20:46 ? 00:00:00 sh 4 S zookeep+ 1 0 0 80 0 - 1127 - 20:46 ? 00:00:00 sh

0 S zookeep+ 27 1 0 80 0 - 1155556 - 20:46 ? 00:00:19 /usr/lib/jvm/java-8-openjdk-amd64/bin/java 0 S zookeep+ 27 1 0 80 0 - 1155556 - 20:46 ? 00:00:19 /usr/lib/jvm/java-8-openjdk-amd64/bin/java

kubectl kubectl execexec -ti-ti zk-0 zk-0 ---- lsls -ld-ld /var/lib/zookeeper/data /var/lib/zookeeper/data

file:///docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
file:///docs/tasks/configure-pod-container/security-context/

As the fsGroupfsGroup field of the securityContextsecurityContext object is set to 1000, the ownership of the

Pods’ PersistentVolumes is set to the zookeeper group, and the ZooKeeper process is able to

successfully read and write its data.

Managing the ZooKeeper Process

The ZooKeeper documentation indicates that “You will want to have a supervisory process

that manages each of your ZooKeeper server processes (JVM).” Utilizing a watchdog

(supervisory process) to restart failed processes in a distributed system is a common pattern.

When deploying an application in Kubernetes, rather than using an external utility as a

supervisory process, you should use Kubernetes as the watchdog for your application.

Updating the Ensemble

The zkzk StatefulSet is configured to use the RollingUpdate update strategy.

You can use kubectl patchkubectl patch to update the number of cpuscpus allocated to the servers.

Use

kubectl rolloutkubectl rollout

statusstatus to watch the status of the update.

drwxr-sr-x 3 zookeeper zookeeper 4096 Dec 5 20:45 /var/lib/zookeeper/datadrwxr-sr-x 3 zookeeper zookeeper 4096 Dec 5 20:45 /var/lib/zookeeper/data

kubectl patch sts zk kubectl patch sts zk --type--type=='json''json' -p-p=='[{"op": "replace", "path": "/spec/template/spec/containers/0/resources/requests/cpu", "value":"0.3"}]''[{"op": "replace", "path": "/spec/template/spec/containers/0/resources/requests/cpu", "value":"0.3"}]'

statefulset statefulset "zk""zk" patched patched

kubectl rollout status sts/zkkubectl rollout status sts/zk

waiting waiting for for statefulset rolling update to statefulset rolling update to complete complete 0 pods at revision zk-5db4499664...0 pods at revision zk-5db4499664...

Waiting Waiting for for 1 pods to be ready...1 pods to be ready...

Waiting Waiting for for 1 pods to be ready...1 pods to be ready...

waiting waiting for for statefulset rolling update to statefulset rolling update to complete complete 1 pods at revision zk-5db4499664...1 pods at revision zk-5db4499664...

Waiting Waiting for for 1 pods to be ready...1 pods to be ready...

Waiting Waiting for for 1 pods to be ready...1 pods to be ready...

waiting waiting for for statefulset rolling update to statefulset rolling update to complete complete 2 pods at revision zk-5db4499664...2 pods at revision zk-5db4499664...

Waiting Waiting for for 1 pods to be ready...1 pods to be ready...

Waiting Waiting for for 1 pods to be ready...1 pods to be ready...

statefulset rolling update statefulset rolling update complete complete 3 pods at revision zk-5db4499664...3 pods at revision zk-5db4499664...

https://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_supervision

The Pods are terminated, one at a time, in reverse ordinal order, and they are recreated with the

new configuration. This ensures that quorum is maintained during a rolling update.

Use kubectl rollout historykubectl rollout history to view a history or previous configurations.

Use kubectl rollout undokubectl rollout undo to roll back the modification.

Handling Process Failure

Restart Policies control how Kubernetes handles process failures for the entry point of the

container in a Pod. For Pods in a StatefulSet, the only appropriate RestartPolicy is Always, and

this is the default value. For stateful applications you should never override the default policy.

Examine the process tree for the ZooKeeper server running in the zk-0zk-0 Pod.

The command used as the container’s entry point has PID 1, and the ZooKeeper process, a

child of the entry point, has PID 23.

In one terminal watch the Pods in the zkzk StatefulSet.

kubectl rollout kubectl rollout history history sts/zksts/zk

statefulsets statefulsets "zk""zk"

REVISIONREVISION

11

22

kubectl rollout undo sts/zkkubectl rollout undo sts/zk

statefulset statefulset "zk""zk" rolled back rolled back

kubectl kubectl exec exec zk-0 zk-0 ---- ps ps -ef-ef

UID PID PPID C STIME TTY TIME CMDUID PID PPID C STIME TTY TIME CMD

zookeep+ 1 0 0 15:03 ? 00:00:00 sh -c zkGenConfig.sh && zkServer.sh start-foregroundzookeep+ 1 0 0 15:03 ? 00:00:00 sh -c zkGenConfig.sh && zkServer.sh start-foreground

zookeep+ 27 1 0 15:03 ? 00:00:03 /usr/lib/jvm/java-8-openjdk-amd64/bin/java -Dzookeeper.log.dir=/var/log/zookeeper -Dzookeeper.root.logger=INFO,CONSOLE -cp /usr/bin/../build/classes:/usr/bin/../build/lib/*.jar:/usr/bin/../share/zookeeper/zookeeper-3.4.9.jar:/usr/bin/../share/zookeeper/slf4j-log4j12-1.6.1.jar:/usr/bin/../share/zookeeper/slf4j-api-1.6.1.jar:/usr/bin/../share/zookeeper/netty-3.10.5.Final.jar:/usr/bin/../share/zookeeper/log4j-1.2.16.jar:/usr/bin/../share/zookeeper/jline-0.9.94.jar:/usr/bin/../src/java/lib/*.jar:/usr/bin/../etc/zookeeper: -Xmx2G -Xms2G -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.local.only=false org.apache.zookeeper.server.quorum.QuorumPeerMain /usr/bin/../etc/zookeeper/zoo.cfgzookeep+ 27 1 0 15:03 ? 00:00:03 /usr/lib/jvm/java-8-openjdk-amd64/bin/java -Dzookeeper.log.dir=/var/log/zookeeper -Dzookeeper.root.logger=INFO,CONSOLE -cp /usr/bin/../build/classes:/usr/bin/../build/lib/*.jar:/usr/bin/../share/zookeeper/zookeeper-3.4.9.jar:/usr/bin/../share/zookeeper/slf4j-log4j12-1.6.1.jar:/usr/bin/../share/zookeeper/slf4j-api-1.6.1.jar:/usr/bin/../share/zookeeper/netty-3.10.5.Final.jar:/usr/bin/../share/zookeeper/log4j-1.2.16.jar:/usr/bin/../share/zookeeper/jline-0.9.94.jar:/usr/bin/../src/java/lib/*.jar:/usr/bin/../etc/zookeeper: -Xmx2G -Xms2G -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.local.only=false org.apache.zookeeper.server.quorum.QuorumPeerMain /usr/bin/../etc/zookeeper/zoo.cfg

kubectl get pod kubectl get pod -w-w -l-l appapp==zkzk

file:///docs/user-guide/pod-states/#restartpolicy

In another terminal, kill the ZooKeeper process in Pod zk-0zk-0 .

The death of the ZooKeeper process caused its parent process to terminate. As the

RestartPolicy of the container is Always, the parent process was relaunched.

If your application uses a script (such as zkServer.sh) to launch the process that implements

the application’s business logic, the script must terminate with the child process. This ensures

that Kubernetes will restart the application’s container when the process implementing the

application’s business logic fails.

Testing for Liveness

Configuring your application to restart failed processes is not sufficient to keep a distributed

system healthy. There are many scenarios where a system’s processes can be both alive and

unresponsive, or otherwise unhealthy. You should use liveness probes in order to notify

Kubernetes that your application’s processes are unhealthy and should be restarted.

The Pod templatetemplate for the zkzk StatefulSet specifies a liveness probe.

The probe calls a simple bash script that uses the ZooKeeper ruokruok four letter word to test the

server’s health.

 kubectl kubectl exec exec zk-0 zk-0 ---- pkill java pkill java

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Running 0 21mzk-0 1/1 Running 0 21m

zk-1 1/1 Running 0 20mzk-1 1/1 Running 0 20m

zk-2 1/1 Running 0 19mzk-2 1/1 Running 0 19m

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 0/1 Error 0 29mzk-0 0/1 Error 0 29m

zk-0 0/1 Running 1 29mzk-0 0/1 Running 1 29m

zk-0 1/1 Running 1 29mzk-0 1/1 Running 1 29m

 livenessProbelivenessProbe::

 execexec::

 commandcommand::

 -- shsh

 -- -c-c

 -- ""zookeeper-readyzookeeper-ready 2181"2181"

 initialDelaySecondsinitialDelaySeconds:: 1515

 timeoutSecondstimeoutSeconds:: 55

In one terminal window, watch the Pods in the zkzk StatefulSet.

In another window, delete the zkOk.shzkOk.sh script from the file system of Pod zk-0zk-0 .

When the liveness probe for the ZooKeeper process fails, Kubernetes will automatically restart

the process for you, ensuring that unhealthy processes in the ensemble are restarted.

Testing for Readiness

Readiness is not the same as liveness. If a process is alive, it is scheduled and healthy. If a

process is ready, it is able to process input. Liveness is a necessary, but not sufficient,

condition for readiness. There are many cases, particularly during initialization and termination,

when a process can be alive but not ready.

If you specify a readiness probe, Kubernetes will ensure that your application’s processes will

not receive network traffic until their readiness checks pass.

For a ZooKeeper server, liveness implies readiness. Therefore, the readiness probe from the

zookeeper.yamlzookeeper.yaml manifest is identical to the liveness probe.

OKOK==$($(echo echo ruok | nc 127.0.0.1 ruok | nc 127.0.0.1 $1$1))

ifif [[""OKOK"" ==== "imok""imok"]];; thenthen

 exit exit 00

elseelse

 exit exit 11

fifi

kubectl get pod kubectl get pod -w-w -l-l appapp==zkzk

kubectl kubectl exec exec zk-0 zk-0 ---- rm /usr/bin/zookeeper-ready rm /usr/bin/zookeeper-ready

kubectl get pod kubectl get pod -w-w -l-l appapp==zkzk

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Running 0 1hzk-0 1/1 Running 0 1h

zk-1 1/1 Running 0 1hzk-1 1/1 Running 0 1h

zk-2 1/1 Running 0 1hzk-2 1/1 Running 0 1h

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 0/1 Running 0 1hzk-0 0/1 Running 0 1h

zk-0 0/1 Running 1 1hzk-0 0/1 Running 1 1h

zk-0 1/1 Running 1 1hzk-0 1/1 Running 1 1h

Even though the liveness and readiness probes are identical, it is important to specify both.

This ensures that only healthy servers in the ZooKeeper ensemble receive network traffic.

Tolerating Node Failure

ZooKeeper needs a quorum of servers in order to successfully commit mutations to data. For

a three server ensemble, two servers must be healthy in order for writes to succeed. In quorum

based systems, members are deployed across failure domains to ensure availability. In order

to avoid an outage, due to the loss of an individual machine, best practices preclude co-

locating multiple instances of the application on the same machine.

By default, Kubernetes may co-locate Pods in a StatefulSet on the same node. For the three

server ensemble you created, if two servers reside on the same node, and that node fails, the

clients of your ZooKeeper service will experience an outage until at least one of the Pods can

be rescheduled.

You should always provision additional capacity to allow the processes of critical systems to

be rescheduled in the event of node failures. If you do so, then the outage will only last until the

Kubernetes scheduler reschedules one of the ZooKeeper servers. However, if you want your

service to tolerate node failures with no downtime, you should set podAntiAffinitypodAntiAffinity .

Get the nodes for Pods in the zkzk Stateful Set.

All of the Pods in the zkzk StatefulSet are deployed on different nodes.

 readinessProbereadinessProbe::

 execexec::

 commandcommand::

 -- shsh

 -- -c-c

 -- ""zookeeper-readyzookeeper-ready 2181"2181"

 initialDelaySecondsinitialDelaySeconds:: 1515

 timeoutSecondstimeoutSeconds:: 55

for for i i in in 0 1 20 1 2;; do do kubectl get pod zk-kubectl get pod zk-ii --template--template {{{{.spec.nodeName.spec.nodeName}}}};; echoecho """"

This is because the Pods in the zkzk StatefulSet have a PodAntiAffinity specified.

The requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution field tells the Kubernetes

Scheduler that it should never co-locate two Pods from the zk-hszk-hs Service in the domain

defined by the topologyKeytopologyKey . The topologyKeytopologyKey kubernetes.io/hostnamekubernetes.io/hostname indicates that

the domain is an individual node. Using different rules, labels, and selectors, you can extend

this technique to spread your ensemble across physical, network, and power failure domains.

Surviving Maintenance

In this section you will cordon and drain nodes. If you are using this tutorial on a shared

cluster, be sure that this will not adversely affect other tenants.

The previous section showed you how to spread your Pods across nodes to survive unplanned

node failures, but you also need to plan for temporary node failures that occur due to planned

maintenance.

Get the nodes in your cluster.

Use

kubectlkubectl

cordoncordon to cordon all but four of the nodes in your cluster.

kubernetes-minion-group-cxpkkubernetes-minion-group-cxpk

kubernetes-minion-group-a5aqkubernetes-minion-group-a5aq

kubernetes-minion-group-2g2dkubernetes-minion-group-2g2d

 affinityaffinity::

 podAntiAffinitypodAntiAffinity::

 requiredDuringSchedulingIgnoredDuringExecutionrequiredDuringSchedulingIgnoredDuringExecution::

 -- labelSelectorlabelSelector::

 matchExpressionsmatchExpressions::

 -- keykey:: ""app"app"

 operatoroperator:: InIn

 valuesvalues::

 -- zk-hszk-hs

 topologyKeytopologyKey:: ""kubernetes.io/hostname"kubernetes.io/hostname"

kubectl get nodeskubectl get nodes

file:///docs/user-guide/kubectl/v1.10/#cordon

Get the zk-pdbzk-pdb PodDisruptionBudget.

The max-unavailablemax-unavailable field indicates to Kubernetes that at most one Pod from zkzk

StatefulSet can be unavailable at any time.

In one terminal, watch the Pods in the zkzk StatefulSet.

In another terminal, get the nodes that the Pods are currently scheduled on.

Use kubectl drainkubectl drain to cordon and drain the node on which the zk-0zk-0 Pod is scheduled.

As there are four nodes in your cluster, kubectl drainkubectl drain , succeeds and the zk-0zk-0 is

rescheduled to another node.

kubectl cordon < node name kubectl cordon < node name >>

kubectl get pdb zk-pdbkubectl get pdb zk-pdb

NAME MIN-AVAILABLE MAX-UNAVAILABLE ALLOWED-DISRUPTIONS AGENAME MIN-AVAILABLE MAX-UNAVAILABLE ALLOWED-DISRUPTIONS AGE

zk-pdb N/A 1 1 zk-pdb N/A 1 1

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

for for i i in in 0 1 20 1 2;; do do kubectl get pod zk-kubectl get pod zk-ii --template--template {{{{.spec.nodeName.spec.nodeName}}}};; echoecho """"

kubernetes-minion-group-pb41kubernetes-minion-group-pb41

kubernetes-minion-group-ixslkubernetes-minion-group-ixsl

kubernetes-minion-group-i4c4kubernetes-minion-group-i4c4

kubectl drain kubectl drain $($(kubectl get pod zk-0 kubectl get pod zk-0 --template--template {{{{.spec.nodeName.spec.nodeName}}}})) --ignore-daemonsets--ignore-daemonsets

node node "kubernetes-minion-group-pb41""kubernetes-minion-group-pb41" cordoned cordoned

WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-pb41, kube-proxy-kubernetes-minion-group-pb41WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-pb41, kube-proxy-kubernetes-minion-group-pb41

pod pod "zk-0""zk-0" deleted deleted

node node "kubernetes-minion-group-pb41""kubernetes-minion-group-pb41" drained drained

file:///docs/user-guide/kubectl/v1.10/#drain

Keep watching the StatefulSet’s Pods in the first terminal and drain the node on which zk-1zk-1 is

scheduled.

The zk-1zk-1 Pod can not be scheduled. As the zkzk StatefulSet contains a PodAntiAffinity rule

preventing co-location of the Pods, and as only two nodes are schedulable, the Pod will remain

in a Pending state.

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Running 2 1hzk-0 1/1 Running 2 1h

zk-1 1/1 Running 0 1hzk-1 1/1 Running 0 1h

zk-2 1/1 Running 0 1hzk-2 1/1 Running 0 1h

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Terminating 2 2hzk-0 1/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 ContainerCreating 0 0szk-0 0/1 ContainerCreating 0 0s

zk-0 0/1 Running 0 51szk-0 0/1 Running 0 51s

zk-0 1/1 Running 0 1mzk-0 1/1 Running 0 1m

kubectl drain kubectl drain $($(kubectl get pod zk-1 kubectl get pod zk-1 --template--template {{{{.spec.nodeName.spec.nodeName}}}})) --ignore-daemonsets--ignore-daemonsets

WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-ixsl, kube-proxy-kubernetes-minion-group-ixslWARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-ixsl, kube-proxy-kubernetes-minion-group-ixsl

pod pod "zk-1""zk-1" deleted deleted

node node "kubernetes-minion-group-ixsl""kubernetes-minion-group-ixsl" drained drained

Continue to watch the Pods of the stateful set, and drain the node on which zk-2zk-2 is

scheduled.

Use CTRL-CCTRL-C to terminate to kubectl.

You can not drain the third node because evicting zk-2zk-2 would violate zk-budgetzk-budget . However,

the node will remain cordoned.

Use zkCli.shzkCli.sh to retrieve the value you entered during the sanity test from zk-0zk-0 .

The service is still available because its PodDisruptionBudget is respected.

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Running 2 1hzk-0 1/1 Running 2 1h

zk-1 1/1 Running 0 1hzk-1 1/1 Running 0 1h

zk-2 1/1 Running 0 1hzk-2 1/1 Running 0 1h

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Terminating 2 2hzk-0 1/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 ContainerCreating 0 0szk-0 0/1 ContainerCreating 0 0s

zk-0 0/1 Running 0 51szk-0 0/1 Running 0 51s

zk-0 1/1 Running 0 1mzk-0 1/1 Running 0 1m

zk-1 1/1 Terminating 0 2hzk-1 1/1 Terminating 0 2h

zk-1 0/1 Terminating 0 2hzk-1 0/1 Terminating 0 2h

zk-1 0/1 Terminating 0 2hzk-1 0/1 Terminating 0 2h

zk-1 0/1 Terminating 0 2hzk-1 0/1 Terminating 0 2h

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

kubectl drain kubectl drain $($(kubectl get pod zk-2 kubectl get pod zk-2 --template--template {{{{.spec.nodeName.spec.nodeName}}}})) --ignore-daemonsets--ignore-daemonsets

node node "kubernetes-minion-group-i4c4""kubernetes-minion-group-i4c4" cordoned cordoned

WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-i4c4, kube-proxy-kubernetes-minion-group-i4c4WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-i4c4, kube-proxy-kubernetes-minion-group-i4c4

WARNING: Ignoring DaemonSet-managed pods: node-problem-detector-v0.1-dyrogWARNING: Ignoring DaemonSet-managed pods: node-problem-detector-v0.1-dyrog;; Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-i4c4, kube-proxy-kubernetes-minion-group-i4c4 Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-i4c4, kube-proxy-kubernetes-minion-group-i4c4

There are pending pods when an error occurred: Cannot evict pod as it would violate the podThere are pending pods when an error occurred: Cannot evict pod as it would violate the pod

pod/zk-2pod/zk-2

kubectl kubectl exec exec zk-0 zkCli.sh get /hellozk-0 zkCli.sh get /hello

Use

kubectlkubectl

uncordonuncordon to uncordon the first node.

zk-1zk-1 is rescheduled on this node. Wait until zk-1zk-1 is Running and Ready.

WatchedEvent state:SyncConnected type:None path:nullWatchedEvent state:SyncConnected type:None path:null

worldworld

cZxid = 0x200000002cZxid = 0x200000002

ctime = Wed Dec 07 00:08:59 UTC 2016ctime = Wed Dec 07 00:08:59 UTC 2016

mZxid = 0x200000002mZxid = 0x200000002

mtime = Wed Dec 07 00:08:59 UTC 2016mtime = Wed Dec 07 00:08:59 UTC 2016

pZxid = 0x200000002pZxid = 0x200000002

cversion = 0cversion = 0

dataVersion = 0dataVersion = 0

aclVersion = 0aclVersion = 0

ephemeralOwner = 0x0ephemeralOwner = 0x0

dataLength = 5dataLength = 5

numChildren = 0numChildren = 0

kubectl uncordon kubernetes-minion-group-pb41kubectl uncordon kubernetes-minion-group-pb41

node node "kubernetes-minion-group-pb41""kubernetes-minion-group-pb41" uncordoned uncordoned

kubectl get pods kubectl get pods -w-w -l-l appapp==zkzk

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Running 2 1hzk-0 1/1 Running 2 1h

zk-1 1/1 Running 0 1hzk-1 1/1 Running 0 1h

zk-2 1/1 Running 0 1hzk-2 1/1 Running 0 1h

NAME READY STATUS RESTARTS AGENAME READY STATUS RESTARTS AGE

zk-0 1/1 Terminating 2 2hzk-0 1/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Terminating 2 2hzk-0 0/1 Terminating 2 2h

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 Pending 0 0szk-0 0/1 Pending 0 0s

zk-0 0/1 ContainerCreating 0 0szk-0 0/1 ContainerCreating 0 0s

zk-0 0/1 Running 0 51szk-0 0/1 Running 0 51s

zk-0 1/1 Running 0 1mzk-0 1/1 Running 0 1m

zk-1 1/1 Terminating 0 2hzk-1 1/1 Terminating 0 2h

zk-1 0/1 Terminating 0 2hzk-1 0/1 Terminating 0 2h

zk-1 0/1 Terminating 0 2hzk-1 0/1 Terminating 0 2h

zk-1 0/1 Terminating 0 2hzk-1 0/1 Terminating 0 2h

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 Pending 0 0szk-1 0/1 Pending 0 0s

zk-1 0/1 Pending 0 12mzk-1 0/1 Pending 0 12m

zk-1 0/1 ContainerCreating 0 12mzk-1 0/1 ContainerCreating 0 12m

zk-1 0/1 Running 0 13mzk-1 0/1 Running 0 13m

zk-1 1/1 Running 0 13mzk-1 1/1 Running 0 13m

file:///docs/user-guide/kubectl/v1.10/#uncordon

Attempt to drain the node on which zk-2zk-2 is scheduled.

This time kubectl drainkubectl drain succeeds.

Uncordon the second node to allow zk-2zk-2 to be rescheduled.

You can use kubectl drainkubectl drain in conjunction with PodDisruptionBudgets to ensure that your

service remains available during maintenance. If drain is used to cordon nodes and evict pods

prior to taking the node offline for maintenance, services that express a disruption budget will

have that budget respected. You should always allocate additional capacity for critical services

so that their Pods can be immediately rescheduled.

Cleaning up

Use

kubectlkubectl

uncordonuncordon to uncordon all the nodes in your cluster.

You will need to delete the persistent storage media for the PersistentVolumes used in this

tutorial. Follow the necessary steps, based on your environment, storage configuration,

and provisioning method, to ensure that all storage is reclaimed.

zk-1 1/1 Running 0 13mzk-1 1/1 Running 0 13m

kubectl drain kubectl drain $($(kubectl get pod zk-2 kubectl get pod zk-2 --template--template {{{{.spec.nodeName.spec.nodeName}}}})) --ignore-daemonsets--ignore-daemonsets

node node "kubernetes-minion-group-i4c4""kubernetes-minion-group-i4c4" already cordoned already cordoned

WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-i4c4, kube-proxy-kubernetes-minion-group-i4c4WARNING: Deleting pods not managed by ReplicationController, ReplicaSet, Job, or DaemonSet: fluentd-cloud-logging-kubernetes-minion-group-i4c4, kube-proxy-kubernetes-minion-group-i4c4

pod pod "heapster-v1.2.0-2604621511-wht1r""heapster-v1.2.0-2604621511-wht1r" deleted deleted

pod pod "zk-2""zk-2" deleted deleted

node node "kubernetes-minion-group-i4c4""kubernetes-minion-group-i4c4" drained drained

kubectl uncordon kubernetes-minion-group-ixslkubectl uncordon kubernetes-minion-group-ixsl

node node "kubernetes-minion-group-ixsl""kubernetes-minion-group-ixsl" uncordoned uncordoned

AppArmor

FEATURE STATE: Kubernetes v1.4Kubernetes v1.4 beta

AppArmor is a Linux kernel security module that supplements the standard Linux user and

group based permissions to confine programs to a limited set of resources. AppArmor can be

configured for any application to reduce its potential attack surface and provide greater in-

depth defense. It is configured through profiles tuned to whitelist the access needed by a

specific program or container, such as Linux capabilities, network access, file permissions, etc.

Each profile can be run in either enforcing mode, which blocks access to disallowed resources,

or complain mode, which only reports violations.

AppArmor can help you to run a more secure deployment by restricting what containers are

allowed to do, and/or provide better auditing through system logs. However, it is important to

keep in mind that AppArmor is not a silver bullet and can only do so much to protect against

exploits in your application code. It is important to provide good, restrictive profiles, and

harden your applications and cluster from other angles as well.

Objectives

Objectives

Before you begin

Securing a Pod

Example

Administration

Setting up nodes with profiles

Restricting profiles with the PodSecurityPolicy

Disabling AppArmor

Upgrading to Kubernetes v1.4 with AppArmor

Upgrade path to General Availability

Authoring Profiles

API Reference

Pod Annotation

Profile Reference

PodSecurityPolicy Annotations

What’s next

See an example of how to load a profile on a node

Learn how to enforce the profile on a Pod

Learn how to check that the profile is loaded

See what happens when a profile is violated

See what happens when a profile cannot be loaded

Before you begin

Make sure:

1. Kubernetes version is at least v1.4 – Kubernetes support for AppArmor was added in v1.4.

Kubernetes components older than v1.4 are not aware of the new AppArmor annotations,

and will silently ignore any AppArmor settings that are provided. To ensure that your Pods

are receiving the expected protections, it is important to verify the Kubelet version of your

nodes:

2. AppArmor kernel module is enabled – For the Linux kernel to enforce an AppArmor profile,

the AppArmor kernel module must be installed and enabled. Several distributions enable

the module by default, such as Ubuntu and SUSE, and many others provide optional

support. To check whether the module is enabled, check the

/sys/module/apparmor/parameters/enabled/sys/module/apparmor/parameters/enabled file:

If the Kubelet contains AppArmor support (>= v1.4), it will refuse to run a Pod with

AppArmor options if the kernel module is not enabled.

$ $ kubectl get nodes kubectl get nodes -o-o==jsonpathjsonpath==$'{range .items[*]}{@.metadata.name}: {@.status.nodeInfo.kubeletVersion}$'{range .items[*]}{@.metadata.name}: {@.status.nodeInfo.kubeletVersion}

gke-test-default-pool-239f5d02-gyn2: v1.4.0gke-test-default-pool-239f5d02-gyn2: v1.4.0

gke-test-default-pool-239f5d02-x1kf: v1.4.0gke-test-default-pool-239f5d02-x1kf: v1.4.0

gke-test-default-pool-239f5d02-xwux: v1.4.0gke-test-default-pool-239f5d02-xwux: v1.4.0

$ $ catcat /sys/module/apparmor/parameters/enabled /sys/module/apparmor/parameters/enabled

YY

Note: Ubuntu carries many AppArmor patches that have not been merged into the

upstream Linux kernel, including patches that add additional hooks and features.

Kubernetes has only been tested with the upstream version, and does not promise support

for other features.

3. Container runtime is Docker – Currently the only Kubernetes-supported container runtime

that also supports AppArmor is Docker. As more runtimes add AppArmor support, the

options will be expanded. You can verify that your nodes are running docker with:

If the Kubelet contains AppArmor support (>= v1.4), it will refuse to run a Pod with

AppArmor options if the runtime is not Docker.

4. Profile is loaded – AppArmor is applied to a Pod by specifying an AppArmor profile that

each container should be run with. If any of the specified profiles is not already loaded in

the kernel, the Kubelet (>= v1.4) will reject the Pod. You can view which profiles are loaded

on a node by checking the /sys/kernel/security/apparmor/profiles/sys/kernel/security/apparmor/profiles file. For

example:

For more details on loading profiles on nodes, see Setting up nodes with profiles.

As long as the Kubelet version includes AppArmor support (>= v1.4), the Kubelet will reject a

Pod with AppArmor options if any of the prerequisites are not met. You can also verify

AppArmor support on nodes by checking the node ready condition message (though this is

likely to be removed in a later release):

$ $ kubectl get nodes kubectl get nodes -o-o==jsonpathjsonpath==$'{range .items[*]}{@.metadata.name}: {@.status.nodeInfo.containerRuntimeVersion}$'{range .items[*]}{@.metadata.name}: {@.status.nodeInfo.containerRuntimeVersion}

gke-test-default-pool-239f5d02-gyn2: docker://1.11.2gke-test-default-pool-239f5d02-gyn2: docker://1.11.2

gke-test-default-pool-239f5d02-x1kf: docker://1.11.2gke-test-default-pool-239f5d02-x1kf: docker://1.11.2

gke-test-default-pool-239f5d02-xwux: docker://1.11.2gke-test-default-pool-239f5d02-xwux: docker://1.11.2

$ $ ssh gke-test-default-pool-239f5d02-gyn2 ssh gke-test-default-pool-239f5d02-gyn2 "sudo cat /sys/kernel/security/apparmor/profiles | sort""sudo cat /sys/kernel/security/apparmor/profiles | sort"

apparmor-test-deny-write apparmor-test-deny-write ((enforceenforce))

apparmor-test-audit-write apparmor-test-audit-write ((enforceenforce))

docker-default docker-default ((enforceenforce))

k8s-nginx k8s-nginx ((enforceenforce))

Securing a Pod

Note: AppArmor is currently in beta, so options are specified as annotations. Once support

graduates to general availability, the annotations will be replaced with first-class fields (more

details in Upgrade path to GA).

AppArmor profiles are specified per-container. To specify the AppArmor profile to run a Pod

container with, add an annotation to the Pod’s metadata:

Where <container_name><container_name> is the name of the container to apply the profile to, and

<profile_ref><profile_ref> specifies the profile to apply. The profile_refprofile_ref can be one of:

runtime/defaultruntime/default to apply the runtime’s default profile

localhost/<profile_name>localhost/<profile_name> to apply the profile loaded on the host with the name

<profile_name><profile_name>

unconfinedunconfined to indicate that no profiles will be loaded

See the API Reference for the full details on the annotation and profile name formats.

Kubernetes AppArmor enforcement works by first checking that all the prerequisites have been

met, and then forwarding the profile selection to the container runtime for enforcement. If the

prerequisites have not been met, the Pod will be rejected, and will not run.

To verify that the profile was applied, you can look for the AppArmor security option listed in

the container created event:

$ $ kubectl get nodes kubectl get nodes -o-o==jsonpathjsonpath==$'{range .items[*]}{@.metadata.name}: {.status.conditions[?(@.reason=="KubeletReady")].message}$'{range .items[*]}{@.metadata.name}: {.status.conditions[?(@.reason=="KubeletReady")].message}

gke-test-default-pool-239f5d02-gyn2: kubelet is posting ready status. AppArmor enabledgke-test-default-pool-239f5d02-gyn2: kubelet is posting ready status. AppArmor enabled

gke-test-default-pool-239f5d02-x1kf: kubelet is posting ready status. AppArmor enabledgke-test-default-pool-239f5d02-x1kf: kubelet is posting ready status. AppArmor enabled

gke-test-default-pool-239f5d02-xwux: kubelet is posting ready status. AppArmor enabledgke-test-default-pool-239f5d02-xwux: kubelet is posting ready status. AppArmor enabled

container.apparmor.security.beta.kubernetes.io/<container_name>container.apparmor.security.beta.kubernetes.io/<container_name>:: <profile_ref><profile_ref>

You can also verify directly that the container’s root process is running with the correct profile

by checking its proc attr:

Example

This example assumes you have already set up a cluster with AppArmor support.

First, we need to load the profile we want to use onto our nodes. The profile we’ll use simply

denies all file writes:

deny-write.profiledeny-write.profile

Since we don’t know where the Pod will be scheduled, we’ll need to load the profile on all our

nodes. For this example we’ll just use SSH to install the profiles, but other approaches are

discussed in Setting up nodes with profiles.

$ $ kubectl get events | kubectl get events | grep grep CreatedCreated

22s 22s 1 hello-apparmor Pod spec.containers22s 22s 1 hello-apparmor Pod spec.containers

$ $ kubectl kubectl execexec <pod_name> <pod_name> catcat /proc/1/attr/current /proc/1/attr/current

k8s-apparmor-example-deny-write k8s-apparmor-example-deny-write ((enforceenforce))

#include <tunables/global>#include <tunables/global>

profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {

 #include <abstractions/base> #include <abstractions/base>

 file, file,

 # Deny all file writes. # Deny all file writes.

 deny /** w, deny /** w,

}}

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/clusters/deny-write.profile

Next, we’ll run a simple “Hello AppArmor” pod with the deny-write profile:

hello-apparmor-pod.yamlhello-apparmor-pod.yaml

If we look at the pod events, we can see that the Pod container was created with the

AppArmor profile “k8s-apparmor-example-deny-write”:

$ NODES$ NODES=(=(

 # The SSH-accessible domain names of your nodes# The SSH-accessible domain names of your nodes
 gke-test-default-pool-239f5d02-gyn2.us-central1-a.my-k8s gke-test-default-pool-239f5d02-gyn2.us-central1-a.my-k8s

 gke-test-default-pool-239f5d02-x1kf.us-central1-a.my-k8s gke-test-default-pool-239f5d02-x1kf.us-central1-a.my-k8s

 gke-test-default-pool-239f5d02-xwux.us-central1-a.my-k8s gke-test-default-pool-239f5d02-xwux.us-central1-a.my-k8s))

$ $ for for NODE NODE inin ${${NODESNODES[*][*]}};; do do ssh ssh $NODE$NODE 'sudo apparmor_parser -q <<EOF'sudo apparmor_parser -q <<EOF

#include <tunables/global>#include <tunables/global>

profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {

 #include <abstractions/base> #include <abstractions/base>

 file, file,

 # Deny all file writes. # Deny all file writes.

 deny /** w, deny /** w,

}}

EOF'EOF'

donedone

apiVersionapiVersion:: v1v1

kindkind:: PodPod

metadatametadata::

 namename:: hello-apparmorhello-apparmor

 annotationsannotations::

 # Tell Kubernetes to apply the AppArmor profile "k8s-apparmor-example-deny-write".# Tell Kubernetes to apply the AppArmor profile "k8s-apparmor-example-deny-write".
 # Note that this is ignored if the Kubernetes node is not running version 1.4 or greater.# Note that this is ignored if the Kubernetes node is not running version 1.4 or greater.
 container.apparmor.security.beta.kubernetes.io/hellocontainer.apparmor.security.beta.kubernetes.io/hello:: localhost/k8s-apparmor-example-deny-writelocalhost/k8s-apparmor-example-deny-write

specspec::

 containerscontainers::

 -- namename:: hellohello

 imageimage:: busyboxbusybox

 commandcommand:: [[""sh"sh",, ""-c"-c",, ""echoecho 'Hello'Hello AppArmor!'AppArmor!' &&&& sleepsleep 1h"1h"]]

$ $ kubectl create kubectl create -f-f ./hello-apparmor-pod.yaml ./hello-apparmor-pod.yaml

https://raw.githubusercontent.com/kubernetes/website/master/docs/tutorials/clusters/hello-apparmor-pod.yaml

We can verify that the container is actually running with that profile by checking its proc attr:

Finally, we can see what happens if we try to violate the profile by writing to a file:

To wrap up, let’s look at what happens if we try to specify a profile that hasn’t been loaded:

$ $ kubectl get events | kubectl get events | grep grep hello-apparmorhello-apparmor

14s 14s 1 hello-apparmor Pod Normal Scheduled 14s 14s 1 hello-apparmor Pod Normal Scheduled

14s 14s 1 hello-apparmor Pod spec.containers14s 14s 1 hello-apparmor Pod spec.containers{{hellohello

13s 13s 1 hello-apparmor Pod spec.containers13s 13s 1 hello-apparmor Pod spec.containers{{hellohello

13s 13s 1 hello-apparmor Pod spec.containers13s 13s 1 hello-apparmor Pod spec.containers{{hellohello

13s 13s 1 hello-apparmor Pod spec.containers13s 13s 1 hello-apparmor Pod spec.containers{{hellohello

$ $ kubectl kubectl exec exec hello-apparmor hello-apparmor catcat /proc/1/attr/current /proc/1/attr/current

k8s-apparmor-example-deny-write k8s-apparmor-example-deny-write ((enforceenforce))

$ $ kubectl kubectl exec exec hello-apparmor touch /tmp/testhello-apparmor touch /tmp/test

touch: /tmp/test: Permission deniedtouch: /tmp/test: Permission denied

error: error executing remote error: error executing remote commandcommand: : command command terminated with non-zero terminated with non-zero exit exit

$ $ kubectl create kubectl create -f-f /dev/stdin /dev/stdin <<<<EOFEOF

apiVersion: v1apiVersion: v1

kind: Podkind: Pod

metadata:metadata:

 name: hello-apparmor-2 name: hello-apparmor-2

 annotations: annotations:

 container.apparmor.security.beta.kubernetes.io/hello: localhost/k8s-apparmor-example-allow-write container.apparmor.security.beta.kubernetes.io/hello: localhost/k8s-apparmor-example-allow-write

spec:spec:

 containers: containers:

 - name: hello - name: hello

 image: busybox image: busybox

 command: ["sh", "-c", "echo 'Hello AppArmor!' && sleep 1h"] command: ["sh", "-c", "echo 'Hello AppArmor!' && sleep 1h"]

EOFEOF

pod pod "hello-apparmor-2""hello-apparmor-2" created created

$ $ kubectl describe pod hello-apparmor-2kubectl describe pod hello-apparmor-2

Name: hello-apparmor-2Name: hello-apparmor-2

Namespace: defaultNamespace: default

Node: gke-test-default-pool-239f5d02-x1kf/Node: gke-test-default-pool-239f5d02-x1kf/

Start Time: Tue, 30 Aug 2016 17:58:56 Start Time: Tue, 30 Aug 2016 17:58:56 -0700-0700

Labels: <none>Labels: <none>

Annotations: container.apparmor.security.beta.kubernetes.io/helloAnnotations: container.apparmor.security.beta.kubernetes.io/hello==localhost/k8s-apparmor-example-allow-writelocalhost/k8s-apparmor-example-allow-write

Status: PendingStatus: Pending

Reason: AppArmorReason: AppArmor

Note the pod status is Failed, with a helpful error message:

Pod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write" isPod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write" is

not loadednot loaded

. An event was also recorded with the same message.

Administration

Reason: AppArmorReason: AppArmor

Message: Pod Cannot enforce AppArmor: profile Message: Pod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write""k8s-apparmor-example-allow-write"

IP:IP:

Controllers: <none>Controllers: <none>

Containers:Containers:

 hello: hello:

 Container ID: Container ID:

 Image: busybox Image: busybox

 Image ID: Image ID:

 Port: Port:

 Command: Command:

 sh sh

 -c-c

 echoecho 'Hello AppArmor!''Hello AppArmor!' &&&& sleep 1h sleep 1h

 State: Waiting State: Waiting

 Reason: Blocked Reason: Blocked

 Ready: False Ready: False

 Restart Count: 0 Restart Count: 0

 Environment: <none> Environment: <none>

 Mounts: Mounts:

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-dnz7v /var/run/secrets/kubernetes.io/serviceaccount from default-token-dnz7v

Conditions:Conditions:

 Type Status Type Status

 Initialized True Initialized True

 Ready False Ready False

 PodScheduled True PodScheduled True

Volumes:Volumes:

 default-token-dnz7v: default-token-dnz7v:

 Type: Secret Type: Secret ((a volume populated by a Secreta volume populated by a Secret))

 SecretName: default-token-dnz7v SecretName: default-token-dnz7v

 Optional: Optional: falsefalse

QoS Class: BestEffortQoS Class: BestEffort

Node-Selectors: <none>Node-Selectors: <none>

Tolerations: <none>Tolerations: <none>

Events:Events:

 FirstSeen LastSeen Count From SubobjectPath Type Reason Message FirstSeen LastSeen Count From SubobjectPath Type Reason Message

 ------------------ ---------------- ---------- -------- --------------------------

 23s 23s 1 23s 23s 1 {{default-scheduler default-scheduler }} Normal Scheduled Successfully assigned hello-apparmor-2 to e2e-test-stclair-minion-group-t1f5 Normal Scheduled Successfully assigned hello-apparmor-2 to e2e-test-stclair-minion-group-t1f5

 23s 23s 1 23s 23s 1 {{kubelet e2e-test-stclair-minion-group-t1f5kubelet e2e-test-stclair-minion-group-t1f5

Setting up nodes with profiles

Kubernetes does not currently provide any native mechanisms for loading AppArmor profiles

onto nodes. There are lots of ways to setup the profiles though, such as:

Through a DaemonSet that runs a Pod on each node to ensure the correct profiles are

loaded. An example implementation can be found here.

At node initialization time, using your node initialization scripts (e.g. Salt, Ansible, etc.) or

image.

By copying the profiles to each node and loading them through SSH, as demonstrated in

the Example.

The scheduler is not aware of which profiles are loaded onto which node, so the full set of

profiles must be loaded onto every node. An alternative approach is to add a node label for

each profile (or class of profiles) on the node, and use a node selector to ensure the Pod is run

on a node with the required profile.

Restricting profiles with the PodSecurityPolicy

If the PodSecurityPolicy extension is enabled, cluster-wide AppArmor restrictions can be

applied. To enable the PodSecurityPolicy, the following flag must be set on the apiserverapiserver :

The AppArmor options can be specified as annotations on the PodSecurityPolicy:

The default profile name option specifies the profile to apply to containers by default when

none is specified. The allowed profile names option specifies a list of profiles that Pod

containers are allowed to be run with. If both options are provided, the default must be allowed.

The profiles are specified in the same format as on containers. See the API Reference for the

full specification.

Disabling AppArmor

--enable-admission-plugins=PodSecurityPolicy[,others...]--enable-admission-plugins=PodSecurityPolicy[,others...]

apparmor.security.beta.kubernetes.io/defaultProfileNameapparmor.security.beta.kubernetes.io/defaultProfileName:: <profile_ref><profile_ref>

apparmor.security.beta.kubernetes.io/allowedProfileNamesapparmor.security.beta.kubernetes.io/allowedProfileNames:: <profile_ref>[,others...]<profile_ref>[,others...]

file:///docs/concepts/workloads/controllers/daemonset/
https://git.k8s.io/contrib/apparmor/loader
file:///docs/concepts/configuration/assign-pod-node/

If you do not want AppArmor to be available on your cluster, it can be disabled by a command-

line flag:

When disabled, any Pod that includes an AppArmor profile will fail validation with a “Forbidden”

error. Note that by default docker always enables the “docker-default” profile on non-privileged

pods (if the AppArmor kernel module is enabled), and will continue to do so even if the feature-

gate is disabled. The option to disable AppArmor will be removed when AppArmor graduates

to general availability (GA).

Upgrading to Kubernetes v1.4 with AppArmor

No action is required with respect to AppArmor to upgrade your cluster to v1.4. However, if any

existing pods had an AppArmor annotation, they will not go through validation (or

PodSecurityPolicy admission). If permissive profiles are loaded on the nodes, a malicious user

could pre-apply a permissive profile to escalate the pod privileges above the docker-default. If

this is a concern, it is recommended to scrub the cluster of any pods containing an annotation

with apparmor.security.beta.kubernetes.ioapparmor.security.beta.kubernetes.io .

Upgrade path to General Availability

When AppArmor is ready to be graduated to general availability (GA), the options currently

specified through annotations will be converted to fields. Supporting all the upgrade and

downgrade paths through the transition is very nuanced, and will be explained in detail when

the transition occurs. We will commit to supporting both fields and annotations for at least 2

releases, and will explicitly reject the annotations for at least 2 releases after that.

Authoring Profiles

Getting AppArmor profiles specified correctly can be a tricky business. Fortunately there are

some tools to help with that:

aa-genprofaa-genprof and aa-logprofaa-logprof generate profile rules by monitoring an application’s

activity and logs, and admitting the actions it takes. Further instructions are provided by

the AppArmor documentation.

--feature-gates=AppArmor=false--feature-gates=AppArmor=false

http://wiki.apparmor.net/index.php/Profiling_with_tools

bane is an AppArmor profile generator for Docker that uses a simplified profile language.

It is recommended to run your application through Docker on a development workstation to

generate the profiles, but there is nothing preventing running the tools on the Kubernetes node

where your Pod is running.

To debug problems with AppArmor, you can check the system logs to see what, specifically,

was denied. AppArmor logs verbose messages to dmesgdmesg , and errors can usually be found in

the system logs or through journalctljournalctl . More information is provided in AppArmor failures.

API Reference

Pod Annotation

Specifying the profile a container will run with:

key: container.apparmor.security.beta.kubernetes.io/<container_name>container.apparmor.security.beta.kubernetes.io/<container_name> Where

<container_name><container_name> matches the name of a container in the Pod. A separate profile can

be specified for each container in the Pod.

value: a profile reference, described below

Profile Reference

runtime/defaultruntime/default : Refers to the default runtime profile.

Equivalent to not specifying a profile (without a PodSecurityPolicy default), except it

still requires AppArmor to be enabled.

For Docker, this resolves to the docker-defaultdocker-default profile for non-privileged containers,

and unconfined (no profile) for privileged containers.

localhost/<profile_name>localhost/<profile_name> : Refers to a profile loaded on the node (localhost) by name.

The possible profile names are detailed in the core policy reference.

unconfinedunconfined : This effectively disables AppArmor on the container.

Any other profile reference format is invalid.

https://github.com/jfrazelle/bane
http://wiki.apparmor.net/index.php/AppArmor_Failures
https://docs.docker.com/engine/security/apparmor/
http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference#Profile_names_and_attachment_specifications

PodSecurityPolicy Annotations

Specifying the default profile to apply to containers when none is provided:

key: apparmor.security.beta.kubernetes.io/defaultProfileNameapparmor.security.beta.kubernetes.io/defaultProfileName

value: a profile reference, described above

Specifying the list of profiles Pod containers is allowed to specify:

key: apparmor.security.beta.kubernetes.io/allowedProfileNamesapparmor.security.beta.kubernetes.io/allowedProfileNames

value: a comma-separated list of profile references (described above)

Although an escaped comma is a legal character in a profile name, it cannot be

explicitly allowed here.

What’s next

Additional resources:

Quick guide to the AppArmor profile language

AppArmor core policy reference

http://wiki.apparmor.net/index.php/QuickProfileLanguage
http://wiki.apparmor.net/index.php/ProfileLanguage

Using Source IP

Applications running in a Kubernetes cluster find and communicate with each other, and the

outside world, through the Service abstraction. This document explains what happens to the

source IP of packets sent to different types of Services, and how you can toggle this behavior

according to your needs.

Objectives

Expose a simple application through various types of Services

Understand how each Service type handles source IP NAT

Understand the tradeoffs involved in preserving source IP

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured

to communicate with your cluster. If you do not already have a cluster, you can create one by

using Minikube, or you can use one of these Kubernetes playgrounds:

Katacoda

Play with Kubernetes

To check the version, enter kubectl versionkubectl version .

Objectives

Before you begin

Terminology

Prerequisites

Source IP for Services with Type=ClusterIP

Source IP for Services with Type=NodePort

Source IP for Services with Type=LoadBalancer

Cleaning up

What’s next

file:///docs/getting-started-guides/minikube
https://www.katacoda.com/courses/kubernetes/playground
http://labs.play-with-k8s.com/

Terminology

This document makes use of the following terms:

NAT: network address translation

Source NAT: replacing the source IP on a packet, usually with a node’s IP

Destination NAT: replacing the destination IP on a packet, usually with a pod IP

VIP: a virtual IP, such as the one assigned to every Kubernetes Service

Kube-proxy: a network daemon that orchestrates Service VIP management on every node

Prerequisites

You must have a working Kubernetes 1.5 cluster to run the examples in this document. The

examples use a small nginx webserver that echoes back the source IP of requests it receives

through an HTTP header. You can create it as follows:

Source IP for Services with Type=ClusterIP

Packets sent to ClusterIP from within the cluster are never source NAT’d if you’re running

kube-proxy in iptables mode, which is the default since Kubernetes 1.2. Kube-proxy exposes its

mode through a proxyModeproxyMode endpoint:

$$ kubectl run source-ip-app kubectl run source-ip-app --image--image==k8s.gcr.io/echoserver:1.4k8s.gcr.io/echoserver:1.4

deployment "source-ip-app" createddeployment "source-ip-app" created

$$ kubectl get nodes kubectl get nodes

NAME STATUS AGE VERSIONNAME STATUS AGE VERSION

kubernetes-minion-group-6jst Ready 2h v1.6.0+fff5156kubernetes-minion-group-6jst Ready 2h v1.6.0+fff5156

kubernetes-minion-group-cx31 Ready 2h v1.6.0+fff5156kubernetes-minion-group-cx31 Ready 2h v1.6.0+fff5156

kubernetes-minion-group-jj1t Ready 2h v1.6.0+fff5156kubernetes-minion-group-jj1t Ready 2h v1.6.0+fff5156

kubernetes-minion-group-6jst $kubernetes-minion-group-6jst $ curl localhost:10249/proxyMode curl localhost:10249/proxyMode

iptablesiptables

https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation#SNAT
https://en.wikipedia.org/wiki/Network_address_translation#DNAT
file:///docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
file:///docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
file:///docs/concepts/services-networking/service/#proxy-mode-iptables

You can test source IP preservation by creating a Service over the source IP app:

And hitting the ClusterIPClusterIP from a pod in the same cluster:

If the client pod and server pod are in the same node, the client_address is the client pod’s IP

address. However, if the client pod and server pod are in different nodes, the client_address is

the client pod’s node flannel IP address.

Source IP for Services with Type=NodePort

As of Kubernetes 1.5, packets sent to Services with Type=NodePort are source NAT’d by

$$ kubectl expose deployment source-ip-app kubectl expose deployment source-ip-app --name--name==clusterip clusterip --port--port==80 80 --target-port--target-port

service "clusterip" exposedservice "clusterip" exposed

$$ kubectl get svc clusterip kubectl get svc clusterip

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

clusterip 10.0.170.92 <none>clusterip 10.0.170.92 <none> 80/TCP 51s 80/TCP 51s

$$ kubectl run busybox kubectl run busybox -it-it --image--image==busybox busybox --restart--restart==Never Never --rm--rm

Waiting for pod default/busybox to be running, status is Pending, pod ready: falseWaiting for pod default/busybox to be running, status is Pending, pod ready: false

If you don't see a command prompt, try pressing enter.If you don't see a command prompt, try pressing enter.

ip addr ip addr

1: lo: <LOOPBACK,UP,LOWER_UP>1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue mtu 65536 qdisc noqueue

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever

3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc noqueue mtu 1460 qdisc noqueue

 link/ether 0a:58:0a:f4:03:08 brd ff:ff:ff:ff:ff:ff link/ether 0a:58:0a:f4:03:08 brd ff:ff:ff:ff:ff:ff

 inet 10.244.3.8/24 scope global eth0 inet 10.244.3.8/24 scope global eth0

 valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever

 inet6 fe80::188a:84ff:feb0:26a5/64 scope link inet6 fe80::188a:84ff:feb0:26a5/64 scope link

 valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever

wget wget -qO-qO - 10.0.170.92 - 10.0.170.92

CLIENT VALUES:CLIENT VALUES:

client_address=10.244.3.8client_address=10.244.3.8

command=GETcommand=GET

......

file:///docs/concepts/services-networking/service/#type-nodeport

default. You can test this by creating a NodePortNodePort Service:

If you’re running on a cloudprovider, you may need to open up a firewall-rule for the

nodes:nodeportnodes:nodeport reported above. Now you can try reaching the Service from outside the

cluster through the node port allocated above.

Note that these are not the correct client IPs, they’re cluster internal IPs. This is what happens:

Client sends packet to node2:nodePortnode2:nodePort

node2node2 replaces the source IP address (SNAT) in the packet with its own IP address

node2node2 replaces the destination IP on the packet with the pod IP

packet is routed to node 1, and then to the endpoint

the pod’s reply is routed back to node2

the pod’s reply is sent back to the client

Visually:

$$ kubectl expose deployment source-ip-app kubectl expose deployment source-ip-app --name--name==nodeport nodeport --port--port==80 80 --target-port--target-port

service "nodeport" exposedservice "nodeport" exposed

$$ NODEPORTNODEPORT==$($(kubectl get kubectl get -o-o jsonpathjsonpath=="{.spec.ports[0].nodePort}""{.spec.ports[0].nodePort}" services nodeport services nodeport

$$ NODESNODES==$($(kubectl get nodes kubectl get nodes -o-o jsonpathjsonpath=='{ $.items[*].status.addresses[?(@.type=="ExternalIP")].address }''{ $.items[*].status.addresses[?(@.type=="ExternalIP")].address }'

$$ for for node node inin $NODES$NODES;; do do curl curl -s-s $node$node::$NODEPORT$NODEPORT | | grepgrep -i-i client_address client_address;; donedone

client_address=10.180.1.1client_address=10.180.1.1

client_address=10.240.0.5client_address=10.240.0.5

client_address=10.240.0.3client_address=10.240.0.3

 client client

 \ ^ \ ^

 \ \ \ \

 v \ v \

 node 1 <--- node 2 node 1 <--- node 2

 | ^ SNAT | ^ SNAT

 | | ---> | | --->

 v | v |

 endpoint endpoint

To avoid this, Kubernetes has a feature to preserve the client source IP (check here for feature

availability). Setting service.spec.externalTrafficPolicyservice.spec.externalTrafficPolicy to the value LocalLocal will only

proxy requests to local endpoints, never forwarding traffic to other nodes and thereby

preserving the original source IP address. If there are no local endpoints, packets sent to the

node are dropped, so you can rely on the correct source-ip in any packet processing rules you

might apply a packet that make it through to the endpoint.

Set the service.spec.externalTrafficPolicyservice.spec.externalTrafficPolicy field as follows:

Now, re-run the test:

Note that you only got one reply, with the right client IP, from the one node on which the

endpoint pod is running.

This is what happens:

client sends packet to node2:nodePortnode2:nodePort , which doesn’t have any endpoints

packet is dropped

client sends packet to node1:nodePortnode1:nodePort , which does have endpoints

node1 routes packet to endpoint with the correct source IP

Visually:

$$ kubectl patch svc nodeport kubectl patch svc nodeport -p-p '{"spec":{"externalTrafficPolicy":"Local"}}''{"spec":{"externalTrafficPolicy":"Local"}}'

service "nodeport" patchedservice "nodeport" patched

$$ for for node node inin $NODES$NODES;; do do curl curl --connect-timeout--connect-timeout 1 1 -s-s $node$node::$NODEPORT$NODEPORT | | grepgrep -i-i

client_address=104.132.1.79client_address=104.132.1.79

 client client

 ^ / \ ^ / \

 / / \ / / \

 / v X / v X

 node 1 node 2 node 1 node 2

 ^ | ^ |

 | | | |

 | v | v

 endpoint endpoint

file:///docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip

Source IP for Services with Type=LoadBalancer

As of Kubernetes 1.5, packets sent to Services with Type=LoadBalancer are source NAT’d by

default, because all schedulable Kubernetes nodes in the ReadyReady state are eligible for

loadbalanced traffic. So if packets arrive at a node without an endpoint, the system proxies it

to a node with an endpoint, replacing the source IP on the packet with the IP of the node (as

described in the previous section).

You can test this by exposing the source-ip-app through a loadbalancer

However, if you’re running on Google Kubernetes Engine/GCE, setting the same

service.spec.externalTrafficPolicyservice.spec.externalTrafficPolicy field to LocalLocal forces nodes without Service

endpoints to remove themselves from the list of nodes eligible for loadbalanced traffic by

deliberately failing health checks.

Visually:

You can test this by setting the annotation:

$$ kubectl expose deployment source-ip-app kubectl expose deployment source-ip-app --name--name==loadbalancer loadbalancer --port--port==80 80 --target-port--target-port

service "loadbalancer" exposedservice "loadbalancer" exposed

$$ kubectl get svc loadbalancer kubectl get svc loadbalancer

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGENAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

loadbalancer 10.0.65.118 104.198.149.140 80/TCP 5mloadbalancer 10.0.65.118 104.198.149.140 80/TCP 5m

$$ curl 104.198.149.140 curl 104.198.149.140

CLIENT VALUES:CLIENT VALUES:

client_address=10.240.0.5client_address=10.240.0.5

......

 client client

 | |

 lb VIP lb VIP

 / ^ / ^

 v / v /

health check ---> node 1 node 2 <--- health checkhealth check ---> node 1 node 2 <--- health check

 200 <--- ^ | ---> 500 200 <--- ^ | ---> 500

 | V | V

 endpoint endpoint

file:///docs/concepts/services-networking/service/#type-loadbalancer

You should immediately see the service.spec.healthCheckNodePortservice.spec.healthCheckNodePort field allocated by

Kubernetes:

The service.spec.healthCheckNodePortservice.spec.healthCheckNodePort field points to a port on every node serving the

health check at /healthz/healthz . You can test this:

A service controller running on the master is responsible for allocating the cloud loadbalancer,

and when it does so, it also allocates HTTP health checks pointing to this port/path on each

node. Wait about 10 seconds for the 2 nodes without endpoints to fail health checks, then curl

the lb ip:

Cross platform support

As of Kubernetes 1.5, support for source IP preservation through Services with

Type=LoadBalancer is only implemented in a subset of cloudproviders (GCP and Azure). The

cloudprovider you’re running on might fulfill the request for a loadbalancer in a few different

ways:

$$ kubectl patch svc loadbalancer kubectl patch svc loadbalancer -p-p '{"spec":{"externalTrafficPolicy":"Local"}}''{"spec":{"externalTrafficPolicy":"Local"}}'

$$ kubectl get svc loadbalancer kubectl get svc loadbalancer -o-o yaml | yaml | grepgrep -i-i healthCheckNodePort healthCheckNodePort

 healthCheckNodePort: 32122 healthCheckNodePort: 32122

$ kubectl get pod -o wide -l run=source-ip-app$ kubectl get pod -o wide -l run=source-ip-app

NAME READY STATUS RESTARTS AGE IP NODENAME READY STATUS RESTARTS AGE IP NODE

source-ip-app-826191075-qehz4 1/1 Running 0 20h 10.180.1.136 kubernetes-minion-group-6jstsource-ip-app-826191075-qehz4 1/1 Running 0 20h 10.180.1.136 kubernetes-minion-group-6jst

kubernetes-minion-group-6jst $ curl localhost:32122/healthzkubernetes-minion-group-6jst $ curl localhost:32122/healthz

1 Service Endpoints found1 Service Endpoints found

kubernetes-minion-group-jj1t $ curl localhost:32122/healthzkubernetes-minion-group-jj1t $ curl localhost:32122/healthz

No Service Endpoints FoundNo Service Endpoints Found

$$ curl 104.198.149.140 curl 104.198.149.140

CLIENT VALUES:CLIENT VALUES:

client_address=104.132.1.79client_address=104.132.1.79

......

1. With a proxy that terminates the client connection and opens a new connection to your

nodes/endpoints. In such cases the source IP will always be that of the cloud LB, not that

of the client.

2. With a packet forwarder, such that requests from the client sent to the loadbalancer VIP

end up at the node with the source IP of the client, not an intermediate proxy.

Loadbalancers in the first category must use an agreed upon protocol between the

loadbalancer and backend to communicate the true client IP such as the HTTP X-

FORWARDED-FOR header, or the proxy protocol. Loadbalancers in the second category can

leverage the feature described above by simply creating an HTTP health check pointing at the

port stored in the service.spec.healthCheckNodePortservice.spec.healthCheckNodePort field on the Service.

Cleaning up

Delete the Services:

Delete the Deployment, ReplicaSet and Pod:

What’s next

Learn more about connecting applications via services

Learn more about loadbalancing

$$ kubectl delete svc kubectl delete svc -l-l runrun==source-ip-appsource-ip-app

$$ kubectl delete deployment source-ip-app kubectl delete deployment source-ip-app

https://en.wikipedia.org/wiki/X-Forwarded-For
http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
file:///docs/concepts/services-networking/connect-applications-service/
file:///docs/user-guide/load-balancer

	Setup
	Picking the Right Solution
	Local-machine Solutions
	Hosted Solutions
	Turnkey Cloud Solutions
	On-Premises turnkey cloud solutions
	Custom Solutions
	Universal
	Cloud
	On-Premises VMs
	Bare Metal
	Integrations

	Table of Solutions
	Definition of columns

	v1.10 Release Notes
	v1.10.0
	Downloads for v1.10.0
	Client Binaries
	Server Binaries
	Node Binaries

	Major Themes
	Node
	Storage
	Windows
	OpenStack
	API-machinery
	Auth
	Azure
	CLI
	Network

	Before Upgrading
	Known Issues
	Deprecations
	Other Notable Changes
	Apps
	AWS
	Auth
	CLI
	Cluster Lifecycle
	GCP
	Instrumentation
	Node
	OpenStack
	Scalability
	Storage
	Windows
	Autoscaling
	API-Machinery
	Network
	Azure
	Scheduling
	Other changes

	Non-user-facing Changes
	External Dependencies

	v1.10.0-rc.1
	Downloads for v1.10.0-rc.1
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-beta.4
	Other notable changes

	v1.10.0-beta.4
	Downloads for v1.10.0-beta.4
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-beta.3
	Other notable changes

	v1.10.0-beta.3
	Downloads for v1.10.0-beta.3
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-beta.2
	Other notable changes

	v1.10.0-beta.2
	Downloads for v1.10.0-beta.2
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-beta.1
	Action Required
	Other notable changes

	v1.10.0-beta.1
	Downloads for v1.10.0-beta.1
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-alpha.3
	Action Required
	Other notable changes

	v1.10.0-alpha.3
	Downloads for v1.10.0-alpha.3
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-alpha.2
	Other notable changes

	v1.10.0-alpha.2
	Downloads for v1.10.0-alpha.2
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.10.0-alpha.1
	Action Required
	Other notable changes

	v1.10.0-alpha.1
	Downloads for v1.10.0-alpha.1
	Client Binaries
	Server Binaries
	Node Binaries

	Changelog since v1.9.0
	Action Required
	Other notable changes

	Building from Source
	Building from source

	Running Kubernetes Locally via Minikube
	Minikube Features
	Installation
	Quickstart
	Alternative Container Runtimes
	CRI-O
	rkt container engine

	Driver plugins
	Reusing the Docker daemon

	Managing your Cluster
	Starting a Cluster
	Specifying the Kubernetes version

	Configuring Kubernetes
	Examples

	Stopping a Cluster
	Deleting a Cluster

	Interacting With your Cluster
	Kubectl
	Dashboard
	Services

	Networking
	Persistent Volumes
	Mounted Host Folders
	Private Container Registries
	Add-ons
	Using Minikube with an HTTP Proxy
	Known Issues
	Design
	Additional Links:
	Community

	Installing kubeadm
	Before you begin
	Verify the MAC address and product_uuid are unique for every node
	Check network adapters
	Check required ports
	Master node(s)
	Worker node(s)

	Installing Docker
	Installing kubeadm, kubelet and kubectl
	Configure cgroup driver used by kubelet on Master Node
	Troubleshooting
	What’s next

	Using kubeadm to Create a Cluster
	kubeadm Maturity
	Support timeframes
	Before you begin
	Objectives
	Instructions
	(1/4) Installing kubeadm on your hosts
	(2/4) Initializing your master
	(3/4) Installing a pod network
	Master Isolation

	(4/4) Joining your nodes
	(Optional) Controlling your cluster from machines other than the master
	(Optional) Proxying API Server to localhost

	Tear down
	Upgrading a kubeadm cluster
	Explore other add-ons
	What’s next
	Feedback
	Version skew policy
	kubeadm works on multiple platforms
	Limitations
	Troubleshooting

	Troubleshooting kubeadm
	ebtables or some similar executable not found during installation
	kubeadm blocks waiting for control plane during installation
	Pods in RunContainerError, CrashLoopBackOff or Error state
	kube-dns is stuck in the Pending state
	HostPort services do not work
	Pods are not accessible via their Service IP
	TLS certificate errors
	Default NIC When using flannel as the pod network in Vagrant
	Routing errors

	Creating HA clusters with kubeadm
	Before you begin
	Installing prerequisites on masters
	Setting up an HA etcd cluster
	Create etcd CA certs
	Generate etcd client certs
	Create SSH access
	Generate etcd server and peer certs
	Run etcd

	Set up master Load Balancer
	Acquire etcd certs
	Run kubeadm init on master0
	Run kubeadm init on master1 and master2
	Option 1: Copy with scp
	Option 2: Copy paste

	Add master1 and master2 to load balancer
	Install CNI network
	Install workers
	Configure workers

	Creating a Custom Cluster from Scratch
	Designing and Preparing
	Learning
	Cloud Provider
	Nodes
	Network
	Network Connectivity
	Network Policy

	Cluster Naming
	Software Binaries
	Downloading and Extracting Kubernetes Binaries
	Selecting Images

	Security Models
	Preparing Certs
	Preparing Credentials

	Configuring and Installing Base Software on Nodes
	Docker
	rkt
	kubelet
	kube-proxy
	Networking
	Other
	Using Configuration Management

	Bootstrapping the Cluster
	etcd
	Apiserver, Controller Manager, and Scheduler
	Apiserver pod template
	Scheduler pod template
	Controller Manager Template
	Starting and Verifying Apiserver, Scheduler, and Controller Manager

	Starting Cluster Services

	Troubleshooting
	Running validate-cluster
	Inspect pods and services
	Try Examples
	Running the Conformance Test
	Networking
	Getting Help

	Support Level

	Deprecated Alternatives
	Stop. These guides are superseded by Minikube. They are only listed here for completeness.
	Running Kubernetes on Alibaba Cloud
	Alibaba Cloud Container Service
	Custom Deployments

	Running Kubernetes on AWS EC2
	Supported Production Grade Tools
	Getting started with your cluster
	Command line administration tool: kubectl
	Examples

	Scaling the cluster
	Tearing down the cluster
	Support Level
	Further reading

	Running Kubernetes on Azure
	Azure Container Service
	Custom Deployments: ACS-Engine
	CoreOS Tectonic for Azure

	Running Kubernetes on CenturyLink Cloud
	Find Help
	Clusters of VMs or Physical Servers, your choice.
	Requirements
	Script Installation
	Script Installation Example: Ubuntu 14 Walkthrough

	Cluster Creation
	Cluster Creation: Script Options

	Cluster Expansion
	Cluster Expansion: Script Options

	Cluster Deletion
	Examples
	Cluster Features and Architecture
	Optional add-ons
	Cluster management
	Accessing the cluster programmatically
	Accessing the cluster with a browser
	Configuration files

	kubectl usage examples
	What Kubernetes features do not work on CenturyLink Cloud
	Ansible Files
	Further reading

	Running Kubernetes on Google Compute Engine
	Before you start
	Prerequisites
	Starting a cluster
	Installing the Kubernetes command line tools on your workstation
	Getting started with your cluster
	Inspect your cluster
	Run some examples

	Tearing down the cluster
	Customizing
	Troubleshooting
	Project settings
	Cluster initialization hang
	SSH
	Networking

	Support Level
	Further reading

	Running Kubernetes on Multiple Clouds with Stackpoint.io
	Introduction
	AWS
	Choose a Provider
	Configure Your Provider
	Configure Your Cluster
	Running the Cluster

	GCE
	Choose a Provider
	Configure Your Provider
	Configure Your Cluster
	Running the Cluster

	Google Kubernetes Engine
	Choose a Provider
	Configure Your Provider
	Configure Your Cluster
	Running the Cluster

	DigitalOcean
	Choose a Provider
	Configure Your Provider
	Configure Your Cluster
	Running the Cluster

	Microsoft Azure
	Choose a Provider
	Configure Your Provider
	Configure Your Cluster
	Running the Cluster

	Packet
	Choose a Provider
	Configure Your Provider
	Configure Your Cluster
	Running the Cluster

	CoreOS on AWS or GCE
	Official CoreOS Guides
	Community Guides
	Support Level

	Kubernetes on Ubuntu
	Official Ubuntu Guides
	Quick Start
	Operational Guides

	Third-party Product Integrations
	Developer Guides
	Where to find us

	Installing Kubernetes on AWS with kops
	Overview
	Creating a cluster
	(1/5) Install kops
	Requirements
	Installation

	(2/5) Create a route53 domain for your cluster
	(3/5) Create an S3 bucket to store your clusters state
	(4/5) Build your cluster configuration
	(5/5) Create the cluster in AWS
	Explore other add-ons

	What’s next
	Cleanup
	Feedback

	Installing Kubernetes On-premises/Cloud Providers with Kubespray
	Overview
	Creating a cluster
	(1/5) Meet the underlay requirements
	(2/5) Compose an inventory file
	(3/5) Plan your cluster deployment
	(4/5) Deploy a Cluster
	(5/5) Verify the deployment

	Cluster operations
	Scale your cluster
	Upgrade your cluster

	What’s next
	Cleanup
	Feedback

	CoreOS on AWS or GCE
	Official CoreOS Guides
	Community Guides
	Support Level

	Cloudstack
	Prerequisites
	Clone the playbook
	Create a Kubernetes cluster

	Support Level

	Kubernetes on DCOS
	Official Mesosphere Guide

	oVirt
	What is oVirt
	oVirt Cloud Provider Deployment
	Using the oVirt Cloud Provider
	oVirt Cloud Provider Screencast
	Support Level

	Fedora (Single Node)
	Prerequisites
	Instructions
	Support Level

	Fedora (Multi Node)
	Prerequisites
	Master Setup
	Node Setup
	Test the cluster and flannel configuration
	Support Level

	CoreOS on AWS or GCE
	Official CoreOS Guides
	Community Guides
	Support Level

	Kubernetes on Ubuntu
	Official Ubuntu Guides
	Quick Start
	Operational Guides

	Third-party Product Integrations
	Developer Guides
	Where to find us

	Validation - End-to-end Testing
	Before you begin
	End-to-end testing
	Deploy kubernetes-e2e charm
	Running the e2e test
	Tuning the e2e test
	More information on end-to-end testing
	Evaluating end-to-end results
	Accessing the results in a flat file
	Action result output

	Known issues

	Upgrading the e2e tests

	Backups
	Before you begin
	Snapshot etcd data
	Restore etcd data
	Migrating an etcd cluster
	Known Limitations
	Loss of PKI warning
	Restoring from snapshot on a scaled cluster

	Upgrades
	Before you begin
	Patch kubernetes upgrades for example 1.9.0 -> 1.9.1
	Upgrading a minor Kubernetes release for example 1.8.1 -> 1.9.0
	Upgrade etcd
	Upgrade kubeapi-load-balancer
	Upgrade Kubernetes
	Master Upgrades
	Worker Upgrades
	Blue/green worker upgrade
	In place worker upgrade

	Verify upgrade
	Upgrade Flannel
	Upgrade easyrsa

	Scaling
	Before you begin
	Kubernetes masters
	Kubernetes workers
	etcd
	Juju controller

	Setting up Kubernetes with Juju
	Before you begin
	Deployment overview
	Support Level
	Installation options
	Conjure-up
	Juju deploy
	Configure Juju to use your cloud provider
	Launch a Kubernetes cluster

	Monitor deployment
	Interacting with the cluster
	Scale up cluster
	Scale out cluster
	Tear down cluster
	More Info

	Monitoring
	Before you begin
	Connecting Datadog
	Installation of Datadog

	Connecting Elastic stack
	New install of ElasticSearch
	Existing ElasticSearch cluster

	Connecting Nagios
	New install of Nagios
	Existing install of Nagios

	Networking
	Before you begin
	Flannel
	Canal
	Configuration

	Security Considerations
	Before you begin
	Implementation
	Limiting ssh access

	Storage
	Before you begin
	Ceph Persistent Volumes

	Troubleshooting
	Before you begin
	Understanding Cluster Status
	SSHing to units
	Collecting debug information
	Common Problems
	Load Balancer interfering with Helm

	Logging and monitoring

	Decommissioning
	Before you begin
	Destroy the Juju model
	Cleaning up the Controller

	Operational Considerations
	Before you begin
	Managing Juju
	Sizing your controller node
	SSHing into the Controller Node

	Managing your Kubernetes cluster
	Running privileged containers
	Private registry
	Example usage

	Glossary and Terminology
	Local Kubernetes development with LXD
	Before you begin
	Deploying Kubernetes
	Accessing the Cluster

	Logging
	Before you begin
	Agent Logging
	Managing log verbosity

	Rancher Integration with Ubuntu Kubernetes
	Before you begin
	Deploying Rancher
	Deploying Rancher with a nodeport
	Deploying Rancher with an ingress rule
	Removing Rancher

	Using Windows Server Containers in Kubernetes
	Get Windows Binaries
	Prerequisites
	Networking
	Future CNI Plugins
	Linux
	Windows
	Upstream L3 Routing Topology
	Host-Gateway Topology
	Using OVN with OVS

	Setting up Windows Server Containers on Kubernetes
	Host Setup
	For 1. Upstream L3 Routing Topology and 2. Host-Gateway Topology
	For 3. Open vSwitch (OVS) & Open Virtual Network (OVN) with Overlay

	Starting the Cluster
	Starting the Linux-based Control Plane
	Support for kubeadm join
	Supported Features
	Scheduling Pods on Windows
	Secrets and ConfigMaps
	Volumes
	DaemonSets
	Metrics
	Container Resources
	Hyper-V Containers

	Known Limitations for Windows Server Containers with v1.9
	Next steps and resources

	Validate Node Setup
	Node Conformance Test
	Limitations
	Node Prerequisite
	Running Node Conformance Test
	Running Node Conformance Test for Other Architectures
	Running Selected Test
	Caveats

	Get Started
	Documentation
	Community
	Blog
	Interested in hacking on the core Kubernetes code base?
	Explore the community

	Get started with a cluster
	Web-based environment
	Minikube (recommended)

	Deploy an application
	Basic workloads
	Metadata
	Storage
	Configuration

	Understand basic Kubernetes architecture
	What Kubernetes offers
	Kubernetes API server
	Controllers

	Additional resources
	Basic concepts
	Tutorials
	What’s next

	Get Started
	Documentation
	Community
	Blog
	Interested in hacking on the core Kubernetes code base?
	Explore the community

	Learn additional workload patterns
	Persistent workloads
	Terminating workloads
	Other resources

	Deploy a production-ready workload
	Declarative configuration
	Security
	Resource isolation and management

	Improve your dev workflow with tooling
	kubectl
	Helm

	Explore additional resources
	References
	What’s next

	Get Started
	Documentation
	Community
	Blog
	Interested in hacking on the core Kubernetes code base?
	Explore the community

	Deploy an application with advanced features
	Container-level features
	Pod configuration
	Additional API Objects

	Extend the Kubernetes API
	Understand Kubernetes’s default behavior
	Create Custom Resources
	Service Catalog

	Explore additional resources
	References
	What’s next

	Get Started
	Documentation
	Community
	Blog
	Interested in hacking on the core Kubernetes code base?
	Explore the community

	Get an overview of Kubernetes
	Learn about Kubernetes basics
	Get information about your cluster
	Explore additional resources
	Tutorials

	Get Started
	Documentation
	Community
	Blog
	Interested in hacking on the core Kubernetes code base?
	Explore the community

	Work with ingress, networking, storage, and workloads
	Implement security best practices
	Implement custom logging and monitoring
	Additional resources
	Installing Addons
	Overview
	Networking and Network Policy
	Service Discovery
	Visualization & Control
	Legacy Add-ons

	Configuring Kubernetes with Salt
	Salt cluster setup
	Standalone Salt Configuration on GCE and others
	Salt security
	Salt minion configuration
	Best Practices
	Future enhancements (Networking)

	Building Large Clusters
	Support
	Setup
	Quota Issues
	Etcd storage
	Size of master and master components
	Addon Resources
	Allowing minor node failure at startup

	Running in Multiple Zones
	Introduction
	Functionality
	Limitations
	Walkthrough
	Bringing up your cluster
	Nodes are labeled
	Add more nodes in a second zone
	Volume affinity
	Pods are spread across zones
	Shutting down the cluster

	Building High-Availability Clusters
	Introduction
	Overview
	Initial set-up
	Reliable nodes
	Establishing a redundant, reliable data storage layer
	Clustering etcd
	Validating your cluster

	Even more reliable storage

	Replicated API Servers
	Installing configuration files
	Starting the API Server
	Load balancing
	Endpoint reconciler

	Master elected components
	Installing configuration files

	Conclusion

	Concepts
	Overview
	Kubernetes Objects
	Kubernetes Control Plane
	Kubernetes Master
	Kubernetes Nodes
	Object Metadata

	What’s next

	What is Kubernetes?
	Why do I need Kubernetes and what can it do?
	How is Kubernetes a platform?
	What Kubernetes is not
	Why containers?
	What does Kubernetes mean? K8s?
	What’s next

	Kubernetes Components
	Master Components
	kube-apiserver
	etcd
	kube-scheduler
	kube-controller-manager
	cloud-controller-manager

	Node Components
	kubelet
	kube-proxy
	Container Runtime

	Addons
	DNS
	Web UI (Dashboard)
	Container Resource Monitoring
	Cluster-level Logging

	The Kubernetes API
	API changes
	OpenAPI and Swagger definitions
	API versioning
	API groups
	Enabling API groups
	Enabling resources in the groups

	Understanding Kubernetes Objects
	Understanding Kubernetes Objects
	Object Spec and Status
	Describing a Kubernetes Object
	Required Fields

	What’s next

	Names
	Names
	UIDs

	Namespaces
	When to Use Multiple Namespaces
	Working with Namespaces
	Viewing namespaces
	Setting the namespace for a request
	Setting the namespace preference

	Namespaces and DNS
	Not All Objects are in a Namespace

	Labels and Selectors
	Motivation
	Syntax and character set
	Label selectors
	Equality-based requirement
	Set-based requirement

	API
	LIST and WATCH filtering
	Set references in API objects
	Service and ReplicationController
	Resources that support set-based requirements
	Selecting sets of nodes

	Annotations
	Attaching metadata to objects
	What’s next

	Kubernetes Object Management
	Management techniques
	Imperative commands
	Examples
	Trade-offs

	Imperative object configuration
	Examples
	Trade-offs

	Declarative object configuration
	Examples
	Trade-offs

	What’s next

	Managing Kubernetes Objects Using Imperative Commands
	Trade-offs
	How to create objects
	How to update objects
	How to delete objects
	How to view an object
	Using set commands to modify objects before creation
	Using --edit to modify objects before creation
	What’s next

	Imperative Management of Kubernetes Objects Using Configuration Files
	Trade-offs
	How to create objects
	How to update objects
	How to delete objects
	How to view an object
	Limitations
	Creating and editing an object from a URL without saving the configuration
	Migrating from imperative commands to imperative object configuration
	Defining controller selectors and PodTemplate labels
	What’s next

	Declarative Management of Kubernetes Objects Using Configuration Files
	Trade-offs
	Before you begin
	How to create objects
	How to update objects
	How to delete objects
	Recommended: kubectl delete -f <filename>
	Alternative: kubectl apply -f <directory/> --prune -l your=label

	How to view an object
	How apply calculates differences and merges changes
	Merge patch calculation
	How different types of fields are merged
	Merging changes to primitive fields
	Merging changes to map fields
	Merging changes for fields of type list
	Replace the list
	Merge individual elements of a list of complex elements:
	Merge a list of primitive elements

	Default field values
	How to clear server-defaulted fields or fields set by other writers

	How to change ownership of a field between the configuration file and direct imperative writers
	Changing the owner from a direct imperative writer to a configuration file
	Changing the owner from a configuration file to a direct imperative writer

	Changing management methods
	Migrating from imperative command management to declarative object configuration
	Migrating from imperative object configuration to declarative object configuration

	Defining controller selectors and PodTemplate labels
	Known Issues
	What’s next

	Nodes
	What is a node?
	Node Status
	Addresses
	Phase
	Condition
	Capacity
	Info

	Management
	Node Controller
	Self-Registration of Nodes
	Manual Node Administration

	Node capacity

	API Object

	Master-Node communication
	Overview
	Cluster -> Master
	Master -> Cluster
	apiserver -> kubelet
	apiserver -> nodes, pods, and services
	SSH Tunnels

	Concepts Underlying the Cloud Controller Manager
	Cloud Controller Manager
	Design
	Components of the CCM
	Functions of the CCM
	1. Kubernetes controller manager
	Node controller
	Route controller
	Service Controller
	PersistentVolumeLabels controller

	2. Kubelet
	3. Kubernetes API server

	Plugin mechanism
	Authorization
	Node Controller
	Route controller
	Service controller
	PersistentVolumeLabels controller
	Others

	Vendor Implementations
	Cluster Administration

	Extending your Kubernetes Cluster
	Overview
	Configuration
	Extensions
	Extension Patterns
	Extension Points
	API Extensions
	User-Defined Types
	Combining New APIs with Automation
	Changing Built-in Resources
	API Access Extensions
	Authentication
	Authorization
	Dynamic Admission Control

	Infrastructure Extensions
	Storage Plugins
	Device Plugins
	Network Plugins
	Scheduler Extensions

	What’s next

	Extending the Kubernetes API with the aggregation layer
	Overview
	What’s next

	Custom Resources
	Custom resources
	Custom controllers
	Should I add a custom resource to my Kubernetes Cluster?
	Declarative APIs

	Should I use a configMap or a custom resource?

	Adding custom resources
	CustomResourceDefinitions
	API server aggregation
	Choosing a method for adding custom resources
	Comparing ease of use

	Advanced features and flexibility
	Common Features

	Preparing to install a custom resource
	Third party code and new points of failure
	Storage
	Authentication, authorization, and auditing

	Accessing a custom resource
	What’s next

	Network Plugins
	Installation
	Network Plugin Requirements
	CNI
	kubenet
	Customizing the MTU (with kubenet)

	Usage Summary

	Device Plugins
	Device plugin registration
	Device plugin implementation
	Device plugin deployment
	Examples

	Service Catalog
	Example use case
	Architecture
	API Resources
	Authentication

	Usage
	Listing managed services and Service Plans
	Provisioning a new instance
	Binding to a managed service
	Mapping the connection credentials
	Pod configuration File

	What’s next

	Images
	Updating Images
	Using a Private Registry
	Using Google Container Registry
	Using AWS EC2 Container Registry
	Using Azure Container Registry (ACR)
	Configuring Nodes to Authenticate to a Private Repository
	Pre-pulling Images
	Specifying ImagePullSecrets on a Pod
	Creating a Secret with a Docker Config
	Referring to an imagePullSecrets on a Pod

	Use Cases

	Container Environment Variables
	Container environment
	Container information
	Cluster information

	What’s next

	Container Lifecycle Hooks
	Overview
	Container hooks
	Hook handler implementations
	Hook handler execution
	Hook delivery guarantees
	Debugging Hook handlers

	What’s next

	Pod Overview
	Understanding Pods
	How Pods manage multiple Containers
	Networking
	Storage

	Working with Pods
	Pods and Controllers

	Pod Templates
	What’s next

	Pods
	What is a Pod?
	Motivation for pods
	Management
	Resource sharing and communication

	Uses of pods
	Alternatives considered
	Durability of pods (or lack thereof)
	Termination of Pods
	Force deletion of pods

	Privileged mode for pod containers
	API Object

	Pod Lifecycle
	Pod phase
	Pod conditions
	Container probes
	When should you use liveness or readiness probes?

	Pod and Container status
	Restart policy
	Pod lifetime
	Examples
	Advanced liveness probe example
	Example states

	What’s next

	Init Containers
	Understanding Init Containers
	Differences from regular Containers

	What can Init Containers be used for?
	Examples
	Init Containers in use

	Detailed behavior
	Resources
	Pod restart reasons

	Support and compatibility
	What’s next

	Pod Preset
	Understanding Pod Presets
	How It Works
	Disable Pod Preset for a Specific Pod

	Enable Pod Preset
	What’s next

	Disruptions
	Voluntary and Involuntary Disruptions
	Dealing with Disruptions
	How Disruption Budgets Work
	PDB Example
	Separating Cluster Owner and Application Owner Roles
	How to perform Disruptive Actions on your Cluster
	What’s next

	ReplicaSet
	How to use a ReplicaSet
	When to use a ReplicaSet
	Example
	Writing a ReplicaSet Spec
	Pod Template
	Pod Selector
	Labels on a ReplicaSet
	Replicas

	Working with ReplicaSets
	Deleting a ReplicaSet and its Pods
	Deleting just a ReplicaSet
	Isolating pods from a ReplicaSet
	Scaling a ReplicaSet
	ReplicaSet as an Horizontal Pod Autoscaler Target

	Alternatives to ReplicaSet
	Deployment (Recommended)
	Bare Pods
	Job
	DaemonSet

	ReplicationController
	How a ReplicationController Works
	Running an example ReplicationController
	Writing a ReplicationController Spec
	Pod Template
	Labels on the ReplicationController
	Pod Selector
	Multiple Replicas

	Working with ReplicationControllers
	Deleting a ReplicationController and its Pods
	Deleting just a ReplicationController
	Isolating pods from a ReplicationController

	Common usage patterns
	Rescheduling
	Scaling
	Rolling updates
	Multiple release tracks
	Using ReplicationControllers with Services

	Writing programs for Replication
	Responsibilities of the ReplicationController
	API Object
	Alternatives to ReplicationController
	ReplicaSet
	Deployment (Recommended)
	Bare Pods
	Job
	DaemonSet

	For more information

	Deployments
	Use Case
	Creating a Deployment
	Pod-template-hash label

	Updating a Deployment
	Rollover (aka multiple updates in-flight)
	Label selector updates

	Rolling Back a Deployment
	Checking Rollout History of a Deployment
	Rolling Back to a Previous Revision

	Scaling a Deployment
	Proportional scaling

	Pausing and Resuming a Deployment
	Deployment status
	Progressing Deployment
	Complete Deployment
	Failed Deployment
	Operating on a failed deployment

	Clean up Policy
	Use Cases
	Canary Deployment

	Writing a Deployment Spec
	Pod Template
	Replicas
	Selector
	Strategy
	Recreate Deployment
	Rolling Update Deployment

	Progress Deadline Seconds
	Min Ready Seconds
	Rollback To
	Revision History Limit
	Paused

	Alternative to Deployments
	kubectl rolling update

	StatefulSets
	Using StatefulSets
	Limitations
	Components
	Pod Selector
	Pod Identity
	Ordinal Index
	Stable Network ID
	Stable Storage
	Pod Name Label

	Deployment and Scaling Guarantees
	Pod Management Policies
	OrderedReady Pod Management
	Parallel Pod Management

	Update Strategies
	On Delete
	Rolling Updates
	Partitions

	What’s next

	DaemonSet
	What is a DaemonSet?
	Writing a DaemonSet Spec
	Create a DaemonSet
	Required Fields
	Pod Template
	Pod Selector
	Running Pods on Only Some Nodes

	How Daemon Pods are Scheduled
	Communicating with Daemon Pods
	Updating a DaemonSet
	Alternatives to DaemonSet
	Init Scripts
	Bare Pods
	Static Pods
	Deployments

	Garbage Collection
	Owners and dependents
	Controlling how the garbage collector deletes dependents
	Foreground cascading deletion
	Background cascading deletion
	Setting the cascading deletion policy
	Additional note on Deployments

	Known issues
	What’s next

	Jobs - Run to Completion
	What is a Job?
	Running an example Job
	Writing a Job Spec
	Pod Template
	Pod Selector
	Parallel Jobs
	Controlling Parallelism

	Handling Pod and Container Failures
	Pod Backoff failure policy

	Job Termination and Cleanup
	Job Patterns
	Advanced Usage
	Specifying your own pod selector

	Alternatives
	Bare Pods
	Replication Controller
	Single Job starts Controller Pod

	Cron Jobs

	CronJob
	What is a cron job?
	Prerequisites

	Creating a Cron Job
	Deleting a Cron Job
	Cron Job Limitations
	Writing a Cron Job Spec
	Schedule
	Job Template
	Starting Deadline Seconds
	Concurrency Policy
	Suspend
	Jobs History Limits

	Configuration Best Practices
	General Configuration Tips
	“Naked” Pods vs ReplicaSets, Deployments, and Jobs
	Services
	Using Labels
	Container Images
	Using kubectl

	Managing Compute Resources for Containers
	Resource types
	Resource requests and limits of Pod and Container
	Meaning of CPU
	Meaning of memory
	How Pods with resource requests are scheduled
	How Pods with resource limits are run
	Monitoring compute resource usage
	Troubleshooting
	My Pods are pending with event message failedScheduling
	My Container is terminated

	Local ephemeral storage
	Requests and limits setting for local ephemeral storage
	How Pods with ephemeral-storage requests are scheduled
	How Pods with ephemeral-storage limits run

	Extended Resources
	Managing extended resources
	Node-level extended resources
	Cluster-level extended resources

	Consuming extended resources

	Planned Improvements
	What’s next

	Assigning Pods to Nodes
	nodeSelector
	Step Zero: Prerequisites
	Step One: Attach label to the node
	Step Two: Add a nodeSelector field to your pod configuration

	Interlude: built-in node labels
	Affinity and anti-affinity
	Node affinity (beta feature)
	Inter-pod affinity and anti-affinity (beta feature)
	An example of a pod that uses pod affinity:
	More Practical Use-cases

	Taints and Tolerations
	Concepts
	Example Use Cases
	Taint based Evictions
	Taint Nodes by Condition

	Secrets
	Overview of Secrets
	Built-in Secrets
	Service Accounts Automatically Create and Attach Secrets with API Credentials

	Creating your own Secrets
	Creating a Secret Using kubectl create secret
	Creating a Secret Manually
	Decoding a Secret

	Using Secrets
	Using Secrets as Files from a Pod
	Using Secrets as Environment Variables
	Using imagePullSecrets

	Arranging for imagePullSecrets to be Automatically Attached
	Automatic Mounting of Manually Created Secrets

	Details
	Restrictions
	Secret and Pod Lifetime interaction

	Use cases
	Use-Case: Pod with ssh keys
	Use-Case: Pods with prod / test credentials
	Use-case: Dotfiles in secret volume
	Use-case: Secret visible to one container in a pod

	Best practices
	Clients that use the secrets API

	Security Properties
	Protections
	Risks

	Organizing Cluster Access Using kubeconfig Files
	Supporting multiple clusters, users, and authentication mechanisms
	Context
	The KUBECONFIG environment variable
	Merging kubeconfig files
	File references
	What’s next

	Pod Priority and Preemption
	How to use priority and preemption
	Enabling priority and preemption
	PriorityClass
	Example PriorityClass

	Pod priority
	Effect of Pod priority on scheduling order

	Preemption
	User exposed information
	Limitations of preemption
	Graceful termination of preemption victims
	PodDisruptionBudget is supported, but not guaranteed!
	Inter-Pod affinity on lower-priority Pods
	Cross node preemption

	Services
	Defining a service
	Services without selectors

	Virtual IPs and service proxies
	Proxy-mode: userspace
	Proxy-mode: iptables
	Proxy-mode: ipvs

	Multi-Port Services
	Choosing your own IP address
	Why not use round-robin DNS?

	Discovering services
	Environment variables
	DNS

	Headless services
	With selectors
	Without selectors

	Publishing services - service types
	Type NodePort
	Type LoadBalancer
	Internal load balancer
	SSL support on AWS
	PROXY protocol support on AWS
	ELB Access Logs on AWS
	Connection Draining on AWS
	Other ELB annotations
	Network Load Balancer support on AWS [alpha]

	External IPs

	Shortcomings
	Future work
	The gory details of virtual IPs
	Avoiding collisions
	IPs and VIPs
	Userspace
	Iptables
	Ipvs

	API Object
	For More Information

	DNS for Services and Pods
	Introduction
	What things get DNS names?

	Services
	A records
	SRV records

	Pods
	A Records
	Pod’s hostname and subdomain fields
	Pod’s DNS Policy
	Pod’s DNS Config

	What’s next

	Connecting Applications with Services
	The Kubernetes model for connecting containers
	Exposing pods to the cluster
	Creating a Service
	Accessing the Service
	Environment Variables
	DNS

	Securing the Service
	Exposing the Service
	Further reading

	Ingress
	What is Ingress?
	Prerequisites
	The Ingress Resource
	Ingress controllers
	Before you begin
	Types of Ingress
	Single Service Ingress
	Simple fanout
	Name based virtual hosting
	TLS
	Loadbalancing

	Updating an Ingress
	Failing across availability zones
	Future Work
	Alternatives

	Network Policies
	Prerequisites
	Isolated and Non-isolated Pods
	The NetworkPolicy Resource
	Default policies
	Default deny all ingress traffic
	Default allow all ingress traffic
	Default deny all egress traffic
	Default allow all egress traffic
	Default deny all ingress and all egress traffic

	What’s next?

	Adding entries to Pod /etc/hosts with HostAliases
	Default Hosts File Content
	Adding Additional Entries with HostAliases
	Limitations
	Why Does Kubelet Manage the Hosts File?

	Volumes
	Background
	Types of Volumes
	awsElasticBlockStore
	Creating an EBS volume
	AWS EBS Example configuration

	azureDisk
	azureFile
	cephfs
	configMap
	downwardAPI
	emptyDir
	Example pod

	fc (fibre channel)
	flocker
	gcePersistentDisk
	Creating a PD
	Example pod

	gitRepo
	glusterfs
	hostPath
	Example pod

	iscsi
	local
	nfs
	persistentVolumeClaim
	projected
	Example pod with a secret, a downward API, and a configmap.
	Example pod with multiple secrets with a non-default permission mode set.

	portworxVolume
	quobyte
	rbd
	scaleIO
	secret
	storageOS
	vsphereVolume
	Creating a VMDK volume
	vSphere VMDK Example configuration

	Using subPath
	Resources
	Out-of-Tree Volume Plugins
	CSI
	FlexVolume

	Mount propagation
	Configuration

	What’s next

	Persistent Volumes
	Introduction
	Lifecycle of a volume and claim
	Provisioning
	Static
	Dynamic

	Binding
	Using
	Storage Object in Use Protection
	Reclaiming
	Retain
	Delete
	Recycle

	Expanding Persistent Volumes Claims

	Types of Persistent Volumes
	Persistent Volumes
	Capacity
	Volume Mode
	Access Modes
	Class
	Reclaim Policy
	Mount Options
	Phase

	PersistentVolumeClaims
	Access Modes
	Volume Modes
	Resources
	Selector
	Class

	Claims As Volumes
	A Note on Namespaces

	Raw Block Volume Support
	Persistent Volumes using a Raw Block Volume
	Persistent Volume Claim requesting a Raw Block Volume
	Pod specification adding Raw Block Device path in container
	Binding Block Volumes

	Writing Portable Configuration

	Storage Classes
	Introduction
	The StorageClass Resource
	Provisioner
	Reclaim Policy
	Mount Options

	Parameters
	AWS
	GCE
	Glusterfs
	OpenStack Cinder
	vSphere
	Ceph RBD
	Quobyte
	Azure Disk
	Azure Unmanaged Disk Storage Class
	New Azure Disk Storage Class (starting from v1.7.2)

	Azure File
	Portworx Volume
	ScaleIO
	StorageOS
	Local

	Dynamic Volume Provisioning
	Background
	Enabling Dynamic Provisioning
	Using Dynamic Provisioning
	Defaulting Behavior

	Cluster Administration Overview
	Planning a cluster
	Managing a cluster
	Securing a cluster
	Securing the kubelet

	Optional Cluster Services

	Certificates
	Creating Certificates
	easyrsa
	openssl
	cfssl

	Distributing Self-Signed CA Certificate
	Certificates API

	Cloud Providers
	AWS
	Load Balancers

	OpenStack
	cloud.conf
	Typical configuration
	Global
	Load Balancer
	Block Storage
	Metadata
	Router

	Managing Resources
	Organizing resource configurations
	Bulk operations in kubectl
	Using labels effectively
	Canary deployments
	Updating labels
	Updating annotations
	Scaling your application
	In-place updates of resources
	kubectl apply
	kubectl edit
	kubectl patch

	Disruptive updates
	Updating your application without a service outage
	What’s next?

	Cluster Networking
	Summary
	Docker model
	Kubernetes model
	How to achieve this
	ACI
	Big Cloud Fabric from Big Switch Networks
	Cilium
	Contiv
	Contrail
	Flannel
	Google Compute Engine (GCE)
	Kube-router
	L2 networks and linux bridging
	Multus (a Multi Network plugin)
	NSX-T
	Nuage Networks VCS (Virtualized Cloud Services)
	OpenVSwitch
	OVN (Open Virtual Networking)
	Project Calico
	Romana
	Weave Net from Weaveworks
	CNI-Genie from Huawei

	Other reading

	Network Plugins
	Installation
	Network Plugin Requirements
	CNI
	kubenet
	Customizing the MTU (with kubenet)

	Usage Summary

	Logging Architecture
	Basic logging in Kubernetes
	Logging at the node level
	System component logs

	Cluster-level logging architectures
	Using a node logging agent
	Using a sidecar container with the logging agent
	Streaming sidecar container
	Sidecar container with a logging agent

	Exposing logs directly from the application

	Configuring kubelet Garbage Collection
	Image Collection
	Container Collection
	User Configuration
	Deprecation

	Federation
	Why federation
	Caveats
	Hybrid cloud capabilities

	Setting up federation
	API resources
	Cascading deletion
	Scope of a single cluster
	Selecting the right number of clusters
	What’s next

	Proxies in Kubernetes
	Proxies
	Requesting redirects

	Controller manager metrics
	What are controller manager metrics
	Configuration

	Device Plugins
	Device plugin registration
	Device plugin implementation
	Device plugin deployment
	Examples

	Resource Quotas
	Enabling Resource Quota
	Compute Resource Quota
	Storage Resource Quota
	Object Count Quota
	Quota Scopes
	Requests vs Limits
	Viewing and Setting Quotas
	Quota and Cluster Capacity
	Example
	Read More

	Pod Security Policies
	What is a Pod Security Policy?
	Enabling Pod Security Policies
	Authorizing Policies
	Via RBAC
	Troubleshooting

	Policy Order
	Example
	Set up
	Create a policy and a pod
	Run another pod
	Clean up
	Example Policies

	Policy Reference
	Privileged
	Host namespaces
	Volumes and file systems
	FlexVolume drivers
	Users and groups
	Privilege Escalation
	Capabilities
	SELinux
	AppArmor
	Seccomp
	Sysctl

	Tasks
	Web UI (Dashboard)
	Using the kubectl Command-line
	Configuring Pods and Containers
	Running Applications
	Running Jobs
	Accessing Applications in a Cluster
	Monitoring, Logging, and Debugging
	Accessing the Kubernetes API
	Using TLS
	Administering a Cluster
	Administering Federation
	Managing Stateful Applications
	Cluster Daemons
	Managing GPUs
	Managing HugePages
	What’s next

	Install and Set Up kubectl
	Install kubectl
	Before you begin
	Install kubectl binary via curl
	Download as part of the Google Cloud SDK
	Install with snap on Ubuntu
	Install with Homebrew on macOS
	Install with Powershell from PSGallery
	Install with Chocolatey on Windows

	Configure kubectl
	Check the kubectl configuration
	Enabling shell autocompletion
	On Linux, using bash
	On macOS, using bash
	Using Zsh

	What’s next

	Install Minikube
	Before you begin
	Install a Hypervisor
	Install kubectl
	Install Minikube
	What’s next

	Installing kubeadm
	Before you begin
	Verify the MAC address and product_uuid are unique for every node
	Check network adapters
	Check required ports
	Master node(s)
	Worker node(s)

	Installing Docker
	Installing kubeadm, kubelet and kubectl
	Configure cgroup driver used by kubelet on Master Node
	Troubleshooting
	What’s next

	Assign Memory Resources to Containers and Pods
	Before you begin
	Create a namespace
	Specify a memory request and a memory limit
	Exceed a Container’s memory limit
	Specify a memory request that is too big for your Nodes
	Memory units
	If you don’t specify a memory limit
	Motivation for memory requests and limits
	Clean up
	What’s next
	For app developers
	For cluster administrators

	Assign CPU Resources to Containers and Pods
	Before you begin
	Create a namespace
	Specify a CPU request and a CPU limit
	CPU units
	Specify a CPU request that is too big for your Nodes
	If you don’t specify a CPU limit
	Motivation for CPU requests and limits
	Clean up
	What’s next
	For app developers
	For cluster administrators

	Configure Quality of Service for Pods
	Before you begin
	QoS classes
	Create a namespace
	Create a Pod that gets assigned a QoS class of Guaranteed
	Create a Pod that gets assigned a QoS class of Burstable
	Create a Pod that gets assigned a QoS class of BestEffort
	Create a Pod that has two Containers
	Clean up
	What’s next
	For app developers
	For cluster administrators

	Assign Extended Resources to a Container
	Before you begin
	Assign an extended resource to a Pod
	Attempt to create a second Pod
	Clean up
	What’s next
	For application developers
	For cluster administrators

	Configure a Pod to Use a Volume for Storage
	Before you begin
	Configure a volume for a Pod
	What’s next

	Configure a Pod to Use a PersistentVolume for Storage
	Before you begin
	Create an index.html file on your Node
	Create a PersistentVolume
	Create a PersistentVolumeClaim
	Create a Pod
	Access control
	What’s next
	Reference

	Configure a Pod to Use a Projected Volume for Storage
	Before you begin
	Configure a projected volume for a pod
	What’s next

	Configure a Security Context for a Pod or Container
	Before you begin
	Set the security context for a Pod
	Set the security context for a Container
	Set capabilities for a Container
	Assign SELinux labels to a Container
	Discussion
	What’s next

	Configure Service Accounts for Pods
	Use the Default Service Account to access the API server.
	Use Multiple Service Accounts.
	Manually create a service account API token.
	Add ImagePullSecrets to a service account

	Pull an Image from a Private Registry
	Before you begin
	Log in to Docker
	Create a Secret in the cluster that holds your authorization token
	Inspecting the Secret regcred
	Create a Pod that uses your Secret
	What’s next

	Configure Liveness and Readiness Probes
	Before you begin
	Define a liveness command
	Define a liveness HTTP request
	Define a TCP liveness probe
	Use a named port
	Define readiness probes
	Configure Probes
	What’s next
	Reference

	Assign Pods to Nodes
	Before you begin
	Add a label to a node
	Create a pod that gets scheduled to your chosen node
	What’s next

	Configure Pod Initialization
	Before you begin
	Create a Pod that has an Init Container
	What’s next

	Attach Handlers to Container Lifecycle Events
	Before you begin
	Define postStart and preStop handlers
	Discussion
	What’s next
	Reference

	Configure a Pod to Use a ConfigMap
	Before you begin
	Create a ConfigMap
	Create ConfigMaps from directories
	Create ConfigMaps from files
	Define the key to use when creating a ConfigMap from a file

	Create ConfigMaps from literal values

	Define Pod environment variables using ConfigMap data
	Define a Pod environment variable with data from a single ConfigMap
	Define Pod environment variables with data from multiple ConfigMaps

	Configure all key-value pairs in a ConfigMap as Pod environment variables
	Use ConfigMap-defined environment variables in Pod commands
	Add ConfigMap data to a Volume
	Populate a Volume with data stored in a ConfigMap
	Add ConfigMap data to a specific path in the Volume
	Project keys to specific paths and file permissions
	Mounted ConfigMaps are updated automatically

	Understanding ConfigMaps and Pods
	Restrictions

	What’s next

	Share Process Namespace between Containers in a Pod
	Before you begin
	Configure a Pod
	Understanding Process Namespace Sharing

	Translate a Docker Compose File to Kubernetes Resources
	Kubernetes + Compose = Kompose
	Installation
	GitHub release
	Go
	CentOS
	Fedora
	macOS

	User Guide
	kompose convert
	Kubernetes
	OpenShift

	kompose up
	Kubernetes
	OpenShift

	kompose down
	Build and Push Docker Images
	Alternative Conversions
	Labels
	Restart
	Warning about Deployment Config’s

	Docker Compose Versions

	Define a Command and Arguments for a Container
	Before you begin
	Define a command and arguments when you create a Pod
	Use environment variables to define arguments
	Run a command in a shell
	Notes
	What’s next

	Define Environment Variables for a Container
	Before you begin
	Define an environment variable for a container
	What’s next

	Expose Pod Information to Containers Through Environment Variables
	Before you begin
	The Downward API
	Use Pod fields as values for environment variables
	Use Container fields as values for environment variables
	What’s next

	Expose Pod Information to Containers Through Files
	Before you begin
	The Downward API
	Store Pod fields
	Store Container fields
	Capabilities of the Downward API
	Project keys to specific paths and file permissions
	Motivation for the Downward API
	What’s next

	Distribute Credentials Securely Using Secrets
	Before you begin
	Convert your secret data to a base-64 representation
	Create a Secret
	Create a Pod that has access to the secret data through a Volume
	Create a Pod that has access to the secret data through environment variables
	What’s next
	Reference

	Inject Information into Pods Using a PodPreset
	Create a Pod Preset
	Simple Pod Spec Example
	Pod Spec with ConfigMap Example
	ReplicaSet with Pod Spec Example
	Multiple PodPreset Example
	Conflict Example

	Deleting a Pod Preset

	Run a Stateless Application Using a Deployment
	Objectives
	Before you begin
	Creating and exploring an nginx deployment
	Updating the deployment
	Scaling the application by increasing the replica count
	Deleting a deployment
	ReplicationControllers – the Old Way
	What’s next

	Run a Single-Instance Stateful Application
	Objectives
	Before you begin
	Deploy MySQL
	Accessing the MySQL instance
	Updating
	Deleting a deployment
	What’s next

	Run a Replicated Stateful Application
	Objectives
	Before you begin
	Deploy MySQL
	ConfigMap
	Services
	StatefulSet

	Understanding stateful Pod initialization
	Generating configuration
	Cloning existing data
	Starting replication

	Sending client traffic
	Simulating Pod and Node downtime
	Break the Readiness Probe
	Delete Pods
	Drain a Node

	Scaling the number of slaves
	Cleaning up
	What’s next

	Update API Objects in Place Using kubectl patch
	Before you begin
	Use a strategic merge patch to update a Deployment
	Notes on the strategic merge patch

	Use a JSON merge patch to update a Deployment
	Alternate forms of the kubectl patch command
	Summary
	What’s next

	Scale a StatefulSet
	Before you begin
	Use kubectl to scale StatefulSets
	kubectl scale
	Alternative: kubectl apply / kubectl edit / kubectl patch

	Troubleshooting
	Scaling down doesn’t work right

	What’s next

	Delete a StatefulSet
	Before you begin
	Deleting a StatefulSet
	Persistent Volumes
	Complete deletion of a StatefulSet
	Force deletion of StatefulSet pods

	What’s next

	Force Delete StatefulSet Pods
	Before you begin
	StatefulSet considerations
	Delete Pods
	Force Deletion

	What’s next

	Perform Rolling Update Using a Replication Controller
	Overview
	Passing a configuration file
	Examples

	Updating the container image
	Examples

	Required and optional fields
	Walkthrough
	Troubleshooting

	Horizontal Pod Autoscaler
	What is the Horizontal Pod Autoscaler?
	How does the Horizontal Pod Autoscaler work?
	API Object
	Support for Horizontal Pod Autoscaler in kubectl
	Autoscaling during rolling update
	Support for cooldown/delay
	Support for multiple metrics
	Support for custom metrics
	Requirements

	Further reading

	Horizontal Pod Autoscaler Walkthrough
	Prerequisites
	Step One: Run & expose php-apache server
	Step Two: Create Horizontal Pod Autoscaler
	Step Three: Increase load
	Step Four: Stop load
	Autoscaling on multiple metrics and custom metrics
	Autoscaling on metrics not related to Kubernetes objects

	Appendix: Horizontal Pod Autoscaler Status Conditions
	Appendix: Other possible scenarios
	Creating the autoscaler declaratively

	Specifying a Disruption Budget for your Application
	Before you begin
	Protecting an Application with a PodDisruptionBudget
	Identify an Application to Protect
	Think about how your application reacts to disruptions
	Specifying a PodDisruptionBudget

	Create the PDB object
	Check the status of the PDB
	Arbitrary Controllers and Selectors
	Parallel Processing using Expansions
	Example: Multiple Job Objects from Template Expansion
	Basic Template Expansion
	Multiple Template Parameters
	Alternatives

	Coarse Parallel Processing Using a Work Queue
	Example: Job with Work Queue with Pod Per Work Item
	Starting a message queue service
	Testing the message queue service
	Filling the Queue with tasks
	Create an Image
	Defining a Job
	Running the Job
	Alternatives
	Caveats

	Fine Parallel Processing Using a Work Queue
	Example: Job with Work Queue with Multiple Work Items Per Pod
	Starting Redis
	Filling the Queue with tasks
	Create an Image
	Push the image

	Defining a Job
	Running the Job
	Alternatives

	Web UI (Dashboard)
	Deploying the Dashboard UI
	Accessing the Dashboard UI
	Command line proxy
	Master server

	Welcome view
	Deploying containerized applications
	Specifying application details
	Uploading a YAML or JSON file

	Using Dashboard
	Navigation
	Admin
	Workloads
	Services and discovery
	Storage
	Config
	Logs viewer

	More information

	Accessing Clusters
	Accessing the cluster API
	Accessing for the first time with kubectl
	Directly accessing the REST API
	Using kubectl proxy
	Without kubectl proxy (before v1.3.x)
	Without kubectl proxy (post v1.3.x)

	Programmatic access to the API
	Go client
	Python client
	Other languages

	Accessing the API from a Pod

	Accessing services running on the cluster
	Ways to connect
	Discovering builtin services
	Manually constructing apiserver proxy URLs
	Using web browsers to access services running on the cluster

	Requesting redirects
	So Many Proxies

	Configure Access to Multiple Clusters
	Before you begin
	Define clusters, users, and contexts
	Create a second configuration file
	Set the KUBECONFIG environment variable
	Explore the $HOME/.kube directory
	Append $HOME/.kube/config to your KUBECONFIG environment variable
	Clean up
	What’s next

	Use Port Forwarding to Access Applications in a Cluster
	Before you begin
	Creating Redis deployment and service
	Forward a local port to a port on the pod
	Discussion
	What’s next

	Provide Load-Balanced Access to an Application in a Cluster
	Objectives
	Before you begin
	Creating a Service for an application running in two pods
	Using a service configuration file
	What’s next

	Use a Service to Access an Application in a Cluster
	Objectives
	Before you begin
	Creating a service for an application running in two pods
	Using a service configuration file
	Cleaning up
	What’s next

	Connect a Front End to a Back End Using a Service
	Objectives
	Before you begin
	Creating the backend using a Deployment
	Creating the backend Service object
	Creating the frontend
	Interact with the frontend Service
	Send traffic through the frontend

	What’s next

	Create an External Load Balancer
	Before you begin
	Configuration file
	Using kubectl
	Finding your IP address
	Preserving the client source IP
	Feature availability

	External Load Balancer Providers
	Caveats and Limitations when preserving source IPs

	Configure Your Cloud Provider's Firewalls
	Restrict Access For LoadBalancer Service
	Google Compute Engine
	Other cloud providers

	List All Container Images Running in a Cluster
	Before you begin
	List all Containers in all namespaces
	List Containers by Pod
	List Containers filtering by Pod label
	List Containers filtering by Pod namespace
	List Containers using a go-template instead of jsonpath
	What’s next
	Reference

	Communicate Between Containers in the Same Pod Using a Shared Volume
	Before you begin
	Creating a Pod that runs two Containers
	Discussion
	What’s next

	Core metrics pipeline
	The Metrics API
	Metrics Server

	Tools for Monitoring Compute, Storage, and Network Resources
	Overview
	cAdvisor
	Kubelet

	Storage Backends
	InfluxDB and Grafana
	Google Cloud Monitoring

	Try it out!

	Get a Shell to a Running Container
	Before you begin
	Getting a shell to a Container
	Writing the root page for nginx
	Running individual commands in a Container
	Opening a shell when a Pod has more than one Container
	What’s next

	Monitor Node Health
	Node Problem Detector
	Limitations
	Enable/Disable in GCE cluster
	Use in Other Environment
	Kubectl
	Addon Pod

	Overwrite the Configuration
	Kernel Monitor
	Add New NodeConditions
	Detect New Problems
	Change Log Path
	Support Other Log Format

	Caveats

	Logging Using Stackdriver
	Deploying
	Deploying to a new cluster
	Google Kubernetes Engine
	Other platforms

	Deploying to an existing cluster

	Verifying your Logging Agent Deployment
	Viewing logs
	Exporting logs

	Configuring Stackdriver Logging Agents
	Prerequisites
	Changing DaemonSet parameters
	Changing fluentd parameters
	Adding fluentd plugins

	Events in Stackdriver
	Deployment
	Google Kubernetes Engine
	Deploying to the Existing Cluster

	User Guide

	Logging Using Elasticsearch and Kibana
	Determine the Reason for Pod Failure
	Before you begin
	Writing and reading a termination message
	Customizing the termination message
	What’s next

	Debug Init Containers
	Before you begin
	Checking the status of Init Containers
	Getting details about Init Containers
	Accessing logs from Init Containers
	Understanding Pod status

	Debug Pods and Replication Controllers
	Debugging pods
	My pod stays pending
	Insufficient resources
	Using hostPort

	My pod stays waiting
	My pod is crashing or otherwise unhealthy

	Debugging Replication Controllers

	Debug Services
	Conventions
	Running commands in a Pod
	Setup
	Does the Service exist?
	Does the Service work by DNS?
	Does any Service exist in DNS?

	Does the Service work by IP?
	Is the Service correct?
	Does the Service have any Endpoints?
	Are the Pods working?
	Is the kube-proxy working?
	Is kube-proxy running?
	Is kube-proxy writing iptables rules?
	Userspace
	Iptables

	Is kube-proxy proxying?
	A Pod cannot reach itself via Service IP

	Seek help
	More information

	Troubleshoot Clusters
	Listing your cluster
	Looking at logs
	Master
	Worker Nodes

	A general overview of cluster failure modes

	Troubleshoot Applications
	Diagnosing the problem
	Debugging Pods
	My pod stays pending
	My pod stays waiting
	My pod is crashing or otherwise unhealthy
	My pod is running but not doing what I told it to do

	Debugging Replication Controllers
	Debugging Services
	My service is missing endpoints
	Network traffic is not forwarded
	More information

	Debug a StatefulSet
	Before you begin
	Debugging a StatefulSet
	What’s next

	Application Introspection and Debugging
	Using kubectl describe pod to fetch details about pods
	Example: debugging Pending Pods
	Example: debugging a down/unreachable node
	What’s next?

	Auditing
	Audit Policy
	Audit backends
	Log backend
	Webhook backend
	Batching
	Parameter tuning

	Multi-cluster setup
	Log Collector Examples
	Use fluentd to collect and distribute audit events from log file
	Use logstash to collect and distribute audit events from webhook backend

	Legacy Audit
	Configuration

	Developing and debugging services locally
	Before you begin
	Getting a shell on a remote cluster
	Developing or debugging an existing service
	What’s next

	Use an HTTP Proxy to Access the Kubernetes API
	Before you begin
	Using kubectl to start a proxy server
	Exploring the Kubernetes API
	What’s next

	Extend the Kubernetes API with CustomResourceDefinitions
	Before you begin
	Create a CustomResourceDefinition
	Create custom objects
	Delete a CustomResourceDefinition
	Advanced topics
	Finalizers
	Validation
	Subresources
	Status subresource
	Scale subresource

	Categories

	What’s next

	Extend the Kubernetes API with ThirdPartyResources
	What is ThirdPartyResource?
	Structure of a ThirdPartyResource
	Creating a ThirdPartyResource
	Creating Custom Objects
	What’s next

	Migrate a ThirdPartyResource to CustomResourceDefinition
	Before you begin
	Migrate TPR data
	What’s next

	Configure the aggregation layer
	Before you begin
	Enable apiserver flags
	What’s next

	Setup an extension API server
	Before you begin
	Setup an extension api-server to work with the aggregation layer
	What’s next

	Install Service Catalog using Helm
	Before you begin
	Add the service-catalog Helm repository
	Enable RBAC
	Install Service Catalog in your Kubernetes cluster
	What’s next

	Install Service Catalog using SC
	Before you begin
	Install sc in your local environment
	Install Service Catalog in your Kubernetes cluster
	Uninstall Service Catalog
	What’s next

	Manage TLS Certificates in a Cluster
	Overview
	Trusting TLS in a Cluster
	Requesting a Certificate
	Step 0. Download and install CFSSL
	Step 1. Create a Certificate Signing Request
	Step 2. Create a Certificate Signing Request object to send to the Kubernetes API
	Step 3. Get the Certificate Signing Request Approved
	Step 4. Download the Certificate and Use It

	Approving Certificate Signing Requests
	A Word of Warning on the Approval Permission
	A Note to Cluster Administrators

	Certificate Rotation
	Before you begin
	Overview
	Enabling client certificate rotation
	Understanding the certificate rotation configuration

	Cluster Management Guide for Version 1.6
	Cluster defaults set to etcd 3

	Upgrading kubeadm clusters from 1.6 to 1.7
	Before you begin
	On the master
	On each node

	Upgrading kubeadm clusters from 1.7 to 1.8
	Before you begin
	Upgrading your control plane
	Upgrading your master and node packages
	Recovering from a bad state

	Upgrading/downgrading kubeadm clusters between v1.8 to v1.9
	Before you begin
	Upgrading your control plane
	Upgrading your master and node packages
	Recovering from a failure state

	Upgrading kubeadm HA clusters from 1.9.x to 1.9.y
	Before you begin
	Preparation
	Upgrading your control plane
	Upgrade base software packages
	If something goes wrong

	Configure Default Memory Requests and Limits for a Namespace
	Before you begin
	Create a namespace
	Create a LimitRange and a Pod
	What if you specify a Container’s limit, but not its request?
	What if you specify a Container’s request, but not its limit?
	Motivation for default memory limits and requests
	What’s next
	For cluster administrators
	For app developers

	Configure Default CPU Requests and Limits for a Namespace
	Before you begin
	Create a namespace
	Create a LimitRange and a Pod
	What if you specify a Container’s limit, but not its request?
	What if you specify a Container’s request, but not its limit?
	Motivation for default CPU limits and requests
	What’s next
	For cluster administrators
	For app developers

	Configure Minimum and Maximum Memory Constraints for a Namespace
	Before you begin
	Create a namespace
	Create a LimitRange and a Pod
	Attempt to create a Pod that exceeds the maximum memory constraint
	Attempt to create a Pod that does not meet the minimum memory request
	Create a Pod that does not specify any memory request or limit
	Enforcement of minimum and maximum memory constraints
	Motivation for minimum and maximum memory constraints
	Clean up
	What’s next
	For cluster administrators
	For app developers

	Configure Minimum and Maximum CPU Constraints for a Namespace
	Before you begin
	Create a namespace
	Create a LimitRange and a Pod
	Delete the Pod
	Attempt to create a Pod that exceeds the maximum CPU constraint
	Attempt to create a Pod that does not meet the minimum CPU request
	Create a Pod that does not specify any CPU request or limit
	Enforcement of minimum and maximum CPU constraints
	Motivation for minimum and maximum CPU constraints
	Clean up
	What’s next
	For cluster administrators
	For app developers

	Configure Memory and CPU Quotas for a Namespace
	Before you begin
	Create a namespace
	Create a ResourceQuota
	Create a Pod
	Attempt to create a second Pod
	Discussion
	Clean up
	What’s next
	For cluster administrators
	For app developers

	Configure a Pod Quota for a Namespace
	Before you begin
	Create a namespace
	Create a ResourceQuota
	Clean up
	What’s next
	For cluster administrators
	For app developers

	Configure Quotas for API Objects
	Before you begin
	Create a namespace
	Create a ResourceQuota
	Create a PersistentVolumeClaim
	Attempt to create a second PersistentVolumeClaim
	Notes
	Clean up
	What’s next
	For cluster administrators
	For app developers

	Advertise Extended Resources for a Node
	Before you begin
	Get the names of your Nodes
	Advertise a new extended resource on one of your Nodes
	Discussion
	Storage example

	Clean up
	What’s next
	For application developers
	For cluster administrators

	Control CPU Management Policies on the Node
	CPU Management Policies
	Configuration
	None policy
	Static policy

	Access Clusters Using the Kubernetes API
	Before you begin
	Accessing the cluster API
	Accessing for the first time with kubectl
	Directly accessing the REST API
	Using kubectl proxy
	Without kubectl proxy

	Programmatic access to the API
	Go client
	Python client
	Other languages

	Accessing the API from a Pod

	Access Services Running on Clusters
	Before you begin
	Accessing services running on the cluster
	Ways to connect
	Discovering builtin services
	Manually constructing apiserver proxy URLs
	Using web browsers to access services running on the cluster

	Securing a Cluster
	Before you begin
	Controlling access to the Kubernetes API
	Use Transport Level Security (TLS) for all API traffic
	API Authentication
	API Authorization

	Controlling access to the Kubelet
	Controlling the capabilities of a workload or user at runtime
	Limiting resource usage on a cluster
	Controlling what privileges containers run with
	Restricting network access
	Restricting cloud metadata API access
	Controlling which nodes pods may access

	Protecting cluster components from compromise
	Restrict access to etcd
	Enable audit logging
	Restrict access to alpha or beta features
	Rotate infrastructure credentials frequently
	Review third party integrations before enabling them
	Encrypt secrets at rest
	Receiving alerts for security updates and reporting vulnerabilities

	Using Sysctls in a Kubernetes Cluster
	Before you begin
	Listing all Sysctl Parameters
	Enabling Unsafe Sysctls
	Setting Sysctls for a Pod
	PodSecurityPolicy Annotations

	Encrypting Secret Data at Rest
	Before you begin
	Configuration and determining whether encryption at rest is already enabled
	Understanding the encryption at rest configuration.
	Providers:

	Encrypting your data
	Verifying that data is encrypted
	Ensure all secrets are encrypted
	Rotating a decryption key
	Decrypting all data

	Operating etcd clusters for Kubernetes
	Prerequisites
	Resource requirements
	Starting Kubernetes API server
	Single-node etcd cluster
	Multi-node etcd cluster
	Multi-node etcd cluster with load balancer

	Securing etcd clusters
	Securing communication
	Limiting access of etcd clusters

	Replacing a failed etcd member
	Backing up an etcd cluster
	Built-in snapshot
	Volume snapshot

	Scaling up etcd clusters
	Restoring an etcd cluster
	Upgrading and rolling back etcd clusters
	Important assumptions
	Background
	etcd upgrade requirements
	One minor release at a time
	Rollback via additional tooling

	Design
	New etcd Docker image
	Migration script
	Upgrade procedure

	Notes for etcd Version 2.2.1
	Default configuration
	Kubernetes’s usage of etcd
	Troubleshooting

	Static Pods
	Static pod creation
	Configuration files
	Pods created via HTTP

	Behavior of static pods
	Dynamic addition and removal of static pods

	Cluster Management
	Creating and configuring a Cluster
	Upgrading a cluster
	Upgrading an Azure Kubernetes Service (AKS) cluster
	Upgrading Google Compute Engine clusters
	Upgrading Google Kubernetes Engine clusters
	Upgrading clusters on other platforms

	Resizing a cluster
	Resizing an Azure Kubernetes Service (AKS) cluster
	Cluster autoscaling

	Maintenance on a Node
	Advanced Topics
	Upgrading to a different API version
	Turn on or off an API version for your cluster
	Switching your cluster’s storage API version
	Switching your config files to a new API version

	Share a Cluster with Namespaces
	Before you begin
	Viewing namespaces
	Creating a new namespace
	Deleting a namespace
	Subdividing your cluster using Kubernetes namespaces
	Understanding the motivation for using namespaces
	Understanding namespaces and DNS
	What’s next

	Namespaces Walkthrough
	Step Zero: Prerequisites
	Step One: Understand the default namespace
	Step Two: Create new namespaces
	Step Three: Create pods in each namespace

	Autoscale the DNS Service in a Cluster
	Before you begin
	Determining whether DNS horizontal autoscaling is already enabled
	Getting the name of your DNS Deployment or ReplicationController
	Determining your scale target
	Enabling DNS horizontal autoscaling
	Tuning autoscaling parameters
	Disable DNS horizontal autoscaling
	Option 1: Scale down the kube-dns-autoscaler deployment to 0 replicas
	Option 2: Delete the kube-dns-autoscaler deployment
	Option 3: Delete the kube-dns-autoscaler manifest file from the master node

	Understanding how DNS horizontal autoscaling works
	Future enhancements
	What’s next

	Using CoreDNS for Service Discovery
	Before you begin
	Installing CoreDNS with kubeadm
	Upgrading an Existing Cluster with kubeadm
	What’s next

	Safely Drain a Node while Respecting Application SLOs
	Before you begin
	Use kubectl drain to remove a node from service
	Draining multiple nodes in parallel
	The Eviction API
	What’s next

	Configure Out Of Resource Handling
	Eviction Policy
	Eviction Signals
	Eviction Thresholds
	Soft Eviction Thresholds
	Hard Eviction Thresholds

	Eviction Monitoring Interval
	Node Conditions
	Oscillation of node conditions
	Reclaiming node level resources
	With imagefs
	Without imagefs

	Evicting end-user Pods
	With imagefs
	Without imagefs

	Minimum eviction reclaim
	Scheduler

	Node OOM Behavior
	Best Practices
	Schedulable resources and eviction policies
	DaemonSet

	Deprecation of existing feature flags to reclaim disk
	Known issues
	kubelet may not observe memory pressure right away
	kubelet may evict more Pods than needed

	Reserve Compute Resources for System Daemons
	Node Allocatable
	Enabling QoS and Pod level cgroups
	Configuring a cgroup driver
	Kube Reserved
	System Reserved
	Eviction Thresholds
	Enforcing Node Allocatable

	General Guidelines
	Example Scenario
	Feature Availability

	Guaranteed Scheduling For Critical Add-On Pods
	Overview
	Rescheduler: guaranteed scheduling of critical add-ons
	Config
	Marking pod as critical when using Rescheduler.
	Marking pod as critical when priorites are enabled.

	Declare Network Policy
	Before you begin
	Create an nginx deployment and expose it via a service
	Test the service by accessing it from another pod
	Limit access to the nginx service
	Assign the policy to the service
	Test access to the service when access label is not defined
	Define access label and test again

	Using a KMS provider for data encryption
	Before you begin
	Configuring the KMS provider
	Implementing a KMS plugin
	Enabling the KMS supported by your cloud provider
	Developing a KMS plugin gRPC server
	Integrating a KMS plugin with the remote KMS
	Deploying the KMS plugin

	Encrypting your data with the KMS provider
	Verifying that the data is encrypted
	Ensuring all secrets are encrypted
	Switching from a local encryption provider to the KMS provider
	Disabling encryption at rest

	Use Calico for NetworkPolicy
	Before you begin
	Creating a Calico cluster with Google Kubernetes Engine (GKE)
	Creating a local Calico cluster with kubeadm
	What’s next

	Use Cilium for NetworkPolicy
	Before you begin
	Deploying Cilium on Minikube for Basic Testing
	Deploying Cilium for Production Use
	Understanding Cilium components
	What’s next

	Use Kube-router for NetworkPolicy
	Before you begin
	Installing Kube-router addon
	What’s next

	Romana for NetworkPolicy
	Before you begin
	Installing Romana with kubeadm
	Applying network policies
	What’s next

	Weave Net for NetworkPolicy
	Before you begin
	Install the Weave Net addon
	Test the installation
	What’s next

	Reconfigure a Node's Kubelet in a Live Cluster
	Before you begin
	Reconfiguring the Kubelet on a Live Node in your Cluster
	Basic Workflow Overview
	Node Authorizer Workarounds
	Generating a file that contains the current configuration
	Edit the configuration file
	Push the configuration file to the control plane
	Authorize your Node to read the new ConfigMap
	Set the Node to use the new configuration
	Observe that the Node begins using the new configuration
	Edit the configuration file again
	Push the newly edited configuration to the control plane
	Authorize your Node to read the new ConfigMap
	Configure the Node to use the new configuration
	Observe that the Kubelet is using the new configuration
	Deauthorize your Node fom reading the old ConfigMap
	Reset the Node to use its local default configuration
	Observe that the Node is using its local default configuration
	Deauthorize your Node fom reading the old ConfigMap

	Kubectl Patch Example
	Understanding KubeletConfigOK Conditions

	Set Kubelet parameters via a config file
	Before you begin
	Create the config file
	Start a Kubelet process configured via the config file
	Relationship to Dynamic Kubelet Config

	Change the Reclaim Policy of a PersistentVolume
	Before you begin
	Why change reclaim policy of a PersistentVolume
	Changing the reclaim policy of a PersistentVolume
	What’s next
	Reference

	Limit Storage Consumption
	Before you begin
	Scenario: Limiting Storage Consumption
	LimitRange to limit requests for storage
	StorageQuota to limit PVC count and cumulative storage capacity
	Summary

	Change the default StorageClass
	Before you begin
	Why change the default storage class?
	Changing the default StorageClass
	What’s next

	Kubernetes Cloud Controller Manager
	Cloud Controller Manager
	Administration
	Requirements
	Running cloud-controller-manager

	Examples
	Limitations
	Support for Volumes
	Scalability
	Chicken and Egg

	Developing your own Cloud Controller Manager

	Developing Cloud Controller Manager
	Background
	Developing
	Out of Tree
	In Tree

	Set up High-Availability Kubernetes Masters
	Starting an HA-compatible cluster
	Adding a new master replica
	Removing a master replica
	Handling master replica failures
	Best practices for replicating masters for HA clusters
	Implementation notes
	Overview
	Load balancing
	Master service & kubelets
	Master certificates
	Clustering etcd

	Additional reading

	Configure Multiple Schedulers
	1. Package the scheduler
	2. Define a Kubernetes Deployment for the scheduler
	3. Run the second scheduler in the cluster
	4. Specify schedulers for pods
	Verifying that the pods were scheduled using the desired schedulers

	IP Masquerade Agent User Guide
	Before you begin
	Create an ip-masq-agent
	IP Masquerade Agent User Guide
	Key Terms

	Customizing DNS Service
	Before you begin
	Introduction
	Inheriting DNS from the node
	Configure stub-domain and upstream DNS servers
	Impacts on Pods

	ConfigMap options
	Examples
	Example: Stub domain
	Example: Upstream nameserver

	What’s next

	Debugging DNS Resolution
	Before you begin
	Create a simple Pod to use as a test environment
	Check the local DNS configuration first
	Check if the DNS pod is running
	Check for Errors in the DNS pod
	Is DNS service up?
	Are DNS endpoints exposed?

	Known issues
	Kubernetes Federation (Multiple Zone support)
	References
	What’s next

	Persistent Volume Claim Protection
	Before you begin
	PVC Protection Verification
	Scenario 1: The PVC is not in active use by a pod
	Scenario 2: The PVC is in active use by a pod

	Storage Object in Use Protection
	Before you begin
	Storage Object in Use Protection feature used for PVC Protection
	Scenario 1: The PVC is not in active use by a pod
	Scenario 2: The PVC is in active use by a pod
	Scenario 3: A pod starts using a PVC that is in Terminating state

	Storage Object in Use Protection feature used for PV Protection
	Scenario 1: The PV is not bound to a PVC
	Scenario 2: The PV is bound to a PVC

	Cross-cluster Service Discovery using Federated Services
	Prerequisites
	Overview
	Hybrid cloud capabilities
	Creating a federated service
	Adding backend pods
	Verifying public DNS records
	Some notes about the above example

	Discovering a federated service
	From pods inside your federated clusters
	From other clients outside your federated clusters

	Handling failures of backend pods and whole clusters
	Troubleshooting
	I cannot connect to my cluster federation API
	I can create a federated service successfully against the cluster federation API, but no matching services are created in my underlying clusters
	I can create a federated service successfully, but no matching DNS records are created in my DNS provider.
	Matching DNS records are created in my DNS provider, but clients are unable to resolve against those names
	This troubleshooting guide did not help me solve my problem

	For more information

	Set up Cluster Federation with Kubefed
	Prerequisites
	Getting kubefed
	For k8s versions 1.8.x and earlier:
	For k8s versions 1.9.x and above:
	Install kubectl

	Choosing a host cluster.
	Deploying a federation control plane
	Basic and token authentication support
	Passing command line arguments to federation components
	Configuring a DNS provider
	On-premises host clusters
	API server service type
	Provisioning storage for etcd
	CoreDNS support

	Adding a cluster to a federation
	Naming rules and customization
	Secret name

	kube-dns configuration

	Removing a cluster from a federation
	Turning down the federation control plane

	Set up CoreDNS as DNS provider for Cluster Federation
	Objectives
	Before you begin
	Deploying CoreDNS and etcd charts
	Deploying Federation with CoreDNS as DNS provider
	Setup CoreDNS server in nameserver resolv.conf chain

	Set up placement policies in Federation
	Before you begin
	Deploying Federation and configuring an external policy engine
	Deploying an external policy engine
	Configuring placement policies via ConfigMaps
	Testing placement policies

	Federated Cluster
	Before you begin
	Listing Clusters
	Creating a Federated Cluster
	Deleting a Federated Cluster
	Labeling Clusters
	ClusterSelector Annotation
	Clusters API reference

	Federated ConfigMap
	Before you begin
	Creating a Federated ConfigMap
	Updating a Federated ConfigMap
	Deleting a Federated ConfigMap

	Federated DaemonSet
	Before you begin
	Creating a Federated Daemonset
	Updating a Federated Daemonset
	Deleting a Federated Daemonset

	Federated Deployment
	Before you begin
	Creating a Federated Deployment
	Spreading Replicas in Underlying Clusters

	Updating a Federated Deployment
	Deleting a Federated Deployment

	Federated Events
	Prerequisites
	Overview

	Federated Horizontal Pod Autoscalers (HPA)
	Before you begin
	Creating a federated HPA
	Spreading HPA min and max replicas in underlying clusters

	Updating a federated ReplicaSet
	Deleting a federated HPA
	Alternative ways to use federated HPA
	Conclusion

	Federated Ingress
	Before you begin
	Creating a federated ingress
	Adding backend services and pods
	Hybrid cloud capabilities
	Discovering a federated ingress
	Handling failures of backend pods and whole clusters
	Troubleshooting
	I cannot connect to my cluster federation API.
	I can create a Federated Ingress/service/replicaset successfully against the cluster federation API, but no matching ingresses/services/replicasets are created in my underlying clusters.
	I can create a federated ingress successfully, but request load is not correctly distributed across the underlying clusters.

	What’s next

	Federated Jobs
	Before you begin
	Creating a federated job
	Spreading job tasks in underlying clusters

	Updating a federated job
	Deleting a federated job

	Federated Namespaces
	Before you begin
	Creating a Federated Namespace
	Updating a Federated Namespace
	Deleting a Federated Namespace

	Federated ReplicaSets
	Before you begin
	Creating a Federated ReplicaSet
	Spreading Replicas in Underlying Clusters

	Updating a Federated ReplicaSet
	Deleting a Federated ReplicaSet

	Federated Secrets
	Prerequisites
	Overview
	Creating a Federated Secret
	Updating a Federated Secret
	Deleting a Federated Secret

	Perform a Rolling Update on a DaemonSet
	Before you begin
	DaemonSet Update Strategy
	Caveat: Updating DaemonSet created from Kubernetes version 1.5 or before
	Performing a Rolling Update
	Step 1: Checking DaemonSet RollingUpdate update strategy
	Step 2: Creating a DaemonSet with RollingUpdate update strategy
	Step 3: Updating a DaemonSet template
	Declarative commands
	Imperative commands

	Step 4: Watching the rolling update status

	Troubleshooting
	DaemonSet rolling update is stuck
	Some nodes run out of resources
	Broken rollout
	Clock skew

	What’s next

	Performing a Rollback on a DaemonSet
	Before you begin
	Performing a Rollback on a DaemonSet
	Step 1: Find the DaemonSet revision you want to roll back to
	Step 2: Roll back to a specific revision
	Step 3: Watch the progress of the DaemonSet rollback

	Understanding DaemonSet Revisions
	Troubleshooting

	Schedule GPUs
	v1.8 onwards
	Deploying NVIDIA GPU device plugin
	Official NVIDIA GPU device plugin
	NVIDIA GPU device plugin used by GKE/GCE

	Clusters containing different types of NVIDIA GPUs
	v1.6 and v1.7
	Future

	Manage HugePages
	Before you begin
	API
	Future

	Extend kubectl with plugins
	Before you begin
	Installing kubectl plugins
	Plugin loader
	Search order

	Writing kubectl plugins
	The plugin.yaml descriptor
	Recommended directory structure
	Accessing runtime attributes

	What’s next

	Troubleshooting
	Getting help
	Questions

	Help! My question isn’t covered! I need help now!
	Stack Overflow
	Slack
	Mailing List
	Bugs and Feature requests

	Tutorials
	Stateless Applications
	Stateful Applications
	CI/CD Pipeline
	Connecting Applications
	Services
	What’s next

	Overview
	Kubernetes Basics
	What can Kubernetes do for you?
	Kubernetes Basics Modules
	1. Create a Kubernetes cluster
	2. Deploy an app
	3. Explore your app
	4. Expose your app publicly
	5. Scale up your app
	6. Update your app

	Using Minikube to Create a Cluster
	Objectives
	Kubernetes Clusters
	Summary:
	Cluster Diagram

	Interactive Tutorial - Creating a Cluster
	Using kubectl to Create a Deployment
	Objectives
	Kubernetes Deployments
	Summary:
	Deploying your first app on Kubernetes

	Interactive Tutorial - Deploying an App
	Viewing Pods and Nodes
	Objectives
	Kubernetes Pods
	Summary:

	Pods overview
	Nodes
	Node overview
	Troubleshooting with kubectl

	Interactive Tutorial - Exploring Your App
	Using a Service to Expose Your App
	Objectives
	Overview of Kubernetes Services
	Summary
	Services and Labels

	Interactive Tutorial - Exposing Your App
	Running Multiple Instances of Your App
	Objectives
	Scaling an application
	Summary:
	Scaling overview

	Interactive Tutorial - Scaling Your App
	Performing a Rolling Update
	Objectives
	Updating an application
	Summary:
	Rolling updates overview

	Interactive Tutorial - Updating Your App
	Overview of Kubernetes Online Training
	Hello Minikube
	Objectives
	Before you begin
	Create a Minikube cluster
	Create your Node.js application
	Create a Docker container image
	Create a Deployment
	Create a Service
	Update your app
	Enable addons
	Clean up
	What’s next

	Kubernetes 101
	Kubectl CLI and Pods
	Kubectl CLI
	Pods
	Pod Definition
	Pod Management
	Volumes
	Volume Types

	Multiple Containers

	What’s Next?

	Kubernetes 201
	Labels, Deployments, Services and Health Checking
	Labels
	Deployments
	Deployment Management

	Services
	Service Management

	Health Checking
	Process Health Checking
	Application Health Checking

	What’s Next?

	Configuring Redis using a ConfigMap
	Objectives
	Before you begin
	Real World Example: Configuring Redis using a ConfigMap
	What’s next

	Run a Stateless Application Using a Deployment
	Objectives
	Before you begin
	Creating and exploring an nginx deployment
	Updating the deployment
	Scaling the application by increasing the replica count
	Deleting a deployment
	ReplicationControllers – the Old Way
	What’s next

	Example: Deploying PHP Guestbook application with Redis
	Objectives
	Before you begin
	Start up the Redis Master
	Creating the Redis Master Deployment
	Creating the Redis Master Service

	Start up the Redis Slaves
	Creating the Redis Slave Deployment
	Creating the Redis Slave Service

	Set up and Expose the Guestbook Frontend
	Creating the Guestbook Frontend Deployment
	Creating the Frontend Service
	Viewing the Frontend Service via NodePort
	Viewing the Frontend Service via LoadBalancer

	Scale the Web Frontend
	Cleaning up
	What’s next

	Use a Service to Access an Application in a Cluster
	Objectives
	Before you begin
	Creating a service for an application running in two pods
	Using a service configuration file
	Cleaning up
	What’s next

	Exposing an External IP Address to Access an Application in a Cluster
	Objectives
	Before you begin
	Creating a service for an application running in five pods
	Cleaning up
	What’s next

	StatefulSet Basics
	Objectives
	Before you begin
	Creating a StatefulSet
	Ordered Pod Creation

	Pods in a StatefulSet
	Examining the Pod’s Ordinal Index
	Using Stable Network Identities
	Writing to Stable Storage

	Scaling a StatefulSet
	Scaling Up
	Scaling Down
	Ordered Pod Termination

	Updating StatefulSets
	Rolling Update
	Staging an Update
	Rolling Out a Canary
	Phased Roll Outs

	On Delete

	Deleting StatefulSets
	Non-Cascading Delete
	Cascading Delete

	Pod Management Policy
	OrderedReady Pod Management
	Parallel Pod Management

	Cleaning up

	Run a Single-Instance Stateful Application
	Objectives
	Before you begin
	Deploy MySQL
	Accessing the MySQL instance
	Updating
	Deleting a deployment
	What’s next

	Run a Replicated Stateful Application
	Objectives
	Before you begin
	Deploy MySQL
	ConfigMap
	Services
	StatefulSet

	Understanding stateful Pod initialization
	Generating configuration
	Cloning existing data
	Starting replication

	Sending client traffic
	Simulating Pod and Node downtime
	Break the Readiness Probe
	Delete Pods
	Drain a Node

	Scaling the number of slaves
	Cleaning up
	What’s next

	Example: Deploying WordPress and MySQL with Persistent Volumes
	Objectives
	Before you begin
	Create PersistentVolumeClaims and PersistentVolumes
	Create a Secret for MySQL Password
	Deploy MySQL
	Deploy WordPress
	Cleaning up
	What’s next

	Example: Deploying Cassandra with Stateful Sets
	Objectives
	Before you begin
	Additional Minikube Setup Instructions

	Creating a Cassandra Headless Service
	Validating (optional)

	Using a StatefulSet to Create a Cassandra Ring
	Validating The Cassandra StatefulSet
	Modifying the Cassandra StatefulSet
	Cleaning up
	What’s next

	Running ZooKeeper, A CP Distributed System
	Objectives
	Before you begin
	ZooKeeper Basics

	Creating a ZooKeeper Ensemble
	Facilitating Leader Election
	Achieving Consensus
	Sanity Testing the Ensemble
	Providing Durable Storage

	Ensuring Consistent Configuration
	Configuring Logging
	Configuring a Non-Privileged User

	Managing the ZooKeeper Process
	Updating the Ensemble
	Handling Process Failure
	Testing for Liveness
	Testing for Readiness

	Tolerating Node Failure
	Surviving Maintenance
	Cleaning up

	AppArmor
	Objectives
	Before you begin
	Securing a Pod
	Example
	Administration
	Setting up nodes with profiles
	Restricting profiles with the PodSecurityPolicy
	Disabling AppArmor
	Upgrading to Kubernetes v1.4 with AppArmor
	Upgrade path to General Availability

	Authoring Profiles
	API Reference
	Pod Annotation
	Profile Reference
	PodSecurityPolicy Annotations

	What’s next

	Using Source IP
	Objectives
	Before you begin
	Terminology
	Prerequisites
	Source IP for Services with Type=ClusterIP
	Source IP for Services with Type=NodePort
	Source IP for Services with Type=LoadBalancer
	Cleaning up
	What’s next

